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Abstract

Numerical models are paramount in describing the complex physical world around us. They are often based
on non-linear functions, which have to be solved in order to run a simulation. The first goal of this thesis is to
compare the Jacobian-free Newton-Krylov method against the regular Newton-Raphson method for solving
non-linear equations. When doing this, preconditioning was only used for the Newton-Raphson method. As
a second goal, the optimal parameters for solving a coupled system with the Schur complement method are
determined. For computational purposes, these analyses are performed using PETSc.

The comparison between JFNK and Newton-Raphson were performed by solving a heat equation. The phys-
ical system which was analyzed is a one-dimensional radiating rod, with a heterogeneous thermal conduc-
tivity and Dirichlet boundary conditions. Firstly this rod was modelled as one single system. For this case,
it was found that Newton-Raphson outperformed the JFNK method by a factor of 5-1700, depending on the
type of preconditioning used. Secondly, the rod was modelled as a coupled system by solving two parts of the
rod separately. In this case, it was found that the JFNK method outperformed the preconditioned Newton-
Raphson method by a factor of 9.1±0.3. It was concluded that the JFNK is only favorable over regular Newton-
Raphson for coupled systems.

To achieve the second goal, an incompressible Navier-Stokes coupled system was solved using the Schur
complement method. The coupled system originated from incompressible flow in a back-step pipe, using a
finite element method. For the Schur complement parameters, it was shown that using an approximation of
the Schur complement offered a significant increase in efficiency. The momentum and pressure subsystems
were analyzed separately. The momentum subsystem performed best with a relative tolerance of τr = 10−4.5,
while the pressure subsystem performed best with a tolerance of τr = 10−2. With these parameters, the Schur
complement method had the same computational time as the pressure-correction method, which was used
as a benchmark.

For future research, there are three main recommendations. Firstly, to use preconditioning for the JFNK
method. This was not done in this thesis because of technical constraints, but it is theoretically possible. Sec-
ondly, if the JFNK method is preconditioned, it could be used for the incompressible Navier-Stokes simula-
tion. Finally, there are combinations of parameters which were not tested for the Schur complement method.
Trying out more combinations might result in finding an even more optimized method.
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1
Introduction

Ever since the invention of the computer, numerical simulations have become increasingly important. They
allow the simulation of complex situations, without the cost and problems that come with doing the actual
experiment. These simulations are advantageous in many fields. They allow car companies to model their
cars and see how efficient they will be without ever constructing the car [1]. They are even used by banks to
model the financial market and try to predict what is going to happen [2]. There are many more branches
where numerical models have become crucial in the functioning of the entire industry, which makes the
accuracy of these models essential. In general, a higher accuracy requires more calculations, but more cal-
culations take more time, which is often the limiting factor. It is possible to reduce the computational time
by using supercomputers, but this is very expensive and sometimes insufficient. In practice, it is common to
try and make numerical algorithms as efficient as possible. Optimizing an algorithm makes it possible for the
same model to be simulated in less time, avoiding the need to invest in more computing power.

Numerical models are mostly used to simulate complex phenomena, so they are often governed by a non-
linear function. An algorithm widely used to find the solution for any non-linear differentiable function is
the Newton-Raphson algorithm. This method uses the Jacobian of a function to iterate towards its root. If
the Jacobian is known, Newton-Raphson is generally easy to implement and is usually very fast in finding
the right solution. However, the Jacobian is usually not available, which means the regular Newton-Raphson
method can not be used. In these cases, the Jacobian-free Newton-Krylov (JFNK) method is a possible al-
ternative since it approximates the Jacobian. The goal in the first part of this thesis is to compare the ’reg-
ular’ Newton-Raphson method against the JFNK method. Many problems can be solved using the Newton-
Raphson method, but there are two main types. The first type is the single-physics problem, which means
that the model only focusses on one system. An example of this would be the velocity of an object as it falls,
or more complexly: the temperature of a continuously cooled, running engine. For the second type, multi-
physics problems (coupled systems), the model focusses on multiple systems simultaneously. The multi-
physics problems are generally more complex to solve and are encountered, for example, in weather models.
Weather models need to keep track of how clouds form, the velocity of the wind, interaction with land, et
cetera. All of these systems interact with another, which makes these types of problems harder to solve.

First, both methods are tested on a single-physics model for the heat-flow in a 1D rod. The simplicity of this
problem made it a useful test problem, which could be used to compare and optimize the regular Newton-
Raphson and JFNK algorithms. Once these algorithms were both optimized, the 1D model rod was split up
into two parts. The parts were then solved separately, making the system a coupled system. For the split rod,
the JFNK and regular Newton-Raphson methods were then compared again to see how well they performed
on a coupled system.
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2 1. Introduction

The second part of this thesis focussed on finding an optimal method for solving the incompressible Navier-
stokes equations. The flow of an incompressible liquid in a backstep pipe was chosen because it is a widely
used benchmark [3]. The liquid flow was solved as a coupled system because the incompressible Navier-
Stokes equations involve both pressure and momentum systems. These incompressible Navier-Stokes prob-
lems play a large part in the simulation of new types of reactors at the Reactor Institute Delft. By optimizing
the numerical methods for the incompressible flow in a pipe problem, potentially efficient methods for the
more significant simulations were investigated.

The layout of this thesis is as follows: First, the basics of what Newton-Raphson is and how it works are
discussed in Chapter 2, alongside the different methods that can be implemented inside Newton-Raphson.
Chapters 3 & 4 focus on how well the JFNK and regular Newton-Raphson methods perform for the single-
physics and multi-physics 1D rod problem, respectively. In Chapter 5, different parameters for the Schur
complement method are tested for the linearized incompressible Navier-Stokes equation inside a pipe. Fi-
nally, all conclusions and recommendations are presented in Chapter 6.

This thesis is part of the double bachelor in physics and mathematics at the University of Technology Delft.



2
Newton methods for non-linear systems

In every field of physics, there are functions which can not be solved analytically. This means that finding x for
a function f , such that f (x) = b requires numerical methods. One of the fastest numerical methods available
is the Newton-Raphson algorithm. The Newton-Raphson algorithm involves many processes, which will be
explained and described in this chapter.

2.1. Newton-Raphson
The Newton-Raphson method is an iterative numerical method, which finds the root of a differentiable vec-
tor function F(x). Since Newton-Raphson is an iterative method, it does not find the exact value for the root
x, but instead, it returns an approximation of its value. Consequently, the solution will always be less precise
than an analytical solution, but finding a root analytically may not always be feasible. For example, the root
of a non-trivial polynomial of order 5 or higher is impossible to find analytically [4]. For these high order
polynomials, Newton-Raphson can be used to find the roots.

The first step in applying Newton-Raphson is providing a starting point for the iterative sequence. Usually,
the starting point is guessed such that it is close to a root. The next point is then calculated using

xi+1 = xi − J−1
F (xi ) ·F(xi), (2.1)

where F(xi) is the value of the function at the i’th iteration, and JF (xi) is the Jacobian at the i’th iteration.

For example, when using Newton-Raphson to find the root of f (x) = x2, with initial guess x0 = 2, the pro-
cess of finding an approximation for the root looks like Figure 2.1. Once the approximated root xn is close
enough to an actual root, the sequence will converge to the root at a quadratic rate [5]. This implies that the
error between the approximation and the exact value of the root, converges at least as fast as:

||x−xi+1||∝ ||x−xi||2, (2.2)

where x is the exact value of the root. To save time, the Newton-Raphson method is stopped when the error
in the approximation of the root satifies certain conditions. These conditions are otherwise known as stop
criteria, and two criteria are used in this thesis. The first criterion is the relative step stop criterion given by

||xi −xi−1||
||x0||

< τS , (2.3)

where τS is the relative step tolerance.
This criterion is very useful because it scales with the size of the system, so the error of the approximated root
is always proportional to the actual root. The downside of the relative step criterion is that it does not work
when the initial guess x0 is zero. The second criterion used in this thesis is the relative function stop criterion:

||F(xi)−F(xi−1)||
||F(x0)|| < τF , (2.4)

3



4 2. Newton methods for non-linear systems

Figure 2.1: Illustation of the Newton-Raphson method approximating the root of x2. Shows the first two iterations.

where τF is the relative function tolerance. Similar to the relative step stop criterion, the relative function stop
criterion has as main advantage that the error in the system is always proportional to the size of the system.

In order to calculate the next Newton-Raphson step using Equation 2.1, it is required to know the inverted
Jacobian J−1

F (xi ). In the one-dimensional case, for a differentiable function F (x), the inverted Jacobian is
given by

(JF(x))−1 = 1
∂F
∂x (x)

. (2.5)

Because the right hand side of Equation 2.5 is a scalar value, which makes the inversion a simple matter.
However, if F(x) does not map a scalar domain onto a scalar domain, the Jacobian becomes a matrix. Given a
function F(x) :Rn −→Rm , the Jacobian is given by

JF =



∂F1
∂x1

∂F1
∂x2

· · · ∂F1
∂xn

∂F2
∂x1

∂F2
∂x2

· · · ∂F2
∂xn

...
...

. . .
...

∂Fm
∂x1

∂Fm
∂x2

· · · ∂Fm
∂xn

 . (2.6)

This Jacobian could be inverted explicitly, and plugged into Equation 2.1 to find the next Newton-Raphson
step. Although this way of finding the next step is theoretically possible, it requires storing the inverted Jaco-
bian explicitly. This is very memory expensive, which makes that the algorithm scale poorly. It is important
to note here that the Jacobian JF is sparse in general, but the inverse JF

−1 is usually dense. Meaning that in
some cases, storing the Jacobian scales well, while storing the inverse Jacobian scales poorly. In order to avoid
storing the explicit Jacobian, Equation 2.1 is rewritten to

JF(xi) ·δxi+1 =−F(xi), (2.7)

where δxi+1 is defined as
δxi+1 = xi+1 −xi. (2.8)

Once δxi+1 is known, the next Newton-Raphson step is calculated with

xi+1 = xi +δxi+1. (2.9)

To find δxi+1 in Equation 2.7, a linear solver is required, of which there are two main types. The first type is
the direct solver which returns the exact value of δxi+1. The second type is the iterative linear solver, which
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returns an approximation of δxi. One of the most popular direct solvers is the LU decomposition method.
All direct solver methods have some serious drawbacks, which cause issues with the scalability of the system.
The first disadvantage is that it needs to store an N ×N matrix to solve a N ×N system, which can take up
much memory. The second drawback is that the LU decomposition method (or any other direct solver) has
a complexity of at least O (N 3) [6]. For large systems, direct solvers require a huge amount of computational
power to solve a problem in any reasonable time frame. Because the systems in this thesis require good scal-
ability, the direct solver methods were ruled out.

Since the direct solvers could not be used, iterative ones were chosen as the main type of linear solvers in
this thesis. All the iterative solvers used for this work are discussed in depth in the next Subsection.

2.2. Krylov methods
The idea behind an iterative solver is quite similar to the Newton-Raphson method itself. They start with an
initial guess and then use the properties of the system to get a better approximation in the next step. There
are many different iterative linear solvers available, but only Krylov methods were used in this thesis. The
Krylov methods were chosen because they are among the fastest iterative solvers available [7]. Because of
their iterative nature, they do not have the O (N 3) time complexity of a direct solver. This makes Krylov meth-
ods very advantageous for ensuring the scalability of a problem.

Every Krylov method is by definition based on the Krylov subspace

K = {r0,Ar0,A2r0, . . . ,AN−1r0}, (2.10)

where, A is the N ×N matrix defining the linear system, w0 is the initial linear solution guess, b is the RHS of
the linear system, and r0 is defined as b−Aw0. The goal of all Krylov methods is to minimize the residual r,
which corresponds to solving the linear system.

There are many Krylov methods, but only two were used and discussed in this thesis; the conjugate gradi-
ent (CG) and generalized minimal residual (GMRES) methods.

2.2.1. Conjugate Gradient (CG)
Conjugate Gradient is an extremely effective numerical iterative solver, which always converges for symmet-
ric and positive definite systems [8]. The iterative CG method is based on minimizing

||b−Aw||2, (2.11)

where A is a known matrix, b a known vector, and w the unkown vector. The complete CG algorithm is given
in Algorithm 1.

It is not possible to perfectly predict how fast the CG method converges for a general system, but there are
some bounds on the convergence. When solving a N×N system, the CG method has a complexity of O (N ) [8].
Moreover, it always returns the exact solution within N iterations. Note that this does not mean that it finds
the exact solution with a complexity of O (N ), since iterations take more time when N increases. Together,
these bounds promise much better scalability than the O (N 3) complexity of the LU decomposition method.
With the downside being that the solution is not exact. In this thesis, the CG algorithm will only be used and
not investigated. For further reading on how the basics of CG work, the reader is referred to [8].

2.2.2. Generalized Minimal Residual (GMRES)
The Generalized Minimal Residual method is an extension on the methods used in the CG algorithm [8].
GMRES is used to solve unsymmetrical systems since CG does not work for these types of problems. GMRES
first orthogonalizes the Krylov subspace using Gramm-Schmidt. Because of this, GMRES will be less efficient
compared to CG in most cases. So whenever the system is symmetric positive definite the CG method is cho-
sen and if not, then GMRES is used.

The GMRES algorithm is given in Algorithm 2.
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Data: System A, initial guess w(0), rhs of the system b, and preconditioning matrix M.
Result: Approximative solution w(i )

Compute r(0) = b−Aw(0)

for i = 1, 2, ... do
solve Mz(i−1) = r(i−1)

ρi−1 = 〈r(i−1),z(i−1)〉
if i = 1 then

p(1) = z(0)

else
βi−1 = ρi−1/ρi−2

p(i ) = z(i−1) +βi−1p(i−1)

end
q(i ) = Ap(i )

αi = ρi−1/〈p(i ),q(i )〉
w(i ) = w(i−1) +αi p(i )

r(i ) = r(i−1) −αi q(i )

if converged then
return w(i )

end
end

Algorithm 1: CG algorithm from [8], with preconditioning matrix M which is discussed later.

2.3. Preconditioning
An iterative linear solver can solve some systems more efficiently than other systems. This is due to the
spectral properties of the matrix A, which defines the system. A widely used measure for how well iterative
solvers work for a certain system is the condition number:

κ(A) = |λmax (A)|
|λmi n(A)| , (2.12)

where λ(A) is an eigenvalue of A [5]. In general, a lower condition number results in the iterative linear solver
being more efficient for this system. Therefore, if κ(MA) < κ(A) for some preconditioning matrix M, the con-
vergence can be sped up significantly by multiplying both sides of the system by M, resulting in the precon-
ditioned system:

MAx = Mb. (2.13)

This preconditioned system has the same solution as the original system Ax = b, but has a lower condition
number. Preconditioning plays a crucial role in ensuring that the iterative linear solvers find a solution with
high efficiency.

In practice, algorithms are used to find a good preconditioning matrix for a certain system. Some of these pre-
conditioning algorithms, such as symmetric successive over-relaxation (SSOR), take up almost no computing
power to create and then apply the preconditioning matrix [8]. For other algorithms, such as the Incomplete
Factorization preconditioners, this can take a significant portion of the total computational power used [8].
With the latter type of preconditioner algorithm, the problem becomes finding an optimum between the cost
of making the preconditioner and the gain of using it.

Multiple preconditioners are used in this thesis, mainly: Incomplete Cholesky (icc), LU, Jacobi, and the
FIELDSPLIT preconditioner. The preconditioner algorithms used in this thesis are all provided by PETSc.
For further reading on the preconditioners, the reader is referred to the PETSc user manual [9].
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Data: System A, initial guess w(0), rhs of the system b, and preconditioning matrix M.
Result: Approximative solution w(i )

for j = 1, ..., m do
solve Mr = b−Aw(0)

v(1) = r/||r||2
s = ||r||2e1

for i = 1, ..., m do
solve Mq = Av(i )

for k = 1, ..., i do
hk,i = 〈q,v(k)〉
q = q−hk,i v(k)

end
hi+1,i = ||q||2
v(i+1) = q/hi+1,i

apply J1, ..., Ji−1 on (hi ,i , ...,hi+1,i )
construct Ji , acting on i th and (i +1)st component
of h., j , such that (i + 1)st component of Ji h.,i is 0.
s = Ji s
if s(i +1) is small enough then

UPDATE(ŵ,i)
break

end
end
UPDATE(ŵ,i)

end

In this scheme UPDATE(ŵ,i)
replaces the following computations:

Compute y as the solution of Hy = ŝ, in which
the upper i × i triangle part of H has hi , j as
its elements (in least square sense if H is singular),
ŝ represents the first i components of s.
ŵ = w(0) + y1v(1) + y2v(2) + ...+ yi v(i )

s(i+1) = ||b− Aŵ||2
if ŵ is an accurate enough approximation then quit
else w(0) = ŵ

Algorithm 2: Restarted GMRES(m) algorithm from [8], where M is the preconditioning matrix which will
be discussed later.
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2.4. Jacobian-free Newton Krylov
So far in this thesis, it has been assumed that because F(x) is a differentiable function, that it is always pos-
sible to calculate the Jacobian JF. In reality, it is often not possible to find JF, and an alternative to the exact
Jacobian must be found in order to use Newton-Raphson.

This is where Krylov methods become extremely effective. They only need the Krylov sub-space (Equation
2.10), which is solely based on the Jacobian-vector multiplication JF · r0. Therefore, if JF ·v can be computed
for a general vector v, the whole Krylov sub-space can be computed by using

Jn+1
F · r0 = JF · (Jn

F · r0). (2.14)

Here, the Jn
F ·r0 term is always a vector, so Jn+1

F ·r0 will always be a vector as well. Since the matrix in Equation
2.14 is a Jacobian, the matrix-vector product can be approximated by [10]

JF(x) ·v ≈ F(x+εv)−F(x)

ε
, (2.15)

where F(x) is the function for which the root is computed, v is some vector, and ε is a sufficiently small number
(e.g., 1.5∗10−8) [11]. Combining Equations 2.14 and 2.15 gives

(JF(x))n+1 · r0 ≈ F(x+εJn · r0)−F(x)

ε
, (2.16)

which can be used to compute the entire Krylov sub-space, without explicitly knowing the Jacobian. Using
this approximation in Newton-Raphson is known as the Jacobian-free Newton-Krylov method (JFNK).

2.5. Steady and transient solutions
Many fields of physics, are governed by a time-dependent differential-equation. These types of equations
describe the way a certain process evolves, and due to conservation laws they are generally of form

∂q

∂t
=∇·H(q, t )+S(t ), (2.17)

where q is some property of the system (e.g., temperature, energy, or velocity), H is some suitable function, S
is the source term, and t represents the time. The function H may be dependent on even more variables, such
as position, pressure, volume, or electrical current. For now, only q and t are taken into account. To simplify
Equation 2.17, it is rewritten to

∂q

∂t
= F(q, t ), (2.18)

where F equals ∇·H(q, t )+S(t ).

There are two categories for Equation 2.18, the steady state (SS) problem, and the transient problem.

2.5.1. Steady state
The steady state problem occurs if all processes in a system are not changing over time [12]. Therefore, the
LHS of Equation 2.18 is zero, and thus F has to be zero as well. Steady state only occurs when all processes in
the system cancel out (e.g., flow in = flow out, energy gained = energy lost, etc). However, this does not mean
everything has to be static. Laminar flow in a pipe can be a steady state process, even though the fluid moves

To solve a steady state problem, a solution needs to be found such that F(q, t ) = 0. In other words; the solution
is a root of F. Newton-Raphson can be used to find this root, alongside with the other methods discussed in
Sections 2.1-2.4.
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2.5.2. Transient
The transient case occurs whenever the LHS of Equation 2.18 is not equal to 0. The variable q no longer has
to be a constant over time, and the problem becomes a truly time-dependent differential equation. To solve
the transient differential equation, Equation 2.18 is rewritten into

q(t ) =
∫ t

t0

F(q(t ′), t ′)d t ′+q(t0), (2.19)

where t0 is the initial time, t is the time, and t ′ a dummy integration variable. To solve Equation 2.19, time
integration methods are used. In this thesis only backward Euler is discussed and used. Backward Euler is
a very popular, implicit time integration method. It uses the solution at the next time-step to compute the
next time step. Since it is an implicit algorithm, it is unconditionally stable which means that any error in the
initial conditions does not cause the solution to diverge. Furthermore, Backwards Euler has an accuracy of
O (h), where h is time-step used to discretize the time. Backward Euler is based on approximating Equation
2.18 as

qn+1 ≈ qn +h ·F(qn+1, tn+1) (2.20)

where tn represents the time at t0 +h ∗n, and qn denotes q(tn) [13]. Using Equation 2.20, the value of qn+1

can not be calculated directly, so numerical solvers such as Newton-Raphson are required to find qn+1. In
order to use Newton-Raphson, the Backward Euler equation is rewritten to a form where qn+1 is the root of
some vector function G:

G(qn+1) = qn+1 −qn −hF(qn+1, tn+1) = 0. (2.21)

For this system G(qn+1), the Newton-Raphson algorithm is given by

JG ·δqn+1
i+1 =−qn+1

i +qn +hF(qn+1
i , tn+1), (2.22)

where δqn+1
i+1 is defined as:

δqn+1
i+1 = qn+1

i+1 −qn+1
i . (2.23)

It is imporant to note that qn and tn+1 are all known constants in Equation 2.22, so the Jacobian of G is purely
based on qn+1

i . The Jacobian JG can then be written as

JG = I−hJF, (2.24)

where I is the identitity matrix.

Substituting Equation 2.24 into Equation 2.22 results in the final Newton-Raphson algorithm for the Back-
ward Euler method:

(I−hJF)δqn+1
i+1 =−qn+1

i +qn +hF(qn+1
i , tn+1). (2.25)

In Equation 2.25, the system being solved is no longer a pure Jacobian of some function, but instead a mix
of the identity matrix and a Jacobian. When the time-step h is small, the identity matrix begins to dominate
the system, which generally makes the system easier to solve. A system is called diagonally dominant iff its
elements e satisfy [14]

|ei i | >
∑
i 6= j

|ei j | ∀i , j . (2.26)

If the time h step becomes smaller, the system is expected to become more diagonally dominant, which
makes it easier to solve. This means that theoretically it is expected that a system takes less then twice as long
to solve if the time-step h is halved.





3
Model problem: heat in a heterogeneous

radiating 1D rod

From the theory, the regular Newton-Raphson method should always be faster than the JFNK method. How-
ever, if the analytic expression for the Jacobian is difficult to find, it is important to know how much worse the
JFNK method performs, compared to the regular Newton-Raphson method. To find out how both methods
compare, their performance on solving the temperature profile of a 1D model rod is tested.

3.1. Numerical model of a 1D rod
This subsection focuses on the model of the heat equation in a 1D rod. The rod, initially, has a uniform
temperature of 600 K, is 2 m long, and is made of a material that has an inhomogeneous thermal conductivity
λ(x). The rod is modelled as a black body, and Dirichlet boundary conditions are imposed. The rod has a
fixed temperature of 500 K at the left side (x = 0 m), and a fixed temperature of 700K at the right side (x = 2
m). The heat equation of the rod is given by [15]

ρcp
∂T

∂t
= ∂

∂x
λ(x)

∂T

∂x
−σT 4, (3.1)

where ρ is the density of copper (8.69∗103 kg
m ), cp is the heat capacity of copper (385 J

kg K ), σ is the Boltzmann

constant (5.67∗10−8 J
m2K 4s

), and T is the temperature in kelvin.

The thermal conductivity λ(x) is defined as

λ(x) = 400+390∗ sin(
3π

2
x), (3.2)

and is shown in Figure 3.1. The rod conducts heat relatively well at x = 1
3 m and x = 5

3 m, and insulates heat
relatively well at x = 1 m. Because of these properties, the steady state solution of the heat equation should
have a steep temperature gradient at the insulating part around x = 1 m [15].

In order to use numerical methods for the model problem, Equation 3.1 is discretized. The discretization
in the x direction is done with a finite difference approximation, where the rod is modelled as N slices with a
length ∆x = 2

N m. The diffusion term of Equation 3.1 is approximated by:

∂

∂x
λ(x)

∂T

∂x
≈
λi+ 1

2
(Ti+1 −Ti )−λi− 1

2
(Ti −Ti−1)

∆x2 {1 ≤ i ≤ N }, (3.3)

where λi± 1
2
= 1

2 (λi +λi±1). To implement the boundary conditions, T0 is imposed to be 500 K, and TN+1 is

imposed to be 700 K. Meaning that the system which is being solved does not include the boundary itself. A
schematic drawing of the grid and boundary conditions are given in Figure 3.2.

11
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Figure 3.1: Thermal conductivity λ of the heterogeneous rod as function of x.

Figure 3.2: Schematic of the boundary conditions on the finite difference grid. The boundary nodes are given in black.

The time is discretized using a time-step ∆t . The heat equation is then solved using the Backward Euler
method. The fully discretized version of Equation 3.1 is given by

ρcp
T n+1

i −T n
i

∆t
=
λi+ 1

2
(T n+1

i+1 −T n+1
i )−λi− 1

2
(T n+1

i −T n+1
i−1 )

∆x2 −σ(T n+1
i )4 {1 ≤ i ≤ N }, (3.4)

where the superscript is used to denote the time index, and the subscript denotes the spatial index.

The solution of the transient problem is plotted in Figure 3.3. It shows that the temperature profile becomes
constant as time passes. This indicates that the transient solution converges to the steady state solution, given
in Figure 3.4. When comparing the transient solution xtr at t = 1000 s and the steady state solution xSS, the
maximum difference between the solutions is 0.447 K. The norm of the difference between the temperature
profiles ||xSS−xtr||2 is 11.7 K, which translates to an average error of about 0.004 K per grid point. These small
differences confirm that the transient solution indeed converges to the steady state solution.

3.2. The algorithm in pseudo code
To understand the code that was used to solve the 1D model rod, the pseudo code of the transient simulation
is given in Algorithm 3. It is made to be as generic as possible. For instance, when the matrix defining the
linearized system is not symmetric, one would need to choose the GMRES method instead of the CG method
as linear solver.

The simulation was written in Fortran using the PETSc library. PETSc can be difficult to learn, so a sum-
mary of how PETSc was implemented to solve the 1D model rod is given in Appendix B.

3.3. Newton methods for the steady state case
This subsection focuses on solving the steady state problem for the 1D model rod from Chapter 3.1. Both
the regular Newton-Raphson and the JFNK method are tested for the steady state 1D problem to see which
method works best in each case.

The 1D rod is simulated by taking N = 10,000 grid points, τF = 10−9 as relative Newton-Raphson function
tolerance, τS = 10−4 as relative Newton-Raphson step tolerance, and τCG = 10−4 as relative CG tolerance.
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Figure 3.3: Solution for the transient heat equation in a 1D rod. The temperature is represented by the color of the plot in Kelvin. One
thousand Backward Euler iterations were computed, each with a time-step ∆t = 1 s. The white lines are contour curves that are drawn at
519 to 681 kelvin, with steps of 18 kelvin from bottom to top.

Figure 3.4: Steady state heat profile for the 1D model of a radiating rod with heterogeneous thermal conductivity.
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Data: Non-linear function ∂T
∂t = F(T), Jacobian JF, initial temperature profile T0, initial time t0,

time-step ∆t .
Result: The temperature profile T at time t .

Choose linear solver type (LS);
Choose preconditioning algorithm;
T = T0;
t = t0;
while t < tmax do

while NR tolerance not met do
while LS tolerance not met do

if Using Jacobian then
Calculate the preconditioning matrix M;
Solve next iteration of: M(I−∆tJF)δTn+1

i+1 = M
[
Tn +hF(Tn+1

i )−Tn+1
i

]
;

else
Approximate the Jacobian with ĴF;
Solve next iteration of: (I−∆t ĴF)δTn+1

i+1 = Tn +hF(Tn+1
i )−Tn+1

i ;
end

end
Tn+1

i+1 = Tn+1
i +δTn+1

i+1 ;
end
Tn+1 = Tn+1

i+1 ;
t = t +∆t ;

end
Algorithm 3: Pseudo code of an algorithm which solves a transient problem using Newton-Raphson and
Backward Euler.

These values were chosen such that the error in the computational time was acceptable, while still having a
feasible computational time. The relative computation time was calculated with respect to the computation
time of the regular Newton-Raphson method with unpreconditioned CG as linear solver (3.3±0.1 s).
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(a) CG residual r with no preconditioning. (b) CG residual r with Jacobi preconditioning.

Figure 3.5: Overview of the CG residual r of the unpreconditioned and preconditioned systems, from the Newton-Raphson method
solving the SS heat equation in a 1D heterogeneous rod. The plots depict multiple Newton-Raphson iterations, the last CG iteration of
each Newton-Raphson cycle is marked with an ’o’.

3.3.1. Regular Newton-Raphson
The first method being tested on the model rod is the regular Newton-Raphson method, which means the ex-
act Jacobian is used. A big advantage of this method is that preconditioners can be used since the Jacobian is
known. To get the best performance, multiple preconditioners are tested. The results for the steady state 1D
model problem are given in table 3.1. It clearly shows that preconditioning plays a huge role in speeding up
the iterative linear solver. In this case, the complete and incomplete Cholesky preconditioning methods are
the same; in fact, the tridiagonality of the system makes the Cholesky preconditioners act as a direct solver.
This resulted in a very short computation time, but should not be seen as realistic for systems which are not
tridiagonal. Jacobi preconditioning also gave a significant decrease in computation time. To investigate the
effect of preconditioners further, the CG convergence with and without Jacobi preconditioning is given in
Figure 3.5. The CG convergence when using the Cholesky preconditioners are left out because these methods
converged in a single step.

All the preconditioned systems take one less Newton-Raphson iteration to be solved, compared to the case
where no preconditioning is used. For the complete and incomplete Cholesky preconditioning methods, this
is due to the exact solution having an error which is smaller than the bounds on the CG algorithm. This results
in the Newton-Raphson steps being computed with a greater accuracy, which in turn results in less Newton-
Raphson iterations being needed to reach the tolerances.
Even though the Jacobi preconditioner did not act as a direct solver, it can be seen in Figure 3.5b that the
Jacobi preconditioned system makes an improvement of 4 orders at iteration 5,000 of the CG algorithm. This
resulted in the error of the Jacobi preconditioned system being over 100 times smaller than the tolerances set
on the linear solver. The increased accuracy for this first Newton-Raphson iteration was enough the reduce
the total amount of Newton-Raphson steps needed by one.

When using the Jacobi preconditioner, the CG method makes big improvements at iteration 5,000 and 10,000.
This indicates that Jacobi preconditioning makes the CG method a quasi-direct solver after N/2 steps.

Preconditioner Relative computation time Newton iterations CG iterations
none 1 3 45,041

Incomplete Cholesky (3.2±0.2)∗10−3 2 2
Complete Cholesky (3.3±0.2)∗10−3 2 2

Jacobi (3.6±0.2)∗10−1 2 14,912

Table 3.1: The results of the Newton-Raphson method for solving the SS heat equations in a 1D rod, with heterogeneous thermal con-
ductivity. The Newton and CG iterations refer to the total amount of iterations used to solve the problem. All times are relative to the
3.3±0.1 s computation time of the regular Newton-Raphson method with unpreconditioned CG as linear solver.
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(a) No preconditioning (b) Jacobi preconditioning

(c) Complete / Incomplete Cholesky preconditioning

Figure 3.6: Newton-Raphson convergence and CG iterations per Newton-Raphson iteration for the steady state 1D rod model problem.

The goal is now to find out more about how the Newton-Raphson method converges and how much comput-
ing power each step takes. To investigate this, the Newton-Raphson residuals and CG iterations per Newton-
Raphson iteration are plotted for each of the used preconditioning methods in Figure 3.6. For both no pre-
conditioner and the Jacobi preconditioner, it takes more CG iterations to solve the later Newton-Raphson
steps compared to the first Newton-Raphson steps. This indicates that the spectral properties of the Jacobian
become less favorable for the CG method after the first Newton-Raphson iteration.

The rate of convergence p of the Newton-Raphson method without preconditioning has an approximate
value of p = 2.1 (see appendix A for the definition of p). This is close to the theoretical value of p = 2, as-
sociated with the quadratic convergence of Newton-Raphson. The difference can be explained by the error
caused by the relative tolerance.
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(a) Newton-Raphson residual of the JFNK method, along-
side with the CG iterations per Newton-Raphson iteration.

(b) CG residual r of the JFNK method. Multiple Newton-
Raphson cycles are depicted, the last CG iteration of each
Newton-Raphson cycle is marked with an ’o’.

.

Figure 3.7: The convergence of the JFNK method and the CG convergence for solving the steady state 1D rod model problem.

3.3.2. Jacobian-free Newton-Raphson
Because the Jacobian is not known when using the JFNK method, preconditioning could not be used with
this method. This is an inherent disadvantage of the JFNK method, but even when compared to the regular
Newton-Raphson method without preconditioning, the computational time was (5.0±0.2) times as slow. The
JFNK method took a total of 4 Newton-Raphson iterations and 45,273 CG iterations to converge. More de-
tails on the convergence of the JFNK method are plotted in Figure 3.7. It is interesting to note that the JFNK
method used a total of 45,273 CG iterations to solve the steady state 1D rod, while the unpreconditioned reg-
ular Newton-Raphson method only took a total of 45,041 CG iterations to solve the same system. The relative
difference in the amount of CG iterations is less than 1%, which clearly indicates that the JFNK method results
in almost exactly the same linearized system as when using the regular Newton-Raphson method. To mea-
sure how well the JFNK approximation works, the relative difference β between the first Newton-Raphson
step for both methods were calculated using:

β= ||δx̂1 −δx1||2
||δx1||2

, (3.5)

whereδx̂i is the first step of the JFNK method, andδxi is the first step of the regular Newton-Raphson method.
This resulted in a relative difference of β = 6.0E-6, which shows that the approximated Jacobian is accurate.
The relative error for the later steps was not calculated, because the small error causes x̂2 and x2 to be slightly
different, which makes β diverge.

The JFNK method has the same convergence rate p = 2.1 as the regular Newton-Raphson method.

An important note is that the default value ε = 1.5∗ 10−8 as stepsize in the forward difference approxima-
tion of the JFNK method did not work well. No theoretical optimal value could be established for ε, since this
would require a bound on the second derivative of the LHS in Equation 3.4 [5]. Instead an empirical approach
was taken. From testing, ε= 4.7∗10−4 was found to be the best value (using β as a measure), so this value was
used for all JFNK approximations regarding the 1D model problem.

3.4. Newton methods for the transient case
In contrast to the steady state model problem, the linearized system that is being solved in the transient case
is more diagonally dominant, due to the Backward Euler method. Diagonally dominant systems are easier
to solve for iterative solvers compared to non-diagonally dominant systems [14]. This means that the regular
Newton-Raphson and JFNK method perform differently for transient problems. To see how both methods
are affected, this subsection focuses on comparing the regular Newton-Raphson and the JFNK methods for
solving the transient 1D rod model problem described in Chapter 3.1.
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(a) No preconditioning (b) Jacobi preconditioning

Figure 3.8: The number of Newton-Raphson and CG iterations needed for each time-step while solving the transient solution of the 1D
model rod. The simulation used a time-step of ∆t = 1 s, for a total of 1,000 steps.

The transient 1D rod problem is simulated by taking N = 3,000 grid points and 1,000 time-steps of ∆t = 1s.
The tolerances are the same as in the steady state case. The relative computation time is respective to the
computation time of the regular Newton-Raphson with no preconditioner method (9.6±0.4 seconds).

3.4.1. Regular Newton-Raphson
The regular Newton-Raphson method was tested for the transient single-physics problem with a number
of different preconditioners. The computation time of the exact Newton-Raphson method with each pre-
conditioner is given in Table 3.2. Just like the steady state problem, the incomplete and complete Cholesky
preconditioners were the same and gave the best result. This is again because the Cholesky preconditioner
acted as a direct solver for tridiagonal systems. However, it should be noted that the effectiveness of the
Cholesky preconditioner has decreased significantly compared to the steady state case. Furthermore, Jacobi
preconditioning did not improve the computation time at all; it even made it worse with a factor of 3. To find
out why preconditioning is less effective for transient problems, the Newton-Raphson and CG iterations per
time-step are plotted in Figure 3.8. It shows that the number of CG iterations needed to solve the Jacobian
without preconditioning decreases significantly after the first few time-steps. This is because the initial guess
gets closer to the exact solution as the system goes to steady state. This makes the CG iterations drop from
2130 at the first time-step to only 441 at the final (1,000th) time-step, with an average of 403 CG iterations. In
Figure 3.8b, it can be seen that the CG iterations per time-step stay almost constant at 1280 iterations when
using the Jacobi preconditioner. The discontinuity at t = 200 is due to the Newton-Raphson method needing
one additional iteration for these points. It is assumed that this was caused by the Jacobi preconditioned
system having a slightly worse solution than the unpreconditioned system.

Preconditioner Relative computation time Newton iterations CG iterations
none 1 2,023 4.0E5

Cholesky (1.8± .1)∗10−1 2,000 2,000
Jacobi 3.0±0.2 2,105 1.4E6

Table 3.2: The results of the regular Newton-Raphson method for solving the transient heat equation in the 1D rod. Cholesky refers to
both the incomplete and complete preconditioning method since they gave the same result. The relative computation time is relative to
the 9.6 s computational time of the unpreconditioned regular Newton-Raphson method, solving the transient heat equation in the 1D
rod. The Newton and CG iterations refer to the total amount of iterations used to solve the problem, so the sum over all time-steps.
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Figure 3.9: Plot of the Newton-Raphson and CG iterations per time-step, for the transient simulation of the 1D model rod with a thousand
time-steps of ∆t = 1 s. The amount of Newton-Raphson iterations per time-step are not shown because they were the same for both
methods.

After the first few time-steps, the Jacobi preconditioned system needs more CG iterations per time-step than
the unpreconditioned system. Furthermore, the Jacobi preconditioner also takes time to be applied to the
system. This makes it clear why the Jacobi preconditioned system had a worse computational time com-
pared to the unpreconditioned system. There are a couple of ways in which the bad computational time of
the Jacobi preconditioned system can be explained. Firstly, because of the diagonal dominance, the system
is already well suited to be solved by iterative solvers. So even if the preconditioner could offer improvement
in solving the system efficiently, there would not be a lot to improve. Secondly, preconditioners are usually
not made for already well-conditioned systems, so preconditioning these systems could make them harder
to solve [8].

To find out if the effectiveness of preconditioning is dependent on the ∆t , the problem was solved again with
5000 time-steps of ∆t = 0.2 s. With this smaller ∆t , the unpreconditioned and Jacobi preconditioned sys-
tems still had the same relative computational time compared to each other. The computational time of both
the simulations was 2.3± .1 times larger compared to their counterpart simulation with ∆t = 1 s. However,
both of the methods calculated 5 times more time-steps in this time-frame, so each time-step was calculated
2.2±0.1 times faster compared to the∆t = 1 s simulation. By using this smaller∆t , the average number of CG
iterations per time-step was reduced to 39% and 46% of the original amount, for the unpreconditioned and
Jacobi preconditioned systems respectively. From these results, it is concluded that the time-step does not
significantly influence the effectiveness of preconditioning.

Due to the method converging almost always within 2 Newton-Raphson iterations, no reliable rate of con-
vergence could be determined.

3.4.2. Jacobian-free Newton-Krylov
Just like the steady state case, the JFNK method was slower than the exact Newton-Raphson method for the
transient single-physics case, by a factor of (5.9±0.2). The JFNK method has the same number of Newton-
Raphson iterations at each time-step, but has a significantly different amount of CG iterations per time-step.
The JFNK method used a total of 461,000 CG iterations, which corresponds to an average of 61 (14%) more CG
iterations per time-step compared to the regular Newton-Raphson method. The CG iterations per time-step
for both methods are shown in Figure 3.9.
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The JFNK method gave almost exactly the same solution as the regular Newton-Raphson method for the
transient case. The average absolute difference was 2.3∗10−9 K over all grid points and all time-steps, with
a maximum difference of 2.8∗10−9 K between the two solutions. This meant that both methods resulted in
the same solution. The different number of CG iterations used per time-step can be explained by the fact that
the JFNK method will always have a numerical error in the approximated Jacobian. This error did not play a
significant role in the steady state case since the relative difference in the number of CG iterations was less
than 1% for this problem.



4
Newton methods for multi-physics

problems

At the core of every simulation is a model which is governed by its relevant physical laws. These models
can usually be solved using numerical algorithms such as Newton-Raphson, but what happens if multiple
models describe a system? If the models do not interact with each other, both models can be solved separately
without even considering each-other. However, if the systems do interact, the models can not be solved
separately anymore, and it becomes a multi-physics (coupled) system. This type of problem often occurs in
reactor physics, which is why they are investigated in this thesis. This chapter discusses how coupled systems
work and how well Newton methods perform for this type of problems.

4.1. Newton-Raphson for coupled systems
Suppose n subsystems make up a coupled system. If a function Fi(x) describes each subsystem, then the
coupled system is given by

F(x) =


F1(x)

F2(x)
...

Fn(x)

 . (4.1)

Just as with any regular system, Newton-Raphson is a useful method to solve coupled systems. The Jacobian
of a coupled system consists of all the Jacobians of the individual subsystems. This gives the Jacobian a block-
like structure, which is why it is referred to as a block Jacobian. For the coupled system given by F, the block
Jacobian is given by:

JF =


JF1 C1,2 · · · C1,n

C2,1 JF2 · · · C2,n
...

...
. . .

...

Cn,1 Cn,2 · · · JFn

 , (4.2)

where JFi is the Jacobian of the subsystem Fi and Ci , j is the coupling term between subsystem i and j .

A common problem in multi-physics is finding the coupling term C. It is often not known or very hard to
calculate, which is a significant obstacle to the regular Newton-Raphson method. However, the JFNK method
does not need to know this coupling term, since it does not need to compute the Jacobian explicitly. This
makes the JFNK method a promising candidate for these type of problems, where the Jacobian is (partially)
unknown.
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4.2. Multi-physics example problem
In Chapter 5 of this thesis a saddle point coupled system is encountered, which has the following form:[

A BT

B 0

][
x1

x2

]
=

[
b1

b2

]
, (4.3)

with A and B some matrices. Ideally, the 1D rod model problem of Chapter 3.1 would be rewritten to a saddle
point problem. This would make it possible to investigate methods which might work well for the coupled
system encountered in Chapter 5. However, the Jacobian of the 1D rod model problem is tridiagonal, which
means that setting the lower right block to 0 makes the matrix singular. Thus the 1D model rod can not be
used to test the performance of Newton methods for solving saddle point coupled systems.

Instead, the 1D rod model problem is used to test how well Newton methods perform on a coupled system
with unknown coupling terms. This is achieved by imaginarily splitting the rod at x = 0.5 m into two smaller
rods, as shown in Figure 4.1. The rod is split off-center (at 0.5 m while the rod has a length of 2 m), to avoid
any unwanted symmetries.

Figure 4.1: A rod being imaginarily cut at a quarter of its length.

Suppose left rod is described by F1, and the right rod by F2. These two functions together still describe the
original problem before the cut, so the original solution to the heat equation of the un-splitted rod is still
correct. The goal of this simulation is to mimic a system where the coupling term can not be calculated. To
mimic such a system, the coupling terms of the split rod are imposed to be zero, even though in reality, they
are not. The Jacobian of the coupled system, with the missing coupling terms, is then given by

JF =
[

JF1 0
0 JF2

]
, (4.4)

where JF1 and JF2 are the Jacobians of F1 and F2 respectively.

Using this incomplete Jacobian to solve the coupled system is called incomplete Newton-Raphson trough-
out this thesis.

4.3. Block algorithms
The inverses of the individual subsystems largely determine the inverse of a block Jacobian. This makes it
possible for specialized block algorithms to solve the block Jacobian system, using the solutions of these
individual subsystems. This subsection discusses the theory behind block algorithms that were used to solve
the 1D model multi-physics problem.

4.3.1. Theory of block algorithms
The goal of a block algorithm is to solve a system Ax = b, where A consists of block matrices. Because only
coupled systems with two subsystems are encountered in this thesis, A always has the form

A =
[

A11 A12

A21 A22

]
, (4.5)

where A11 and A22 represent the individual system discretization matrices, and A12 and A21 represent the
coupling terms. The block algorithm used in this report then iterates towards the solution using

xi+1 = (I−B−1A)xi +B−1b, (4.6)

where B is either the block Jacobi or block Gauss-Seidel matrix [16].
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4.3.2. Block Jacobi
The block Jacobi algorithm is based on just the diagonal block matrices in the nested matrix. First, the indi-
vidual solutions for each diagonal element are computed, and then the block Jacobi method starts iterating
until it converges.

The block matrix of the block Jacobi method is given by [16]

B =
[

A11 0
0 A22

]
. (4.7)

From the definition of B, it is evident that the block Jacobi algorithm does not depend on the coupling term
in the Jacobian. This does not mean that the problem is uncoupled, because the functions F1 and F2 may still
depend on each other.

4.3.3. Block Gauss-Seidel
The Gauss-Seidel algorithm is based on solving one part of the coupled system first and then using that so-
lution to solve the other part. The Gauss-Seidel algorithm is guaranteed to converge if the matrix is either
symmetric and positive definite or diagonally dominant [8].

The block matrix for the Gauss-Seidel method is given by [16]

B =
[

A11 0
A21 A22

]
. (4.8)

From the definition of B , it is clear that the solution of subsystem 1 is independent of the solution of sub-
system 2. This allows the algorithm first to solve subsystem 1 independently, and then use this solution to
approximate the solution for subsystem 2.

4.4. Newton methods for the steady state multi-physics 1D rod
So far, it has been shown that the JFNK method is slower than the regular Newton-Raphson method for the
single-physics case, but it is still unknown how they compare for the multi-physics case. Similar to the single-
physics case of Chapter 3.1, the multi-physics model problem can be split up into two different cases: steady
state and transient. Both of these cases are solved in a very different manner, so they are discussed separately.
This chapter focuses on testing the performance of the JFNK and incomplete Newton-Raphson method for
the 1D split rod multi-physics model problem.

The multi-physics problem is modeled by taking N = 3,000 grid points, where the rod is split up at N = 750,
corresponding to x = 0.5m. The heat equation is the same as for the single-physics problem, but the Jacobian
is replaced with the incomplete Jacobian from Equation 4.4. This results in missing Jacobian elements for
x = 0.5m. The relative Newton-Raphson and CG tolerances are taken the same as for the single-physics prob-
lem (τF = 10−9 and τCG = 10−4 respectively). The relative step tolerance on the Newton-Raphson algorithm
is disabled because the newton steps become extremely small before the solution is close to convergence.

4.4.1. Incomplete Newton-Raphson
The incomplete Newton-Raphson method was tested for the steady state multi-physics problem with two
different block algorithms: block Jacobi and block Gauss-seidel. Both the Jacobi and Gauss-Seidel block al-
gorithms had the same computation time and gave exactly the same results. This can be explained by the
fact that the block matrix only has diagonal elements, which makes it trivial to solve. The results are given in
Table 4.1.

Computation time Newton iterations CG iterations
35±0.6 20,000 20,000

Table 4.1: The results of the incomplete Newton-Raphson method for solving the steady state and multi-physics version of Equation 3.1.
The absolute computation time is used since no preconditioner methods could be used.
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(a) 300 NR iterations. (b) 1400 NR iterations. (c) 3000 NR iterations.

Figure 4.2: Plots of the intermittent solutions of the incomplete Newton-Raphson method for the steady state multi-physics model
problem.

Figure 4.3: Plots of the convergence properties of the incomplete Newton-Raphson for the 1D split rod model problem. The GMRES
iterations refer to the number of outer block iterations being performed per Newton-Raphson step.

To investigate why 20,000 Newton-Raphson iterations are needed to converge, the intermittent Newton-
Raphson iterations are plotted in Figure 4.2. This shows that N = 750 (x = 0.5m) is indeed the point that
prevents the incomplete Newton-Raphson method to converge properly. This is to be expected, since this is
the point where the Jacobian is incorrect.

To investigate why the incomplete Newton-Raphson method works poorly for the coupled problem, the con-
vergence properties are plotted in Figure 4.3. It shows that the Jacobi & Gauss-Seidel block algorithms only
need one GMRES iteration per Newton-Raphson iteration to solve the outer block system. The convergence
rate of the Newton-Raphson method has an approximated average value of p = 1.00, and takes a huge amount
of iterations to converge properly because of the incomplete Jacobian.

Both subsystems (the part from 0-0.5 m and 0.5-2 m) were solved using GMRES with ILU(0) precondition-
ing. Just as with the incomplete Cholesky preconditioning, the ILU(0) preconditioner acted as a direct solver
because the system is tridiagonal. This resulted in all the inner subsystems being solved with only one GMRES
iteration. These settings were not tweaked further because this was already done in Chapter 3.1.
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Figure 4.4: The wrong transient solution of the incomplete Newton-Raphson. The color depicts the temperature of the rod in Kelvin.

4.4.2. Jacobian-free Newton-Krylov
Because the Jacobian is not used in the JFNK method, the incomplete Jacobian did not affect the JFNK method
at all. This resulted in the JFNK method having the exact same convergence properties as if the rod was not
split at all. The problem was solved as a single-physics problem, just like in Chapter 3.1. The JFNK method
was (9.1±0.3) times faster compared to the incomplete Newton-Raphson method, and a total of 4 Newton-
Raphson iterations and 13,430 CG iterations were computed. The difference in the number of linear solver
iterations in the multi-physics case compared to the single-physics case can be explained by the number of
grid points being only N = 3,000 instead of N = 10,000. Since the results of the JFNK method are the same as
in Chapter 3.1, they are not discussed here.

The JFNK method outperformed the regular Newton-Raphson method in every aspect. From this, it was con-
cluded that the JFNK method is the better method for the steady state coupled system with missing coupling
terms.

4.5. Newton methods for the transient multi-physics 1D model problem
In this subsection, the incomplete Newton-Raphson and JFNK methods are compared for solving the tran-
sient split rod multi-physics problem.

The single-physics problem is simulated by taking 1,000 time-steps of ∆t = 1 s. All other parameters are
the same as with the steady state split-rod simulation.

4.5.1. Incomplete Newton-Raphson
The incomplete Newton-Raphson method is extremely unfit for this type of problem and was not able to
solve it with a time-step of ∆t = 1 s. The unfinished transient solution of the incomplete Newton-Raphson
method with ∆t = 1 s is plotted in Figure 4.4. It shows that the first few Backward Euler iterations show the
physically correct behavior of the boundaries heating up first. However, as soon as the heat starts to diffuse
deeper into the rod and reaches the imaginary cut, the incomplete Newton-Raphson method breaks down
and stops working. The cause of the breakdown, according to PETSc, is that the Newton-Raphson solution
did not improve. A multitude of conditions can cause this error, but in this case, it is most likely that the in-
complete Jacobian is the root of the problem. The convergence of the Newton-Raphson method and the final
solution are plotted in Figure 4.5. It shows that before breaking down, the number of incomplete Newton-
Raphson iterations per time-step increases to over 350. Then the iterations per time-step suddenly drop, and
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(a) NR and CG iterations per time-step. (b) Transient solution for t > 15s.

Figure 4.5: The failed solution of the incomplete Newton-Raphson method for the coupled 1D rod model system.

the method stops working. This behavior could not be explained. It should be noted that the amount of in-
complete Newton-Raphson iterations appears to form a parabolic function, which is almost at its top when
the breakdown occurs.

In Figure 4.5b, a slight discontinuous bend at the border of the two rods (x = 0.5 m) can be seen. This bend
indicates that the Newton-Raphson method is not able to solve the problem correctly since the curve should
be smooth.

No rate of convergence could be calculated since the problem could not be solved.

To test if the breakdown could be fixed by using a smaller time-step ∆t , three additional runs were done
using ∆t = 10 s, ∆t = 0.5 s, and ∆t = 0.1 s. All of these simulations broke down as well. From this, it is con-
cluded that the incomplete Newton-Raphson method should not be used for transient coupled systems with
missing coupling terms.

4.5.2. Jacobian-free Newton-Krylov
The JFNK method was again unaffected by the incomplete Jacobian. The results of the transient multi-physics
simulations were the same as the JFNK simulation for the transient single-physics case in Chapter 3.4.2.

The JFNK method was able to solve the transient multi-physics problem, which made it automatically the
best method out of the two.

4.5.3. Newton methods for other types of incomplete coupled systems
It is possible to encounter a system where only one of the coupling terms is known, which is why the following
two Jacobians were tested as well:

JF =
[

JF1 0
C2,1 JF2

]
; JF =

[
JF1 C1,2

0 JF2

]
. (4.9)

Both of the incomplete Jacobians in Equation 4.9 gave exactly the same results.

When removing only one of the coupling terms from the Jacobian, the total amount of GMRES iterations was
only 52% of the case where both coupling terms were removed. This resulted in these systems being faster
than the system with two missing coupling terms, but asides from that no other differences were found. Be-
cause of the similar behavior of these coupled systems, the Jacobians in Equation 4.9 are not investigated
further.
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Methods for solving linearized

incompressible Navier-Stokes systems

The Navier-Stokes (NS) equations are encountered in many engineering and scientific fields. The NS equa-
tions are partial differential equations which describe how the flow and pressure inside a system evolve over
time. They are used for almost anything related to flow, e.g. the weather, flow in a pipe, or the aerodynamics
of an airplane. This makes the Navier-Stokes equations very important for the simulations at the Reactor In-
stitute Delft.

This thesis investigates which methods work best to solve the linearized incompressible Navier-Stokes sys-
tem.

5.1. Basics of the Incompressible Navier-Stokes equations
The general idea of the Navier-Stokes equations is to start with the conservation of momentum for a system,
and then use some properties of the system to find the correct differential equations. For the incompressible
flow problem in this thesis, the liquid is assumed to be Newtonian, so the conservation of momentum can be
rewritten into

ρ
∂u

∂t
+ρ∇· (u⊗u)−η∇2u+∇p = f, (5.1)

where u is the velocity, p is the pressure, f is a known source term, ρ is the fuild pressure, and η is the dynamic
viscosity [17]. This is called the Navier-Stokes equation and can not be solved directly because the convective
∇ · (u ⊗ u) term is nonlinear. This means that numerical methods have to be used to solve this equation.
However, there are two unknowns (u and p), while there is only one differential equation. This means that
a second assumption is needed in order to use numerical methods for this system. The second assumption
is based on fluids being incompressible, which means that the net flow (inflow - outflow) over every control
volume must be zero. This incompressibility condition is given by

∇·u = 0. (5.2)

Equation 5.2 is also called the continuity equation. When the continuity equation is combined with Equation
5.2, they are called the incompressible Navier-Stokes equations.

The incompressible Navier-Stokes equations are time-dependent, so time integration methods are needed
to find the transient solution. Similar to the previous chapters, the Backward Euler algorithm is chosen. This
time, however, the system is linearized first and then plugged into the Backward Euler algorithm, eliminat-
ing the need for Newton-Raphson. This was done because performing a full Newton-Raphson cycle in each
time-step would take up too much computing power.

Because this incompressible Navier-Stokes equation deals with the interacting pressure and momentum sys-
tems, it makes sense to solve it as a coupled system. To transform the incompressible Navier-Stokes equation
into a coupled system, it was spatially discretized using a discontinuous Galerkin method finite element. This
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discretized system was then implemented in the ’DGFLOW’ code at the RPNM department of the TU Delft.
The system has a corresponding mass matrix M. For more information about the mass matrix and discontin-
uous Galerkin methods, the reader is referred to [17]. The linearized incompressible Navier-Stokes equations
are then given by:

M
∂u

∂t
+N(u)u−Su+DT p = f (5.3)

Du = g, (5.4)

where g is used to impose the inflow boundary conditions, S respresents the linearized viscous term, N(u)
represents the linearized convective term, and D represents the discretized divergence which is given by
Equation 2.6. Note that the transposed discretized divergence matrix is the discretization of the gradient
matrix. Furthermore, the pressure p is now a vector, as it now represents the pressure at multiple elements.
By writing this system down as a coupled system, the following relation is found:[

M ∂u
∂t

0

]
+

[
A(u) DT

D 0

][
u
p

]
=

[
f
g

]
, (5.5)

where A(u) = N(u)−S.

To solve u and p the Backward Euler method is chosen as time integration method in this thesis. The first
step of rewriting the system into the Backward Euler form is to discretize the coupled incompressible Navier-
Stokes system temporally: [

M un+1−un

∆t
0

]
+

[
A(un) DT

D 0

][
un+1

pn+1

]
=

[
f
g

]
. (5.6)

By taking adding un

∆t to both sides, the following relation is found:[
M un+1

∆t
0

]
+

[
A(un) DT

D 0

][
un+1

pn+1

]
=

[
f+M un

∆t
g

]
. (5.7)

The final Backward Euler linearized system is then found by combining the terms in the LHS:[
F(un) DT

D 0

][
un+1

pn+1

]
=

[
f+M un

∆t
g

]
. (5.8)

where the F(un) is defined as A(un)+ M
∆t . Equation 5.8 is referred to as a saddle-point problem, because of the

zero block in the lower right corner. Furthermore, it is a coupled system as it consists of a momentum and
pressure subsystem, which both interact with each-other.

5.2. Fieldsplit
All the simulations in this thesis are written using the PETSc library. In PETSc, all coupled systems are solved
using the fieldsplit preconditioning context. Even though fieldsplit is technically implemented as a precondi-
tioner in PETSc, it is much more than simply a matrix which conditions the system [9]. Fieldsplit is a context
which gives the user much flexibility in how the coupled system is solved. It allows the user to chose the
linear solver, preconditioning type and tolerances for both the outer, as well as the inner systems. This offers
many different variables to optimize. The goal of the remainder of this chapter is to find the optimal fieldsplit
settings for the incompressible Navier-Stokes problem.

5.3. Navier-Stokes Model problem
The coupled system which is being solved comes from a turbulent backward-facing step flow problem, where

the fluid has a density of ρ = 1 kg
m3 . As boundary condition, the velocity at the walls is zero, the inflow is uni-

form, and the outflow is given normal access. A schematic of the backward step flow problem is given in
Figure 5.1. The incompressible Navier-Stokes equation is used to find the velocity in the x and y direction
for each point inside the pipe. The mesh that was used is given in Figure 5.2. The initial conditions for the
velocity in the x and y directions shown in Figure 5.3 and 5.4.
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Figure 5.1: Schematic drawing of the backward step flow problem.

Figure 5.2: The edges of the 2D mesh used for the finite element method.

Figure 5.3: The velocity in the x direction of the turbulent flow in the backward step problem.

Figure 5.4: The velocity in the y direction of the turbulent flow in the backward step problem.

In each simulation for this problem, a total of 10 time-steps are computed, each time-step of ∆t = 1 ms long.

The goal of solving this problem is not to investigate the solution itself, but instead the efficiency of the meth-
ods that are used to solve it. In the next subsections, two different methods are discussed to solve the problem
for 10 Backward Euler time-steps.

5.4. Pressure-correction
All fieldsplit methods are compared with a very efficient algorithm called pressure-correction. By comparing
them with the pressure-correction method, all simulations can be tested fairly. The pressure-correction algo-
rithm is based on approximating the momentum ûm+1 for the next time-step by using the current pressure
pm . The approximated momentum is then used to find the next pressure value pm+1, which is in turn used to
calculate the next momentum step um+1. It is not important to explicitly know how the pressure-correction
method works for this thesis. If the reader is interested in this method, they are referred to [17].

The pressure-correction method only has one iteration per time-step and thus is expected to be very fast.
The computation time of the pressure-correction method (45±2 s) is used as a reference point for the relative
computation time of the entire backward step simulation. Most of the computation time (over 90%) was used
to solve the linear system, so any improvements in the efficiency of the linear solver should make a significant
improvement in computational time.
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5.5. Schur Factorization
The inverse of the saddle-point system from Equation 5.8 is given by [18]1

[
F−1 −F−1DT(DF−1DT)−1DF−1 F−1DT(DF−1DT)−1

(DTF−1DT)−1DF−1 −(DF−1DT)−1

]
. (5.9)

The inverted matrices can not be stored explicitly as they are dense, so solving the saddle-point system this
way requires solving 13 subsystems. This is very computationally expensive, so a block algorithm is required
to solve the saddle-point system efficiently.

For the 2x2 saddle-point coupled system that arises from the incompressible Navier-Stokes equation, the
Schur complement method can be used as a very efficient block algorithm [19]. All of the Schur complement
methods are based on the Schur decomposition, which is given by[

F(un) DT

D 0

]
=

[
I 0

DF(un)−1 I

][
F(un) 0

0 S(un)

][
I F(un)−1DT

0 I

]
, (5.10)

where S(un) is the Schur complement given by

S(un) =−DF(un)−1DT. (5.11)

The Schur decomposition consists of a lower triangular, diagonal, and upper triangular block matrix, all of
which are computationally inexpensive to solve compared to a full 2x2 block system [18]. Inverting the Schur
decomposed system in a block-wise fashions results in[

F(un) DT

D 0

]−1

=
[

I −F(un)−1DT

0 I

][
F(un)−1 0

0 S(un)−1

][
I 0

−DF(un)−1 I

]
. (5.12)

By solving the Schur decomposition of the saddle-point system, the focus changes of solving the coupled
system as a whole to solving the S and F subsystems. Both of these subsystems can be solved independently,
so this is done in parallel. The solution of the Schur decomposed system is then passed to an ’outer’ linear
solver to make sure that the solution of the coupled system as a whole satisfies the stop criteria. The goal for
this part of the thesis is to find the optimal method to solve the Schur factorized system.

5.6. Schur approximation
In practice, the Schur complement is not computed using the inverse of momentum subsystem F = A+ M

∆t
when solving a transient problem, but instead by using an approximation of F. This approximation is based
on F being almost completely defined by M

∆t , if a small ∆t is used. Meaning that the F−1 term in the Schur
complement can be approximated with M−1, resulting in the approximated Schur complement

Ŝ =−∆t DM−1DT . (5.13)

There are two main reasons why this approximation was used. Firstly, for the approximated Schur comple-
ment Ŝ, the inverted mass matrix M−1 only needs to be calculated once in the entire simulation, since M is
constant. For the real Schur complement S = −∆t DF−1DT , the momentum matrix F changes in each time-
step, so F needs to be inverted at every time-step to compute the exact Schur complement. A lot of computing
power is saved by not inverting the momentum subsystem F every time-step. Secondly, M is a symmetrical
matrix which makes Ŝ symmetrical as well. This makes the approximated Schur complement easier to invert,
since the very efficient CG algorithm can be used for symmetrical systems.

Besides the Schur complement being approximated, it is also possible to build the preconditioner of the
Schur complement using the Schur approximation. Similar to using the approximation for the Schur com-
plement, using the approximation for the preconditioner means that F does not need to be inverted every
time-step in order to build the preconditioner.

1A simpler inverse is available if D is a square matrix, but this is not the case in the incompressible flow simulation.
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Approximation used for rel time avg. iters outer (F, S)
complement & preconditioning* 1.4± .1 1.1 (32.9, 2562)

only complement 2.5± .1 1.0 (23.9, 1264)
only precondition 442±2 1.0 (1.6e5, diverged)

none 291±2 1.0 (3.6e4, diverged)

Table 5.1: Results of the default case using the Schur approximation for the complement S and for the preconditioning of the Schur
complement. All relative times are relative to the pressure-correction simulation. *default case.

5.7. The default case
Using a different linear solver, preconditioner, or tolerance on a system can change the efficiency with which
the problem is solved drastically. So it is well worth the effort to try and find out what methods work best for
each of the subsystems of Schur decomposed system.

In order to get an overview of which options work best for solving the back-step problem, a default set of
options is created. The goal of these default settings is to see what effect each option has on this default
scenario, which allows each option to be compared fairly. The default options from PETSc are chosen as the
default case, which means:

• The linear solver for the outer system is FGMRES

• The outer system is solved with a relative tolerance τr = 10−4

• The Schur complement S and the Schur preconditioner are approximated with Ŝ

• The preconditioning is based on the full Schur decomposition

• Each subsystem is solved using GMRES with block Jacobi as preconditioner method

• Each subsystem is solved with a relative tolerance τr = 10−4

The default case had a relative computation time of 1.4±0.1 compared to the pressure-correction method. In
the 10 time-steps (of ∆t = 1 ms) an average of 1.1 iterations were used to solve the outer (coupled) system, an
average of 32.9 iterations for the momentum subsystem, and an average of 2,562 iterations for the pressure
subsystem. An important note is that whenever a reference is made to the average amount of iterations per
time-steps, this is defined as:

#total iterations used for system x

#time-steps
. (5.14)

So if an inner system is solved multiple times in one time-step, the average amount of iterations for that sys-
tem will be higher.

In Subsections 5.8.1 - 5.8.7, each option of the default case except the first two are tested, to see which op-
tions work best for the backward step problem. The FGMRES method is always chosen as solver for the outer
system because PETSc does not offer a feasible alternative. The outer tolerance is not changed because there
is no optimum for this value, as explained in Chapter 5.8.6.

In order to fairly compare all the cases with each other, it had to be checked that all the results were the
same (within a reasonable limit). As a measure for the correctness of each method, it was demanded that the
maximum change in momentum at the 10’th time-steps had to be within 1% of the maximum momentum
change in the 10’th time step of the default case. The pressure-correction method was within the 1% limit.
For all of the simulations in the next subsections, this demand was met.

5.8. Testing the Schur approximations
To see how using the Schur approximations affects the computational time, four cases were tested. The cases
consisted of; Ŝ being used for both the preconditioning and for the Schur complement, Ŝ is only used to re-
place the Schur complement, Ŝ is used only for the preconditioning, and finally where Ŝ is not used at all.
The results of these simulations are given in Table 5.1. From which it is clear the Schur complement must
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rel time avg iters outer (F, Ŝ)
full* 1.4 ±.1 1.1 (32.9, 2,562)

diagonal 3.8 ±.2 4.9 (131 , 6,779)
upper 1.5 ±.1 1.1 (15.7, 2,353)
lower 2.3 ±.1 3.9 (93.7, 4,931)

Table 5.2: Performance of different Schur preconditioners for the back-step linearized system. The time is relative to the computation
time of the pressure correction method (45±2 s). The average amount of iterations refers to the average amount per per time-step to
solve each respective system. *default case.

be approximated in order to get an acceptable computational time. Whenever the real Schur complement
was used for the pressure subsystem, the pressure subsystem diverged. Note that divergence meant that the
pressure subsystem did not reach the tolerance within 10,000 iterations. The momentum subsystem took a
huge amount of iterations per time-step because it had to be inverted many times for each pressure iteration.
The huge amount of momentum iterations completely bottle-necked the simulation, resulting in a very slow
computational time.

When the approximated Schur complement was used, it is favourable to also use this approximation for pre-
conditioning the Schur subsystem. This preconditioning made all systems converge with more iterations, but
it reduced the computational time by 44%.

Even though the simulations with the real Schur complement had a diverged pressure solution, the maxi-
mum change in momentum at the 10’th iteration was still within 1% of the default case.

5.8.1. Schur factorization preconditioners
In this subsection, four different types of Schur factorized preconditioners are discussed for the Schur ap-
proximated system: full, diagonal, lower, upper. These preconditioners are all at least partially based on the
full Schur preconditioner, which is the inverse of Equation 5.10 using the approximated Schur complement.
The full Schur preconditioner matrix is given by[

I −F−1DT

0 I

][
F−1 0

0 Ŝ−1

][
I 0

−DF−1 I

]
. (5.15)

This ’preconditioner’ is the exact inverse of the linearized coupled system in Equation 5.8, meaning that it
acts as a direct solver when applied to the system.

The diagonal Schur preconditioner consists of only the diagonal matrix of the full Schur preconditioner, re-
sulting in the following preconditioner matrix: [

F−1 0
0 Ŝ−1

]
. (5.16)

Unlike the full Schur preconditioner, this preconditioning matrix does not work as a direct solver, which
means that the outer block still needs more than one iteration to be solved using this preconditioner.

The upper and lower Schur preconditioners are made by taking only the upper or lower triangular part of
the full preconditioner. This results in the following matrices, for the upper and lower preconditioners, re-
spectively: [

F−1 −F−1DT Ŝ−1

0 Ŝ−1

]
,

[
F−1 0

−Ŝ−1DF−1 Ŝ−1

]
(5.17)

Each of these Schur preconditioner methods were tested. An overview of how well the different precondi-
tioners performed is given in Table 5.2.

From a theoretical point of view, the full, triangular and diagonal preconditioners should ensure that the
outer system is solved within 1, 2 and 4 iterations respectively [9]. However, Table 2.13 shows values which
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rel time avg. iters outer (F)
Block Jacobi* 1.4±0.1 1.1 (32.9)

ASM 1.4±0.1 1.0 (23.9)

Table 5.3: Comparison of the ASM and Block Jacobi preconditioner for solving the momentum subsystem F in parallel. The time is
relative to the (45± 2 s) of the pressure-correction method, and the average amount of iterations is the average over all time-steps. *
default case.

rel time avg. iters outer (F)
Block Jacobi / ILU(0) 1.3±0.1 1 (23.9)

Table 5.4: Performance of using the Block Jacobi and ILU(0) preconditioning methods for solving the momentum subsystem. The block
Jacobi and ILU(0) methods were identical to each other. The time is relative to the computation time of the sequentially computed
pressure-correction method (83±3 s). The average amount of iterations refers to the total average over all time-steps.

exceed this theoretical limit. The reason why the actual average is higher is because the subsystems are not
solved exactly, and thus have an error that is within the relative tolerance of τr = 10−4. This error makes it
possible for the outer block to converge slower than is theoretically predicted.

Furthermore it should be noted that the full Schur preconditioner computes the inverse of the momentum
subsystem F twice to produce the preconditioner. The momentum subsystem is solved twice due to the way
PETSc computes the full Schur preconditioner:[

i nv(F) 0
0 I

][
I −DT

0 I

][
I 0
0 i nv(Ŝ)

][
I 0

−D∗ i nv(F) I

]
, (5.18)

where "i nv()" represents computing the action of the inverse [9].

All other preconditioners computed the inverse of F and Ŝ only once to construct the preconditioner.

5.8.2. Preconditioners for the momentum subsystem
In order to solve the coupled system, the momentum subsystem needs to be solved individually. Each it-
eration takes up a lot of computational resources, which makes it very important to solve this subsystem
efficiently. Just like with the model problem of Section 3.1, preconditioning could play a huge role in ensur-
ing that the system is solved efficiently.

However, changing the preconditioner for the subsystems is more difficult than changing the other options
from the default case. This is due to only the block Jacobi and Additive Schwarz Method (ASM) precondition-
ing algorithms being available when the systems are solved in parallel, which is generally the fastest way to
solve the coupled system. This leaves two options:

1. Solve the coupled subsystems in parallel with Block Jacobi/ASM preconditioning

2. Solve the coupled system sequentially and try out better types of preconditioners

Option one is explored first. The simulation is performed using the Block Jacobi and ASM preconditioning.
The results are given in Table 5.3. The ASM preconditioning method did manage to solve the momentum sys-
tem using fewer iterations than the block Jacobi preconditioning method. At the same time, the block Jacobi
algorithms used less computational time to be made and applied, resulting in the computational time of the
two preconditioners being the same. It is interesting to note that the ASM preconditioning method caused
the outer system to be solved in a single iteration, while the block Jacobi preconditioning did not.

For the second option, two preconditioner types were tested for the sequential simulation: Block Jacobi and
Incomplete LU-factorization (’ILU(0)’). The Incomplete Cholesky preconditioner was not tested because the
momentum subsystem is asymmetrical. The Block Jacobi and ILU(0) preconditioning method gave the same
results shown in Table 5.4. By comparing results of the Block Jacobi method for the parallel and sequential
simulations, it becomes clear that this preconditioner acts different depending on if the code is run in parallel
or sequentially. This is due to the Block Jacobi preconditioner being based on the complete system when it is
used in parallel, and only on the individual subsystems when it is used for the sequential case. Furthermore,



34 5. Methods for solving linearized incompressible Navier-Stokes systems

rel time avg. iters outer (Ŝ)
Block Jacobi* 1.4±0.1 1.1 (1562)

ASM 1.4±0.1 1.1 (1410)

Table 5.5: Comparison of the ASM and Block Jacobi preconditioner for solving the pressure subsystem Ŝ in parallel. The time is relative
to the (45±2 s) of the pressure-correction method, and the average amount of iterations is the average over all time-steps. * default case.

rel time avg. iters outer (Ŝ)
Block Jacobi / ILU(0) 1.3±0.1 1.0 (1264)

ICC 1.5±0.1 1.0 (1604)

Table 5.6: Performance of using the Block Jacobi, ILU(0) and ICC preconditioning methods for solving the pressure subsystem. The
ILU(0) and Block Jacobi preconditioners acted identically. The time is relative to the computation time of the sequentially computed
pressure correction method (83±3 s). The iterations represent the average amount of iterations over all time-steps.

it should be noted that when the sequential results are compared to the computation time of the parallel
pressure-correction method (using two processors), they have a relative computational time of 2.3± .1 s. This
clearly indicates that it is not worth it to run the simulation sequentially in order to use better preconditioning
methods for the momentum subsystem.

5.8.3. Preconditioners for the pressure subsystem

The choices for preconditioning methods for the pressure subsystem are bound to the same restrictions as
the momentum subsystem. The two options (sequential and parallel), are again tested for the pressure sub-
system.

The Block Jacobi and ASM preconditioning methods were again the only preconditioning methods for the
parallel case, so only these two are tested. The results are given in Table 5.5. Using the Block Jacobi and ASM
preconditioner for the pressure subsystem resulted in the same computational time. When used for the pres-
sure subsystem, the ASM preconditioning method did not cause the outer system to always converge in one
iteration, as it did with the momentum subsystem.

For the sequential simulation, three preconditioning methods were tested: block Jacobi, ILU(0) and ICC.
The ILU(0) and block Jacobi preconditioners gave the same results again, similar to when they were used for
the momentum subsystem. The results of the three preconditioning methods are given in Table 5.6. The ICC
preconditioning method did not manage to outperform the ILU(0) or block Jacobi preconditioning methods.
The relative computational time of the sequential simulation, compared to the parallel pressure correction
method (using two processors), was again worse than the default case. For both subsystems, it is now shown
that using any of the mentioned preconditioning methods does not save enough time to make running the
code sequentially worth it.

5.8.4. Linear solvers for the momentum subsystem

The momentum subsystem is a non-symmetrical, non-positive definite system. This subsystem is very diag-
onally dominant due to the small time-step of ∆t = 1 ms, which makes it easy for most iterative methods to
solve. Because of the asymmetric momentum matrix, the very efficient CG algorithm could not be used. As
an alternative, an extension to the CG method called the Biconjugate Gradient Stabilized method (BCGS) is
tested in this subsection. In [20], it has been shown that the BCGS method is very efficient for the steady state
incompressible Navier-Stokes system. In this subsection, it is tested if the BCGS solver outperforms GMRES
for the transient case.

Because most other methods available in PETSc are either based on one of these methods or poorly suited for
the problem, only the BCGS and GMRES algorithms are compared. The results of this comparison are shown
in Table 5.7. The BCGS method had the same computational time as the GMRES method. In general, GMRES
is one of the most efficient iterative linear solvers available. This implies that the BCGS method works well
for the transient incompressible Navier-Stokes system, even though it did not outperform GMRES.
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rel time avg iters outer (F)
gmres* 1.4±0.1 1.1 (32.9)

bcgs 1.4±0.1 1.0 (14.9)

Table 5.7: Comparison of the BCGS and GMRES algorithm for solving the momentum subsystem F.

rel time avg iters for Ŝ
gmres* 1.4±0.1 2562

cg 1.1±0.1 551

Table 5.8: Comparison between the CG and GMRES algorithm solving the approximated Schur complement system.

5.8.5. Linear solvers for the pressure subsystem
As can be seen from the results of the default case, solving the pressure subsystem takes the most iterations
by far. This makes the linear solver used for the pressure subsystem very important because much computa-
tional power is used to solve this system.

Because the approximated Schur complement is symmetrical and positive definite, the CG algorithm can
be used. The CG algorithm is compared with the GMRES algorithm in table 5.8. Just as the theory predicts,
the CG algorithm is the best solver for the approximated Schur subsystem.

5.8.6. Tolerances for the momentum subsystem
The tolerance on the outer solver is chosen such that the error in the final solution is acceptable. The prob-
lem with choosing the ’best’ outer tolerance is the following. If the outer tolerance is chosen to be ’small’, the
linear solver needs more iterations (and thus time) to solve the system. Conversely, if the outer tolerance is
chosen to be ’big’, the system is solved quicker, but with relatively bad accuracy. This means that there is not
a single ’best’ outer tolerance because the trade-off between time and accuracy is subjective. Therefore, the
outer tolerances were not investigated in this thesis.

The tolerance on the subsystems F and Ŝ however, only determine the accuracy of the subsystem and not
the accuracy of the final solution. This leads to the situation where the choice of subsystem tolerances only
affects how fast the outer solver can compute the final solution, and how fast the inner solver can compute
the local solution. This means that there is an unambiguous optimum for the tolerances set on the inner
subsystems, which results in minimal computational time. The goal of this subsection is to find this optimal
relative tolerance τr for the momentum subsystem. To see which tolerances resulted in the best computa-

tional time, tolerances from 10−6 to 10−1 were tested in steps of 10−
1
2 . The results are given in Figure 5.5. It

shows that the default tolerance value of τr = 10−4 is already very close to the optimal tolerance τr = 10−4.5.
To see why changing the tolerance for the momentum subsystem did not lead to any significant improve-
ments, the amount of iterations that were used to solve the momentum and outer system are shown in Figure
5.6. It shows that the amount of outer iterations is very sensitive for the tolerance on the momentum subsys-
tem. This meant that increasing the tolerance on the momentum subsystem made the outer system harder
to solve, which in turn resulted in a larger computational time. Conversely, making the tolerance extremely
small (τr = 10−6), caused the momentum subsystem to bottle-neck the process, which also resulted in a
bad computational time. This resulted in the optimal tolerance for the momentum subsystem, being in be-
tween those two extremes at τr = 10−4.5. The peak in computational time and momentum iterations around
τr = 10−3 could not be explained.

5.8.7. Tolerances for the pressure subsystem
This subsection has the goal to find the optimal relative tolerance for the pressure subsystem. Unlike the
previous subsection, tolerances are tested in the range of 10−6 to 1, where τr = 1 corresponds to not solving
the pressure subsystem at all. The relative computational time with a variable tolerance τr on the pressure
subsystem is shown in Figure 5.7.



36 5. Methods for solving linearized incompressible Navier-Stokes systems

Figure 5.5: Relative computational time for the default case with a variable tolerance τr for the momentum subsystem.

Figure 5.6: Average amount of iterations per time-step used to solve the momentum and outer system, with a variable tolerance τr on
the momentum subsystem.
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Figure 5.7: Computation time relative to the pressure correction algorithm of the default case with variable tolerance for the pressure
subsystem. For τr < 1, the average amount of outer iterations was 1.1 (the same as the default case), and for τr = 1 the average amount
of outer iterations was 6.5.

Surprisingly, the tolerance on the pressure system can be extremely big. When a tolerance bigger then 0.9 is
used, the pressure subsystem almost always converges within one linear solver iteration, which makes the
solution of the pressure subsystem very unreliable. Yet, The number of outer iterations did not increase in
the simulation of 10 time-steps. Furthermore, the maximum change in momentum at the 10’th iteration was
within the 1% limit from the default case. This suggest that the pressure subsystem does not need to be solved
at all. However, when τr = 1 is chosen as tolerance, the computational time increases significantly. To see why
the system becomes harder to solve when the pressure becomes a constant (τr = 1), the outer iterations per
time-step are shown in Figure 5.8. For the first four iterations, the outer system only takes one iteration to be
solved. This is because the actual pressure has not changed much, so the constant pressure is a good approx-
imation. After more time has passed, the constant pressure and the actual pressure start to diverge, which
results in the outer solver using more iterations to compensate for this discrepancy. This makes the compu-
tation time increase as more time-steps are computed, making this tolerance unfeasible. Furthermore, even
though the momentum change at the 10’th iteration was within 1% of the default case, it seems very realistic
that this method returns a wrong solution when more time-steps are simulated.

Figure 5.7 seems to suggest that τr = 0.99 does not lead to the same problem, because the computation
time very low, and the average amount of outer iterations is the same as in the default case. However, if the
simulation is run for 1.000 time-steps, it becomes clear that τr = 0.99 does, in fact, lead to an increase in outer
iterations, as shown in Figure 5.9. The problem is now to find a relative tolerance for the pressure subsystem,
that leads to a minimal computational time, whilst not resulting in an eventual increase in outer iterations.
From Figure 5.7, it is seen that τr = 10−2 is the smallest tolerance which does not lead to a significant increase
in computational time.
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Figure 5.8: Iterations required to solve the outer incompressible navier-Stokes system, when the pressure subsystem is not solved (τr =
1).

Figure 5.9: The amount of outer iterations needed per time-step for a coupled, incompressible Navier-Stokes problem. The pressure
subsystem is solved with a relative tolerance of τr = 0.99. Only the first 480 time-steps are shown since the later ones require too much
computational time to be calculated.
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Figure 5.10: Number of iterations required to solve the outer system per time-step, with a tolerance of τr = 10−2 for the pressure subsys-
tem.

A 1,000 step simulation is ran with τr = 10−2, to verify that this tolerance is small enough to prevent this in-
crease in the outer iterations from happening. The results for the 1,000 time-steps simulation with τr = 10−2

are shown in Figure 5.10. Figure 5.10 shows that the outer system needs more iterations to converge in the
later time-steps. This could be due to the tolerance being too big, but τr = 10−2 should be small enough to
at least ensure that the pressure subsystem gets updated sufficiently in each time-step. To confirm that this
increase is not due to the relative tolerance on the pressure subsystem, another 1.000 step simulation is run
with τr = 10−4 as tolerance on the pressure subsystem. This simulation showed exactly the same behavior as
in Figure 5.10, from which it is concluded that the increase in outer iterations after time-step 700 is not due
to the tolerance on the pressure subsystem.

As a conclusion, τr = 10−2 is deemed to be the optimal relative tolerance for the pressure subsystem, even
though the amount of outer iterations does increase after 700 time-steps.

5.8.8. Optimal Schur method
In conclusion, the optimal conditions that were found for the default case are:

• The Schur complement S, and the Schur preconditioner is approximated with Ŝ

• Fully factorized Schur component

• The momentum subsystem is solved using GMRES with block Jacobi preconditioning

• The pressure subsystem is solved using CG with block Jacobi preconditioning

• τr = 10−4.5 as relative tolerance for the momentum subsystem

• τr = 10−2 as relative tolerance for the pressure subsystem

The simulation using the optimal Schur conditions resulted in a relative computational time of 1.0± .1, com-
pared to the pressure-correction method. The average amount of iterations for the outer, momentum, and
pressure systems were respectively 1.0, 34.4, and 123. Most of the gain in computational time was made by
setting the tolerance on the pressure subsystem to τr = 10−2. The reason why the CG solver did not offer
a significant computational time reduction is due to the large relative pressure tolerance. This large toler-
ance decreased the number of iterations spent on the pressure system significantly, which resulted in the CG
method not having to solve many iterations.

It has now been shown that using the right settings the Schur complement method can perform equally well
as the pressure-correction method.
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Conclusions and recommendations

Choosing the right numerical method to solve a non-linear function is critical for ensuring a good efficiency.
In order to get an overview of which methods work best for certain problems, different numerical methods
were investigated. In the first part of this thesis, the Jacobian-free Newton-Raphson method has been com-
pared with the regular Newton-Raphson method. Both methods have been used to solve the heat equation
in a 1D rod. The regular Newton-Raphson method outperformed the JFNK method in both the steady state
and in the transient case. Without preconditioning the regular Newton-Raphson method was 5 to 6 times as
fast as the JFNK method for both the steady state and the transient case. Preconditioning has been proven
to be very useful for the steady state case. The ICC and Jacobi preconditioning methods sped up the regu-
lar Newton-Raphson method by a factor of (3.1± .2)∗102 and (2.8± .2) respectively. For the transient case,
preconditioning was less effective. The ICC only sped up the regular Newton-Raphson method by a factor of
(5.6± .3), while Jacobi preconditioning slowed the regular Newton-Raphson down by a factor of (3.0± .2). It
has been concluded that the regular Newton-Raphson method should be used over the JFNK method, when-
ever the Jacobian can be calculated.

Next, the regular Newton-Raphson and JFNK methods have been tested for the 1D rod problem again, but this
time as a multi-physics problem with the coupling terms missing. When using the regular Newton-Raphson
method, the subsystems were solved using the GMRES linear solver with ILU(0) preconditioning. For the
steady state multi-physics problem, the performance of the regular Newton-Raphson method was extremely
poor. The JFNK method, however, was completely unaffected by the missing coupling terms. This caused the
JFNK method to be (9.1± 0.3) times as fast as the regular Newton-Raphson method without precondition-
ing for the steady state multi-physics case. For the transient multi-physics rod, the regular newton-Raphson
method broke down completely and was not able to compute the transient solution. The JFNK method was
again unaffected by the missing coupling terms and gave the same solution as in the transient single-physics
case. It was concluded that the JFNK method outperforms the regular Newton-Raphson method for coupled
systems with missing coupling terms in both the steady state and the transient case.

Finally, an incompressible Navier-Stokes problem has been solved as a coupled system. This has been done
using different parameters for the Schur complement method and different solver settings for the subsys-
tems. Considerable efficiency has been gained by approximating the Schur complement with ∆t DM−1DT ,
where ∆t is the time-step, M is the mass matrix from the discretization mesh, and D is the discretized diver-
gence term. This worked especially well when the preconditioning for the Schur subsystem was also based
on this approximation. The CG solver worked best for the Schur subsystem, while the GMRES solver worked
best for the momentum subsystem. Only the tolerances on the inner subsystems have been tweaked in this
thesis. Changing the tolerance on the momentum subsystem had a clear effect on the number of outer it-
erations. Making the tolerance bigger increased the number of outer iterations, and making the tolerance
smaller decreased the number of outer iterations. This made the computational time relatively sensitive to
the tolerance on the momentum subsystem. The optimal relative tolerance for the momentum subsystem
has been found to be τr = 10−4.5. The tolerance on the pressure subsystem did not work in the same fashion.
This tolerance could be increased significantly, without the outer solver needing to compensate with more
iterations. Meaning that it was advantageous to use a relatively big tolerance of τr = 10−2 for the pressure
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subsystem. Furthermore, the full Schur factorization has been found to be the best factorization type for the
Schur complement method.

When all optimal settings were combined, the coupled system could be solved with a relative computational
time of (1.0±0.1) compared to the pressure-correction method, which was used as a benchmark.

For future research, there are three areas for improvement.

Firstly, the JFNK method has been implemented without preconditioning. This has been done because PETSc
does not allow a matrix-free context to work with any preconditioning method since it does not have any
matrix it can use to build the preconditioner. Theoretically, it is possible to apply a user-defined precondi-
tioning matrix to all the Krylov subspace vectors, and manually precondition the system in this way. If this
was done, the JFNK method could potentially be competitive with the regular Newton-Raphson method for
non-coupled systems.

Secondly, there are still more combinations of options that could be tested out for the Schur complement
method. Due to time restraints, the effect of each parameter was tested separately in this thesis. By doing
this, it is possible that efficient combinations might have been missed. For example; it has not been tested
how changing the tolerance for both subsystems affects the computation time.

Finally, the JFNK method could be applied to the incompressible Navier-Stokes problem. From the 1D model
rod, it has been shown that the JFNK was very efficient for coupled problems. The JFNK method was not used
to solve the incompressible backward step problem in this thesis because no preconditioner could be used.
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A. Calculating the rate of convergence
To approximate the rate of convergence, the following relation is used[5]:

pn = log(||xn+1 −xn||2)− log(||xn −xn−1||2)

log(||xn −xn−1||2)− log(||xn−1 −xn−2||2)
. (1)

The average convergence rate p of a set of indexed S is calculated with:

p = 1

#S

∑
n∈S

pn , (2)

where #S is the amount of elements in S.

B. PETSc implementation of 1D model problem
This Appendix shows how the 1D model problem was implemented using the PETSc toolkit in Fortran 90.
Given the length of the code, only a summary of the steady state simulation with explaination is given.

PETSc should not be seen as its own coding language. Instead, PETSc should be seen as a Fortan 90 ob-
ject. To work with this PETSc object, appropriate PETSc functions have to be called.

To start of, every PETSc code needs to be intialized (make the ’PETSc object’) and import certain PETSc pack-
ages. A Scalable Nonlinear Equations Solvers (’SNES’) object is used to solve the non-linear system with
Newton-Raphson, so this need to be defined as well. All the initialization for the 1D model rod is done with
the following lines:

!where ’#main_name’ is the name of the main program file.
program #main_name

!import #package
#include "petsc/finclude/#package.h"
use #package

!a separate module called ’base_mod’ for constants which are accessed often is created.
!the constants in this module are loaded with:
use base_mod

!define the type of each Variable (both PETSc and non PETSc).
!define the type for the temperature vector x, boundary vector b, and function vector f.
Vec :: x
Vec :: b
Vec :: f

!define the Jacobian matrix J
Mat :: J

!the amount of grid points is defined as a parameter, which makes it unchangeable.
PetscInt, parameter :: n = 1000

!the initial temperature (K) of the entire rod is also defined as a parameter.
petscInt, parameter :: initTemp = 600

!define some constants
PetscScalar :: val, b_left, b_right, eps

!all the used PETSc objects
SNES :: snes
PetscErrorCode ierr

!initialize PETSc
call PetscInitialize(PETSC_NULL_CHARACTER,ierr);
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...

The package used to solve the 1D rod is called ’petscsnes’, so replace ’#package’ with ’petscsnes’.

Important: every variable, in every PETSc function, needs to be a PETSc variable and not a fortran variable.
For example; use PetscReal instead of real in all PETSc functions.

Now that PETSc is initialized, the next goal is to make the function F as described in Chapter 3.1, so that the
SNES objects can solve it. The vectorialized version of the heat equation f was constructed in the following
way for the 1D rod simulation:

f = Ax−σx4, (3)

where A is the discretized diffusion term, x is the temperature vector, σ is the Boltzmann constant.

Before this function can be made in Fortran, matrix A and vectors x, f need to be defined. Since A is accessed
by both the main program and the function which creates f, so it is initialized in the ’base_mod’ module
instead of in the main program. This is done in the following fashion:

module base_mod
!is called since all variables will be defined
implicit none

!define the diffusion matrix A
Mat :: A

!define the boltzmann constant ’boltz’, since it will be accessed by multiple functions
PetscScalar, parameter :: boltz = 5.67E-8
...

end module

In the main program file, the diffusion matrix A, and the vectors f, and x can now be created:

...
!create the function vector ’f’, temperature vector ’x’, and diffusion matrix ’A’

!first the dimensions of ’x’ are defined
call VecCreateSeq(PETSC_COMM_WORLD,n,x,ierr)

!set all values of ’x’ to ’initTemp’
call VecSet(x,initTemp,ierr)

!assemble the vector x, this needs to be done.
call VecAssemblyBegin(x,ierr)
call VecAssemblyEnd(x,ierr)

!make ’f’ have the same dimensions as ’x’
call vecDuplicate(x, f, ierr)

!create the diffusion matrix A (was only a type before)
call MatCreate(PETSC_COMM_WORLD,A,ierr)

!set the dimensions to n by n
call MatSetSizes(A,PETSC_DECIDE,PETSC_DECIDE,n,n,ierr)

!set the values of the matrix
!loop over all rows
do i=1,n

!loop over all columns
do j=1,n

!determine the diffusion term g of the i,j’th element.
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!this can be done with the methods in chapter 3.
val = g(i,j)

!set the i,j’th element to this value (i and j have to be PetscInt type)
call MatSetValue(A, i, j, val, INSERT_VALUES, ierr)

end do
end do

!Assemble the Matrix
call MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY,ierr)
call MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY,ierr)
...

In Fortran it is common to use subroutines instead of functions. This is because in Fortan a function can
only have one output variable, which can not also be an input variable. A subroutine can have more then one
output variable, which can also be an input variable. By PETSc convention, the subroutine for f is typically
called ’FormFunction’. The subroutine to make f is defined for the 1D rod model as:

subroutine FormFunction(snes, x, f, ierr)

!basis module containing all constants.
!the diffusion term A, boltzmann constant sigma, and boundary condition b are used.
use base_mod

!4 is needed later, so we create a PetscScalar which will get the value 4.
PetscScalar :: four

!define the petsc objects
PetscErrorCode ierr
SNES snes

!define the PETSc vectors f (function value), and x (temperature)
Vec f, x

!create another dummy vector for the diffusion
Vec diff

!-1 is needed later, so we create a PetscScalar which will get the value -1.
PetscScalar negOneScal

!set the appropriate values
negOneScal = -1.0
four = 4.0

!since x is already defined, the properties of ’x’ are duplictated into ’diff’
call VecDuplicate(x, diff, ierr)

!the current value of f is not used, so the values of ’x’ are copied into ’f’
call VecCopy(x, f, ierr)

!make f -> f^4. note that f was x before this operation, so f = x^4 afterwards.
call VecPow(f, four, ierr)

!multiply f by the boltzmann constant to get f = boltz*x^4.
call VecScale(f, boltz, ierr)

!set the diffusion term ’diff’ to Ax. So diff = Ax after this operation.
call MatMult(A, x, diff, ierr)
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!subtract the radiation term from the diffusion term, resulting in f = Ax - boltz*x^4.
call VecAYPX(f, negOneScal, diff, ierr)

!since this is a subroutine, the final value of f is automatically returned.
!note that the value of x remained unaltered in this subroutine.

end subroutine

Besides the function vector f, SNES also needs to know the Jacobian if not using the JFNK method. By PETSc
convention, the function which makes the Jacobian is called ’FormJacobian’, and for the 1D model simulation
it was defined as:

subroutine FormJacobian(snes, x, jac, ierr)
!import the base constants
use base_mod

!define the input variables.
SNES :: snes
PetscErrorCode :: ierr
Mat :: jac
Vec :: x

!define some dummy vector elements.
Vec :: elements

!the value of 3 and -1 will be needed later.
PetscScalar :: three, negOneScal

!set the values of the constant variables.
three = 3.0

!give ’elements’ the same properties and values as ’x’
call VecDuplicate(x, elements, ierr)
call VecCopy(x, elements, ierr)

!multiply elements to the power 3, so elements = x.^3
call VecPow(elements, three, ierr)

!elements = -4*boltz*x^.3 (the derivative of -boltz*x.^4)
call VecScale(elements, -4 * boltz, ierr)

!copy the values of the diffusion A into the Jacobian jac
call MatCopy(A, jac, DIFFERENT_NONZERO_PATTERN, ierr)

!add the radiation term to get the final jacobian
call MatDiagonalSet(jac, elements, ADD_VALUES, ierr)

!assemble the jacobian, this must be done
call MatAssemblyBegin(jac,MAT_FINAL_ASSEMBLY,ierr)
call MatAssemblyEnd(jac,MAT_FINAL_ASSEMBLY,ierr)

end subroutine

As a final step before the 1D rod model can be solved, the boundary conditions vector b has to be imposed.
This is done with the following code in the main program:

!give the boundary condition vector the same type as the heat vector
call VecDuplicate(x, b, ierr)

!set the all elements in the boundary vector to 0 (used ’boltz*0’ because just ’0’ would
not be of type PetscInt).
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call VecSet(b,boltz*0,ierr);

!Set the value for the left boundary condition (using the discretization in chapter 3)
call VecSetValue(b, 0, b_left, INSERT_VALUES, ierr)

!Set the value for the right boundary condition (using the discretization in chapter 3)
call VecSetValue(b, n-1, b_right, INSERT_VALUES, ierr)

!assemble the boundary vector, this needs to be done
call VecAssemblyBegin(b,ierr)
call VecAssemblyEnd(b,ierr)

If it is chosen to solve the heat equation using the regular Newton-Raphson method, this can be done with
the following code in the main program:

...
!allows the user to set the preconditioner type, linear solver type, etc from the
!command line. e.g. ’-ksp_type cg -pc_type icc’
call SNESSetFromOptions(snes, ierr)

!tell SNES to use FormFunction to compute f
call SNESSetFunction(snes,f,FormFunction,PETSC_NULL_CHARACTER,ierr)

!give the Jacobian J the same dimensions as the diffusion matrix A.
call MatDuplicate(A, MAT_SHARE_NONZERO_PATTERN, J, ierr)

!tell SNES to use FormJacobian to compute the Jacobian J
call SNESSetJacobian(snes,J,J,FormJacobian,PETSC_NULL_CHARACTER, ierr)

!solves the heat profile such that F(x) = b, using Newton-Raphson
call SNESSolve(snes, b, x, ierr)

!’x’ should now be the steady state heat profile
...

If it is chosen to solve the heat equation using the JFNK method, this can be done with the following code in
the main program:

...
!tell SNES to use FormFunction to compute f.
call SNESSetFunction(snes,f,FormFunction,PETSC_NULL_CHARACTER,ierr)

!create the matrix free SNES environment.
call MatCreateSNESMF(snes, J, ierr)

!set the epsilon value in the JFNK approximation.
eps = 4.7E-4

!pass this value into the JFNK SNES context.
call MatMFFDSetFunctionError(J, rerror, ierr);

!tell SNES that the Jacobian is approximated using JFNK.
call SNESSetJacobian(snes, J, J, MatMFFDComputeJacobian ,PETSC_NULL_CHARACTER, ierr)

!solves the heat profile such that F(x) = b, using JFNK
call SNESSolve(snes, b, x, ierr)

!’x’ should now be the steady state heat profile
...
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Finally, it is very useful to be able to control certain aspects of the code from the command line. For example,
the following line can be used to set the PetscInt a to x by typing ’program_name -a x’ in the command line:

call PetscOptionsGetInt(PETSC_NULL_OPTIONS,PETSC_NULL_CHARACTER, ’-a’, a, flg, ierr)

This concludes the summary of the PETSc implementation for the 1D rod model problem.
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