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1
Background

Ischemic stroke is one of the leading causes of death and disability worldwide, particularly in high-
income countries, where it ranks second only to ischemic heart disease in terms of disability-adjusted
life years [17]. Ischemic stroke occurs when blood circulation is reduced or interrupted due to the oc-
clusion of arteries supplying the proximal anterior circulation [15]. In Western countries, approximately
80% of strokes result from arterial occlusions [5]. The annual incidence of ischemic stroke is sub-
stantial: in the Netherlands, 38,000 patients are admitted per year1, while in the United States, this
number reaches 800,000, and nearly 1 million cases occur annually in the European Union [15]. Al-
though stroke-related mortality has declined over the past decade [2], ischemic stroke remains the fifth
leading cause of death [2], the primary cause of permanent disability [2], and one of the most common
contributors to dementia [2].

1.1. Introduction & Motivation
Studies have shown that patient outcome has greatly improved with the inception of endovascular
thrombectomy (EVT) [15]. EVT is a medical intervention used in the treatment of ischemic stroke that
mechanically extracts the thrombus, which is responsible for the vascular occlusion. The procedure
begins by gaining vascular access, typically through a large artery in the groin (such as the femoral
artery), and involves navigating a catheter—a long, thin, flexible tube—through the vascular system to
the site of the thrombus, as illustrated in Figure 1.1. Catheter navigation is guided by fluoroscopy, typ-
ically digitally subtracted angiography (DSA), a technique that provides real-time X-ray images. Once
the catheter reaches the site of the occlusion, a device such as a stent retriever is used to engage
and remove the thrombus. These devices either ensnare or attach to the thrombus and are carefully
retracted, along with the thrombus, through the artery. Sometimes, suction devices are also employed
to assist in this process. The main aim of the procedure is to quickly restore blood flow to the affected
brain area, thus minimizing brain damage. The effectiveness of the intervention is often measured
by the extent of reperfusion, or the restoration of blood flow achieved, as visible in Figure 1.2. After
the thrombectomy, patients are closely monitored to manage potential complications, including blood
pressure management, prevention of bleeding at the catheter insertion site, and observation for signs
of reperfusion injury or recurrent stroke. EVT has shown significant efficacy, especially in patients
with large vessel occlusions, leading to improved functional outcomes and reduced disability when
performed within a specific time window, typically 6 to 24 hours from symptom onset, depending on
individual factors and brain imaging results. This procedure marks a substantial advancement in the
management of acute ischemic stroke, providing an option for better recovery in situations previously
limited to more conservative treatments like intravenous thrombolysis.

EVT has gained significance since 2015, where 5 clinical trials [3, 10, 16, 4, 13] demonstrated
improved patient outcomes after EVT. As a result, since 2015, EVT has been accepted as a de-facto
standard care for ischemic stroke patients with large vessel occlusion [9]. These trials collectively
identify 3 contributing success factors for EVT: 1) procedure is done with newer generation devices
(mainly stent retrievers), 2) more stringent image selection criteria to include only patients with large
1Nederlandse Hartstichting, https://www.hartstichting.nl/hart-en-vaatziekten/cijfers-hart-en-vaatziekten
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2 1. Background

Figure 1.1: Stent retriever, used during EVT to extract the thrombus. Copyright Elsevier

vessel occlusions, and 3) efficient workflows. If these 3 criteria are met, disability rates after acute
ischemic stroke, when caused by proximal occlusion of large vessels in the anterior circulation, are
significantly reduced [9].

At present, the whole procedure (from device selection to efficient workflow) has been studied and
optimized, where typically, stent retrievers are used as an extraction device [15]. In terms of imaging
criteria, typically a multimodal computed tomography (CT) or multimodal magnetic resonance imaging
(MRI) is performed [15, 17], where the major advantage of CT over MRI is the availability of CT at the
emergency room. Patient eligibility for EVT, as well as arterial imaging of cerebral circulation, can be
performed, typically with computed tomography angiography (CTA) [17]. DSA imaging then guides the
intervention, though are typically limited by the need for contrast injection for vessel opacification.

Finally, Goyal et al. [9] identified efficient workflows as one of the key success factors in patient
outcome. Such an example could include 3D-2D registration of cross-modality images to aid with
the intervention by providing a depth aspect and better global and local information on surrounding
structures, as well as occlusion location. 3D-2D cross-modality registration is a type of registration
where the images being registered are from different modalities and are of different dimensions. The
section below discusses the objective of this paper, where we assess a registration method for cerebral
3D-2D computed tomography angiography to digitally subtracted angiography with applications to EVT.

1.2. Purpose of this Thesis
This paper aims to develop and assess a registration method tailored for 3D-2D CTA to DSA registra-
tion within the context of EVT. In most cases, a 3D CTA scan is performed to assess patient eligibility
for EVT, while 2D DSA is used to guide the procedure. Given the routine availability of both imaging
modalities, their registration represents a logical step with the potential to enhance clinical workflows.
Exploring such a method aligns with the efficient workflow success criterion for EVT identified by Goyal
et al [9]. First, it enables the projection of 3D information from CTA onto DSA images, assisting in real-
time navigation during interventions. For example, this could include visualizing collateral vessels that
are not visible on standard DSA but become apparent in late-phase CTA, potentially indicating the route
or trajectory leading to the occlusion. Additionally, it can support the visualization of perfusion-related
information such as CTP-penumbra—regions of the brain that are under-perfused, but potentially sal-
vageable during stroke. Tools like a 3D roadmap, generated from registered images, could provide
more precise guidance by overlaying critical anatomical landmarks onto the DSA. Such advancements
can be valuable in complex cases where vascular structures are partially occluded or unclear in DSA
images.

Artificial intelligence (AI) has demonstrated significant potential in image processing, including med-
ical imaging. In particular, convolutional neural networks (CNNs) have proven to be robust for tasks
such as classification and segmentation. A growing body of research has explored the application of AI
to medical image registration [11, 6]. These methods, however, often require large amounts of labeled
training data to achieve high performance, if in a supervised learning setting. The challenges of data

https://www.sciencedirect.com/topics/nursing-and-health-professions/intracranial-stent
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Figure 1.2: Images from the EVT procedure are shown. Panel A displays DSA images capturing contrast injection into the
right carotid artery, where blood flow abruptly ceases, indicating the presence of a clot obstructing circulation. Panel B depicts
thrombotic material extracted from the occlusion site using a suction device for aspiration. Panel C illustrates a follow-up DSA
image after contrast injection at the same location, demonstrating successful restoration of blood flow following clot removal.
Reproduced with permission from [14], Copyright Massachusetts Medical Society.

availability in medical imaging are well-documented. In the Netherlands, for instance, patients treated
for EVT must provide explicit consent for their data to be used in research. This process introduces
logistical hurdles and limits the size of available datasets. Furthermore, once consent is obtained,
supervised methods require manual annotations in the form of transformation matrices to register the
3D CTA scans to the 2D DSA images to serve as reference standards. This process demands both
medical expertise and a non-negligible time investment. These factors make collecting training data for
fully deep learning-based methods time-consuming and resource-intensive. Traditional optimization-
based methods offer an alternative that circumvents the need for large datasets. These approaches
rely on well-defined metrics to iteratively refine the alignment between images and have been shown to
produce accurate results [7, 8, 12]. However, traditional methods suffer from a limited capture range,
making them less robust to large initial misalignment. This limitation motivates the exploration of hybrid
approaches that combine the strengths of deep learning and optimization-based methods.

In this work, we attempt to address the problem of 3D-2D registration by integrating a CNN with
classical optimization techniques. The CNN is used to predict an initial transformation matrix that
roughly aligns the CTA to the DSA, leveraging its ability to generalize from limited training data. This
initial alignment is subsequently refined through iterative optimization. A hybrid approach is appealing
for two main reasons: 1) it reduces the reliance on large training datasets, which are challenging to
acquire in medical imaging, and 2) it extends the capture range of traditional optimization methods by
starting with a learned initialization. By combining a data-driven initial pose prediction with classical
optimization-based methods, such as in [7, 8, 12], the proposed method attempts to produce accurate
registrations from limited training data.

We term our method DeepIterReg, inspired by its combination of deep learning and traditional op-
timization. The motivation, methods, implementation, experiments and results are outlined in the re-
search paper provided in Section 2. Supporting and supplementary material to complement the paper
is provided in Section 3
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Abstract

Stroke remains a leading cause of morbidity and mor-
tality worldwide, despite advances in treatment modali-
ties. Endovascular thrombectomy (EVT), a revolutionary
intervention for ischemic stroke, is limited by its reliance
on 2D fluoroscopic imaging, which lacks depth and com-
prehensive vascular detail. We propose a novel AI-driven
pipeline for 3D CTA to 2D DSA cross-modality registration,
termed DeepIterReg. The proposed pipeline integrates neu-
ral network-based initialization with iterative optimization
to align pre-intervention and peri-intervention data. Our
approach addresses the challenges of cross-modality align-
ment, particularly in scenarios involving limited shared
vascular structures, by leveraging synthetic data, vein-
centric anchoring, and differentiable rendering techniques.
We assess the efficacy of DeepIterReg through quantitative
analysis of capture ranges and registration accuracy. Re-
sults indicate that our method is able to accurately regis-
ter 70% of a testset of 20 patients, and is able to improve
capture ranges when performing an initial pose estimation
using a convolutional neural network.

1. Introduction
Ischemic stroke is one of the leading causes of death

and disability worldwide, particularly in high-income coun-
tries, where it ranks second only to ischemic heart disease in
terms of disability-adjusted life years [24]. Ischemic stroke
occurs when blood circulation is reduced or interrupted due
to the occlusion of arteries supplying the proximal anterior
circulation [18]. In Western countries, approximately 80%
of strokes result from arterial occlusions [7]. The annual
incidence of ischemic stroke is substantial: in the Nether-
lands, 38,000 patients are admitted per year1, while in the
United States, this number reaches 800,000, and nearly 1
million cases occur annually in the European Union [18].
Although stroke-related mortality has declined over the past
decade [1], ischemic stroke remains the fifth leading cause

1Nederlandse Hartstichting, https://www.hartstichting.nl/hart-en-
vaatziekten/cijfers-hart-en-vaatziekten

of death [1], the primary cause of permanent disability [1],
and one of the most common contributors to dementia [1].

1.1. Endovascular Thrombectomy

Studies have shown that patient outcomes significantly
improved with the introduction of endovascular thrombec-
tomy (EVT). [18]. EVT is a medical intervention used
in the treatment of ischemic stroke that mechanically ex-
tracts the thrombus, which is responsible for the vascular
occlusion. The procedure begins by gaining vascular ac-
cess, typically through a large artery in the groin (such as
the femoral artery), and involves navigating a catheter—a
long, thin, flexible tube—through the vascular system to the
site of the thrombus. Catheter navigation is guided by fluo-
roscopy, typically digitally subtracted angiography (DSA),
a technique that provides real-time X-ray images. Once the
catheter reaches the site of the occlusion, a device such as a
stent retriever is used to engage and remove the thrombus.
These devices either ensnare or attach to the thrombus and
are carefully retracted, along with the thrombus, through
the artery. The main aim of the procedure is to quickly re-
store blood flow to the affected brain area, thus minimiz-
ing brain damage. The effectiveness of the intervention is
often measured by the extent of reperfusion, or the restora-
tion of blood flow achieved. EVT has shown significant
efficacy, especially in patients with large vessel occlusions,
leading to improved functional outcomes and reduced dis-
ability when performed within a specific time window, typi-
cally 6 to 24 hours from symptom onset, depending on indi-
vidual factors and advanced brain imaging results. This pro-
cedure marks a substantial advancement in the management
of acute ischemic stroke, providing an option for better re-
covery in situations previously limited to more conservative
treatments like intravenous thrombolysis.

1.2. Endovascular Thrombectomy Success Criteria

EVT, has gained significance since 2015, where 5 clin-
ical trials [4, 5, 11, 16, 19] demonstrated improved patient
outcomes after EVT. As a result, since 2015, EVT has been
accepted as a de-facto standard care for ischemic stroke pa-
tients with large vessel occlusions [12]. These trials col-

1
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Figure 1. Example 2D DSA acquisition of arterial circulation.

lectively identify 3 contributing success factors for EVT: 1)
procedure is done with newer generation devices (mainly
stent retrievers), 2) stringent image selection criteria to only
include patients with large vessel occlusions, and 3) effi-
cient workflows. If these 3 criteria are met, disability rates
after acute ischemic stroke, when caused by proximal occlu-
sion of large vessels in the anterior circulation, are signifi-
cantly reduced [12]. At present, the whole procedure (from
device selection to efficient workflow) has been studied and
optimized, where typically, stent retrievers are used as an
extraction device [18]. In terms of imaging criteria, typ-
ically a multimodal computed tomography (CT) or multi-
modal magnetic resonance imaging (MRI) are performed to
assess EVT eligibility [18,24]. Arterial imaging of cerebral
circulation during EVT is performed using digitally sub-
tracted angiography (DSA) [24]. DSA imaging then guides
the intervention, though are typically limited by the need
for contrast injection for vessel opacification.

Finally, Goyal et al. [12] identified efficient workflows
as one of the key success factors in patient outcomes with
EVT. Such an example could include 3D-2D registration of
cross-modality images to aid with the intervention, by pro-
viding a depth aspect and better global and local informa-
tion on surrounding structures, as well as occlusion loca-
tion. We dedicate the following section to cross-modality
registration and motivate its usage within the context of
EVT and ischemic stroke treatment.

1.3. Cross-Modality Registration

Cross-modality registration involves aligning images
from different medical imaging modalities to combine their
complementary strengths. In EVT treatment, this has the
benefit of enabling the projection of 3D information from
the CTA onto the 2D DSA, providing better visualization
of anatomical landmarks, collateral vessels, and perfusion-

related regions like CTP-penumbra. This may further im-
prove catheter navigation in complex cases, assists in iden-
tifying occlusion routes, and provides precise guidance
through tools like 3D roadmaps. These advancements po-
tentially address the challenges of fluoroscopy’s 2D limita-
tions, supporting efficient workflows.

While cross-modality registration is well-studied in med-
ical imaging [8, 13, 17, 25], there is limited research on
its application in 3D CTA to 2D DSA registration specifi-
cally for EVT. This paper addresses how 3D-2D registra-
tion can be approached in the context of EVT. We pro-
pose and assess a multi-stage registration pipeline that com-
bines a convolutional neural network (CNN) with tradi-
tional optimization-based methods. The CNN first predicts
an initial pose for the CTA such that we reduce the initial
distance to the registered position. Residual misalignment
is then further reduced using an iterative optimization-based
approach, as these methods are shown to produce accu-
rate registrations [9, 10, 15]. Our method further leverages
DiffDRR [10], a differentiable rendering framework that
allows for the analytical computation of gradients during
the optimization process. The availability of gradients has
shown [10] to improve the optimization speed when when
compared to non-differentiable methods, a critical aspect in
clinical workflows.

2. Related Work

We begin this section with an introduction on how 3D-
2D registration is performed in the context of iterative
optimization-based techniques—one of the most broadly
adopted methods for 3D-2D registration. As inputs, a 3D
CTA is given, which we desire to align with a 2D angiogram
(in our case, a DSA). The objective is to determine the pose
of a CTA relative to a C-arm configuration, maximizing the
similarity between its projection and a reference 2D im-
age. The pose of the CTA is parametrized by a position
and orientation, each represented by a set of 3 real num-
bers: {rx, ry, rz, tx, ty, tz}, with rx, ry and rz the rotation
components, and tx, ty and tz translation components. Typ-
ically, these parameters are represented as a (rigid) transfor-
mation matrix:

T =

[
R t
0 1

]
, (1)

R corresponds to a rotation matrix according to rx, ry and
rz , and t is a vector containing tx, ty and tz . A projection
matrix is then used to project the resulting CTA according
to the pose, resulting in a 2D digitally reconstructed radio-
graph (DRR). Before discussing these parameters, it is im-
portant to outline the geometry of a C-arm system.

2



Figure 2. Setup of a (older) typical C-arm system [26].

2.1. C-Arm System Geometry

A typical angiography machine, depicted in Figure 2, op-
erates by rotating around two (or three) principal axes, char-
acterized by a primary angle, α, and a secondary angle, β.
In addition, the system is defined by intrinsic parameters,
such as the source-to-patient (SOD) and source-to-detector
(SID) distances, which govern image magnification, resolu-
tion, and the position of the isocenter. The isocenter is the
center of rotation of the C-arm (which typically is not the
midpoint of the source-to-image distance). Three coordi-
nate systems can be discriminated in a C-arm system: the
world coordinate system (xw, yw, zw), which we choose as
centered at the isocenter, O, of the C-arm system. It de-
fines the overall spatial reference, where the rotations α (for
Left Anterior Oblique (LAO) and Right Anterior Oblique
(RAO)) and β (for Cranial (CRA) and Caudal (CAU)) are
applied, describing the orientation of the imaging compo-
nents relative to the isocenter. In DICOM terms, α is the
primary angle, and β the secondary angle. The source co-
ordinate system (xc, yc, zc) is centered at the X-ray source
S, where the X-ray beam originates—this can be seen as the
‘camera’ coordinate system. The distance from the source
to the isocenter is described as the source-to-patient dis-
tance. The image plane coordinate system (u, v) is centered
at the image detector plane I , where the X-ray beam is pro-
jected after passing through the isocenter. The axes u and
v lie within the detector plane, and the source-to-detector
defines the distance between the source S and the detector
I in Figure 2.

A projection matrix, T, is used to project the resulting
CTA according to its pose and device parameters. Pro-
jection matrices in the context of a C-arm system are
parametrized by both intrinsic and extrinsic parameters.
The extrinsic parameters define the position and orienta-

tion of the C-arm relative to the world coordinate system (or
‘camera’), and are represented by the transformation matrix
T, as shown in Equation 1. The intrinsic parameters charac-
terize the properties of the imaging system, such as the focal
lengths, principal point, and source-to-detector distance.

The geometry of the C-arm system directly influences
the construction of the projection matrix P, which maps
a 3D point Pw = (X,Y, Z, 1)⊤ in the world coordinate
system to a 2D point p = (u, v)⊤ on the image plane:

p = P ·K ·T ·Pw . (2)

Here, K is the intrinsic camera matrix, defined as:

K =


fx 0 cx 0
0 fy cy 0
0 0 1 0
0 0 0 1

 , (3)

where fx and fy are the focal lengths along the u and v
axes of the image plane, and cx, cy are the coordinates of
the principal point (the center of the image plane).

To compute the projected 2D coordinates (u, v), the ho-
mogeneous coordinates ph = P ·K ·T ·Pw are converted
to non-homogeneous form:

u =
px
pw

, v =
py
pw

, (4)

where (px, py, pw) are the components of the projected
point in homogeneous coordinates.

2.2. Optimizing a C-Arm Pose

The goal of 3D-2D registration is to optimize the trans-
formation matrix T such that the digitally reconstructed ra-
diograph generated from the 3D volume projected accord-
ing to T aligns with the target 2D angiogram. The optimiza-
tion setup optimizes a similarity function L(·) between the
DRR and the reference angiogram (e.g., mutual informa-
tion or normalized cross-correlation). The choice of simi-
larity metric is crucial and dependent on the image modali-
ties (such as multi-modal, versus mono-modal).

The rigid transformation parameters are initialized using
an approximate pose constructed from the C-arm parame-
ters. At each iteration, the current transformation matrix
T is used to project the 3D points of the volume onto the
2D plane using the projection model defined in Equation 2,
resulting in a DRR. The rigid transformation parameters
{rx, ry, rz, tx, ty, tz} are updated iteratively using gradient-
based optimization techniques, such as stochastic gradient
descent (SGD) or Adam. The gradient of the loss with re-
spect to the parameters is computed as:

∂L
∂T

=
∂L

∂IDRR
· ∂IDRR

∂T
, (5)

3



where the term ∂IDRR
∂T captures the effect of pose changes on

the DRR, and IDRR is the resulting DRR given the pose
parameters. These gradients are used to update the transfor-
mation matrix parameters:

Tk+1 = Tk − η · ∂L
∂T

, (6)

where η is the step size.
The optimization is constrained to the space of rigid

transformations, ensuring that R remains a valid rotation
matrix (i.e., orthogonal with a determinant of 1). To enforce
this, R is often parametrized using Euler angles, quater-
nions, or the exponential map.

While iterative optimization-based methods can achieve
accurate registrations, they typically suffer from very lim-
ited capture ranges [23]. If the initial pose is too far from
the target pose, the optimization process may converge to
a local minimum, and therefore an incorrect transformation
matrix. We further discuss the importance of capture ranges
in a subsequent section.

Given the above specification, the overall optimization
objective for 3D-2D registration can be formulated as such:

max
T

L(IDRR(T), Iref) , (7)

where IDRR(T) represents the DRR generated using the cur-
rent transformation matrix T, and Iref the fixed reference
image.

Hipwell et al. [15] propose an intensity-based 3D-2D
registration algorithm for aligning 3D Magnetic Reso-
nance Angiography (MRA) with 2D Digital Subtraction
Angiograms (DSA). This method extends traditional 3D-2D
registration approaches by focusing on cerebral vasculature
alignment for neurointerventions, such as the treatment of
arteriovenous malformations and aneurysms. The transfor-
mation between the 3D MRA and 2D DSA is modeled as a
rigid transformation matrix, T, with six degrees of freedom.

The authors utilize DRRs to simulate 2D X-ray projec-
tions of the 3D MRA volume. DRRs are generated by ray-
casting through the 3D volume and integrating voxel in-
tensities along the ray paths to approximate X-ray attenu-
ation. Four methods for DRR generation are explored: sim-
ple threshold segmentation, direct integration of speed data
from phase-contrast MRA, segmentation-based voxel inten-
sity projection, and vessel probability maps. These methods
aim to generate DRRs that closely resemble DSAs to en-
hance the similarity for alignment.

The algorithm optimizes a similarity metric between the
DRR and DSA using iterative gradient descent techniques,
refining the rigid transformation matrix T at each step.
The similarity metrics evaluated include normalized cross-
correlation, mutual information, and gradient correlation,
which leverage high-frequency edge information from both

the DRR and DSA. To enhance robustness and reduce com-
putational cost, the authors employ a multi-resolution strat-
egy, where the images are progressively refined from lower
to higher resolutions, and use concentric region-of-interest
masks to constrain the optimization to the region around the
vasculature.

Validation on both phantom and clinical datasets demon-
strates sub-millimeter accuracy in reprojection errors, with
the most robust results achieved using gradient correlation,
gradient difference, and pattern intensity similarity mea-
sures. The method achieves success rates (reprojection er-
ror below 4 millimeters) of 95% for phantom data and 82%
for clinical data when initialized within a realistic capture
range.

2.3. Differentiable Rendering

A critical step in the optimization process described
above is the availability of gradients of the loss with respect
to the pose parameters, as given in Equation 5. These can ei-
ther be computed analytically, or by sampling the loss land-
scape in the direction of interest. Differentiable rendering
has the advantage of allowing for the computation of ana-
lytical gradients. A contemporary example is DiffDRR, in-
troduced by Gopalakrishnan et al. [10]. DiffDRR generates
DRRs from 3D volumes using device parameters like voxel
size and spacing, as described at the start of this section.
This method incorporates Siddon’s method [20] for fast and
realistic rendering by simulating X-ray attenuation paths.
The authors of DiffDRR implement Siddon’s method as a
series of vector operations, making it fully differentiable,
and facilitating its integration into neural networks for end-
to-end training. The projection process involves simulating
X-ray generation and attenuation through the 3D volume,
and then differentiating the resulting 2D DRR with respect
to the pose of the CTA (namely, its position and orientation
in space). The authors assessed its efficacy in an analogous
framework to the optimization framework described above,
where the gradients are computed analytically rather than
sampled. The proposed method achieves significant speed
improvements over traditional approaches. The gradients
computed by their method are very close to those obtained
via finite differences (within 0.05 ± 0.01), but significantly
faster to compute, reducing computation time from 73.3 ms
to 35.1 ms.

In a subsequent study, Gopalakrishnan et al. [9] applied
DiffDRR to a 3D-2D registration problem, registering pre-
and intra-operative CT scans. Their approach involved a
two-stage process: first, a ResNet18 model was trained
on synthetic data generated from pre-operative CTs using
DiffDRR, achieving an initial sub-millimeter success rate
(SMSR) of 37%. This initial alignment was then refined
through iterative optimization, improving SMSR to 87%.
The study underscores the importance of a good initializa-
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tion in 3D-2D registration, particularly for intensity-based
methods, and demonstrates the efficacy of differentiable
rendering.

2.4. Proposed Method and Contribution

In this paper, we describe a method for 3D-2D CTA
to DSA cross-modality registration, which leverages both
iterative optimization-based methods, such as those used
in [9, 10, 15], in conjunction with a deep learning network.
This multi-stage pipeline attempts to overcome the limited
capture range of traditional methods [23], while still making
use of its ability to generate accurate final registrations. Us-
ing a limited dataset consisting of only CTA scans, we train
a neural network in a synthetic fashion in order to achieve
an initial CTA pose that is within the capture range of itera-
tive optimization-based methods. To this end, we asses the
capture range of iterative methods, and investigate to what
degree we overcome these capture ranges using a learning-
based initialization approach. Using repeat experiments, we
then assess the accuracy improvement of each stage of a
two-stage iterative optimization step, which further refines
the initial CTA pose at each step.

3. Method: DeepIterReg

In this section we propose DeepIterReg, illustrated in
Figure 3, a multi-stage registration pipeline for 3D-2D CTA
to DSA registration, combining a deep learning network
with traditional optimization-based methods, powered by
DiffDRR’s differentiable rendering engine [10]. We posit
that, in a similar approach to [9], we can perform a first-step
initial registration, such that we obtain an initial pose T̃, us-
ing a deep neural network pre-trained on synthetic data, fol-
lowed by an iterative registration approach to then compute
a second, more accurate pose T̂, where T̂ · T̃ ≈ Ttarget,
and Ttarget is the target rigid transformation (registration)
matrix. The initial pose is computed to overcome the lim-
ited capture range of traditional iterative-based registration
techniques, where T̃ is the transformation that brings the
CTA to its initial pose, and is ideally within the capture
range of the iterative method employed for the later-stage
registration. Effectively, the optimization and learning at-
tempt to find the 6 pose parameters: {rx, ry, rz, tx, ty, tz},
which we represent as a 4 × 4 rigid transformation matrix
in all optimization and learning steps, as defined in Equa-
tion 1, in an identical manner to the process described in
Section 2.2.

At each stage of the pipeline, the objective is to refine
the transformation matrix such that it transforms the CTA
from its original pose to its target pose. We discuss below
how the transformation matrix is optimized in each step of
the pipeline.

3.1. Learning-based Initialization Step

The initialization step aims to quickly compute an initial
transformation, T̃, that aligns the CTA to an approximate
pose close to the target pose, Ttarget. This initial transfor-
mation serves as a starting point for further refinement in
subsequent steps. We hypothesize that a convolutional neu-
ral network (CNN), trained on larger vessels that ‘surround’
the brain may be sufficient to provide an initial alignment.
Visually, venous structures appear to be the most common
structure in both modalities, which are typically larger and
take on a semicircular structure that contours the skull. Fur-
thermore, venous structures exhibit less inter-patient vari-
ability, making them good candidate anatomical features for
a learning-based initial registration. However, such an ap-
proach would require separating the veins from the arteries
in both CTA and DSA. For the DSA, artery-vein separa-
tion segmentations are available thanks to the work of Su
et al. [22]. However, artery-vein separation is not available
for the CTA. In order to obtain vein isolation for the CTA,
a combination of morphology and connected components
was sufficient to isolate the larger veins that surround the
skull. To overcome the modality difference, we binarize the
resulting vein segmentation from the CTA, such that both
the CTA and DSA are binarized segmentations, as illus-
trated in Figure 4. These binarized vein segmentations are
provided as input to the network during inference. Prior to
predicting any initial pose, we can put the CTA in a position
and orientation that matches the C-arm configuration during
acquisition. We outline how this is performed below.

3.1.1 Pose Initialization

As a first step, we can put the CTA in a ‘canonical’ pose—
that we will refer to hereunder as radiological pose—to get
a first initial alignment. To this end, we can extend the pro-
jection model defined in Equation 2 as such:

p = P ·K ·T ·R2w ·Tcent ·Pw , (8)

where R2w rotates the CTA to the same world coordinate
system as the DSA (i.e., the patient orientation of the CTA
matches the patient orientation on the table in world coordi-
nates), and Tcent moves the CTA to the origin of the world
coordinate system, which coincides with the isocenter of the
C-arm. With the CTA at the center position in world coordi-
nates, we can then use the known C-arm angles to rotate the
C-arm according to the primary angle α and secondary an-
gle β, and use the C-arm intrinsic parameters to construct K
in 3. This ensures the initial position of the CTA matches
the C-arm configuration during DSA imaging. The regis-
tration task can now be seen as correcting for the patients
head position. Further details on the chain of transforma-
tions applied to the CTA can be found in the supplementary
material.
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If loss has
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Optimization stageCNN Encoder
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DSA Vein: DSA Full: DSA MinIP:3D CTA
Segmentation:

Figure 3. Full pipeline overview. While the 3D CTA is excluded from the diagram, it is included in all optimization stages, the input is
therefore a pose, a CTA, and a DSA at both optimization stages.

(a) Example CTA veins obtained
by morphology.

(b) DSA vein segmentation
from [22].

Figure 4. CTA and DSA veins segmentation comparison. The
larger vessels typically exhibit less inter-patient variability and are
present in both CTA and DSA, thereby making such structures
good candidates for an initial learning-based anchoring.

3.1.2 Network Architecture

For the network, we employ a ResNet18 backbone to learn
relevant features for the registration task. The 2D pro-
jected segmentations, DRRmoving and DRRfixed, are con-
catenated along the channel dimension, where DRRmoving

is the 2D DRR generated from the CTA based on unregis-
tered pose, obtained by applying an offset Toffset to the
CTA. DRRfixed is the fixed DRR in terms of the registra-
tion process. Further details on data generation are provided
in a subsequent section. The output feature map size from
the backbone is 1 × 512, which we resize to a 1D feature
map, and feed into a final fully connected layer. The output

size is 2048, we use ReLU non-linearity activation before
regressing the final feature maps via two fully-connected
layers, which each predict rotation and translation in a de-
coupled manner as a pair of 3 floats. A dropout layer is
included after ReLU activation. The three fully connected
layers have their weights initialized according to He initial-
ization [14] to avoid vanishing gradients from the ReLU
activations. The outputs from the last fully-connected lay-
ers are then converted into a transformation matrix Tpred,
which should approximate the inverse of the offset we ap-
plied, such that Tpred ≈ T−1

offset, thereby learning to re-
register the CTA the manual offset applied. Figure 5 con-
tains a schematic overview of the architecture. Since we
know the range of the perturbations we applied to the CTA,
we can further use a tanh activation on the output layers
to normalize them to a [−1, 1] range, and then scale them
according to the maximum perturbation magnitude, thereby
normalizing the values the network has to learn, in an at-
tempt to improve and stabilize learning. While this stabi-
lizes the training, it will degrade the performance of the
network if the transformation is outside the range values
the network was trained on. We therefore analyze the limits
of the initialization network. We then generate a DRR from
the predicted pose using DiffDRR and compute a loss based
on the generated DRR and the reference standard DRR from
the reference standard, P(Tman).

A schematic overview of the learning process is outlined
in Figure 6. The CNN is the ResNet18 backbone we wish
to train, who’s architecture is given in Figure 5.

We use a weighted combination of Dice loss and two
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Figure 5. The proposed network, D, extends a ResNet18 architec-
ture to predict a rotation and translation.
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Figure 6. Schematic overview of the learning part of DeepIterReg.
P is an instantiated drr class from DiffDRR. DRRs can be gen-
erated by supplying a pose as a parameter. The 3D CTA volume is
supplied at initialization, and we therefore omit it as a parameter
in the above figure.

separate losses on the rotation and translation components,
inspired by [9], who attempt to solve a similar 3D-2D reg-
istration problem via a deep learning method. The total loss
function is given as follows:

Loss =Dice(DRRmoving,DRRfixed)

+ λ
(
Lgeo2(Tpred,Ttarget; f)

+ Lgeo(Tpred,Ttarget)
)

, (9)

where Lgeo2 is the double geodesic loss [6] and Lgeo is the
geodesic loss. Both are defined on the special Euclidean
group SE(3), which represents rigid-body transformations
consisting of a rotation and translation. These components
are detailed below:

Lgeo2(TA,TB ; f) =
√
d2θ(RA,RB ; f) + d2t (tA, tB) ,

(10)

Lgeo(TA,TB) = ∥ log(T−1
A TB)∥ . (11)

The Lgeo2 loss separates rotation (R) and translation com-
ponents (t), allowing for independent penalty scaling.
Specifically:

• The translation loss, dt(tA, tB), is given by the Eu-
clidean norm of the translation vectors:

dt(tA, tB) = ∥tA − tB∥ .

• The rotational loss, dθ(RA,RB), is the geodesic an-
gular distance between two rotation matrices, com-
puted as:

dθ(RA,RB) = ∥ log(RT
ARB)∥ .

This captures the shortest angular distance on the rota-
tion manifold.

The geodesic loss, Lgeo, measures the overall misalign-
ment between two transformations TA and TB on SE(3).
It encapsulates both rotational and translational differences
into a single metric by projecting the misalignment onto the
tangent space of the manifold (the Lie algebra).

The Dice loss is employed to score the overlap between
the predicted DRR and fixed DRR. We opt for a Dice loss as
both DRRs generated from the CTAs are given as segmenta-
tions, and therefore contain no pixel intensity information.

Finally, in order to perform inference on the trained
model, we use real DSA-CTA pairs, the network input
therefore becomes T̃ = D(P(Tradiological),DSA), with
Tradiological the pose after correcting for the rotation
based on the C-arm configuration from the DSA. We refer
to this baseline pose as Tradiological.

3.1.3 Data Generation and Training

Due to the lack of available data, we perform pre-training
that relies on simulated perturbations in order to generate
the training data. Specifically, we train an encoder network,
D, by manually perturbing a registered CTA image with a
random transformation Toffset applied from the radiolog-
ical pose. The network’s objective is to predict T−1

offset, ef-
fectively learning how to invert the applied transformation
and re-register the CTA, allowing us to generate an arbitrary
amount of data and registrations. As input, we train the net-
work using only the CTA vein segmentations: we first ‘syn-
thesize’ a fixed DSA by projecting the CTA according to its
registered pose. A second moving CTA is then generated
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by projecting the CTA according to its registered pose with
the additional offset, Toffset. We use DiffDRR to generate
the DRRs from the CTA. We call P(·) the rendering engine
from DiffDRR which produces the 2D DRRs, given a CTA
and a transformation T, as input, and which is parametrized
according to the C-arm configuration2. The final DRRs are
therefore generated as follows: DRRmoving = P(Toffset),
and, DRRfixed = P(Tman)

3.
As the original DSAs are provided as segmentations, we

binarize the resulting DRRs to further emulate the down-
stream real CTA-DSA registration task. An example of the
CTA and DSA vein segmentations are given in Figure 4.
The venous structured contained in both segmentations are
similar and represent similar anatomical features. This mo-
tivates training the network on CTA-CTA pairs, as the ve-
nous structures are sufficiently similar across both segmen-
tations to potentially generalize to real CTA-DSA pairs, and
simplifies the networks task by eliminating non-mutual ves-
sels and overcome the lack of sufficient high-quality DSA
images.

3.2. Iterative Refinement

Following the initialization of the CTA to an approxi-
mate target pose, the subsequent objective is to employ it-
erative optimization-based methods analogous to what was
described in Section 2 such that we achieve an accurate fi-
nal pose. We can assess whether the predicted pose results
in a better alignment by using normalized cross-correlation
as a proxy for registration accuracy. A second DRR is gen-
erated according to the initial pose, the normalized cross-
correlation is then computed between the DSA and the DRR
in its radiological pose, and the DSA and the DRR in the
predicted initial pose. If the similarity between the DSA
and the DRR in its radiological pose is higher, we discard
the initial pose as this suggests the initial pose has resulted
in a worse registered pose. The radiological pose is then
used as an initial pose in the registration process, which is
subsequently initiated as outlined in Section 4.3.4. The ini-
tial pose is therefore chosen as:

Tinit =


Tpred, if L(DRRpredicted,DSA)

≥ L(DRRradiological,DSA)

Tradiological, otherwise
(12)

2We leave the parametrization arguments out of the function parameters
for brevity. The rendering engine is initialized according to the C-arm
configuration. Generating DRRs via P(·) therefore also requires the CTA
volume: P(T, CTA). Further details are given under implementation.

3The matrices passed as parameters to the rendering engine are here
given as the offsets alone. In the real-world setting, we would need to
multiply the offset matrix by the radiological pose in order to apply the
offsets to the C-arm configuration: P(Tman ·Tradiological).

Figure 7. A CTA projected according to its registered pose over a
DSA. CTA shown with a red tint to enhance vessel visibility. DSA
frame corresponds to arterial phase.

The initialization network, D, having hopefully over-
come the limited capture range of such methods. The prin-
cipal challenge at this stage is to achieve an accurate final
registration. As outline previously, we hypothesized that us-
ing larger vessel segmentations are sufficient for an approx-
imate initial pose. This is likely not the case for a highly
accurate registration—crucially, smaller arteries present in
both modalities are typically used when manual registration
is performed. This can be illustrated visually, as seen in
Figure 7, where the DSA frame is extracted from the arte-
rial phase.

If smaller vessels are critical to an accurate registration,
it will be important to make use of the full vessel tree in
both modalities. To this end, we propose a two-stage itera-
tive optimization method: an intermediary step after the ini-
tialization can be performed to further refine the initial CTA
pose. To achieve this, we make use of DiffDRR’s differen-
tiable rendering engine in conjunction with the optimization
method outlined in Section 2. The optimization algorithm
requires as input a fixed reference image, in our case, the
DSA, as well as the current pose of the CTA, T̃, obtained
from the initialization. Parameter updates are performed us-
ing Adam optimizer until a predetermined number of iter-
ations is reached, and normalized cross-correlation (NCC)
as a metric to be optimized. We call the resulting transfor-
mation from the optimization stage T̂1.

Lastly, we posit that a further refinement of the trans-
formation T̂1 can be achieved by substituting the DSA
segmentation with the DSA minimum-intensity projection
(MinIP) in the optimization stage defined above, while us-
ing an alternative intensity-based loss. The previous opti-
mization approach relied on the segmentation, which effec-
tively discards pixel intensity information from the DSA.
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Additionally, the optimization utilized NCC as the loss
function, which measures the correlation between the over-
all structures of the DSA and CTA. However, a potentially
more effective refinement could be achieved by substitut-
ing NCC with a distribution-based similarity measure, such
as mutual information, which accounts for the statistical
relationship between the intensity distributions of the two
modalities. We therefore define T̂2 as the second-stage op-
timization method, which runs in an identical manner to the
first-stage, with smaller step sizes in the optimization step,
and mutual information (MI) as a similarity metric to opti-
mize. At both steps of the optimization procedure, we select
the pose that corresponds to the highest similarity.

4. Experiments and Results
In this section, we present the details of our experimen-

tal setup, including the data used, the implementation of
our registration pipeline, and the evaluation metrics em-
ployed. We conduct a series of experiments to assess the
performance of our proposed method. First, we outline the
data preprocessing steps, including how CTA vein segmen-
tations were obtained, followed by the implementation de-
tails of our pipeline. We then evaluate the effectiveness
of different optimization strategies and investigate the im-
pact of various vascular anatomies on registration accuracy.
To benchmark our approach, we conduct experiments an-
alyzing the capture range of our initialization network and
assess the full pipeline’s performance across different test
scenarios.

4.1. Data

We use data from the MR CLEAN registry, a prospec-
tive study conducted across 17 centers in the Netherlands,
which focused on patients who have undergone EVT for is-
chemic stroke treatment. The dataset contains CTA scans of
each patient, as well as a set of DSA images acquired both
pre- and post-EVT. For each patient, an anterior-posterior
(AP) scan is available, as well as a lateral scan. A seg-
mentation algorithm was run on the CTAs to produce vein
segmentations, similarly, semantic segmentation was per-
formed on the DSA using [22], which produced a set of 3
segmentations for each patient: a full segmentation, a vein
segmentation, and an artery segmentation.

A total of 94 lateral-view patient scans were selected
from a dataset comprising 182 patients. The dataset in-
cludes a combination of pre- and post-EVT DSAs, which
were not differentiated for the purposes of this study. The
final patient selection was based on the quality of the DSA:
suboptimal DSA images, such as ones that suffer from mo-
tion, are removed. No selection criteria are applied to the
CTA images. Manual annotations (in the form of rigid
transformation matrices) are provided by an in-house med-
ical researcher, in collaboration with a team of Clinical

Medicine students and a Biomedical Engineering master’s
student. The registrations are performed in an in-house de-
signed MeVisLab module. The total dataset size used for
this paper consisted of 81 training patients, 9 validation pa-
tients, and 20 testset patients.

4.2. Metrics

In order to assess the accuracy of the resulting registra-
tions, we can examine the average Euclidean distance be-
tween the final registered pose, and the reference standard,
or Mean Projection Error (MPE). This is accomplished by
projecting a hypercube (8 evenly spaced points from the
CTA) using both the reference standard registration matrix
as well as the registration matrix from the optimization al-
gorithm and measuring the projection error, as defined be-
low.

MPE =
1

N

N∑
i=1

∥pref
i − preg

i ∥2 , (13)

where pref
i are the points projected according to the refer-

ence standard, and preg
i the points projected according to

the obtained registration matrix. An accurate registration
should project the points to approximately the same co-
ordinates, making the overall average distance near zero.
For multiple registrations, a scatterplot can be constructed
where we plot MPE before registration versus MPE after
registration. This metric provides a quantitative assessment
of how well the registration algorithm aligns the perturbed
CTA to the reference standard in terms of projection error.

For a large number of perturbations, it may be difficult
to visually infer the capture range from a scatterplot. There-
fore, when evaluating the capture range with a large num-
ber of perturbations (such as with the simulated poses) we
construct a histogram and plot the median deviation of the
points projected before versus the points projected after reg-
istration. We define the bin size such that there are 10 total
bins, each containing 10% of the registrations. An opti-
mal registration will result in the bin lying on the y = 0
line, meaning that the transformation matrix has moved the
points to a distance of 0 to the reference standard. The cap-
ture range can be identified by the point where the registra-
tions diverge from the y = 0 line. We further supplement
the plot with confidence intervals.

4.3. Implementation

This section describes the implementation details of
our proposed registration pipeline, including preprocessing
steps and computational methods used, such as CTA vein
extraction and optimization. We detail the process of gen-
erating DRRs and provide an overview of the iterative reg-
istration process and the integration of the deep learning-
based initialization step.
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4.3.1 CTA Vein Segmentation

Artery-vein semantic segmentation is not available for the
CTA images. As outlined in Section 3.1, we perform an
initial registration with the vein segmentation on both the
DSA and the CTA. In order to obtain the vein segmentation
from the CTA, we apply a morphological opening to remove
small, thin structures such as minor arteries or noise by con-
volving the volume with a spherical structuring element of
size 1. Following this, connected component analysis is
performed to label distinct regions. To further refine the
mask, components smaller than a predefined volume thresh-
old of 1000 voxels are filtered out, ensuring that only larger
anatomical structures remain. The resulting binary mask is
converted back to the NIFTI file format, preserving the spa-
tial metadata of the original image. This is performed as
a pre-processing step so as to not add extra computations
during training or optimization.

4.3.2 Iterative Optimization Method

The iterative optimization algorithm is central to the regis-
tration pipeline. It improves the alignment by iteratively up-
dating the initial transformation predicted by the CNN. To
this end, we employ the Adam optimizer in PyTorch with
two distinct learning rates (η in Equation 6). The optimiza-
tion process is embedded in its own function, optimize,
which takes as arguments the learning rates, an initial pose
(in the form of a Registration class, outlined be-
low), as well as the specified number of iterations. The
optimize function is built in an analogous way to the
sample code provided in DiffDRR’s documentation. We
therefore refer the reader to the DiffDRR documentation for
further details4. The version of DiffDRR used is version
v.4.0.0.

4.3.3 Generating DRRs

DRR generation is performed using DiffDRR’s DRR class,
which is initialized according to the C-arm configuration.
The C-arm parameters are directly extracted from the DI-
COM file headers. The arguments to be passed to the
DRR class are: the CTA file, which is read using TorchIO’s
Subject class, the desired pixel spacing, and the source-
to-detector distance. When instantiated, the DRR class can
be used to generate arbitrary DRRs based on a transforma-
tion matrix, T, which transforms the CTA and generates the
corresponding DRR.

To generate random synthetic DRRs, which is required
during training and for evaluating capture ranges, we ob-
tain a set of 6 floats, {rx, ry, rz, tx, ty, tz}, correspond-
ing to a rotation (r) and translation (t) offset. The rota-
tion parameters for the synthetic DRRs are sampled from

4https://vivekg.dev/DiffDRR/

U(−35, 35) in degrees, and translation parameters sampled
from U(−45, 45) in pixels. These parameters are then con-
verted to a 4 × 4 rigid transformation matrix using Diff-
DRR’s pose from carm function. To benchmark differ-
ent registration methods, such as optimization-only versus
with an initialization, we save the offset transformation to a
comma-separated variable file such that they can be re-used
for future experiments.

In order to generate DRRs according to their radiologi-
cal pose, Tradiological, or to their registered pose (if avail-
able), Tman, the transformation matrices can be used to gen-
erate the corresponding DRRs by passing the pose as an ar-
gument to the instantiated DRR class: drr(Tradiological).
The DRR class is effectively the rendering engine, which is
initialized according to the C-arm, and then corresponding
DRRs can be generated by passing transformation matrices
as arguments. In Figure 6, the instantiated DRR class is re-
ferred to as P(·).

4.3.4 Registration Process

The registration method combines the optimization method,
outlined in Section 4.3.2 and DRR generation, out-
lined in Section 4.3.3. DiffDRR conveniently pro-
vides a Registration class which is used interme-
diately between the registration and optimization. The
Registration class is provided an instance of the DRR
class and an initial pose for the CTA. The class instance is
called at each iteration of the optimization and generates
a DRR according to the current pose parameters. The in-
stantiated DRR class is then passed as an argument to the
optimize function, as well as the objective function to be
maximized.

The registration process consists of two passes, the
optimize function is therefore used twice with different
parameters. The first-pass registration is performed using
the DSA segmentation and NCC as a similarity metric. For
this first-pass, we set the learning rates: lrrot = 10−2 for
rotational components and lrxyz = 1 for translational com-
ponents. The resulting pose is then further refined by calling
the optimize function a second time, with mutual infor-
mation as a loss, and by substituting the DSA segmenta-
tion for the DSA MinIP. The learning rates are adjusted to
lrrot = 10−4 and lrxyz = 0.04.

4.3.5 Initialization Network and Training

We employ the standard ResNet18 architecture as imple-
mented in the TorchVision library with batch normalization.
The standard ResNet18 architecture is designed to have an
input channel dimension C of one. The first convolutional
layer is therefore adjusted to take an input with a channel
dimension C of two for the concatenation of both DRRs.
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We use a learning rate of 0.001 for the optimizer. To pre-
vent overfitting, a dropout layer with p = 0.1 is incorpo-
rated after the backbone. Synthetic DRRs used for training
are generated as specified in Section 4.3.3. The parameters
for Toffset are sampled uniformly from U(−25, 25) pixels
for translation and U(−15, 15) degrees for rotation and are
used to generate a moving CTA, DRRmoving.

The loss function used for training is defined in Equa-
tion 9, with a weighting parameter λ = 0.001, motivated
by the choice of weight used for a similar registration task
in [9]. The Dice loss is used from [22] and the Geodesic
losses are implemented in DiffDRR’s metrics class.

After training, and therefore during inference, the ini-
tialization can be achieved by passing a real DSA vein seg-
mentation image and a DRR of the CTA in its radiological
pose.

4.4. Experiment: Anatomy for Registration

The purpose of this experiment is to determine which
vascular anatomies yield different registration results. For
instance, to establish if there is a trade-off between capture
range and accuracy when using the vein segmentation or the
full segmentation for the registration process. Using the 20
testset patients, the starting poses of the CTAs are randomly
generated within a know distance to the reference standard
registration pose. For each registration we save the rotation
and translation applied to the CTA in order to be able to
apply the same perturbation on the vein-only based regis-
trations, thereby allowing for a direct comparison between
the two. Results are analyzed by observing the mean pro-
jection error (MPE) for a subset of points to the reference
standard CTA.

The results are shown in Figure 8. The median capture
range can be understood as the point where the median dis-
tance before diverges from the y ≈ 0 line. Empirically,
we find that a distance below 5 pixels corresponds to an
accurate final registration, suggesting that the median cap-
ture range is 20 pixels for both veins and full segmentations.
For the full segmentation, the MPE before registration, av-
eraged over all patients, is 22 pixels, or 19 mm, whereas
after, it is reduced to 14 pixels, or 12.9 mm. For the vein-
based registration, we find that the overall MPE after regis-
tration is 14 pixels, or 12.7 mm.

4.5. Experiment: Optimization Method Capture
Ranges

To evaluate the capture ranges of the optimization
method, we run a registration of the CTA to the DSA using
the full dataset of 94 patients. The final accuracy of the reg-
istration is determined using MPE to the reference standard.
This experiment compliments the previous experiment by
performing registrations of the CTA from their radiological
pose, as opposed to sampled registrations where the start-
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Figure 8. Comparison of simulated registrations, using the full
segmentation versus using the vein segmentation only

ing pose is randomly generated. While performed on a lim-
ited size dataset, this experiment potentially provides for a
more realistic distribution of poses, and therefore of capture
range.

Figure 9 illustrates the average Euclidean distances be-
fore and after registration when registering the 94 patients
from their radiological pose.
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Figure 9. Average Euclidean distance (MPE) for all patients.

We observe an MPE before registration of 26 pixels, or
22.7 mm, and an MPE after of 21 pixels, or 18.3 mm.

Figure 10 contains the histogram of median deviations
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Figure 10. MPE before versus after registration for all 94 patients
using optimization-only registration.

corresponding to Figure 9. For smaller distances, such as
distances below 25 pixels, the median oscillates between 0
and 15, and eventually diverges at 25 pixels, which approxi-
mately corresponds to what was discovered using simulated
poses. Over all patients, taking a y = 5 MPE threshold, we
find that 37 of the 94 patients are successfully registered,
corresponding to 39% of of the dataset.

4.6. Experiment: Network Training

The encoder network, D, was trained for a total of 10000
epochs on an Nvidia Titan Xp GPU. The training and val-
idation losses are given in Figure 11. The loss curves for
each individual loss component are given in the supplemen-
tary material. We use a batch size of 1, with 16 batches per
epoch. A validation step is then performed after each epoch
on the full validation dataset.

(a) Training loss (b) Validation loss

Figure 11. Train and validation losses for the initialization net-
work. Dark blue line corresponds to smoothed loss, as the small
batch size results a noisy loss curve.

4.7. Experiment: Accuracy of Full Pipeline

In this experiment, the full pipeline performance—and
therefore the improvement from the initialization—is as-
sessed. We perform a two-fold assessment. First, using the
set of 20 testset patients, we observe whether the number of
successfully registered patients improves. Second, we ap-
ply perturbations to the 20 testset patients to increase the

total number of registrations. This larger number of regis-
trations can then be used to assess the median capture range
improvement.

4.7.1 Testset Registrations

We first evaluate the results of the 20 testset patients when
registered via the optimization-only method, illustrated by
the blue points in Figure 13. Each point in the scatter-plot
corresponds to a single patient, which is given by the label
on each point. Using a success threshold of 5 mm, there
are a total of 11 success cases. We find the overall MPE
after registration is 1.94 pixels, or 1.71 milliliters for suc-
cess cases. The overall MPE over all patients is reduced
from 24 pixels, or 21.14 millimeters to 11 pixels, or 9.78
millimeters.

The contribution of the initialization network is evalu-
ated by analyzing the reduced distances in Figure 13, which
highlight an improvement over the optimization-only ap-
proach. The horizontal dotted lines illustrate how the dis-
tance to the reference standard changes when the initializa-
tion is applied. If the initialization improves the final regis-
trations, each point in the scatterplot should shift downward
toward y ≈ 0. All registrations below the y = 10 except for
10153 have an optimal loss, meaning that they have a maxi-
mum theoretical loss by the end of the optimization process,
thus making the total number of successful registrations 14,
or 70%. The overall MPE is also lowered to 8 pixels, or 7.62
millimeters. For successfully registered patients, the over-
all MPE is 2.44 pixels, or 2.13 millimeters, to the reference
standard.

4.7.2 Simulated Registrations

We can further supplement these experiments by investigat-
ing the net improvement to capture range brought by the
initialization in simulated registrations. Using the 20 test-
set patients, we can make an identical plot to Figure 8 and
observe if the point of divergence is extended beyond 20
pixels.

Figure 12 illustrates the change in median capture range
resulting from the addition of the initialization step. Com-
pared to the optimization-only approach, we observe that
the median capture range starts to diverge from y = 5 at 40
pixels, a net improvement over the 20 pixel median capture
range identified without using an initialization.

4.8. Experiment: MinIP-Based Refinement

To assess whether an intensity-based refinement using
mutual information as a loss improves the final registration
result, we run the three-stage pipeline on the same set of
CTA-DSA pairs as used in experiment 4.7.1 and observe if
the MPE decreases.
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Figure 12. Capture range plot, optimization-only versus full
pipeline.
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With the addition of a third-stage intensity-based itera-
tive refinement, we find that the MPE over all successfully
registered patients decreases to 2.08 millimeters, while the
number of successfully registered patients remains 14.

4.9. Experiment: Manual Assessment

Finally, a visual assessment is performed by a clinical ex-
pert, this experiment aims to determine if a radiologist can
reliably discriminate between registration results. This pro-
vides a qualitative assessment of the registration, and also
can be used to assess the quality of the manual registra-
tions (our reference standard) compared to the automatic
registrations. To this end, we asked a neurointerventional
radiologist to score the automatic registrations versus the
benchmark manual reference standard registrations.

The radiologist was supplied with a blind 2-way test.
Our sample consists of the 14 successful registrations from
Section 4.7.1. Each comparison is either between the two-

Table 1. Preferences given to each method by an interventional
radiologist.

Method Number of Times Preferred

Three-stage 13
Two-stage 9
Reference standard 6

stage and three-stage, the two-stage and the reference stan-
dard, or the three-stage and the reference standard. The ra-
diologist was asked to rank each comparison, resulting in a
total of 14× 3, or 42 comparisons. The scale used is given
below:

• Scale 1: left definitely better than right

• Scale 2: left is better than right

• Scale 3: left is the same as right

• Scale 4: right is better than left

• Scale 5: right definitely better than left

Table 1 summarizes how many times each method was
preferred by the interventional radiologist. A Wilcoxon
Signed Rank Test was used to determine whether the radiol-
ogist’s rankings revealed statistically significant differences
between methods. The test identified a significant differ-
ence (p = 0.0146) between the three-stage versus the refer-
ence standard, suggesting that the three-stage registration
offers meaningful improvements over the reference stan-
dard. More details on the assessment are provided in the
supplementary material.

5. Discussion
This paper describes DeepIterReg, a multi-stage regis-

tration pipeline designed to align 3D CTA to 2D DSA im-
ages with applications to endovascular thrombectomy. The
method combines a deep learning-based initialization with
an iterative optimization step. The deep learning initializa-
tion attempts to overcome the limited capture range of tra-
ditional optimization methods, while the second stage opti-
mization processes are used to achieve a final accurate reg-
istration. Using a dataset of CTA-DSA pairs, the method
was evaluated for accuracy and capture range in both sim-
ulated and real scenarios. Experimentally, we find that our
method is able to increase the median capture range of the
traditional optimization-based method from 20 pixels to 40
pixels, as well as increase the number of successfully reg-
istered patients from 11 to 14 in a testset of 20 patients.
Combining deep learning for pose initialization with tra-
ditional optimization techniques has seen more interest re-
cently since the inception of DiffDRR [10], a differentiable
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DRR rendering engine that can be used in conjunction with
deep learning methods. In this paper, we described an alter-
native deep learning setup for use in registration pipelines.
We attempt to ‘simplify’ the registration task for the deep
learning step by training the network in a mono-modal man-
ner, and only on venous structures from CTA segmenta-
tions, due to being mutually present in both CTA and DSA
modalities. Our hypothesis was that an initial anchoring of
the CTA to the DSA is possible using only larger vessels
(veins), and can be achieved by synthetic pre-training on
simulated poses with CTA vein segmentations. This novel
training approach circumvents the needs for large amounts
of high quality CTA-DSA pairs. DSA images typically suf-
fer from motion artifacts, making them unusable in regis-
tration settings and as training data. These hypotheses are
supported by the fact that larger venous structures provide
sufficient anatomical landmarks to establish an initial align-
ment, as they are typically present in both modalities and
exhibit lower inter-patient variability than smaller arterial
structures. By restricting the deep learning model’s focus
to these shared structures, the problem is effectively simpli-
fied, allowing the network to produce a coarse yet meaning-
ful initial transformation that generalizes to real CTA-DSA
pairs. We refer the reader to the supplementary material for
a visualization of the initial vein-based anchoring produced
by the network. Since the network is only tasked with ap-
proximating an initial registration, it does not require highly
accurate reference standard registrations, thereby reducing
the need for time-consuming manual annotations. Addi-
tionally, approximate registrations relying solely on venous
structures are easier and faster to obtain, as aligning smaller
arteries is unnecessary.

In the paper we highlighted the importance of high-
quality CTA-DSA pairs. If the quality requirements are not
met, the registration results may suffer. The testset con-
tains 3 CTAs with quality issues: two are missing large
amounts of the veins due to clipping, while one has an ab-
normally large rotational offset. Adjusting the dataset to
exclude these 3 patients, and only include high quality data,
the success rate for our method becomes 77%. This how-
ever does suggest that even with only high-quality data, the
method is not able to register all testset patients.

While training the network in a synthetic manner circum-
vents the need for high-quality CTA and DSA images dur-
ing training, our method relies on intermediary segmenta-
tion algorithms: a learning-based method for the DSA, and
a morphology-based method for the CTA. These interme-
diary steps can produce poor quality segmentations, even
if the DSA or CTA are of high quality, thereby limiting
the performance of the method. In clinical practice, this
makes the method very difficult to interpret. The claim can-
not be made that the method works with high-quality data
due to the possibility of a failure in the intermediate pro-

cessing. More generally, the method relies on a lot of data
pre-processing. Extensive testing would have to be done to
identify the limits and constraints of each step before one
can make any clinical viability claims.

Separately, while we argue that a small distance to the
reference standard is necessary for the optimization step to
accurately register the CTA, Figure 9 suggests that in some
cases in the x < 20 range, even if the distance to the refer-
ence standard was small before registration, the registration
may still fail. This suggests there is a need for more thor-
ough testing of optimization stage, as well as potentially
improving the optimization stage itself, such as including
schedulers, which we discuss in the supplementary mate-
rial. Conversely, two patients with distance above 40 pixels
were still accurately registered.

While other methods exist for 3D-2D registration that
combine deep learning with iterative optimization [3, 9], it
remains a relatively under-researched area, particularly with
cross-modality registration, which this paper attempts to ad-
dress. This indicates that the field of 3D-2D registration,
particularly approaches that integrate deep learning with
traditional methods, is still in its infancy, highlighting the
need for further research and development. Particularly the
use of larger datasets, or directly training on real CTA-DSA
pairs, as opposed to the synthetic approach adopted in our
method and in [9]. Additionally, further research into pre-
training based on simplified datasets, or in a synthetic man-
ner, may also offer solutions to initial pose estimation with
other modalities and different datasets, as demonstrated in
our method.

The clinical relevance of this work is also subject to dis-
cussion. While 3D-2D registration has potentially valuable
applications for EVT, many of the factors stated above hin-
der its usage in real-world scenarios. In its current state,
the method may be usable as a tool for aiding in decision
making, assuming the CTA and DSA images obtained for
the patient are usable and produce a successful registration.
An interventional radiologist can then deem the result as ac-
curate and usable, and hence use it to aid in decision mak-
ing, or discard it as non-usable. Furthermore, real-world
clinical applications would potentially require some level
of user interaction. For instance, the size of the structur-
ing element used to segment the CTA veins may need to
be tuned to produce usable CTA vein segmentations. It is
well documented that the adoption of (AI) decision aiding
tools in healthcare practices is slow [2, 21] and that there is
still a lack of acceptance and trust in such decision-aiding
tools [21]. Providing a tool that requires to be tweaked by a
healthcare professional is therefore likely to face difficulties
with adoption. Our tool assumes that a CTA is performed
in order to assess patient eligibility. While this is the case
in the Netherlands, it is not always the standard patient se-
lection imaging modality worldwide [12]. Lastly, the total

14



runtime for one registration on an Nvidia Titan Xp is ap-
proximately 10 minutes. Whether or not this is a viable in
an emergency-room setting is yet to be determined. How
our method fits into a clinical workflows, and how it can
be optimized for such a usage should form part of a future
viability study. Further hyperparameter optimization may
offer solutions to lowering the number of iterations at each
optimization stage.

Concerning the study, the majority of the testset data (16
out of 20, or 80%) consisted of data from a single cen-
ter where imaging protocols are very stringent. This of-
ten results in high quality CTA-DSA pairs, meaning the
testing of the method made use of data mostly emanating
from a single-center with stringent imaging protocols. Fur-
thermore, 46% of the training data also emanates from the
same center, potentially biasing the training and removing
a domain-shift introduced by a large varied dataset. As a
further consequence, a large portion of the dataset is single-
vendor data. Consequently, larger and varied datasets are
imperative to further improve the network and assessment
of the method. However, as the network only relies on ap-
proximate reference standard registrations, there is poten-
tial to create larger datasets with a lesser time involvement.
Lastly, the network was trained on 128 × 128 resolution
images, an 8-fold downsampling factor. During inference,
subsampling DSA images to such a resolution can harm the
quality of the final images. It introduces subsampling arti-
facts that are not present during training due to the DRR ren-
dering process. Training the network on higher-resolution
images, such as 256× 256 or larger, could enhance its abil-
ity to generalize to real CTA-DSA data. Future work could
focus not only on expanding the dataset but also on utiliz-
ing higher-resolution images to investigate whether this im-
proves the accuracy and robustness of the initial pose esti-
mation.

During this study, we attempted to identify which vascu-
lar anatomies are important for registration tasks. We inves-
tigated whether there is a trade-off between accuracy and
capture range when using the full vessel segmentation ver-
sus only the vein segmentation. While our results showed
no conclusive effect of veins versus the full segmentation
in the registration process, we did not investigate the effect
of registering with arteries only, or with the removal of ran-
dom vessels from the segmentation as a pre-processing step.
Furthermore, we did not distinguish between using pre- and
post-EVT images. Pre-EVT images typically reveal less
vascular structure, due to the lack of collateral blood flow.
Identifying which vascular anatomies are relevant for regis-
tration is crucial, as there is no certitude to obtain a full ves-
sel tree in a clinical setting. Our testset included both pre-
and post-EVT cases, and we did not identify any difference
in the registration results. Further research could attempt to
identify what vascular anatomical structures are conducive

to an accurate registration. This may allow to have a clas-
sification of patients that can be registered, versus patients
that cannot.

Lastly, the study may benefit from including multiple
graders in the visual assessment of the registrations. We
queried one radiologist who had a preference for the au-
tomatic registrations; more conclusive results are needed,
which would require querying multiple radiologists, as well
as checking inter-observer reliability.

(a) Reference standard DRR (b) DSA vein segmentation

(c) Radiological DRR (d) Predicted DRR

(e) Difference (radiological - gt) (f) Difference (pred - gt)

Figure 14. Example inputs, outputs and reference standard DRRs
for the initialization network, D.

6. Conclusion
This paper introduces DeepIterReg. A multi-stage reg-

istration pipeline that leverages deep learning for an initial
pose estimation, followed by iterative optimization to re-
fine the registration. We find that including a deep learning
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network improves the median capture range from 20 to 40
pixels, and increases the number of successfully registered
patents from 11 to 14, or 70%, out of a testset of 20 patients.
Correcting for low quality CTA segmentations in the testset,
the method is able to successfully register 77% of the test-
set patients, suggesting there is a need for high-quality CTA
and DSA segmentations for reliable and accurate results.
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3
Supplementary Material

3.1. Pose Distribution and Statistics
For all experiments that involved simulated registrations, random pose parameters were sampled from
a uniform distribution, such that {𝑟𝑥 , 𝑟𝑦 , 𝑟𝑧 , 𝑡𝑥 , 𝑡𝑦 , 𝑡𝑧} ∈ 𝒰(−𝑟, 𝑟) in pixels or degrees. As a result, each
individual rotation and translation component was assigned a random float within this range, these
sampled values effectively correspond to an offset applied to the patients head. The position of the
patient can be better understood by observing the coordinate systems typically present in CT imaging
systems, as provided in Figure 3.1.

Figure 3.1: Coordinate systems of a CT system [1]

As briefly mentioned in the research paper, it would not be unreasonable to assume that there is
more variation in rotation parameters around the 𝐿-axis from Figure 3.1 rather than the 𝑆- or 𝐴-axis. The
reasoning being that one would expect that a patient is more likely to have a ‘slouching’ head, where
the head is tilted left or right. This can be better analyzed by deconstructing the manual transformations
matrices and observing the magnitude of each individual rotation and translation component. This is
illustrated in Figure 3.2. Looking at the 95th percentile groups, it is clear that certain components,
namely the 𝑋 and 𝑌 components for rotation, and the 𝑋 component for translation, have larger values
relative to the CT-system world coordinates. This confirms that for rotation, the patients head is more
likely to be looking left or right, or tilted.

This suggests that poses sampled during training could be be more realistic if sampled according to
the distribution of poses reflected by the values found by deconstructing the transformation matrices,
as opposed to sampling in a random uniform manner, thereby providing for a more realistic training
setup.
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8 3. Supplementary Material

Figure 3.2: Scatterplot of individual rotation and translation components from the manual registration matrix.

3.2. Data
3.2.1. Training Data
The total dataset size used for this paper consisted of 81 training patients, 9 validation patients, and 20
testset patients. For a patient to be a candidate for the proposed method, high-quality CTA and DSA
pairs are needed. Moreover, the pipeline makes use of the vessel segmentation from the DSA, as well
as the vein segmentation for the CTA. It is frequently observed that the DSA images suffer from motion
artifacts, resulting in sub-par segmentations, which in turn harms the performance of the method.

In terms of deep learning, 81 training patients can be considered a relatively small sample size,
particularly given the complexity of the task of predicting a pose. Access to larger amounts of training
data has the potential to improve the performance of the initialization network, which may be desirable,
particularly as the confidence intervals for the registration plot are wide.

3.2.2. Data Quality
While improving the initialization network is desirable, it does not solve the overarching issue that high-
quality data is imperative for the method to work adequately. While we propose a system that has
overall satisfactory performance, its usage is heavily limited by patient motion during DSA acquisition.
Unfortunately, there is no direct solution to this. Patients undergoing EVT are typically aware and
conscious, limiting patient motion while a patient is having a stroke has no straightforward solution.
This suggests our method has the possibility of being used in some cases, but is far from general
clinical viability.

3.3. Training Losses
Our choice of loss is guided by similar work on 2D-3D registration using deep learning in the paper
proposed by [7]. In this work, the authors propose the following loss:

−ℒmNCC(I, Î) + 𝜆1ℒlog(T, T̂) + 𝜆2ℒgeo(T, T̂) , (3.1)

where ℒ𝑔𝑒𝑜 is the double geodesic loss on SE(3), and ℒ𝑙𝑜𝑔 the geodesic loss, outlined below:

ℒgeo(T𝐴,T𝐵; 𝑓) = √𝑑2𝜃(R𝐴,R𝐵; 𝑓) + 𝑑2𝑡 (t𝐴, t𝐵) , (3.2)

ℒlog(T𝐴,T𝐵) = ‖ log(T−1𝐴 T𝐵)‖ . (3.3)
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Above, 𝑑𝑡 is the norm between the two translation components, and 𝑑𝜃 the angular distance be-
tween the axis of rotation. T corresponds to the pose matrix, while R is the rotation component from T,
and t the translation component. This loss combines an image similarity metric, in this case normalized
cross-correlation, with two additional losses on the transformation matrices. Due to the similar nature
of the problem setup in [7], we adopt a similar loss, where NCC is substituted for a Dice loss, as the
proposed training setup uses segmentations, and 𝜆1 = 𝜆2 = 0.01. During training, we logged the loss
at each iteration for both training and validation steps, where the figures below contain the loss at each
iteration. The loss curves are given in Figure 3.3 and validation loss in Figure 3.4.

(a) Overall loss (b) Dice loss (c) Log Geodesic loss (d) Double Geodesic Loss

Figure 3.3: Loss curves during training

(a) Overall loss (b) Dice loss (c) Log Geodesic loss (d) Double Geodesic Loss

Figure 3.4: Validation loss curves during training

The log geodesic, as well as double geodesic display a rapid decrease in the early epochs of the
training. This suggests that dynamically adjusting the 𝜆 weight parameters may be conducive to stabi-
lizing the learning, potentially improving training.

In their paper, [7] adopt normalized cross-correlation (NCC) as their similarity metric in the loss func-
tion, where the objective is to align pre- and intra-operative X-rays, meaning both images are from the
same modality, thereby making NCC a suitable similarity measure. Due to the similarity between [7]
and our own method, we initially also opted for NCC as a similarity metric in the loss. However, when
training with a non-segmented CTA and its segmented DSA counterpart, we observed no reduction in
loss throughout the training process. Upon replacing NCC with the Dice similarity coefficient and apply-
ing thresholding to the CTA, we achieved improved training loss, which ultimately enabled the network
to train successfully in its current configuration. Based on this experience, we do not recommend using
NCC during training, as it failed to facilitate effective learning in our setup.

3.4. Sample Registrations
Due to the relatively small size of the testset—totaling 20 patients—it is possible to investigate the
registration process for a subset of the patients. We can additionally plot the loss from each of the 20
patients, as given in Figure 3.5. In the majority of cases, the first stage has converged in under 500
iterations. However, there are cases where the loss still improves after 1500 iterations. For this reason,
when testing the method on real data, we choose 2000 iterations.

The loss behavior exhibited is far from smooth—there are large oscillations in short timeframes.
Experiments using learning rate schedulers, such as reducing the learning on plateau, and reducing
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on plateau with warm restarts, did not stabilize the optimization. We frequently observe that while a loss
may plateau for a very long time, it may still have a rapid increase in later iterations, which we illustrate
in a sample registration below. Using a scheduler has the undesirable result that it would be difficult
for the optimization to escape the local minima that corresponds to the plateau. Including learning rate
restarts in conjunction with reducing the learning rate on plateau did solve these issues in some cases,
but ultimately when tested on the full 20 testsets, did not result in an overall improvement in the number
of success cases. Overall, we suspect that there is room for further optimization of the learning rates as
well as the potential to include a scheduler to stabilize the optimization. A hyperparameter search, while
extremely time consuming, may ultimately benefit and improve the optimization. A hyperparameter
search was not performed in this case due to the time required for such a search. Assuming a grid
search with the objective of finding the best pair of learning rates, 𝜂1 for rotation and 𝜂2 for translation,
if we were to evaluate 5 values for 𝜂1 and 5 values for 𝜂2, we would need to perform 25 parameter
searches. In a more general case, if we have N different hyperparameters, and we wish to evaluate
k different values for each hyperparameter, the total number of parameter searches required in a grid
search would be k𝑁, which quickly becomes infeasible as 𝑘 becomes larger. The optimization process
over a single patient for 2000 iterations has a total runtime of approximately 10 minutes when running
on an Nvidia Titan XP. This total execution time has to then be multiplied by the number of patients, and
by the number of parameters in the search space. This quickly becomes extremely time-consuming,
particularly if there are hardware limitation constraints.

Figure 3.5: Losses from first stage NCC-based registration

The losses for all patients during the second stage are given in Figure 3.6. The change in losses
are subtle and much less stable in the long-term than in the first stage. In most cases, there is an
initial rapid increase in similarity in the first iterations. Subsequently, some patients have a slowly—yet
noisy—increase in loss. Others have a flatlined loss throughout the full optimization procedure, sug-
gesting the result from the first stage is already optimal. These loss trajectories also suggest further
hyperparameter optimization can be performed on the second stage. Moreover, in many cases, the
rapid loss increase occurs in the first 25 iterations (as illustrated in individual cases below). This sug-
gests that in many cases, allowing the optimization to run for the full 2000 iterations is not needed. In
order to reduce the total runtime, it would be desirable to detect and exit the optimization process at an
early stage if the loss has flatlined.
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Figure 3.6: Losses from the mutual-information based second stage optimization.

3.4.1. Registration Example: Patient 10034
Figure 3.7 contains DRRs generated from registering patient 10034 from its radiological pose. The
input to the network, as well as inputs to the optimization stages are provided. Additionally, the two
sets of 8 points used to compute the Mean Projection Error (MPE) are plotted in the resulting DRR,
and their distances are illustrated in green. The associated losses from the first and second stages are
given in Figure 3.8.

The reference standard transformation matrix, Tref, and the matrix obtained from the optimization
process,Tpred are given in Equation 3.4. All values inTref except for the 𝑧-component of the translation
vector, 𝑡𝑧, are very close to their reference standard values. We observe in most cases that the largest
difference in all components is 𝑡𝑧, this is most likely due to the difficulty of optimizing the ‘depth’ of the
pose. We find that manually adjusting 𝑡𝑧 has a minimal impact on the similarity score, making it difficult
to optimize for. While the 𝑡𝑧 difference can seem large, it becomes negligible when computing the MPE,
as illustrated in Figure 3.7.

Tref Tpred

⎡
⎢
⎢
⎣

−0.0279 0.9983 0.0517 −732.5620
−0.9597 −0.0412 0.2779 24.4803
0.2796 −0.0418 0.9592 28.5226
0 0 0 1

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

−0.0377 0.9956 0.0859 −728.4005
−0.9657 −0.0584 0.2531 38.0633
0.2570 −0.0735 0.9636 50.6748
0 0 0 1

⎤
⎥
⎥
⎦

(3.4)

3.4.2. Registration Example: Patient 10352
The DRRs and DSA images used are provided in Figure 3.9, and respective losses in Figure 3.10.

The loss from the second stage for patient 10352 (PRE) in Figure 3.10 does not seem to provide
any meaningful improvement. Given the small distance to the reference standard, it is possible that the
output from the first stage already provides the highest achievable accuracy from any of the pipeline
stages.



12 3. Supplementary Material

(a) Moving CTA. (b) DSA vein segmentation. (c) Predicted initial pose.

(d) DSA full vein segmentation. (e) DSA MinIP, used as input to second
stage.

(f) Resulting pose from optimization.

Figure 3.7: Results from registering patient 10034. Distance to reference standard before registration: 17.1mm, distance after:
1.6mm. Distance to reference standard is plotted as the 8 points in green and blue.

(a) Loss from first-stage optimization process. (b) Loss from second-stage optimization process.

Figure 3.8: Losses from each optimization stage for patient 10034.
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(a) Moving CTA. (b) DSA vein segmentation. (c) Predicted initial pose.

(d) DSA full vein segmentation. (e) DSA MinIP, used as input to second
stage.

(f) Resulting pose from optimization.

Figure 3.9: Results from registering patient 10352. Distance to reference standard before registration: 17mm, distance after:
2.1mm. Distance to reference standard is plotted as the 8 points in green and blue.

(a) Loss from first-stage optimization process. (b) Loss from second-stage optimization process.

Figure 3.10: Losses from each optimization stage for patient 10352 (PRE).
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The resulting matrices are

Tref Tpred

⎡
⎢
⎢
⎣

0.2313 0.9727 0.0168 −727.4096
−0.9729 0.2314 0.0009 −159.7554
−0.0030 −0.0166 0.9999 5.0820

0 0 0 1

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

0.2260 0.9739 −0.0227 −726.1982
−0.9741 0.2261 0.0002 −155.3700
0.0053 0.0221 0.9997 −22.8050
0 0 0 1

⎤
⎥
⎥
⎦

(3.5)

3.4.3. Registration Example: Patient R3166
The DRRs and DSA images used are provided in Figure 3.11, and respective losses in Figure 3.12.

(a) Moving CTA. (b) DSA vein segmentation. (c) Predicted initial pose.

(d) DSA full vein segmentation. (e) DSA MinIP, used as input to second
stage.

(f) Resulting pose from optimization.

Figure 3.11: Results from registering patient 3166. Distance to reference standard before registration: 19mm, distance after:
1mm. Distance to reference standard is plotted as the 8 points in green and blue.

(a) Loss from first-stage optimization process. (b) Loss from second-stage optimization process.

Figure 3.12: Losses from each optimization stage for patient 3166.
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The resulting reference standard and predicted matrices are:

Tref Tpred

⎡
⎢
⎢
⎣

0.0344 0.9992 0.0226 −777.8052
−0.9991 0.0339 0.0238 −41.4345
0.0230 −0.0234 0.9995 19.3096
0 0 0 1

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

0.0381 0.9988 0.0291 −779.1739
−0.9982 0.0367 0.0472 −44.1766
0.0461 −0.0309 0.9985 25.1037
0 0 0 1

⎤
⎥
⎥
⎦

(3.6)

3.4.4. Registration Example: Patient 10031
The DRRs and DSA images used are provided in Figure 3.13, and respective losses in Figure 3.14.

(a) Moving CTA. (b) DSA vein segmentation. (c) Predicted initial pose.

(d) DSA full vein segmentation. (e) DSA MinIP, used as input to second
stage.

(f) Resulting pose from optimization.

Figure 3.13: Results from registering patient 10031. Distance to reference standard before registration: 22.1mm, distance after:
3.4mm. Distance to reference standard is plotted as the 8 points in green and blue.

The resulting reference standard and predicted matrices are:

Tref Tpred

⎡
⎢
⎢
⎣

0.2714 0.8840 0.3805 −650.0737
−0.9591 0.2152 0.1840 −172.4475
0.0807 −0.4149 0.9063 304.8692
0 0 0 1

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

0.1852 0.9226 0.3385 −676.3203
−0.9767 0.1348 0.1668 −109.8677
0.1082 −0.3615 0.9261 262.5147
0 0 0 1

⎤
⎥
⎥
⎦

(3.7)

While the distance to the reference standard may seem large, 3.4mm in this case, the radiologist
ranked the automatic registrations as consistently being better registered than the manual registrations,
with both the three-stage and two-stage approach receiving a scale of 4.

3.4.5. Registration Example: Patient 10149 (POST)
The DRRs and DSA images used are provided in Figure 3.15, and respective losses in Figure 3.16.
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(a) Loss from first-stage optimization process. (b) Loss from second-stage optimization process.

Figure 3.14: Losses from each optimization stage for patient 10031.

(a) Moving CTA. (b) DSA vein segmentation. (c) Predicted initial pose.

(d) DSA full vein segmentation. (e) DSA MinIP, used as input to second
stage.

(f) Resulting pose from optimization.

Figure 3.15: Results from registering patient 10149 (post-EVT). Distance to reference standard before registration: 20.3mm,
distance after: 1.7mm. Distance to reference standard is plotted as the 8 points in green and blue.

(a) Loss from first-stage optimization process. (b) Loss from second-stage optimization process.

Figure 3.16: Losses from each optimization stage for patient 10031.
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The resulting reference standard and predicted matrices are:

Tref Tpred

⎡
⎢
⎢
⎣

0.1539 0.9863 0.0599 −749.4033
−0.9565 0.1335 0.2594 −90.1607
0.2478 −0.0972 0.9639 59.1473
0 0 0 1

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

0.2093 0.9750 0.0746 −730.6987
−0.9446 0.1818 0.2733 −121.5695
0.2529 −0.1276 0.9590 80.3591
0 0 0 1

⎤
⎥
⎥
⎦

(3.8)

3.4.6. Registration Example: Patient 10320 (PRE)
The DRRs and DSA images used are provided in Figure 3.17, and respective losses in Figure 3.18.

(a) Moving CTA. (b) DSA vein segmentation. (c) Predicted initial pose.

(d) DSA full vein segmentation. (e) DSA MinIP, used as input to second
stage.

(f) Resulting pose from optimization.

Figure 3.17: Results from registering patient 10320. Distance to reference standard before registration: 10.7mm, distance after:
1.8mm. Distance to reference standard is plotted as the 8 points in green and blue.

This patient makes for an interesting case due to the suboptimal quality of the DSA. The DSA image
from this patient is performed pre-EVT. Due to the occlusion, this can result in many vessels not being
visible in the DSA due to lack of blood flow, as illustrated in the DSA segmentation. However, despite
the lack of rich vascular detail, the method is able to accurately register the CTA, suggesting that a few
arteries can be sufficient for an accurate registration. We believe that this makes for important future
research—identifying which vessels are crucial to registration may allow for a better qualification of
whether image pairs are suitable for registration or not.

3.4.7. Failed Registration Example: Patient 10029
The registration below is an example of a failed case. This can be directly observed in Figure 3.19f,
where the distance between the projected points is large. Interestingly enough, MPE distance before
registration is not larger than in previous success cases. Associated losses are given in Figure 3.20.
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(a) Loss from first-stage optimization process. (b) Loss from second-stage optimization process.

Figure 3.18: Losses from each optimization stage for patient 10029.

(a) Moving CTA. (b) DSA vein segmentation. (c) Predicted initial pose.

(d) DSA full vein segmentation. (e) DSA MinIP, used as input to second
stage.

(f) Resulting pose from optimization.

Figure 3.19: Results from registering patient 10029. Distance to reference standard before registration: 16.6, distance after:
7.6mm. Distance to reference standard is plotted as the 8 points in green and blue.

(a) Loss from first-stage optimization process. (b) Loss from second-stage optimization process.

Figure 3.20: Losses from each optimization stage for patient 10029.
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3.4.8. Failed Registration Example: Patient 10020
The registration below is an example of a failed case. This can be directly observed in Figure 3.21f,
where the distance between the projected points is large. We consider this one of the outlier cases, due
to the large rotation present in the CTA, which is most likely beyond the capture range of the proposed
method. Associated losses are given in Figure 3.22.

(a) Moving CTA. (b) DSA vein segmentation. (c) Predicted initial pose.

(d) DSA full vein segmentation. (e) DSA MinIP, used as input to second
stage.

(f) Resulting pose from optimization.

Figure 3.21: Results from registering patient 10020. Distance to reference standard before registration: 47.9mm, distance after:
24.6mm. Distance to reference standard is plotted as the 8 points in green and blue.

(a) Loss from first-stage optimization process. (b) Loss from second-stage optimization process.

Figure 3.22: Losses from each optimization stage for patient 10020.

3.5. Analysis of Initialization Poses
We hypothesized that an initial anchoring of the CTA based on the veins would be sufficient to 1) have
a registration that is within the capture range of the optimization method, and 2) be sufficiently simple
for a ResNet18 to learn. In this section, we plot DRRs generated from the initial pose predicteds from
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the network, and overlay them with the ground truth, allowing for a visual inspection of whether or not
the network is learning a pose that transforms the CTA to a position where it aligns with the venous
structures. The simplest visual inspection is to overlay the predicted DRR over the top of the reference
standard DRR, referred to as after in Figure 3.23. We also overlay the DRR rendered to its radiological
pose with the reference standard pose, referred to as before. This side-by-side comparison allows for
a visual inspection as to 1) how far the radiological pose was from the registered pose, 2) whether or
not the predicted pose improved the alignment of the venous structures. A good initialization should
result in the veins overlapping in the overlaid DRRs. In most success cases, the network seems to
be performing an initial alignment based on the veins present in the CTA. This can be confirmed by
identifying that in the DRR rendered according to the pose predicted by the network, there is a higher
overlap in the venous structures.

It can also be observed that some initializations did not improve the initial alignment of the veins,
such as patient 10020 (POST), in Figure 3.232. This is most likely due to the heavy rotation present
in the CTA in its radiological pose. This patient is an example of a failed case in the full pipeline, one
can observe that the patient’s head is almost 45 degrees, making it somewhere between an anterior-
posterior and lateral pose. Similarly, with patient 10029 (POST), the venous structures were in better
alignment before initialization than after. In cases like this, we use a similarity measure as a proxy for
alignment to gauge the improvement brought by the network. If the DRR rendered from the predicted
pose results in a lower loss with the DSA than the DRR rendered from the radiological pose, the initial
pose is discarded and the optimization process begins with the radiological pose as its initial pose, as
defined in Equation 3.9.

Tinit = {
Tpred, if ℒ(DRRpredicted,DSA) ≥ ℒ(DRRradiological,DSA)
Tradiological, otherwise

(3.9)

This check is required as the initialization that the network provides is only ‘approximate’. It can
be observed that, in some cases, the DRR rendered in its radiological pose is very close to the DRR
rendered according to its reference standard pose, meaning there is very little movement to correct for.
In cases like this, the initialization may result in a worse initial pose, thereby harming the optimization
process.

3.6. CTA Vein Segmentation
Examples of the CTA vein segmentations are given in Figure 3.23. Not all the vessels present in the
DRRs are veins. While the morphological operations on the CTA were able to isolate the larger veins
that surround the skull, other vessels, such as the sinuses, are still present. While this was sufficient
to train the network, improvements to the training could be achieved by a more rigorous approach to
segmenting the veins from the CTA, such as customizing the structuring element on a per-patient basis.

3.7. DSA Vein Segmentations
The 20 test DSA vein segmentations are provided in Figure 3.24.
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(1) 10020 (POST):
Before

(2) 10020 (POST): Af-
ter

(3) 10022 (POST):
Before

(4) 10022 (POST): Af-
ter

(5) 10029 (POST):
Before

(6) 10029 (POST): Af-
ter

(7) 10031 (POST):
Before

(8) 10031 (POST): Af-
ter

(9) 10034 (POST):
Before

(10) 10034 (POST):
After

(11) 10050 (POST):
Before

(12) 10050 (POST):
After

(13) 10051 (POST):
Before

(14) 10051 (POST):
After

(15) 10149 (POST):
Before

(16) 10149 (POST):
After

(17) 10153 (POST):
Before

(18) 10153 (POST):
After

(19) 10320 (POST):
Before

(20) 10320 (POST):
After

(21) 10022 (PRE):
Before

(22) 10022 (PRE): Af-
ter

(23) 10051 (PRE):
Before

(24) 10051 (PRE): Af-
ter

(25) 10149 (PRE):
Before

(26) 10149 (PRE): Af-
ter

(27) 10320 (PRE):
Before

(28) 10320 (PRE): Af-
ter

(29) 10339 (PRE):
Before

(30) 10339 (PRE): Af-
ter

(31) 10352 (PRE):
Before

(32) 10352 (PRE): Af-
ter

(33) R2725 (NONE):
Before

(34) R2725 (NONE):
After

(35) R3166 (NONE):
Before

(36) R3166 (NONE):
After

(37) R5249 (NONE):
Before

(38) R5249 (NONE):
After

(39) R5250 (NONE):
Before

(40) R5250 (NONE):
After

Figure 3.23: Comparison of DRR rendered according to the radiological pose versus DRR rendered according to the predicted
initial pose.
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(a) DSA: 10020 (b) DSA: 10022 (c) DSA: 10029 (d) DSA: 10031 (e) DSA: 10034

(f) DSA: 10050 (g) DSA: 10051 (h) DSA: 10149 (i) DSA: 10153 (j) DSA: 10320

(k) DSA: 10022 (l) DSA: 10051 (m) DSA: 10149 (n) DSA: 10320 (o) DSA: 10339

(p) DSA: 10352 (q) DSA: R2725 (r) DSA: R3166 (s) DSA: R5249 (t) DSA: R5250

Figure 3.24: DSA vein segmentation for testset patients.
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3.8. Matrix Construction and Coordinate System Conversion
In the research paper, the projection model is defined as:

p = K ⋅ Tman ⋅R2𝑤 ⋅ Tcent ⋅ P𝑤 , (3.10)

where R2w rotates the CTA into the ‘face-up’ position, and Tcent translates the CTA to the world co-
ordinate center. These transformations are managed implicitly by TorchIO, the 3D medical imaging
library used by DiffDRR, ensuring that a loaded CTA is aligned to the “canonical” pose, Tradiological.
K is constructed based on the C-arm parameters. However, the manual transformations, Tman, used
in the training data are provided in LPS coordinate systems, requiring conversion between coordinate
systems in order to apply the manual registration matrix. This can be better understood via Figure 3.1.
We outline the key transformations below.

3.8.1. Key Transformations
1 Translation to World Center (Tcent):
This transformation centers the CTA in world coordinates. It is defined as:

Tcent =
⎡
⎢
⎢
⎣

1 0 0 −𝑐CTA[0]
0 1 0 −𝑐CTA[1]
0 0 1 −𝑐CTA[2]
0 0 0 1

⎤
⎥
⎥
⎦

,

where 𝑐CTA is the center of the CTA in world coordinates.

2 Rotation to Face-Up (R2w): This ensures alignment of the CTA with the anatomical position. It
is defined as:

R2w =
⎡
⎢
⎢
⎣

1 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 1

⎤
⎥
⎥
⎦
.

3 Manual Registration Transformation (Tman):
The manual transformation represents adjustments to align the CTA with the DSA. However, Tman
provided in LPS must be converted to RAS+.

3.8.2. Conversion from LPS to RAS+ Coordinate System
To transform Tman into the RAS+ system, the following adjustments are applied:

1. Negate Off-Diagonal Elements: Flip necessary elements of the matrix to align the axes:

Tman, adj[1, 2] = −Tman[1, 2],
Tman, adj[2, 1] = −Tman[2, 1],
Tman, adj[0, 2] = −Tman[0, 2],
Tman, adj[2, 0] = −Tman[2, 0].

2. Negate Translation Components: Adjust translation components to match the RAS+ conven-
tion:

Tman, adj[0, 3] = −Tman[0, 3], Tman, adj[1, 3] = −Tman[1, 3].

3. Apply Face-Up Transformation: Transform the adjusted matrix using R2w:

Ftman = R2w ⋅ Tman, adj.

4. Reverse the Alignment: Use the inverse of the face-up transformation to return to the canonical
pose:

Tman, final = Ftman ⋅R−12w .
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3.8.3. Compose with Radiological Pose
Finally, the manually adjusted transformation matrix is composed with the radiological pose:

Tfinal = Tpose ⋅ T−1man, final.

3.8.4. Python Implementation
The Python implementation of the described process is as follows:

T_man_copy = T_man.clone()

# Apply necessary adjustments to R
T_man_copy[1, 2] = -T_man_copy[1, 2]
T_man_copy[2, 1] = -T_man_copy[2, 1]
T_man_copy[0, 2] = -T_man_copy[0, 2]
T_man_copy[2, 0] = -T_man_copy[2, 0]

# Negate t_x and t_y in t
T_man_copy[0, 3] = -T_man_copy[0, 3]
T_man_copy[1, 3] = -T_man_copy[1, 3]

# Convert to apply-transform coordinate system
F_tman = torch.matmul(R_faceup, T_man_copy).to(self.device)
F_inv = torch.inverse(R_faceup).to(self.device)
manual = torch.matmul(F_tman, F_inv).to(self.device)
manual = RigidTransform(manual)

# Apply the final pose
final_pose = pose.to(self.device).compose(manual.inverse().to(self.device))

Further details on the coordinate systems used for the registration matrices can be found in the
repository containing the tool used in order to perform the manual registrations, available here:
https://gitlab.com/radiology/igit/q-maestro/manual-2d-3d-registration/-/tree/main

3.9. Human Assessment Tool
As discussed in the research paper, a neurointerventional radiologist was queried in order to evaluate
the results from the automatic registration tool. To this end, we designed an interactive Python tool
that allowed the radiologist to process the images in order to assess the quality of each registration. A
screenshot of the tool provided to the radiologist is given in Figure 3.25.

The tool has a variety of controls presumed to be relevant for evaluation by a radiologist. The
radiologist was queried beforehand with a proposed set of controls in order to ensure the tool would
be fit for the radiologist to assess each registration. The Frame control allows the radiologist to choose
which frame in the DSA sequence is rendered. The Use MinIP button computes the MinIP of the DSA,
where the start and end frame are given in the Start Frame and End Frame sliders. The Alpha control
corresponds to the 𝛼 coefficient in the linear interpolation used to overlay the images. A Color Tint
button was added which adds a red tint to the CTA render. This was necessary due to the difficulty of
seeing the arteries overlaid in both modalities. The red tint helps to visualize which vessels in the CTA
overlap with the DSA. The Brightness control then allows to adjust the brightness of the CTA.

For the 14 success cases patients, we asked the radiologist to compare the results from the manual
registrations versus the two-stage results, the manual registration versus the three-stage results, and
the two-stage results versus the three-stage results. For each patient this resulted in 3 comparisons.
The radiologist was presented with two registrations, as presented in Figure 3.25. The radiologist
ranked whether the left or right registration was better on a scale of 1 to 5:

• Scale 1: left definitely better than right

• Scale 2: left is better than right

https://gitlab.com/radiology/igit/q-maestro/manual-2d-3d-registration/-/tree/main
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Figure 3.25: Illustration of the evaluation tool used to rank the registrations.

• Scale 3: left is the same as right

• Scale 4: right is better than left

• Scale 5: right definitely better than left

Each method was randomly given on the left or right, meaning there was no predictability in which
method was on which side. The results from the radiologist are given in Table 3.1. A statistical inter-
pretation of the results is given in the research paper.



26 3. Supplementary Material

Table 3.1: Summary of results from the radiologist evaluation.

ID Left Right Scale (1-5) Best Patient Info
1 TWO_STAGE THREE_STAGE 4 THREE_STAGE R3166 (UNSPECIFIED)
2 TWO_STAGE MANUAL 1 TWO_STAGE R3166 (UNSPECIFIED)
3 THREE_STAGE MANUAL 1 THREE_STAGE R3166 (UNSPECIFIED)
4 THREE_STAGE TWO_STAGE 3 = R5249 (UNSPECIFIED)
5 MANUAL TWO_STAGE 3 = R5249 (UNSPECIFIED)
6 MANUAL THREE_STAGE 4 THREE_STAGE R5249 (UNSPECIFIED)
7 MANUAL TWO_STAGE 4 TWO_STAGE 10031 (POST)
8 THREE_STAGE MANUAL 2 THREE_STAGE 10031 (POST)
9 TWO_STAGE THREE_STAGE 3 = 10031 (POST)
10 TWO_STAGE MANUAL 2 TWO_STAGE 10034 (POST)
11 THREE_STAGE TWO_STAGE 5 TWO_STAGE 10034 (POST)
12 MANUAL THREE_STAGE 2 MANUAL 10034 (POST)
13 THREE_STAGE MANUAL 2 THREE_STAGE 10339 (PRE)
14 TWO_STAGE THREE_STAGE 3 = 10339 (PRE)
15 MANUAL TWO_STAGE 4 TWO_STAGE 10339 (PRE)
16 MANUAL THREE_STAGE 4 THREE_STAGE 10149 (PRE)
17 TWO_STAGE MANUAL 2 TWO_STAGE 10149 (PRE)
18 THREE_STAGE TWO_STAGE 3 = 10149 (PRE)
19 TWO_STAGE THREE_STAGE 4 THREE_STAGE 10352 (PRE)
20 MANUAL TWO_STAGE 2 MANUAL 10352 (PRE)
21 THREE_STAGE MANUAL 3 = 10352 (PRE)
22 MANUAL THREE_STAGE 4 THREE_STAGE 10050 (POST)
23 THREE_STAGE TWO_STAGE 3 = 10050 (POST)
24 TWO_STAGE MANUAL 4 MANUAL 10050 (POST)
25 THREE_STAGE TWO_STAGE 1 THREE_STAGE 10153 (POST)
26 MANUAL THREE_STAGE 2 MANUAL 10153 (POST)
27 TWO_STAGE MANUAL 5 MANUAL 10153 (POST)
28 TWO_STAGE MANUAL 1 TWO_STAGE 10320 (PRE)
29 MANUAL THREE_STAGE 5 THREE_STAGE 10320 (PRE)
30 THREE_STAGE TWO_STAGE 3 = 10320 (PRE)
31 MANUAL TWO_STAGE 1 MANUAL 10320 (POST)
32 THREE_STAGE MANUAL 3 = 10320 (POST)
33 TWO_STAGE THREE_STAGE 3 = 10320 (POST)
34 THREE_STAGE MANUAL 1 THREE_STAGE 10149 (POST)
35 TWO_STAGE THREE_STAGE 3 = 10149 (POST)
36 MANUAL TWO_STAGE 5 TWO_STAGE 10149 (POST)
37 TWO_STAGE THREE_STAGE 3 = 10051 (POST)
38 THREE_STAGE MANUAL 1 THREE_STAGE 10051 (POST)
39 MANUAL TWO_STAGE 5 TWO_STAGE 10051 (POST)
40 MANUAL THREE_STAGE 4 THREE_STAGE 10051 (PRE)
41 TWO_STAGE MANUAL 3 = 10051 (PRE)
42 THREE_STAGE TWO_STAGE 3 = 10051 (PRE)
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3.10. IPCAI 2025 Long Abstract
The following pages contain our approved long abstract submission to IPCAI 2025 as “late breaking
research”. A short communication version is being prepared for submission IJCARS.





Bibliography
[1] 3D Slicer Community. Coordinate Systems - 3D Slicer Wiki. Accessed: 2025-01-09. n.d. URL:

https://www.slicer.org/wiki/Coordinate_systems.
[2] AHA. “Heart Disease and Stroke Statistics-2017 Update: A Report From the American Heart

Association”. In: Circulation 135 (2017), e146–e603.
[3] Olvert A Berkhemer et al. “A randomized trial of intraarterial treatment for acute ischemic stroke”.

In: New England Journal of Medicine 372.1 (2015), pp. 11–20.
[4] Bruce CV Campbell et al. “Endovascular therapy for ischemic stroke with perfusion-imaging se-

lection”. In: New England Journal of Medicine 372.11 (2015), pp. 1009–1018.
[5] Valery L Feigin et al. “Stroke epidemiology: a review of population-based studies of incidence,

prevalence, and case-fatality in the late 20th century”. In: The lancet neurology 2.1 (2003), pp. 43–
53.

[6] Yabo Fu et al. “Deep learning in medical image registration: a review”. In: Physics in Medicine &
Biology 65.20 (2020), 20TR01.

[7] Vivek Gopalakrishnan, Neel Dey, and Polina Golland. Intraoperative 2D/3D Image Registration
via Differentiable X-ray Rendering. 2023. arXiv: 2312.06358 [cs.CV].

[8] Vivek Gopalakrishnan and Polina Golland. “Fast Auto-Differentiable Digitally Reconstructed Ra-
diographs for Solving Inverse Problems in Intraoperative Imaging”. In: Clinical Image-based Pro-
cedures: 11th International Workshop, CLIP 2022, Held in Conjunction with MICCAI 2022, Singa-
pore, Proceedings. Lecture Notes in Computer Science. Springer, 2022. DOI: https://doi.
org/10.1007/978-3-031-23179-7_1.

[9] Mayank Goyal et al. “Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-
analysis of individual patient data from five randomised trials”. In: The Lancet 387.10029 (2016),
pp. 1723–1731.

[10] Mayank Goyal et al. “Randomized assessment of rapid endovascular treatment of ischemic
stroke”. In: New England Journal of Medicine 372.11 (2015), pp. 1019–1030.

[11] Grant Haskins, Uwe Kruger, and Pingkun Yan. “Deep learning in medical image registration: a
survey”. In: Machine Vision and Applications 31 (2020), pp. 1–18.

[12] John H Hipwell et al. “Intensity-based 2-D-3-D registration of cerebral angiograms”. In: IEEE
transactions on medical imaging 22.11 (2003), pp. 1417–1426.

[13] Tudor G Jovin et al. “Thrombectomy within 8 hours after symptom onset in ischemic stroke”. In:
New England Journal of Medicine 372.24 (2015), pp. 2296–2306.

[14] David C. Lauzier and Akash P. Kansagra. “Thrombectomy in Acute Ischemic Stroke”. In: New
England Journal of Medicine 386.14 (2022), pp. 1351–1351. DOI: 10.1056/NEJMicm2116727.
eprint: https://www.nejm.org/doi/pdf/10.1056/NEJMicm2116727. URL: https:
//www.nejm.org/doi/full/10.1056/NEJMicm2116727.

[15] Panagiotis Papanagiotou and George Ntaios. “Endovascular thrombectomy in acute ischemic
stroke”. In: Circulation: Cardiovascular Interventions 11.1 (2018), e005362.

[16] Jeffrey L Saver et al. “Stent-retriever thrombectomy after intravenous t-PA vs. t-PA alone in
stroke”. In: New England Journal of Medicine 372.24 (2015), pp. 2285–2295.

[17] H Bart Van der Worp and Jan van Gijn. “Acute ischemic stroke”. In: New England Journal of
Medicine 357.6 (2007), pp. 572–579.

29

https://www.slicer.org/wiki/Coordinate_systems
https://arxiv.org/abs/2312.06358
https://doi.org/https://doi.org/10.1007/978-3-031-23179-7_1
https://doi.org/https://doi.org/10.1007/978-3-031-23179-7_1
https://doi.org/10.1056/NEJMicm2116727
https://www.nejm.org/doi/pdf/10.1056/NEJMicm2116727
https://www.nejm.org/doi/full/10.1056/NEJMicm2116727
https://www.nejm.org/doi/full/10.1056/NEJMicm2116727

	Background
	Introduction & Motivation
	Purpose of this Thesis

	Research Paper
	Supplementary Material
	Pose Distribution and Statistics
	Data
	Training Data
	Data Quality

	Training Losses
	Sample Registrations
	Registration Example: Patient 10034
	Registration Example: Patient 10352
	Registration Example: Patient R3166
	Registration Example: Patient 10031
	Registration Example: Patient 10149 (POST)
	Registration Example: Patient 10320 (PRE)
	Failed Registration Example: Patient 10029
	Failed Registration Example: Patient 10020

	Analysis of Initialization Poses
	CTA Vein Segmentation
	DSA Vein Segmentations
	Matrix Construction and Coordinate System Conversion
	Key Transformations
	Conversion from LPS to RAS+ Coordinate System
	Compose with Radiological Pose
	Python Implementation

	Human Assessment Tool
	IPCAI 2025 Long Abstract


