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ABSTRACT
The ball mill is usually the largest energy consumer at a mine site and significantly affects
operational expenditures. Given a target particle size, Bond Mill Work Index estimates are used
to predict a ball mill’s throughput. In order to maximize ball mill throughput and optimize
energy utilization, it is important to get these estimates right. At the Tropicana Gold Mine,
Work Index estimates, derived from X-Ray Fluorescence and Hyperspectral scanning of Grade
Control samples, are used to construct spatial GeoMetallurgical models (GeoMet). Inaccuracies
in block estimates exist due to limited calibration between grade control derived and laboratory
Work Index values. To improve the calibration, an updating algorithm has been tested at the
Tropicana Gold Mine. The aim of the study was to demonstrate a new process for updating
block estimates using actual mill performance data. Deviations between predicted and actual mill
performance are monitored and used to locally improve the Work Index estimates in the GeoMet
model. The updating algorithm improves the spatial Work Index estimates, resulting in a real-time
reconciliation of already extracted blocks and a recalibration of future scheduled blocks. The case
study shows that historic and future production estimates improve on average by about 72 and
26%.
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Introduction

Traditionally, the mining industry has had mixed suc-
cesses in achieving the production targets it has set out.
Produced tonnages (and grades) nearly always devi-
ate frommodel-based expectations due to ever-present
geological uncertainties. Even when numerous explo-
ration samples are collected, it remains challenging to
accurately characterize short-term production units
equivalent to a few truckloads (Benndorf 2013). In cer-
tain commodities, Grade Control (GC) drilling is per-
formed to further reduce uncertainties (Peattie and
Dimitrakopoulos 2013; Dimitrakopoulos and Godoy
2014). GC drilling is expensive and almost exclusively
focused on sampling grades.

At the Tropicana Gold Mine, GC samples are col-
lected at onemetre intervals duringReverseCirculation
drilling. Once collected, the samples are sent to an
on-site laboratory for a semi-automated analysis. An
autonomous system crushes, splits and pulverizes the
sample material prior to X-Ray Fluorescence (XRF)
and Hyper-Spectral (HS) scanning. Conventional fire
assaying techniques are used to determine the gold
grade in a final prepared pulp. Calibrated relationships
are subsequently applied to translate the obtainedproxy
measurements (XRF and HS) into geometallurgical es-
timates (e.g. work index, hardness or recovery). At this

CONTACT T. Wambeke t.wambeke@tudelft.nl

stage, the geometallurgical estimates describe the prop-
erties of one meter long cylindrical volumes, virtually
located at the original down-hole positions of the GC
samples. Geostatistical techniques are used to model
metallurgical estimates for contiguous block volumes
in the GeoMet model (Catto 2015).

The calibrated relationships, used to translate proxy
measurements (XRF&HS) intometallurgical estimates,
are largely untested. A larger number of metallurgical
tests to improve the calibration is simply economically
infeasible. Hence, despite all efforts, the derived ge-
ometallurgical block estimates remain (largely) inac-
curate.

TheBondBallMillWork Index (Wi) is one such spa-
tial estimate which remains difficult to infer correctly.
TheWi defines the specific energy (kWh/ton) required
in grinding a ton of ore in the ball mill from a very large
size (infinite) to 100µm (Lynch et al. 2015). At the time
of writing, this variable is of particular interest for the
following two reasons. (1) Collecting large data-sets of
Wi values is very expensive due to labour-intensive and
time-consuming laboratory work. It is worthwhile to
investigate alternative options for improving the cal-
ibration of the concerned relationship. (2) Ball mill
throughput could potentially be optimized by improv-
ing the Wi estimates of the mill feed. Both reasons
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justify the exclusive focus on improving Wi estimates
during the remainder of the text. Before proceeding, a
clear distinction is made between various types of Wi
estimates.

(1) Wis(m):Wi estimates describing onemetre long
cylindrical GC samples. Wis is a column vector
withMWi estimates. Each estimatem is centred
at the original down-hole position of its corre-
sponding GC sample.

(2) Wibt (n, i): Wi estimates describing block
volumes in the GeoMet model. The N rows in
the Wibt matrix each refer to a unique block
in the GeoMet model. The I columns contain
different spatial realizations characterizing geo-
logical uncertainty (Monte Carlo approach, each
realization represents an equally plausible sce-
nario). The block estimates do change in time as
new information is assimilated into the GeoMet
model, hence the subscript t.

(3) Wift (1, i): Wi estimates describing the mill feed
between t−1 and t.Wift (1, i) is a row vector con-
taining I realizations. The I realizations approx-
imate a distribution describing a best estimate
(mean) and its related uncertainty (spread). The
mill feed estimates are no longer attributable to a
single spatial coordinate. The mill feed typically
represents a blend of ore from multiple sources
and locations.

The mill feed estimates Wift (1, i) are substituted in
the following formula to compute the energy required
in grinding a ton of ore in the mill from a known feed
size to a required product size (Lynch et al. 2015):

P
R

= Wift (1, i)(
10√
P80

− 10√
F80

) ∀i ∈ I. (1)

Assuming a constant power draw (P in kW), the energy
delivered per ton is controlled by adjusting the mill
throughput (R in t/h). The F80 and P80 represent the
80% passing sizes of the feed and product, respectively,
(F80 and P80 inμm). Tomaximize mill throughput and
optimize energy utilization, it is important to get the
Wift estimates right.

When the ore is softer than expected (Wift is over-
estimated), the amount of energy transferred into each
tonofmaterial is too large and the resulting productwill
be too fine. This situation does not harm downstream
recovery but rather results in an amount of wasted
energy (the larger recovery due to a smaller product
size does not outweigh the additional milling costs). An
increase in throughput R would lead to a more optimal
distribution of energy per ton of material.

When the ore is harder than expected (Wift is under-
estimated), not enough energy is transferred into each
ton of ore. The resulting product will be too coarse. A

larger proportion of the product stream will be sepa-
rated by a hydrocyclone (based on particle size) and
recirculated as mill feed. A lower throughput R would
reduce the amount of recirculated material, which in
turnwould result in an increased effectivemill through-
put (note the paradox).

Installed sensors continuously monitor throughput,
power draw, feed and product sizes in the ball mill
(Figure 1). The sensor responses have the potential to
be used in real time to derive an actual OperatingWork
Index value wift of the material residing in the mill
(Equation (1)). The lower case notation refers to an
actual measurement (single value), whereas the upper
case notation, previously used, indicates an estimate
(multiple values in a row vector to characterize uncer-
tainty). The observation wift characterizes all material
that went through the ball mill between t − 1 and t.
Typically, this material will represent a blend of ore
from multiple sources and locations.

The online computation of wift carries a large po-
tential as demonstrated in the pilot study. Mill obser-
vationswift are used to progressively improve the block
estimatesWibt (n, i) in the GeoMet model. Estimates of
both mined and scheduled blocks are
adjusted simultaneously. This backward integration is
only been made possible through material tracking ini-
tiatives. Data, from monitoring systems in the mining
fleet and processing plant, are used to link mill obser-
vations with their constituent GeoMet blocks. A devel-
oped algorithm subsequently updates the constituent
GeoMet blocks and their surroundings based on the
noisy time-averaged mill observation. The strength of
the algorithm lies in its capability to differentiate be-
tween themore and less accurately estimated local areas
(in this context, a local area refers to a collection of
adjacent mined blocks and its immediate surround-
ings). Updates aim to more aggressively correct the less
accurate local areas.

In the future, the updating algorithm can be ex-
panded to integrate additional performance data into
theGeoMetmodel (e.g. recovery and reagent consump-
tion). Themethodology eventually could lead to amore
optimal and automated selection of ores for blend-
ing whilst providing advanced information for process
control. For example, the throughput of the comminu-
tion circuit can be reduced/increased upfront when
harder/softer ore is expected to ensure themost optimal
energy utilization, while achieving a grind required for
maximizing gold recovery in the leach circuit.

This paper demonstrates an algorithm for contin-
uous reconciliation of mill derived observations (wift )
against block estimates in the GeoMet model (Wibt ).
First, the updating algorithm, as presented inWambeke
and Benndorf (2017), is briefly reviewed. Then, back-
ground information is provided regarding the geol-
ogy at Tropicana, the operation and the available data.
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Figure 1. Simplified representation of the monitoring set-up at the Tropicana Gold Mine. Research question: is it possible to use the
ball mill performance measurements to better inform spatialWi estimates?

Thereafter, a forward simulation model is constructed
to convert (updated) block estimates (Wibt ) into mill
feed estimates (Wift ). The forward simulation step is
essential in linking a specific observation (wift ) back
to its constituent GeoMet blocks, while providing a
flexible approach to overcome a number of mathe-
matical challenges and material tracking limitations
(implementation details, to be discussed later on). Us-
ing the forward simulator, the spatial GeoMet models
are updated every 4 h over the course of one week.
It is shown that the updates do not only result in a
real-time reconciliation of extracted blocks but also
significantly improve estimates of scheduled blocks (the
surroundings). The paper concludes with an extensive
discussion onmodelling assumptions and potential im-
provements.

Updating algorithm

At any point in time, when a new mill observation
wift becomes available, the updating algorithm needs
to solve the following inverse problem (conceptual for-
mulation):

Wibt = E−1
t (wift ), (2)

where E is a forward observation model (linear or non-
linear) that maps block estimates Wibt onto mill feed
estimates Wift . In other words, the algorithm is tasked
with inferring attributes of individual blocks based on
time-averaged mill observations.

Please note that this conceptual formulation ignores
the subtle difference between the forward observation
model Et and the required inverse E−1

t . The former
is used to characterize the mill feed during the interval



[t − 1, t]. Consequently, only the estimates of blocks
which are fed to the mill during the corresponding
interval are required as input (i.e. only a collection of
already mined blocks as opposed to all the blocks in the
GeoMet model). The inverse E−1

t accepts a mill obser-
vation wift and computes various block estimates. This
computation does not necessarily have to be limited
to already mined blocks, i.e. the ones constituting the
mill feed during interval [t − 1, t]. Due to the spatial
correlation, blocks in the direct surroundings of milled
blocks (already mined) can be updated as well.

The algorithm essentially solves previous inverse
problem using a sequential estimator within a Monte
Carlo framework. At time zero, an initial set of I Monte
Carlo realizations Wib0( :, i) is generated using tech-
niques of conditional simulation. All exploration infor-
mation is inherently accounted for within these initial
realizations; (a) sample values are approximated at their
respective locations (no exact reproduction in order to
account for measurement error), (b) the degree and
scale of variability in the realizations follows a pattern
described by a covariance model derived from the GC
data (Wis).

Once collected, a mill observation wift is assimilated
into the GeoMet model:

Wibt (:, i) = Wibt−1(:, i) + Kt(wi
f
t − Wift (1, i)) ∀i ∈ I.

(3)
Each realization Wibt−1(:, i) is updated based on a
weighted difference between amill observationwift and
a mill feed estimateWift (1, i) = Ft(Wibt−1(:, i)). A mill
feed estimate results from running a forward simulator
Ft based on a most recent GeoMet realization Wibt−1
(:, i) (to be discussed later on). The latest solution set
Wibt (:, i) (∀i ∈ I) accounts for all previously collected
exploration and production data (Wis and wift , ∀t ∈
[0, t]).

Equation (3) essentially describes how blocks in the
GeoMet model are adjusted to reduce the difference
between a mill feed observation and an estimate. The
weights in the Kt vector will ‘redistribute’ the observed
difference over the blocks in the observed mill feed
(Kt can also be a matrix if multiple mill observations
are assimilated simultaneously). That is the Kt vector
will contain some non-zero entries at positions that do
match those of already mined blocks (Type I weights at
rows corresponding to mined blocks). Additional non-
zero entries occur in rows representing blocks located
in the close proximity of the recently milled blocks
(Type II weights). This second group ofweights ensures
that the improved characterization of individual milled
blocks is extended to the surrounding local areas (The
‘:’ operator inWibt (:, i) points to allN blocks as opposed
to the already mined ones). The remaining entries of
the Kt vector are zeros (blocks outside of immediate
vicinity of mined blocks).

In summary, both already mined as well as sur-
rounding blocks do get assigned an identical recorded
deviation (wift − Wift (1, i), Equation (3)). Individual
block corrections do however differ across and within
both block groups (Kt(N)(wift − Wift (1, i)), where
Kt(N) represents an element of the Kt vector linked to
block N , Equation3). This is simply because the krig-
ing weights differ across all blocks (Kt(N)). Generally
speaking, mined blocks receive larger weights com-
pared with surrounding blocks. Consequently, their
applied correction is more significant.

The simulation-based approach (Monte Carlo
framework with I realizations) avoids the near impos-
sible task of formulating an analytical approximation
of the forward observation model Et (and calculat-
ing its inverse, Equation (2)). Due to the complexity
of the material handling process, it would indeed be
very challenging to describe the link between individual
blocks and a blended measurement as a single equa-
tion. Instead, for each unique operation, a case specific
forward simulator F is built and ran parallel to the
more generally applicable updating code (Figure 2).
The simulator is but a virtual model describing which
blocks are extracted, processed and measured between
t − 1 and t (the complexity of the model should match
the relevant problem-specific features). The separation
of the forward simulator from theupdating code further
allows for a flexible integration with existing systems
already installed at the mine site.

The forward simulator is thus used to propagate
GeoMet realizationsWibt−1(:, i) intomill feed estimates
Wift (1, i) = Ft(Wibt−1(:, i)). During a forward step,
the simulator Ft only includes the blocks which are
mined andmilled during the corresponding time inter-
val (Wibt−1(:, i) could be replaced byWibt−1(κt , i)where
κt is a set representing the constituent GeoMet blocks
in the mill feed).

The sets of GeoMet andmill feed realizations,Wibt−1
(:, i) and Wift (1, i), respectively, contain enough infor-
mation to link observed deviations back to their con-
stituent GeoMet blocks. Both realization sets also hold
the data necessary to improve the characterization of
the immediate surroundings. Updating the constituent
GeoMet blocks and their surroundings is
governed through the calculationof theKrigingweights
Kt (Equation (3)):

Kt = Ct−1,bfC−1
t−1,ff , (4)

whereCt−1,bf (A columnvector of sizeN) andC−1
t−1,ff (a

single value) hold the conditional forecast and observa-
tion error covariances. The covariances are computed
empirically from the available realization sets. Each
entry Ct−1,bf (n, 1) of the covariance vector describes
the correlation between the observation and the nth
block in the GeoMet model. The covariance Ct−1,ff
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Figure 2. Closed-loop reconciliation framework to integrate ball mill performance measurements into the GeoMet model.

on the other hand describes the accuracy of the mill
observation.

Kriging weights tend to be larger when the obser-
vation is accurate (i.e. Ct−1,ff (1, 1) is low) and strongly
correlated to particular blocks (i.e. Ct−1,bf (n, 1) is
large). Type I Kriging weights (ref. previous discus-
sion) determine how the value of milled blocks have to
be adjusted in order to shrink the detected deviations
(Equation (3)). Significant type II weights, on the other
hand, cause a modification of the neighbouring blocks.
Neighbouring blocks only get updated when they are
strongly correlatedwith the observations. Such a strong
correlation occurs when a neighbouring block is spa-
tially correlated with a recently milled block. In order
words, an adjustment of the milled block warrants an
update of the neighbouring blocks as well (though to
a lesser extent). The type II updates are based on the
notion that two closely spaced blocks are likely to have
similar properties.

Several technical and practical challenges are solved
by computing covariances empirically. (1) As time pro-
gresses, conditional forecast error covariances become
non-stationary. But for the empirical computation of
the covariances, a large non-stationary field covariance
matrix Ct−1,bb would have to propagated from one
update cycle to the next (number of entries equal to
the square of the number of grid nodes). Computing
covariances empirically reduces computation costs and
memory requirements (Wambeke and Benndorf 2017).
(2) Differences in scale of support are automatically
dealt with. There is no need to perform a support cor-
rection on a non-stationary covariance model. (3) Em-
pirical covariances are convenient to handle measure-
ments on blended material streams originating from
multiple extraction points. Based on the magnitude of
the forecast error covariances, it is possible to pinpoint
multiple blocks in the GeoMet model that are respon-
sible for a single detected deviation. Furthermore, the
forecast error covariances are of paramount importance
in updating neighbouring correlated blocks.

The interested reader is referred to Wambeke and
Benndorf (2017) for a detailed literature review and
an elaborate presentation of the algorithm. The sug-
gested paper discusses several other aspects of algo-
rithm which were omitted here.

Background information and data sources

This section briefly presents background information
about theTropicanaGoldMine.Aspects related to geol-
ogy, mining and processing are discussed and relevant
data sources are highlighted.

Geology

The Tropicana Gold Mine is located in Western Aus-
tralia, approximately 330 km East–North–East of Kal-
goorlie. The mine is situated near the edge of the Great
Victoria Desert along an ancient collision zone be-
tween theYilgarnCraton and theAlbanyFraserOrigen.
The regional geology is dominated by granitoid rocks,
felsic to mafic paragneiss and orthogneiss, and felsic
to ultramafic intrusive and volcano-sedimentary rocks.
The area is characterized by extreme weathering that
resulted in the formation of a 100m thick regolith.Min-
eralization is found within Archean-aged high grade
quartzo-feldspathic gneisses and is associated with late
biotite and pyrite alteration. The mineralization occurs
as one or two laterally extensive planar lenses with a
moderate dip. Post mineralization faulting resulted in
four distinct structural domains offsetting the initial ore
body.

Mining

The ore body is mined from four contiguous pits ex-
tending six kilometres in strike length (from North to
South: Boston Shaker, Tropicana, Havana and Havana
South). The mine is operated as a typical drill and blast,
truck and shovel open pit mine.
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Prior to extraction, GC drilling (Reverse Circula-
tion) is completed on relatively dense 10m East ×12m
North drill patterns to define the ore zones to bemined.
The GC holes are drilled to intersect multiple benches
at once and are drilled weeks ahead of extraction. The
resulting 1m samples are sent to an on-site lab for
analysis. Conventional fire assaying techniques are ap-
plied to determine the gold grade. During the sample
preparation stage, samples are processed in an auto-
mated sample preparation system, which crushes, splits
and pulverizes the material prior to XRF and HS scan-
ning. The resulting multivariate interval data are trans-
lated into geometallurgical properties using previously
calibrated relationships. The inferred geometallurgical
properties are subsequently modelled to populate the
3m× 3m× 3.33m blocks of the GeoMet model (used
for ore design and short-term planning). Once pop-
ulated, the mine geologist delineates ore polygons to
group adjacent spatial blocks into semi-homogeneous
digging volumes (known as dig blocks).

Subsequently duringblastingoperations, a 10mhigh
bench is blasted.Transmitters are installed inblast holes
and their locations are logged prior to and after the
blast. Three-dimensional displacement vectors are com-
puted and applied to the in situ ore polygons to correct
for blast movements. The fragmented material is then
excavated in three passes (based on design flitches with
a height of 3.33m). Ore is hauled by truck directly to
the primary crusher or to one of the reclaim stockpiles
situated at the ROMpad (RunOfMine). Direct crusher
feed (material directly coming from the mine) is sup-
plemented with ore reclaimed from ROM stockpiles.
The fleet management system records each individual
truck cycle in a central database. The recorded spatial
coordinates are used for material tracking purposes,
linking mill observations to their constituent blocks in
the GeoMet model.

Comminution

The comminution circuit comprises of a primary
crusher, secondary crusher, High Pressure Grinding
Rolls (HPGR) and a ball mill. The HPGR screen has
a top size of 2.75mm, resulting in a typical ball mill
feed of 500 to 600µm (F80). The upper part of Figure
4 displays a simplified version of the plant flowsheet
(to be discussed later in detail). Conveyor belt speeds,
throughput values, recirculating loads, flow velocities
andmill performance are continuouslymonitored. The
related sensor readings are written to a database at five-
minute intervals.

Forward simulator

A forward simulator is built to generate mill feed esti-
matesWift (1, i) = Ft(Wibt−1( :, i)). The realization set
of mill feed estimates is used to compute the empirical

covariances, which are essential in linking an observa-
tion wift to its constituent GeoMet blocks. The forward
simulator is subdivided into two connected modules.
The first module describes the material handling pro-
cess in the mine. The second module tracks material
flow in the comminution circuit.

From pit to crusher

Thematerial handling process in the mine can be repli-
cated in great detail using truck cycle data stored in a
fleet management database (Figuare 3). Four types of
truck cycles are defined: (1) ore is hauled from the pit
and dumped directly into the primary crusher (direct
tip); (2) ore is hauled from the pit and stockpiled on
one of the ROM stockpiles; (3) ore is reclaimed from
ROM stockpiles and dumped into the primary crusher;
(4) material is hauled from the pit to a waste dump (not
shown or further discussed).

A type 1/2 mine cycle starts the moment a truck is
being loaded in the pit (Figure 3). A DepartingTruck is
recorded in the POD (Pit Out Database). The BlockID,
referring to a specific block in the GeoMet model, is
determined using a combination of GPS data and blast
movement vectors. A type 1 cycle ends when a truck
finishes tipping its load into the crusher. An Arriv-
ingTruck is stored in the CID (Crusher In Database).
Its DataBaseLabel refers to the POD.

A type 2 cycle ends the moment a truckload is stock-
piled on one of the six ROM stockpiles (Figure 3). An
ArrivingTruck instance is written to the RFID (ROM
Finger In Database). The assigned CellID refers to a
10m × 10m subdomain within a larger stockpile (and
is computed from the GPS location of tipping truck).
All ‘active’ ArrivingTruck instances within a particular
ROM finger are deactivated the moment the entire
stockpile is depleted (The IsActive boolean is set to
False).

A type 3 mine cycle is initiated when reclaimed
ROM finger material is loaded into a truck. A Depart-
ingTruck instance is stored in the RFOD (ROM Finger
Out Database). The cycle ends when loaded material
is tipped into the primary crusher. An ArrivingTruck is
written to theCID (Crusher InDatabase). ItsDataBase-
Label points to the RFOD.

Querying the databases allows for a live characteri-
zation of the crusher feed and stockpile domains. The
PayLoad of the trucks arriving at the crusher is obtained
from the database referenced by the DataBaseLabel. A
set of characteristic Wi values (multiple realization to
characterize uncertainty) is obtained in one of two pos-
sible ways, depending on the assigned DataBaselabel
(Figure 3).

If the label points to the POD, the GeoMet model is
queried using theBlockID of the correspondingDepart-
ingTruck record (one-to-one relationship). The query
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Figure 3. Schematic representation of the material handling process in the mine.

returns a single set of simulated Wi values which are
assigned to a specific truck.

If the label points to the RFOD, a more elaborate
‘query’ needs to be conducted.

(1) The CellID is obtained from the corresponding
DepartingTruck record in the RFOD (one-to-
one relationship based on TruckID).

(2) BlockIDs and PayLoads are collected from ‘ac-
tive’ ArrivingTruck records in the RFID (one-
to-many relationship based on CellID).

(3) For each BlockID, a set of simulatedWi values is
extracted from the GeoMet model (one-to-one
relationship).

(4) Weighting factors are computed based on the
obtained PayLoad values (larger truckloads re-
ceive a higher weight). The weights are used to
calculate a single set ofWi values characterizing
the material within a stockpile subdomain.

(5) This single set ofWi values can be connected to
a truck departing from the ROM stockpiles and
in extension thus also to a truck arriving at the
crusher.

Themodule discussed thus far allows for the charac-
terization of individual truckloads arriving at the
crusher, independent ofwhether thematerial originates
fromone of the ROMstockpiles or directly from the pit.

From crusher tomill

The second module of the forward simulator is
designed to describe the material flow in the comminu-
tion circuit. Four sequential circuits have been identi-
fied and modelled: (a) primary crushing, (b) secondary
crushing, (c) High Pressure Grinding Rolls (HPGR)
and (d) ball mill. The material flow through each cir-
cuit ismodelled using followingmodelling components
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Figure 4. Schematic representation of the material flow in the comminution circuit.

(Figure 4); a ‘merge’ unit (circle) combines material
streams, a ‘queue’ (hourglass) describes delays and a
’split’ unit (diamond) subdivides material streams into
two substreams. The behaviour of each virtual unit is
driven by information derived from the central pro-
cessing database (five-minute interval readings).

The moment a truck tips its load into the crusher, its
virtual representation is subdivided into a large num-
ber of smaller Parcels. Each Parcel has a payload and
is linked to the ArrivingTruck. The sum of all Parcel
payloads equals the PayLoad of the ArrivingTruck.

When material enters the comminution plant, it
passes through a gyratory crusher and ends up on a
coarse ore stockpile (COS).Thebehaviour of this circuit
is modelled as a queue (first in, first out). The delay
time of the queue corresponds to the residence time of
a Parcel on the stockpile (the time to pass the crusher
lies in the order of seconds). The popping rate of the
queuematches the stockpile drawn down rate readings.

Drawn stockpile material is subsequently blended
with the product of the secondary crusher (merge unit).
Once blended, material resides in a bin (queue) before
being dropped onto a screen (split unit). Oversized
material is circulated back to the bin of the secondary
crusher (queue), while the undersize is directed to-
wards theHPGR circuit. The split unit randomly selects
virtual Parcels and circulates them into the secondary
crushing circuit. The recirculating loadsmatch the ones
recorded in the processing database.

Arriving at the HPGR circuit, material is blended
with screen oversize and stored in a bin, before being
dropped into the HPGR (merge unit and queue). The
HPGR grinds a loose collection of material into a con-
glomerated cake product. The cake product resides in a
bin awaiting wet screening (queue). Prior to screening
(split), the HPGR cake is deagglomerated using water
jets and vibration. The screen oversize is circulated back
to the bin installed above the HPGR, the undersize
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Figure 5. Truck pit source locations from Tropicana and Havana
pit during the entire month of August (2015). The displayed
trucks are either dispatched to the crusher (red crosses –
direct tip) or to ROM stockpile 4 (purple squares). The black
dots display GC holes intersecting the bench.

enters themilling circuit.Diverter gates to extract tramp
metal and to construct emergency stockpiles are not
accounted for (future work).

Material arriving from the HPGR circuit is mixed
with the ball mill product and inserted into a hydrocy-
clone (amerge and split unit). The cyclone underflow is
circulated back into the ball mill (queue), its overflow is
transported to the carbon-in-leach tanks. The moment
a virtual Parcel arrives in the mill it is recorded in the
MFD (Mill Feed Database).

The comminution model is by far not accurate
enough to track individual truckloads as they move
through the plant. Consequently, the mill feed is char-
acterized over 4 h intervals to filter out possible inaccu-
racies.Amill feed estimateWift (1, i) = Ft(Wibt−1( :, i))
is obtained as follows:

(1) Query the MFD, collect all Parcel objects arriv-
ing at the mill between t − 1 and t.

(2) Group Parcel records according to their asso-
ciated TruckIDs (truck arriving at the crusher).
Compute the total weight of the Parcels within
each group.

(3) Compute weighting factors based on the group
weights.

(4) Connect each group to a truck which already
arrived at the crusher at an earlier time. Assign
the truckWi values to the group.

(5) Compute a weighted averaged set characterizing
the mill feed within a 4 h interval.

In comparison, an actual observation wift is obtained
by processing 4 h long-time series of measured mill
performance (previously discussed).

Results case study

In this pilot study, about 120 h ofmill performance data
is used to conduct 30 updates of the GeoMet model (30
4 h intervals from 21 August 2015 06:00 to 26 August
2015, 06:00). The historic data-set realistically mim-
ics a live application. More importantly, future mill
observations are available ahead of time and can be
compared against their corresponding estimates (in a
live application, these future observations would not
yet exist). Obviously, the future observations are only
to be used for validation purposes and should not be
fed into the updating algorithm.

Thematerial fed to the mill in the pilot study period,
was sourced from ROM stockpiles and direct crusher
feed. Due to intermediate stockpiling, the mill feed
represents mining activity that occurred over a one-
month period.Hence, amonth of truck cycle data needs
to be analyzed. At 21:20 on 02 August, the first truck-
load is tipped on a previously zeroed ROM stockpile.
During the subsequent three weeks, the building of this
finger is carefully tracked. As a result, ROM stockpile
material, reclaimed to the crusher during week four,
can be characterized. In summary, a month of mining
data is required to connect a week of plant performance
measurements back to their source locations.

GeoMetmodel

The material milled between 21 August and 26 August
mainly originates from two distinct benches; bench
2260 in theTropicana pit and bench 2280 in theHavana
pit (Figure 5). Prior to extraction, two GeoMet models
are constructed describing the spatial variation of the
Wi values in both benches. Each model contains 100
GeoMet realizations Wibt (:, i) on a block support of
3m × 3m × 3.33m. The field realization are gener-
ated using a sequential Gaussian simulation algorithm.
All realizations are conditioned on Wis(m) estimates,
derived fromXRF andHSproxies collected onGC sam-
ples (Figure 5). Figure 6(a) shows a horizontal section
across the middle flitch of both benches. The figure
displays the mean field computed over the 100 prior
realizations.

Figure 6(a)–(k) illustrate how themean field changes
through time when assimilating mill observations wift .
A total of 30 updates are conducted. The time between
updates amounts to 4 h.Only results obtained at the end
of each shift (i.e. every 12 h) are shown. Themarkers on
each figure refer to the source locations of the material
milled during the indicated time interval (last 12 h).
Figures 6(a)–(k) show that the updates extend beyond
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Figure 6.Mean field across the middle flitch of two benches in the Tropicana and Havana pit. Blocks are colour coded according to
their best estimate at the indicated time. The source locations of the material milled during the indicated time interval are displayed
using either red crosses (direct tip) or purple squares (material has resided on a stockpile finger).

the source locations. TheWi estimates of blocks in the
immediate vicinity are adjusted as well. Some of these
surrounding blocks still have be milled. Improving the
estimates of these surrounding blocks directly leads to
an improved characterization of the future mill feed
(ref. Mill feed estimates).

As the realizations are updated, the level of detail
in the resulting mean field increases. Overall, the algo-
rithm seems to correct for the globally occurring over-
estimation bias (i.e. in most blocks the Wi is lowered).
However at specific locations, the algorithm learns that
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Figure 6. Continued

the ore is harder than initially expected (Wi values are
increased).

Mill feed estimates

UpdatedGeoMetmodelsWibt−1 are continuously prop-
agated through different forward simulators Fs to ad-

just historic (s < t), current (s = t) and future (s > t)
mill feed estimates accordingly (Wifs (1, i) = Fs(Wibt−1
( :, i))). The top axes of Figure 7(a)–(k) display how
these mill feed estimates change as s moves forward in
time. Each individual plot characterizes 30 distinct 4 h
long mill feeds (blue boxplots). Certain mill feeds are
already processed and measured (s < t, orange dots in
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Figure 6. Continued

grey area); one is currently being milled (s = t, red
dot in yellow bar); others still have to be fed to the mill
(s > t, grey dots right of yellow bar). The grey dots
right of the yellow bar are never fed to the updating
algorithm. They only serve to illustrate how future mill
feed estimates improve over time (s > t).

Once a 4 h interval ends, a new observation wift
becomes available (reddot) and anupdate is performed.
Subsequently, s is incremented with 4 h. The forward
simulator then readjusts all historic, current and future
mill feed estimates.
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Figure 7. Predicted (blue) and actual time-averaged measurements (orange, red or gray dots). The lower axis displays difference in
absolute error (DAE) relative to time 0. Changes in RMSE between predicted and actual measurements, computed for three dynamic
time windows, are shown in the bottom right corner. This image is available in colour online at: https://doi.org/10.1080/25726668.
2018.1436957.
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Figure 7. Continued

Since the pilot study is based on a historic data-set,
all future observations (wifs , ∀s > t) are known ahead
of time (during a live application, they would not yet
exist). As a result, assessment statistics can be computed
not only describing improvements in historic mill feed
estimates but also in future ones.

The bottom axis in Figure 7(a)–(k) displays the Dif-
ferences in Absolute Error (DAE) between mill feed
estimates (the mean, horizontal line in boxplot) and
available observations. The differences are computed
relative to time 0 (t = 0 h, Figure 7(a)). The height
of the bar represents the magnitude of the movement.
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The colour indicates whether the estimate ismoving to-
wards (green) or away (red) from the actual
observation. Historic mill feed estimates do undergo
significant improvements (Figure 7, s < t left of yellow
bar). These improvements result from updated esti-
mates in already mined and milled blocks. The figure
further shows that future mill feed estimates are being
corrected as well (Figure 7, s > t right of yellow bar).
This correction relates to updated estimates of sur-
rounding blocks. Normally, it is impossible to compute
DAE values ahead of time (s > t). The required obser-
vations are not yet available (grey dots, right of yellow
bar). Again, it is important to stress that the future
observations are only used for validation purposes.

The change in Root Mean Square Error (CRMSE)
between predicted and actual measurements is com-
puted within different dynamic timewindows. The first
and second window focuses on the upcoming 12 h and
24 h (12 h and 24 h ahead of the yellow bar, [t, t +
12/24 h]). The third window encompasses all historic
4 h intervals (grey area). Future predictions improve
on average by about 26% (next 12 h) and 22% (next
24 h). The error in historic estimates reduces on average
by about 72%. A correction of 100% is not desired
since time-averaged noisy observations do not contain
enough information to fully eliminate all remaining
inaccuracies in the blended blocks.

Conclusion

This paper describes the pilot testing of a novel updat-
ing algorithm at the Tropicana Gold Mine. During the
pilot, online mill observations are automatically recon-
ciled against the spatial work index estimates of the Ge-
oMet model. Deviations between predicted and actual
mill performance aremonitored and used to locally im-
prove the GeoMet model. The novelty of the approach
resides in its ability to trace detected deviations back to
the predominant source. The algorithm automatically
handles differences in scale of support, sensor inac-
curacies and observations made on blended material
originating from two or more extraction points.

In order to operate the updating algorithm, actual
observations are to be compared against model-based
expectations (themill feed estimates). Themodel-based
expectations result from the propagation of GeoMet
realizations through a forward simulator. The resulting
realization sets (block and mill feed estimates)are sub-
sequently used to compute empirical covariances. The
covariances describe the link between mill derived ob-
servations and blocks from the GeoMetmodel. There is
noneed to formulate and linearize an analytical forward
observation model, let alone compute its inverse.

A total of 30 updates were performed to assimilate a
week of mill performance data into the GeoMet model.
The level of detail in the mean field increases signif-
icantly as the GeoMet realizations are updated. The

algorithm corrects various local estimation biases re-
sulting from ill-calibrated relationships between sensor
data (XRF and NIR measurements) and work index
values.

The obtained results are validated against readily
available productionmeasurements. Since the pilot was
ran off-line, future mill observations are known ahead
of time (although this information is ignored during
updating). Consequently, validation statistics are com-
puted to evaluate whether updated GeoMet models
result in more accurate mill feed estimates. Over the
course of a week, the RMSE between predicted and
measuredWork Index values drops by about 72%. The
results further indicate that updating causes on average
a reduction in error of about 26% in performance fore-
casts for the next shift (upcoming 12 h). Improvement
in future forecast of up to 68% have been observed.

Although the current implementation of the forward
simulator does adequately describe the relevant opera-
tional features, further work needs to be done.

• Tracking assumptions are to be validated using
e.g. RFID tags (radio frequency identification).

• The material source locations can be more accu-
rately defined. Currently, only the GPS location
of the trucks are recorded. Aerial photographs are
used to derive a set of correction vectors (length
and orientation) linking truck positions to ac-
tual digging locations. Very recently, the high-
precision GPS locations of the loaders and exca-
vators are made available as well. An algorithm
can be written to accurately determine the origin
of each bucket loaded into the truck.

• A support correction algorithm needs to be de-
signed and implemented to adjust the distribution
of Wi values assigned to a truck when material is
reclaimed from a stockpile subdomain. Some ran-
dom noise proportional to the amount of volume
reduction should be added to the characterizing
set. As a result, the uncertainty in the truck would
be larger than the one in the stockpile subdomain.
The statistical consequences of this volume reduc-
tion are currently ignored.

• Equipmentperformancemeasurementsmight start
to drift as critical components are wearing out
(e.g. liners in the ballmill).Machine learning tech-
niques could be applied to automatically correct
for the occurring drift.

• Since the case study is based on an off-line exe-
cution of the algorithm, future predictions were
generated using a ‘tracking-based’ forward simu-
lator. When the algorithm would run online, the
tracking data would only allow to generatemodel-
based equivalents to current andhistoricmeasure-
ments. A second ‘schedule-based’ forward simula-
tor needs to be build to generate production fore-
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casts. The production forecasts are by no means
necessary to run the updating algorithm.

• The applicationof a ‘schedule-based’ forward sim-
ulator allows for a continuous re-evaluation of
operational decisions based on the most up-to-
date information. Production forecasts should be
recorded and validated against performance mea-
surements as soon as they become available. As
such, the performance of the algorithm with re-
spect to generating accurate forecasts is continu-
ously monitored. The performance regarding rec-
onciliation of historic measurements should obvi-
ously be monitored as well.

Future development should further focus on extend-
ing the capabilities of the updating algorithm. The cur-
rent implementation is designed to update a single con-
tinuous attribute (spatial work index) based on a single
continuous measurement variable (mill derived work
index). This measurement variable is either directly
or indirectly related to the attribute of interest. The
algorithm needs to be extended to handle multivariate
attributes, both in the block model as on the measure-
ment side (updating multiple GeoMet estimates simul-
taneously). That is correlated measured variables need
to be jointly considered to update (other) correlated
attributes. Neglecting to do so will result in a loss of in-
formation. Additionally, it would be interesting to up-
date categorical variables such as ore types, lithologies,
weathering zones based on equipment performance or
other sensor measurements.

The application of machine learning algorithms to
regularly recalibrate the relationships between sensor
data and word index values opens up another avenue
of research. A large database of reconciled work index
values is built up as the updating algorithm is operated
over a long period of time. Each resulting block value
is then to be linked with sensor data from neighbour-
ing grade control samples. Both data-sets are then to
be used to regularly retrain the relationship between
sensor data and work index estimates. The retrained
relationship will eventually result in more accurate and
reliable GeoMetmodels. Finally, the gained knowledge,
e.g. a better understanding of the relation between ore
types and hardness (assuming sensor data can be used
to differentiate between ore types), should be trans-
ferred into the long-term mineral resource model on a
regular basis.
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