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When I saw him lying there with his burns, I felt helpless. Could I mean more than a
concerned mother? I started this research with which I can contribute; for that, I will

always be grateful.





Summary

Burns can make patients’ lives quite miserable. Apart from prominent and thickened,
or hypertrophic, scars, the skin may be characterized by contraction. When this con-
traction is so severe that the patient loses joint mobility, it is called contracture. Then a
patient may have difficulties with sports or other daily activities. The consequence can
be an enormous psychosocial burden for the patient.
Understanding contraction mechanisms is essential to improve and optimize the treat-
ment of contractures. This understanding can arise from clinical (in vivo) and experi-
mental (in vitro) observations but can also be explored using mathematical models (in
silico). Mathematical models describe quantitative relations and can explain specific
trends and make predictions. Further, in silico models form an alternative for animal ex-
periments. One such mathematical model is the Biomorphoelastic model for post-burn
contraction [1]. This model arises from conservation laws expressed in partial differ-
ential equations on a continuous (macro) scale. We study this model’s one- and two-
dimensional counterparts.
The biomorphoelastic model for post-burn contraction has multiple steady states, of
which some are unstable for specific parameter values. Therefore, we need a control
system to stabilize and control the process at and around the steady states. In this work,
we predict stability around steady states using linearized models and apply multivariate
analysis to assess the local behavior around these steady states. This way, we avoid the
parametric dependence of stable and unstable solutions and explain the a priori behav-
ior of the solution. The results show that so-called signaling molecules (growth factors,
cytokines, chemokines) involved in wound healing should decay quickly enough for the
model to be stable. Slow signaling molecule decay results in lasting signaling, causing
continued differentiation of cells that contract the tissue and increased collagen depo-
sition that we link to hypertrophic scarring. Furthermore, the model’s convergence is
monotonic, except for low viscosity values, and the numerical method has convergence
order at least O (h2).
There is much variation in the physiological properties of patients, therefore, giving an
enormous uncertainty in post-burn contraction. One wonders, for example, why one
patient develops a severe contracture and another does not. For the modeling, this is ex-
pressed in patient-specific values of the model’s input parameters, which give a patient-
specific set of output variables. A significant challenge is that many patient-specific in-
put parameter values still need to be discovered and better or more consistently docu-
mented in the literature. After all, measurements always contain uncertainty or a margin
of error. It is, therefore, necessary to include uncertainty in the modeling.
We assume statistical distributions for the model’s input parameters and base these on
data from the literature and intuitive arguments. First, we explore the uncertainty in
these input parameters by performing a sensitivity analysis. With the sensitivity anal-
ysis, we explore to what extent the outcome variables are subject to change when pa-
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viii Summary

rameter values are varied and whether the model can make patient-specific contraction
predictions. The analysis shows that parameter sensitivity significantly depends on cell
proliferation rates. If the proliferation rates are equal for different cells, then the equi-
librium collagen concentration significantly affects the outcome variables. This result
leads to the discussion of whether we need to make the distinction between different
collagen types. The analysis using unequal cell proliferation rates draws attention to the
actual contraction mechanism (on a cellular level), and it discusses to what extent tissue
contraction cells (myofibroblasts) proliferate. Further, the analysis provides advice for
therapies. One should focus on the dermal cells and collagen to limit contraction dur-
ing ‘early’ healing. However, to limit scar contraction, one should focus on post-burn
signaling. Further, by performing a feasibility study, we show that the model can show
significantly different contraction intensities for different groups of parameter values.
The groups are chosen to relate to patients of different ages.
A single simulation only provides a possible insignificant scenario from a probabilis-
tic point of view. Therefore, we perform extensive simulations to estimate the mean
outcomes, spreads, and statistical distributions for courses of contraction and patient
discomfort in the first year after the burn. By drawing samples from the input param-
eters’ statistical distributions, we perform Monte Carlo simulations to further explore
these input parameters’ uncertainty. With these Monte Carlo simulations, we determine
correlations between the outputs and inputs and gain further insight into the recipro-
cal dependencies. Through the computations, we treat the output statistically by using
histograms to model probability density functions, which provide graphical insight into
the statistical distribution of the output variables. We then statistically test whether the
outcome follows a particular probability distribution. For example, we use the output
data to estimate the probability that the post-burn contraction will be more than a cer-
tain percentage. This uncertainty quantification method is a significant amount of work
translating into computer-intensive computations, and, therefore, we approach the out-
put variables with Bayesian finite-element trained machine learning as an alternative.
For this, we use relatively small neural networks that give over 99.5% goodness of fit and
spectacular computational accelerations (19354X speedup in 1D and 1815000X speedup
in 2D) compared to the numerical approach. We further illustrate the use of these neu-
ral networks in an ‘online’ application. This application shows how clinicians can be
offered immediate and quick access to finite element simulations and quick estimation
of the probability distribution of the severity of post-burn contraction. In addition to
that, this application makes such estimations accessible to clinicians.
In short, we use a mathematical model that simulates post-burn contraction and patient
discomfort. We study the stability of this model and quantify the uncertainties in input
parameter values through sensitivity analyses and Monte Carlo studies. Because Monte
Carlo simulations are computationally intensive, we approximate the output variables
with neural networks and demonstrate its application. The model is stable when sig-
naling molecules disappear from the tissue quickly enough. Furthermore, it is discussed
whether different collagen types should be added to the model and to what extent tissue-
contracting myofibroblasts proliferate (cell division).



Samenvatting

Brandwonden kunnen het leven van patiënten behoorlijk ellendig maken. Afgezien van
prominente en verdikte of hypertrofische littekens, kan de huid worden gekenmerkt
door contractie. Wanneer deze samentrekking zo hevig is dat de patiënt de gewrichts-
mobiliteit verliest, wordt dit contractuur genoemd. Dan kan een patiënt moeite hebben
met sporten of andere dagelijkse bezigheden. Het gevolg kan een enorme psychosociale
belasting voor de patiënt zijn.
Het begrijpen van samentrekkingsmechanismen is essentieel om de behandeling van
contracturen te verbeteren en te optimaliseren. Dit begrip kan voortkomen uit klini-
sche (in vivo) en experimentele (in vitro) waarnemingen, maar kan ook worden onder-
zocht met behulp van wiskundige modellen (in silico). Wiskundige modellen beschrij-
ven kwantitatieve relaties en kunnen specifieke trends verklaren en voorspellingen doen.
Verder vormen in silico modellen een alternatief voor dierproeven. Een zo’n wiskun-
dig model is het Biomorpho-elastic model for post-burn contraction [1]. Dit model komt
voort uit behoudswetten uitgedrukt in partiële differentiaalvergelijkingen op continue
(macro)schaal. We bestuderen de een- en tweedimensionale tegenhangers van dit mo-
del.
Het biomorfo-elastische model voor contractie na verbranding heeft meerdere stabiele
toestanden, waarvan sommige onstabiel zijn voor specifieke parameterwaarden. Daarom
hebben we een controle systeem nodig om het proces in en rond de stationaire toestan-
den te stabiliseren en te beheersen. In dit werk voorspellen we stabiliteit rond stabiele
toestanden met behulp van gelineariseerde modellen en passen we multivariate ana-
lyse toe om het lokale gedrag rond deze stabiele toestanden te beoordelen. Op deze
manier vermijden we de parametrische afhankelijkheid van stabiele en onstabiele op-
lossingen en verklaren we het a priori gedrag van de oplossing. De resultaten laten zien
dat zogenaamde signaalmoleculen (groeifactoren, cytokines, chemokines) die betrok-
ken zijn bij wondgenezing snel genoeg zouden moeten vervallen om het model stabiel
te houden. Langzaam verval van signaalmoleculen resulteert in blijvende signalering,
wat leidt tot een voortdurende differentiatie van cellen die het weefsel samentrekken en
een verhoogde collageenafzetting die we in verband brengen met hypertrofische litte-
kens. Bovendien is de convergentie van het model monotoon, behalve voor lage viscosi-
teitswaarden, en heeft de numerieke methode een convergentievolgorde van ten minste
O (h2).
Er is veel variatie in de fysiologische eigenschappen van patiënten, wat een enorme
onzekerheid geeft in de contractie na de brandwond. Men vraagt zich bijvoorbeeld af
waarom de ene patiënt een ernstige contractuur ontwikkelt en de andere niet. Voor de
modellering wordt dit uitgedrukt in patiënt-specifieke waarden van de invoerparame-
ters van het model, die een patiënt-specifieke set uitvoervariabelen opleveren. Een be-
langrijke uitdaging is dat veel patiënt-specifieke invoerparameterwaarden nog moeten
worden ontdekt en beter of consistenter moeten worden gedocumenteerd in de litera-
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tuur. Metingen bevatten immers altijd onzekerheid of een foutmarge. Het is daarom
noodzakelijk om onzekerheid in de modellering op te nemen.

We gaan uit van statistische verdelingen voor de invoerparameters van het model en ba-
seren deze op gegevens uit de literatuur en intuïtieve argumenten. Eerst onderzoeken
we de onzekerheid in deze invoerparameters door een gevoeligheidsanalyse uit te voe-
ren. Met de sensitiviteitsanalyse onderzoeken we in hoeverre de uitkomstvariabelen aan
verandering onderhevig zijn als parameterwaarden variëren, en of het model patiënt-
specifieke contractievoorspellingen kan doen. De analyse laat zien dat parametergevoe-
ligheid in belangrijke mate afhangt van cel-proliferatiesnelheden. Als de proliferatie-
snelheden voor verschillende cellen gelijk zijn, heeft de evenwichtscollageenconcentra-
tie een significante invloed op de uitkomstvariabelen. Dit resultaat leidt tot de discussie
of we onderscheid moeten maken tussen verschillende soorten collageen. De analyse
met behulp van ongelijke cel-proliferatiesnelheden vestigt de aandacht op het eigenlijke
contractiemechanisme (op cellulair niveau) en bespreekt in welke mate weefselcontrac-
tiecellen (myofibroblasten) prolifereren. Verder geeft de analyse adviezen voor thera-
pieën. Men moet zich concentreren op de dermale cellen en het collageen om contrac-
tie tijdens ‘vroege’ genezing te beperken. Om littekencontractie te beperken, moet men
zich echter concentreren op signalering (van signaalmoleculen) na het verbranden. Ver-
der laten we, door een haalbaarheidsstudie uit te voeren, zien dat het model significant
verschillende contractie-intensiteiten kan laten zien voor verschillende groepen para-
meterwaarden. De groepen zijn zo gekozen dat ze betrekking hebben op patiënten van
verschillende leeftijden.

Een enkele simulatie geeft slechts een mogelijk onbelangrijk scenario vanuit een pro-
babilistisch oogpunt. Daarom voeren we uitgebreide simulaties uit om de gemiddelde
uitkomsten, spreidingen en statistische verdelingen voor het verloop van contractie en
ongemak voor de patiënt in het eerste jaar na de brandwond te schatten. Door steek-
proeven te trekken uit de statistische verdelingen van de invoerparameters, voeren we
Monte Carlo-simulaties uit om de onzekerheid van deze invoerparameters verder te on-
derzoeken. Met deze Monte Carlo-simulaties bepalen we correlaties tussen de uit- en in-
voer van het model en krijgen we meer inzicht in de onderlinge afhankelijkheden. Door
de berekeningen behandelen we de uitvoervariabelen statistisch door histogrammen te
gebruiken om kansdichtheidsfuncties te modelleren, die grafisch inzicht geven in de sta-
tistische verdeling van de uitvoervariabelen. Vervolgens testen we statistisch of de uit-
komst een bepaalde kansverdeling volgt. We gebruiken de uitvoergegevens bijvoorbeeld
om de kans in te schatten dat de contractie na het verbranden meer dan een bepaald per-
centage zal zijn. Deze methode voor het kwantificeren van onzekerheid is een aanzien-
lijke hoeveelheid werk die zich vertaalt in computer intensieve berekeningen, en daarom
benaderen we de uitvoervariabelen met Bayesiaanse eindige-elementen getrainde ma-
chine learning als alternatief. Hiervoor gebruiken we relatief kleine neurale netwerken
die meer dan 99,5% fitheid en spectaculaire rekenversnellingen opleveren (19354x ver-
snelling in 1D en 1815000x versnelling in 2D) in vergelijking met de numerieke benade-
ring. We illustreren verder het gebruik van deze neurale netwerken in een ‘online’ ap-
plicatie. Deze applicatie laat zien hoe clinici onmiddellijk en snel toegang kunnen krij-
gen tot eindige-elementensimulaties en een snelle schatting van de waarschijnlijkheids-
verdeling van de ernst van huidcontractie. Bovendien maakt deze applicatie dergelijke
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schattingen toegankelijk voor clinici.
Kortom, we gebruiken een wiskundig model dat contractie na het verbranden en on-
gemak voor de patiënt simuleert. We bestuderen de stabiliteit van dit model en kwan-
tificeren de onzekerheden in invoerparameterwaarden door middel van gevoeligheids-
analyses en Monte Carlo-onderzoeken. Omdat Monte Carlo-simulaties rekenintensief
zijn, benaderen we de uitvoervariabelen met neurale netwerken en demonstreren we de
toepassing ervan. Het model is stabiel als signaalmoleculen snel genoeg uit het weefsel
verdwijnen. Verder wordt besproken of verschillende soorten collageen aan het model
moeten worden toegevoegd en in hoeverre weefsel contracterende myofibroblasten pro-
lifereren (celdeling).
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1
General introduction

1.1 Burn injuries and dermal wound healing
Skin burns are a global problem and are the fifth most common cause of non-fatal child-
hood injuries. Yearly estimates are around 180 000 deaths and 11 million burn injuries
that need medical care [2]. Burns are debilitating, life-threatening, and challenging to
assess and manage.
There are many different classifications for burns. For example, a burn can be thermal,
electrical, or chemical. Burns are so different from other wound types that there is a
separate discipline for this class in medical care. Burns come with a generalized increase
in capillary permeability because of heat effects and damage. This increase in capillary
permeability is not seen in any other type of wound [3]. Further, almost all full-thickness
burns leave no skin tissue behind, which leads to scarring.
Post-burn scars may be immature / mature, atrophic / hypertrophic / keloid, stable /
unstable, depigmented (vitiligo) / hyperpigmented, and may also turn malignant [4]. In
addition, scars are subject to change. For example, an immature scar can mature, and
an atrophic scar can become hypertrophic. Post-burn scars are dry and itchy and need
prevention from sunlight exposure.
In recent decades, healthcare has made significant progress so that today, patients can
survive even severe burns. However, these injuries will still significantly impact the qual-
ity of human life because of aesthetic reasons and the contractions that result from them.
Physical, mental, and social complications after a burn can include shock, infection, ex-
treme pain, loss of energy, and prolonged stress. Besides slow wound healing, the pre-
vention of hypertrophic scars and contractures, which always cause a reduction in pa-
tient mobility, are significant challenges in burn treatment [5].
In general, the wound healing process comprises four partly overlapping phases that
usually act upon each other quickly. The first phase, hemostasis, begins almost immedi-
ately after injury and aims primarily at stopping bleeding and initiating the subsequent
response. Burn wound healing passes over hemostasis by cause of burning and cau-
terization of blood vessels. Hence burn wound healing comprises the remaining partly

1
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overlapping phases, which are inflammation (reactive), proliferation (reparative), and
maturation (remodeling). Within several hours after injury, immune cells clear contami-
nants and pathogens and prepare the wound for further protection from bacterial infec-
tion (the inflammatory response). The secreted growth factors that play a significant role
stimulate cells to migrate from the intact peripheral dermis and subcutaneous tissue1 to
the wound. This migration is a hallmark of proliferation; the cells multiply in the wound
area.
The subprocesses during the proliferative phase are re-epithelialization (wound closure),
angiogenesis2, fibroplasia, and wound contraction. Re-epithelialization describes the
resurfacing of a wound with new epithelium (protective layer). The cellular and molec-
ular processes involved in initiating, maintaining, and completing epithelialization are
essential for successful wound closure [6]. Sometimes, re-epithelialization never com-
pletes. Limited or no dermal tissue, including the vital collagen, cells, and vascular net-
works, remains in deep burns. Usually, those wounds will require surgery (skin trans-
plantation) to close the wound.
Fibroplasia encompasses the sub-processes that cause the restoration of the presence
of fibroblasts (cells) and the production of a new temporary extracellular matrix (ECM)
in the injured area (granulation tissue). Collagen type III fills the granulation tissue as a
provisional matrix early. Fibroblasts are the most common cell type in the dermis and
the essential cells in connective tissues. Fibroblasts are responsible for the synthesis of
all ECM elements (collagen production) and can differentiate into myofibroblasts (a fi-
broblast phenotype) stimulated by transforming growth factor β [7]. Myofibroblasts are
responsible for pulling forces in the skin and stimulate, like fibroblasts, both the produc-
tion of the new collagen-rich ECM and the release of matrix metalloproteinases (MMPs).
The group of MMPs can break down every type of collagen found in human tissue and
cleave many signaling molecules (cytokines and growth factors) and their receptors [8,
9]. Myofibroblasts produce a large amount of collagen type III, which the cells attach to
and exert tensile forces. These cell-tensile forces cause the tissue to contract. Usually,
myofibroblasts disappear by apoptosis when the wound closes [10]. If myofibroblasts
persist in a closed wound, they keep exerting tensile forces and show the development
of a hypertrophic scar [11]. The spongy collagen III fibrin network is replaced with a firm
matrix by regenerating collagen type I at a later stage (remodeling). This last phase, in
which the scar maturates and attains a balanced structure, can take years. The resulting
scar has, on average, 50% strength of unwounded skin (within three months) and 80%
on the long-term [12, 13].

1.2 Post-burn contraction
Interestingly, the wound healing process does not stop if the wound is closed. Fibrob-
lasts, myofibroblasts, and collagen deposition play an essential role in post-burn con-
traction, which is one of the common post-burn complications and usually occurs after
healing partial or full-thickness burns. Contraction is an active biological process that

1The skin is the largest organ of our body and it is also a complicated organ. The skin typically consists of
several layers: the top layer is the epidermis, the middle layer is the dermis, and the bottom layer is the
subcutis.

2Angiogenesis is the physical process through which new blood vessels form from pre-existing vessels.



1.3 Mathematical modeling

1

3

decreases an area of skin loss in an open wound because of a concentric reduction in the
wound’s size [4]. In the proliferative phase of wound healing, contraction processes until
full scar maturation, after which contraction can become active again. Wound contrac-
tion is yet visible in minor wounds: the wound’s edges pull in, the wound size reduces,
and the wounded area deforms. In adult patients, wounds can become 20–30% smaller
over several weeks [14]. Skin contraction occurs in the dermal layer of the skin (the der-
mis). Myofibroblasts pull on their immediate environment, and because the cell density
is large around the injured edges, these edges go ‘inward’, reducing and deforming the
environment.
In principle, contraction is a good phenomenon because it decreases the outer surface
area of the wound and hence reduces the possible ingress of contaminants and infec-
tious pathogens. However, it can continue, making it not a solution but a problem for
victims of severe burns.
In severe cases, post-burn contraction takes such a large extent that it can cause lifelong
limited joint mobility. For example, elbow mobility can be limited because of post-burn
contraction, as shown in Figure 1.1.

a b

Figure 1.1: Post-burn contraction in an elbow can lead to contracture. The figure shows that the scar tissue is
under tension, preventing the patient from stretching the arm. In Figure a, we see the marks where the scar
tissue is cut open, after which the arm can be stretched further. In Figure b, we see a piece of skin placed in
the resulting opening. The inserted healthy skin will stretch over time, eventually allowing full elbow function.
The figure is published with the consent of the patient.

Patients may have difficulty exercising or with simple daily activities without medical
care. In these cases, one refers to a contracture for which we wish to prevent its de-
velopment because, mostly, contractures need surgery (scar reconstruction). Reported
prevalence of burn scar contractures are 58.6% at 3–6 weeks and 20.9% at 12 months post
reconstructive surgery after burns.

1.3 Mathematical modeling
Various scientific disciplines study the prevention of contractures, including biology, the
medical sciences, and mathematics. The theory of the physiological evolution of burned
skin contains quantitative connections that can be represented in mathematical rela-
tions. For a couple of decades, several mathematical model frameworks have been set
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up to predict the evolution of post-wounding skin. These models predict the behav-
ior of experimental and clinical wounds and gain insight into which elements of the
wound healing response might substantially influence the contraction [14–20]. Further,
the mathematical models provide an alternative for animal experiments.
The majority of the models can be placed into one of three categories: continuum hy-
pothesis-based models, discrete cell-based models, and hybrid models [17]. Here, dis-
crete cell-based models consider individual cell interactions compared to the contin-
uum models that consider cellular densities in a tissue. Hybrid modeling is classically
defined as coupling a continuous approach with a discrete one to model a complex phe-
nomenon that cannot be described in a standard homogeneous way, mainly because
of its inherent multiscale nature [21]. One subcategory of the continuum (partial differ-
ential equations–based) hypothesis-based models is the mechano-(bio)chemical model.
This formalism and the hybrid model provided the basis for the biomorphoelastic model
we use in this study, which Koppenol developed together with Vermolen [1]. This model
can simulate permanent wound contraction and reproduce the trends observed in real
data.

1.4 Motivation and objectives
There are many developed outcome measures to evaluate contractures and their treat-
ment. However, there are currently no clear indicators for the development of contrac-
tures, and it is challenging to alter the post-burn contraction intensity. A better un-
derstanding of the post-burn contraction mechanisms might improve its treatment and
provide unknown indicators for contractures. Many people have researched the mecha-
nisms in vivo, in vitro, and in silico; however, much remains to be discovered. Today we
can predict permanent contraction with the biomorphoelastic model. Therefore, this
model is ideally suited to further study the already added mechanisms of contraction.
The equations of the biomorphoelastic model for post-burn contraction are nonlinear
and multivariate. Further, multiple steady states are possible. Unfortunately, some of
the steady states might be unstable for specific parameter values, thus requiring a con-
trol system to stabilize and control the process at and around the steady states. There-
fore, one objective of this thesis is to avoid the parametric dependence of stable and
unstable solutions and to understand the a priori behavior of the solution. Our method
predicts stability around steady states using linearized models and applying multivari-
able analysis to assess the local behavior around these steady states.
Further, the biomorphoelastic model for post-burn contraction compromises many pa-
rameters. Some parameter values are known, while others are unknown and must be es-
timated. Although an excellent overview of parameter values has been provided [1], pa-
rameter values vary between patients and even along a piece of the skin sample. There-
fore, two other objectives of this thesis are to show to what extent the model’s outcomes
are subject to change when parameter values are varied and whether the model can
make patient-specific contraction predictions.
The dependency of post-burn contraction on burn wound dimensions (size, depth, lo-
cation) and patient-specific factors (age, gender, amongst other factors) is a reason for
the growing interest in personalized healthcare. To achieve personalized healthcare,
we need many model-based predictions. With the detailed biomorphoelastic model
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for post-burn contraction, we can show which elements significantly influence contrac-
tion, tune these elements, and access the uncertainty by performing Monte Carlo sim-
ulations. However, although this method allows for patient-based predictions that can
support medical staff in decision-making, there is a downside. To include wound depth,
the model must simulate higher dimensions and deal with the curse of dimensional-
ity, leading to even more computer-intensive computations. Hence, the final objective
of this thesis is to speed up the predictions of post-burn scar contractions for medical
purposes.

1.5 Dissertation outline
This thesis presents six studies based on publications. The mathematical model for
which these studies were performed is first presented in Chapter 2, together with the
boundary conditions, the applied numerical methods and implementation, and specific
model outputs. The studies can be divided into three categories of studies performed
in both 1D and 2D: stability analyses, sensitivity analyses, and the application of neural
networks. It was decided to divide the thesis into three parts, leading to the following
color-coded part and chapter outline.

Part I shows the stability analyses for the biomorphoelastic model for post-burn
contraction. Chapter 3 shows the stability analysis for the one-dimensional model
and Chapter 4 shows the stability analysis for the two-dimensional model. The
results in these chapters contribute to Chapters 5 and 6.

Part II shows the sensitivity analyses for the biomorphoelastic model for post-
burn contraction. Chapter 5 shows the sensitivity analysis for the one-dimensional
model and Chapter 6 shows the sensitivity analysis for the two-dimensional model.
The results in these chapters contribute to Chapters 7 and 8.

Part III shows the application of neural networks for predicting post-burn con-
traction. Chapter 7 shows the neural network for the one-dimensional model and
Chapter 8 shows the neural network for the two-dimensional model.

This thesis concludes in Chapter 9.





2
The mathematical model

2.1 Introduction
In this thesis, we conduct several studies, all for the same mathematical model. We refer
to this model as the Biomorphoelastic model for post-burn contraction. An extensive
description of previously developed mathematical modeling frameworks that served as
a basis for this model is given in chapter 2 in [17]. In summary, the biomorphoelastic
model for post-burn contraction is an extension of the model developed by Olsen et al.
[14]. This chapter briefly describes this extension and presents the model for different
dimensions.

2.2 The basis of the model and extensions
The model developed by Olsen et al. [14] contains equations for fibroblasts, myofibrob-
lasts, signaling molecules, and collagen. Furthermore, the dermal tissue is modeled as
an isotropic linear viscoelastic solid. In this model, the fibroblasts are actively motile.
In contrast, in the biomorphoelastic model for post-burn contraction, both fibroblasts
and myofibroblasts are actively motile. The motivation for this is that Thampatty and
Wang have previously shown that both cells are actively motile [22]. As for the random
movement of cells, unlike other models, the modeling employs cell density-dependent
Fickian diffusion instead of linear Fickian diffusion. The motivation for this is that Hillen
and Painter [23] point out that it is far more likely that the random movement of cells
depends on the density of these cells. Furthermore, the degradation of both signaling
molecules and collagen is incorporated into the model employing proteolytic cleavage
by a generic MMP instead of natural decay or very general enzymatic degradation, which
were used in the model developed by Olsen et al. [14]. Finally, in the biomorphoelastic
model for post-burn contraction, the dermis is modeled as an isotropic morphoelastic
solid instead of an isotropic linear viscoelastic1 solid.

1Viscoelasticity is the property of materials that exhibit both viscous (a measure of its resistance to deformation
at a given rate) and elastic characteristics when undergoing deformation.

7
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2.2.1 Morphoelasticity
The biomorphoelastic model for post-burn contraction has been designed for deep tis-
sue injury in which at least the skin’s dermal layer (the dermis) has been damaged. To
understand morphoelasticity, we hold an elastic band at both ends and pull shortthe
pulling results in a stretched elastic ban with a short-term tension. If we let go of the
elastic band, it will likely spring back to its original length (elastic behavior); this depends
on the applied stress. Now, we stretch the elastic band for a more extended period. The
length to which the elastic band springs back then depends on how much we pull and
how long we do. We assume the elastic band does not spring back to its original length
and is permanently stretched (plastic behavior).
Morphoelasticity encompasses the complicated relations between the different states
in one mechanical description. The processes leading to these states may occur simul-
taneously or consecutively. The theory affirms the existence of mappings between the
body in its original state (the undeformed elastic band), the body in its zero stress state
(the elastic band after releasing the pulling stress), and the body in its current state (the
elastic band while it is actively pulled). With these mappings, it is possible to track the
zero-stress state, which reflects the absence of elastic stresses, resulting in a description
of the residual stresses after deformation.
The mapping is based on the following principle [24]: the total deformation is decom-
posed into a deformation because of growth or shrinkage and deformation because of
mechanical forces. In a mathematical context, one considers the following three coor-
dinate systems: X, Xe (t ), and x(t ), which, respectively, represent the initial coordinate
system, the equilibrium at time t that results because of growth or shrinkage, and the
current coordinate system that results because of growth or shrinkage and mechanical
deformation. Assuming sufficient regularity, the deformation gradient tensor is written
by

F = ∂x

∂X
= ∂x

∂Xe

∂Xe

∂X
= AZ, (2.1)

in which the tensor Z represents the deformation gradient tensor because of growth or
shrinkage, and A represents the deformation gradient because of mechanical forces [24–
26]. Figure 2.1 shows the overview of this mapping.

2.3 The (multidimensional) model
The beauty of the biomorphoelastic model for post-burn contraction is that we can sim-
ulate a permanent deformation resulting from post-burn contraction. The results are
promising compared to actual real-life data.
The primary variable in this model is the displacement of the skin, i.e., the variable that
makes us able to determine the surface of the damaged skin. Here we speak of damaged
skin, which means both the wound and, in later stages, the scar since a wound and a scar
is the same entity at a different time. The permanent dermal displacement is because of
the morphoelastic change of the tissue. This displacement generates strains assumed to
be infinitesimally small. In short, the model comprises a system of coupled, nonlinear
partial differential equations (PDEs). Four equations represent biochemical quantities
that play a significant role in skin repair after trauma, such as cell densities and concen-
trations of signaling molecules and collagen. The other equations track the entries of the
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(current coordinate system)

mechanical deformation

(virtual reference configuration)

growth / shrinkage

(initial coordinate system)

Figure 2.1: Overview of the mapping in morphoelasticity. The initial configuration is stress-free and has a co-
ordinate system X, domain Ω0 and domain boundary ∂Ω0. To reach the current configuration with coordinate
system x(t ), domain Ωt and domain boundary ∂Ωt , the deformation gradient tensor F is decomposed into the
deformation gradient A and the deformation gradient tensor Z . The transition from the initial coordinate sys-
tem and the current coordinate system goes through a virtual reference configuration (zero stress state) with
coordinate system Xe (t ). This configuration represents the equilibrium at time t that results from growth or
shrinkage.

strain matrix and the components of the displacement velocity vector. The interaction
between the model variables leads to a reduction in the wound/scar size.
In the following, we first show the model in a compact, multidimensional form. We dis-
cuss the conservation laws for mass and linear momentum and the evolution equation
that describes how the infinitesimal effective Eulerian strain changes. Then, we show
the equations in one-dimensional form. A significant advantage of the one-dimensional
implementation is its short computation time, which allows one to do many simulations
within a reasonable time interval.

Variables An essential model variable is the displacement (u), i.e., the variable that al-
lows us to determine the area of the wound and, in later stages, the scar. This variable is
estimated using a set of other variables that we can divide into biochemical and mechan-
ical. The biochemical variables are the fibroblast density (N ), the myofibroblast density
(M), the signaling molecule density (c), and the collagen density (ρ). Here we use colla-
gen as a collective name for the molecules, fibrils, bundles of collagen, and different col-
lagen types. We use signaling molecules as a collective name for growth factors, such as
transforming growth factor beta (TGF-β), platelet-derived growth factor and connected
tissue growth factor, and cytokines. The signaling molecules are essential in the immune
and inflammation response after wound healing. While these molecules migrate to the
wound, they induce directed chemotactic migration of cells. For the mechanics, we have



2

10 Chapter 2 The mathematical model

the displacement velocity (v ) and effective (remaining) Eulerian strain (ε). The effective
Eulerian strain is a local measure for the difference between the current and virtual der-
mal configurations (see Fig. 2.1). Note that we lose the bold fonts for one-dimensional
variables.

Material time derivative and passive convection The model involves the material time
derivative Dz

Dt = ∂z
∂t + v ·∇z and passive convection z(∇· v ), z ∈ {N , M ,c,ρ, v }. These con-

cepts are introduced because the computational domain is subject to displacement be-
cause of the forces exerted by the cells.

2.3.1 The chemicals
The equations of the chemical response have the general form

Dz

Dt
+ z[∇·v ] =−∇· Jz +Rz , (2.2)

with z ∈ {N , M ,c,ρ}. Here, Jz and Rz denote the flux and the biochemical kinetics of z, re-
spectively. The fluxes for the (myo) fibroblasts result from random walk and chemotaxis,
and the flux of the signaling molecules is only because of diffusion. These functional
forms Jz are

JN =−Dn(N +M)∇N +χN∇c, (2.3)

JM =−Dn(N +M)∇M +χM∇c, (2.4)

Jc =−Dc∇c. (2.5)

Here, Dn/c are the (myo) fibroblast and signaling molecule diffusion constants, and χ is
the chemotactic parameter. Equations (2.3) and (2.4) represent migration towards the
gradient of the signaling molecules [27–29] and cell density-dependent Fickian diffusion
(random walk). Collagen molecules are assumed to have no active transport because
they are large, reducing their diffusivity. Since collagen is extracellular, it is, next to dif-
fusion, not subject to other active migration mechanisms. Hence, Jρ = 0.

The fibroblast proliferation depends on a generic chemokine via an activator/inhibitor
mechanism [30]. Furthermore, myofibroblast differentiation only proceeds in the pres-
ence of the chemokine [11]. Cell death is taken into account via a linear relation. The
myofibroblast dynamics are similar, except that it is assumed that myofibroblasts prolif-
erate only in the presence of the signaling molecules:

RN = r

[
1+ r maxc

a I
c + c

]
[1−κ(N +M)]N 1+q −k1cN −δn N , (2.6)

RM = r

[
[1+ r max]c

a I
c + c

]
[1−κ(N +M)]M 1+q +k1cN −δm M . (2.7)

Here, r,r max and a I
c are the (myo) fibroblast proliferation rate2, proliferation enhance-

2In the current formalism, which we took from [1], the (myo) fibroblast proliferation rates are equal. It is well-
known that myofibroblasts proliferate much less than fibroblasts [31], so we will later vary the myofibroblast
proliferation rate regarding the fibroblast proliferation rate.
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ment factor, and half-maximal enhancement factor, respectively. Further, κ is the crowd-
ing factor [32], q is a constant used to model equilibrium, k1 is the differentiation factor3

[11], and δn/m are the (myo) fibroblast apoptosis (cell death) rates.
The above form of the logistic growth forms needs more justification. We do not always
know the exact mechanism behind many biological processes, let alone a quantitative
description of such a biological mechanism. If others have developed a quantitative
description, reliable estimates of parameter values are often lacking. So Koppenol has
avoided using quadratic terms in the chemical parts of the model as much as possible
unless there is a sound biological reason for this. Therefore, the growth of the (myo)
fibroblasts is taken to the power (1+q) to make the model consistent.
The value of q is a necessary consequence of the other parameter values. Let, therefore,
N , M ,c define the fibroblast, myofibroblast, and signaling molecule equilibria, respec-
tively. If we take M = 0 and c = 0 as the kinetic equilibrium, then solving the reactive
term in equation (2.6) for δn yields:

δn = r [1−κN ]N
q

. (2.8)

The signaling molecule and collagen kinetics describe secretion by (myo) fibroblasts [34,
35], where signaling molecules enhance the collagen secretion [36]. Decay is because of
cleavage by MMPs [8, 9] of which (myo) fibroblasts handle the release, and collagen [37]:

Rc = kc

[
c

a I I
c + c

]
[N +ηI M ]−δc

[N +ηI I M ]ρ

1+a I I I
c c

c, (2.9)

Rρ = kρ

[
1+

[
kmax
ρ c

a IV
c + c

]]
[N +ηI M ]−δρ

[N +ηI I M ]ρ

1+a I I I
c c

ρ. (2.10)

Here, kc/ρ are the signaling molecule and collagen secretion rates, and a I I /IV
c their in-

hibition signaling molecule concentrations. Further, kmax
ρ is the collagen secretion en-

hancement factor [36], and a I I I
c is the signaling molecule concentration inhibiting MMP

release [38]. The parameters ηI and ηI I represent the proportions of myofibroblasts in
the maximum net secretion rates of the signaling molecules/collagen and MMPs, re-
spectively. Further, δc/ρ are the coefficients describing decay because of MMP cleavage.
The generic MMP affecting the above reaction kinetics is always assumed to be at a lo-
cal equilibrium concentration. This modeling choice has avoided even more complexity
and additional unknown parameter values.
Let ρ define the collagen equilibrium. Then, solving the reactive term in equation (2.10)

for ρ yields ρ =
√

kρ/δρ , hence

kρ = δρρ
2 (2.11)

is a necessary consequence for the value of kρ given the other parameter values.

2.3.2 The mechanics
Two PDEs capture the model mechanics for the displacement velocity and the effec-
tive Eulerian strain. The Cauchy stress tensor σ in the displacement velocity equation

3Although myofibroblasts can differentiate back to fibroblasts under the influence of Prostaglandin E2 (PGE2)
[33], we do not consider the re-differentiation of myofibroblasts into fibroblasts.
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is related to the effective Eulerian strain and displacement velocity gradients by a visco-
elastic constitutive relation. The body force f is generated by a pulling force on the ex-
tracellular matrix (ECM) by myofibroblasts, which is proportional to the product of the
myofibroblast cell density and a function of the collagen concentration4:

ρt

(
Dv

Dt
+v [∇·v ]

)
=∇·σ+ f =∇·σ+∇·

(
ξMρ

R2 +ρ2

)
I. (2.12)

Here, ρt represents the total mass density of the dermal tissues, ξ is the generated stress
per unit cell density and the inverse of the unit collagen concentration, and R is the body
force-inhibiting constant. The above equation represents the balance of momentum.
Although many studies neglect inertial effects (the first two terms), the inertia terms are
kept to stay closer to the underlying physics.

The visco-elastic constitutive relation follows the assumption from Ramtani [40, 41],
which incorporates the dependence of the Young’s modulus of skin on the collagen den-
sity. From a mechanical point of view, the tissue is assumed to be isotropic and homo-
geneous, except for a dependency of the stiffness on the local collagen density:

σ=µ1sym(∇v )+µ2(tr(sym(∇v ))I)+ E
p
ρ

1+ν

[
ε+ tr(ε)

ν

1−2ν
I
]

, (2.13)

where µ1 and µ2 are the shear and bulk viscosities, E
p
ρ represents Young’s modulus

(stiffness), and ν is the Poisson’s ratio. Despite possibly large deformations in the tissue,
linear elasticity is used to avoid the requirement of additional input parameters, of which
the value is unknown or, at least, uncertain.

Permanent (plastic) deformation because of the tissue’s microstructural changes is in-
corporated via morphoelasticity, of which the (multidimensional) derivation can be found
in [24]. For the equation, a tensor-based approach was used that is also commonly used
in the growth of tissues (such as tumors). The ‘growth’ contribution, which with a nega-
tive sign models contraction of the tissue, is assumed to be proportional to the product
of the effective Eulerian strain, the (myo) fibroblast cell densities, and to be a function of
the collagen density. In particular, the contraction tensor depends on the product of the
MMP and the signaling molecule concentrations. It is inversely proportional to the col-
lagen density (note that the collagen density drops out because of the linear dependence
of the equilibrium MMP concentration on the collagen density):

Dε

Dt
+εskw(∇v )− skw(∇v )ε+ (tr(ε)−1)sym(∇v ) =−ζ [N +ηI I M ]c

1+a I I I
c c

ε. (2.14)

Here, ζ is the rate of morphoelastic change, i.e., the rate at which the effective strain
changes actively over time.

4On a molecular basis, this myofibroblast pulling is the contraction mechanism which is the interaction be-
tween the actin and myosin filaments that generates their movement relative to one another [39].
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2.3.3 The equations in one-dimensional form
The chemical PDEs in the one-dimensional form are:

∂N

∂t
+ ∂(N v)

∂x
=− ∂

∂x

(
−Dn(N +M)

∂N

∂x
+χN

∂c

∂x

)
+

r

[
1+ r maxc

a I
c + c

]
[1−κ(N +M)]N 1+q −k1cN −δn N , (2.15)

for the fibroblasts,

∂M

∂t
+ ∂(M v)

∂x
=− ∂

∂x

(
−Dn(N +M)

∂M

∂x
+χM

∂c

∂x

)
+

r

[
[1+ r max]c

a I
c + c

]
[1−κ(N +M)]M 1+q +k1cN −δm M , (2.16)

for the myofibroblasts,

∂c

∂t
+ ∂(cv)

∂x
= Dc

∂2c

∂x2 +kc

[
c

a I I
c + c

]
[N +ηI M ]−δc

[N +ηI I M ]ρ

1+a I I I
c c

c, (2.17)

for the signaling molecules, and

∂ρ

∂t
+ ∂(ρv)

∂x
= kρ

[
1+

[
kmax
ρ c

a IV
c + c

]]
[N +ηI M ]−δρ

[N +ηI I M ]ρ

1+a I I I
c c

ρ, (2.18)

for collagen. The mechanical PDEs in the one-dimensional form are:

ρt

(
∂v

∂t
+2v

∂v

∂x

)
= ∂

∂x

(
µ
∂v

∂x
+E

p
ρε

)
+ ∂

∂x

(
ξMρ

R2 +ρ2

)
, (2.19)

for the displacement velocity, and

∂ε

∂t
+ v

∂ε

∂x
+ (ε−1)

∂v

∂x
=−ζ [N +ηI I M ]c

1+a I I
c c

ε, (2.20)

for the effective Eulerian strain.

2.4 The boundary conditions
We locate the x y-plane parallel to the skin’s surface, and

v =
[

v1

v2

]
, and ε=

[
ε11 ε12

ε21 ε22

]
. (2.21)

Variations over the depth of the skin are disregarded; hence the computations are done
on an arbitrary skin depth. Such a configuration can approximate the kinetics of a wound
on a non-curved body part, such as a patient’s chest or back. Hence, we disregard all de-
pendencies on the depth of the burn into the skin.
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If we choose the domain and the initial conditions symmetrical, then the solution in-
herits this property because of the model’s symmetry. Therefore, we can perform cal-
culations on a reduced domain to benefit from a computational workload. We define
the computational domain by Ωx and the computational domain’s boundary by Ωx. We
note that the distance from Ωx to the modeled burn should be ‘sufficiently large’ be-
cause otherwise, there is too much variable diffusion nearby the boundary Ωx. Further,
the computational domain implicitly depends on the time t given that x = x(t ). It is not
allowed to specify any boundary conditions for ρ and ε because of overdetermination
since the equations for ρ and ε are ordinary differential equations for time t .

Let Ωx = Γo
x
⋃
Γh

x
⋃
Γv

x . Here Γo represents the outer nonsymmetrical boundaries, Γh rep-
resents the horizontal symmetrical boundary where y = 0 and Γv represents the vertical
symmetrical boundary where x = 0. For the chemicals, the following boundary condi-
tions hold for all time t and all

x ∈ Γo
x : N (x; t ) = N , M(x; t ) = M , and c(x; t ) = c, (2.22)

x ∈ Γ
p
x : JN /M/c ·n = 0, (2.23)

where p ∈ {h, v} and n is the outward pointing normal vector. We use similar conditions
for the mechanics, that is, for all time t and all

x ∈ Γo
x : v (x; t ) = 0, (2.24)

x ∈ Γ
p
x : v ·n = 0 and (σ ·n) ·τ= 0, (2.25)

where τ is the tangential vector.

2.5 The applied numerical methods and implementation
We solve the model’s equations by the finite element method [42] and implement the so-
lution in MATLAB [43]. Before the derivation of the weak formulation, we add the term
εi , j [∇· v ] for i , j ∈ {1,2} to the left-hand side and the right-hand side of the effective Eu-
lerian strain equations. We multiply the equations by a test function φ(x; t ) ∈ H 1(Ωx)
and integrate over the domain of computation. Then, we apply Gauss’ Theorem and
Reynold’s Transport Theorem, yielding the weak forms. For a derivation of these forms,
we refer to the appendix in Koppenol’s thesis [17]. We note that we proved that the effec-
tive strain tensor is symmetric for all time t ; hence ε21 = ε12 [44].
In a two-dimensional setting, we subdivide the computational domain into a finite num-
ber of m ∈ N nonoverlapping triangles ∆p (i.e., the elements) that are as equilateral as
possible (angles as close to 60 degrees as possible). Let Xh(t ) ⊂ H 1(Ωx) the finite element
subspace and a j , j ∈ {1, . . . ,n}, n ∈N the coordinates of these vertices of the elements. We
choose the Lagrangian basis functions φi ∈ Xh(t ) with φi (a j ; t ) = δi j , with i , j ∈ {1, . . . ,n}
as basis functions for the finite-dimensional subspace Xh(t ), where δi j denotes the Kro-
necker delta function.
In a one-dimensional setting, we subdivide the computational domain into a finite num-
ber of line elements ep = [xp , xp+1]. In this case, we let Xh(t ) the finite element subspace
and x j , with j ∈ {1, . . . ,n + 1} the element vertices, and we choose φi (x j ; t ) = δi j with
i , j ∈ {1, . . . ,n +1} as linear basis functions.
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Note that the following holds for the chosen subspace Xh(t ) ⊂ H 1(Ωx): Dφi
Dt = 0 for all

φi [45]. We simplify the Galerkin equations using this property. We approximate the
integrals over the interior of the elements by a Newton-Cotes rule based on linear basis
functions.
We solve the Galerkin equations using backward Euler time integration, and we use a
monolithic approach with inner Picard iterations to account for the non-linearity of the
equations. In all simulations, the dimension x is in centimeters and t in days. The Pi-
card iterations converge if the maximum of the relative 1-norms of the difference be-
tween successive approximations per variable is smaller than a given bound (10−5 for
one-dimensional studies, and 5× 10−2 for two-dimensional studies). We first solve for
the chemical part of the model and, subsequently, the mechanical part (for some stud-
ies in each iteration); hence, we treat the model’s coupling between the mechanics and
chemicals sequentially. The maximum number of inner Picard iterations differs between
studies and whether the chemicals and the mechanics are solved within a Picard itera-
tion or not. Table 2.1 summarizes these setups for each chapter. We solve the mechanics
as a system of equations in all simulations.

Table 2.1: Setup of Picard iterations in the chapters of this thesis.

Ch. 3 Ch. 4 Ch. 5 Ch. 6 Ch. 7 Ch. 8

All equations together no yes no yes yes yes
# Picard iter. chemicals not set

6
not set

6 10 6
# Picard iter. mechanics 1 not set

The rows show whether the equations are solved together within a Picard iteration, the number of inner Picard
iterations for the chemicals, and the number of inner Picard iterations for the mechanics. Where we did not
set the number of Picard iterations, the Picard iterations continue until the maximum of the relative 1-norms
of the difference between successive approximations per variable is smaller than the given bound.

We approximate the local displacements of the dermal layer (u) with

u(x; t +∆t ) ≈ u(x; t )+v (x; t )∆t , (2.26)

which translates to
ut+∆t

i ≈ ut
i +∆t v t+∆t

i (2.27)

in a one-dimensional setting. For the displacement we use the initial condition u(x;0) =
0, ∀x ∈Ωx,0 in all chapters. Further, we update the mesh (triangulation) in every time
integration step, and we determine the quality of this updated mesh in the two-dimensional
studies by computing

min
ek

∣∣Jek

∣∣/max
ek

∣∣Jek

∣∣ , ek ∈Ω,

with J the Jacobian. In case minek

∣∣Jek

∣∣/maxek

∣∣Jek

∣∣ < 0.5, we perform remeshing. Our
remeshing strategy is described in Chapter 6 as part of that study.
It is well known that the standard Galerkin method may suffer from oscillatory solution
behavior when the equations are convection-dominated for diffusion-convection equa-
tions. We use mass lumping and a semi-implicit flux corrected transport limiter [46]
that enforces the positiveness of solutions so that loss of monotonicity (that is, spurious
oscillations) is suppressed.
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2.5.1 Computational domains, modeled burns, and initial conditions
For the simulations in this thesis, we use different domains of computation. In one-
dimensional simulations, we define the general computational domain by Ωx = (−L,L)
cm, and in two-dimensional simulations, we define the general computational domain
by Ωx = (−L,L)2 cm2, with L ∈ R and Ωx, the closing boundary. Hence, the outer non-
symmetrical boundary Γo corresponds to all pairs (x, y) where either x = L or y = L, the
horizontal boundary Γh to y = 0, and the vertical symmetrical boundary Γv to x = 0.
In the computational domains, we model the burns as Ωw

x = (−Lw ,Lw ) cm, Lw < L (a
piece of a line) in one-dimensional simulations, and Ωw

x = {
(x, y) :

∣∣ x
a

∣∣+ ∣∣ y
a

∣∣≤ 1
}

(a sym-
metrical rotated square) within the square computational domain in two-dimensional
simulations.
Regarding the (burn) initial conditions, we assume those to represent the start of the pro-
liferative phase of post-burn healing. The reasoning is that the inflammatory post-burn
response is a difficult phase for which the biomorphoelastic model for post-burn con-
traction needs adjustments before it can simulate inflammation. During inflammation,
signaling molecules stimulate fibroblast migration; however, myofibroblast differentia-
tion does not happen yet, and hence the computational domain is not yet subject to dis-
placement. Hence, the initial conditions are the same for the myofibroblast cell density,
the displacement velocity density, and the effective Eulerian strain density in all simu-
lations: these densities are initially all zero. We assume that signaling molecules and
fibroblasts are initially present in the damaged area. For this, we define the burn bound-
ary’s steepness size by s, which accounts for the species’ slope on the burn’s boundary.
We model the slopes of the species with sine functions and provide examples of initial
conditions in Chapters 5 and 6. The initial condition of the collagen concentration can
differ as we can assume the burn damaged all collagen or part collagen, or we model a
skin graft in which the collagen concentration can be in equilibrium.

2.6 Relative area of the wound / scar
Because myofibroblasts pull on the surrounding collagen fibers, the tissue contracts and
retracts after these cells disappear. This phenomenon is represented in the resulting
displacement variable (u). We can convert the density of this variable into a relative
density. Suppose the burn initially was 15 cm2 which then contracts to 10 cm2. Then
the relative area changes in percentage from 100% to about 67%. If the resulting scar
retracts asymptotically to 13 cm2, this has a relative area percentage of approximately
87%, with an associated asymptotic contraction value of 13%. We can use the asymptotic
contraction value to detect a future contracture. In our simulations, the displacement
density determines the relative surface area (RSA) of the damaged skin. Figure 2.2 shows
an example of the RSA density and highlights its typical features: the minimum and the
asymptotic values.
The minimum RSA value corresponds with the maximum post-burn contraction. Once
the RSA has reached its minimum, the scar retracts (i.e., myofibroblasts disappear, and
the scar relaxes). After remodeling, the scar no longer changes and ends with a fixed
contraction percentage related to the RSA’s asymptotic value.
In this thesis, the results show the minimum of the relative surface area (RSAmin) (i.e.,
the maximum contraction value) in a time period of one year, the day on which the min-
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Figure 2.2: An example of the relative surface area (RSA) density highlighted with its minimum and asymptotic
values. The minimum value of the RSA corresponds to maximum contraction during healing, and the asymp-
totic value of the RSA corresponds to the fixed percentage of contraction after scar remodeling.

imum relative surface area is reached (RSAday) (i.e., the day after which the wound / scar
retracts), and the relative surface area on day 365 (RSA365) (i.e., the asymptotic contrac-
tion value).

2.7 Strain energy
Contracting wounds and scars cause stress and strain on the skin. We hypothesize that
this stress may signal nerves, which may cause the patient to experience nagging, pain,
or itchy sensations. Hence, we assume that the total amount of strain energy measures
the discomfort a patient experiences. The total strain energy (TSE) is defined by the
integral over the strain energy density (per unit volume) [47]:

Eε(t ) =
∫
Ω

1

2
[ε11σ11 +2ε12σ12 +ε22σ22]

=
∫
Ω

1

2(1−ν2)
E
p
ρ

[
ε2

11 +2νε11ε22 + 1

1+ν
ε2

12 +ε2
22

]
dΩ

=
∫L

0

∫L

0

2

1−ν2 E
p
ρ

[
ε2

11 +2νε11ε22 + 1

1+ν
ε2

12 +ε2
22

]
dxdy.

(2.28)

Here, we used the symmetry of the two-dimensional computational domain and inte-
grated the entire tissue, including the undamaged part. Using Hooke’s law, the strain
energy can be written regarding strain and stress. The integral (2.28) only involves the
elastic part of the tensor σ=σviscous +σelastic.
The one-dimensional version of the TSE is:

Eε(t ) =
∫L

−L

1

2
E

√
ρ(x, t )ε(x, t )2 dx =

∫L

0
E

√
ρ(x, t )ε(x, t )2 dx, (2.29)

where we again used the symmetry of the domain.
Figure 2.3 shows an example of the TSE density and highlights its typical feature: the
maximum value.
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Figure 2.3: An example of the total strain energy (TSE) density highlighted with its maximum value. The TSE’s
maximum value corresponds to the maximum post-burn discomfort a patient might experience because of
contraction.

Throughout this thesis, the results show the maximum of the total strain energy (TSEmax)
(i.e., the maximum discomfort that a patient might experience), and the day on which
the maximum of the total strain energy is reached (TSEday) (i.e., the day after which the
patient experiences a reduction in discomfort because of less internal stress in the skin).



PART I
Stability of the biomorphoelastic
model for post-burn contraction



Introduction to this part

In the following two chapters in this part, we perform stability analyses for the one-
and two-dimensional counterparts of the biomorphoelastic model for post-burn con-
traction. The multivariable multidimensional model has nonlinear equations, and the
equilibria (steady states) might be unstable for specific parameter values, or multiple
equilibria might be possible. Our method to predict stability around equilibria uses lin-
earized equations and applies multivariable analysis to assess the local behavior around
these equilibria. The goal is to avoid the parametric dependence of stable and unstable
solutions and to understand the a priori behavior of the solution.
We use a linear stability analysis with Fourier series, where the transformations repre-
sent perturbations around equilibria. We analyze the nonlinear equations as a system
of equations and provide stability conditions. Here we distinguish between the entire
continuous problem, which represents the actual solution to the system of partial differ-
ential equations (PDEs), and the semi-discrete problem, which represents the solution
of a semi-discrete solution method (i.e., the numerical approximation). In the latter case,
the spatial finite difference method is carried out, whereas the time remains continuous.
The reasoning for this distinguishment is that the stability of the continuous problem
does not always automatically imply the stability of the (semi-) discrete counterpart of
the problem.
The stability of the semi-discrete problem can assess the stability of the entire discrete
system. Lax’s Equivalence Theorem states that a consistent, stable method converges.
The global truncation error tends to zero as the step size tends to zero (as h → 0) if the
local truncation error (i.e., the difference between the derivatives and difference ratios)
tends to zero as the step size goes to zero.
A well-known way to assess numerical stability is by including Gershgorin’s Circle Theo-
rem. This theorem is widely used and very general because it is straightforward to gen-
eralize stability to general, non-equidistant meshes and cases where the input variables
are nonconstant. However, in many examples, the eigenvalue bounds obtained through
Gershgorin’s Circle Theorem are less accurate than the Von Neumann analysis based on
discrete Fourier analysis that provides sufficient conditions for numerical stability [48].
Because of the accuracy and ease of application of the Von Neumann analysis, we ap-
ply this analysis on a uniform grid on the system of linearized equations with constant
coefficients in Chapter 3. In the stability analysis of the two-dimensional model, we
cannot compute the eigenvalues exactly. We, therefore, provide stability conditions us-
ing Gershgorins theorem in Chapter 4. Further, in Chapter 4, we give the eigenvalues
for a specific case. Biologically this means that the equilibria of the effective strain are
determined.
We show that the continuous system’s stability implies the semi-discrete system’s stabil-
ity. Besides the stability conditions, we pay attention to the effects of system instability
regarding real-life post-burn contraction.
The conclusions of this part are presented after the chapters.
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3
Stability analysis of the

one-dimensional model

This chapter is based on the publication from [49]. The results from this chapter con-
tribute to the range of parameter values used in Chapter 5. Videos corresponding to
some figures in this chapter can be found in the online resources for Chapter 3 where
one also finds a data link to the code.

We study the linear stability of the one-dimensional biomorphoelastic model for post-
burn contraction to determine the region in the parameter space at which the system
is still stable. We present stability constraints for the continuous and (semi-) discrete
problems. We show that the truncation error between these eigenvalues associated
with the continuous and the semi-discrete problem is of order O (h2). Next, we per-
form numerical validation of these constraints and provide a biological interpreta-
tion of the (in)stability. The results show that the parameters of the chemical part
of the model need to meet the stability constraint, depending on the decay rate of
the signaling molecules, to avoid unrealistic results. For the mechanical part of the
model, the results show that the components reach equilibria in a (non) monotonic
way, depending on the viscosity value.

3.1 Introduction
In this chapter, we analyze stability around equilibria to study the parametric depen-
dence of stable and unstable solutions for the one-dimensional biomorphoelastic model
for post-burn contraction presented in Chapter 2. Section 3.2 presents the stability analy-
sis and Section 3.3 presents the numerical validation of the stability constraints and a
biological interpretation of (in)stability.
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3.2 Linear stability
We consider the following linearization around the equilibria
(c, N , M ,ρ, v,ε) = (0, N ,0,ρ,0,ε), where N ,ρ,ε ∈R≥0:

∂N̂

∂t
−Dn N

∂2N̂

∂x2 +χN
∂2ĉ

∂x2 − r N
q

((1+q)(1−κN )−κN )N̂

+δn N̂ + rκN
1+q

M̂ −N

[
r · r max

a I
c

[1−κN ]N
q −k1

]
ĉ = 0,

∂M̂

∂t
−Dn N

∂2M̂

∂x2 +δm M̂ −k1N ĉ = 0,

∂ĉ

∂t
−Dc

∂2ĉ

∂x2 +N

[
δcρ− kc

a I I
c

]
ĉ = 0,

∂ρ̂

∂t
+δρρ

2(ηI I −ηI )M̂ −δρρ
2N

(
kmax
ρ

a IV
c

+a I I I
c

)
ĉ +2δρNρρ̂ = 0,

∂v̂

∂t
− µ

ρt

∂2v̂

∂x2 − E
√
ρ

ρt

∂ε̂

∂x
− Eε

2ρt
√
ρ

∂ρ̂

∂x
− ξρ

ρt (R2 +ρ2)

∂M̂

∂x
= 0,

∂ε̂

∂t
+ (ε−1)

∂v̂

∂x
+ζεN ĉ = 0,

(3.1)

where ĉ, N̂ , M̂ , ρ̂, v̂ , and ε̂ are variations around the equilibria. Here we used the equi-
librium requirement kρ = δρρ

2. First, we analyze the linear stability of the continuous
problem and formulate the stability conditions in terms of the input parameters. Then,
we analyze the linear stability of the (semi-) discrete problem.

3.2.1 Stability of the continuous problem
We write the variations around the equilibria in terms of a complex Fourier series,

ẑ(x, t ) = 1

|Ω|
∑
j∈Z

cz
j (t )e2iπ j x , (3.2)

for z ∈ {N̂ , M̂ , ĉ, ρ̂, v̂ , ε̂}, where |Ω| denotes the length of Ω and i represents the unit imag-
inary number.
Substitution of the variations (3.2) into the linearized equations (3.1), multiplication by
e−2iπkx , and integration over Ω gives

ċN
k (t )+Dn N (2πk)2cN

k (t )−χN (2πk)2cc
k (t )+ rκN

1+q
cM

k (t )

− r N
q

((1+q)(1−κN )−κN )cN
k (t )+δncN

k (t )

−N

[
r · r max

a I
c

[1−κN ]N
q −k1

]
cc

k (t ) = 0,

ċM
k (t )+Dn N (2πk)2cM

k (t )+δmcM
k (t )−k1N cc

k (t ) = 0,

(3.3)

for the (myo) fibroblasts,
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ċc
k (t )+Dc (2πk)2cc

k (t )+N

[
δcρ− kc

a I I
c

]
cc

k (t ) = 0,

ċρk (t )+δρρ
2(ηI I −ηI )cM

k (t )−δρρ
2N

[
kmax
ρ

a IV
c

+a I I I
c

]
cc

k (t )

+2δρNρcρk (t ) = 0,

(3.4)

for the signaling molecules and collagen, and

ċv
k (t )+ µ

ρt
(2πk)2cv

k (t )− i
E

√
ρ

ρt
(2πk)cεk (t )− i

Eε

2ρt
√
ρ

(2πk)cρk (t )

− i
ξρ

ρt (R2 +ρ2)
(2πk)cM

k (t ) = 0,

ċεk (t )+ i (ε−1)(2πk)cv
k (t )+ζεN cc

k (t ) = 0,

(3.5)

for the mechanical part of the model. The derivation of parts of equations (3.3) and
(3.5) is given in Appendix 3.4.1. Interchanging the first equation of (3.4) and the second
equation of (3.3), and move these above the first equation of (3.3), (3.3)–(3.5) are in the
form y ′+ Ay = 0 with

A =



A11 0 0 0 0 0
A21 A22 0 0 0 0
A31 A32 A33 0 0 0
A41 A42 0 A44 0 0

0 A52 0 A54 A55 A56

A61 0 0 0 A65 0

 . (3.6)

We determine the eigenvalues of A by solving |A −λI | = 0 for λ, where I represents
the identity matrix. For this, we use the first four diagonal values as pivots, ending
up with a 2-by-2 matrix containing the mechanical part of the model with determi-
nant λ2 − A55λ− A56 A65. Hence the eigenvalues are the first four diagonal entries and

λ= 1
2 A55± 1

2

√
A2

55 +4A56 A65. Note that the system is linearly stable if and only if the real

part of the eigenvalues is non-negative, hence we need:

Dn N (2πk)2 − r N
q

((1+q)(1−κN )−κN )+δn ≥ 0,

Dn N (2πk)2 +δm ≥ 0,

Dc (2πk)2 +N

[
δcρ− kc

a I I
c

]
≥ 0,

2δρNρ ≥ 0,

(2πk)2µ

2ρt
± 1

2

√(
(2πk)2µ

ρt

)2

+4
(2πk)2E

√
ρ

ρt
(ε−1) ≥ 0.

(3.7)

Combining the first requirement with (2.8), gives qδN ≤ κr N
1+q

(k = 0). In addition, it
must hold that δN > 0 and hence κN < 1. The third requirement implies that the model
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obtains stability for δc ≥ kc

a I I
c ρ

. Further, the second and fourth eigenvalues meet the sta-

bility condition Re(λ(A)) ≥ 0 independent of the chosen parameter values, given that the
parameter values are positive. Finally, linear stability is obtained for ε≤ 1, else a saddle
point problem is obtained ifλ ∈R. Note that this is also a physical requirement given that
equation (2.14) only holds for small strains. These last two eigenvalues are real-valued

as long as µ≥
√

ρt E
p

ρ(1−ε)

π (k = 1). If the last-mentioned condition is satisfied for k = 1,
then the eigenvalues are real-valued for other values of k. For all the other conditions,
they hold for all k ∈Z as well. The constant case k = 0 implies that these eigenvalues are
zero, reflecting the trivial case in which no dynamics exist. This also implies that ε= 0 is
a stable equilibrium state with real-valued eigenvalues. We summarize these results in
Theorem 3.2.1.

Theorem 3.2.1. Let {c, N , M ,ρ, v,ε} satisfy eqs. (2.15)–(2.20). Let δn = r (1−κN )N
q > 0

and ρ =
√

kρ/δρ , then:

1. The equilibria (c, N , M ,ρ, v,ε) = (0, N ,0,ρ,0,ε), {N ,ρ,ε} ∈ R>0, are linearly stable if

and only if δcρ ≥ kc

a I I
c

, and qδn ≤ κr N
1+q

and ϵ≤ 1;

2. Given ε< 1, then the eigenvalues are real-valued if and only if

µ≥
√

ρt E
p

ρ(1−ε)

π (k = 1);

Remark 3.2.1. Note that δc ≥ kc

a I I
c ρ

, for k = 0 (constant states). Hence, if constant pertur-

bations are stable, then wavelike perturbations are stable. In case δc is not large enough,
fast oscillating perturbations will vanish, while slow oscillating perturbations will not

vanish and can amplify. Further, if ε< 1 and if µ<
√
ρt E

√
ρ(1−ε)/π, then convergence

from variations around ε will occur in a non-monotonic way over time because the eigen-
values of the linearised dynamical system are not real-valued.

Next, we provide some quantitative examples that illustrate the stability claims. Stability
is warranted if there is a sufficient decay of the growth factor. Monotonicity (of conver-
gence) is obtained if there is sufficient damping in viscous forces.

Example If we let δc = 5×10−4 cm6/(cells g day), kc = 4×10−13 g/(cells day),
a I I

c = 10−8 g/cm3, and ρ = 0.1125g/cm3, then we have δc = 5 × 10−4 ≥ 3.55 × 10−4 =
kc /(a I I

c ρ). Hence, with these parameter values, we meet the stability condition for the
signaling molecules. Further, if we let N = 104 < 106 = κ−1 cells/cm3, δn = 0.002/day,
r = 0.924 cm3q /(cellsq day) and q = log(δN )− log(r (1−κN )/ log(N ) ≈ −0.42, then we

have qδn = −8.4 × 10−4 ≤ 1.9 × 10−4 = κr N
1+q

. Hence, with these parameter values,
we meet the stability condition for the fibroblasts. Note that there is only a distance of
1.45×10−4 cm6/(cells g day) between the left- and right-hand side in the first condition,
and a much larger distance of 1.03× 10−3 between the left- and right-hand side in the
second condition. In addition, substitution of δn = r (1−κN )N

q
into the second equa-

tion of (3.7), and solving for q with k = 0 yields q ≤ κN /(1−κN ) ≈ 0.01, yielding the
upper bound δn < 1.004 (with the chosen parameter values). Given that the doubling
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time (DT) of fibroblasts ranges from 18 to 20 h [50, 51], and that the average lifespan
of fibroblasts varies between 40 and 70 population doublings (PD) [51, 52], using the
formula δn = (ln2)/(PD×DT/24), yields the save range 0.0119 ≤ δn ≤ 0.0231 for the fi-
broblast apoptosis rate.

3.2.2 Stability of the (semi-) discrete problem
We apply the Von Neumann analysis on a uniform grid on the system of linearized equa-
tions with constant coefficients (3.1). The finite difference method gives:

λNk =−Dn N
Nk−1 −2Nk +Nk+1

h2 +χN
ck−1 −2ck + ck+1

h2

+
[
δn − r N

q
((1+q)(1−κN )−κN )

]
Nk + rκN

1+q
Mk

−N

[
r · r max

a I
c

[1−κN ]N
q −k1

]
ck ,

λMk =−Dn N
Mk−1 −2Mk +Mk+1

h2 +δm Mk −k1N ck ,

λck =−Dc
ck−1 −2ck + ck+1

h2 +N

[
δcρ− kc

a I I
c

]
ck ,

λρk = δρρ
2(ηI I −ηI )Mk −δρρ

2N

(
kmax
ρ

a IV
c

+a I I I
c

)
ck +2δρNρρk ,

(3.8)

for the chemical part of the model, and

λvk =− µ

ρt

vk−1 −2vk + vk+1

h2 − E
√
ρ

ρt

εk+1 −εk−1

2h

− Eε

2ρt
√
ρ

ρk+1 −ρk−1

2h
− ξρ

ρt (R2 +ρ2)

Mk+1 −Mk−1

2h
,

λεk = (ε−1)
vk+1 − vk−1

2h
+ζεN ĉk ,

(3.9)

for the mechanical part of the model. Let

zk =
n−1∑
β=1

ẑβe−2πβkhi , (3.10)

for z ∈ {N , M ,c,ρ, v,ε}. Substitution of (3.10) in (3.8)–(3.9), subdivision by e−2πβkhi , and
using Euler’s formula and 2−2cos(2πβh) = 4sin2(πβh) results in

λN̂β = N

h2 4sin2(πβh)
[
Dn N̂β−χĉβ

]+[
δn − r N

q
((1+q)(1−κN )−κN )

]
N̂β

+ rκN
1+q

M̂β−N

[
r · r max

a I
c

[1−κF N ]N
q −k1

]
ĉβ,

(3.11)

for the fibroblasts,
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λM̂β =
[

Dn N

h2 4sin2(πβh)+δm

]
M̂β−k1N ĉβ,

λĉβ = Dc

h2 4sin2(πβh)ĉβ+N

[
δcρ− kc

a I I
c

]
ĉβ,

λρ̂β = δρρ
2(ηI I −ηI )M̂β−δρρ

2N

[
kmax
ρ

a IV
c

+a I I I
c

]
ĉβ+2δρNρρ̂β,

(3.12)

for the myofibroblasts, the signaling molecules and collagen, and

λv̂β = µ

ρt h2 4sin2(πβh)v̂β+ i
E

√
ρ

ρt h
sin(2πβh)ε̂β

+ i
Eε

2ρt
√
ρh

sin(2πβh)ρ̂β+ i
ξρ

2ρt (R2 +ρ2)h
sin(2πβh)M̂β,

λε̂β =−i
(ε−1)

h
sin(2πβh)v̂β+ζεN ĉβ,

(3.13)

for the mechanical part of the model. The derivation of parts of equations (3.11) and
(3.13) is given in Appendix 3.4.2. The equations (3.11)–(3.13) are in the formλz =C z with
the matrix C as in (3.6). Hence, as before, we found the eigenvalues analytically. Note
that the discrete system is linearly stable if and only if the real part of the eigenvalues is
non-negative, hence we need:

Dn N

h2 4sin2(πβh)− r N
q

((1+q)(1−κN )−κN )+δn ≥ 0,

Dn N

h2 4sin2(πβh)+δm ≥ 0,

Dc

h2 4sin2(πβh)+N

[
δcρ− kc

a I I
c

]
≥ 0,

2δρNρ ≥ 0,

2µ

ρt h2 sin2(πβh)± 1

2

√(
µ

ρt h2 4sin2(πβh)

)2

+4
E

√
ρ

ρt h2 (ε−1)sin2(2πβh) ≥ 0.

(3.14)

To guarantee linear stability, the first requirement states qδN ≤ κr N
1+q

, given δn = r (1−
κN )N

q
. The third requirement states δcρ ≥ kc

a I I
c

. The second and fourth eigenvalues

meet the stability condition independent of the chosen parameter values, given that the
parameter values are positive. Finally, for the discrete problem, linear stability is also
obtained for ε≤ 1, and since

4
E

√
ρ

ρt h2 (1−ε)sin2(2πβh) ≥ 0, (3.15)

stability is guaranteed for all h ∈ R>0. Hence, we have demonstrated that if the equilib-
rium is stable in the continuous problem, it is also stable in the semi-discrete problem.
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There exists a consistency between the stability criteria of the continuous problem and
the stability criteria of the discrete problem. We show this consistency by writing sin2(x)
as a Taylor series. Substitution into the third and last equation in (3.14) yields:

Dc (2πβ)2 +O (h2)+N

[
δcρ− kc

a I I
c

]
≥ 0,

(2πβ)2µ

2ρt
+O (h2)± 1

2

√(
(2πβ)2µ

ρt
+O (h2)

)2

+4
(2πβ)2E

√
ρ

ρt
(ε−1)+O (h2) ≥ 0.

(3.16)

Comparison to the third and last equation of (3.7)

Dc (2πk)2 +N

[
δcρ− kc

a I I
c

]
≥ 0,

(2πk)2µ

2ρt
± 1

2

√(
(2πk)2µ

ρt

)2

+4
(2πk)2E

√
ρ

ρt
(ε−1) ≥ 0,

(3.17)

yields a difference in eigenvalues of order O (h2). Note that in the same way, a difference
of order O (h2) follows for the first two equations of (3.7) and (3.14).
Furthermore, the last equation in (3.14) implies that for real-valued eigenvalues, we need

µ2

ρ2
t h4

42 sin4(πβh) ≥ 4
E

√
ρ

ρt h2 (1−ε)sin2(2πβh). (3.18)

Writing sin2(2πβh) = 4sin2(πβh)cos2(πβh), multiplication by
ρ2

t h2

42 sin4(πβh)
gives

µ2 ≥ ρt h2E
√
ρ(1−ε)

cos2(πβh)

sin2(πβh)
. (3.19)

Hence the numerical criterium

µ≥ h

tan(πβh)

√
ρt E

√
ρ(1−ε). (3.20)

For consistency, we have

lim
h→0

h

tan(πβh)
= lim

h→0

πβh

tan(πβh)
· 1

πβ
= 1

πβ

and h
tan(πβh) ≤ 1

πβ , for β = 1, . . . ,n − 1 (hn = |Ω|). Hence, for monotonic convergence
for β = 1, we see that the convergence is consistent with the convergence of the fully
continuous model for h → 0. We summarize the results in Theorem 3.2.2.

Theorem 3.2.2. Let {c, N , M ,ρ, v,ε} satisfy the semi-discrete spatial finite differences ver-
sion of eqs. (2.15)–(2.20). Then the fully continuous problem stability implies stability
in the semi-discrete formulation, regardless of the step size. Furthermore, monotonic1

convergence in the fully continuous problem implies monotonic convergence in the semi-
discrete problem formulation, regardless of the step-size.
1If a sequence is either non-increasing or non-decreasing, it is called monotonic.
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Corollary 3.2.1. Let {c, N , M ,ρ, v,ε} satisfy the semi-discrete spatial finite differences ver-

sion of eqs. (2.15)–(2.20). Let δn = r (1−κN )N
q

and ρ =
√

kρ/δρ , then the equilibria are

unconditionally stable for the trapezoid rule and the Euler backward method as long as

δcρ ≥ kc /a I I
c and qδn ≤ rκN

1+q
. Furthermore, the Euler backward method is A-stable.

Remark 3.2.2. It is possible that the semi-discrete yields monotonic convergence, whereas
the continuous problem does not. The reason for this is that h

tan(πβh) ≤ 1
πβ . Hence the

inequality for the continuous problem is sharper than for the semi-discrete problem.

3.3 Numerical validation
To experimentally assess the convergence of the numerical method (see Section 2.5), we
use a computational domain of 10 cm in which we model a 4 cm large wound. To account
for the steepness of the gradients of the initial fibroblast cell, signaling molecule, and
collagen densities, we use an interval of 1 cm over which the initial condition varies be-
tween its equilibrium and zero. Within the wound, we assume that there are 2000 fibrob-
last cells/cm3, 10−8 g/cm3 signaling molecules, and 0.01125 g/cm3 collagen present. We
model the gradient of the steepness area by sine functions. We divide the computational
domain in n elements, where n ∈ {41,81,161, 321,641,1281}. For each simulation, we
define ∆t = h2, where h is the size of the elements, and simulate post-burn contraction
for one day. In each simulation, we report the densities of the variables (the solutions)
and the relative surface area (RSA) density. We computed the convergence order results
as follows. Let lim

h→0
zh(x,1) = z(x,1) denote the true density of variable z ∈ {N , M ,c,ρ, v,ε}

on day 1 and z0.0078(x,1) =: zh/r the solution in the last simulation (i.e., the reference,
which has been computed using the highest numerical resolution). We approximate the
errors ϵz (h) := ∫ |z − zh |dx of the solutions on the full computational domain. Since we
are interested in the wound boundary, we approximate the errors of the solutions on the
wound boundary in particular. For this, we use the following error definition:

ϵz
|41|(h) =

41∑
i=1

∣∣zh/r (xi ,41)− zh(xi ,41)
∣∣ , (3.21)

where the grid-points xi ,n correspond to the grid-points in the simulation with n = 41
nodes. This error is a variant of the L1-norm. Similarly, we define

ϵz
L1 (h) = h

n∑
i=1

∣∣zh/r (xi ,n)− zh(xi ,n)
∣∣ , (3.22)

ϵz
L2 (h) =

√
h

n∑
i=1

(
zh/r (xi ,n)− zh(xi ,n)

)2. (3.23)

Figure 3.1 shows some results for error ϵv
|41|, where we show the relations of the errors

with the element size h for the displacement velocity and the RSA error.
We see that the absolute error of the displacement velocity decreases consistently as h
decreases in Figure 3.1a. The average slope of this graph is 2.1882; hence the order of
convergence is about O (h2). Further, we see that the absolute RSA error decreases con-
sistently as h decreases in Figure 3.1b. The average slope of this graph is 2.2092, showing
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Figure 3.1: Numerical validation of convergence. Shown are the logarithm of the step size h versus the loga-
rithm of the absolute displacement velocity density error on the computational domain on a fixed number of
grid points (a) and versus the logarithm of the absolute relative surface area (RSA) error (b).

an order of convergence of about O (h2) as well. We note that all averaged slopes of the
logarithms of the absolute errors of the variables and the RSA show an overall consistent
convergence of order O (h2). One finds these slopes in Table 3.1.

Table 3.1: Overview of the averaged slopes.

Variable ϵ|41| ϵL1 ϵL2 ϵbound ar y Averaged

N 2.1843 2.0160 1.9701 2.1850 2.0889
M 2.1735 2.1203 2.0961 2.1892 2.1448
c 2.1900 2.0964 2.0675 2.0929 2.1117
ρ 2.1911 2.0626 1.9211 2.1708 2.0864
v 2.1882 2.1891 2.1911 2.1189 2.1718
ε 2.2283 2.2301 2.2521 2.2403 2.2377

The slopes correspond to variable errors on the full computational domain and the wound boundary. The
columns show slopes for the different errors, and the rows show the averaged slopes for the variables. The last
column shows the averaged slopes of the rows. The reference is the solution in which h = 0.0078.

To validate the model’s stability, we perturb the initial conditions around equilibria using
sine functions, and we vary the parameters δc and µ. We use n = 500 elements to divide
the computational domain between 0 and 1, representing half a domain of the modeled
skin on which we perform computations. In all simulations, we use a step of∆t = 5×10−1

day for time integration (when not stated otherwise), and we fix all parameter values
except for δc and µ. Table 3.2 shows the values of the fixed parameters.

Table 3.2: Overview of the parameters used for the simulations.

Symbol Value Dimension Reference

Dn 10−7 cm5/(cells day) [53]
Dc 2.88×10−3 cm2/day [54]
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Table 3.2: (continued)

Symbol Value Dimension Reference

χ 2×10−3 cm5/(g day) [55]
kc 4×10−13 g/(cells day) [14]
r 9.24×10−1 cm3q /(cellsq day) [50] & [56]
r max 2 - [57]
kρ 7.6×10−8 g/(cells day) [NC]
kmax
ρ 10 - [14]

a I
c 10−8 g/cm3 [58] & [14]

a I I
c 10−8 g/cm3 [14]

a I I I
c 2×108 cm3/g [38]

a IV
c 10−9 g/cm3 [59]

ηI 2 - [60]
ηI I 5×10−1 - [1]
k1 1.08×107 cm3/(g day) [7]
κ 10−6 cm3/cells [32]
q −4.151×10−1 - [NC]
δn 2×10−2 /day [14]
δm 6×10−2 /day [61]
δc 5×10−4 cm6/(cells g day) [14]
δρ 6×10−6 cm6/(cells g day) [61]
N 104 cells/cm3 [14]
M 0 cells/cm3 [14]
c 0 g/cm3 [61]
ρ 1.125×10−1 g/cm3 [14]
ρt 1.09 g/cm3 [62]
µ 102 (N day)/cm2 [1]
E 2.1×102 N/((g cm)0.5) [63]
ξ 4.4×10−2 (N g)/(cells cm2) [64] & [65]
R 9.95×10−1 g/cm3 [1]
ζ 4×102 cm6/(cells g day) [1]

Shown are the symbols, the values, the dimensions, and the references. Here NC denotes that the parameter
value is a consequence because of the chosen values for other parameters. This table also shows the parameter
values for δc and µ that are used for the convergence study.

For the initial conditions, we vary the wavenumber k using three levels (1, 5, and 10). We
perturb the fibroblast, collagen, displacement velocity and effective strain initial con-
ditions with sine functions with amplitudes 10 cells/cm3, 10−2 g/cm3, 0.05 cm/day and
0.5, respectively. We note that, in equilibrium, fibroblasts and collagen fibers are present.
For the myofibroblast and signaling molecule initial conditions, we use uniform splines
with 2k+1 knots with values 3 and 6 cells/cm3 for the myofibroblasts, and 0.5×10−15 and
2×10−15 g/cm3 for the signaling molecules. This way, we ensure that the myofibroblast
cell density and signaling molecule density values are positive.

For stability, Theorem 3.2.1 requires that δc ≥ kc

a I I
c ρ

in case k = 0. Further, given that the
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equilibrium density of the effective strain is less than 1, eigenvalues are real-valued if and

only if µ ≥
√
ρt E

√
ρ(1−ε0)/π in case k = 1. We choose to vary the signaling molecule

decay rate δc using three levels (2×10−4, 3×10−4 and 5×10−4) cm6/(cells g day), where
the first two values do not meet the stability condition. We vary the viscosity parame-
ter µ using two levels (1 and 100) (N day)/cm2. For the first value, the corresponding
eigenvalue is not real-valued.

3.3.1 Stable values

In the first simulation we take δc = 5×10−4 cm6/(cells g day) and µ = 100 (N day)/cm2

and simulate for 400 days. Figure 3.2 shows the evolution of the variable densities for
this setup.

The displacement velocity density rearranges to negative values, shown in Figure 3.2a.
As the density moves below zero, the wave’s amplitude initially increases, after which the
density moves gradually toward the equilibrium v = 0 cm/day. Unlike the displacement
velocity density, the effective strain density does not change sign, shown in Figure 3.2b.
The values on the boundaries of the computational domain initially move away from the
equilibrium, where all other values gradually move toward the equilibrium ε ≈ −0.05.
The boundary condition fixes the signaling molecule density at equilibrium on the left
boundary of the computational domain. On the right boundary, the density increases in
the first days, after which it decreases to the equilibrium c = 0 g/cm3, shown in Figure
3.2c. Because of the negative values of the displacement velocity density after 12 hours,
the mesh moves to the left, most evident in the evolving fibroblast cell density, shown in
Figure 3.2d. During the simulation, the fibroblast cell density displaces to the left, and
values above the equilibrium gradually move toward the equilibrium N = 104 cells/cm3.
The fibroblast cell density moves away from the equilibrium on the right boundary of
the computational domain as the fibroblasts differentiate into myofibroblasts because of
the increased signaling molecule density. After the signaling molecule density is almost
zero around the right boundary on day 30, the fibroblast cell density moves toward the
equilibrium, reaching it fully around day 400. The effect is the same for the myofibroblast
cell density, where the density moves to the left and gradually toward the equilibrium
M = 0 cells/cm3, shown in Figure 3.2e. Only the values on the right boundary move
away from the equilibrium in the first ten days because of the differentiated fibroblasts.
The collagen density evolution is similar to the effective strain density. However, the
effect of the local displacements seems more significant for collagen, and it takes much
longer before the density reaches the equilibrium ρ = 0.1125 g/cm3, shown in Figure
3.2e. Overall, the model behaves stable given these stable parameter values.

From a biological perspective, minor variations in the number of (myo)fibroblast cells
and disturbance of signaling and collagen already initializes wound healing in which
contraction appears for 100 days. If there is a disruption in the collagen concentration,
the skin recovers this almost immediately. Recovering after signaling disturbance takes
longer. Further, the skin’s local displacements move toward the center of the wound or
the direction of the wound boundary.
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Figure 3.2: Evolution of the perturbed variable densities for δc = 5× 10−4 cm6/(cells g day) and µ = 100 (N
day)/cm2. The plots show the displacement velocity (a), the effective strain (b), the signaling molecules (c),
the fibroblasts (d), the myofibroblasts (e), and collagen (f).

3.3.2 Unstable signaling molecule decay
The simulations where we take k = 1, δc = 2× 10−4 cm6/(cells g day) and µ = 100 (N
day)/cm2 show the following. At first, during time integration, the chemicals (almost)
reach healthy equilibria. The signaling molecule, myofibroblast cell, fibroblast cell, and
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collagen densities reach equilibrium around days 250, 390, 650, and 650, respectively.
Further, the displacement velocity and effective strain densities reach equilibria within
15 days. However, from day 660, the signaling molecule density oscillates. The fibrob-
last cell density oscillates from day 650, and the myofibroblast cell density from day 638.
Shortly after the collagen density seems to reach equilibrium around day 650, the den-
sity explodes and no longer decreases. Because of singular matrices, we ended this sim-
ulation. The Picard iterations did not converge, and no plots were available because of
NaN’s in all the solutions. We see the same where k ∈ {5,10}.
Theoretically, if the human body or an external factor reduces the decay rate of signaling
molecules too much, this does not cause the skin to rupture. However, after a few years,
the secretion of signaling molecules can increase significantly, causing such problems.
Present fibroblasts fully differentiate into myofibroblasts. The scar will undergo a severe
contraction, and collagen will cause tissue to rupture because of excessive production.
We believe that the human body protects against lowering the decay rate of signaling
molecules to this extent to prevent such a non-realistic occurrence.

3.3.3 Complex eigenvalues
In further simulations we take δc = 5× 10−4 cm6/(cells g day) and µ = 1 (N day)/cm2

and simulate for 600 days. Note that we meet the chemical stability condition and focus
on the effect of complex eigenvalues in the model’s mechanical part. We initially use a
timestep of ∆t = 0.01, change that to ∆t = 1 after two days, and to ∆t = 2 after 50 days.
Figure 3.3 shows the results for k = 1.
Initially, the displacement velocity density oscillates around zero, moving the mesh to
the left and right, shown in Figure 3.3a, and the effective strain density oscillates around
the (new) equilibrium, shown in Figure 3.3b. The displacement velocity wave’s ampli-
tudes initially increase; however, they decrease shortly afterward. The effective strain
wave’s amplitudes decrease gradually. The displacement velocity and the effective strain
densities reach the equilibria within a few days, the displacement velocity density reach-
ing the equilibrium v = 0 cm/day first. Note that these results both confirm the non-
monotonic convergence from the variations around ε stated in Theorems 3.2.1 and 3.2.2.
Subfigures 3.3c–f show that the chemical densities reach equilibria within 600 days, af-
ter which the densities remain in equilibrium. We further see the moving mesh. While
the displacement velocity density oscillates, the chemical densities move from the right
to the left and back until the densities move gradually toward the equilibria. First, the
signaling molecule density reaches equilibrium around day 60, shown in Figure 3.3c.
Around day 120, the myofibroblast cell density reaches equilibrium, shown in Figure
3.3e. When the displacement velocity density reaches equilibrium, the fibroblast cell
density above the equilibrium decreases, shown in Figure 3.3d. The fibroblast cell den-
sity below the equilibrium increases, except for the fibroblast cell density around the
right boundary of the computational domain, representing the center of the portion of
skin that we model. Around the right boundary, the fibroblast cell density decreases until
about 23 days, increasing toward the equilibrium. The collagen density changes calmly:
the density moves gradually toward the equilibrium after shifting to the left, shown in
Figure 3.3f.
Where k = 5 (figures not shown), the results show that increasing the wavenumber makes



3

34 Chapter 3 Stability analysis of the one-dimensional model

ba

c

e f

d
10-15 104

1
-0.5

0

0.5

0.2 0.4 0.6 0.80

x (cm)

0.999

1

1.001

0.105

0.11

0.115

0.12

0.2 0.4 0.6 0.8 10

0.2 0.4 0.6 0.8 10

x (cm)

x (cm)

0.2 0.4 0.6 0.8
0

2

4

6

10

ρ
 (

g
/c

m
³)

M
 (

c
e

lls
/d

a
y
)

x (cm)

0

0

1

2

0.2 0.4 0.6 0.8 10

N
 (

c
e

lls
/c

m
³)

c
 (

g
/c

m
³)

x (cm)

-2

-1

1

0.2 0.4 0.6 0.8 10

v
 (

c
m

/d
a

y
)

ε

x (cm)

Day 0 Day 0.13 Day 4 

Day 11 Day 46 Day 120

Day 0 Day 0.13 Day 4 

Day 11 Day 46 Day 600

Day 0 Day 0.13 Day 0.27

Day 32 Day 140 Day 600

Day 0 Day 0.13 Day 0.34

Day 4 Day 11 Day 60

Day 0 Day 0.01 Day 0.06

Day 0.2 Day 0.32 Day 1.15

Day 0 Day 0.04 Day 0.14

Day 0.26 Day 0.4 Day 1

Figure 3.3: Evolution of the perturbed variable densities for δc = 5 × 10−4 cm6/(cells g day) and µ = 1 (N
day)/cm2. The plots show the displacement velocity (a), the effective strain (b), the signaling molecules (c),
the fibroblasts (d), the myofibroblasts (e), and collagen (f).

the initial increase in amplitudes in the displacement velocity density smaller; this am-
plitude initially increases around 15 minutes, after which it decreases while the density
oscillates around the equilibrium. Fading out the waves takes more time, here about
4.8 hours, compared to 1.5 hours where k = 1, and the local displacements are much
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smaller. The other densities change similarly to where k = 1, except for some features.
Equilibria are reached around days 112, 210, and 600 for the signaling molecule density,
the myofibroblast cell density, and the fibroblast cell and collagen densities, respectively,
the first two later than where k = 1. The fibroblast cell density waves disappear faster
than where k = 1, and the cell density moves faster toward the equilibrium. The smaller
local displacements are visible in the plots of the chemicals. We have seen that the sig-
naling molecule density shifts to the left between 0 and 3 hours and right between 3 and
8 hours. Further, the density decreases gradually toward the equilibrium, and the waves
have already started fading out on day 4.
Comparing the results from the simulation where k = 10 (figures not shown) to the sim-
ulations where k ∈ {1,5}, we conclude the perturbations disappear faster for higher fre-
quencies and that initially, the chemical and the effective strain densities move faster
toward the equilibria. In addition, the initial increase in the signaling molecule wave’s
amplitude is larger for smaller k. Taken these numerical results together, we can con-
firm that the one-dimensional biomorphoelastic model for post-burn contraction is sta-
ble given that δc ≥ kc /(a I I

c ρ), even for complex eigenvalues.
From a biological perspective, a significant viscosity value mimics an extensive amount
of damping, and this damping term makes the equation for the displacement velocity
more ‘diffusive.’ A diffusion equation satisfies a maximum principle. We can only as-
sume the extremes on the domain’s boundary unless the solution is constant. This prin-
ciple implies that the solution must behave more monotonically for large viscosities, as
shown by Figure 3.2a. A small value in the viscosity makes the equation for the displace-
ment velocity less diffusive so that the boundary of the computational domain does not
bound to the extremes or initially, as shown by Figure 3.3a. Here, the modeled medium
is less resistant to the rate of deformation. Given the initial fluctuation in the displace-
ment velocity density, this results in a back-and-forth movement in the displacement
and a direct effect in the stress (effective strain) proportional to the shear deformation.

3.3.4 Unstable signaling molecule decay rate not too low
As stated before, the model can numerically be unstable when δc < kc /(a I I

c ρ). How-
ever, we have seen that sometimes for low signaling molecule decay rates not too far
below the stated lower bound, the model still converges. In the last simulation we set the
wavenumber to k = 10, we take δc = 3×10−4 cm6/(cells g day) and µ= 100 (N day)/cm2,
and we simulate for 1000 days. Figure 3.4 shows some early results of the simulation.
The displacement velocity density (figure not shown) reaches equilibrium within ten
days, and the effective strain density around day 20. However, the perturbations are
still visible. The myofibroblast cell density evolves calmly for the first 65 days, shown in
Figure 3.4a. The myofibroblast wave’s amplitude decreases, and the density moves to-
ward equilibrium. The signaling molecule density evolves differently, shown in Figure
3.4b. Initially, the signaling molecule wave’s amplitude decreases rapidly within one day,
shown in Figure 3.5. However, on approximately day 9, the upper bound of the density
surpasses the initial upper bound. The signaling molecule density keeps increasing until
day 215, affecting the (myo)fibroblast cell densities and the collagen density.
As mentioned, the maximum of the signaling molecule density continues to increase.
Figure 3.5 shows how this increase affects the chemicals. The increasing maximum in-
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Figure 3.4: (early) Evolution of the perturbed myofibroblast cell density (a) and signaling molecule density (b)
for δc = 3×10−4 cm6/(cells g day) and µ= 100 (N day)/cm2 and k = 10.

creases to day 215 with a value of c ≈ 1.3× 10−10 g/cm3, shown in Figure 3.5a. In the
meantime, the (myo)fibroblast waves’ amplitudes decrease significantly within 4.5 days
and the cell densities move toward the corresponding equilibria (N (x) ≈ 104 cells/cm3

on day 25 and M ≈ 0.16 cells/cm3 on day 50), shown in Figures 3.5b–c. The cell densities
remain nearby equilibria until these move away on days 115 and 80 for the fibroblasts
and the myofibroblasts. For the perturbed collagen density, it takes longer for the in-
creased maximum of the signaling molecule density to take effect. The wave’s amplitude
decreases during the first 100 days, shown in Figure 3.5d. However, the density’s maxi-
mum increases from day 120 (not visible). Unlike the rapid decrease in other densities
waves’ amplitudes, decreasing the collagen density wave’s amplitude takes more time.

After the signaling molecule density maximum decreases from day 215 on, the myofi-
broblast cell density, the collagen density, and the fibroblast cell density keep moving
away from their equilibria until days 230, 250, and 260, shown in Figures 3.5c, 3.5d,
and 3.5b, respectively. In this situation, the chemical densities have reached maxima
and minima, and from the mentioned days on, the chemical densities maxima oscillate
around a new equilibrium. At the end of the simulation of 1000 days, the new equilibria
in the center of the modeled skin are 4.245×10−11 g/cm3, 9723 cells/cm3, 76 cells/cm3,
and 0.1348 g/cm3 for the signaling molecules, the fibroblasts, the myofibroblasts, and
collagen, respectively. Hence, even though there is little signaling, this signaling is per-
manent so that myofibroblasts remain present to contract the scar. Further, the scar is
thicker because of the increased collagen concentration.

From a biological perspective, if there is an enhanced expression of signaling molecules
because of their reduced decay, a wound may heal appropriately at first. However, over
time, persistent signaling will lead to over-expression of signaling molecules, resulting in
excessive scarring and contraction. The excessive collagen deposition is reminiscent of
keloids, and hypertrophic scars, characterized by thicker collagen bundles [66]. In addi-
tion, myofibroblasts are abundant in hypertrophic scars. Since aberrant TGF-β signaling
in myofibroblasts is associated with the formation of hypertrophic scars [67], likely, such
a situation exists precisely because of a lower signaling molecule decay rate. Further, hy-



3.3 Numerical validation

3

37

ba

c d

10.2 0.4 0.6 0.80

x (cm)

0.2 0.4 0.6 0.8 10

x (cm)

0.2 0.4 0.6 0.8 10

x (cm)

0.2 0.4 0.6 0.8 10

x (cm)

0

0.5

1

Day 0 Day 215 Day 330

Day 465 Day 580 Day 700

Day 1000

96

97

98

99

100

0

50

100

150

200

0.1

0.11

0.12

0.13

0.14

0.15

Day 0 Day 60 Day 230

Day 350 Day 480 Day 590

Day 1000

Day 0 Day 115 Day 260

Day 390 Day 515 Day 635

Day 1000

Day 0 Day 100 Day 250

Day 385 Day 500 Day 635

Day 1000

c
 (

g
/c

m
³)

M
 (

c
e

lls
/d

a
y
)

ρ
 (

g
/c

m
³)

N
 (

c
e

lls
/c

m
³)

10-10 102

Figure 3.5: Evolution of the perturbed chemical densities for δc = 3×10−4 cm6/(cells g day) and µ = 100 (N
day)/cm2 and k = 10. The plots show the signaling molecules (a), the fibroblasts (b), the myofibroblasts (c),
and collagen (d).

pertrophic scars are not immediately visible after injury. These scars develop 1–2 months
after injury, whereas keloids develop months to years after the initial injury, support-
ing our results. Experimental evidence suggests that fibroblasts from hypertrophic scars
might represent a hyper-proliferative phenotype that can be reverted once the stimula-
tion, such as the oversupply of growth factors, is lifted [66]. We verified this by setting
the signaling molecule density to healthy equilibrium on day 1000. We saw that this
directly initiates the change of the (myo)fibroblast cell densities and collagen density
toward the healthy equilibria. First, the myofibroblast cell density reaches equilibrium
after 100 days, then 350 days later, the collagen density reaches equilibrium, and finally,
100 days after that, the fibroblast cell density reaches equilibrium. Hence, according to
our simulation, reversing the process takes about 1.5 years.
To conclude this section, the model is stable under the condition that the signaling
molecule decay rate is not too far decreased to values below the bound δc ≥ kc /(a I I

c ρ).



3

38 Chapter 3 Stability analysis of the one-dimensional model

3.4 Appendix: Derivation of the stability constraints
This appendix shows some derivations of the equations corresponding to the stability
analysis. We distinguish between the continuous problem and the discrete problem.

3.4.1 The continuous problem
Substitution of the variations (3.2) into the linearised equations (3.1) yields

1

|Ω|
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for the fibroblasts, and
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for the displacement velocity.
Multiplication by e−2iπkx gives
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for the displacement velocity.
Integration over Ω gives the result, hence equations (3.3) and (3.5).
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3.4.2 The discrete problem
Substitution of the variations (3.10) in the finite differences equations (3.8)–(3.9) yields

λNk =− N

h2
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for the displacement velocity.
This must be true for arbitrary {cβ, Nβ, Mβ,ρβ, vβ,εβ}, hence each factor following

{cβ, Nβ, Mβ,ρβ, vβ,εβ} in the sum should be zero. Subdivision by e−2πβkhi gives
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for the displacement velocity.
Using Euler’s formula and 2−2cos(2πβh) = 4sin2(πβh) gives the result, hence equations
(3.11) and (3.13).
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Stability analysis of the

two-dimensional model

This chapter is based on the publication from [68]. The results from this chapter con-
tribute to the range of parameter values used in Chapter 6. Videos corresponding to
some figures shown in this chapter can be found in the online recourses for Chapter 4
where one also finds a data link to the used code.

We analyze the linear stability of the two-dimensional biomorphoelastic model for
post-burn skin to determine the region in the parameter space at which the system is
still stable. We formulate the stability conditions depending on the decay rate of sig-
naling molecules for both the continuous partial differential equations-based prob-
lem and (semi-) discrete representation. We analyze the difference and convergence
between the resulting spatial eigenvalues. We show that the truncation error between
these eigenvalues associated with the continuous and the semi-discrete problem is of
order O (h2). We further validate the constraints numerically and provide a biologi-
cal interpretation of the (in)stability. The results show that signaling molecule decay
should be quick enough to avoid unrealistic results. Next to this analysis, we prove
that the effective strain tensor remains symmetric if initially symmetric.

4.1 Introduction
In this chapter, we analyze stability around equilibria to study the parametric depen-
dence of stable and unstable solutions for the two-dimensional biomorphoelastic model
for post-burn contraction presented in Chapter 2. Section 4.2 presents the stability analy-
sis, and Section 4.3 presents the numerical validation of the stability constraints and a
biological interpretation of (in)stability.
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4.2 Linear stability
We consider the following linearized equations around the equilibria (N , M , c, ρ, v1, v2,
ε11, ε12, ε22) = (N ,0,0,ρ,0,0,ε11,ε12,ε22), where N ,ρ ∈R≥0 and ε11,ε12,ε22 ∈R:
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q
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(4.1)

for the chemical part of the model, where we used that kρ = δρρ
2 must hold in equilib-

rium,
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(4.2)

for v1 (the equation for v2 is similar, where x, y and v̂1, v̂2 are interchanged), and

∂ε̂11

∂t
+ε12

[
∂v̂2

∂x
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]
+ (ε11 +ε22 −1)

∂v̂1
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[
∂v̂2

∂x
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∂y

]
+ζNϵ12ĉ = 0,

(4.3)

for the effective strains ε̂11, ε̂12 (the equation for ε̂22 is similar as for ε̂11, where x, y and
v̂1, v̂2 are interchanged). In equations (4.1)–(4.3), N̂ , M̂ , ĉ, ρ̂, v̂1, v̂2, ε̂11, ε̂12, and ε̂22 are
variations around the equilibria. Hence, N (x; t ) = N + N̂ (x; t ), etc.
Note that we only consider the equation for ε12 and not ε21. We demonstrate that if the
strain tensor ε is initially symmetric, then it remains symmetric at all later times [44].

Theorem 4.2.1. Let equation (2.14) hold on an open Lipschitz domain Ω for t > 0. Sup-
pose that ε is symmetric on t = 0, then ε remains symmetric for t > 0.

Proof. Taking the transpose of equation (2.14), gives

Dε

Dt
+εskw(∇v )− skw(∇v )ε+ (tr(ε)−1)sym(∇v ) =−ζ [N +ηI I M ]c

1+a I I I
c c

ε,

DεT

Dt
+εT skw(∇v )− skw(∇v )εT + (tr(ε)−1)sym(∇v ) =−ζ [N +ηI I M ]c

1+a I I I
c c

εT .

(4.4)
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Note that we used sym(∇v )T = sym(∇v ) and skw(∇v )T =−skw(∇v ). Subtraction gives

D

Dt
(ε−εT )+ (ε−εT )skw(∇v )− skw(∇v )(ε−εT ) =−ζ [N +ηI I M ]c

1+a I I I
c c

(ε−εT ). (4.5)

From the above equation, it is clear that (ε−εT ) = 0 represents an equilibrium, and hence
symmetry of ε represents an equilibrium. Hence, we conclude that initial symmetry
implies no changes in symmetry for later times. Furthermore, we also prove that ε−εT

is the only solution if ε−εT = 0 at t = 0.
Performing the matrix scalar product A : B :=∑

i , j Ai j Bi j on the above equation by ε−εT

gives upon setting w = ε−εT and M =∇v :

w :
D

Dt
w + w : (w skw(M))−w : (skw(M) w ) =−ζ [N +ηI I M ]c
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c c

w : w . (4.6)

Using L = skw(∇v ) = skw(M) = L12

[
0 1
−1 0

]
(L12 = M12 − M21) and w = ε−εT = (ε12 −

ε21)

[
0 1
−1 0

]
, gives, although w and skw(L) do not commute, that

w : (w L) = 0 and w : (Lw ) = 0. (4.7)

Hence we obtain

w :
D

Dt
w =−ζ [N +ηI I M ]c

1+a I I I
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w : w . (4.8)

Define ||w ||2 := w : w , then it follows that

1

2

D

Dt
||w ||2 =−ζ [N +ηI I M ]c

1+a I I I
c c

||w ||2. (4.9)

Integrating over t from t = 0 and using w = 0 at t = 0, gives

0 ≤ ||w ||2 =−ζ
∫t

0

[N +ηI I M ]c

1+a I I I
c c

||w ||2 ds ≤ 0. (4.10)

With ζ, N ,ηI I , M ,c, a I I I
c ≥ 0, this implies that ||w || = 0 on t > 0 if ||w || = 0 on t = 0. Hence

w = 0 for t > 0, which represents symmetry, is the only possibility if w = 0 on t = 0.

Remark 1. Equation (2.14) depends on a linear relationship between stress and strain,
hence ε− εT = 0 is a solution. However, this solution is not guaranteed to be unique;
therefore, initial symmetry may change over time because of computing and rounding
errors, for instance.

This theorem motivates why we only need to consider ε12 as a cross term assuming ini-
tial symmetry. Further, we demonstrate that small perturbations around symmetry of ε
remain small, which is a characteristic of stability.

Theorem 4.2.2. Let equation (2.14) hold on an open Lipschitz domain Ω for t > 0. Let ε
be symmetric for t ≥ 0, then stability of symmetry is warranted if and only if K ≥ 0.
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Proof. Let ω= ε−εT in equation (4.5), then

Dω

Dt
+ωskw(∇v )− skw(∇v )ω+Kω= 0. (4.11)

Write skw(∇v ) = L, where L =
[

0 L12

−L12 0

]
skew-symmetric (for any v ∈C 2(Ω)). Then

Dω

Dt
+ω ·L−L ·ω+Kω= 0, (4.12)

a system of ordinary differential equations. Writing out, then

D

Dt

[
ω11 ω12

ω21 ω22

]
−L12

[
ω12 +ω21 ω22 −ω11

ω22 −ω11 −ω21 −ω12

]
+K

[
ω11 ω12

ω21 ω22

]
= 0. (4.13)

Hence 
D

Dt ω11 −L12(ω12 +ω21)+Kω11 = 0,
D

Dt ω12 −L12(ω22 −ω11)+Kω12 = 0,
D

Dt ω21 −L12(ω22 −ω11)+Kω21 = 0,
D

Dt ω22 +L12(ω21 +ω12)+Kω22 = 0.

(4.14)

In matrix-vector form, let ω= [ω11,ω22,ω21,ω22]′, then we get

Dω

Dt
+Bω= 0, (4.15)

where

B =


K −L12 −L12 0

L12 K 0 −L12

L12 0 K −L12

0 L12 L12 K

 . (4.16)

For K = 0 (in equilibrium, c = 0 in equation (4.5)), this matrix is skew-symmetric (that
is BT =−B), and hence the eigenvalues are zero or purely imaginary. This implies that
ω= 0 ⇔ ε= εT is a null-stable equilibrium. Hence, small perturbations around the sym-
metry of ε will remain small, which implies stability. For the case that K > 0, it follows
that the real part of the eigenvalues are given by K , which gives A-stability as well (per-
turbations from symmetry vanish as t −→∞. For K < 0, which corresponds to expansion
(instead of contraction in our model), the negative real part of the eigenvalues results in
instability of symmetry. Although the current case is not similar to diffusional growth,
it is known that diffusional growth in combination with surface processes suffers from
Mullins-Sekerka instabilities [69], which exhibits growth of perturbations on spherical
surfaces.

Remark 4.2.1. Of course v is non-constant. The only thing that happens is that v = v (t )
impacts the angular frequency around the equilibrium ε= εT .
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4.2.1 Stability of the continuous problem
We write the variations around the equilibria in terms of a complex Fourier series,

ẑ(x; t ) = 1

|Ω|
∑

j ,k∈Z
cz

j ,k (t )e2iπ j x e2iπk y , (4.17)

for z ∈ {N̂ , M̂ , ĉ, ρ̂, v̂1, v̂2, ε̂11, ε̂12, ε̂22}, where |Ω| denotes the measure of Ω and i repre-
sents the unit imaginary number.
Substitution of the variations (4.17) into the linearized equations (4.1)–(4.3), multipli-
cation by e−2iπl x e−2iπpy , integration over Ω = (0,1)2 (|Ω|=1) and double orthonormality
over Ω gives

ċN
l ,p (t )+N

[
(2πl )2 + (2πp)2][

DncN
l ,p (t )−χcc

l ,p (t )
]
+ rκN

1+q
cM

l ,p (t )−
r N

q
[

(1+q)(1−κN )−κN
]

cN
l ,p (t )+δncN

l ,p (t )−

N

[
r · r max

a I
c

(1−κN )N
q −k1

]
cc

l ,p (t ) = 0,

ċM
l ,p (t )+Dn N

[
(2πl )2 + (2πp)2]cM

l ,p (t )+δmcM
l ,p (t )−k1N cc

l ,p (t ) = 0,

ċc
l ,p (t )+Dc

[
(2πl )2 + (2πp)2]cc

l ,p (t )+N

[
δcρ− kc

a I I
c

]
cc

l ,p (t ) = 0,

ċρl ,p (t )+δρρ
2(ηI I −ηI )cM

l ,p (t )−δρρ
2N

[
kmax
ρ

a IV
c

+a I I I
c

]
cc

l ,p (t )

+2δρNρcρl ,p (t ) = 0,

(4.18)

for the chemical part of the model,

ρt ċv1
l ,p (t )+ [

(2πl )2(µ1 +µ2)+ 1
2 (2πp)2µ1

]
cv1

l ,p (t )+ (2πl )(2πp)( 1
2µ1 +µ2)cv2

l ,p (t )−

i (2π)

[
E

√
ρ

1+ν

{
pcε12

l ,p (t )+ 1−ν

1−2ν
lcε11

l ,p (t )+ ν

1−2ν
lcε22

l ,p (t )

}
+ξ

ρ

R2 +ρ2 lcM
l ,p (t )

]
−

i (2πl )
E

2
√

ρ(1+ν)

[
ε12 +ε11 + ν

1−2ν

(
ε11 +ε22

)]
cρl ,p (t ) = 0,

(4.19)

for the displacement velocity, and

ċϵ11
l ,p (t )+ i (2π)

{[
l (ϵ11 +ϵ22 −1)−pϵ12

]
cv1

l ,p (t )+ lϵ12cv2
l ,p (t )

}
+ζNϵ11cc

l ,p (t ) = 0,

ċϵ12
l ,p (t )+ i (2π)

[
p(ϵ11 − 1

2 )cv1
l ,p (t )+ l (ϵ22 − 1

2 )cv2
l ,p (t )

]
+ζNϵ12cc

l ,p (t ) = 0,
(4.20)

for the effective strain.
Interchanging the third and first equation of (4.18), these equations together with equa-
tions (4.19) and (4.20) are in the form y ′ + Ay = 0 (y the vector of the time-dependent
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components) with

A =



A11 0 0 0 0 0 0 0 0
A21 A22 0 0 0 0 0 0 0
A31 A32 A33 0 0 0 0 0 0
A41 A42 0 A44 0 0 0 0 0

0 A52 0 A54 A55 A56 A57 A58 A59

0 A62 0 A64 A65 A66 A67 A68 A69

A71 0 0 0 A75 A76 0 0 0
A81 0 0 0 A85 A86 0 0 0
A91 0 0 0 A95 A96 0 0 0


. (4.21)

We determine the eigenvalues of A by solving |A −λI | = 0 for λ, where I represents the
identity matrix. First, we perform Gaussian elimination to see that the first four diagonal
values can be used as pivots. Hence, the first four eigenvalues are the first four diagonal
entries. The system is linearly stable if and only if the real part of all the eigenvalues is
non-negative, hence stability for the chemical part of the model is guaranteed if:

Dn N
[
(2πl )2 + (2πp)2]− r N

q
((1+q)(1−κN )−κN )+δn ≥ 0,

Dn N
[
(2πl )2 + (2πp)2]+δm ≥ 0,

Dc
[
(2πl )2 + (2πp)2]+N

[
δcρ− kc

a I I
c

]
≥ 0,

2δρNρ ≥ 0.

(4.22)

These four requirements show that stability for the chemical part of the model is equal

to the stability constraints in R1 [49]. That is, for δc ≥ kc

a I I
c ρ

and qδn ≤ κr N
1+q

(l = p = 0).

We note we need δn > 0 and hence κN < 1. The second and fourth eigenvalues meet the
stability condition independent of the chosen parameter values, given that these values
are positive. Hence, if the conditions are met for l = p = 0, they hold for all l , p ∈Z, which
correspond to wavelike perturbations.

Further, we end up with a 5×5–matrix B containing the mechanical part of the model.
For this 5×5–matrix, we see that the last three columns contain possibly non-zero values
at the first two row positions; hence, these columns are linearly dependent. From this,
it immediately follows that λ= 0 is an eigenvalue. Applying Gershgorin’s Theorem leads
to eigenvalues that can be located anywhere in a union of circles centered around the
origin. Hence, Gershgorin’s Theorem does not exclude any eigenvalues with a negative
real part (they reside in the left half of the complex plane). For this reason, we consider
the case that Ai , j = 0 for (i , j ) ∈ {7,8,9}× {5,6}. Biologically, this leads to

ϵ11 = 1

2
, ϵ12 = 0, ϵ22 = 1

2
. (4.23)

We can see this result as follows. Define U = {l , p}. Application of Gershgorin’s Theorem
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on the remainder Ai≥5, j≥5 for the effective strain yields

|λ| ≤ ∣∣i (2π)
[
α(ε11 +ε22 −1)−βε12

]∣∣+ ∣∣i (2πα)ε12
∣∣

= (2π|α|)(ε11 +ε12 +ε22 −1)− (2π|β|)ε12, (4.24)

|λ| ≤ ∣∣i (2πα)(ε11 − 1
2 )

∣∣+ ∣∣i (2πβ)(ε22 − 1
2 )

∣∣
= (2π|α|)(ε11 − 1

2 )+ (2π|β|)(ε22 − 1
2 ), (4.25)

where α ∈ U and β ∈ {x ∈ U : x 6= α}. Define B(a,r ) = {z ∈C : |z −a| < r }. Then, the
mechanical eigenvalues lie in the union of the disks:

λi ∈B1
⋃

B2
⋃

B3, (4.26)

with

B1
(
0,(2π|α|)(ε11 +ε12 +ε22 −1)− (2π|β|)ε12

)
,

B2
(
0,(2π|α|)(ε11 − 1

2 )+ (2π|β|)(ε22 − 1
2 )

)
,

(4.27)

and B3 is the disk corresponding to the displacement velocity. Hence, to guarantee lin-
ear stability for the effective strain, we need:

|α|(ε11 +ε12 +ε22 −1)−|β|ε12 = 0,

|α|(ε11 − 1
2 )+|β|(ε22 − 1

2 ) = 0.
(4.28)

This must hold for all α,β ∈ Z, hence linear stability for wavelike perturbations around
equilibria (α,β ∈Z6=0) is obtained for ε11 = 1

2 , ε22 = 1
2 and ε12 = 0. This implies that Ai , j =

0 for i ∈ {7,8,9}, j ∈ {5,6}. We note that with these equilibria, we have ε → O (1), hence
describing a physical situation in which the model can no longer be applied. In this
case, Gershgorin’s theorem cannot be used to access the stability criteria, and there are
no other strategies to solve the fourth-order polynomial analytically. In order to ‘show’
that we have stability for our set of parameter values, we provide an empirical argument
based on the numerical approximation of the eigenvalues.
The remaining eigenvalues follow from the 5× 5–matrix. The eigenvalue λ = 0 has al-
gebraic multiplicity 3. The other two eigenvalues follow from the upper left 2×2–block
matrix and are in addition to that determined by

λ2 − (A55 + A66)λ+ A55 A66 − A56 A65 = 0. (4.29)

We note that A56 = A65. Hence, the remaining eigenvalues are real-valued. Solving the
above equation with the abc-formula then gives

λ=
A55 + A66 ±

√
(A55 + A66)2 −4(A55 A66 − A2

56)

2
. (4.30)

Here, the discriminant

D = [
(2πl )2 − (2πp)2]2

(µ1 +µ2)2 + 1
4

[
(2πl )2 − (2πp)2]2

µ2
1+

4(2πl )2(2πp)2 ( 1
2µ2 +µ2

)2
(4.31)
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is always non-negative. For stability, in this case, a necessary condition is that

A55 + A66 ≥
√

(A55 + A66)2 −4(A55 A66 − A2
56). (4.32)

Squaring the left- and the right-hand-side gives

A55 A66 − A2
56 ≥ 0. (4.33)

Substitution of A55, A66 and A56 gives

− 4

ρt

(
1

ρt

[
(2πl )2(µ1 +µ2)+ 1

2 (2πp)2µ1
] · [ 1

2 (2πl )2µ1 + (2πp)2(µ1 +µ2)
] −

((2πl )(2πp)( 1
2µ1 +µ2))2)≤ 0, (4.34)

which reduces to [ 1
2 ((2πl )4 + (2πp)4)+ (2πl )2(2πp)2] (µ2

1 +µ1µ2) ≥ 0. (4.35)

Hence, for all µ1,µ2 ≥ 0 and all l , p ∈ Z, the stability constraint is satisfied. We note that
all eigenvalues are real-valued and that equation (2.14) only holds for minor strains. We
summarize these results in Theorem 4.2.3.

Theorem 4.2.3. Let {N , M ,c,ρ, v1, v2,ε11,ε12,ε22} satisfy equations (2.2)–(2.14). Further,

let δn = r (1−κN )N
q > 0 and ρ =

√
kρ/δρ , then

1. The equilibria (N , M ,c,ρ, v1, v2,ε11,ε12,ε22) = (N ,0,0,ρ,0,0,ε11,ε12,ε22), with{
N ,ρ,ε11,ε12,ε22

}
∈R>0, are linearly stable if and only if δcρ ≥ kc

a I
c

, and

qδn ≤ κr N
1+q

for constant states;

2. For (nonconstant) waves around the equilibria, linear stability is met if

δcρ ≥ kc

a I
c

, qδn ≤ κr N
1+q

, µ1,µ2 ≥ 0, ε11 = 1
2 , ε22 = 1

2 , and ε12 = 0;

Remark 4.2.2. Note that δc ≥ kc

a I
cρ

, for k = 0 (constant states). Hence, if constant pertur-

bations are stable, then wavelike perturbations are stable. In case δc is not large enough,
fast oscillating perturbations will vanish, while slow oscillating perturbations will not
vanish and can amplify. Further, the mathematical model is actually not suitable for
ε11 = ε22 = 0.5; however, this is still a consequence of the above analysis.

For the empirical ‘proof’ of the stability constraints, we only consider the eigenvalues λ
of the 5× 5–submatrix of matrix A. We keep the parameter values as in Tables 3.2 and
4.2 and vary ε11 and ε22 between -1 and 1 with stepsize 0.01, ε12 between -1 and 0.5 with
stepsize 0.1, and l and p (integers) between 1 and 100. We define

S(ε11,ε22,ε12) =
{

1, if ∀ l , p ∈Z : Re(λ) ≥ 0

0, otherwise
. (4.36)
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ε    = -0.2
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ε    = 0
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ε    = 0.2
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Figure 4.1: Results of the empirical proof of stability for some values of ε12. The x- and y-axes show the effective
strains ε11 and ε22, both between -1 and 1. Values for ε11 and ε22 that yield Re(λ) ≥ 0 for all l , p are colored
blue, otherwise red.

Hence, S = 1 corresponds to stability, whereas S = 0 corresponds to instability. Figure 4.1
shows the results of S for some values of ε12. If ε12 increases, then the region for stable
ε11 and ε22 values grows. Further, there is symmetry in the line y = x. Given the complex-
ity of the fourth-order polynomial, it is unclear what defines these boundaries of stable
regions. One can predict that there will not be any stable values for the effective strain
in the shown domain if ε12 becomes (much) smaller. However, one does not expect the
effective strain to become that negative (the model breaks down for these values). Fo-
cusing on the origin (ε11,ε22) = (0,0), one can see that for small |ε12|, say |ε12| ≤ 0.2, there
is always a stable region around the origin. For values of |ε12| that are larger, which are
not interesting from a physical point of view, the stability region may no longer include
the origin.

Claim 4.2.1. Let {N , M ,c,ρ, v1, v2,ε11,ε12,ε22} satisfy equations (2.2)–(2.14). Let δN =
r (1−κN )N

q > 0 and ρ =
√

kρ/δρ , then for wave-like perturbations around the equilib-

ria, if δcρ ≥ kc

a I I
c

, qδN ≤ κr N
1+q

, and µ1,µ2 ≥ 0, then there is a region in the (ε11,ε12,ε22)–

space around (ε11,ε12,ε22) = (0,0,0) (the origin), where the model is linearly stable.

4.2.2 Stability of the (semi-) discrete problem

For the stability of the (semi-) discrete problem, we consider a unit rectangle Ω= [0,1]2

that we divide into small rectangles with sides h such that (n +1)h = 1. At the intersec-
tions of the grid lines, we have nodal points where we approximate the variable solu-
tions. We denote the unknowns at node (xi , y j ) by zi , j , z ∈ {N , M ,c,ρ, v1, v2,ε11,ε12,ε22}
and apply finite differences on the eigenvalue problem. Then the finite difference method
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of the spatial part of the linearized problem (4.1)–(4.3) gives:

λNi , j =−Dn N

[
Ni−1, j −2Ni , j +Ni+1, j

h2 + Ni , j−1 −2Ni , j +Ni , j+1

h2

]
+

χN

[
ci−1, j −2ci , j + ci+1, j

h2 + ci , j−1 −2ci , j + ci , j+1

h2

]
+[

δn − r N
q

((1+q)(1−κN )−κN )
]

Ni , j + rκN
1+q

Mi , j −

N

[
r · r max

a I
c

(1−κN )N
q −k1

]
ci , j ,

λMi , j =−Dn N

[
Mi−1, j −2Mi , j +Mi+1, j

h2 + Mi , j−1 −2Mi , j +Mi , j+1

h2

]
+

δm Mi , j −k1N ci , j ,

λci , j =−Dc

[
ci−1, j −2ci , j + ci+1, j

h2 + ci , j−1 −2ci , j + ci , j+1

h2

]
+

N

[
δcρ− kc

a I I
c

]
ci , j ,

λρi , j = δρρ
2(ηI I −ηI )Mi , j −δρρ

2N

[
kmax
ρ

a IV
c

+a I I I
c

]
ci , j +2δρNρρi , j ,

(4.37)

for the chemical part of the model, and writing v1
i , j for v1i , j and ε11

i , j for ε11i , j etcetera
gives

ρtλv1
i , j =−(

µ1 +µ2
) v1

i−1, j −2v1
i , j + v1

i+1, j

h2 − µ1

2

v1
i , j−1 −2v1

i , j + v1
i , j+1

h2 −
[µ1

2
+µ2

] v2
i−1, j−1 − v2

i−1, j+1 − v2
i+1, j−1 + v2

i+1, j+1

4h2 −

E
√
ρ

1+ν

[
ε12

i , j+1 −ε12
i , j−1

2h
+ 1−ν

1−2ν

ε11
i+1, j −ε11

i−1, j

2h
+ ν

1−2ν

ε22
i+1, j −ε22

i−1, j

2h

]
−

E

2
√
ρ(1+ν)

[
ε12 +ε11 + ν

1−2ν

(
ε11 +ε22

)] ρi+1, j −ρi−1, j

2h
−

ξ
ρ

R2 +ρ2

Mi+1, j −Mi−1, j

2h
,

(4.38)

for v1 (again, the equation for v2 is similar), and

λε11
i , j = ϵ12

[
v2

i+1, j − v2
i−1, j

2h
−

v1
i , j+1 − v1

i , j−1

2h

]
+ (ϵ11 +ϵ22 −1)

v1
i+1, j − v1

i−1, j

2h
+

ζNϵ11ci , j ,

λε12
i , j =

[
ϵ22 − 1

2

] v2
i+1, j − v2

i−1, j

2h
+

[
ϵ11 − 1

2

] v1
i , j+1 − v1

i , j−1

2h
+ζNϵ12ci , j ,

(4.39)
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for the effective strains ε11,ε12 (again, the equation for ε22 is similar). We perform von
Neumann eigenvalue and stability analysis. Let

zk, j =
1

n2

n∑
β=1

n∑
γ=1

ẑβ,γe−2πβkhi e−2πγ j hi , (4.40)

for z ∈ {N , M ,c,ρ, v1, v2,ε11,ε12,ε22}, where i again represents the imaginary unit num-
ber. Substitution of (4.40) in equations (4.37)–(4.39), multiplication by e2πlkhi e2πp j hi ,
using Euler’s formula, 2−2cos(2πx) = 4sin2(πx) and[
e i x e i y −e i x e−i y −e−i x e i y +e−i x e−i y

]
/4 =−sin(x)sin(y) results in

λN̂β = 4N

h2

[
sin2(πlh)+ sin2(πph)

][
Dn N̂β−χĉβ

]+[
δn − r N

q
((1+q)(1−κN )−κN )

]
N̂β+

rκN
1+q

M̂β−N

[
r · r max

a I
c

(1−κN )N
q −k1

]
ĉβ,

λM̂β =
[

4Dn N

h2

[
sin2(πlh)+ sin2(πph)

]+δm

]
M̂β−k1N ĉβ,

λĉβ =
[

4Dc

h2

[
sin2(πlh)+ sin2(πph)

]+N

[
δcρ− kc

a I I
c

]]
ĉβ,

λρ̂β = δρρ
2(ηI I −ηI )M̂β−δρρ

2N

[
kmax
ρ

a IV
c

+a I I I
c

]
ĉβ+2δρNρρ̂β,

(4.41)

for the chemical part of the model,

ρtλv̂1
β = 4

h2

[
sin2(πlh)(µ1 +µ2)+ 1

2 sin2(πph)µ1
]

v̂1
β+

sin(2πlh)sin(2πph)

h2

( 1
2µ1 +µ2

)
v̂2
β+

i
E

√
ρ

h(1+ν)

[
sin(2πph)ε̂12

β + sin(2πlh)

(
1−ν

1−2ν
ε̂11
β + ν

1−2ν
ε̂22
β

)]
+

i
sin(2πlh)

h

{
E

2
√
ρ(1+ν)

[
ε12 +ε11 + ν

1−2ν

(
ε11 +ε22

)]
ρ̂β+

ξρ

R2 +ρ2 M̂β

}
,

(4.42)

for the displacement velocity v1 (the equation for v2 is similar and yields an equal result),
and

λε̂11
β = i

{
sin(2πlh)

h
(1−ϵ11 −ϵ22)+ sin(2πph)

h
ϵ12

}
v̂1
β− i

sin(2πlh)

h
ϵ12 v̂2

β+ζNϵ11ĉβ,

λε̂12
β = i

sin(2πph)

h
( 1

2 −ϵ11)v̂1
β+ i

sin(2πlh)

h
( 1

2 −ϵ22)v̂2
β+ζNϵ12ĉβ,

(4.43)

for the effective strains ε11 and ε12 (the equation for ε22 is similar and yields an equal
result). As an example, the derivation of equation (4.42) is given in the Appendix 4.4.
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The equations (4.41)–(4.43) are in the form λz =C z with the matrix C as in (4.21). Hence,
the eigenvalues are found in the same way as in the continuous case. Note that, since the
overall system has the form y ′+ Ay = 0, the discrete system is linearly stable if and only
if the real part of the eigenvalues is non-negative, hence we need:

4Dn N

h2

[
sin2(πlh)+ sin2(πph)

]− r N
q

((1+q)(1−κN )−κN )+δn ≥ 0,

4Dn N

h2

[
sin2(πlh)+ sin2(πph)

]+δm ≥ 0,

4Dc

h2

[
sin2(πlh)+ sin2(πph)

]+N

[
δcρ− kc

a I I
c

]
≥ 0,

2δρNρ ≥ 0,

(4.44)

for the chemical part of the model. To guarantee linear stability, the first requirement of

equations (4.44) states qδn ≤ κr N
1+q

, given δn = r (1−κN )N
q

. The second and fourth
eigenvalues meet the stability condition independent of the chosen parameter values,
given that the parameter values are positive. Finally, the third requirement states δcρ ≥
kc

a I I
c

. These statements remain the same when the horizontal and vertical step sizes are

unequal (∆x 6=∆y).
For the mechanical part of the model, we follow the same procedure as in Section 4.2.1.
Again, we end up with a 5× 5–matrix D containing the mechanical part of the model.
Now, from Gershgorin (not shown) it follows that ϵ11 = 1

2 ,ϵ12 = 0, and ϵ22 = 1
2 , and Ci , j = 0

for i ∈ {7,8,9}, j ∈ {5,6}. Therefore, for linear stability, we need

C55C66 −C 2
56 ≥ 0. (4.45)

Substitution of C55,C66 and C56 gives

−4

(
4

ρt h2

[
sin2(πlh)(µ1 +µ2)+ 1

2 sin2(πph)µ1
] ·

4

ρt h2

[ 1
2 sin2(πlh)µ1 + sin2(πph)(µ1 +µ2)

]−[
1

ρt

sin(2πlh)sin(2πph)

h2

(
µ1 +µ2

)]2)
≤ 0, (4.46)

which reduces to

µ2
1

[
8(sin4(πlh)+ sin4(πph))+4sin2(πlh)sin2(πph)

[
5−2cos2(πlh)cos2(πph)

]]+
µ1µ2

[
8(sin4(πlh)+ sin4(πph))+16sin2(πlh)sin2(πph)

[
2−cos2(πlh)cos2(πph)

]] +
8µ2

2 sin2(πlh)sin2(πph)
[
2−cos2(πlh)cos2(πph)

]≥ 0. (4.47)

Here, we used sin(2πxh) = 2sin(πxh)cos(πxh). Note that the subtractions by the cosines
are bounded from above. Therefore, for all µ1,µ2 and all l , p ∈Z, equation (4.46) is satis-
fied. To conclude, we have demonstrated that if the equilibrium is stable in the continu-
ous problem, it is also stable in the semi-discrete problem.
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There exists a consistency between the stability criteria of the continuous problem and
the stability criteria of the discrete problem. We show this by writing sin(x) and sin2(x)
as a Taylor series. Substitution into the third equation in (4.44) yields:

Dc [(2πl )2 + (2πp)2]+O (h2)+N

[
δcρ− kc

a I I
c

]
≥ 0. (4.48)

Comparison to the third equation in (4.22)

Dc [(2πl )2 + (2πp)2]+N

[
δcρ− kc

a I I
c

]
≥ 0 (4.49)

yields a difference in eigenvalues of order O (h2). Note that this difference in the same
order is found for the other eigenvalues. We summarize the results in Theorem 4.2.4.

Theorem 4.2.4. Let {N , M ,c,ρ, v1, v2,ε11,ε12,ε22} satisfy the semi-discrete spatial differ-
ences version of equations (4.37)–(4.39), then stability in the fully continuous problem
implies stability for the semi-discrete formulation.

Corollary 4.2.1. Let {N , M ,c,ρ, v1, v2,ε11,ε12,ε22} satisfy the semi-discrete spatial differ-

ences version of equations (4.37)–(4.39). Let δn = r (1−κN )N
q

and ρ =
√

kρ/δρ . Then the

constant equilibria are unconditionally stable for the trapezoid rule and the Euler back-

ward method as long as δcρ ≥ kc

a I I
c

and qδn ≤ κr N
1+q

. Furthermore, the Euler backward

method is A-stable.

4.3 Numerical validation
We need to validate whether the linear stability conditions we have derived also hold in a
finite element setting where the fully nonlinearly coupled model is considered. We con-
sider a rectangle Ω= [0,L]2 that we subdivide into small rectangles (quadrilaterals) with
sides ∆x = ∆y . Then, we convert the regular mesh to a triangulation. The quadrilateral
mesh faces are converted to triangles by splitting the faces into triangles according to the
cross division of quadrilateral.
We experimentally evaluate the convergence of the numerical method in a domain of
[0,3.2]2 cm2 with a wound between [0,1.2] cm2, which represents a quarter of a domain
of the modeled skin on which we perform computations. The transition from healthy to
injured skin is steep, and we account for this steepness of gradients through an interval
of 0.8 cm. In this transition, the initial conditions vary between the equilibria and the
initial wound densities. Within the wound, we assume that 2000 fibroblast cells/cm3,
108 g/cm3 signaling molecules, and 0.01125 g/cm3 collagen are present. We model the
slope of the variables with sine functions.
We divide the computational domain into nx ×ny = (3.2/h)2 elements with h ∈{0.2, 0.1,
0.05}. In order to have mesh convergence of the numerical solution of second order, we
choose ∆t = h2. We simulate contraction for one day and report the densities of the
variables (the solutions). We compute the convergence order results using the L2 error
norm. Let limh→0 zh(x,1) = z(x,1) denote the true density of variable z on day 1 and
z0.05(x,1) =: zhref the solution in the last simulation (i.e. the reference, the one computed
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using the highest numerical resolution). We approximate the errors with the following
error definition:

ϵL2 (zh) = h

√√√√289∑
i=1

(zh(xi ,289,1)− zhref (xi ,289,1))2, (4.50)

where the grid-points xi ,n correspond to the grid-points in the simulation with h = 0.2
(n = 289 nodes). Hence, we evaluate the solution to the equations between simulations
on a fixed set of initial nodes. Table 4.1 shows the results for the L2 error.

Table 4.1: Overview of the averaged slopes.

Var. N M c ρ v1 v2 ε11 ε12 ε22

ϵL2 2.236 2.815 2.489 2.877 2.923 2.923 2.230 2.276 2.230

The slopes correspond to the L2 errors of the variables on the total computational domain. The columns show
the averaged slopes for the variables. The reference is the solution in which h = 0.05.

All the L2 errors decrease consistently as h becomes smaller (figures not shown), and the
values in the table show an order of convergence above O (h2).

To validate the stability constraint numerically, we perturb the initial conditions around
equilibria using sine functions, and we vary the parameter δc . Hence, we fix all param-
eters except for the signaling molecule decay rate. The fixed parameter values are the
same as in Table 3.2, except for the parameters shown in Table 4.2.

Table 4.2: Overview of the parameter values used for the simulations that differ from the parameter values in
Table 3.2 or those that are introduced in the two-dimensional model.

Symbol Value Dimension Reference

µ1 102 (N day)/cm2 [1]
µ2 102 (N day)/cm2 [1]
ν 4.9×10−1 - [70]
E 3.2×10 N/((g cm)0.5) [70]

Shown are the symbols, the values, the dimensions, and the references.

For the time integration, we use an initial step of ∆t = 10−2 days until half a day is simu-
lated, after which we increase the timestep by ∆tnew = min{2,1.1×∆t }. We use a domain
of [0,1]2 cm2 that we first divide into equilateral elements (rectangles) with h = 0.05, then
we convert this mesh to an equilateral triangulation by cross division of quadrilaterals.
For the initial conditions, we vary the wavenumber using two levels: k ∈ {1,2}. We per-
turb the initial fibroblast cell and collagen density by using a product of sine functions
with an amplitude of 10 cells/cm3 and 10−2 g/cm3, respectively, which is possible be-
cause the equilibrium fibroblast cell density and the equilibrium collagen density are
non-zero. We use a product of uniform splines with 2k+1 knots for the initial myofibrob-
last cell density and signaling molecule density. On the boundaries, the knots have zero
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value, and between the values are 3 and 1 cells/cm3 for the myofibroblasts and 2×10−7

and 5×10−8 g/cm3 for the signaling molecules. This way, we ensure that the myofibrob-
last cell density and the signaling molecule density values are positive. We note that,
because of the product of splines, these initial amplitudes become smaller. The initial
amplitudes of the displacement velocity density v1 is 5×10−1. To ensure symmetry, we
set the initial condition v2(x;0) =−v1(x;0). We do not perturb the effective strain densi-
ties and set ε11(x;0) = ε12(x;0) = ε22(x;0) = 0.

For stability, Theorem 4.2.3 further requires that δcρ ≥ kc /a I I
c in case l = 0. We choose to

vary the signaling molecule decay rate δc using three levels: 2×10−4,3×10−4 and 5×10−4

cm6/(cells g day), where the first two values do not meet the stability condition.

4.3.1 Stable values
In the first simulation, we take δc = 5×10−4 cm6/(cells g day) and k = 1, and we simulate
over a time interval of 200 days. We note that this signaling molecule decay rate δc meets
the stability criterium. Figures 4.2–4.4 show the results. The first figure, Figure 4.2, shows
the evolution of the displacement velocities for the values of input parameters within the
stability regime.
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Figure 4.2: Evolution of the displacement velocity densities for δc = 5× 10−4 cm6/(cells g day). Tables 3.2
and 4.2 show the values of the other parameters. The upper plots show the displacement velocity v1, and the
lower plots show the displacement velocity v1. The shown domains are (0,1)2 cm2 and the color bars show the
displacement velocity in cm/day. For both v1 and v2, the first two plots have different color bars, and the last
three plots share the same color bar shown on the right.

The displacement velocity densities move to equilibria at a rapid pace. In the first time
integration, the densities drop two orders from 5× 10−1 to 5× 10−3 within 0.01 day (≈
15 minutes). The plots show that the peaks in the regions (x, y) = {0 ≤ x ≤ 0.5 ≤ y ≤
1∧0 ≤ y ≤ 0.5 ≤ x ≤ 1} merge (i.e., the top left and bottom right corners, negative values
for v1 and positive values for v2). The peaks in the regions (x, y) = {0 ≤ x, y ≤ 0.5} (i.e.,
the bottom left corners) shift to the edges of the computational domain, the one in v1

shifting to the horizontal axis of symmetry, and the one in v2 shifting to the vertical axis
of symmetry. These variations in the displacement velocities are still visible on day 0.02.
The peaks in the regions (x, y) = {0.5 ≤ x, y ≤ 1} (i.e., the top right corners) disappear
within this time. The densities drop one order further towards equilibria in the next
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quarter of an hour. Within ten days, the displacement velocity densities converge to
equilibria, following the stability theory.
Figure 4.3 shows the evolution of the effective strains for the values of input parameters
within the stability regime.
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Figure 4.3: Evolution of the effective strain densities for δc = 5×10−4 cm6/(cells g day). Tables 3.2 and 4.2 show
the values of the other parameters. The upper, middle and lower plots show the effective strains ε11,ε12, and
ε22. The shown domains are (0,1)2 cm2, and the color bars show the effective strain (no unit).

The effective strain densities change from the equilibria to perturbations on the first
day of the simulation because of the initial perturbations in the other variable densities.
We see that diagonal tensions arise in the effective strain densities ε11(x;1) and ε22(x;1),
while it is more circular for the effective strain density ε12(x;1). Here, positive and neg-
ative values alternate. These diagonal tensions disappear gradually between day 10 and
day 200 as the effective strain densities move to the equilibria ε11(x;200) = ε12(x;200) =
ε11(x;200) = 0. Note that the theory (Theorem 4.2.3 part 1) states that the constant state
equilibria ε11,ε12,ε22 ∈R are stable.

Figure 4.4 shows the evolution of the chemicals for the values of input parameters within
the stability regime. All the plots show that the perturbed chemical densities move grad-
ually toward the equilibria. For the fibroblast cell density, the perturbation leaves a few
fibroblasts in the origin of the computational domain on day 25. It takes up to 200 days
to move the cell density toward the equilibrium N = 104 cells/cm3. For the myofibrob-
last cell density, no cells are present on day 120 as the perturbed cell density moves
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Figure 4.4: Evolution of the chemical densities for δc = 5× 10−4 cm6/(cells g day). Tables 3.2 and 4.2 show
the values of the other parameters. From top to bottom, the plots show the fibroblasts (N ), the myofibroblasts
(M), the signaling molecules (c), and collagen (ρ). The shown domains are (0,1)2 cm2, and the color bars show
the (myo) fibroblasts in cells/cm3 and the signaling molecules and collagen in g/cm3.

quickly and gradually toward the equilibrium M = 0 cells/cm3. The perturbed signaling
molecule density moves even quicker toward the equilibrium c = 0 g/cm3, having the
perturbations almost vanished on day 25. The perturbed collagen density takes longer
to move to equilibrium as it takes more than 25 days, and on day 200, a slight perturba-
tion is still visible. From this figure, we can conclude that the signaling molecule density
moves toward the equilibrium first, after which the myofibroblast cell density moves to-
ward the equilibrium. It takes longer for the fibroblast cell and collagen densities to move
toward the equilibria, taking more time for collagen for the current input values. Overall,
the perturbations disappear gradually with stable parameter values, and the numerical
method behaves stably.

From a biological perspective, minor variations in the fibroblast cell and collagen density
already initialize long-term healing. Fibroblasts move toward the center of the wound,
and collagen regeneration takes over half a year. Variations arise in the effective strain,
after which the tensions disappear.
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4.3.2 Unstable signaling molecule decay rate not too low
In the next simulation, we take δc = 3×10−4 cm6/(cells g day) and k = 2. We note that
this parameter value does not meet the stability criterium. We only present a few figures
to avoid too many figures in this chapter.
Likely, as in Figure 4.2, the perturbed displacement velocity densities move gradually to-
ward equilibria in this simulation (figure not shown). In the first step of time integration,
the densities align in a similar pattern as we have seen before, decreasing from order
O (10−1) to O (10−3). However, in this simulation, in the next timestep, the densities de-
crease to order O (10−5) in contrast to the order O (10−4) in Figure 4.2.
We see a different evolution for the effective strains and the chemicals. We distinguish
between evolution in the early and the later stage of the simulation.
We see a similar pattern in the early stage of the simulation for the effective strains, as
shown in Figure 4.3. For the effective strains ε11 and ε22, the tensions in the densities are
diagonal and peak on day 5. The peaks diminish in magnitude in the first 51 days (figure
not shown). The effective strain ε12 density shows the same intensity of variations on
day 5, which are circular and alternating between positive and negative values, like in
the stable simulation. However, Figure 4.5 shows this pattern changes after 51 days.
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Figure 4.5: Evolution of the effective strain densities for δc = 3×10−4 cm6/(cells g day). Tables 3.2 and 4.2 show
the values of the other parameters. The upper, middle and lower plots show the effective strains ε11,ε12, and
ε22. The shown domains are (0,1)2 cm2, and the color bars show the effective strain.

Unlike the equilibria found in the simulation with stable parameter values, the effective
strain densities increase intensely in variation up to day 223 (the second column plots).
For the effective strain ε11 this is an increase on the right edge of the computational do-
main, for the effective strain ε22 on the top edge, and the effective strain ε12 around the
top right corner. In opposite directions, these densities decreased. For example, we see
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a decrease on the vertical axis of symmetry for the effective strain ε11. After these peaks
of intensities in the effective strain densities on day 223, the densities gradually decrease
until day 351 and increase in intensity until they reach equilibrium on day 1200. Al-
though it is difficult to see, in this 2D figure, the effective strain densities oscillate around
the (new) equilibria. Compared to the simulation with stable parameter values, we see
an increase in the intensity of the same order for ε12, albeit with more significant num-
bers. We note that the order of magnitude may also result from the larger wavenumber
(k = 2) in the initial perturbations.
The early evolution of the chemicals for δc = 3×10−4 cm6/(cells g day) is comparable to
the evolution of the chemicals for δc = 5×10−4 cm6/(cells g day) (figure not shown). In
the first 51 days, the perturbed fibroblast and myofibroblast cell densities move gradu-
ally toward equilibria, and the perturbed collagen density moves gradually toward equi-
librium in the first 119 days. However, the perturbed signaling molecule density does not
move to the expected equilibrium. Figure 4.6 shows the early evolution of the signaling
molecule density.
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-14

Figure 4.6: Early evolution of the signaling molecule density for δc = 3×10−4 cm6/(cells g day) in the first 13
days. Tables 3.2 and 4.2 show the values of the other parameters. The shown domains are (0,1)2 cm2, and the
color bars show the signaling molecules in g/cm3.

Unlike the evolution of the perturbed signaling molecule density for stable parameter
values shown in Figure 4.4, the perturbations in the signaling molecule density do not
disappear in the first 13 days for an unstable signaling molecule decay rate. The initial
peaks of about 4×10−14 cm6/(cells g day) decrease in the first few days. At the same time,
these peaks merge and shift toward the origin as they decrease further in the first five
days. The peaks continue merging, completed within 13 days; however, the signaling
molecule density increases strongly in the origin of the computational domain. In the
beginning, this increase does not significantly affect the other chemicals; however, after
day 51, it causes a considerable difference.
Figure 4.7 shows the evolution of the chemicals in the later stage of the simulation for
δc = 3× 10−4 cm6/(cells g day). On day 51, it seems that the chemical densities are in
the equilibria N = 104 cells/cm3, M = 0 cells/cm3, c = 0 g/cm3, and ρ = 0.1125 g/cm3.
However, these densities do not remain in and around equilibria. Note the orders of
the signaling molecule concentration: 10−10 g/cm3 on day 200 compared to the order
10−14 g/cm3 on day 13 (see Figure 4.6). After day 13, in the origin of the computational
domain, the signaling molecule density increases enormously until day 200, after which
the density drops back toward equilibrium until day 317. The signaling molecule density
then rises to a new equilibrium on day 1200, which shows a clear oscillation. Since the
signaling molecule density increases so much up to day 200 in the origin of the computa-
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Figure 4.7: Evolution of the chemicals for δc = 3×10−4 cm6/(cells g day). Tables 3.2 and 4.2 show the values
of the other parameters. From top to bottom, the plots show the fibroblasts (N ), the myofibroblasts (M), the
signaling molecules (c), and collagen (ρ). The shown domains are (0,1)2 cm2, and the color bars show the
(myo) fibroblasts in cells/cm3 and the signaling molecules and collagen in g/cm3.

tional domain, the fibroblast cell density decreases because of myofibroblast differenti-
ation, and the collagen density increases. These changes in densities are because signal-
ing molecules stimulate the differentiation and production of myofibroblasts (equation
(2.7)), stimulate the production of collagen, and inhibit the decay of collagen (equation
(2.10)). Further, myofibroblasts also stimulate collagen production.

The myofibroblast cell density reaches a maximum on day 213, the collagen density on
day 235, and the fibroblast cell density on day 245. After the signaling molecule density
reaches a minimum on day 317, we see that the myofibroblast cell density reaches a min-
imum on day 337, the collagen density on day 375, and the fibroblast cell density on day
448. After these days, such an oscillating effect around new equilibria is visible, which
converges on day 1200. The result is a permanently reduced number of fibroblasts, a
permanently increased number of myofibroblasts, and a permanently elevated concen-
tration of signaling molecules and collagen, at the origin of the computational domain
(i.e., the center of the burn). Taken together, with an unstable signaling molecule decay
rate not too low, the numerical method initially seems to behave like a stable regime.
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This stable behavior changes at a later stage of simulation time, where the numerical
method behaves stable enough to let the chemical densities reach new equilibria in an
oscillatory way.

From a biological perspective, we can state that an increased expression of signaling
molecules (because of their reduced decay) can lead to a period in which a wound fluc-
tuates in contraction. This contraction fluctuation is because the number of (migrat-
ing) myofibroblasts increases and decreases. In the beginning, the wound can heal well.
However, because of the continued signaling, the scar will fluctuate in thickness and
stiffness because of the present collagen concentration. The scar is also highly subject
to contraction because of the abundance of myofibroblasts present. The abundance of
myofibroblasts and the increased collagen concentration may signify hypertrophy.

We may associate the excessive deposition of collagen with keloids, and hypertrophic
scars [66]. Abnormal TGF-β signaling in myofibroblasts is associated with the forma-
tion of hypertrophic scars [67]. Given our study, it is likely that such a situation arises
because of a lower decay rate of signaling molecules. Furthermore, hypertrophic scars
develop 1 to 2 months after injury, while keloids develop months to years after the initial
injury. This period is consistent with our simulations showing that the abundance of my-
ofibroblasts and collagen occurs after a few months, while the increased expression of
signaling molecules occurs within a few weeks. Furthermore, experiments suggest that
the hyper-proliferation of fibroblasts in hypertrophic scars can be reversed once their
stimulation, such as the abundance of growth factors and cytokines, is abolished [66].
Our 2D simulation partially reflected this. When we turn off the stimulation of signal-
ing molecule expression at a later stage by setting the density to equilibrium, we see the
(myo)fibroblast cell densities and the collagen density change. The myofibroblasts seem
to disappear, the collagen density recovers, and the fibroblast cell density recovers. How-
ever, with three cells/cm3 myofibroblasts left in the center of the scar after 47 days after
this reset, the fibroblast cell density does not increase above 9865 cells/cm3, and the col-
lagen density does not go below 0.1234 g/cm3. The numerical method does not converge
and decreases the timestep. We, therefore, set the myofibroblast cell density to equilib-
rium on day 1247 and see the collagen density move to equilibrium within 411 days and
the fibroblast cell density within 436 days. Thus, according to this simulation, restoring
the fibroblast cell and collagen density is possible when both the signaling molecules
and myofibroblasts disappear. Though, it then still takes over a year to repair the defects.
Hence, given that the overexpression of signaling molecules occurs in the first weeks, we
recommend monitoring this expression to intervene at an early stage when necessary.

4.3.3 Unstable signaling molecule decay rate too low
In the last simulation, we take δc = 2×10−4 cm6/(cells g day) and k = 2. We note that this
parameter value does not meet the stability criterium. While running the simulation, we
see that in the first 40 days, the perturbed fibroblast cell density moves to equilibrium.
After 40 days, the fibroblasts persistently differentiate into myofibroblasts, increasing
the myofibroblast cell density over the whole computational domain from day 50. This
differentiation happens because the signaling molecule density increases, and therefore,
also the collagen density increases. Unlike in the last simulation, the displacement ve-
locity does not vanish. For that reason, remeshing is necessary around day 80 of the
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simulation. Within a few days, remeshing is necessary again, and at some point, the
Picard iterations do not yield convergence anymore because of continuous remeshing.
Therefore, we ended this simulation. We see the same for k = 1.
From a biological point of view, we believe that the human body protects against lower-
ing the signaling molecule decay rate to this extent to prevent such a non-realistic occur-
rence where collagen will cause the tissue to rupture because of excessive production.
To conclude this section, the two-dimensional morphoelastic model for post-burn con-
traction is stable under the condition that the signaling molecule decay rate is not re-
duced too far to values below the limit δc ≥ kc

a I I
c ρ

. We note that in all simulations ex-

cept the last, the ratio minek

∣∣Jek

∣∣/maxek

∣∣Jek

∣∣, where J the triangle Jacobian, was at least
0.9915, hence remeshing was not necessary.
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Multiplication by e2πlkhi e2πp j hi and double orthonormalization yields
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e−2πlhi −e2πphi

2h
+

ν

1−2ν
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e−2πlhi −e2πlhi

2h

]
−

E

2
√

ρ(1+ν)

[
ε12 +ε11 + ν

1−2ν

(
ε11 +ε22

)] e−2πlhi −e2πlhi

2h
ρ̂β−

ξ
ρ

R2 +ρ2

e−2πlhi −e2πlhi

2h
M̂β,

(4.52)

for the displacement velocity v1. Application of Euler’s formula, and using
2−2cos(2πl x) = 4sin2(πl x) and[
e i x e i y −e i x e−i y −e−i x e i y +e−i x e−i y

]
/4 =−sin(x)sin(y) yields equation (4.42).



Conclusions of this part

This part forms an entire addition to the existing biomorphoelastic model for post-burn
contraction. We presented stability analyses for the fully continuous and the (semi-)
discrete (where we have replaced the spatial derivatives with differences) versions of
the problem in a one- and two-dimensional setting. We could analytically determine
the eigenvalues, which is possible because the linearized equations (3.1) and (4.1)–(4.3)
leave out other variables after accounting for the equilibria values. As a result, some
eigenvalues meet the stability constraints independent of the chosen parameter values,
given that the parameter values involved are positive and realistic. We have shown that
linear stability is met for ε≤ 1 in 1D, which is also a physical requirement from equation
(2.14), and for ε11 = ε22 = 1

2 and ε12 = 0 in 2D. This latter condition is sufficient, meaning
the analysis does not exclude any other stable equilibria. Nonlinear effects will, at most,
be able to induce constant-state instabilities for the effective strain. Further, in 2D, we
have empirically shown that for small |ε12|, say |ε12| ≤ 0.2, there is always a stable region
around the origin. For the solution to behave monotonically in 1D, the skin viscosity
parameter should be greater or equal to a factor containing the total mass density of
dermal tissues, Young’s Modulus, and the effective strain equilibrium. Further, another
essential stability constraint states that the model is stable for signaling molecule decay
that is quick enough.

We have shown consistency between the (semi-) discrete model’s eigenvalues and the
continuous model’s eigenvalues. If the equilibrium solution to the continuous problem
is stable, then the equilibrium to the (semi-) discrete problem is stable under the present
discretization (if we use the correct discretization method). Further, in 1D, monotonic
convergence in the continuous system implies monotonic convergence in the (semi-)
discrete system. Conversely, convergence could be monotonic in the (semi-) discrete
system and not in the continuous system.

The obtained eigenvalues of the system establish the convergence rate towards the equi-
libria. We have assessed the convergence of the numerical method experimentally, in
which the order of convergence is of order O (h2). Since the difference between the
chemical eigenvalues from the continuous and (semi- )discrete problem is of the order
O (h2), the convergence rates towards the equilibrium differ by an order O (h2). This or-
der of convergence is better than expected since the discretization method should have
local truncation errors of order O (h2).

Using numerical simulations, we validated the stability constraints derived from the
analysis. If the input values satisfy the stability criterion, the model behaves stable given
these stable parameter values. The initial perturbations in the variable densities vanish,
and there are local displacements because of the perturbed displacement velocity den-
sity. Once this density has reached equilibrium, all the densities move gradually toward
the corresponding expected equilibria. We conclude that a small perturbation of order
O (10−15) g/cm3 in the signaling molecule density and a few cells in the (myo)fibroblast
cell densities are already responsible for initializing healing that takes more than a year
time.

In 1D, we confirmed that the model is stable if the eigenvalues are not real-valued (i.e. if
the viscosity is low). In this case, convergence is not monotonic but oscillates because of
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increasing amplitudes of the perturbed displacement velocity density, moving the mesh
back and forth. We point out that the larger the wavenumber in perturbations, the faster
the equilibria are reached and the faster the perturbations disappear. In conclusion, we
need real-valued eigenvalues to prevent the model from moving the mesh outside the
normal bounds. However, this does not induce instability in terms of equilibria.
The model can numerically be unstable if the parameters do not meet the signaling
molecule stability constraint; however, it does not necessarily has to be. If δc < kc /(a I I

c ρ)
is not too far below the bound, then, initially, the model seems stable, and the healing
seems proper. The displacement velocity perturbations vanish quickly, and the signaling
molecule perturbation shifts such that the density peak moves to the center of the burn
in the first two weeks. One would expect the signaling molecule density to decrease from
that moment on, given that the other chemicals seem to reach equilibria. However, the
increasing signaling affects all the variables except displacement velocity. The densities
move away from the expected equilibria and oscillate around new equilibria, where the
densities remain, and the numerical method converges. We have linked this situation
to real-life occurrences of hypertrophic scars and keloids. From a mathematical point
of view, we have provided experimental evidence that one can restore the fibroblast cell
and collagen density to healthy equilibria. We proved this restoration by reverting matrix
production stimulation and myofibroblast differentiation, which we did by setting the
signaling molecule density to (healthy) equilibrium and removing the myofibroblasts.
In case the signaling molecule decay rate is too far below the stability limit, the model
is unstable. Initially, the wound healing seems to proceed smoothly; however, the too-
slow signaling molecule decay causes such incredibly high signaling that all fibroblasts
differentiate, and the collagen density explodes. To this end, the numerical method does
not converge and loops over Picard iterations (while remeshing in 2D).
To conclude, the numerical model fully reproduces the stability constraints.
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PART II
Sensitivity of the

biomorphoelastic model for
post-burn contraction



Introduction to the chapters in this part

The biomorphoelastic model for post-burn contraction compromises many (indepen-
dent) parameters. Some parameter values are known, while others are unknown or
poorly documented, and estimating these values is often complicated and sometimes
even impossible. Although an excellent overview of parameter values has been provided
[1], parameters vary between patients and even along a piece of the skin sample. There-
fore, the two objectives of this part are to show to what extent the model’s outcomes are
subject to change when parameter values are varied and whether the model can make
patient-specific contraction predictions.
A (Bayesian) parameter sensitivity analysis can reveal a dependence of the scar area and
the total stress-energy of the model parameters. Furthermore, it is good to know which
parameter values significantly influence results to determine the research direction for
improving and optimizing therapy. Therefore, we are interested in the parameters’ sen-
sitivity and the model’s feasibility. The sensitivity study aims to show where sensitive
parts of the model lie and what the implications of these sensitivities are.
We combine the results from the sensitivity analysis to test the model’s feasibility in 1D in
Chapter 5. As input to the model, we might choose patient-specific information, such as
the genetic background, gender, age, the location of the wound on the body, the depth of
the wound, or any other. The literature estimates a significant subset of parameter values
for human skin tissue of different ages. For example, the average fibroblast doubling
time decreases with age [71], indicating a decrease in fibroblast apoptosis rate with age.
Hence, we aim to predict post-burn contraction and discomfort of patients of different
ages.
In this part, we simulate burns. Therefore, the computational domain is subject to more
significant displacement than in the previous part of this thesis, and therefore, we need
to perform remeshing in 2D. In Chapter 6, we discuss the remeshing strategy that we also
use in Chapter 8.
The results in this part show the variations in the relative surface area (RSA) density and
the total strain energy (TSE) density (for patients of different ages) and contribute to the
range of parameter values in Chapters 7 and 8.
The conclusions of this part are presented after the chapters.
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5
Sensitivity and feasibility of the

one-dimensional model

This chapter is based on the publication from [63]. The code used for this chapter can
be found in the online resources for Chapter 5 where one also finds a link to supporting
data.

We consider the one-dimensional biomorphoelastic model for post-burn contraction.
We perform a sensitivity analysis for many model parameters and use the results for
a feasibility study. In the feasibility study, we test whether the model is suitable for
predicting the extent of contraction in burns in patients of different ages. To this
end, we conduct an extensive literature review to find parameter values and define
four different age groups. From the sensitivity analysis, we conclude that the most
sensitive parameters are the equilibrium collagen concentration, the fibroblast and
myofibroblast apoptosis rates, and the signaling molecule secretion rate.

Further, although we can use the model to simulate significant distinct contraction
densities in the different age groups, our results differ from what is seen in the clinic,
particularly concerning children and elderly patients. We see more intense contrac-
tures in children if the burn injury occurs near a joint because the growth induces
extra forces on the tissue. Elderly patients seem to suffer less from contractures, possi-
bly because of excess skin.

5.1 Introduction
In this chapter, we summarize the change in parameter values that come with aging,
we perform a sensitivity analysis for many model parameters, and we use the sensitivity
analysis results for a feasibility study. The feasibility study’s objective is to test whether
the model can predict age-dependent post-burn contraction. Section 5.2 presents the
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parameter values, and Section 5.3 presents the computational domain and the initial
conditions that we use in the simulations. Subsequently, Section 5.4 presents the sensi-
tivity analysis, and Section 5.5 presents the feasibility study.

5.2 Parameter values
This section describes the model’s parameter values based on various sources from the
literature. Reference [1] is one of the most important sources, in which several parameter
values have been estimated that we did not find in the existing literature.

5.2.1 Equilibrium values
Taking into account the reaction term for the signaling molecules and the equilibria
N , M and ρ, the equilibrium signaling molecule concentration should be c = 0 g/cm3.
The estimation of the equilibrium fibroblast count differs per study. One estimates the
count to be about O (104) cells/cm3 [14], and the other estimates it to be about O (106)
cells/cm3 [72]. The estimation of the cell count also differs for the papillary and the
reticular dermis1, where much more fibroblasts exist in the papillary dermis [74, 75]. In
our simulations, we have seen that the model works best with the equilibrium distribu-
tion of O (104) cells/cm3. We note that some other parameter values (δc ,δρ) depend on

the chosen order for N since we need to consider the matrix metalloproteinase (MMP)
density. Furthermore, research has found that among ages 1–10, the fibroblast cell den-
sity is nearly twice as high as in any other postnatal age group [76]. Therefore we choose
the mean value N = 104 cells/cm3 and let the value decrease with age.
The myofibroblast count in the skin depends on the skin’s condition. Myofibroblasts
result from the differentiation of fibroblasts. We assume myofibroblasts are not present
since healthy skin contains almost no myofibroblasts. Hence M = 0 cells/cm3.
Olsen et al. estimate the equilibrium collagen concentration as follows. Roughly 75%
of the 15% of other substances than water and fat in 1 ml of human dermal tissue is
collagen [14]. This estimate yields ρ ≈ 0.75×0.15 g ml−1 = 0.1125 g ml−1. Furthermore,
the collagen content in human skin decreases at about 2% per year [77]. Therefore, we
choose the mean value ρ = 0.1125 g/cm3 and let the value decrease exponentially with
age.

5.2.2 Initial values
Because of the supply of growth factors during inflammation, the initial signaling molecule
concentration is unequal to zero. The value should not exceed 15–50 ng ml−1 [14], and
is therefore chosen to be c̃ = 10−8 g/cm3.
The (thermal) injury causes the sudden death of cells. The dead cells lose their solid
integrity, which causes the release of cytokines. These cytokines trigger the immune
response, where several types of immune cells clear up the debris and release signaling
molecules, which trigger the fibroblasts to migrate to the damaged region. We assume
that several fibroblasts are present. We let this number be 20 percent of the equilibrium

1The papillary dermis is the superficial layer, lying deep to the epidermis. The papillary dermis is composed
of loose connective tissue that is highly vascular. The reticular layer is the deep layer, forming a thick layer of
dense connective tissue that constitutes the bulk of the dermis [73].
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count. So the mean value is Ñ = 2×103 cells/cm3.

5.2.3 Flux values
Sillman et al. vary the fibroblast migratory rates depending on the experimental medium
used: in the serum-containing medium, the average velocity was as low as 0.23 mm/min.
In contrast, in the serum-free keratinocyte medium, the average velocity was as high
as 0.36 mm/min [53]. Hence, in serum-containing medium the rate was 7.6176× 10−7

cm2/day and in serum-free keratinocyte medium the rate was 1.86624×10−6 cm2/day.
All the reported values together yield a mean value of 1.3247×10−6 cm2/day and stan-
dard deviation 3.7823×10−8 cm2/day. However, other estimates are 1.44×10−5 cm2/day
and 1.2×10−5 cm2/day [14] & [78]. We therefore estimate the value Dn ≈ 10−6 cm5/(cells
day). Furthermore, we assume that the diffusion of (myo) fibroblasts decreases with age.
For the chemotactic parameter, we adopt χ= 2×10−3 cm5/(cells day) from Murphy et al.
[55]. For the signaling molecule diffusion parameter, we adopt Dc ≈ 2.88×10−3 cm2/day
from Haugh [54]. Furthermore, we assume that the diffusion value decreases with age.

5.2.4 Chemical kinetics values
Olsen et al. relate the transforming growth factor (TGF)-β inhibitor to the initial growth
factor concentration so that a I I

c = 10−8 g/cm3 [14]. We adopt this value.
The chemical concentrations required to enhance fibroblast proliferation are somewhat
higher than those for chemotactic responses [58]. Experimental evidence indicates that
half-maximal enhancement corresponds to concentrations of about ten ng per ml [14].
We adopt this value and take a I

c = 10−8 g/cm3.
Myofibroblasts produce roughly twice the collagen that is synthesized by fibroblasts [60].
Hence the constant ηI = 2.
The half-life of TGF-β is about 2 minutes [79], and the half-life of platelet derived growth
factor is about 2 minutes as well [80]. So signaling molecules have a decay rate of
− log(0.524×60/2) ≈ 499/day. However, Olsen et al. decrease the value for two reasons:
not all signaling molecules may bind, for example, because of insufficient levels of bind-
ing protein present at the wound site, and the bound complex may be recognized by
(myo)fibroblasts leading to internalized and metabolized signaling molecules [14]. There-
fore, the estimated decay rate is 0.5/day. Other estimates for TGF-β are 0.462−0.693/day
[81] and 0.354/day [55, 82]. Given our equilibrium parameter values, the MMP density
has order of magnitude O (N )×O (ρ) = O (103). Hence taking care of the equilibrium di-
mensions of the model, we end up with a range of (3.54−6.93)×10−4 cm6/(cells g day).
We take the value δc = 5×10−4 cm6/(cells g day).
From the stability analyses in Chapters 3 and 4, it follows that kc ≤ δcρa I I

c . Given the
parameter values, we set kc = 3×10−13 g/(cells day).
We estimate the constant ηI I = 0.45, which is a slight deviation from the constant esti-
mated in [17].
Overall et al. estimate a I I I

c = (2−2.5)×108 cm3/g [38]. We choose the lower limit, hence
a I I I

c = 2×108 cm3/g. Furthermore, the MMP production increases with age [83]. Given
the equation for the MMPs [1], that is

g (N , M ,c,ρ) = [N +ηI I M ]ρ

1+a I I I
c c

, (5.1)
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to let the MMP production increase, we must decrease the inhibiting factor a I I I
c . Hence,

we let the inhibition factor a I I I
c decrease with age.

We can calculate cell doubling time (DT) using the growth rate (amount of doubling in
one unit of time) in the following way: DT = ln(2)/growth rate. The average fibroblast DT
is approximately 18–20 h [50, 56]. This gives the range 0.832 ≤ r ≤ 0.924 for the prolifer-
ation rate. We choose the upper limit, hence r = 0.924 cm3q /(cellsq day). Furthermore,
the percentage of proliferative cell nuclear antigen (PCNA)-positive fibroblasts decreases
with age, and PCNA can be considered a marker for proliferating cells [76]. We, therefore,
let cell division decrease with age.
TGF-β increases fibroblast proliferation by 2–3 times [57]. We choose the lower limit,
hence r max = 2.
The skin’s fibroblast carrying capacity is known to be approximately κ = 10−6 cm3/cells
[32]. We adopt this value. Furthermore, skin becomes thinner with age, so we assume
crowding occurs faster in elderly skin. Hence we let κ increase with age.
We need to have a stable chemical reaction in case the cell and molecule densities are
in equilibrium. The constant q allows us to have a stable reaction in equilibrium for
equation (2.15). Given the equilibria, solving for q yields:

q = log(δn)− log(r (1−κN ))

log(N )
. (5.2)

In Desmoulière et al., culturing fibroblasts in the presence of TGF-β increased the per-
centage of cells expressing alpha smooth muscle activator (α-SMA) from 7.5–45.3%, rep-
resenting the activation of 37.8% of myofibroblast type cells [7]. This experiment oc-
curred over one week, with a TGF-β dose of 5–10 ng per ml. Suppose the myofibroblast
activation follows a linear equation. Then given y(7) = 7a = 0.378, we have a = 0.054/day.
A dose of 5–10 ng per ml yields 0.054/10×10−9 and 0.054/5×10−9 cm3/(g day), giving the
range 5.4×106 ≤ k1 ≤ 1.08×107 cm3/(g day). We choose the upper limit. Furthermore,
Simpson et al. demonstrated a failure of fibroblast-myofibroblast differentiation and
showed that this is associated with in vitro aging [71]. Hence we let the differentiating
parameter decrease with age.
The average fibroblast DT ranges between 18–20 h [50, 56], and the average lifespan of
fibroblasts varies between 40 and 70 population doublings (PD) [52, 84]. Using the for-
mula

δn = (ln2)/(PD×DT/24), (5.3)

we end up with the range 0.0119 ≤ δn ≤ 0.0231. We choose the value δn = 0.02/day
and let this value decrease with age since, on average, the doubling time of fibroblasts
decreases with age [71].
The myofibroblast apoptosis rate was estimated in a previous study for hypertrophic
scars [61]. Within this study, it was found that a value of δm = 0.002 /day corresponds
to hypertrophic scars and that a value of δm = 0.06 /day corresponds to normal scars.
Other averages are: 8.85% for normal scars and 1.06% for hypertrophic scars [85]. Com-
bination of these results yield the range 0.06 ≤ δm ≤ 0.0885 for normal scars and 0.0106 ≤
δm ≤ 0.02 for hypertrophic scars. For our study we use the lower value δm = 0.06/day for
normal scars.
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The collagen secretion rate kρ gives us the opportunity to have a stable reaction in equi-

librium for equation (2.18). Given the equilibria, solving yields kρ = δρρ
2.

The synergistic effects of growth factors may accelerate collagen biosynthesis up to ten-
fold [14]. Hence kmax

ρ = 10.
Data suggests that the half-maximal enhancement of collagen synthesis occurs at TGF-β
concentrations of 1 ng per ml [59]. We adopt this value, hence a IV

c = 10−9 g/cm3.
For the collagen decay rate, we let δρ = 6×10−6 cm6/(cells g day) [61]. Furthermore, the
collagen turnover decreases with age [77]. Hence we let the proteolytic breakdown of
collagen decrease with age.

5.2.5 Mechanical values
Koppenol et al. estimated a viscosity value of order O(102) for the two-dimensional

biomorphoelastic model [1]. In Chapter 3, the stability analysis showed that µ ≥
p

ρE
π

must hold for the one-dimensional morphoelastic model. Given other parameter val-
ues, we can adapt the value µ = 100 (N day)/cm2. Furthermore, since the viscosity is
constant for patients up to their 40s and increases a little after turning 40 [86], we let the
viscosity increase with age.

We estimate that the constant E in the Young’s Modulus E
p
ρ is 350 N/((g cm)

1
2 ) and let

this value increase with age [87, 88].
For the parameters in the body force, we adopt ξ = 4.4×10−2 (N g)/(cells cm2) [64, 65],
R = 0.995 g/cm3, and ζ = (0−9)×102 cm6/(cells g day). We set ζ = 4×102/(cells g day)
and let this value increase with age because the skin’s ability to recover after stretching
decreases over a lifetime [89].
Last, but not least, ρt = 1.09 g/cm3 for human skin [62]. We assume this density does not
change with age.

5.3 The domain and the initial conditions
For the sensitivity analysis and the feasibility study, we use a fixed computational do-
main defined by Ωx = (−L,L) with Ωx = [−L,L], the closed interval. Similarly, we define
the wounded area by the subspace Ωw

x = (−Lw ,Lw ), Lw < L. Furthermore, we define the
wound boundary’s steepness by s, which counts for the slope of the chemicals on the
wound boundary. The dimension x is in centimeters and t in days.
We use the following functions for the initial fibroblast and signaling molecule condi-
tions:

N (x,0) =


N if (∗),
N+Ñ

2 + N−Ñ
2 sin

(
π
s

(
x + 1

2 s
))

if (∗∗),
Ñ if (∗∗∗),

c(x,0) =


c if (∗),
c+c̃

2 + c−c̃
2 sin

(
π
s

(
x +Lw − s

2

))
if (∗∗),

c̃ if (∗∗∗).

(5.4)

(∗) : Lw ≤ x ≤−Lw , (∗∗) : {Lw +x ≤ s,Lw − s ≤ x ≤ Lw }, (∗∗∗) : −Lw + s ≤ x ≤ Lw − s. Here
N and c are the fibroblast and signaling molecule densities in healthy dermal tissue, and
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Ñ and c̃ in the wound. Figure 5.1 shows an example of possible initial conditions.
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Figure 5.1: An example of two initial conditions showing that fibroblasts (a) and signaling molecules (b) are
present in the wound. The parameter values in this example are: L = 5 cm, Lw = 3 cm, s = 1.5 cm, N = 104

cells/cm3, Ñ = 2×103 cells/cm3, c = 0 g/cm3 and c̃ = 10−8 g/cm3.

We use the initial conditions 5.4 to avoid abrupt changes in the densities. We have
assumed (some) fibroblasts are present and, because of the secretion by, for instance,
macrophages during inflammation, signaling molecules are also present in the wound.
We assume that initially, no myofibroblasts are present, a fixed collagen concentration is
present, and the displacement of the dermal layer, the displacement velocity, and effec-
tive strain initially are zero. Hence for all x ∈Ωx :

M(x,0) = M = 0, and ρ(x,0) = ρ,

u(x,0) = 0, v(x,0) = 0, and ε(x,0) = 0.
(5.5)

Note that this can represent a skin graft: the skin trauma damages the fibroblasts and
induces an inflammatory response that secretes signaling molecules. The skin graft adds
a collagen layer.
In the simulations, we use L = 10 cm, Lw = 3.6 cm (mean value in the sensitivity anal-
ysis), s = 1 cm, timestep ∆t = 1 day, total simulation time T = 365, and we divide the
computational domain in n = 200 elements.

5.4 Sensitivity analysis
The model contains 34 parameters, of which we vary the following independent 30 to
study the sensitivity of these parameters:

• the equilibria N and ρ, and the initial conditions Ñ , c̃ and ρ̃;

• the apoptosis rates δn and δm , and the decay rates δc and δρ ;

• the parameters responsible for the enhancement of cell division and molecule se-
cretion a I

c , a I I
c and a IV

c , and the inhibition of MMP secretion a I I I
c ;

• the ratios from myofibroblasts to fibroblasts ηI and ηI I , and chemokine depen-
dent differentiation rate k1;
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• the diffusion and chemotaxis rates Dn ,Dc , and χ;

• the proliferation and secretion rates r and kc , and the maximum factors r max and
kmax
ρ ;

• the crowding factor κ;

• the parameters ξ and R that influence the force;

• the viscosity µ, Young’s-Modulus factor E , morphoelastic factor ζ, and the total
mass density of dermal tissues ρt .

We organized the analysis as follows. We vary the parameter values by decreasing or
increasing each chosen parameter by± 0, 5, 10, 15, 20, 25%. We also vary the length of the
initial wound Lw . This setup means we perform 341 simulations. Namely, we perform 11
simulations for each parameter while leaving the values of the other parameters at the
mean value. (For an overview of parameter values, we refer to Table 5.3 in Section 5.5.
The mean values are given in Tables 5.3a–d, whereas in Tables 5.3c and 5.3d, the mean
values are given in the third column (µ2).)
The results show the minimum of the relative surface area (RSAmin) in a time period of
one year, the day on which the minimum relative surface area is reached (RSAday), the
relative surface area on day 365 (RSA365), the maximum value of the total strain energy
density (TSEmax), and the day on which the maximum value of the total strain energy
density is reached (TSEday).
Given the values in r ∈ RSA{min,day,365} and r ∈ TSE{max,day} for a variation j ∈ {±25%}, we

compute the z-scores for the parameter i ∈ {N , . . . , Lw }. The basic z-score for a sample is
z = (x − x)/sx , where x is the sample mean and sx is the sample standard deviation. We
define the measure for sensitivity by summing over the absolute values of the z-scores:

S r
i =∑

j

∣∣∣zr
i j

∣∣∣ , (5.6)

where zr
i j is the z-score of the data in r for parameter i in variation j . For example,

zRS A365
δN ,15% represents the z-score of RSA365 for parameter δn in the simulation where the

value for δn is increased with 15%.
Table 5.1 gives an overview of the sensitivity values in terms of z-scores for the 31 param-
eters we varied. In the last column, we rounded the sum of the values.

Table 5.1: Sensitivity of the varied parameters in terms of z-scores.

Param. Dimension S RSAmin S RSAday S RSA365 S TSEmax S TSEday S total

ρ g/cm3 20.35 33.92 15.38 29.19 30.21 129
δn /day 22.55 11.75 23.89 17.85 15.05 91
δm /day 20.52 11.79 23.79 17.25 11.42 85
R g/cm3 20.17 10.75 21.51 13.57 13.65 80
kc g/(cells day) 16.99 15.12 14.23 10.02 22.49 79
r max - 17.55 9.88 18.15 13.05 12.10 71
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Table 5.1: (continued)

Param. Dimension S RSAmin S RSAday S RSA365 S TSEmax S TSEday S total

δρ cm6/(cells g day) 8.91 15.13 6.88 13.05 13.55 58
δc g/cm3 12.00 9.09 11.56 5.10 16.29 54
kmax
ρ - 8.27 12.69 6.45 11.59 12.04 51

a I I I
c cm3/g 8.93 10.75 8.91 11.09 8.92 49

N cells/cm3 9.21 8.83 9.50 10.35 7.58 45
ξ (N g)/(cells cm2) 14.89 2.06 14.57 1.18 11.62 44
E N/((g cm)1/2) 13.31 4.16 6.40 4.94 8.48 37
Lw cm 2.04 9.17 11.52 9.80 4.01 37
ηI - 8.17 3.36 8.23 4.82 8.25 33
ηI I - 6.55 5.71 9.24 6.30 5.61 33
a I

c g/cm3 4.50 9.21 5.73 10.17 2.26 32
ζ cm6/(cells g day) 3.85 5.10 1.73 2.99 10.85 25
k1 cm3/(g day) 1.33 7.90 2.32 8.49 2.26 22
a I I

c g/cm3 4.83 2.06 4.78 2.82 4.50 19
c̃ g/cm3 3.69 3.02 2.07 2.72 4.54 16
r cm3q /(cellsq day) 4.65 1.49 3.69 2.30 4.07 16
Ñ cells/cm3 3.35 2.96 1.98 3.81 3.32 15
a IV

c g/cm3 2.31 3.11 1.53 2.99 3.04 13
ρt g/cm3 1.82 3.11 1.60 2.99 2.51 12
Dc cm2/day 2.15 3.02 1.60 2.88 2.30 12
κ cm3/cells 1.89 3.11 1.57 2.99 2.55 12
µ (N day)/cm2 1.78 3.11 1.60 2.99 2.42 12
χ cm5/(g day) 1.82 3.11 1.60 2.99 2.51 12
ρ̃ g/cm3 1.42 3.11 1.76 2.99 2.05 11
Dn cm5/(cells day) 1.95 2.06 1.60 1.87 2.43 10

The third to seventh columns show the scores on the minimum relative surface area (RSA) S RSAmin , the day on

which the minimum RSA is reached S
RSAday , the RSA on day 365 S RSA365 , the maximum total strain energy

(TSE) S TSEmax , and the day on which the maximum TSE is reached S
TSEday . The last column shows the total

of the scores S total.

We can see that the parameter that represents the equilibrium collagen concentration
ρ with a score of 129 is the most sensitive. It is, therefore, interesting to study the equi-
librium collagen concentrations in human skin since collagen concentrations decrease
with age [77], and we use this value for the feasibility study in the next section. Parame-
ters that are the least sensitive are the diffusion rate of (myo)fibroblasts Dn with a score
of 10 and the initial collagen concentration ρ̃ with a score of 11. Concerning the diffu-
sion Dn , we must note that the mean value is of order O (10−6), which is different from
the order used by Koppenol [1], where it is of order O (10−7). This difference may indicate
that variations of this parameter have no significant impact on the simulations, while in
a different geometry it might be much more sensitive. Concerning the initial collagen
concentration ρ̃, we note that the value is varied when the equilibrium collagen concen-
tration is fixed to the mean value (ρ = 0.1125). If the equilibrium collagen concentration
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ρ is varied, we fix the initial collagen concentration to 20% of 0.1125, which is the mean
value of ρ and not the variation.

Other parameters that seem significantly sensitive are the fibroblast apoptosis rate δn

with a score of 91, the myofibroblast apoptosis rate δm with a score of 85, the constant
R that influences the force with score 80, and the signaling molecule secretion rate kc

with score 79. However, we must note that Koppenol estimated the mean values for
δm , R, and kc for a two-dimensional setting in which he used other values for the pa-
rameters [17]. Furthermore, we based the value of kc on the model’s stability constraint
kc ≤ δc a I I

c ρ, and since the parameter for the equilibrium collagen concentration is sen-
sitive, it is not a surprise that this secretion parameter is also sensitive. The value for the
secretion rate of signaling molecules is not that straightforward. The secretion rate of
cytokines differs from the secretion rate of growth factors, yet we model these together
in one variable c representing signaling molecules. To prevent the model from unnec-
essarily complicated computations, we continue modeling with this simplification and
bear in mind the sensitivity of the parameter kc . It is therefore also interesting to study
the fibroblast apoptosis rate since the doubling time of fibroblasts decreases with age
[71], and we use this value for our age study in the next section.

To visualize the parameters’ sensitivity, we present the effect of the parameter values
variations on both the RSA and the TSE in Figure 5.2. There is no legend to distinguish
the parameters’ sensitivity. Instead, we labeled the essential lines with different styles.

Figure 5.2 highlights the effects of decreasing or increasing the five most sensitive param-
eters: the equilibrium collagen concentration ρ, the fibroblast and myofibroblast apop-
tosis rates δn and δm , the body force-inhibiting constant R and the signaling molecule
secretion rate kc .

Increasing the equilibrium collagen concentration ρ gives a larger RSAmin and RSA365,
and a smaller RSAday, TSEmax and TSEday. Hence, an elevated equilibrium collagen
concentration results in less contraction during proliferation and maturation and less
patient discomfort. Further, the incidental effect is that the period of contraction and
increasing patient discomfort is shortened. The stated effects are somewhat linear and
appear to diminish as the equilibrium collagen concentration increases, most visible in
Figure 5.2e. A reduced equilibrium collagen concentration has the opposite effect, and
this effect is almost exponential-like in all subfigures, except in Figure 5.2a. Especially,
a 25% decrease from the mean value shows a strong negative effect in Figures 5.2c and
5.2d. In reality, it is not likely to change the equilibrium collagen concentration; how-
ever, we can use collagen dressings and, for example, vitamin C supplements to reduce
contraction and the contraction time.

Further, increasing the myofibroblasts apoptosis rate δm and the body force-inhibiting
constant R gives a larger RSAmin and TSEday, and a smaller TSEmax . Hence, faster myofi-
broblast apoptosis and stronger body force inhibition results in less contraction during
proliferation and less patient discomfort. Further, the incidental effect is that the period
of increasing patient discomfort is extended, in contrast to the effect of increasing ρ.

Considering the fibroblast apoptosis rate δn , we see that decreasing the rate results in
a larger RSAmin, TSEday and RSA365, and in a smaller TSEmax. Hence, slower fibroblast
apoptosis results in less contraction during proliferation and maturation and less patient
discomfort. Further, the incidental effect is that the period of increasing patient discom-
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Figure 5.2: Effects of the variations in parameters for the relative surface area (RSA) density and the total strain
energy (TSE) density. Shown are the effects on the minimum RSA (a), the effects on the day on which the
minimum RSA is reached (b), the effects on the maximum TSE (c), the effects on the day on which the maxi-
mum TSE is reached (d), and the effects on the RSA on day 365 (e). In the figures, δn and δm are the fibroblast
and myofibroblast apoptosis rates, respectively, ρ is the equilibrium collagen concentration, kc is the signaling
molecule secretion rate, and R is the body force-inhibiting constant.

fort is extended, as is what happens for faster myofibroblast apoptosis and stronger body
force inhibition. Slower apoptosis means more cells survive, hence a relative increase in
the proliferation of cells. We can see this from equation (5.2): a lower fibroblast apop-
tosis rate directly correlates with a smaller value for q and given equation (2.15), we see
that if q decreases, the production of fibroblasts increases, also relating to the skin’s stiff-
ness. An increase in the fibroblast cell density yields an increase in collagen production
and hence an increase in stiffness. Therefore, the tissue’s strength increases, and the ef-
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fective strain decreases, i.e., ‖ε‖2 becomes smaller. The result is less patient discomfort.
Further, surviving fibroblasts take up the space that myofibroblasts could otherwise oc-
cupy, explaining why S

RSAmin
δn

≥S
RSAmin
δm

in Table 5.1. We can see this from the body force
∂
∂x

ξMρ

R2+ρ2 that shows less generated isotropic stress for larger R and ρ and smaller M . The

result is less scar contraction.
From Figure 5.2e, we see that a decrease in the signaling molecule secretion rate kc gives
a larger RSA365. Hence, slower signaling molecule secretion reduces contraction inten-
sity after one year, which is no surprise as, during maturation, inflammatory responses
are not favorable. Furthermore, the model’s stability constraint kc ≤ δc a I I

c ρ favors a
lower signaling molecule secretion rate.
Taken together, targeting contraction intensity during proliferation is most likely effec-
tive in case fibroblast survival and collagen concentration are considered. During matu-
ration, targeting contraction and contractures is more likely to be effective when signal-
ing molecule inhibition and collagen production are considered.

5.5 Feasibility study
To study the feasibility of age-dependent uncertainty quantification, we focus on the
effect of skin aging on contraction and patient discomfort. Just like any other organ,
aging also affects the skin. Aging has a delaying effect on wound healing and immune
responses. Intrinsic aging is the effect of generic and internal influences, such as hor-
mones or metabolic substances. Extrinsic aging is the effect of external influences, such
as ultra violet (UV) radiation and environmental toxins [90]. Clear general signs of aging
are wrinkles, sagging skin, pigmentary irregularities, increased tendencies to injuries,
and the faster opening of healing wounds. These symptoms result from physiological
changes such as decreased cell replacement rate. We reviewed various literature sources
to find suitable values for the model’s parameters. In this way, we can perform simula-
tions for patients of different ages. Based on the results, we have chosen the groups we
present in Table 5.2.

Table 5.2: Groups of patients of different ages.

Group Age

1 0–15
2 16–40
3 41–70
4 71+

In this study, there are five groups of parameters:

1. parameters that are constant along the patients and the computational domain,

2. parameters that are constant along the patients and vary along the computational
domain,

3. parameters that vary along the patients and are constant along the computational
domain,
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4. parameters that vary along the patients and the computational domain,

5. parameters that depend on other parameters.

To assess the uncertainty in the input data, we use a basic Monte Carlo method in which
we sample input data from predefined statistical distributions. Regarding spatially het-
erogeneous parameters, we use sampling from a log-normal distribution. Each sample
is a one-dimensional realization and is based on the heterogeneous sampling through
a normalized truncated Karhunen–Loéve expansion of a zero-mean stochastic process,
by

û(X ) =
n∑

j=1
Ẑ j

√
2

n
sin

(
(2 j −1)

π

2 |Ωx |
X

)
, (5.7)

where Ẑ j ∼ N (0,1), hence Ẑ j denotes a set of iid stochastic variables that follow the
standard normal distribution, |Ωx | is the length of the domain of computation, and −L ≤
X ≤ L. From the stochastic variable û(X ), we show the regeneration of, for example, Ê
by

log(Ê(X )) ∼µ+σû, (5.8)

in addition to that
Ê(X ) = exp(ME +SE û(X )) . (5.9)

Hence Ê(X ) is a realization of a lognormal distribution with mean ME (expected value)
and standard deviation SE . These values can be expressed by the arithmetic (sample)
mean µE and arithmetic standard deviation σE :

ME = ln

 µE√
1+ σ2

E

µ2
E

 , SE =
√√√√ln

(
1+ σ2

E

µ2
E

)
. (5.10)

In the same way, we can also create heterogeneous, stochastic inputs for other parame-
ters.
To test the model’s feasibility, we vary the parameter values based on the results found in
the literature on aging skin. We are interested in the differences between the contraction
and patient discomfort intensities in the distinct age groups. To quantify these differ-
ences, we test the null-hypothesis H0 : µA =µB versus a two-sided alternative for groups
A and B of patients using the following t-statistic:

t = X A −Y B

sp
, sp =

√
s2

a + s2
b

nb

where X A and Y B are the mean values of the results in distinct age groups A and B , sp

is the estimated standard error of X A −Y B , s2
a and s2

b are the standard deviations in the
age groups A and B , and nb is the number of samples in the age groups. Here we assume
that the number of samples in the age groups is equal. We reject the null-hypothesis if
|t | > t2(nb−1)(α/2), with α= 0.001.
To reduce the computation time, we performed simulations on half a domain Ω1/2 =
[−L,0]. We simulated nb = 1950 burns per age group. Hence, in total, we simulated 7800
burns. Table 5.3 shows the parameter values used for these simulations.
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Table 5.3: Parameter values. In subtables (c) and (d), µi , i ∈ {1,2,3,4} denotes the mean value in group i of
patients of different age.

(a) The parameter values that are constant along patients and the domain.

Parameter µ Dimension

M 0 cells/cm3

c 0 g/cm3

c̃ 10−8 g/cm3

δm 6×10−2 /day
R 0.995 g/cm3

r max 2 -
ηI 2 -
ηI I 0.45 -
kmax
ρ 10 -

(b) The parameter values that are constant along patients and vary along the domain.

Parameter µ σ Dimension

a I
c 10−8 3.45×10−10 g/cm3

a I I
c 10−8 6.25×10−10 g/cm3

a IV
c 10−9 10−10 g/cm3

ξ 4.4×10−2 1.1×10−3 (N g)/(cells cm2)
δc 5×10−4 9.8×10−6 cm6/(cells g day)
kc 3×10−13 3.95×10−15 g/(cells day)
ρt 1.09 1.21×10−1 g/cm3

χ 2×10−3 2.22×10−4 cm5/(g day)

(c) The parameter values that vary along patients and are constant along the domain. We chose Ñ = 0.2 ·N and ρ̃ = 0.1 ·ρ.

Parameter µ1 µ2 µ3 µ4 Dimension

N 1.5×104 104 9.5×103 9×103 cells/cm3

ρ 1.25×10−1 1.125×10−1 1.05×10−1 9.75×10−2 g/cm3
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We used parallel computing with 12 processors, three processors responsible per group,
on a 64-bit Windows 10 Pro system with 16 GB RAM and a 3.59 GHz AMD Ryzen 5 3600
6-Core Processor. The total computation time was 13.5 hours. Hence the mean compu-
tation time per simulation takes less than half a minute. For the test statistic, we used
t3898(0.0005) = 3.293. The standard deviations s2

i ,m for the age groups i ∈ {1,2,3,4} for
RSAmin are

s2
1,m = 1.2158, s2

2,m = 1.1293, s2
3,m = 1.2570,

s2
4,m = 1.2815.

The standard deviations s2
i ,e for the age groups i ∈ {1,2,3,4} for RSA365 are

s2
1,e = 0.2941, s2

2,e = 0.3105, s2
3,e = 0.4003,

s2
4,e = 0.4238.

To get some insight into the effects of the four groups of Table 5.2, we present results for
the RSA and the TSE in Figures 5.3–5.7. Figures 5.4, 5.5 and 5.7 show probability density
functions that we computed using the kernel density estimation method.
Figure 5.3 shows four 95% confidence intervals for the post-burn contraction, each con-
fidence interval corresponding to a group of patients.
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Figure 5.3: Confidence intervals for the post-burn contraction in different patient age groups. The intervals
show the mean values and the 95% confidence values of the mean. The range of the values comes from the
parameters’ variability over the computational domain. From left to right, the lines show groups 1 (blue), 2
(orange), 3 (green), and 4 (red).

We can see that the maximum contraction value is about the same in the first two groups
of ages. Higher age groups give a larger scar size reduction and, in addition, a larger
contraction intensity. Further, it takes more time for higher ages to reach the maximum
contraction intensity.
There seems to be more variability in the permanent deformation in elderly patients. In
elderly patients, it takes longer before the wound healing cascade reaches equilibrium
than in younger patients. Minima of the RSA were mainly reached on days 34, 61, 74,
and 95, with values of 76.7, 76.0, 74.4, and 72.9% for groups 1, 2, 3, and 4, respectively.
Unfortunately, these results do not correspond fully to the observations in the clinic.
Usually, contraction is of less order in elderly patients, and, in general, retraction takes
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a more extended period. We note that the longer retraction period is visible in the two-
dimensional model results by Koppenol [1] and that this stretched retraction period is
handled with the parameter a I I I

c .
Our simulation results do not meet the clinical observations because of the variety of
factors that have not been modeled in our mathematical model yet. In the clinic, one
sees more contractures in younger patients in case the injury was in or near a joint. In
contrast, the elderly seem to experience less discomfort because of contraction. One
reason for this could be that aged skin is less tight than young skin. Looser tissue can
move more than skin that is already tight and is, therefore, less likely to cause movement
restriction when it contracts.
Figure 5.4 shows the estimated probability density and cumulative distribution function
of RSAmin for patients in different age groups.
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Figure 5.4: Estimated probability density (a) and cumulative distribution function (b) of the minimum of the
relative surface area (RSA) for patients in different age groups. Within the subfigures, from right to left, the
lines show groups 1 (blue), 2 (orange), 3 (green), and 4 (red).

Although the groups overlap in Figure 5.4a, the maximal contraction is significantly dif-
ferent (p < 0.001) between the groups (see Table 5.4a in Appendix 5.6). The differences
in RSAmin between consecutive age groups are largest between ages 16–40 (group 2) and
41–70 (group 3) and smallest between ages 0–15 (group 1) and 16–40 (group 2). Given
that, in reality, the evolution of the size of the scar is different from our results, we ex-
pect that the differences between group 1 and group 2 are larger in reality, possibly the
largest.
The overlap between the age groups is also visible in the estimated cumulative distribu-
tion function plot in Figure 5.4b, where the functions of the first and second group, and
the third and fourth group, almost intersect. From these cumulative distribution func-
tions, we can estimate the probability of maximum contraction intensity. For example,
this figure suggests that with a 70% probability, a patient from groups of patients 1, 2, 3,
and 4, respectively, can reach 22.6%, 23.4%, 24.9%, and 26.4% contraction. Using such
functions in the future can help predict the probability of developing a contracture and
intervene in time when possible.
Figure 5.5 shows the estimated probability density and the corresponding cumulative
distribution function of RSA365 for patients in different age groups.
Eventually, the scar maturates, and because of the skin’s morphoelastic behavior, the
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scar’s size rarely meets its initial configuration again. Here the initial configuration rep-
resents the initial size and geometry of the burn wound. Like for minimal contraction
values, the overlap between consecutive groups for RSA365 in Figure 5.5a are significant
(p < 0.001, see Table 5.4b in the Appendix 5.6). The differences between consecutive
groups are similar to the differences in Figure 5.4a. The probability density functions
show a correlation between aging and the spread, confirming the observation found in
the confidence intervals that there is larger variability in the intensity of contraction in
older adults than in children.
From the cumulative distribution functions in Figure 5.5b, we can estimate the proba-
bility of asymptotic contraction intensity. Here we see the mean values RSA365 = 97.6%,
95.9%, 94.5%, and 93.3% for groups 1, 2, 3, and 4, respectively, which indicate a possible
contracture if the scar is in or near a joint. Given the scar’s location, one might estimate
the probability that this scar will develop a contracture to a certain extent.
Figure 5.6 shows four 95% confidence intervals for the post-burn patient discomfort,
each confidence interval corresponding to a group of patients.
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groups 1 (blue), 2 (orange), 3 (green), and 4 (red).

We see similar maximum discomfort in the first two groups. Higher age groups give a
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larger maximum and take more time to reach the maximum. Note that all these results
relate to the densities shown in Figure 5.3. Maxima of the TSE densities are reached
on days 36, 64, 78, and 95, with values of 62, 66, 74, and 79 for groups 1, 2, 3, and 4,
respectively. We note that the discomfort maxima are reached a few days later than the
maximum contraction in almost all groups. Because the contraction data in Figure 5.3
does not relate to what doctors see in the clinic, we assume this is the same case for
the discomfort data. This assumption means that in real life, children might experience
more discomfort than the elderly, in contrast to what we see in Figure 5.6.
Finally, Figure 5.7 shows the estimated probability density and the corresponding cumu-
lative distribution function of TSEmax for patients in different age groups.
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Like in Figures 5.4 and 5.5, although the probability density functions in Figure 5.7a show
an overlap between all the groups, TSEmax is significantly different (p < 0.001) between
the groups (see Table 5.4b in the Appendix 5.6). This overlap is also visible in the cu-
mulative distribution function in Figure 5.7b, where the functions of the first and second
groups intersect on the top, and the third and fourth groups almost intersect. From these
cumulative distribution functions, we can estimate the probability of maximum discom-
fort. For example, this figure suggests that with 80% probability, a patient from groups
of patients 1, 2, 3, and 4, respectively, can reach a maximum of 67.9, 70.4, 78.5, and 83.6
total strain. Since the figures show a strong correlation between contraction and patient
discomfort, we conclude that targeting contraction will also directly target patient dis-
comfort.
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5.6 Appendix: Values of the t-statistic

Table 5.4: The values of the t-statistic comparing the minima of the relative surface area (a), the maxima of the
total strain energy density (b), and the relative surface area on day 365 (c).

(a) The values of the t-statistic
comparing the minima of the rel-
ative surface area between patient
age groups.

Groups t-value

1 & 2 17
1 & 3 58
1 & 4 94
2 & 3 43
2 & 4 80
3 & 4 36

(b) The values of the t-statistic
comparing the maxima of the total
strain energy density between pa-
tient age groups.

Groups t-value

1 & 2 23
1 & 3 63
1 & 4 91
2 & 3 49
2 & 4 83
3 & 4 32

(c) The values of the t-statistic
comparing the relative surface area
on day 365 between patient age
groups.

Groups t-value

1 & 2 167
1 & 3 273
1 & 4 385
2 & 3 126
2 & 4 241
3 & 4 108





6
Sensitivity of the

two-dimensional model

This chapter is based on the publication from [91]. The code used for this chapter can
be found in the online resources for Chapter 6 where one also finds a link to supporting
data.

We consider the two-dimensional biomorphoelastic model for post-burn contraction.
We perform a sensitivity analysis for the independent parameters of the model and
focus on the effects on features of the relative surface area and the total strain energy
density. We conclude that the most sensitive parameters are the Poisson’s ratio, the
equilibrium collagen concentration, the contraction inhibitor constant, and the my-
ofibroblast apoptosis rate. Next to these insights, we perform a sensitivity analysis for
unequal fibroblast and myofibroblast proliferation rates. The impact of this model
adaptation is significant.

6.1 Introduction
In this chapter, we perform a sensitivity analysis for the biomorphoelastic model in a
two-dimensional setting to complement our previous sensitivity analysis of the model
in a one-dimensional setting.
In contrast to the simulations for the two-dimensional stability analysis in Chapter 4, the
simulations in this chapter show a larger displacement of the mesh. To this end, we pay
close attention to the mesh and our remeshing strategy.
Section 6.2 presents the computational domain and the initial conditions that we use
in the simulations, and Section 6.3 presents the applied meshing techniques. Subse-
quently, Sections 6.4 and 6.5 present the sensitivity analysis for the original model and
for the model with different cell proliferation rates.
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6.2 The domain and the initial conditions
For the sensitivity analysis in 2D, we use the fixed quarter computational domain de-
fined by Ωx = (0,10)2 ⊂ (−10,10)2 cm2 with Ωx =⋃

b∈{o,v,h}Γ
b
x , the outer nonsymmetrical

and symmetrical boundaries (see Section 2.4). Within this domain, we define the ini-
tial burn by the subset Ωw (0) = {(x, y) :

∣∣ x
4

∣∣+ ∣∣ y
4

∣∣ ≤ 1}, a symmetrical rotated square. We
note that we can also split this subdomain in half because of symmetry, though, from a
computational point of view, implementation is more appealing for the quarter domain.
The initial conditions describe a burn that did not damage all the collagen. Hence, we
assume the presence of signaling molecules, fibroblasts and collagen, whereas myo-
fibroblasts are assumed not to be there. Let d(x) be the shortest distance from point
x ∈ Ωw to the wound boundary. Let Ωw

s = {x ∈ Ωw (0) : d(x) ≥ s}, then for all x ∈ Ωw
s ,

we have z(x;0) = z̃ ∈ R+, the densities in the wound for z ∈ {N ,c,ρ}. In the intact skin
tissue, for all x ∈Ωx \Ωw : z(x;0) = z ∈ R+, the equilibrium densities for z ∈ {N ,c,ρ}. For
all x ∈Ωx : M(x;0) = M = 0. For the wound boundary’s steepness, we use half of a period
of sine-functions for N ,c and ρ to smoothly transition from the burn to the intact tissue,
and we take s = 0.25 cm. Regarding the mechanical initial conditions, all initial con-
ditions are equal to zero. We show the graphical representation of the initial fibroblast
condition in Figure 6.1.
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Figure 6.1: Example of the initial fibroblast cell density, with parameter values N = 104 cells/cm3 and Ñ =
2×103 cells/cm3. We also show the initial mesh and the wound boundary (in white). The color bar shows the
number of cells per cm3. Hence, on the wound boundary left-hand-side, there are 2000 cells/cm3, and on the
right-hand-side, there are 10000 cells/cm3. The plot is zoomed in such that 0 ≤ x, y ≤ 5 and provides a closer
look to the area of interest.

6.3 Strategy for (re)meshing
For the initial mesh of the computational domain, we use the KOKO mesh generator
[92], which we have modifed. We use this mesh generator to fine-tune the mesh density
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around the wound edge to get a more accurate approximation of the wound edge (for
example, see the fine mesh in Figure 6.1). The 2D KOKO mesh generator uses signed
distance and size functions. The signed distance function quickly determines if a point
is inside or outside a bounded domain Ω ∈ R2, in our case, a square [0,10]2. The size
function h : Ω→ R∗+ controls the mesh resolution. The value of h(d(x), s) gives the rela-
tive spatial node distribution over the domain and is not the actual size of the elements.
Given the distance d(x) of a node in the mesh to the wound boundary, we define our size
function:

h(d(x), s) =
{

1, ifd(x) ≤ s

4.5(d(x)− s)+1, ifd(x) > s
, (6.1)

such that the triangle size increases linearly with the distance to the wound boundary.
Here, s = 0.25 cm is the wound boundary’s steepness size. The KOKO mesh generator
algorithm comprises six steps: initialization, triangulation, mesh smoothing, boundary
nodes, termination criteria, and triangle quality. We have adjusted the step where the
code projects external nodes to the boundary. We noticed that, sometimes, the KOKO
mesh generator gives unacceptable results. Hence, we use a pre-defined polygon and
project nodes on the polygon boundary for any points outside the polygon. We compute
the distances of the external nodes to the polygon boundary and project the node on the
boundary edge closest to the external node.
The KOKO mesh generator termination criterion is based on the relative node displace-
ment on the current iteration. We stop the smoothing process if

max
i

∥∥∥pk
i −pk+1

i

∥∥∥/h0 < 5×10−3,

where pk
i is the position of node i at the kth timestep, and h0 is the reference edge length.

We take h0 = 8×10−2 cm.
In finite element applications, the error upper bounds depend on the smallest angle in
the mesh. In all our simulations, we use the quality measure α(∆) that is the smallest
ratio of the radius r of the inscribed circle to the radius R of the circumscribed circle of a
triangle ∆, i.e.

α(∆) = 2
r

R
= (l2 + l3 − l1)(l3 + l1 − l2)(l1 + l2 − l3)

l1l2l3
, (6.2)

where l1, l2, l3 are the side lengths of triangle ∆. A mesh is a good if all triangles have
αmin = min∆∈Xh (t )α(∆) > 0.5. Our initial mesh has α> 0.618 for all triangles.
We remesh globally to get a new mesh with a quality at least mink α(∆k ) ≥ 0.5 when the
quality in the updated mesh drops below mink α(∆k ) < 0.5. For this reason, we use the
adapted version of the KOKO mesh generator and provide it with the current wound
boundary coordinates so the wound boundary contains grid points. We interpolate all
the variables on the new mesh and restart the Picard iterations (for information on our
numerical implementation, see Section 2.5).
In our study, we observed that local remeshing was computationally cheaper, taking 1–3
seconds, than global remeshing, which takes 25–40 seconds. However, we had to carry
out local remeshing much more frequently than global remeshing, which made local
remeshing eventually more expensive from a computational time perspective. There-
fore, although hybrid forms could be studied, we continue with global remeshing only.
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In case the Picard iterations do not meet the convergence criterion within six iterations,
we decrease the timestep to 80% of its current value and restart the Picard iterations.
Otherwise, we increase the timestep by a factor of 1.1, with a maximum ∆tmax depend-
ing on the change in the relative surface area (RSA). Initially, the maximal timestep is
∆tmax,1 = 0.5 day, as long as the RSA is decreasing (contraction). In case the RSA in-
creases (retraction), the maximal timestep changes. If the RSA changes less than 0.1%,
the maximal timestep changes to ∆tmax,2 = 2 days, and if the change is less than 0.01%,
the maximal timestep changes to ∆tmax,3 = 100 days. We start with an initial timestep of
∆t = 0.1 days. Figure 6.2 shows an example of how the RSA, the timestep and the mesh
quality develop during a simulation.
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Figure 6.2: Examples of the evolution of the RSA (a), the variable timestep (b), and the mesh quality (c) during
a simulation.

Figure 6.2a shows that the RSA drops to about 65% (35% contraction) in 62 days, after
which it increases to about 85% (day 150), to an asymptotic RSA of 87.6%. Figure 6.2b
shows that the initial timestep of 0.1 day increases to the maximum of ∆tmax,1 = 0.5 day
within five days, after which it stays 0.5 days (that is during contraction). The timestep
increases from day 65 until day 78, which is are the first 13 days of retraction after the RSA
reached its minimum. Then, the timestep reduces to obtain convergence in the inner Pi-
card iteration loop. That is when the second derivative of the RSA inceases (i.e., during
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rapid retraction, increasing in speed). Once the second derivative of the RSA decreases
(i.e., when the rapid retraction decreases in speed), the timestep reaches ∆tmax,2 = 2
days, which stays constant until the RSA does not change more than 0.1% between time
iterations. Subsequently, the timestep increases towards 18 days. Figure 6.2c shows that
the mesh quality initially increases when the mesh moves. In this example, when the
mesh contracts at the highest rate, the mesh quality decreases rapidly. No remeshing
is needed; hence the mesh quality increases when the mesh slowly moves toward max-
imum contraction (day 48 to 57) and keeps increasing while the mesh retracts (day 57
to 69). When the retraction speed increases, the mesh quality decreases a little (day 69
to 76), however, remeshing is not needed, and the quality starts increasing again (day
76 to 88) until (some) triangles move in wrong positions as the retraction speed is in-
creasing causing the mesh quality to drop (day 88 to 93). Again, no remeshing is needed
despite the decrease in mesh quality, and subsequently, the mesh quality starts increas-
ing rapidly again as the timestep increases (day 93 to 106). The remainder period shows
that the mesh quality keeps increasing at a slower rate (day 106 to 124), and it decreases
slightly while the retraction speed slows down (day 124 to 158), to further increase as the
mesh stabilizes (i.e., as the scar completely maturates). In this example, the simulation
did not need any remeshing.

6.4 Sensitivity analysis
Out of the 34 model parameters, we vary 30 independent parameters to study the sen-
sitivity of these parameters. These are all the model parameters except for the initial
fibroblast cell and collagen densities, the constant q , and the collagen secretion rate kρ .
We vary the parameter values by decreasing or increasing the mean values by±5,15,25%.
Hence, we perform 181 simulations: 6 variations × 30 parameters + a single base simu-
lation. On average, a simulation takes less than 8.2 minutes on a 64-bit Windows 10 Pro
system with 16 GB RAM 3.59 GHz AMD Ryzen 5 3600 6-Core Processor. We use four pro-
cessors to solve the chemical part and five processors to solve the mechanical part of
the model. Besides the Poisson’s ratio parameter, remeshing was only necessary for the
highest value for kc , the signaling molecule secretion rate, the lowest value for δc , the
signaling molecule decay rate, the lowest value for the body force-inhibiting constant
R, and the lowest and second lowest value for ρ, the equilibrium collagen concentra-
tion. We also note that for different geometries, remeshing is needed more often. The
parameter values are the same as the mean values in Table 5.3 in Chapter 5, except for
the parameter values shown in Table 6.1.
When a new mesh has to be generated, all data has to be interpolated, which results in in-
terpolation errors. Except for low equilibrium collagen values ρ, the RSA and total strain
energy (TSE) densities are smooth in all cases we varied parameter values. We note the
stability condition kc ≤ δc a I I

c ρ. If the secretion rate kc is high, and the decay rate δc and
collagen equilibrium ρ are low, these values are closer to the stability bound, explaining
why remeshing is necessary. We note that every simulation has a set of parameter values
that meets this stability criterion.
As mentioned earlier, the RSA and TSE densities are not smooth for a low equilibrium
collagen value. If we decrease the equilibrium by 25%, the simulation needs to perform
remeshing 31 times. The RSA is not a smooth density, and the TSE density shows many
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Table 6.1: Mean parameter values different from the ones shown in Table 5.3 (where the values are found in
group 2 of patients of different age).

Parameter Value Dimension

Dc 2.9×10−3 cm2/day
kc 4×10−13 g/(cells day)
ηI I 5×10−1 -
µ1 102 (N day)/cm2

µ2 102 (N day)/cm2

E 3.2×10 N/((g cm)1/2)
ν 4.9×10−1 -
ξ 5×10−2 (N g)/(cells cm2)

peaks because of peaks in the collagen density. These peaks result from oscillations in
the finite element approximation of the collagen density, presumably because of inter-
polation errors. The reason is not necessarily because of instability, since we do not end
up in the unstable regime ρ < kc

δc a I I
c

. However, we ended up close to it, and regarding

the numerical approximations, we elaborated this criterion for finite differences under
constant mesh size. Hence, the 2D finite element case with unstructured meshes can be
(slightly) different. Let devTSEρ

day(d va) denote the deviation from the mean TSEday for

deviation d va ∈ {±5,15,25%} from the mean equilibrium collagen value. Although the

RSA and TSE densities are smooth, the gradient of devTSEρ

day changes sign. Therefore,

we cannot rely on this simulation result and will interpolate the z-scores of the total
strain energy features for a 25% decrease in the equilibrium collagen value. If we de-
crease the equilibrium value by 15%, the simulation needs to perform remeshing three
times. Hence, we also interpolate the z-score of the total strain energy features for a 15%
decrease in the equilibrium collagen value.
Similar to our previous sensitivity study in R1, the results show the minimum of the rel-
ative surface area (RSAmin, i.e., maximum contraction) in a time of one year, the day on
which the RSA reaches the minimum (RSAday, i.e., the day after which the wound/scar
retracts), the relative surface area on day 365 (RSA365), the maximum of the total strain
energy density (TSEmax), and the day on which the total strain energy density reaches the
maximum (TSEday, i.e., the day at which the patient experiences maximal discomfort).
Each parameter i ∈ {Dn , . . . , c̃} has a z-score for values in r ∈ RSA{:}

⋃
TSE{:} and variation

j ∈ {± 5, 15, 25%} defined by zr
i j = (xr

i j − xr
j )/sxr

j
. Here xr

j is the sample mean, and sxr
j

is

the sample standard deviation. The sum of the absolute values of the z-scores:

S r
i =∑

j

∣∣∣zr
i j

∣∣∣ , (6.3)

where zr
i j is the z-score of the data in r for parameter i in variation j , measures the

sensitivity.
Table 6.2 shows the sensitivity values of some of the parameters in terms of the z-scores
for variation -5%. In the last column, we rounded the sum of the values to the nearest
integer.
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Table 6.2: Sensitivity of some varied parameter values in terms of z-scores for variation -5%.

Param. Dimension S RSAmin S RSAday S RSA365 S TSEmax S TSEday S total

ν - 2.479 1.971 0.474 5.521 1.833 12
r max - 0.194 0.239 0.047 0.230 0.208 1
ρ g/cm3 0.013 0.391 0.056 0.173 0.174 1
N cells/cm3 0.154 0.178 0.038 0.213 0.140 1
ξ (N g)/(cells cm2) 0.175 0.117 0.044 0.222 0.140 1
ηI - 0.104 0.117 0.033 0.203 0.208 1
δρ cm6/(cells g day) 0.060 0.209 0.014 0.185 0.140 1

The third to seventh columns show the scores on the minimum of the relative surface area (RSA) S RSAmin , the
day on which the minimum RSA is reached S

RSAday , the RSA on day 365 S RSA365 , the maximum value of the

total strain energy (TSE) density S TSEmax , and the day on which the maximum of the TSE is reached S
TSEday .

The last column shows the total of the scores S total.

These results show that a relatively small variation of -5% relative to the mean parameter
value of ν has a significant impact on all the features for both the RSA and TSE, com-
pared to the variation of the values of the other shown parameters. A variation of -5% on
the mean value of Poisson’s ratio ν results in a geometry where the wound boundary is
bumpy, a phenomenon we do not see when we vary other parameter values. We varied
the Poisson’s ratio value even more by -15% and -25%, knowing that those simulations
would result in even more bumpy boundaries. We do not show the results of these sim-
ulations because the timestep decreased significantly, and in almost every iteration, we
needed to remesh.
Further, increasing Poisson’s ratio above 0.5 is impossible. It is well known that the Pois-
son’s ratio is around 0.49 for soft tissues [70, 93]. Poisson’s ratios of more than 0.5 are not
physical; if the value equals 0.5, then the material is incompressible. It is well-known that
pure elasticity can cause significant accuracy loss by the notorious locking phenomenon
in finite element simulations [94].
To visualize the effect of a decreased Poisson’s ratio on the resulting mesh and wound
boundary, we varied the mean value of ν= 0.49 by taking ν ∈{0.48, 0.47, 0.46} and show
these results in Figure 6.3.
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Figure 6.3: Final meshes and wound boundaries on day 365 for different Poisson’s ratio values. The figure
shows the results for ν equal to 0.49 (a), 0.48 (b), 0.47 (c) and 0.46 (d). The plots represent a quarter of the
computational domain and are zoomed in such that 0 ≤ x, y ≤ 5.
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Figure 6.3a shows what the mesh and wound edge look like after a simulation represent-
ing a year, with all parameter values equal to the values in Tables 5.3 and 6.1, so ν= 0.49.
We note that our definition of the wound edge is sharp, whereas, in clinical practice, the
wound edge is more spline-like, though it can also be very sharp. We can see that the
wound edge is smooth and curves slightly inwards halfway through. In this simulation,
no remeshing was necessary. Figure 6.3b, where the Poisson’s ratio is 0.48, shows that
the mesh around the wound edge is less dense. Here, we needed to remesh on day 23
only. The wound edge curves more inwards relative to Figure 6.3a. However, the wound
edge is smooth. In Figure 6.3c, the mesh around the wound edge is denser than in Fig-
ure 6.3b because we still needed to remesh on day 85 in this simulation. Further, the
wound edge shows small bumps; hence a value of 0.47 for the Poisson’s ratio is too low
for a smooth wound boundary. Finally, Figure 6.3d results from the simulation where the
Poisson’s ratio is 0.46. The mesh around the wound edge is dense and explainable after
33 times remeshing, with the last remesh on day 344. The wound edge is visibly bumpy
and strongly pulls inwards from the domain symmetry boundaries.
We excluded variations in the Poisson’s ratio from further variations.
Table 6.3 shows the sensitivity values in terms of the z-scores for all parameters, except
for Poisson’s ratio. In the last column, we rounded the sum of the values to the nearest
integer.

Table 6.3: Sensitivity of the varied parameter values in terms of z-scores.

Param. Dimension S RSAmin S RSAday S RSA365 S TSEmax S TSEday S total

ρ g/cm3 9.014 16.690 22.270 14.169 9.125 71
R g/cm3 11.510 11.191 12.069 17.874 15.768 68
δm /day 14.356 10.411 11.571 19.595 9.889 66
r max - 12.035 8.365 10.357 23.206 9.263 63
N cells/cm3 8.349 9.615 9.321 18.784 10.582 57
r cm3q /(cellsq day) 12.930 7.761 10.620 19.099 5.970 56
kc g/(cells day) 5.540 6.141 13.622 19.645 5.322 50
ξ (N g)/(cells cm2) 9.707 2.817 9.945 20.528 3.091 46
E N/((g cm)1/2) 8.643 5.666 9.320 12.950 6.494 43
δc g/cm3 3.069 3.636 13.769 14.679 5.221 40
δρ cm6/(cells g day) 3.910 7.051 12.719 12.028 3.930 40
kmax
ρ - 3.696 6.764 12.061 11.991 3.439 38

ηI - 2.120 2.889 7.733 14.717 9.224 37
a I

c g/cm3 1.883 5.196 5.365 11.783 7.078 31
a I I I

c cm3/g 2.215 4.307 7.605 14.794 2.249 31
ζ cm6/(cells g day) 3.306 2.848 10.852 12.077 1.254 30
k1 cm3/(g day) 0.924 4.942 5.654 11.354 5.250 28
δn /day 1.533 3.329 6.001 11.872 3.065 26
ηI I - 1.204 2.038 6.066 12.218 2.056 24
c̃ g/cm3 1.903 1.589 6.606 12.029 1.243 23
a I I

c g/cm3 0.947 1.018 6.086 11.484 3.707 23
µ2 (N day)/cm2 1.721 1.589 6.075 11.902 1.896 23
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Table 6.3: (continued)

Param. Dimension S RSAmin S RSAday S RSA365 S TSEmax S TSEday S total

a IV
c g/cm3 1.861 1.717 6.299 12.028 1.254 23

ρt g/cm3 1.727 1.589 6.106 11.892 1.813 23
χ cm5/(g day) 1.727 1.589 6.106 11.892 1.813 23
µ1 (N day)/cm2 1.720 1.589 6.074 11.907 1.813 23
κ cm3/cells 1.753 1.589 6.120 11.918 1.254 23
Dc cm2/day 1.670 1.518 5.814 11.968 1.254 22
Dn cm5/(cells day) 1.793 0.999 6.171 12.019 1.223 22

The third to seventh columns show the scores on the minimum of the relative surface area (RSA) density

S RSAmin , the day on which the minimum RSA is reached S
RSAday , the RSA on day 365 S RSA365 , the maxi-

mum value of the total strain energy (TSE) density S TSEmax , and the day on which the maximum of the TSE is

reached S
TSEday . The last column shows the total of the scores S total.

This table shows that the equilibrium collagen concentration with a total score of 71 is
the next most sensitive parameter. Given that collagen concentrations decrease with
age [77], the model shows that the differences in features of RSA and TSE become more
intense with age. Other parameters that are sensitive (S total ≥ 50) are the body force-
inhibiting constant R, the myofibroblast apoptosis rateδM , the maximum factor of (myo)
fibroblast cell division rate enhancement r max, the equilibrium fibroblast distribution
N , the (myo) fibroblast proliferation rate r , and the signaling molecule secretion rate kc .
Given the stability constraint kc ≤ δc a I I

c ρ, the sensitivity of the signaling molecule secre-
tion parameter kc relates to the sensitivity of the equilibrium collagen concentration ρ

and the signaling molecule decay rate δc , rather than to the parameter a I I
c .

Parameters that are least sensitive (S total ≤ 23) are all the parameters the least sensitive
are the diffusion rate of (myo) fibroblasts en signaling molecules (Dn ,Dc ), the chemo-
taxis rate and crowding factor of (myo) fibroblasts (χ,κ), the initial signaling molecule
concentration (c̃), the signaling molecule secretion inhibition concentration a I I

c , the col-
lagen secretion inhibition factor (a IV

c ), the total mass density of dermal tissues ρt , and
the shear and bulk viscosities (µ1,µ2).
To get a visual insight into the sensitivity of the parameters, we present the effect of the
variations on the parameters on both the post-burn contraction and the discomfort that
a patient might experience in Figure 6.4. The figure has no legend, so the distinction
between the sensitivity of the parameters is clear, and we labeled the essential lines with
different styles.
Figure 6.4a shows that the most influencing parameters on decreasing the maximum
contraction are the proliferation enhancement factor r max, the generated stress per unit
cell density ξ, the equilibrium fibroblast cell density N , the myofibroblast apoptosis rate
δm , the (myo) fibroblast proliferation rate r , and the body force-inhibiting constant R.
Increasing values for δm , r and R, and decreasing values for r max, ξ and N result in less
contraction. From Figure 6.4b, we see that this results in maximal contraction on a later
day. In addition, increasing values for the equilibrium collagen concentration ρ results
in maximal contraction on an earlier day. The reduction in contraction because of in-
creasing values for δm and R is not counter-intuitive because myofibroblast pull on the
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Figure 6.4: Effects of the variations in parameter values for the relative surface area (RSA) and the total strain
energy (TSE) density. Shown are the effects on the minimum of the RSA (a), the effects on the day the RSA
reaches minimum (b), the effects on the maximum of the TSE (c), the effects on the day the TSE reaches maxi-
mum (d), and the effects on the RSA on day 365 (e). In the figures,

skin and that R reduces the effect. The effect of the reduction in equilibrium collagen
concentration is most prominent for the day of maximum contraction: a decrease of
25% delays this day by 40 days relative to the base simulation.
Figures 6.4c & 6.4d summarize the results for the discomfort that the patient might ex-
perience. We see that decreasing the maximal contraction by targeting r max, ξ, N , δm ,
and R results in less maximal discomfort, on a later day. An increase in the equilibrium
collagen concentration ρ results in maximum discomfort on an earlier day.
In addition, Figure 6.4e features that the signaling molecule secretion rate kc and decay
rate δc , the equilibrium collagen concentration ρ, and the rate of morphoelastic change
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ζ can influence decreasing the contraction after one year the most. Increasing values
for ρ and δc , and decreasing the values for kc and ζ results in less remaining contraction
after scar maturation. If fewer signaling molecules are available to enhance the prolifera-
tion of (myo) fibroblasts and myofibroblast differentiation, then the tissue is influenced
less according to the morphoelastic change in equation (2.14). Further, an increase in
collagen concentration results in stiffer tissue that resists contraction and acts as a buffer
for effective strain.

6.4.1 Comparison to the case of a ‘collagen-rich covered burn’ in R1

The results of our previous sensitivity study in R1 are partly similar and partly different
from the results of our current study. The main reason for this could be because, in
our previous study, we set the initial concentration of collagen in the wound equal to
the equilibrium concentration of collagen and because the study was in 1D. The initial
collagen concentration in our previous 1D study represents the situation where a skin
substitute rich in collagen type I covers the wound.

We conclude that the equilibrium collagen concentration ρ is the most sensitive param-
eter in both studies. However, the relative sensitivity of ρ in our current study is less
because of lower values of the sensitivity scores of all the parameters, implying that the
other parameters are substantially less influential in the case of a collagen-rich skin sub-
stitute. Furthermore, in our previous study, the fibroblast apoptosis rate was more sen-
sitive than in our current study (factor 3), and the (myo) fibroblast proliferation rate was
less sensitive (factor 4). The fibroblast apoptosis rate was almost as sensitive as the myo-
fibroblast apoptosis rate, whereas, in our current study, the fibroblast apoptosis rate is
approximately 2.5 times less sensitive.

According to the model, a collagen-rich skin substitute increases the concentration of
matrix metallo proteinases that cleave growth factors. As a result, the concentration of
growth factors will decrease, stimulating myofibroblast differentiation less. This result is
in line with the assumption that myofibroblast differentiation in skin substitutes is very
low/absent because of the presence of the substitute that ‘replaces’ the skin. The result
is that more fibroblasts remain present, hence a reason for the increase and decrease
of the sensitivity of the fibroblasts apoptosis rate and the (myo) fibroblast proliferation
rate, respectively. If the collagen concentration is low/absent, as in our current study,
then the fibroblast distribution needs to be replenished because more fibroblasts differ-
entiate into myofibroblasts. From a biological perspective, the lack of collagen in the
injured area impairs fibroblast migration. Hence, proliferation becomes more critical to
allow the presence of fibroblasts in the injured region, which facilitates myofibroblast
differentiation and collagen deposition.

6.5 Implications for different cell proliferation rates
The previous section shows that the proliferation of (myo) fibroblasts significantly in-
fluences the post-burn contraction and the discomfort the patient might experience.
However, the mathematical model does not provide information on whether this is the
proliferation of fibroblasts or myofibroblasts.

Vaughan et al. have shown that myofibroblasts proliferate less rapidly than fibroblasts
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[31]. Indeed, during myofibroblast differentiation, fibroblasts first gain a proto-myofi-
broblast phenotype. These proto-myofibroblasts migrate to the wound area and pro-
liferate. They subsequently gain a complete myofibroblast phenotype that expresses a
large amount of alpha-smooth muscle actin and takes part in the important deposition
of extracellular matrix components. These contractile, fully differentiated myofibrob-
lasts are trapped in the matrix they secrete, adhere tightly to this matrix via focal con-
tacts, and are thought not to proliferate.
In the mathematical model, we do not distinguish between the different phenotypes
of proto-myofibroblasts and fully differentiated myofibroblasts. Given the result from
Vaughan et al., we study the effect of different cell proliferation rates. We define the
fibroblast proliferation rate rn and the myofibroblast proliferation rate rm . As in the
previous section, we vary the values by ± 5, 15, 25%. Table 6.4 shows the sensitivity of
all parameters in terms of z-scores, considering the distinction of the cell proliferation
rates. Again, in the last column, we rounded the sum of the values to the nearest integer.

Table 6.4: Sensitivity of the varied parameter values in terms of z-scores in case of different cell proliferation
rates.

Param. Dimension S RSAmin S RSAday S RSA365 S TSEmax S TSEday S total

R g/cm3 2.429 4.303 0.692 7.109 5.008 20
δm /day 2.973 3.883 0.621 8.780 3.023 19
rm cm3q /(cellsq day) 3.343 2.982 0.842 9.296 2.044 19
r max - 2.612 3.381 0.699 7.151 3.361 17
ρ g/cm3 1.821 6.850 1.639 3.508 3.290 17
rn cm3q /(cellsq day) 2.728 2.944 0.548 8.405 1.711 16
N cells/cm3 1.836 3.923 0.557 4.505 3.841 15
kc g/(cells day) 1.261 2.275 1.154 5.516 1.776 12
ξ (N g)/(cells cm2) 2.122 1.050 0.641 5.553 1.283 11
E N/((g cm)1/2) 1.809 2.070 0.429 2.274 1.947 9
δc g/cm3 0.579 1.574 0.844 3.834 1.587 8
δρ cm6/(cells g day) 0.786 2.926 0.761 1.384 1.475 7
ηI - 0.334 1.089 0.347 2.119 3.331 7
kmax
ρ - 0.738 2.757 0.694 1.349 1.257 7

a I
c g/cm3 0.343 1.903 0.044 1.103 2.047 5

a I I I
c cm3/g 0.353 1.585 0.328 2.150 0.641 5

k1 cm3/(g day) 0.100 1.785 0.044 0.530 1.508 4
ζ cm6/(cells g day) 0.669 1.037 0.760 0.637 0.235 3
ηI I - 0.113 0.757 0.108 1.564 0.475 3
δn /day 0.115 1.161 0.093 0.566 0.798 3
a I I

c g/cm3 0.069 0.198 0.113 0.652 1.100 2
µ2 (N day)/cm2 0.175 0.488 0.103 0.593 0.401 2
a IV

c g/cm3 0.219 0.557 0.134 0.613 0.235 2
c̃ g/cm3 0.232 0.488 0.178 0.615 0.233 2
ρt g/cm3 0.177 0.488 0.107 0.592 0.375 2
χ cm5/(g day) 0.177 0.488 0.107 0.592 0.375 2
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Table 6.4: (continued)

Param. Dimension S RSAmin S RSAday S RSA365 S TSEmax S TSEday S total

µ1 (N day)/cm2 0.174 0.488 0.103 0.593 0.375 2
κ cm3/cells 0.185 0.488 0.109 0.595 0.235 2
Dc cm2/day 0.159 0.450 0.067 0.605 0.235 2
Dn cm5/(cells day) 0.197 0.229 0.117 0.610 0.230 1

The third to seventh columns show the scores on the minimum of the relative surface area (RSA) density

S RSAmin , the day on which the minimum RSA is reached S
RSAday , the RSA on day 365 S RSA365 , the maxi-

mum value of the total strain energy (TSE) density S TSEmax , and the day on which the maximum of the TSE is

reached S
TSEday . The last column shows the total of the scores S total.

For relatively insensitive parameters, Table 6.4 shows small differences with Table 6.3
as the parameters kmax

ρ , ζ, δn and c̃ score slightly lower in sensitivity. The differences
for more sensitive parameters are greater than those in Table 6.3. The sensitivity of the
equilibrium collagen concentration ranges within the sensitivities of the cell prolifera-
tion rates. Further, the variations in sensitivity are greater in the case of equal prolif-
eration rates, given the total z scores. Finally, even though the sensitivity scores differ
little, the myofibroblast proliferation rate is slightly more sensitive than the fibroblast
proliferation rate.
To provide more insight into the effects of the different proliferation rates, we show the
effects on the RSA and TSE in Figure 6.5.
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Figure 6.5: Effects of the variations in cell proliferation rates for the contraction and discomfort. Shown are the
effects on the relative surface area (a) and the effects on the total strain energy (b).

These plots clearly show that we need to decrease the myofibroblast proliferation rate,
in contrast to what the original model with equal proliferation rates shows. The advice
in Section 6.4 to increase the proliferation rate means to increase the fibroblast prolifer-
ation rate, implying that the fibroblast proliferation rate is more sensitive than the myofi-
broblast proliferation rate in contrast to the result in Table 6.4. Further, Figure 6.5a shows
that decreasing the myofibroblast proliferation rate by 25% results in a more extended
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retraction period, which is also seen in the clinic. In addition, Figure 6.5b shows that the
decreased myofibroblast proliferation rate results in an extended period of persistent
discomfort correlated with slower retraction.
Given these results, it is advisable to change the model to distinguish between the roles
of fibroblasts, proto-myofibroblasts, and myofibroblasts. We will go into more detail
regarding this matter in the discussion of this thesis.



Conclusions of this part

We comprehensively described the (ranges of the) parameter values. We estimated some
parameter values and others were adopted. Most of the variety in the parameter values
was found in literature sources. If ranges of values were found, we chose upper or lower
bounds or a fixed averaged value.

We quantified the sensitivity of the biomorphoelastic model for post-burn contraction to
highlight the significance of the input parameters on contraction so we can give further
research directions. We aim to devise therapies that adjust input parameters to reduce
post-burn contraction for most patients.

For our sensitivity analyses, we varied independent parameter values and showed the re-
sults for RSAmin, RSAday, RSA365, TSEmax, and TSEday. The Poisson’s ratio is around 0.49
for soft tissues, and variation should be done carefully in future simulations. Disregard-
ing the Poisson’s ratio, in the original model, the most sensitive parameter is the equilib-
rium collagen concentration ρ present in the dermal layer accounting for 10.6% of the
sensitivity scores in 1D and 6.6% in 2D. Other parameters having a significant sensitivity
score in 1D are the (myo)fibroblast apoptosis rates δn and δm , the body force-inhibiting
constant R, and the signaling molecule secretion rate kc accounting for 7.5%, 7%, 6.6%
and 6.5% of the sensitivity scores, respectively. In 2D, the fibroblast apoptosis and signal-
ing molecule secretion rates are less sensitive. If the cell’s proliferation rates differ, then
the order of sensitivity changes as the body force-inhibiting constant accounts for 9.3%
of the sensitivity scores, after which the myofibroblast apoptosis rate and proliferation
rate (accounting for 8.8%), and the factor of maximum enhancement of cell proliferation
and the equilibrium collagen concentration (accounting for 7.9%) follow.

The least sensitive parameters involve the migration rate parameters Dn , Dc and χ, the
crowding factor κ, the viscosity µ, the mass density of dermal tissue ρt , and the initial
collagen concentration ρ̃, accounting for less than 1% of the sensitivity scores in 1D.
We note that we let the initial collagen concentration depend on the equilibrium col-
lagen concentration, which can influence this parameter’s sensitivity value. In 2D, the
differences in sensitivity scores are minor for equal proliferation rates. However, for un-
equal cell proliferation rates, the list of parameters accounting for less than 1% of the
sensitivity scores extends with the signaling molecule and collagen secretion inhibition
concentrations a I I

c and a IV
c , and the initial signaling molecule concentration c̃.

Taking a closer look at the sensitivity scores of RSA365, the equilibrium collagen con-
centration and the signaling molecule secretion rate score highest in sensitivity in 2D.
The signaling molecule secretion rate sensitivity shows the importance of the existing
stability criterion kc ≤ δc a I I

c ρ. If the parameter values almost reach the stability limit,
remeshing is necessary for the finite element method.

Further, the focus for further research differs for the different targets RSAmin, RSAday,
RSA365, TSEmax, and TSEday. We should focus on the (myo) fibroblast proliferation and
apoptosis rates to limit the contraction intensity during proliferation with secondary in-
tention. The goal is to inhibit myofibroblast proliferation, stimulate fibroblast prolifera-
tion, and stimulate myofibroblast apoptosis. Therapeutic strategies to target myofibrob-
lasts involve inhibition of transforming growth factor (TGF)-β activation, inhibition of
mechanotransduction (the sensing of matrix stiffness and response to such stiffness by
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cells), and activation of in- and extrinsic apoptosis pathways [95]. We note that decreas-
ing the myofibroblast proliferation rate and stimulating the apoptosis rate delay the day
of maximal contraction. Further, an elevated collagen concentration, such as collagen-
rich skin substitutes, can reduce contraction intensity and its period. The myofibroblast
differentiation parameter k1 does not rank high in the tables, so there is no clear sign
that we should restrict the myofibroblast differentiation.
Many burn interventions target the inflammatory response to promote healing or limit
hypertrophy; growth factors ultimately arise from this response. If the goal is to limit
contraction intensity at a later stage of healing (during maturation), then we should fo-
cus on the growth factors’ secretion and decay rates. We have to decrease growth factor
secretion and stimulate decay. The results show that, based on the significance of the
signaling molecule secretion rate for contraction during remodeling, targeting the in-
flammatory response has a more significant effect on eventual contractures than on the
maximum contraction intensity during healing. We note that decreasing growth factor
secretion and increasing decay increases the stability of the chemical part of the model.
A correlation exists between post-burn patient discomfort and maximum contraction.
To lower the intensity of discomfort, we should target the same as we do to limit the
maximum contraction. The effect on the day when the patient experiences maximum
discomfort is the same as on the day of maximum contraction. Hence, when we reduce
contraction, we reduce the discomfort a patient experiences.
We furthermore performed a feasibility study to study the effect of aging on post-burn
contraction and patient discomfort. We have chosen four groups of patients of different
ages and varied the model’s parameter values according to observations from literature.
We furthermore varied the model’s parameter values using Karhunen-Loéve expansions
to model the heterogeneity of human skin. In our Monte Carlo method, we performed
sampling from statistical distributions to assess the impact of uncertainty in the data on
contraction behavior.
The model seems feasible for this approach, showing an increased extent of contraction
with age, a delayed maximum amount of contraction in older adults, increased contrac-
ture in older adults, and an increased variety of contracture formation in older adults
compared to children. The figures show more discomfort in elderly patients and that the
maximum discomfort is experienced significantly (p < 0.001) earlier in younger children
than in other age groups. Next to these results, we see that the extent of discomfort is
highly related to the contraction in wound healing.
This study shows that contraction increases with age and shows a significant difference
(p < 0.001) in the maximum amount of contraction between the different age groups.
We found the least significant difference between ages 0–15 and 16–40. Further, the dif-
ferences in the asymptotic contraction in consecutive age groups are least significant
between 41–70 and 70+ years. In consecutive groups, we found the most significant dif-
ference between 0–15 and 16–40 years. We have seen the differences in the maximum
and asymptotic contraction of a few percentages (less than 10) of order. We have seen
a significant difference (p < 0.001) between all groups for the maximum discomfort a
patient might experience. The difference between ages 16–40 and 41–70 is most signif-
icant in consecutive groups. We can conclude that these patients experience the same
discomfort, although this happens much faster in children.
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PART III
Bayesian finite-element trained

machine learning approaches



Introduction to the chapters in this part

Burn wound dimensions (size, depth, location) and patient-specific factors (age, gender,
etcetera) influence contraction. This dependency is a reason for the growing interest in
personalized healthcare.
Mathematical modeling contributes to this growing interest. Detailed models can give
insight into which elements significantly influence the contraction, can tune these el-
ements, and can access the uncertainty by performing Monte Carlo simulations. These
techniques allow for patient-based predictions that can support medical staff in decision-
making. However, more-dimensional models suffer from long computation times, a
downside because many model-based predictions are needed to achieve personalized
healthcare. Therefore, this research aims to find a computationally cheaper neural net-
work method. This alternative method should increase the applicability of the mathe-
matical model for parameter studies and healthcare by reducing computation time while
maintaining accuracy.
Neural networks and deep learning can reproduce complex relations within a short eval-
uation time after enough training [96], from which the medical society has benefited for
years. For example, Tran et al. have used computer vision to classify skin burns [97] and
to classify tumors [98]. Furthermore, Brinati et al. have used neural networks to find
diseases, such as COVID-19, in blood samples [99].
This part explores using surrogate neural networks to replace the expensive numerical
predictions of post-burn contraction and patient discomfort. Using surrogate neural
models is a common approach. For example, Wang et al. considered a long short-term
memory neural network to speed up mechanical models used for studying the dynam-
ics of biological systems [100]. Yang et al. used a convolutional neural network to speed
up the approximation of the stress-strain curve for materials [101]. Navratil et al. have
shown that a neural network can outperform other, non-intelligent acceleration tech-
niques on both acceleration and accuracy [102]. In particular, Navratil et al. compare
neural networks to simple procedures, including up-scaling, to speed up the physics-
based simulations in oil reservoir modeling. Other authors also applied the neural net-
work surrogate approach to environmental numerical models [103], urban wastewater
systems [104], and computational fluid dynamics [105–107].
Chapters 7 and 8 in this part apply neural networks for the one-dimensional and the two-
dimensional biomorphoelastic model for post-burn contraction, respectively. We create
many data samples using the numerical approach by varying parameter values. Then,
we fit two-layer feed-forward neural networks. To illustrate how we can use such a neural
network in the future, we implement the optimized networks in (online) applications.
The results show a possible speedup of 2000 and two orders of magnitude reduction in
average sequence error concerning the simulator in 1D. In 2D, the possible speedup is
about 1800000.
The chapters in this part show overlaps. Therefore, in Chapter 8, we refer to the corre-
sponding parts in Chapter 7.
The conclusions of this part are presented after the chapters.
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7
A neural network for the
one-dimensional model

This chapter is based on the publication from [108]. The codes used for this chapter can
be found in the online resources for Chapter 7.

The biomorphoelastic model for post-burn contraction is based on complicated sys-
tems of partial differential equations that need finite element-like discretizations to
approximate the solution. Since this computational framework can be expensive in
computation time and resources, we study the applicability of neural networks to re-
produce the finite element results. Our neural network can simulate the post-burn
contraction for over one year. The simulations are based on 25 input parameters
characteristic of the patient and the injury. One such input parameter is the stiff-
ness of the skin. The neural network results have yielded average goodness of fit (R2)
of 0.9928 (± 0.0013). Further, we obtained a tremendous 19354X speedup with the
neural network. We illustrate the applicability of the neural network in an (online)
application that considers the age of the patient and the length of the burn.

7.1 Introduction
In this chapter, we study the use of a surrogate neural network to replace the one-dimen-
sional numerical model’s relative surface area (RSA) predictions. Section 7.2 presents the
neural network. Subsequently, Sections 7.3 and 7.4 present the results and the illustrative
(medical) application, respectively.

7.2 The neural network
The biomorphoelastic model for post-burn contraction has many parameters that dif-
fer between patients and wounds. Because the model is highly nonlinear, the numerical
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evaluation of uncertainty in patient- and wound-specific scar contraction data is expen-
sive. We, therefore, consider a feed-forward neural network to replace the numerical
computations. In this section, we define the neural network applied in our study.

7.2.1 Formulation
We consider a burn of length L cm. Together with 24 other independent parameter val-
ues, the length makes up the input vector x. Given this input, the wound/scar changes in
size over time in the course y. Here, y is the non-dimensional RSA, determined by the nu-
merical model that uses a one-day timestep and 365 days as total simulation time. The
goal is to learn f (x;θ) ≈ y, with θ the learnable parameters of the feed-forward network.
In our network, we use two hidden layers with 100 neurons each and the rectified lin-
ear unit [109] to describe the features. We use the sigmoid function on the output layer
because the RSA bounds between 0 and 1. This output unit gives our study better (sig-
nificant) results than other output activation functions. Other activation functions give
such poor results (R2 < 0) that returning the expected value is a better choice. Note that
the numbers of input and output neurons are 25 and 365. Figure 7.1 shows a graphical
overview of the method.
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Figure 7.1: Graphical overview of the proposed feed-forward neural network in 1D. The burn and patient-
specific data form the input on 25 neurons. The neural network has two hidden layers with 100 units each,
activated by the rectified linear unit (ReLU). The sigmoid function activates the output layer by giving the
relative surface area (RSA) predictions on 365 neurons that, together with the numerical RSA solutions, yield
the neural network’s performance. The neural network’s parameters are updated until the network meets the
required performance.

7.2.2 Training, validating and testing
During the neural network training, we minimize the mean squared error (MSE) loss
by using the Adamax algorithm with the standard backpropagation algorithm [110]. We
perform a learning rate range test (LRRT) to discover the maximal initial learning rate
(ILR) value that can train the model without divergence. We vary ILRs between 0.0001
and 1 and run for 150 epochs in batches of 64 samples. The LRRT takes 12.5 minutes
on a 64-bit Windows 10 Pro system with 16 GB RAM and 3.59 GHz AMD Rizen 5 3600
6-Core Processor. Figure 7.2 shows that the optimizers adaptive moment (Adam) and
Adamax, a variant of Adam, allow higher ILRs than optimizers root-mean-square propa-
gation (RMSprop) and Nesterov-accelerated adaptive moment (Nadam). Further, these
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optimizers reach better scores than the optimizers stochastic gradient descent (SGD),
Adadelta, follow the regularized leader (Ftrl), and adaptive gradient (Adagrad). We note
that a smaller number of epochs (30) yields the same results. Given these results, we
choose an ILR of 0.015 with a standard decaying factor of 0.99. To avoid model overfit-
ting, we use the early stopping regularization. We follow the MSE loss and stop training
if 30 epochs show no improvement. Changes between MSE loss smaller than 10−5 are
qualified as no improvement.
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Figure 7.2: Results on the learning rate range test/loss values, showing the moving averages. The Adamax
optimizer takes the largest initial learning rate value and provides the smallest loss. Here, the abbreviations
are stochastic gradient descent (SGD), follow the regularized leader (Ftrl), adaptive gradient (Adagrad), root-
mean-square propagation (RMSprop), Nesterov-accelerated adaptive moment (Nadam), and adaptive mo-
ment (Adam). Adadelta extends Adagrad, and Adamax is a variant of Adam based on the infinity norm.

7.2.3 Data
To train and test the neural network, we use a n = 18000 Monte Carlo (MC) simulation
dataset from the numerical algorithm of size n ×25×365. This dataset is well-varied, as
we define a range of acceptable values for each input parameter that varies between pa-
tients and simulations. Based on the ranges, we define uniform statistical distributions
from which we draw parameter samples. We accept samples that satisfy kc < δc ρ a I I

c , the
chemical stability condition of the biomorphoelastic model for post-burn contraction.
Table 7.1 shows the values of the varied and fixed parameters.

Table 7.1: Overview of the parameter values used for the simulations.

Parameter Value Dimension Reference

Dn (7–12)×10−7 cm5/(cells day) [53]
Dc (2.22–3.2)×10−3 cm2/day [54]
χ (2–3)×10−3 cm5/(g day) [55]
kc (2.9605–3.0395)×10−13 g/(cells day) [14]
r 0.832–0.924 cm3q /(cellsq day) [50, 56]
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Table 7.1: (continued)

Parameter Range Dimension Reference

r max 2–3 - [57]
kmax
ρ 10 - [14]

a I
c (9–11)×10−9 g/cm3 [14, 58]

a I I
c (9.375–10.625)×10−9 g/cm3 [14]

a I I I
c (2–2.5)×108 cm3/g [38]

a IV
c (8–1.2)×10−10 g/cm3 [59]

ηI 2 - [60]
ηI I 0.45 - [63]
k1 (0.54–1.08)×107 cm3/(g day) [7]
κ (1–10)×10−7 cm3/cells [32]
δn 0.019–0.022 /day [14]
δm 0.06–0.0885 /day [63]
δc (4.902–5.098)×10−4 cm6/(cells g day) [14]
δρ (5.78–6.11)×10−6 cm6/(cells g day) [61]
N (1–1.5)×104 cells/cm3 [14]
ρ (9.75–12.5)×10−2 g/cm3 [14]
ρt 0.89–1.29 g/cm3 [62]
µ 10–1000 (N day)/cm2 [TW]
E 320–410 N/((g cm)1/2) [63]
ξ (4.38–4.42)×10−2 (N g)/(cells cm2) [64, 65]
R 0.995 g/cm3 [1]
ζ 380–440 cm6/(cells g day) [1]
Ñ 0.2 ·N cells/cm3 -
M̃ 0 cells/cm3 -
c̃ (1–5)×10−8 g/cm3 [1]
ρ̃ 0 g/cm3 -
L 3–5 cm -

Shown are the symbols, the values, the dimensions, and the references to the mean values. Here TW denotes
that the parameter value is estimated in the study.

Each simulation computes the results on a domain of 10 cm with a uniform spatial grid
of 202 grid points. We split the large dataset into standardized (using Min-Max scaling)
train- and test sets, with 80%/20% train-test split, and run with 10-fold cross-validation.

7.2.4 Performance measures
We include the goodness-of-fit (R2) statistic, which depends on the L2 norm. Let ei =
yi − ŷi define the residual for the true (finite element) value yi and the corresponding
predicted value ŷi . Then, R2 = 1−∑N

i=1 e2
i /

∑N
i=1(yi − y)2, with a positive denominator.

Note that a small sample standard deviation does not give lower residuals. Hence, the R2

can become small (and negative) when the results of the finite element simulations show
a smaller standard deviation than the mean square error. Further, we compare models
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M ∈ M , where M is the set of neural networks suitable for our problem. Therefore,
since

∑N
i=1(yi − y)2 will stay constant among the models, maximizing R2 is minimizing

the square error loss, or the L2 norm. Next, we include the average relative root mean
squared error (aRRMSE), often used for (multi-target) regression problems [111]. Finally,
we include the average relative error (aRelErr). Although the aRelErr is easy to interpret,
this performance measure is unsuitable for the entire set of targets.

7.3 Results
We train the neural network for predicting the RSA. Figure 7.3 shows the best and worst
prediction in terms of the MSE, the relative error at each point for the worst prediction,
and the relation between the predicted and target values for the samples in the test set.
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Figure 7.3: Results from the neural network for the relative surface area prediction. The upper two graphs show
the best (a) and worst (b) predictions. The lower two graphs show the relative error of the worst prediction (c)
and the relation between the predictions and the targets, the line y = x, and the R2 (d). Here, we have included
the values of the entire set of time values, hence 3600×365 data points.

Figure 7.3a shows that the prediction is indistinguishable from the target in the best-case
scenario. Figure 7.3b shows that, in the worst-case scenario, the network estimates the
greatest contraction to be around 5% more intensive than the target value. The relative
error of the worst prediction increases to 22% and converges to less than 1% for the last
RSA value in Figure 7.3c. Finally, Figure 7.3d shows that the predictions are correct, as
the (target, prediction) distribution is more or less the y = x line, the latter shown in red
for comparison. There are some outliers above and below the y = x line and there is
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a dense distribution of outliers in the range 0.31 ≤ x ≤ 0.39, showing the model could
have trouble predicting such less often occurring contraction values exceeding 60% as is
consistent with Figures 7.3b and 7.3c.
To substantiate our observations, Table 7.2 shows the performance measures and the
training and validation times.

Table 7.2: Performance of the neural network for predicting contraction.

Performance measure Cross-validation value Test value

R2 0.9928 ± 0.0013 0.9950
aRRMSE 0.0626 ± 0.0080 0.0509
aRelErr 0.0023 ± 0.0003 0.0019
Training time 156 s -
Validation time - 0.93 s

The cross-validation trials return a mean R2 = 0.9928, with standard deviation 0.0013.
For the test set, we obtained R2 = 0.9950, which fits within the 95% interval of confi-
dence. The R2 results show accurate predictions. The aRRMSEs are 0.0626 (± 0.0080)
and 0.0509 for the folds and test set. These results are smaller than 0.1, and according to
Despotovic et al. [112], this trained neural network shows excellent reproduction of the
finite element data. The aRelErrs of the predictions are only 0.23% (± 0.03%) and 0.19%,
supporting our claim that the neural network can predict the RSA.
During contraction, the RSA reaches a minimum which, together with the asymptotic
value, is interesting from a clinical point of view. Table 7.3 shows the R2 and the mean
absolute error (MAE) for the minimum and asymptotic RSA values over the test set. We
further show the general characteristics of the distributions to place the MAE in context.
Focusing on these characteristics next to the overall performance makes interpreting the
values clearer.

Table 7.3: Performances for the minimum and the asymptotic relative surface area (RSA) values. The table
shows the performance measures of the goodness-of-fit (R2), the mean average error (MAE), and the mini-
mum, maximum, range, and average of the mentioned RSA values.

Characteristic R2 MAE Min Max Range Average

Minimum RSA 0.9981 0.0028 0.3028 0.8095 0.5067 0.5599
Asymptotic RSA 0.9984 0.0008 0.7921 0.9649 0.1728 0.9044

Later in the first year, the predictions are better than the early predictions (not shown
here). It is, therefore, not surprising that the R2 of both the minimum and asymptotic
RSA values have a more significant score (0.9984 and 0.9980) than the overall perfor-
mance score (0.9928). Both scores differ at least four standard deviations from the over-
all performance. Hence Chebyshev’s Theorem states the exceeding probability to be
bounded from above by 0.0625. The minimum RSA MAE is 0.55% of the range of val-
ues and 0.50% of the average value, supporting the network’s performance. However, we
note that the neural network could be more accurate for small values, where differences
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of 7.5% can occur. Overall, the network can distinguish between the minima within 30
to 80%. The asymptotic RSA value MAE is 0.46% of the range of values and 0.09% of the
average value. Hence, the network can also predict the asymptotic contraction intensity.
We note that the asymptotic RSA value prediction absolute error is maximal 0.7%. We
conclude that the trained network can predict the RSA at various times and for ranges of
parameter values.
Finally, the validation time is only 0.93 seconds, in which the network predicts 3600
samples, hence, on average, 0.26 milliseconds per sample. This validation time is sig-
nificantly faster than the numerical model, which, on average, takes about 5 seconds
per simulation (about 5 hours for our test set). Hence, the neural network provides a
speedup of 19354X, showing a spectacular acceleration.

7.4 Application of the neural network
The primary asset of the neural network is its quick prediction. In this section, we discuss
an application to show the applicability of the neural network and support the claim that
fast MC simulations are essential.
We show a basic concept of an application that can assist medical staff when treating
patients with burned skin. Knowledge of the courses of contraction and the probabilities
of developing a contracture helps to choose the best suitable treatment for each patient
if the model considers different therapies in the future. If the probability of developing
a contracture (leading to immobility) is significant, a patient needs different treatments
than when the probability is small.
We designed a computational application to show the current network’s potential. The
application reads the patient- and wound-specific information shown in Figure 7.4, such
as the patient’s age and weight and the wound size and location.

Patient

Name:

Age (years):

Gender:

Male

Chest

Female

Weight (kg):

Burn injury

Size (cm):

Location:

Degree:

Type of burn:

×

Post-burn contraction after a (one-dimensional) burn injury
 

Please specify patient and burn injury information and press ‘Predict’.

This information is used to compute 1000 different simulations to

provide an estimate of the maximum and final post-burn contraction intensity.

30

Second ×

Thermal ×

4

Predict

Figure 7.4: The input section of the medical application that predicts post-burn contraction after a patient-
specific one-dimensional burn. The user can fill in the patient’s name, age, gender, and weight and fill in the
burn size, location, degree, and type. Once the Predict button is selected, the application runs.

Once the Predict button is selected, the application defines the distribution for the input
parameters based on the provided information. Currently, it only considers the patient’s
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age and wound length. In the background, it runs 1000 MC simulations to provide pre-
dictions.
The parameter uncertainties are assessed with MC simulations. Based on the literature
study in Chapter 4, we use interpolation in the data to find age-related parameter values.
First, we define a variable called age factor, the patient’s age divided by 100. We use this
factor to find suitable mean values for the parameters, and for this purpose, we use the
parameter value ranges shown in Table 7.1. Although it could be possible that specific
parameter values behave more step-like due to, for example, puberty, we assume that
linear interpolation between consecutive data points provides a reasonable approxima-
tion. We only apply interpolation to age-dependent parameter values and consider if
the values increase or decrease with age. Then, we perform random sampling using the
normal distribution with these mean values and a fixed portion of the mean values as
standard deviation. We cut off values outside the ranges, which can happen because of
random sampling. We draw values from a uniform distribution for the age-independent
parameter values, with minima and maxima as in the chosen ranges.
We draw 1000 input combinations for each patient, scaled before feeding these to the
neural network. The neural network outputs RSA predictions from which we estimate
the empirical cumulative probability distribution. With this, we estimate the probability
of the asymptotic contraction intensity exceeding a certain threshold, i.e., possibly the
probability of developing a contracture.
The results from the MC simulation are post-processed and visualized in the applica-
tion. The application shows the probabilities P(RSAmin < 0.7) (i.e., the probability of the
minimum RSA smaller than 0.7) and P(RSA365 < 0.9) (i.e., the probability of the asym-
totic RSA smaller than 0.9), where the threshold values are given in the contraction in-
tensity values 30% and 10%. The user can adapt these threshold values, such that the
probabilities are recomputed. Furthermore, the application shows the mean RSA, the
95%-confidence interval of the mean, and the standard deviation from the mean. The
mean and its confidence interval are shown in blue, together with the interval µ±σ in
red. In addition, the application shows the histograms for RSAmin and RSA365. Figure 7.5
shows the visualization of the predictions for the RSA.
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Figure 7.5: The visualization of the relative surface area (RSA) prediction in the application. Shown are the
prediction of the RSA in one year (a), and the histograms of the minimum RSA (b) and the asymptotic RSA (c).





8
A neural network for the
two-dimensional model

This chapter is based on the publication from [113]. The code for this chapter can be
found in the online resources for Chapter 8.

Severe burn injuries often lead to post-burn contraction, leading to stresses in and
around the damaged skin region. If this contraction leads to impaired joint mobility,
one speaks of contracture. Since the finite element-based simulation of post-burn
contraction can be expensive from a computational point of view, we study the use
of machine learning to reproduce the expensive finite element simulations cheaply.
The current study deals with a feed-forward neural network that we trained with 2D
finite element simulations. We focus on the evolution of the scar shape, wound area,
and total strain energy, a measure of discomfort, over time. The results show average
goodness of fit (R2) of 0.9979 and a tremendous speedup of 1815000X. Further, we
illustrate the applicability of the neural network in an (online) medical application
that takes the age of the patient age into account.

8.1 Introduction
In this chapter, we study the use of surrogate neural networks to replace the relative
surface area (RSA), the total strain energy (TSE), and wound/scar boundary predictions
from the two-dimensional numerical model. Section 8.2 presents the neural network.
Subsequently, Sections 8.3 and 8.4 present the results and the illustrative (medical) ap-
plication, respectively.

8.2 The neural network
In addition to our previous study in 1D, we formulate neural networks to predict the TSE
and the wound/scar boundary.

117

https://doi.org/10.4121/21257199


8

118 Chapter 8 A neural network for the two-dimensional model

8.2.1 Formulation
We consider a burn of a rotated square shape, as in Section 6.2. The 25 independent
parameter values make up the length of the input vector x. Given this input, the wound
/ scar evolves in terms of output variables y. Here, y ≈ f (x;θ) is either the non-dimen-
sional RSA, the non-dimensional TSE, or the wound/scar boundary, determined by the
numerical finite element-based model that uses an adaptive timestep (see Section 6.3)
and 365 days as total simulation time. Again, the data are post-processed to contain daily
predictions and are normalized between 0 and 1, and we use the same feed-forward
network as described in Section 7.2.1. The numbers of input and output neurons are
25 and 365 for the RSA and TSE, and 42×365 for the wound/scar boundary because 21
points describe the boundary.

8.2.2 Training, validating and testing
In 2D, we also minimize the mean squared error (MSE) loss by using the Adamax algo-
rithm with the standard backpropagation algorithm, and we perform learning rate range
tests (LRRTs) like as in Section 7.2.2. On average, the LRRTs take around 7.2 minutes on
our machine. The results for the RSA and the wound/scar boundary are the same as in
Figure 7.2; hence, we choose 0.015 for the initial learning rate (ILR) for the RSA and the
wound/scar boundary. Further, we initially chose an ILR of 0.045 for the TSE because the
LRRT showed high learning rates; however, the results were poor. We perform an LRRT
with more epochs and get the ILR of 0.02. After searching the optimal ILR by hand, we
find 0.004 to be the optimal ILR for the TSE. We use a standard decaying factor of 0.99 for
all learning rates. To avoid model overfitting, we use the early stopping regularization.
We follow the validation MSE loss and stop training if 50 epochs show no improvement.

8.2.3 Data
To train and test the neural networks in this chapter, we use a dataset of n = 5000 Monte
Carlo (MC) simulations from the numerical algorithm of size n ×25×365. As in Chapter
7, we define a range of acceptable input parameter values, we define uniform statistical
distributions from which we draw parameter samples, and we accept samples that sat-
isfy kc < δcρa I I

c . The (varied) parameter values are the same as the values in Table 7.1 in
Chapter 7, except for the parameter values shown in Table 8.1.

Table 8.1: Overview of the parameter values used for the simulations for the neural network in 2D different
from the ones shown in Table 7.1.

Parameter Value Dimension Reference

Dn (7–15)×10−7 cm5/(cells day) [53]
r max 2–2.3 - [57]
k1 (0.8–1.08)×107 cm3/(g day) [7]
µ1/2 10–1000 (N day)/cm2 [108]
E 28–34 N/((g cm)1/2) [63]
ν 04.9×10−1 - [70]

Shown are the symbols, the values, the dimensions, and the references to the mean values.
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Each simulation computes the results on a domain of 10 cm2 with a uniform triangula-
tion with 968 nodes. For the simulation setup, we refer to Sections 6.2 and 6.3. We split
the large dataset into standardized (using Min-Max scaling) train- and test sets, with an
80%/20% train-test split.

8.2.4 Performance measures
The performance measures are the same as described in Section 7.2.4.

8.3 Results
We train the neural network to predict the RSA, the TSE, and the wound/scar boundary.
Figure 8.1 shows the best and the worst prediction in terms of the MSE, the relative error
at each point for the worst prediction, and the relation between the predicted and target
values for the samples in the RSA test set.
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Figure 8.1: Results from the neural network for the relative surface area (RSA) prediction. The upper two graphs
show the best (a) and worst (b) predictions. The lower two graphs show the relative error of the worst prediction
(c) and the relation between the predictions and the targets, the line y = x, and the R2 (d). Here, we have
included the values of the entire set of time values, hence 1000×365 data points.

Figure 8.1a shows the best-case scenario, where the RSA prediction mostly overlaps the
RSA target for the first 130 days and underestimates slightly around day 130. In the worst-
case scenario, shown in Figure 8.1b, the neural network shows a delay during contrac-
tion and retraction and overestimation after (apprioximately) 120 days. The minimum
shifted to day 58, compared to day 52 in the RSA target. After 120 days, the overestima-
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tion is about 1% less contraction. The relative error of the worst prediction increases to
9.4% and converges to about 1.39% for the final contraction intensity, as shown in Figure
8.1c. The error peaks around day 30, during steep contraction, while the relative error
around the moment of maximum contraction is less than 1%. Finally, Figure 8.1d shows
the (target, prediction) distribution is more or less the y = x line. Outliers are because
of the worst prediction. The spread in the range 0.75 ≤ x ≤ 0.95 shows that the neural
network could have trouble predicting contraction values between these values.

Figure 8.2 shows the best and the worst prediction in terms of the MSE, the relative error
at each point for the worst prediction, and the relation between the predicted and target
values for the samples in the TSE test set.
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Figure 8.2: Results from the neural network for the total strain energy (TSE) prediction. The upper two graphs
show the best (a) and worst (b) predictions. The lower two graphs show the absolute error of the worst predic-
tion (c) and the relation between the predictions and the targets, the line y = x, and the R2 (d). Here, we have
included the values of the entire set of time values, hence 1000×365 data points.

In the best-case scenario, the TSE prediction mostly overlaps the TSE target, except for
the maximum TSE around day 50, as Figure 8.2a shows a slight overestimation. In the
worst-case scenario, shown in Figure 8.2b, the prediction by the neural network is al-
most indistinguishable from the TSE target value. Figure 8.2c shows the relative error
of the worst TSE prediction and shows a maximum increase to 0.53% on day 23, which
is negligible. Finally, Figure 8.2d shows that the (target, prediction) distribution follows
the y = x line. The spread in the lower range shows that the neural network could have
trouble predicting small TSE values and that larger values occur sporadically.
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The RSA only provides information about the general contraction and lacks any informa-
tion about localized contractions. Using the displacement of the wound/scar boundary,
we can also visualize the contraction and retraction of the wound/scar. Visualizing this
movement is intuitively more straightforward to interpret than numeric values. Figure
8.3 shows the results of the neural network we trained to predict the wound/scar bound-
ary.
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Figure 8.3: Results from the neural network for the wound/scar boundary. The upper graphs show the best
predictions (a), while the lower graphs show the worst ones (b). In each graph, the blue line shows the target,
and the red dashed line shows the neural network prediction.

Here, we display targets and predictions on days 5, 25, 50, 75, and 365, with the targets
in blue and the predictions in red. The days are shown for the best and the worst pre-
diction in terms of the average relative error. Figure 8.3a shows that the best prediction
follows the target closely. The worst prediction, shown in Figure 8.3b, shows a slight
deviation from the target boundary (less contraction) in the early phase of contraction
before maximum contraction is not yet reached (day 25). Here, the predicted wound
boundary is larger than the target boundary, which is also in line with the trends in Fig-
ures 8.1b and 8.1c. Further, the graphs show that the neural network can closely predict
the wound/scar boundary.
To substantiate our observations, Table 8.2 shows the test sets’ performance measures
and the training and validation times of the neural networks.

Table 8.2: Performances of the neural networks.

Performance measure RSA value TSE value boundary value

R2 0.9983 0.9984 0.9969
aRRMSE 0.0787 0.0864 0.0825
aRelErr 0.0018 1.4919 0.0020
Training time 33 s 245 s 295 s
Validation time 0.000069 s 0.000058 s 0.000147 s
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For all three neural networks, we obtained R2 ≥ 0.9969, which fits within the 95% inter-
val of confidence, showing accurate predictions. The aRRMSEs are 0.0787,0.0864, and
0.0825 for the RSA, the TSE, and the wound/scar boundary, respectively. The results are
smaller than 0.1, and according to Despotovic et al. [112], these trained neural networks
show excellent reproduction of the finite element data. The aRelErrs of the predictions
are only 0.018%,1.4919% and 0.0020%, supporting our claim that the neural network can
predict the RSA, the TSE, and the wound/scar boundary. Finally, the total validation time
is only 0.2744 seconds, in which the networks predict 1000 samples; hence, on average,
0.2744 milliseconds per sample. The neural networks are significantly faster than the
numerical model, which, on average, takes about 498 seconds per sample. Hence, the
neural network provides a speedup of 1815000X, showing a spectacular acceleration the
neural networks achieve.
Further, for the minimum and asymptotic RSA values, Table 8.3 shows the R2 and the
mean absolute error (MAE) for the maximum TSE over the test set. During contraction,
the RSA reaches a minimum which, together with the asymptotic value, is interesting
from a clinical point of view. Focusing on these characteristics than the overall perfor-
mance makes interpreting the values clearer.

Table 8.3: Performances for the minimum and the asymptotic relative surface area (RSA) values and the maxi-
mum total strain energy (TSE) values. The table shows the performance measures of the goodness-of-fit (R2),
the mean average error (MAE), and the minimum, maximum, range, and average of the mentioned values.

Characteristic R2 MAE Min Max Range Average

Minimum RSA 0.9989 0.0016 0.5107 0.8335 0.3228 0.6944
Asymptotic RSA 0.9965 0.0009 0.8067 0.9545 0.1477 0.9032
Maximum TSE 0.9990 0.0029 0.0658 0.9198 0.8540 0.2976

The R2 of the minimum and asymptotic RSA values and the maximum TSE value are
0.9989, 0.9965, and 0.9990, respectively. Compared to the overall performance scores,
the score for the asymptotic RSA is lower, though still above 99%, and the scores for
minimum RSA and the maximum TSE are higher than the overall performance scores.
The minimum RSA MAE is 0.50% of the range of values and 0.23% of the average value,
supporting the network’s performance. Overall, the network can distinguish between
the minima within the range of 51 to 83%. The asymptotic RSA value MAE is 0.61% of
the range of values and 0.10% of the average value. Hence, the network can predict the
asymptotic contraction intensity as well. The most significant asymptotic RSA value pre-
diction absolute error is less than 1.17%. Finally, the maximum TSE MAE is 0.34% of the
range of values and 0.97% of the average value, showing a better performance in the
range of values than the neural network scores for the RSA. We conclude that the trained
network can predict the RSA and the TSE at various times and ranges of parameter val-
ues.

8.4 Application of the neural network
As stated in Chapter 7, we prefer using a neural network instead of the numerical finite
element method to access the MC simulations quickly. We updated the illustrative ap-
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plication to show the potential of the networks trained in this study. Like before, we use
interpolation in literature data to find age-related parameter values. In short, the ap-
plication only reads the patients age and then decides the parameter distributions. For
illustration, the app shows other patient and wound-specific options that the app does
not consider yet. The results from the MC simulations are post-processed and visual-
ized in the application that considers the burn to be a rotated square for −4 ≤ x, y ≤ 4.
The app shows the effects of the uncertainties for the RSA, the TSE, and the wound/scar
boundary and offers probabilities of contraction intensities. Figure 8.4 shows the addi-
tion of the TSE and the wound/scar boundary.
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Figure 8.4: The visualization of the total strain energy (TSE) and wound/scar boundary prediction in the ap-
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Conclusions of this part

The numerical approximations to post-burn contraction are less suitable for applica-
tions that require many simulations since they are computationally expensive. There-
fore, we study neural networks that serve as a low-cost alternative modeling strategy.
These neural networks are easy to train and provide quick predictions for post-burn con-
traction and patient discomfort.
We performed LRRTs to find suitable ILRs, which are 0.015 for the Adamax optimizer for
the RSA (in 1D and 2D) and the wound/scar boundary (in 2D). We needed to find the ILR
for the TSE by hand and found the optimal value of 0.004.
In 1D, we tested the neural network for predicting the RSA only. The network gives
aRellErr = 0.19% and R2 = 0.995 on the test set. In addition, the network gives accurate
predictions of the necessary RSAmin and RSA365. For RSAmin, it reports MAE = 0.0028 and
R2 = 0.9981, and for RSA365, it reports MAE = 0.0008 and R2 = 0.9984.
In 2D, we tested the neural networks for predicting the RSA, the TSE, and the wound/scar
boundary. On the test set, our networks give aRellErr = 0.0018%, 1.4919% and 0.0020%
and R2 = 0.9983,0.9984 and 0.9969 for the RSA, the TSE, and the wound/scar boundary.
In addition, the networks provide accurate predictions of the minimum and asymptotic
RSA values and the maximum TSE values. For the minimum RSA, it reports MAE = 0.0016
and R2 = 0.9989; for the asymptotic RSA, it reports MAE = 0.0009 and R2 = 0.9965, and for
the maximum TSE, it reports MAE = 0.0029 and R2 = 0.9990.
Furthermore, the neural networks provide incredible speedups. The neural network in
Chapter 7 needs only 0.93 seconds to compute the 3600 predictions. In contrast, the
numerical code takes approximately 5 seconds per sample, which is 5 hours for 3600
predictions. Hence this neural network framework is 19354 times faster than the fi-
nite element framework demonstrating the spectacular acceleration our neural network
achieves. The neural networks in Chapter 8 are 1815000 times faster than the finite ele-
ment implementation. Overall, our two-layer neural networks’ performances are excel-
lent.
We have developed a neural network-based application that takes the patients age (and
in 1D, the burn’s length) to show its effect on post-burn contraction (and patient discom-
fort in 2D). The fast computations allow for MC-based predictions to access parameter
uncertainty; therefore, the application is an example of how to offer clinicians immedi-
ate access to scar contraction simulations. Clinicians can tailor complication-dependent
therapies if an efficient and reliable computer framework can predict complications after
a burn. Given that the neural networks are effective and inexpensive, such an applica-
tion increases the application of parameter studies and patient-oriented care. The aim
is to optimize the treatment of post-burn contractions.
In conclusion, using neural networks as an alternative to the numerical model is effective
and cheap. In addition, it increases the application of parameter studies and patient-
based healthcare. The goal is to optimize the treatment of post-burn contractions. If
we do, clinicians can adjust therapies depending on complications that an efficient and
reliable computational framework can predict.
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9
Conclusion and discussion

9.1 General conclusions
This section recapitulates the main conclusions we have drawn from the results obtained
in the studies.

9.1.1 Part I
In part I, we presented stability analyses for the one-dimensional and two-dimensional
counterparts of the biomorphoelastic model for post-burn contraction. In both settings,
stability is guaranteed for

δc ≥ kc

a I I
c ρ

, (9.1)

where δc is the signaling molecule decay rate, kc the signaling molecule secretion rate,
a I I

c the signaling molecule concentration causing half-maximum secretion, and ρ the

equilibrium collagen concentration. For values δc < kc

a I I
c ρ

not too far below the bound,

the model can still attain a solution; though slow signaling molecule decay results in
lasting signaling. In this case, signaling molecules remain present, causing persistent
myofibroblast differentiation and an increased collagen concentration. The resulting
scar can be hypertrophic. Stability for the mechanical model’s part is met for ε≤ 1 in 1D,
and for ε11 = ε22 = 1

2 and ε12 = 0 in 2D. These conditions are also physical requirements,
given that the equation for the effective Eulerian strain only holds for small strains. Fur-
ther, when the viscosity is low for complex eigenvalues, the model converges, though not
monotonic, but with oscillations. The convergence of the numerical method has order
at least O (h2).

9.1.2 Part II
In part II, we presented sensitivity analyses for the one-dimensional and two-dimen-
sional counterparts of the biomorphoelastic model for post-burn contraction. In addi-
tion, in Chapter 5, we presented an overview of parameter values and a feasibility study
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for age-related post-burn contraction. In Chapter 6, we discussed our (re)meshing strat-
egy.
The sensitivity analyses show that parameter value sensitivity depends on the dimen-
sional setting and cell proliferation rates. If the cells have equal proliferation rates, then
the equilibrium collagen concentration significantly affects contraction and patient dis-
comfort. The body force-inhibiting constant is the most sensitive parameter if the cells
have unequal proliferation rates. In all cases, the myofibroblast apoptosis rate is sig-
nificantly sensitive. In addition, the signaling molecule secretion rate accounts for sig-
nificant effects on the contraction intensity after one year and the maximum patient
discomfort, which relates to the stability constraint in equation (9.1). If the parameter
value gets too close to the stability limit, then remeshing is necessary for the numeri-
cal method. Further, the sensitivity of the myofibroblast proliferation rate increases for
unequal cell proliferation rates. In 2D, the model considers Poisson’s ratio, around 0.49
for soft tissues. We note that when this value increases toward 0.5, the weak form in the
finite element method resembles ∫

Ω
∇·u∇·φdΩ, (9.2)

meaning that ‘locking’ may occur, which is notorious among mechanical engineers. This
effect was not a problem in this work because we consider visco-elasticity. However,
given the sensitivity of the Poisson’s ratio in Chapter 6, variation should be done carefully
in future simulations.
Concerning the therapy advice, one should inhibit myofibroblast proliferation and stim-
ulate myofibroblast apoptosis and fibroblast proliferation if the goal is to limit contrac-
tion during post-burn proliferation. Further, an elevated collagen concentration can re-
duce post-burn contraction and shorten its period. If the goal is to limit contraction
after scar maturation, one should decrease growth factor secretion and stimulate growth
factor decay. The advice is the same if the goal is to decrease patient discomfort.
Further, the model can show significantly different contraction intensities for different
groups of parameter values, where the groups are chosen to relate to patients of different
ages.

9.1.3 Part III
In part III, we presented neural networks that predict post-burn contraction and patient
discomfort, serving as a low-cost alternative modeling strategy. We performed learning
rate range tests to find optimal initial learning rates and implemented the resulting neu-
ral networks in an (online) application.
The networks give over 99.5% goodness of fit on the test set for (the features of) the con-
traction, (the features of) the patient discomfort, and the wound/scar boundary, and
also show excellent performances. The networks’ speedups are incredible: 19354 times
faster than the finite element approximations in 1D and 1815000X times faster in 2D,
demonstrating spectacular accelerations.
The medical application shows how to offer clinicians immediate access to scar contrac-
tion simulations, increasing the application of parameter studies and patient-oriented
care.
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In conclusion, an alternative to the numerical model is an effective and cheap neural
network. If we optimize the treatment of post-burn contraction using such modeling
frameworks, clinicians can adjust therapies depending on predicted complications.

9.2 Discussion
For the discussion of this work, we focus on the following topics: the bridge between the
clinic and mathematical modeling, parameter values, mathematical model, numerical
methods and implementation, and machine learning.

9.2.1 The bridge between the clinic and mathematical modeling
According to Viceconti et al., one should select the model that properly investigates the
elements of reality that one wishes to examine [114]. The biomorphoelastic model for
post-burn contraction involves elements on a microscale, while clinical observations
are on a macro scale. From a clinical point of view, it is uncommon to take burned skin
biopsies and blood samples to extract parameter values for the mathematical model.
From the mathematical point of view, the model needs significant adjustments to take
the macro observations, introduce new, possibly unknown, parameters and equations,
and combine different models. Therefore, experimental scientists, computational scien-
tists, and mathematicians need to collaborate.

The goal is to create an accurate mathematical model that supports the clinician and
the patient. We need to collect clinical and experimental data and adjust the model to
represent the clinical data. Here, one can think of macro observations such as the cause,
the location, the depth of the burn, and other patient-specific factors such as gender
and age, together with effects such as contraction, hypertrophy, and patient discomfort.
A burned hand is much more likely to contract than a burn on the back, and a third-
degree burn heals with less surrounding vital tissue than a two-degree burn. The belly’s
skin is much more likely to stretch than on a wrist, and the skin gets looser with age.

Next to the burn-specific and patient-specific factors, other factors such as nutrition,
sports (swimming), and applied treatments play a vital role in post-burn healing. For
example, a patient with an open burn wound needs a diet including extra protein be-
cause much energy is used at a cellular level. Severe burns cause a profound patho-
physiological stress response and a radically increased metabolic rate that can persist
for years after injury [115]. Suppose this stress response remains unabated and the in-
creased metabolic needs are not supported. In that case, it can significantly lose lean
(fat-free) mass, immune compromise, and delayed wound healing. Regarding sports,
patients suffering from tight skin after a burn feel relief when swimming, and moving
generally prevents the muscles from becoming weak and forgetting their memory. How-
ever, the cells involved in post-burn healing can sense these mechanical stimuli and re-
spond to them, for example, by contracting the damaged tissue. A particular case is the
growth of children, where the skin stretches and pulls on the scar. Different treatments
are possible, like plastic surgery, a full or partial-thickness skin graft, splinting, bandages
with silver, pressure therapy, laser therapy, cryotherapy, and kenacort injections. The
goals of the treatments also differ as they can be, for example, to close the wound or to
release tension. Further, treatments like skin grafts can be considered in our modeling
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framework using other initial conditions. The general question is which factors we need
to consider. If so, how can we optimally add these factors to our modeling framework to
produce relevant, accurate data in a computationally attractive time?

Guidelines where to start are the Patient Observer Scar Assessment Scale (POSAS) data
and the scar model. The POSAS is a scar rating scale that measures scar quality from the
perspective of the patient and the clinician. It measures scar quality by assessing visual
(e.g., color), tactile (e.g., flexibility), and sensory (e.g., itch) features of the scar from the
perspective of the observer and patients. Using the POSAS data to adjust the mathemat-
ical model, we create a setup where clinicians, patients, and scientists meet on a macro
scale. The scar model adds another dimension to the POSAS data. In the scar model,
shown in Figure 9.1, the clinician and patient observations are included regarding scar
quality. However, the clinician distinguishes between the skin’s layers, and the observed
visual, tactile, and sensory features correlate via a sublayer where the quality of, for ex-
ample, keratinocytes and collagen are included.
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Dermal quality
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Quality of
 

melanocytes

Quality of
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Figure 9.1: The scar model, developed by Paul van Zuijlen. It is the first concept model. The model is continu-
ously under construction and continuously learning as new data feed it.

Given that the biomorphoelastic model for post-burn contraction simulates the skin’s
dermal layer and does not consider angiogenesis, the first step, for example, is to for-
mally formulate the quality of collagen and link it to the features contraction, texture,
thickness, and pliability/stiffness. Using the scar model to adjust the mathematical model,
we create a setup where clinicians, patients, and scientists also meet on a micro-scale.



9.2 Discussion

9

129

9.2.2 Parameter values
Parameter values are difficult to estimate and sometimes impossible to determine. This
difficulty is partly because parameter values differ between patients and the types of
wounds, because many values are of cellular and molecular nature, and because pa-
rameter values can also depend on each other. For example, the skin’s elasticity differs
between locations on the body [116]. Estimating parameter values can be done in vitro
and in silico, while in vivo is more challenging.

It is necessary to determine patient- and wound-specific parameter values from appro-
priate data. These data may be of a clinical nature as well as an experimental nature.
Depending on the available data, we can perform an a priori parameter estimation fol-
lowed by an iterated optimization. For the iterated optimization, an objective cost func-
tion could be defined, for example, by the mean squared error loss of the relative surface
area. We can also set up specific in vitro studies to determine parameter values. How-
ever, parameter values resulting from in vitro studies may be different in vivo.

When the proliferation rates of the (cellular) phenotypes are different, then in the current
model, the myofibroblast proliferation rate rm , the equilibrium collagen concentration
ρ and the body force-inhibiting constant R are the most sensitive parameters. For max-
imum contraction and patient discomfort, this is the myofibroblast proliferation rate,
and for asymptotic contraction, this is the equilibrium collagen concentration (a term
for stiffness). Of course, these sensitivities will change when the model is modified.
Given the current model, we advise experimentally investigating whether myofibrob-
lasts (actively) proliferate and, if so, at what rate and where their proliferation depends
on. Our parameter values study in Chapter 5 determined the cell proliferation rate using
measured cell doubling times, which is questionable since cell doubling times can de-
pend on the circumstances cells are in. However, the equations representing the chem-
ical reaction of the cells, equations (2.6) and (2.7), include proliferation enhancement
by signaling molecules, cell crowding, differentiation, and apoptosis. For the chemical
reaction of myofibroblasts, it has been assumed that myofibroblasts solely divide in the
presence of the signaling molecule. Thus, when one studies the multiplication of my-
ofibroblasts in vitro, it will have to be investigated whether this multiplication is indeed
dependent on growth factors. If no fibroblasts are present in this study, then the part of
myofibroblast differentiation can be disregarded (as the differentiation depends on suf-
ficient mechanical stiffness [117]). Disregarding differentiation means focusing purely
on monitoring myofibroblasts that die and how much the population grows.

Another in vitro study may target myofibroblast differentiation using pure human fi-
broblasts and signaling molecules (TGF-β) and map the dependence on stiffness (col-
lagen). We have assumed that myofibroblast differentiation is linear; however, it could
also be that there is also an activator-inhibitor reaction behind this and that we need to
estimate the parameter values for this alternative modeling technique. This estimation
would, for example, concern the maximum differentiation rate and half-maximal growth
factor enhancement of fibroblast differentiation (see [118]).

For the feasibility study and the neural networks in this work, we used linear interpola-
tion to find age-related parameter values, which might be too simplistic. We need more
research on the relations between different parameters and influences of factors like skin
complexion, age, gender, and the location of the burn on the body.
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Of course, it is clear that parameter values need to be estimated again when the model
changes, and therefore we conclude that parameter estimation involves the collabora-
tion of different scientific fields that continue collecting data, remodeling, and testing
until the objective cost function is minimized.

9.2.3 Mathematical model
Our models are unique because we combine the mechanics with shrinkage and mi-
crostructural changes of skin, which in turn is coupled with a biochemical model for
cells, growth factors (chemokines), and collagen. The current model describes clinical
observations very neatly. However, the model still needs to be completed because many
factors that play a role in post-burn contraction still need to be included. Post-burn fea-
tures, such as hypertrophic scarring and the inflammatory wound healing response, are
included in other mathematical models and must be linked to the mathematical model
in this work. In this subsection, we discuss these parts and the current model’s parts that
need adjustments.

Hypertrophy Scars are usually normotrophic but can also be hypertrophic. Normo-
trophic scars are defined as scars that are not elevated above skin level [119], while hy-
pertrophic scars are raised and tight and often present with changes in color and sensa-
tion [120–122]. Clinical data show that these scars’ intensity increases in the first three
months after injury, after which the intensity gradually decreases, as shown in Figure 9.2.
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Figure 9.2: A sketch of the intensity of hypertrophic versus normotrophic scars in time. Here, the intensity is
not a direct measure of the elevated scar but an overall measure of the intensity of the scar type.

Post-burn hypertrophic scars lead not only to an aesthetic but also to a functional and
psychological burden and therefore matter for patients. There needs to be more evi-
dence of the preference for specific treatment plans for these types of scars; therefore,
treating them is challenging. In vivo models often focus on mice, rats, rabbits, guinea
pigs, and dogs. Cost-effective models exhibit low transferability to human conditions,
and those that show good transferability (pig models) are cost-intensive [123]. Hence,
the benefits of animal testing are not proven, and together with animal suffering, there
is a critical ethical aspect. As an alternative to these in vivo models, we could use in sil-
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ico models that help predict whether a patient will likely develop hypertrophic scars and
require treatment or decide which treatment will likely achieve the best results. The lit-
erature mainly contains models for muscle hypertrophy [124, 125], and the literature for
post-burn hypertrophy remains scarce. The influence of myofibroblast apoptosis under
dermal thickness and hypertrophic scarring was studied before by Koppenol et al.; how-
ever, not together with (joint) contractures. Hence, it would be interesting to incorporate
hypertrophy into the morphoelastic model, for which we need available data sourced
from in vivo and in vitro studies. However, validating results from such a model is chal-
lenging since hypertrophy depends highly on angiogenesis, which nowadays seems im-
possible to test in vitro.

Boundary conditions There are two reasons to study possible boundary conditions to
integrate into the mathematical model. One of these reasons emerges when hypertro-
phy is modeled together with contraction in a three-dimensional environment. Higher-
dimensional frameworks account for the wound shape and depth, which is necessary to
consider for hypertrophic scars as wound depth plays a crucial role [126]. The boundary
conditions in this work can still be used for the modeled piece of skin parallel to the skin’s
surface, while perpendicular to the skin’s surface (modeling the depth of the burn), we
need other boundary conditions that allow the skin’s surface to move freely.

The computational time for finite element simulations is the other reason for alternative
boundary conditions. In this work, the edges of the computational domain are chosen
far enough from the burn to account for the variables ‘diffusion’. If we define the bound-
ary conditions for the wound edges, this formulation saves many elements over which
calculations must be fulfilled.

To give examples of possible boundary conditions, we show in Figure 9.3 graphical rep-
resentations of what the computational domains can be in such setups.
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Figure 9.3: Examples of graphical representations of the computational domain when we model hypertrophy
and contraction. Here, we show damaged tissue within healthy tissue (a) and a completely damaged tissue (b).
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For the graphical representation in Figure 9.3a, we can use the following boundary con-
ditions. For all t > 0 and x ∈ {

ΓI
x,ΓI I

x

}
:

n · JN (x, t ) = 0, n · JM (x, t ), n · Jc (x, t ) = 0. (9.3)

For all t > 0 and x ∈ {
ΓI I I

x ,ΓIV
x ,ΓV

x ,ΓV I
x

}
:

N (x, t ) = N , M(x, t ) = 0, c(x, t ) = 0. (9.4)

For the mechanics of the model, we can use the following boundary conditions, where
we write v = (u, v, w)T . For all t > 0 and

x ∈ ΓI
x : n ·σ=

0
0
0

 , x ∈ ΓI I
x : n ·σ=

 0
0

−s Iρw

 . (9.5)

For all t > 0 and

x ∈ {
ΓI I I

x ,ΓIV
x

}
: n ·σ=

−s I Iρu
0
0

 , x ∈ {
ΓV

x ,ΓV I
x

}
: n ·σ=

 0
−s I I Iρv

0

 . (9.6)

These boundary conditions imply that the first boundary is allowed to move in any direc-
tion, and the second boundary is free to move in the directions of the x- and y-axis and
has a spring-like force per unit area in the direction of the z-axis. The third and fourth
boundaries are free to move in the directions of the y- and z-axis and have a spring-
like force per unit area in the direction of the x-axis. The fifth and sixth boundaries are
free to move in the directions of the x- and z-axis and have a spring-like force per unit
area in the direction of the y-axis. The spring-like forces are proportional to the collagen
concentration and the displacement in the direction of the corresponding axis.
For the graphical representation in Figure 9.3b, we can replace the boundary conditions
for boundaries III, IV, V, and VI with spring-like boundary conditions.
If we define a symmetrical burn, then the solution is axisymmetric. We can then use the
symmetrical boundary conditions we defined in this work. Further, one could incorpo-
rate pulling and stretching forces because of children’s growth and motility. A first at-
tempt to incorporate children’s growth is to add terms to the right-hand side of equation
(2.12) representing body forces. Another attempt is to incorporate forces by adding ad-
ditional terms to the boundary conditions on boundaries III, IV, V, and VI. For the study
of pressure therapy, one can add pressing terms to the boundary condition for boundary
I.

Strains and constitutive stress-strain relations We repeat the recommendations for
completeness considering the strains and stress-strain relations that Koppenol suggested
[17]. In the model of this work, the effective Eulerian strain is assumed to be small. How-
ever, the effective strains are more likely to become arbitrarily large, as was assumed
in references [61] and [127]. When this assumption is made, equation (2.14) can be re-
placed by [24]:

De

Dt
= sym

B−1∇v − 1√
det

(
B−1

)B−1G

 , (9.7)
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where

e = 1

2

[
I− (

A−1)2
]

, (9.8)

B = [I−2e]−1, (9.9)

and

G = ζ
[N +ηI I M ]c

1+a I I I
c c

ϵ. (9.10)

The tensor A = ∂x
∂Xe

(see Figure 2.1) is the locally-defined deformation gradient tensor that
describes how infinitesimal line segments in the hypothetical configuration are trans-
formed into infinitesimal line segments in the current configuration. Here, x is the cur-
rent coordinate system, and Xe is the virtual reference coordinate system.
Further, the visco-elastic constitutive relation in equation (2.13) can be replaced by [127]

σ=µ1sym(∇v )+µ2
[
tr

(
sym(∇v )

)
I
]+[

E(ρ)

2[1−2ν]

[√
det(B)−1

]]
I+ E(ρ)

2[1+ν]

[√
det(B)

]− 5
3 [

B− 1
3 tr(B)I

]
, (9.11)

where µ1 and µ2 are the shear and bulk viscosities, ν the Poisson’s ratio, E(ρ) Young’s
modulus, and I the identity tensor. As Koppenol mentioned, this relation might not be
representative, and constitutive stress-strain relations for skin tissues such as granula-
tion, dermal, and scar tissue remain to be further studied.

Angiogenesis Angiogenesis, from the Greek word Angêion (ὰγγϵι̃oν), meaning vessel,
is the formation of blood vessels from the existing vasculature. New blood vessel for-
mation is an essential process in wound healing that is thought to mainly manifest as
angiogenic sprouting of pre-existing capillaries [119]. Abnormal vascularization can be
involved in the development of hypertrophic scars and keloids [128], as compared to
normal skin, hypertrophic scars show a higher amount of blood vessels that are more
dilated.
Guerra et al. state that the existent models of wound healing angiogenesis do not fully
describe the process and that upcoming models should include vascular network re-
modeling and ECM components [129]. Given that hybrid in silico models [130–133]
combine the microscale and macroscale analyses, allowing to describe cell behavior and
predict the variation of the species concentration simultaneously, we propose to incor-
porate angiogenesis in a hybrid model.

Inflammation Severe burn injuries induce a complex inflammatory response that can
persist for months to a year after the initial burn injury. In burn victims, this response
can be over-activated, contributing to secondary wound expansion and excessive scar-
ring, and it can exert systemic effects [134]. These systemic effects include inflammation
in the heart that can result in secondary organ failure and, therefore, be life-threatening
[135]. It is, therefore, essential to include inflammation in the post-burn modeling frame-
work. This work’s model considers the proliferative response after burn injuries, and the
initial conditions represent the effect of inflammation. A possible pathway to include
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the inflammatory response is to combine this work’s model with other (existing or devel-
oped) models for inflammation. It is necessary to upscale when results from a cell-based
model need to be translated to a continuum model. Previous research has been done on
upscaling between a cell-based model and this work’s continuum model for post-burn
contraction [136].

Reepithelialization For decades, mathematical models for wound healing focused on
wound closure. Reepithelialization describes the resurfacing of a wound with new ep-
ithelium [6]. Keratinocytes, a major cellular component of the epidermis, are respon-
sible for restoring the epidermis within hours after injury through this process. Under
poor circumstances, reepithelialization is impaired, and a wound cannot be considered
healed (this happens in all chronic wounds). Therefore, it is interesting to consider reep-
ithelialization and, thus, also the dermal-epidermal interplay in our modeling frame-
work. We suggest combining parts of the models developed by Sherratt and Murray
[137], Wearing and Sherratt [138], Vermolen and Javierre [139], and Wang et al. [140]
to include reepithelialization in the morphoelastic model. Here, one must consider the
epidermal-dermal interaction and the dermal-subcutaneous interaction. If the result-
ing model is hybrid, then its discrete nature enables the modeling of individual ker-
atinocytes. The model can then be easily adjusted to incorporate additional epithelial
cell types, such as hair follicles and sweat glands.

The cells Dermal fibroblasts are not fully differentiated. Hinz et al. showed that the
myofibroblastic phenotype is regulated by mechanical tension in vivo [141]. After an in-
jury, fibroblasts migrate to the wound bed, laying down a collagen- and cellular fibronec-
tin rich ECM. During wound closure, the fibroblasts and collagen become oriented par-
allel to the wound bed along expected stress lines [142], showing tractional forces. These
resulting proto-myofibroblasts contain stress fibers, focal adhesions, and extracellular
fibronectin fibrils [141]. Unlike normal dermal fibroblasts, wound fibroblasts produce fi-
bronectin messenger ribonucleic acid (mRNA) with two proteins, ectodysplasins A (EDA)
and B, leading to EDA fibronectin expression in the granulation tissue [143]. This expres-
sion is essential to further myofibroblast differentiation as it stimulatesα-SMA activity of
transforming growth factor TGF-β1 [144]. Continued mechanical tension and the pres-
ence of TGF-β stimulate further diffentiation into myofibroblasts [145, 146] that express
a strict organization of fibrils and focal adhesions, exerting forces. These (active) forces
are primarily generated by the actin-myosin contractile machinery and transmitted to
the ECM using transmembrane proteins of the integrin family in the focal adhesions
[147]. Hence, there are fibroblasts (without stress fibers), proto-myofibroblasts having
stress fibers that express cytoplasmic actins, and myofibroblasts having stress fibers that
express α-SMA (see Figure 9.4).
Further, in vitro studies indicate that myofibroblasts can differentiate back to fibroblasts
under the influence of Prostaglandin E2 [33], while this de-differentiation remains to be
(dis)proven in vivo; hence the question mark in Figure 9.4.
The rationale behind the nonproliferation of myofibroblasts is that fully differentiated
cells can either do one or the other, proliferating or exerting force. Therefore, myofi-
broblast proliferation is under discussion. Vaughan et al. have shown that myofibrob-
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Figure 9.4: The two-stage model of myofibroblast differentiation. In vivo, dermal fibroblasts do not show
stress fibers, and these cells do not form adhesion complexes with the extracellular matrix. Fibroblasts differ-
entiate into proto-myofibroblasts under mechanical stress. Proto-myofibroblasts show actin-containing stress
fibers that complete in adhesion complexes. Further, these cells, including the EDA variant, express cellular
fibronectin at the cell surface. Under further mechanical stress and transforming growth factor β (TGF-β),
proto-myofibroblasts differentiate into myofibroblasts. The expression of α-smooth muscle actin (α-SMA)
characterizes myofibroblasts, showing more extensively developed stress fibers and large (focal) adhesion
complexes. Fully differentiated myofibroblasts generate stronger contractile force than proto-myofibroblasts,
reflected by the stricter organization of extracellular fibronectin into fibrils. Modified from Tomasek et al. My-
ofibroblasts and mechano-regulation of connective tissue remodeling. Nature Reviews Molecular Cell Biology
3:349, 2002.

lasts proliferate more slowly than fibroblasts [31], while other scientists suspect that my-
ofibroblasts do not proliferate at all. Furthermore, it seems likely that the majority of
myofibroblasts arise from pre-existing local fibroblasts in the dermis, which gradually
acquire the myofibroblast phenotype, as is suggested by the gradual appearance of mi-
crofilaments at the electron microscope level and α-SMA positivity at the light micro-
scope level. However, when local fibroblasts cannot satisfy the tissue’s requirement for
these cells, mesenchymal stem cells, fibrocytes, bone marrow-derived cells, and cells de-
rived from an epithelialmesenchymal transition (EMT) process may represent alterna-
tive sources of myofibroblasts. If more myofibroblasts are ‘necessary,’ and if local sources
of fibroblasts are depleted, other cells able to acquire a myofibroblastic phenotype are
involved. This point could be consistent with the hypothesis that myofibroblasts do not
proliferate.

In the current model, the only difference between the proliferation of fibroblasts and
myofibroblasts is that myofibroblasts proliferate only in the presence of growth factors,
and the proliferation rate is the same in both cells. In our study in Chapter 6, we have
changed the model by defining different proliferation rates, which yielded realistic re-
sults. If it appears or is assumed that myofibroblasts do not proliferate and only contract
the tissue, then there are two options. The first option is to add a term inspired by the so-
called Bernoulli random (flip a coin) process. Another option is adding an equation for
proto-myofibroblasts that can proliferate and exert smaller forces than fully differenti-
ated myofibroblasts. Adding a proto-myofibroblast PDE is necessary if we set the myofi-
broblast proliferation rate to zero because, if we do set the proliferation rate to zero, the
model needs considerable adjustments to reproduce the clinically observed contraction



9

136 Chapter 9 Conclusion and discussion

realistically. Further, fibroblasts also cause the tissue to contract, albeit much weaker.
This assumption is a good choice, as the simulations then show an initial retraction of
the tissue, which is also observed in wounds.
When it comes to chemical response equations in their entirety, several modeling tech-
niques are possible. First, cell proliferation is modeled with adjusted logistic growth
models in the current model. Considering the modeling choices, we could keep a linear
growth rate and introduce a tuneable quadratic cell death term for fitting equilibrium
instead of the constant q in equations (2.6) and (2.7). Second, for the fibroblast differ-
entiation parameter, we assumed a linear relationship in the activation of myofibrob-
lasts, while the activation does not necessarily have to be linear. Further, it was shown
that increasing the matrix stiffness leads to myofibroblast activation [148, 149], mean-
ing that myofibroblast differentiation could depend on mechanical stiffness because of
perceived stiffness by fibroblasts. We note that increased ECM stiffness and elevated
collagen concentration are a hallmark of many tumors [150] and that myofibroblast dif-
ferentiation requires sufficient mechanical stiffness [151]. Third, myofibroblasts enter a
quiescent state or leave the tissue through apoptosis when the tissue’s stress is reduced
during wound healing [141, 152]. At the same time, these cells keep being activated un-
der chronic mechanical stress or wound splinting [153, 154]. Therefore, we can consider
myofibroblast inactivation, stress-dependent apoptosis, and stress-induced activation.

Example stiffness dependent body forces Valero et al. proposed a purely mechan-
ical and self-regulated traction force dependent on the ECM stiffness [118]. The role
of the ECM stiffness is considered through a term denoting the force that a cell exerts
depending on the ECM’s volumetric strain based on the mechanosensing model for an
adherent cell developed by Moreo et al. [155]. Specifically, this latter model provides the
force exerted by the cell (pcell), which is the sum of active and passive forces. The active
force comes from the active stress fibers (myosin and actin filaments) and is more signif-
icant than the passive force from the microtubules. The active force is transmitted to the
ECM. It depends on the deformation of the contractile element, i.e., the actin-myosin fil-
aments for which the force-length relationship comes from the theoretical background
for (muscle) sarcomeres1. The sliding filament and the cross-bridge theories explain this
relationship. The sliding filament theory assumes that length changes are accomplished
by relative sliding, and the cross-bridge theory assumes that independent force genera-
tors (cross-bridges) cause the relative sliding [156].
Figure 9.5 shows schematics of a frog skeletal muscle sarcomere [157] that might be rep-
resentative of the myofibroblast actin-myosin machinery. Figure 9.5a shows that myosin
motors (orange dots) attach to the actin to connect the actin to the myosin via cross
bridges. In the center of the myosin, there are no cross-bridges [158]; this zone is called
the midzone. The length of the actin connected to the myosin motors is called the over-
lap, which extends as the motors pull the actin toward the center. Figure 9.5b shows the
force-length relationship of frog skeletal muscle sarcomere with five crucial points rep-
resenting specific extensions of the sarcomere where the force curve changes. The force
is maximal when the overlap is maximal when actin is connected with total length 2 µm

1A sarcomere, from the Greek words (sarx), meaning flesh, and (meros), meaning part, is the smallest func-
tional unit of striated muscle tissue
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Figure 9.5: Schematic of a sarcomere (a), the force-length relationship of frog skeletal muscle sarcomere (b),
and schematic sarcomeres corresponding to crucial points (1–5) labeled in b. Modified from Rassier et al.
Length dependence of active force production in skeletal muscle. Journal of Applied Physiology 86:1445, 1999.

(the third crucial point). As Rassier et al. [156] state, sarcomere extension by 0.2 µm
(which is the midzone length) does not decrease the force potential because the mid-
zone doe not contain cross bridges (the fourth crucial point). Further, sarcomere exten-
sion decreases the force potential linearly to zero when the sarcomere length is maximal
(the fifth crucial point). The myosin motors can shrink the sarcomere further than 2 µm
because the myosin has a smaller length than the actins. Sarcomere shrinkage up to
the myosin length (crucial point 2) decreases the force potential linearly with a smaller
slope than when the sarcomere is shrunk further. This force potential decrease might be
because of a decreased probability of cross-bridge interaction [159] and interference of
cross-bridge interaction [157].
Moreo et al. [155] based their modeling on the above theories and used a simplified
schematic without considering the cross bridge-free myosin midzone. Their reference
‘sarcomere’ length (crucial point 3 in Figures 9.5b,c) where the force potential is maxi-
mal is represented by θ∗ = pmax/Kact, where pmax is the maximum active force and Kact

is the volumetric stiffness moduli of actin filaments. Further, the lengths correspond-
ing to crucial points 1 and 5 in Figures 9.5b,c are denoted by θ1 (the shortening strain
of the contractile element) and θ2 (the lengthening strain of the contractile element),
respectively. Hence, the active force depends on the ECM volumetric strain θ = tr(ε).
Neglecting passive forces, the force exerted by the cells is given by [81]:

pcell(θ) = Kactpmax

Kactθ1 −pmax
(θ1 −θ)1[θ1,θ∗](θ)+ Kactpmax

Kactθ2 −pmax
(θ2 −θ)1(θ∗,θ2](θ), (9.12)

where 1[a,b] is the indicator function defined as 1[a,b](x) = 1 if x ∈ [a,b] and 0 otherwise.
In the morphoelastic model, we could insert equation (9.12) in the body force term f in
equation (2.12):

f =∇·
(

pcell(θ)
ξMρ

R2 +ρ2

)
I. (9.13)

In this equation, we can easily add fibroblast traction forces. In addition, stiffness-de-
pendent fibroblast differentiation can be incorporated by adding θ+ = max(θ,0) in the
differentiation term in equation (2.6).
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Matrix metallo proteins Matrix metalloproteinases (MMPs) are present in acute and
chronic wounds [160]. In our model, we introduced MMPs in equations (2.9) and (2.10)
and assumed its balance to be instantaneous. This modeling choice might need to be
more complex as different MMP types arise during wound healing, each with another
possible role. For example, MMP-2 stimulates the activation of MMP-9 [161] that is in-
volved in migrating several cell types [162]. Observations support the idea that MMP-9
is linked to the reepithelialization process and early events [163], whereas MMP-2 is es-
sential during the prolonged remodeling phase [164, 165]. Therefore, we suggest further
studying the specific roles of MMPs and the interactions with the modeled species in this
work to define time-dependent PDEs for these MMPs to determine the necessity of this
consideration.

Collagen I versus III Because collagen type I is the most abundant type of collagen
in the human dermis and has a soft structure, it is the most commonly used type in
collagen-based scaffolds. Often skin substitutes comprise the combination of collagen
type I with III and V, as in Matriderm [166, 167]. In a later stage of wound healing, the
fibroblast cells replace the deposited collagen type III with collagen type I (see Figure
9.6). The success of tissue regeneration depends on the wound size and the biomaterial
scaffold’s composition. Early granulation tissue with little tensile strength has a deficient
collagen type I to type III ratios [168, 169] while mature scar tissue has a high I:III ratio
[170]. It has been shown that acellular scaffolds that rely on native cells allow 0.5 cm new
tissue growth from the wound edge [171], indicating that more extensive wounds require
biomaterials manufactured from cell-seeded matrices.
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Figure 9.6: Early deposition of collagen type III and later deposition of collagen type I in wound healing. Mod-
ified from Witte, M., Barbul, A. General principles of wound healing. Surgical Clinics of North America 77:509,
1997.

Replacing the deposited collagen from granulation tissue to scar tissue during contrac-
ture formation differs from new tissue generation. It is, therefore, interesting to investi-
gate the effect of skin substitutes with differing ratios of collagen type I to collagen type
III and for different types of cells. This investigation brings about the combination of dif-
ferent collagen on skin cells and the distinction between tissue generation and healing.
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Suppose we know to what extent the skin substitutes’ composition in terms of the spatial
distribution of the collagen types (that is, the ratio between collagen type I and colla-
gen type III) impacts the amount of maximum contraction and long-lasting contraction.
In that case, this knowledge will help manufacturers and clinicians to find the optimal
collagen distribution in skin substitutes. So far, it is unknown whether these effects of
collagen type I to type III ratio to contraction and patient discomfort have been com-
pared. Further, because collagen type I is more rigid than the flexible collagen type III,
local mechanics may vary, and collagen fibers could align because of cell-applied forces.
Therefore, the adaption of skin alignment can be helpful for predictions. During nor-
mal wound healing, scars form from dermal cells that align in parallel. However, if this
alignment is disrupted by a biodegradable scaffold that directs cells to grow in a random
orientation, then the cells will follow the randomized differentiation program necessary
for proper, microstructurally randomized, hence macroscopically isotropic regeneration
[172].

Collagen bundles The collagen orientation of scar tissue is more parallel compared
to normal skin [173], and therefore, mechanical tissue properties are different in scars
than in normal skin. The current model does not consider the geometrical distribution
of collagen bundles; consequently, it is impossible to study the effect of collagen orien-
tation on the tissue’s mechanical properties with the current model. Other models, such
as the ones developed by Barocas and Tranquilo [15], Olsen et al. [174], Dallon et al.
[16, 18], Cumming et al. [175], Boon et al. [28], and Koppenol et al. [127, 176] do con-
sider collagen orientation. The differences between these mentioned models involve
the approaches (tensorial versus vector-based), the scale (continuous versus discrete
versus hybrid), and the added chemical and mechanical components. Our suggestion
for further development of this work’s model is to convert the model to a hybrid model,
including collagen orientation, using a tensorial approach. As Koppenol pointed out,
equations (2.3) and (2.4) could be replaced with, for instance,

JN =Ωc [−Dn(N +M)∇N +χN∇c], (9.14)

JM =Ωc [−Dn(N +M)∇M +χM∇c], (9.15)

where

Ωc =
[

1− tr(Ωρ)

a I
ρ + tr(Ωρ)

]
I+

[
tr(Ωρ)

a I
ρ + tr(Ωρ)

]
Ω̂ρ . (9.16)

Here, the tensor Ωρ represents the collagen bundles, Ω̂ρ represents the tensor related
to the collagen bundles with rows normalized to unit length, and the parameter value
a I
ρ determines the haptotactic2 cell sensitivity. These equations align the cells with the

collagen bundles, which direct the cell movement [177].

Anisotropic and inhomogeneous Mathematical models that simulate wound healing
usually model the cell-ECM system as an isotropic linear visco/morphoelastic solid. This
choice is a simplification because of the nonlinear viscoelasticity and anisotropy of soft

2Haptotaxis is the directional motility or outgrowth of cells.
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tissues. Consequently, studying the implications of local mechanics and collagen align-
ment is impossible. Therefore, we must model the ECM as an anisotropic (nonlinear)
inhomogeneous medium. For this, we can consider the models by Barocas and Tran-
quillo [15], Koppenol [176], and Cumming, McElwain, and Upton [175]. This way, we
can also include Langer lines of skin tension that are parallel to the natural orientation
of collagen, and we can study the direction of contraction in more detail.

9.2.4 Numerical method and implementation

Higher-dimensional models account for the wound shape and depth. The downside,
however, is that such models lead to numerical computational complexity. Hence, from
a computational point of view, the challenge is to optimize calculations in 3D because of
the growing number of elements, arbitrary geometries, and artificial non-positive con-
centrations. In 2D, we already applied flux correction techniques, an adaptive meshing
algorithm, rotational symmetry, and parallel computing, which will also be helpful in
3D. The next step is to implement these calculations in higher programming languages,
such as C++, that compile directly to a machine’s native code, allowing it to be fast. Of
course, we can still use Matlab to visualize the solutions.

The numerical solutions to multi-dimensional models involve meshes that can get poor
quality when the mesh moves because of contraction. Therefore, we need (adaptive)
remeshing techniques, which, in general, are also computationally expensive and can
lead to significant variations in the wound shape. Hence, we need to study these remesh-
ing techniques and the use of other elements in more detail to allow for more accurate
and quick predictions. We believe that isogeometric analysis (IGA) can be helpful since
IGA can deal with smooth pieces of the boundary (splines). Because of its high accuracy,
the method needs fewer elements and is cost-effective. For example, with IGA, we can
model a circle with only two elements, which is impossible to achieve with the finite el-
ement method. Barion has provided a promising start using IGA for the morphoelastic
model for post-burn contraction in his master thesis [178].

Nevertheless, these computational techniques are expensive and impractical in clini-
cal environments. As mentioned earlier, neural networks provide immediate access to
the simulations, making these frameworks beautiful for clinical purposes. However, to
train these neural networks, we need many numerical simulations. For that purpose,
we need to consider other techniques like using variable data and (clever) multi-level
Monte Carlo techniques. To use variable data, we can first study to what extent shorter
simulations predict ultimate intensity in contraction and hypertrophy; in other words,
how long we have to simulate to make statements with unquestionable certainty. Vari-
able data can also mean that we do many short simulations in narrow ranges of param-
eter values and fewer long simulations to map the long simulation results onto the short
simulations. Multi-level Monte Carlo techniques can involve multiple simulations (sam-
ples) with low grid resolution and a few with high resolution. However, other techniques
might also be possible, like force-bias Monte Carlo [179] and stochastic collocation [180],
that we need to study first.
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9.2.5 Machine learning
When the above concepts have been further developed, the idea is that a practitioner can
scan the burn wound, for example, using a laser Doppler. This scan includes the shape
(geometry) of the burn and the severity of the burn. Such a scan can also contain much
noise requiring noise reduction, which neural networks can perform. A convolutional
neural network (CNN) can take and process these multi-dimensional images. The CNN
can classify these images, for example, an image to be a chest burn or a hand burn, or the
cause of the burn, and this information can be helpful in further predictions. The CNN
can also detect edges in the images using geometric filters, such as an edge detection
filter [181] that uses pixel-based metrics in the convolutional layers. The deeper the net-
work goes, the more details the network can detect, such as hair near the wound edges,
which can be a significant detail of the burn as hair follicles might accelerate wound
healing [182, 183].

Another approach to map wound shape and size is to use shape similarity [184] and
shape matching [185]. This way, we can use standard geometrical objects, such as circles
and squares, for which contraction prediction is less complicated. The edge error can
measure such mappings error [186]. For these standard geometrical objects, we can use
factors such as shape indices [187] (the eccentricity of an elliptical scar, the extent to
which a scar is circular, the aspect ratio, etcetera).

From a computational point of view, it is also interesting to study machine learning ap-
proaches that work with variable data (e.g., long short-term memory (LSTM) [188, 189]).
In real life, wounds heal at rates in various etiologies, and applied treatments resolve
contractures, after which contraction can develop again. In such cases, we want to pre-
dict over a different period. Hence, hybrid approaches like LSTM and recurrent neural
networks (RNNs) might be necessary to achieve this, though we need many clinical data
samples to train such a model.

A disadvantage of the neural network is that the neural network needs to be retrained if
the mathematical model changes, though the disadvantage is that retraining costs time
and effort. In fact, retraining is also an essential advantage because the model is get-
ting better and better. We note that if the model does not change too much, and if the
type of input/output remains the same, one might use retraining techniques (instead of
full retraining). For this, we can use the trained network as initialization. This re-use
might not benefit the low-dimensional models and small neural networks. However,
high-dimensional models that use more extensive neural networks might differ in data
generation and training time. Therefore, we can use transfer learning that applies the
knowledge learned in one or more tasks to develop an efficient hypothesis for a new task
[190], or we can use physics-informed neural networks (PINNs) [191] that can ensure we
need fewer data to train the model correctly.

The network’s performance highly depends on the choices of the hyper-parameters. In
this work, we have chosen hyper-parameters based on trial and error. More elaborate
tuning of the hyper-parameters could improve the performance results of the trained
networks. Furthermore, hyper-parameter optimization techniques, such as Hyperopt
[192], can optimize the hyper-parameters regarding the validation loss, which is good
to keep in mind in further studies.

We must always test whether the machine learning results have been obtained with in-



9

142 Chapter 9 Conclusion and discussion

put data within the training set’s domain. The idea is then that the obtained scan is used
as an initial condition for the simulations with the neural network model mimicking the
mathematical model. The practitioner should then quickly see a histogram of the inten-
sity of the expected post-burn contraction (and any other variables of interest). Further
direction is to include the treatments so the practitioner finds the optimal treatment ac-
cording to the model. The idea is shown schematically in Figure 9.7.
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Figure 9.7: Schematic representation of integrating the mathematical model and the neural network in clinical
practice. For example, the mathematical model predicts the degree of contraction regarding scar size versus
time for many simulations, drawing from probability distributions and different wound shapes and sizes. After
training the neural network based on the mathematical model results, the neural network reproduces these
results, providing the practitioner with an estimated probability distribution of various scenarios. In the future,
this should be expanded with different treatments.

Of course, we still have to deliver a considerable effort equivocate. Practitioners are of-
ten experienced physicians who know very well from their observations and colleagues
what the most likely scenarios are. Therefore, a clinician should always maintain skepti-
cism regarding model results. Common sense must always come first, and model results
can never be unthinkingly adopted. In addition, the model predicts probabilities in spe-
cific scenarios. We must remember that improbable events can happen. In other words,
the (almost) impossible can happen. So, despite the modeling business, common sense
must continue.



Nawoord (Epilogue)

De afgelopen vier jaar heb ik met plezier en af en toe frustratie aan dit prachtige onder-
zoek gewerkt. In mijn nawoord, waarin ik veel mensen bedank, wil ik de lezer meenemen
in een stukje geschiedenis.

Allereerst wil ik mijn grootouders bedanken voor het laten bestaan van mijn ouders. In
het bijzonder bedank ik opa Bart, die me al op jonge leeftijd de opdracht gaf om de abc-
formule in mijn hoofd op te lossen in plaats van een rekenmachine te gebruiken. Opa
Bart besefte dat ik een duidelijke eigen visie had, met eigen ideeën, plannen en werkwij-
zen. Hij heeft me altijd met humor gestimuleerd om te groeien tot een hechte persoon-
lijkheid die uitdagingen niet uit de weg gaat. Ik ben blij dat we onze liefde voor wiskunde
konden delen.

Mijn ouders betekenen veel voor me en ik ben hen dankbaar. Of ik nou astronaut of
actrice wilde worden, piano of saxofoon wilde spelen, wat het ook was, zij hebben me
altijd aangemoedigd om mijn passies te volgen. Mijn vader zag dat ik de lat hoog legde
en geen genoegen nam met weinig. Hij liet me door de verrekijker kijken om inzicht te
krijgen in mijn identiteit, talenten en verlangens. De combinatie van in- en uitzoomen
op de details en het overzicht van mijn leven heeft me de afgelopen vier jaar geholpen.
Mijn moeder zag mijn uitdagingen en vertrouwde me altijd om ze te overwinnen. Haar
vertrouwen in mij is bijzonder, en ik blijf het leuk vinden dat zij, nog voordat ik het zelf
wist, wist dat ik een Ph.D. wilde doen. Zij was de eerste die me hierin stimuleerde en is
me blijven aanmoedigen, vol vertrouwen dat het me gaat lukken.

Tijdens mijn master wiskunde werd mijn dochter Jazz geboren, en kort daarna verbrand-
de mijn zoon Dean door een kom hete soep. Deze tragische gebeurtenis resulteerde in
een lange herstelperiode waarin het contact met de Nederlandse Brandwonden Stich-
ting ontstond. Tijdens één van de jaarlijkse brandwondendagen ontving ik de toenma-
lige uitgave van het verenigingsblad Infocus en daarin las ik een artikel over het onder-
zoek van voormalig Ph.D. student D. Koppenol. Koppenol ontwikkelde wiskundige mo-
dellen voor het genezen van brandwonden. Ik wilde destijds al deelnemen aan het on-
derzoek, maar moest eerst mijn opleiding afronden. Dean had destijds een hypertrofisch
litteken ontwikkeld en was hiervoor patiënt geworden van Paul van Zuijlen.

Op de dag dat ik mijn master behaalde, was ik aangenaam verrast toen ik de vacature van
dit huidige onderzoek bovenaan in de ‘feed’ van LinkedIn zag staan. Of het nu puur toe-
val was of van bovenaf in de schoot geworpen, ik wist het zeker: ik wilde dit onderzoek
doen en solliciteerde. Voorlopig werd ik uitgenodigd om te solliciteren bij Fred Vermo-
len. Er waren verschillende perspectieven op dit project en het was een uitdaging om
te kiezen tussen de kandidaten. Daarom was besloten om ook met Paul van Zuijlen in
gesprek te gaan. In gesprek met Paul realiseerde ik me dat ik hem niet ontmoette als
moeder van zijn patiënt, maar als een potentiële collega. De keuze van Paul was beslis-
send en Fred liet me weten dat ze voor mij hadden kozen. Dit was één van de gelukkigste
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momenten in mijn leven. Al die spanning kwam vrij in een vreugdedans waar ik Fred en
Paul heel dankbaar voor ben.

In januari 2019 begon ik met het onderzoek waarvoor ik ook cursussen heb gevold. Ik
heb erg genoten van de manier waarop Fred de cursus Toegepaste Eindige Elementen
Methoden doceerde. Ik woonde toen nog in Utrecht en kon voor deze cursus naar de
Universiteit Utrecht fietsen. Al snel verhuisde ik naar Pijnacker wat dagelijkse ‘live’ be-
sprekingen mogelijk maakte, en die waren heel gezellig. In het eerste jaar leerde ik het Bi-
omorphoelastische model voor contractie in brandwondenlittekens beter kennen. Ik was
blij toen het me eindelijk lukte om goede simulaties in 1D uit te voeren. Tegen de tijd dat
ik mijn GO/NO GO-interview had in december 2019, had ik een voorlopige versie van
ons eerste artikel waarin ik enige stabiliteit, enige gevoeligheid en de toepasbaarheids-
studie van hoofdstukken 3 en 5 van dit proefschrift had opgenomen. Ik presenteerde dit
voor Fred, Paul, Kees Vuik en Neil Budko en nam dankbaar een GO van hen in ontvangst.

Ik kon niet in Pijnacker blijven wonen en moest een nieuw huis vinden wat onmogelijk
leek. Mijn ouders waren mijn redders in deze noodsituatie. Zij boden Dean, Jazz en mij
aan om bij hen in te trekken, waar we nu wonen. Nogmaals wil ik mijn ouders bedanken
omdat hun hulp het mogelijk heeft gemaakt om dit onderzoek af te ronden. Mijn moeder
luisterde altijd met belangstelling naar mijn onderzoek, en het is cool dat ze het voor een
leek nog zo goed begrijpt!

Mijn zus Joy heeft structureel aangeven dat zij geen twijfels heeft of ik het onderzoek kan
uitvoeren en zij heeft mij altijd gestimuleerd situaties van onzekerheid te heroverwegen.
Ook in de privésfeer heeft Joy een ongekende waarde betekend voor me en dat doet ze
nog steeds. Ik ben dankbaar dat zij dit voor me doet en heeft gedaan. Ik ben blij dat zij
mijn zus is, en dat wij zo’n speciale relatie hebben. In deze privésfeer wil ik ook mijn
lieve kinderen Dean en Jazz bedanken. Het was echt balen dat ik altijd moest werken, en
ik vind het dan zeer mooi om te zien hoe flexibel en begripvol zij hiervoor zijn.💗

Ik wil alles opschrijven waar ik Fred dankbaar voor ben, maar ik doe de lezer een plezier,
want als ik dit zal doen, zal dit hoofdstuk nog een tijdje doorgaan. 😉 Ik ben blij dat ik
Fred heb leren kennen. Wij praatten in dergelijke mate over niet-werkgerelateerde zaken
dat wij regelmatig in de laatste minuten van de discussies over werk spraken. Ik denk dat
dit onze samenwerking ten goede is gekomen en had me geen betere begeleider kunnen
wensen. Ik wil Fred niet alleen bedanken voor alle geboden begeleiding en inzichten,
maar ook voor wie hij is en hoe hij tegen het leven aankijkt. Ik denk nu terug aan de
online bijeenkomst waar ik vroeg wat er mis was zijn wenkbrauwen, niet wetende dat
er een gekke functie aan stond. En de keer dat de online discussie werd versierd met
digitale vlaggetjes. En natuurlijk de altijd mooi gekleurde duimpjes. Ik heb veel van Fred
geleerd en veel met hem gelachen. Ik wil Fred ook bedanken voor zijn vertrouwen in
mij en in het bijzonder voor het naar een hoger niveau tillen van dit werk en het laten
uitvoeren van mijn ideeën.

Ik wil ook Paul nogmaals bedanken. Paul heeft mij zoveel geleerd op medisch gebied
en blijft me nieuwe dingen leren. Hij heeft goede tips gegeven over het schrijven van
artikelen, en zijn kennis is onmisbaar. Ik denk nu terug aan toen Paul Dean had geo-
pereerd, waarna wij op de verkoeverkamer een gesprek hadden over myofibroblasten.
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verbranding, maar als onderzoeker hoopte ik dat ik het verschil kon maken. Pauls visie



op brandwondenonderzoek is inspirerend en helder en komt in zijn volledigheid op mij
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ratiekamer bij Paul. Op deze dag heb ik wederom veel geleerd, vanuit de praktijk. Het
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uitbreiding van het vervolgonderzoek.
Fred, Paul en ik probeerden maandelijks af te spreken voor overleg. In één van deze
bijeenkomsten bleek de behoefte aan specifieke expertise. Paul bracht me in contact
met myofibroblast-expert Alexis Desmoulière. In de daaropvolgende tijd had ik fascine-
rende gesprekken met Alexis en een enorme boost in mijn kennis van myofibroblasten.
Alexis gaf duidelijke antwoorden op mijn kritische vragen en besprak nog veel meer bij-
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het verbeteren van het wiskundige model. Ik ben Alexis dankbaar voor deze samenwer-
king, en voor zijn vriendelijkheid en betrokkenheid.
Tijdens dit onderzoek was ik ook een tijdje met ziekteverlof. Ik stootte mijn hand en
kon hem al snel niet meer gebruiken. Typen en piano spelen was niet meer mogelijk.
Geen enkele arts wist zeker wat er mis was, en het duurde zes weken voordat ik weer aan
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zijn vriendelijkheid, betrokkenheid en vertrouwen in dit onderzoek, en dat hij promotor
is van dit onderzoek.
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Proefdiervrij op. De financiële steun van de stichtingen maakte het mogelijk om dit on-
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ik ook de donateurs en collectanten van de Nederlandse Brandwonden Stichting bedan-
ken voor hun bijdrage aan dit proefschrift. Bedankt!
De laatste persoon die ik wil bedanken is mijn geliefde Jesse Russell. Hij is al jaren mijn
steunpilaar. We hebben veel gelachen en mooie momenten samen gehad. Hij heeft me
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blij dat we elkaars leven delen, en ik kan niet wachten om permanent samen te zijn.
Kortom, tijdens deze promotieperiode heb ik veel geleerd en ben ik gegroeid met dank
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