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[1] Evapotranspiration (ET) accounts for a substantial amount of the water use in river
basins particular in the tropics and arid regions. However, accurate estimation still remains
a challenge especially in large spatially heterogeneous and data scarce areas including the
Upper Pangani River Basin in Eastern Africa. Using multitemporal Moderate-resolution
Imaging Spectroradiometer (MODIS) and Surface Energy Balance Algorithm of Land
(SEBAL) model, 138 images were analyzed at 250 m, 8 day scales to estimate actual ET for
16 land use types for the period 2008–2010. A good agreement was attained for the SEBAL
results from various validations. For open water evaporation, the estimated ET for Nyumba
ya Mungu (NyM) reservoir showed a good correlations (R 5 0.95; R2 5 0.91; Mean
Absolute Error (MAE) and Root Means Square Error (RMSE) of less than 5%) to pan
evaporation using an optimized pan coefficient of 0.81. An absolute relative error of 2%
was also achieved from the mean annual water balance estimates of the reservoir. The
estimated ET for various agricultural land uses indicated a consistent pattern with the
seasonal variability of the crop coefficient (Kc) based on Penman-Monteith equation. In
addition, ET estimates for the mountainous areas has been significantly suppressed at the
higher elevations (above 2300 m a.s.l.), which is consistent with the decrease in potential
evaporation. The calculated surface outflow (Qs) through a water balance analysis resulted
in a bias of 12% to the observed discharge at the outlet of the river basin. The bias was
within 13% uncertainty range at 95% confidence interval for Qs. SEBAL ET estimates were
also compared with global ET from MODIS 16 algorithm (R 5 0.74; R2 5 0.32; RMSE of
34% and MAE of 28%) and comparatively significant in variance at 95% confidence level.
The interseasonal and intraseasonal ET fluxes derived have shown the level of water use for
various land use types under different climate conditions. The evaporative water use in the
river basin accounted for 94% to the annual precipitation for the period of study. The results
have a potential for use in hydrological analysis and water accounting.
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1. Introduction

[2] Evaporation (E) and transpiration (T) (jointly termed
as evapotranspiration (ET)) accounts for a substantial
amount of the water use in river basins particular in semi-
arid savannah regions. Because of the spatial heterogeneity
and temporal variability in water availability in these
regions, water managers responsible for planning and allo-
cating water resources need to have a thorough understand-

ing of the spatial and temporal rates of ET. This
information helps to better understand evaporative deple-
tion and to establish a link between land use, water alloca-
tion, and water use in a river basin [Bastiaanssen et al.,
2005]. River basins such as the Upper Pangani River Basin
typically have many different land use and land cover
(LULC) types which transmit water as ET. The LULC
types have changed over time, due to socioeconomic fac-
tors, impacting on the water flows and ecosystem services
in the downstream catchments.

[3] Rainfall is partitioned into green (moisture in the
soil) and blue water flows (rivers, lakes, dams, ground-
water) [Rockström et al., 2009]. Small changes in ET and
hence the green water can result in major impacts on down-
stream blue water flows. The management of green water
flows requires explicit understanding of the biophysical
characteristics of the LULC types and associated spatio-
temporal variability of water use. However, the estimation
of ET has been inadequate due to complexities of estimat-
ing the actual water use of land-based activities including
irrigated agriculture and the cultivation of crops during the
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rainy seasons that receive supplementary irrigation [Jewitt,
2006]. In addition, conventional methods of estimation of
ET (pan, lysimeter, Bowen ratio, eddy correlation, or the
aerodynamic techniques) require detailed meteorological
data that may not be available at the desired spatial and
temporal scales. In situ measurements are constrained in
generating areal estimates both in terms of cost and accu-
racy because of natural heterogeneity and the complexity
of hydrological processes in river basins. Moreover, in situ
procedures are time consuming if observations are to be
made repeatedly to assess the temporal variability of ET.

[4] The remote sensing approach using models like
TSEB [Norman et al., 1995], SEBAL [Bastiaanssen et al.,
1998a, 1998b], S-SEBI [Roerink et al., 2000], and SEBS
[Su, 2002] have shown great potential in estimating ET
over large areas using limited meteorological data. ET links
the water balance to the surface energy balance with the
heterogeneity of the landscape being accounted by the
remote sensed data. The recent advancements in the avail-
ability of satellite images of finer to medium resolutions
(spatial and temporal) have further enhanced its application
potential. Medium resolution satellite images, e.g., the
Moderate-resolution Imaging Spectroradiometer (MODIS)
vegetation products, have capability to derive physical
parameters for surface energy balance models at catchment
or river basin scale [Batra et al., 2006; McCabe and Wood,
2006; Zhang et al., 2008]. They are also freely available
from two sensors (Terra and Aqua) thus enhancing its tem-
poral resolution.

[5] SEBAL and the Simplified Surface Energy Balance
Index (S-SEBI) make use of the spatial variability of the
surface temperature and reflectance, and vegetation index
observations [Mohamed et al., 2004; Romaguera et al.,
2010]. On the other hand, Surface Energy Balance System
(SEBS) and Two-Source Energy Balance (T-SEB) are
physically based models that use an excess resistance term
that accounts for roughness lengths for heat and momentum

that are different for canopy and soil surface [Van der
Kwast et al., 2009]. These models have been applied with
indicative ET of acceptable accuracies in different river
basins under different climatological conditions. The
SEBAL model in particular has been widely applied in the
tropical climate and more importantly in data scarce river
basins in Africa [Farah and Bastiaanssen, 2001; Timmer-
mans et al., 2003; Mohamed et al., 2004; Kongo et al.,
2011]. Table 1 presents SEBAL applications and the vali-
dation efforts in various landscapes similar to the Upper
Pangani River Basin. A bias range of between 4 and 26%.

[6] Previous research using SEBAL has indeed shown
great potential of applying remote sensing to estimate ET
on few or specific land use types for a limited period of
time or with a low temporal resolution. The Upper Pangani
River Basin with an elevation range between 600 and 5900
m a.s.l. has a higher heterogeneity. It consists of 16 land
use types that include snow/ice, forest, irrigated croplands,
rainfed agriculture, natural vegetation, and water bodies
(wetlands, lakes, and reservoirs) [Kiptala et al., 2013]. The
high elevation range also influences the interseasonal and
intraseasonal ET fluxes for various land use types under dif-
ferent climate conditions. An accurate estimation of ET
fluxes is certainly crucial for water resource planning in
this river basin.

[7] The SEBAL algorithm was therefore used to map ET
fluxes for three consecutive years, i.e., 2008 (wet), 2009
(dry), and 2010 (average). MODIS (Aqua and Terra) data
of moderate resolution were utilized. The timestep of 8 day
and spatial scale of 250 m were limited by the available
MODIS vegetation satellite product. The timescale (8 day)
generally corresponds to the time scale that characterizes
agricultural water use, while 250 m scale is reasonably rep-
resentative of the sizes of the small-scale irrigation
schemes in the Upper Pangani River Basin. Since there are
no ET measurements in the basin, the SEBAL results were
validated by various proxies that include pan evaporation,

Table 1. Surface Energy Balance Algorithm for Land (SEBAL) Applications and Means of Validation on Various Landscapes

Source Location
Number of

Images
Length of

Period

Image Type
and Spatial
Resolution

Land Use
Types

Elevation Range
(Above Sea Level)

Means of
Validation

Bias
Range

Farah and
Bastiaanssen
[2001]

Kenya 10 1 month NOAA-AVHRR
1 km

Savannah 1900–3200 m Bowen Ratio 16%

Bastiaanssen
and Bandara
[2001]

Sri Lanka 3 3 years Landsat 30 m Irrigated croplands 200–600 m Water balance 4%

Timmermans
et al. [2003]

Botswana 1 1 day MODIS 1 km Savannah 1000 m Scintillometer 14%

Hemakumara
et al. [2003]

Sri Lanka 10 5 months Landsat 30 m Irrigated rice &
palm trees

100 m Scintillometer 17%

Mohamed et al.
[2004]

Sudan 37 12 months NOAA-AVHRR
1 km

Wetlands 200–1400 m Water balance 4%

Zwart and Bas-
tiaanssen
[2007]

Mexico 3 3 months Landsat 30 m Irrigated wheat 0–500 m Eddy correlation 9%

Teixeira et al.
[2009]

Brazil 10 7 years Landsat 30 m Tree crops 0–500 m SEBAL parameters

Kongo et al.
[2011]

South Africa 28 4 months MODIS 1 km Forest, pastures &
water bodies

400–3000 m Scintillometer 26%

Sun et al. [2011] China 1 1 day Landsat 30 m Lake & Wetlands 40–258 m E-Pan 11%
Ruhoff et al.

[2012]
Brazil 28 12 months MODIS Terra 1 km Sugarcane 500–1500 m Eddy correlation 9%
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reservoir water balance, crop water coefficients, and catch-
ment water balance. The SEBAL ET results are also com-
pared with independently computed global ET products.
The product chosen is derived from the MODIS 16 algo-
rithm [Mu et al., 2007, 2011] that provides baseline global
ET on vegetated land surface at 1 km resolution. The other
global ET products have high spatial resolutions and have
not been considered. They include PCR-GLOBWB [Van
Beek and Bierkens, 2009], global ET computed at a resolu-
tion of 0.5� (56 km) using water balance approach, ERA-
Land [Balsamo et al., 2011] and ERA-Interim [Dee et al.,
2011] global ET computed at 0.7� (78 km) using land sur-
face model, and GLEAM [Miralles et al., 2011] global ET
computed at 0.25� (28 km) using remote sensed land sur-
face model.

2. Study Area

[8] The Upper Pangani River Basin (13,400 km2) covers
approximately 30% of the total area of the Pangani River
Basin. It is a trans-boundary river basin shared by Kenya
and Tanzania in Eastern Africa. The Upper Pangani River
Basin is the main headwater of the entire river basin and
derives its water resources from Mt. Meru (4565 m) and
Mt. Kilimanjaro (5880 m) catchments. Irrigation develop-
ment consumes most of the water resources in the subbasin,
up to 64% of the total blue water [World Bank, 2006].
NyM reservoir (100 km2), Lake Jipe (25 km2), Lake Chala
(5 km2), and the expansive national parks (Tsavo West,
Amboseli, Arusha, and Kilimanjaro) are located on Upper
Pangani River Basin. The Lower Pangani River Basin has
three operational hydro-electric power (HEP) stations:
NyM, Hale, and the New Pangani Falls stations. These pro-
vide up to 91.5 MW or 17% of Tanzania’s electricity. A
large wetland, Kirua swamp, is also located in the lower
basin and relies on the water supply from the Upper Pan-
gani River Basin (Figure 1).

[9] The high altitude slopes around the mountain ranges
have an Afro-Alpine climate and receive nearly 2500 mm
yr21 of rainfall. The lower parts have a subhumid to semi-
arid climate and the rainfall varies between 300 and 800
mm yr21. The rainfall has a bimodal pattern where long
rains are experienced in the months of March to May
(Masika season) and the short rains in the months of
November to December (Vuli season). Agricultural activ-
ities are predominant in the upper catchments while the
lower catchments have limited but high potential for agri-
cultural development, constrained by water scarcity. Most
of the water resource has been utilized by the increasing
irrigation developments, while the lower part of the basin
requires water for hydropower, irrigation but also to sustain
environmental resources such as wetlands and the estuary.
It is apparent that various water conflicts exist, that are
related to the increasing water use in the Upper Pangani
River Basin [Sarmett et al., 2005; Komakech et al., 2012].

3. Materials and Methods

[10] The following section describes the three main data
sets for the SEBAL calculations including the preprocess-
ing of the MODIS images. The SEBAL algorithm, MODIS
16 algorithm, and in situ validation methods and the uncer-
tainty assessment are also described in detail.

3.1. Data Sets

3.1.1. Preprocessing of MODIS Data Sets
[11] The Moderate-resolution Imaging Spectroradiome-

ter (MODIS) is an extensive program using sensors on two
satellites (Terra and Aqua) to provide a comprehensive
series of global observations of the Earth’s land, oceans,
and atmosphere in the visible and infrared regions of the
spectrum. Terra earth observation system (EOS) was
launched in 1999, while Aqua EOS was launched in 2002.
The time of overpass of Terra (EOS AM) satellite is 10.30
A.M., while Aqua (EOS PM) satellite is 13.30 P.M. local
time. The MODIS data are available in different versions,
and the latest version 5 (V005) available from 2008 from
the USGS database has been validated [USGS, 2012]. The
images were retrieved from the Land Processes Distributed
Active Archive Center (LPDAAC) of the National Aero-
nautics Space Administration (NASA) (https://reverb.e-
cho.nasa.gov/reverb). The MODIS images required for the
SEBAL model include land surface temperature (LST)/
emissivity (EMM), surface reflectance (SF), and vegetation
index (VI) (Table 2).

[12] Vegetation Index (VI) products are scaled by multi-
plying with 0.0001 to provide the Normalized Difference
Vegetation Index (NDVI). NDVI is the key (and undis-
puted) indicator of ET fluxes [Bastiaanssen et al., 2012;
Nagler et al., 2005; Burke et al., 2001]. The two 16 day
NDVI data sets (MOD13 and MYD13) starting on day 1
and day 9 at 250 m were used to create 8 day 250 m NDVI
layers. The other MODIS products were therefore acquired
and reprojected to this scale for the period 2008–2010. The
average emissivity (Em) was computed as the average of
Em_31 (from band 31) and Em_32 (from band 32) and
scaled by 0.002 with a minimum Em of 10.49. Surface
reflectance (bands 1–7) were also extracted from the daily
land surface reflectance products and scaled by 0.0001.

Figure 1. Location and principal features of Pangani
River Basin.
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Liang’s method [Liang, 2001] was used to calculate the
broadband surface albedo from the seven surface reflec-
tance bands. Further information on the products is avail-
able on the USGS website [USGS, 2012].

[13] In total, 138 sets of MODIS images were reprojected
to cover the period 2008–2010 over the Upper Pangani
River Basin. To have continuous satellite data, clouded pix-
els in the images have to be corrected to minimize uncertain-
ties generally associated with satellite data [Courault et al.,
2005; Hong et al., 2009]. Clouded pixels were removed and
corrected using advanced interpolation techniques in
ERDAS imagine software [ERDAS, 2010]. For each image
with cloud pixels, an area of interest (AOI) was created over
the clouded area (only the section of the image with cloud
cover). If the AOI is not completely covered by the clouds,
the pixels that have correct spectral values were randomly
picked and interpolated over the AOI. The AOI size for a
particular interpolation is limited to one land use type to
ensure that the AOI does not span wide topographical range.
If the AOI is fully clouded or large (spans between land use
types), the histogram matching option was used to match
data with the nearest reliable value (assumed to have similar
spectral characteristics) from the next or previously avail-
able image. The procedure is similar to the method proposed
by Zhao et al. [2005] and also used by MODIS 16 algorithm
(see section 3.3) to generate continuous global ET which
entailed identification and replacement of unreliable pixel
value (cloud contaminated) with the nearest reliable value
prior to or after the missing data point.

[14] The procedure for cloud removal is critical for
Upper Pangani River Basin where most of the clouded pix-
els occur in the mountainous areas. As such, the uncertain-
ties associated with the interpolation are more pronounced
in the mountainous areas. However, we argue that the
instantaneous ET does not vary significantly within land
use type, e.g., snow, afro-alpine forest that are dominant in
the upper catchments (especially during the wet seasons).
Furthermore, the model results are scaled using the poten-
tial evaporation derived from ground information.

3.1.2. Precipitation Data Sets
[15] Daily rainfall data for 93 stations located in or near

the Upper Pangani River Basin were obtained from the
Tanzania Meteorological Agency and the Kenya Meteoro-
logical Department. The data were subjected to screening
and checked for stationarity and missing data. Of the origi-
nal group, 43 stations were selected for computing the areal
rainfall in the river basin. The selected stations were based
on the availability and reliability of the rainfall data for the
period of analysis, 2008–2010.

[16] Unfortunately, there are no rainfall stations at eleva-
tions higher than 2000 m a.s.l. where the highest rainfall
actually occurs. Remote-sensed sources of rainfall data
based on or scaled by ground measurements have similar
shortcoming, e.g., FEWS and TRMM. According to

PWBO/IUCN [2006], the maximum mean annual precipita-
tion (MAP) at the Pangani River Basin is estimated at 3453
mm yr21 that is estimated to occur at elevation 2453 m
a.s.l. Therefore, a linear extrapolation method based on the
concept of double mass curve was used to derive the rain-
fall up to the mountain peaks using the rainfall data from
the neighboring stations. It was assumed that the MAP is
constant above this elevation to 4565 m a.s.l. for Mt. Meru
and 5880 m a.s.l. for Mt. Kilimanjaro. This assumption is
expected to have negligible effect at the Pangani River
Basin because of the relative small area above this eleva-
tion. Six dummy stations were therefore extrapolated from
the existing rainfall stations to the mountain peaks. The
rainfall point measurements (including the extrapolated
points) were interpolated using the inverse distance method
(using ArcGIS Geostatistical Analyst) to develop spatial
distribution of rainfall for the Upper Pangani River Basin
for year 2008–2010 (Figure 2a).

3.1.3. Land Use and Land Cover Types
[17] In this study, we employed the LULC classification

for the Upper Pangani River Basin from a recent research
by Kiptala et al. [2013]. They derived the LULC types
using phenological variability of vegetation for the same
period of analysis, 2008–2010. Sixteen classes exist in
Upper Pangani River Basin dominated by rainfed maize
and shrublands that constitute half of the area (Figure 2b
and also Table 5).

3.2. Surface Energy Balance Algorithm of Land
(SEBAL) Algorithm

[18] SEBAL is an energy partitioning algorithm over the
land surface, which was developed to estimate (actual) ET
from satellite images [Bastiaanssen et al., 1998a, 1998b].
SEBAL calculates ET at the time of satellite overpass as a
residual term of the surface energy balance. The parameter-
ization is an iterative and feedback based procedure and a
detailed description of the SEBAL steps and its applica-
tions can be found in Mohamed et al. [2004] and is also
available on the Waterwatch website (www.waterwatch.nl).
The SEBAL algorithm has been scripted for auto-
processing in ERDAS Imagine 9.2 software.

[19] SEBAL estimates the spatial variation of the hydro-
meteorological parameters of LULC types using satellite
spectral measurements and limited ground meteorological
data. These parameters are used to assess the surface energy
balance terms, which are responsible for the redistribution of
moisture and heat in soil and atmosphere. ET is derived in
terms of instantaneous latent heat flux, kE (W m22).

kE5Rn2H2G (1)

where Rn is the net radiation (W m22), H is the sensible
heat flux (W m22), and G is the soil heat flux (W m22).
Equation (1) can be expressed as latent heat flux by

Table 2. MODIS Satellite Images Used in the SEBAL Analysis

Satellite Imagery Product/Sensor Spatial Scale Temporal Scale

Land surface temperature/emissivity MOD11_L2 (Terra) & MYD11_L2 (Aqua) 1 km Daily
Surface reflectance MOD09GA (Terra) & MYD09GA(Aqua) 500 m Daily
Vegetative Index (NDVI) MOD13 (Terra) & MYD13 (Aqua) 250 m 16 day
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considering evaporative fraction K and the net available
energy (Rn 2 Go).

K5
kE

kE1H
5

kE

Rn2Go
(2)

[20] The daily evapotranspiration is determined by assum-
ing that the evaporative fraction is constant during daytime
hours. Shuttleworth et al. [1989] and Nichols and Cuenca
[1993] have shown that midday evaporative fraction is nearly
equal to average daytime evaporative fraction. Peng et al.
[2013] on a recent study of a wide range of ecosystems and
climates also established that instantaneous evaporative frac-
tion could represent daytime evaporative fraction especially
between 11.00 hr to 14.00 hr local time. Since the overpass
time for the satellite images (10.30 A.M. and 1.30pm) are
reasonably close or within the midday times, this assumption
is valid for this study. The validity of this assumption has
now been widely adopted by various remote sensing algo-
rithms computing ET over larger scales [Su, 2002; Muthu-
watta and Ahmad, 2010; McCabe and Wood, 2006].

[21] The soil heat flux, G represents the heat energy passed
through to the soil. G is a small component of the surface
energy component relative to the other terms in equation (1). It
is usually positive when the soil is warming and negative when
it is cooling. For the time scales of 1 day, G can be ignored
(night and day balance) and the net available energy (Rn 2 Go)
reduces to net radiation (Rn). The assumption of negligible G is
also valid at seasonal scale in the tropical climate, since G is
not expected to vary significantly. This is unlike the Arctic
regions where large portion of G is used to melt ice in the
spring to early summer season [Engstrom et al., 2006].

[22] Following these assumptions at the daily timescale,
ET24 (mm d21) can be computed using the approach of
Bastiaanssen et al. [2002]:

ET245
864003103

kqw

KRn24 (3)

where Rn24 (W m22) is the 24 h averaged net radiation, k
(2.47 3 106 J kg21) is the latent heat of vaporization, and
qw (1000 kg m23) is the density of water.

[23] The daily ET24 has been scaled up to 8 day time
scale steps (ET8day) assuming the same proportion variabili-
ty of potential evaporation ETo between 1 day to 8 day
period (equation (4)). In other words, the ratio of ETo

derived from standard meteorological measurements has
been used to represent weather change between the two
time steps [Morse et al., 2000].

ET8day5 ET24ð Þ3 ETo28day

ETo2day

� �
(4)

[24] The monthly ETmonth is the summation of the ET8day

for each month.
[25] It is noteworthy that the SEBAL model has a tend-

ency to overestimate kE due to differing extreme pixels
(wet and dry) selected by the operator [Long and Singh,
2012; Ruhoff et al., 2012]. It is therefore desirable that the
users have adequate knowledge and experience on the
selection of these pixels in the SEBAL model.

3.3. MODIS 16 ET Algorithm

[26] MODIS 16 algorithm [Mu et al., 2007, 2011] com-
putes global ET over vegetated land areas at 1 km, 8 day
scales and are available from January 2000. The MODIS
16 algorithm utilizes global MODIS and global meteorol-
ogy from GMAO (Global Modelling and Assimilation
Office—NASA) ground-based meteorological data. MOD
16 algorithms [Mu et al., 2007, 2011] are a revision of an
earlier algorithm proposed by Cleugh et al. [2007] based
on the Penman-Monteith (P-M) equation [Monteith, 1965]:

kE5
s3A1q3Cp3 esat2eð Þ=ra

s1c3 11rs=rað Þ (5)

where s5d esatð Þ=dT (Pa K21) is the slope of the curve relat-
ing saturated water pressure; esat– (Pa) to temperature ;
e (Pa) is the actual water vapor pressure; A (W m22) is
available energy partitioned between sensible heat, latent
heat, and soil heat fluxes on a land surface; q (kg m23) is
the air density; Cp (J Kg21 K21) is the specific heat
capacity of air ; c is psychrometric constant [Maidment,
1993]; ra (s m21) is the aerodynamic resistance and rs (s

Figure 2. (a) Mean annual precipitation (mm yr21) for the Upper Pangani River Basin for year 2008–
2010 and (b) the land use map [Kiptala et al., 2013].
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m21) is surface resistance which is the effective resistance
to evaporation from the land surface and transpiration from
the plant canopy.

[27] Mu et al. [2007] revised the P-M model by incorpo-
rating a soil evaporation component by adding vapor pres-
sure deficit and minimum air temperature constraints on
stomatal conductance and upscaling canopy conductance
using leaf area index. The input data includes the MODIS
data: (1) global land cover (MOD12Q1) [Friedl et al.,
2002]; (2) Fraction of Absorbed Photosynthetically Active
Radiation/Leaf Area Index (FPAR/LAI (MOD15A2))
[Myneni et al., 2002]; and (3) MODIS albedo (MCD43B2/
B3) [Lucht et al., 2000; Jin et al., 2003]. The input nonsa-
tellite data are NASA’s MERRA GMAO (GEOS-5) daily
meteorological data at 1.00� 3 1.25� resolution. Cloud-
contaminated or missing data are filled in MODIS 16 algo-
rithm at each pixel by a process which entailed identifica-
tion and replacement of the unreliable pixel value with
nearest reliable values prior to and after the missing data
point [Mu et al., 2011]. The procedure similar to the one
proposed by Zhao et al. [2005] to generate continuous
global terrestrial ET data on 8 day 1 km scales. The proce-
dure is also similar to the one adopted for this study, how-
ever using a pixel instead of an AOI (section 3.1.1).

[28] However, the initial MODIS 16 algorithm [Mu
et al., 2007] significantly underestimated global ET (45.8
3 103 km3) compared to other reported estimates (65.5 3
103 km3). The algorithm was further improved by: (1)
inclusion of ET as sum of both daytime and night time
components; (2) separation of the canopy into wet and dry
surfaces; (3) separation of soil surfaces into saturated wet
surface and moist surface; (4) estimation of the soil heat
flux as radiation partitioned on the ground surface; and (5)
improvement of estimates of stomatal conductance, aerody-
namic resistance, and boundary layer resistance [Mu et al.,
2011]. The improved MODIS 16 algorithm provided a bet-
ter estimate of global annual ET over vegetated land
namely 62.8 3 103 km3. Limited validation using eddy flux
towers: 46 Ameriflux in the US [Mu et al., 2011] and 17
flux towers in continental to arid climate in Asia [Kim
et al., 2011] also showed enhanced global ET results with
MAE of below 30% to the measured ET. The MODIS 16
algorithm was observed to provide baseline global ET
fluxes for various landscapes on regional and global water
cycles [Mu et al., 2007, 2011; Kim et al., 2011].

3.4. In Situ ET Assessment Methods

[29] Since there are no direct measurements of ET using
specialized techniques such as Scintillometers or the flux
towers (commonly used to validate ET (Table 1)) in the
studied basin, the study infers other in situ measurements
to assess the accuracy of SEBAL ET fluxes.
3.4.1. Open Water Evaporation From Pan
Evaporation Measurements

[30] Open water evaporation from pan measurements
(Ep(w)) can be estimated from pan evaporation (Ep). Ep

records the amount of water evaporated from a pan filled
with unlimited supply of water during a day (mm d21). A
class A pan, screened [Allen et al., 1998] is located at the
NyM Met Station close to the dam outlet (0.5 km to dam,
116 m elevation diff. to the reservoir). Since the pan con-
ditions (such as heat storage and transfer, air temperature

and humidity, wind conditions) may not be similar to the
open water evaporation in the reservoir, the Ep are cor-
rected by pan coefficient factor, Kp to compute Ep(w) esti-
mates for the NyM reservoir (equation (6)).

Ep wð Þ5Kp3Ep (6)

[31] Kp ranges between 0.90 and 1.05 for class A pan
under moderate wind conditions in tropical climates [Door-
enbos and Pruitt, 1977]. However, previous studies [e.g.,
Hoy and Stephens, 1979; Howell et al., 1983; Abtew,
2001] and a recent review article by McMahon et al. [2013]
have shown that pan evaporation in semiarid climates is
much higher than open water measurements, with pan coef-
ficient mostly in the range of between 0.7 and 0.9. The
higher pan evaporation is attributed to difference in heat
conduction between the boundary layers of the water body
compared to the pan. However, if the pan has a screen cov-
ering (like the case in this study), there is a slight reduction
in evaporation attributed to radiation interception by the
screen (steel mesh) thus slightly increasing the pan coeffi-
cient by around 10% [Howell et al., 1983]. It is clear that
the pan coefficient is specific to pan, location, and nature of
the water body (size and depth). In view of this, a pan coef-
ficient of 0.9 is adopted initially for this study and there-
after, an ideal pan coefficient is determined.

3.4.2. Water Balance at NyM Reservoir
[32] A water balance of the NyM reservoir has also been

used to validate open water evaporation (equation (7)).

Ew bð Þ5 I1Pð Þ2 Q1
dS

dt

� �
(7)

where Ew(b) (mm month21) is the evaporation rate of the
open water surface, I (mm month21) is the inflow into the
reservoir, Q (mm month21) discharge and dS/dt (mm
month21) is the change in water storage in the reservoir from
the water level measurements. Ew(b) is compared with the ET
of the open water of the reservoir from the SEBAL model.

3.4.3. Crop Coefficients, Kc

[33] The seasonal variability of ET can be evaluated
through the variation of the crop coefficient, Kc which is
the relative evapotranspiration ratio (equation (8)).

Kc5ET =ETo (8)

[34] ET is computed using the SEBAL algorithm, while
ETo is derived from the FAO Penman-Monteith formula
defined by weather data [Allen et al., 1998]. The ETo was
calculated at four climate stations (locations). The SEBAL
ET for the dominant land use type at this locations where
used to determine the respective Kc values. The computed
seasonal variability of Kc values was then compared with
the ideal seasonal Kc coefficients, for that specific land use,
under similar climatic conditions [Doorenbos and Pruitt,
1977; Allen et al., 1998].

3.4.4. Catchment Water Balance
[35] The catchment water budget is evaluated based on

the estimates of precipitation (P) (see section 3.1.2) and
SEBAL ET. The contribution of various land use types to
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the surface outflow (Qs) at the outlet of the catchment is
computed using equation (9).

Qs5 P2ETð Þ2dS=dt (9)

[36] The change in storage (dS/dt) is assumed to be neg-
ligible or zero for each land use type in the period under
consideration (2008–2010). If P exceeds the ET then the
land use type is a net contributor to the downstream hydrol-
ogy. If P is less than ET then the land use type consumes
additional blue water resources that could otherwise consti-
tute stream flow. For the whole catchment, Qs (from
SEBAL model) is compared with the measured discharge
(Qo) at the outlet (gauging station, 1d8c) of the Upper Pan-
gani River Basin. In this case, the change of storage at the
largest water storage, NyM reservoir (from section 3.4.2) is
taken into consideration.

3.5. Uncertainty Assessment in SEBAL ET Estimates

3.5.1. Nonparametric Significance Test
[37] ET estimates have a temporal distribution that is

influenced by the seasonal variability of potential evapora-
tion and available green and blue water resources. ET
estimates for a given land use type may therefore not fol-
low a normal distribution in time. Large topographic range
on a land use type may also influence the distribution of ET
values within the same land use type. According to Khan
et al. [2006], nonparametric statistical inferences provide
more robust results of such data than using classical normal
distribution methods. A normality test using the Shapiro-
Wilk method [Shapiro and Wilk, 1965] is undertaken as an
exploratory test to ascertain the distribution of the ET esti-
mates. Based on the outcome of the exploratory test, two
nonparametric tests methods were considered for this
study.

[38] First, the most commonly used nonparametric
method to test the significance of two estimated means is
the Wilcoxon rank sum method [Conover, 1980; Lehmann,
1975]. This nonparametric method is used to test the differ-
ence of the means of SEBAL ET and MODIS 16 ET esti-
mates presented at monthly scale for all land use types. The
other nonparametric method to test the significance of var-
iance of the two estimates is Levene’s test [Levene, 1960].
The method considers the distances of the ET estimates
from their median rather than the mean. Using the median
rather than the sample mean makes the test more robust for
continuous but not normally distributed data [Levene,
1960; Khan et al., 2006]. Both methods use a hypothesis p-
value for which the level of significance determines the sta-
tistical test. A significance level of 0.05 (confidence level
of 95%) is used in the study and if the p-value is greater
than 0.05, then one accepts the null hypothesis and if the
p-value is less than 0.05 then the null hypothesis is rejected.
3.5.2. Nonparametric Confidence Interval

[39] The nonparametric bootstrapping technique is
used to estimate the confidence intervals in the annual
estimates of mean and variance for precipitation (P),
ET, and effective precipitation (Qs). The pixel values
of P, ET, and Qs for each land use type are used as
the sample population or bootstrap sample for the anal-
ysis. The average annual values are used to eliminate
any potential intraseasonal variations in the estimates

for the period 2008–2010. The bootstrapping will draw
random samples with replacement from the original
population sample each time calculating the mean or
variance [Efron and Tibshirani, 1993]. The process is
repeated 1000 times and a plot of the distribution of the sam-
ple means or variance is made. The 95% confidence interval
for the mean or variance is determined by finding the 2.5th
and 97.5th percentiles on the constructed distribution. The
statistical software Minitab [2003] has been used in

Figure 3. Spatial variation of annual evapotranspiration
in the Upper Pangani River Basin for (a) year 2008, (b)
year 2009, and (c) year 2010.
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determining the bootstrap confidence intervals for the annual
estimates of P, ET, and Qs for each land use type.

4. Results and Discussion

[40] The monthly ETmonth calculation is given in section
4.1, computed from the ET8day for 138 time steps covering
the years 2008–2010. The uncertainty and error assessment
of the SEBAL ET results is presented in section 4.2; the
seasonal variation of crop coefficient using SEBAL ET
data is presented in section 4.3 and the interpretation of the
spatio-temporal pattern of water consumption in the Upper
Pangani River Basin in section 4.4.

4.1. Actual Evapotranspiration

[41] The annual ET results for the Upper Pangani River
Basin are given in Figure 3 for the 3 years of analysis: 2008,
2009, and 2010. The mean annual totals for various LULC
types and their monthly variability are given in Figures 4 and
5, respectively. The key drivers of the spatial and temporal
variability are the dynamics of the precipitation and the bio-
physical characteristics represented by different LULC types
(Figure 2), and the intraseasonal/interseasonal variation of
the climatic conditions in the river basin.

[42] The highest annual ET has been observed for the
water bodies and the forested areas. At elevation above
2300 m a.s.l., the annual ET values have been gradually
reduced by the low atmospheric demand because of low

temperatures as the elevation increases. This has also been
illustrated by the change in canopy structure of land cover
types from dense forest to afro-alpine vegetation and then
to the bareland/ice as the elevation increases.

[43] Figure 4 shows the mean annual ET values for dif-
ferent LULC types. It was observed that the annual ET
value does not significantly vary with the mean. However,
a notable difference has been observed for the LULC in the
upper and lower catchments for 2008 and 2009 (Figures 3
and 4). For 2008 (a relatively wet year), the annual ET was
slightly higher than the mean for the LULC types on the
lower catchments (grasslands, shrublands, bushland) due to
the enhanced rainfall. However, the annual ET for the
LULC types at higher elevations (dense forest, afro-alpine
forests) and water bodies was slightly lower because of
lower potential ET due to the cooler conditions. Con-
versely, for 2009 (a relatively dry year), the annual ET for
LULC in the lower catchments has been suppressed by lim-
ited precipitation but the hotter conditions (higher potential
ET) imply higher ET for other LULC types (forest, wet-
lands, irrigation, water bodies) that have access to addi-
tional blue water resources (rivers, groundwater).

[44] Figure 5 shows the temporal variability of mean
monthly ET for selected LULC types for the period of anal-
ysis. The temporal variability has been influenced by the
vegetation pattern and the climatic conditions throughout
the year. The hotter months of October to March experi-
ence generally higher monthly ET values, while the cooler

Figure 4. Mean annual evapotranspiration in the Upper Pangani River Basin for different land use
types for the years 2008–2010.

Figure 5. Temporal variation of mean monthly evapotranspiration the Upper Pangani River Basin for
selected land use types, averaged over 2008–2010.
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months from April to July have lower values for all LULC
types. Water bodies have higher monthly ET values
throughout the year, followed by the forest areas and the
irrigated croplands. The pastures, shrublands, and barelands
were found to have the lowest monthly ET values. The
monthly ET values for the bareland/ice were significantly
enhanced during the hotter months from October to March
when the atmospheric demand (potential evaporation) at
the higher altitudes increased.

4.2. Model Performance

[45] The performance of SEBAL ET estimates were com-
pared with independent ET estimates from MODIS 16 global
algorithm and pan evaporation estimates for NyM reservoir.
The error analysis was in respect to the correlation coefficient
(R), coefficient of determination (R2), Root Mean Square
Error (RMSE), and Mean Absolute Error (MAE) (Table 3).
The exploratory normality Shapiro-Wilk test resulted in p-val-
ues of 0.00 for all ET estimates. The test results, which were
below the 0.05 significance level, confirm that the ET esti-
mates do not follow a normal distribution and thus a nonpara-
metric statistical inference is the appropriate method. The
nonparametric significance test statistics for mean difference
(Wilcoxon) and variance (Levene) for various ET compari-
sons are also presented in Table 3.
4.2.1. Comparison Between SEBAL Versus MODIS 16
ET Algorithms Results

[46] SEBAL ET fluxes were compared specifically with
the MODIS 16 ET product to derive any similarity or dif-
ference that can inform the model structure or formulation.
We note that the SEBAL ET was driven by in situ meteoro-
logical data to generate ET fluxes on 8 day 250 m resolu-
tion, while MODIS 16 ET was driven by the GMAO
meteorological data. MODIS 16 ET only provides ET
fluxes for vegetated land surfaces and therefore three land
use types; water bodies, bareland/ice, and urban were
excluded in the analysis. It is noteworthy that the global
land-use map used in MODIS 16 ET algorithm is not con-
temporaneous (geographically) in detail and scale with the
land use map [Kiptala et al., 2013] used in the SEBAL
analysis. Therefore, the SEBAL ET land use map was used
for statistical analysis to maintain similarity in pixels selec-
tion in the evaluation of both ET fluxes. Figure 6 shows the
results of the ET comparisons for 13 vegetated land use
types at annual and monthly scales.

[47] From Table 3, the correlations (at monthly scale)
were moderately fair with R of 0.74, R2 of 0.32, RMSE of
28.4 mm month21 (34%), and MAE of 23.9 mm month21

(28%). At annual scale, the correlation was significantly
better with R of 0.91, R2 of 0.70, and RMSE and MAE of
26% and 24% to SEBAL ET, respectively. MAE obtained

of 28% on monthly and 24% on annual scales were just
within the 10–30% range of the accuracy of ET observa-
tions [Courault et al., 2005; Kalma et al., 2008; Mu et al.,
2011]. The regression lines fitted through the origin has a
slope of 1.2 in both scales. This implies that the SEBAL
ET estimates were 20% more that the MODIS 16 ET. On
monthly (seasonal) scale (Figure 6b), it was observed that
SEBAL ET and MODIS 16 ET tends to have better corre-
lations (from 1:1 line) during the cooler months of April,
May, June, and July, while MODIS 16 ET provided con-
sistently lower ET values during the dry months. The
result is also evident from the observations for the dry
year 2009 (Figure 6a) that seems to be overestimated com-
pared to the wet (2008) and average (2010) years. The
Wilcoxon test result (p-value 5 0.00, Table 3) shows that
the monthly SEBAL ET and MODIS 16 ET means are sig-
nificantly different at 95% confidence. However, the Lev-
ene’s test result (p-value 5 0.55, Table 3) shows that the
variances of the two model outputs are statistically the
same. Similar significance test results were observed at
the annual scale. The test results indicate that the two
model results have different means but the same variance.
Since the test results for the variance are more robust
[Khan et al., 2006], the two model estimates may be con-
sidered to be comparable.

[48] From Figure 6, there is a clear trend that MODIS 16
ET estimates are slightly lower than SEBAL ET fluxes dur-
ing dry periods. It is noted that MODIS 16 algorithm is still
undergoing improvement having initially [Mu et al., 2007]
underestimated global ET on vegetated land surface. It is
notable that the revised algorithm [Mu et al., 2011] pro-
vided improved global ET estimates (62.8 3 1023 km3)
closer to other reported estimates (65.5 3 1023 km3). How-
ever, as observed by Kim et al. [2011], there are still some
assumptions inherent in the improved MODIS 16 algorithm
such as the stomata closure and zero plant transpiration at
night that may result in the underestimation of ET espe-
cially during dry periods. Apart from the model structure,
high level of uncertainties in the MODIS 16 ET can also be
attributed to the coarse resolution of the input data that may
be detrimental to ET estimates at a river basin scale. The
global land use map used at 1 km may lead to misclassifica-
tion of certain land uses in such a heterogeneous landscape.
This may have lead to biases in the input MODIS FPAR/
LAI data in MODIS 16 ET algorithm [Zhao et al., 2006;
Demarty et al., 2007; Mu et al., 2011]. Moreover, the
GMAO meteorological data at 1.0� 3 1.25� resolutions is
too coarse compared to the ground measurements used in
the SEBAL model. It is noteworthy also that the global
MODIS ET algorithm (old and new) validation process in

Table 3. Error Statistics and Significance Test for Each Validation Test Using Monthly Estimates

Product Land Use Type R R2
RMSE
(mm)

MAE
(mm)

Wilcoxon
p-value

Levene
p-value

MOD 16 ET Vegetated land surface
(except water bodies,
Barelands/ice, urban)

0.74 0.32 28.4 23.9 0.00 0.55

Ew(p)—NyM Open water—NyM
Reservoir

0.95 0.91 8.1 6.3 0.90 0.81
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North America may also influence the accuracy of the ET
results in other climatic zones.

[49] Similarly, some assumptions on the estimation of
sensible heat flux (H) by the SEBAL model if not applied
correctly have also been reported to overestimate ET espe-
cially for dry areas and/or sparse canopy [Mkhwanazi et al.,
2012]. In estimating sensible heat H, most remote sensing
approaches make use of radiometric surface temperature
instead of aerodynamic temperature (which is difficult to
estimate or measure). In doing so, SEBAL in particular
introduces a temperature difference gradient that relies on
two anchor pixels (wet/cold and dry/hot). The subjective
determination of these pixels (despite many recommenda-
tions) by the users may introduce uncertainties to the model
results. Other SEBAL model assumptions such as the omis-
sion of night net radiation (Rn) when it becomes effectively
negative or the assumptions that daily heat flux (G) is zero
can also lead to uncertainties in ET estimates [Ruhoff et al.,
2012].
4.2.2. Open Water Evaporation at NyM Reservoir

[50] The monthly SEBAL estimates of the open water
evaporation (Ew(s)) at NyM reservoir showed good correla-
tion with R of 0.95 and R2 of 0.91 to pan evaporation esti-
mates (Table 3). RMSE values of 8.1 mm/month (5%) and
MAE value of 6.3 mm/month (4%) were low, indicating
good accuracy between the data sets. However, Ep-NyM1

(Kp 5 0.9) showed a general pattern of overestimation of
SEBAL ET by nearly 10% (Figure 7). A review of Kp

(to have a linear (1:1) relation) between the ET estimates
(Ep-NyM2) resulted in a reduced Kp factor of 0.81. The pan
coefficient (0.81) is reasonable, considering that the site is
located on the lower end of the reservoir (0.5 km to dam,
116 m elevation diff. to the reservoir). The site is also
located in a dry environment that is generally associated
with lower Kp values. The statistical test for the two ET
estimate (using Kp 5 0.9 and Kp 5 0.81) showed p-values
greater than 0.05 (Table 3) which indicates that both results
were not significantly different to the SEBAL estimates at
95% confidence level.

4.2.3. Water Balance Calculations at NyM Reservoir
[51] The open water evaporation at NyM reservoir was

also validated through monthly water balance analysis
taking into consideration the monthly precipitation,
inflows, outflows, and changes in water levels (for storage
variations) in the reservoir. The total inflows (I) and out-
flows (Q) were obtained from gauging stations located
upstream and downstream of the dam. The precipitation
(P) and water level measurements were also obtained from
the NyM Met Station and the Pangani Basin Water Office
(PBWO). The water levels were also used to compute the
surface area of the reservoir at various time steps using for-
mulae adopted from Moges [2003]. Table 4 shows the
annual estimates for each of the water balance components,
aggregated from monthly totals, for each year of analysis.

[52] Table 4 shows that the relative error (RE) ranged
between 27% to 112%. The variations in the RE can be
attributed to the measured water levels that may result in
high uncertainties in water storage from a relatively shal-
low dam (active depth of 9 m). Nevertheless, the errors
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Figure 6. Comparisons of the average SEBAL ET to MODIS 16 ET estimates for different land use
types at (a) annual and (b) monthly scales for the Period 2008–2010 in Upper Pangani River Basin.

Figure 7. Comparison of SEBAL ET monthly estimates
and Pan Evaporation for open water at NyM reservoir for
the period 2008–2010.
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even out over the study period with an overall bias of
22%. The negative RE means the Ew-b from the water bal-
ance analysis was slightly lower than the SEBAL ET.

4.3. Crop Coefficient, Kc for the Main Crops

[53] Figure 8 shows the Kc (ET/ETo) seasonal variations
computed for four locations under different land use type in
Upper Pangani River Basin. The Lyamungu station (Figure
8a) is the most upstream station where irrigated bananas,
coffee intercropped with maize and beans are dominant
land use. The agricultural activity is intensive throughout
the year due to the availability of additional blue water
resources. Kc values at this station were greater than 1.0
experienced mostly throughout the period of analysis. The
results are consistent with the ideal Kc values for such crops
ranging between 1.05 and 1.2 (without water stress) [Allen
et al., 1998]. However, the climatic conditions, cropping
calendar of the intercropped cereals and the type of irriga-
tion used (traditional furrow system) might have contrib-
uted to Kc values (greater than 1.2) in some months in wet
seasons and similarly lower Kc values (below 1.0) in few
months in dry seasons. In 2009 (dry year), the Kc values for
month of January to March (dry season) were much lower
due to the water stress from the drought conditions experi-
enced during that year.

[54] The TPC station is located within the TPC sugarcane
plantation at the lower catchments of the Upper Pangani
River Basin. The cropping calendar of the sugarcane planta-
tion has been designed for continuous sugarcane harvesting
(of near equal quantity) between June and February every
year. During the long rains (Masika seasons from March to
May), there is no irrigation to allow for maintenance works
at the canals. The crop calendar is therefore designed to

ensure that the sugarcane is at different stages of develop-
ment making use of precipitation. Kc (without water
stress) for irrigated sugarcane ranges from 0.4 to 1.25 for
homogenous sugarcane plantation with continuous
cropping stages [Allen et al., 1998]. However, since the
cropping stages were mixed, the ideal (mean) Kc would be
�0.8 with slightly higher values during the Masika season
when the all sugarcane is at different stages of maturity.
The computed Kc values for irrigated sugarcane (Figure
8b) varied slightly but within the ideal value of 0.8. The
Kc values were slightly higher than 0.8 in the Masika sea-
sons apart from year 2008. The year 2008 (wet) experi-
enced suppressed rainfall in the month of April compared
to subsequent high rainfall in the other months. During the
dry months, the Kc values were lower than expected mean
(0.8) and were more pronounced during dry year (2009).
This result can be attributed to the water stress conditions
for the sugarcane due to limited precipitation (Masika sea-
son) or inadequate water supply for irrigation in dry
months.

[55] Moshi station (Figure 8c) is located in the middle
catchment, where mixed cereals (maize, beans) and few
vegetable crops is dominant land use practice under supple-
mentary irrigation. The agricultural activities rely on rain-
fall and supplementary irrigation during the wet seasons.
The Kc values would therefore be related to the seasonal
rainfall and cropping patterns in the areas. The Kc for this
station was observed to be high between the months of
March and August during the crop growing season and low
during the dry months of between September and February.
The Kc ranges between 0.3 and 1.0 which was reasonable
within the ranges for maize and vegetable crops (0.30–
1.15) [Allen et al., 1998].

Table 4. Annual Mean Variations of the Water Balance (mm yr21) in NyM Reservoir for Period 2008–2010

Rainfall (P) Inflows (I) Outflows (O)
Change in

Storage (dS/dT) Evaporation Ew-b

% Relative Error
to SEBAL ET

2008 385 8479 7355 2631 2139 2
2009 173 5627 6139 22859 2520 27
2010 404 7951 5716 728 1912 12

Table 5. Annual Variations of the Water Balance Terms in Upper Pangani River Basin for Period 2008–2010

Land Use and Land Cover Mean Annual P (mm yr21) Mean Annual ET (mm yr21) Qs (mm yr21)

No. km2 Mean STDEV C.I Mean STDEV C.I Mean C.I

1 Water bodies 100 603 82 4 1928 204 10 21325 14
2 Bareland/Ice caps 100 2196 612 30 643 653 32 1553 62
3 Sparse Vegetation 445 714 301 7 586 172 4 128 11
4 Bushlands 1152 831 312 5 669 312 5 162 9
5 Grasslands/scatt. crops 1517 691 159 2 630 223 3 61 5
6 Shrublands/thicket 3509 785 151 1 756 85 1 29 2
7 Rainfed maize 2942 785 221 2 789 221 2 24 4
8 Afro-alpine forest 257 2300 322 10 1429 309 9 871 19
9 Irrigated mixed crops 598 888 324 7 905 207 4 217 11
10 Rainfed coffee/Irrig. bana. 723 1026 250 5 1022 261 5 5 9
11 Irrigated sugarcane 89 572 204 11 1035 212 11 2463 22
12 Forest, Irrig. croplands 556 1115 366 8 1228 250 5 2113 13
13 Irrigated bananas, coffee 607 1449 297 6 1330 156 3 119 9
14 Dense forest 637 1703 324 6 1517 144 3 186 9
15 Wetlands and swamps 98 644 127 6 1291 267 13 2647 20
16 Urban, built up 8 977 117 20 774 80 14 202 34
Total 13,337 917 4 866 3 52 7
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[56] Same station (Figure 8d) is located on the lower
catchments with low precipitation (500 mm yr21) and is
dominated by grasslands (for grazing) and scattered crop-
lands. Due to the very dry conditions in this area, the grass-
land experiences water stress and this is likely the reason
why the calculated Kc values are lower than the reported Kc

for grazing pasture that range between 0.30 to maximum of
0.75 [Doorenbos and Pruitt, 1977; Allen et al., 1998]. The
Kc values calculated for this LULC type ranged from 0.2
during the dry seasons and 0.6 during the wet seasons.

4.4. Spatio-Temporal Pattern of Water Use and the
Catchment Water Balance

[57] Given the precipitation (P) (section 3.1.2) and the
SEBAL ET results, the net contribution or consumption of sur-
face outflow (Qs) was evaluated for each LULC type (without
surface/reservoir storage change) using simple water budget
(equation (9)). The usability and reliability of Qs for water
resource planning depends on the confidence intervals (CI) of
P and ET estimates. The uncertainty of the LULC map is
assumed to be inherent on the statistical estimates for each
land use type. The lower and the upper bound confidence lev-
els were estimated at 95% confidence limits. Since there was a
minimal difference between the upper and lower CI (Figure 9)
an average CI were used and presented in Table 5.

[58] The CI (uncertainty of the estimates) of the water bal-
ance terms is influenced greatly by the spatial coverage and
the distribution range of the land use types. For individual
land use types, the CI for P and ET ranged between 1 and 3
mm yr21 (less than 1%) for the dominant land use types, e.g.,
grasslands, shrublands, and rainfed maize. For land use types
of lower spatial coverage CI ranges for P and ET were mar-
ginally higher with bareland having the highest uncertainty of
32 mm yr21 (5%) for ET estimates. The CI values for the sur-

face outflow, Qs were the accumulated totals CI for P and ET.
For the entire catchment, the uncertainty of the mean esti-
mates of P and ET was low at 3–4 mm yr21 (less than 1%).
However, the cumulative uncertainty for Qs was higher at 7
mm yr21 (13% to the mean of Qs).

[59] Irrigated sugarcane, wetlands & swamps and the
water bodies were found to be the highest net evaporative
water users with a consumption of 2463 (622) mm yr21,
2647 (620) mm yr21, and 21325 (614) mm yr21, respec-
tively. The afro-alpine forest and bareland/ice caps were
the lowest water users contributing downstream flow in
excess of 871 (619) mm yr21 and 1553 (662) mm yr21 of
the annual precipitation. The total evaporative water use,
866 mm yr21, thus accounts for 94% of the annual precipi-
tation in the Upper Pangani River Basin with the remainder
of about 52 (67) mm yr21 or 21 (62) m3 s21) estimated to
flow to the Lower Pangani River Basin. However, this
result will have to be adjusted slightly to account for
changes in storage in NyM reservoir regulate flow (artifi-
cially) downstream for the period of analysis (�23.2 m3

s21 from Table 4). The change in storage was initially
assumed to be negligible for various LULC types. This pro-
vides an estimated surface outflow of 18 (62) m3 s21

which compares reasonably well with the measured outflow
(at gauge 1d8c below NyM reservoir) of 20.5 m3 s21 (12%
bias) for the same period. The bias or error (12%) is within
the uncertainty range Qs estimates of 13% (7 mm yr21).

[60] The result is also consistent with previous analyses
of outflows at NyM reservoir which estimated flows of
between 15 and 30 m3 s21 based on long-term discharge
measurements [Turpie et al., 2003; Komakech et al., 2011;
Notter et al., 2012]. According to PBWO/IUCN [2006], the
hydropower commitments (which exist as a water right
since the 1970) for the hydropower production at NyM
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Figure 8. Seasonal variation of ET/ETo (Kc) at locations: (a) Lyamungu, (b) TPC, (c) Moshi, and (d)
same in Upper Pangani River Basin for the years 2008–2010.
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HEP is 760 Million m3 yr21 (or about 24 m3 s21). The
downstream flow is also meant to regulate flow to Hale
HEP and the (new) Pangani HEP (Figure 1). Considering
these HEP flow commitments, notwithstanding the irriga-
tion water needs and the environmental flow requirements
for the Lower Pangani River Basin, the Upper Pangani
River Basin is indeed a closed or closing basin (considering
the uncertainties), with its river systems under stress [Mol-
den et al., 2005; Molle et al., 2005].

5. Conclusions

[61] This research has used MODIS data and the SEBAL
algorithm to estimate spatio-temporal ET in a data scarce
river basin in Eastern Africa with a highly heterogeneous

use of water. A good agreement was generally attained for
the SEBAL ET results from the various validations. For
open water evaporation, the SEBAL ET for NyM reservoir,
showed a good correlation with the pan evaporation meas-
urements using an optimized pan coefficient of 0.81. Simi-
larly, the water balance ET estimates for NyM reservoir
resulted in an absolute relative error 2% on the mean annual
estimates over the study period. The estimated ET for vari-
ous agricultural land uses indicated a pattern that was con-
sistent with the seasonal variability of the crop coefficient
(Kc) based on FAO Penman-Monteith equation. As
expected, ET estimates for the mountainous areas experienc-
ing afro-alpine climate conditions have been significantly
suppressed by the low potential ET. For the whole basin, ET
accounted for 94% of the total precipitation with a surface

Figure 9. Frequency distribution of the estimated annual SEBAL ET from bootstrap for selected land
use types in the Upper Pangani River Basin for period 2008–2010.
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outflow closure difference of 12% to the measured dis-
charge. The bias range (12%) was within the uncertainty
(13%) level at 95% confidence interval for P-ET estimates.

[62] Comparison between global MODIS 16 ET and
SEBAL ET showed good correlation R of 0.74. However,
the R2 was lower at 0.32 and the RMSE and MAE where
34% and 28%, respectively, with the MAE being just
within the acceptable comparison level of below 30%. The
monthly ET variance of the two models was not statistically
different whereas the monthly ET mean was statistically
different. In general, the MODIS 16 ET underestimated the
SEBAL ET by approximately 20%, mostly during the dry
month or seasons. This difference can be attributed to the
model structure and the coarse spatial scale of the MODIS
16 ET. The difference might also have been exacerbated by
SEBAL’s tendency of overestimating ET in dry periods.

[63] The study has established that the ET during a rela-
tively dry year (2009) is higher for LULC in the upstream
catchment, such as forests and irrigated croplands, due to the
local availability of blue water resource (from snow melts,
rivers, and groundwater). ET for water bodies (lakes and res-
ervoirs) and irrigated croplands that extract water from the
river systems is also higher. However, for LULC types that
have limited access to blue water, such as rainfed agriculture
and grasslands, the ET is lower due to the limited precipita-
tion. Conversely, in a relatively wet year (2008), the ET is
suppressed in the upstream catchments due to lower poten-
tial evaporation while it is enhanced from the LULC types
in the lower catchments due to availability of water resource
from precipitation. This result demonstrates the vulnerability
of water users in the lower catchments to climate variability
and future water scarcity.

[64] This study has highlighted the levels of water use of
each LULC type and their relative contribution and/or effect
on the downstream hydrology. The water balance approach
showed that the basin is closing. A viable option is improv-
ing water productivity through improved water efficiency
and water reallocation. The derived spatially distributed ET
can provide useful information for a systematic approach of
water accounting [Karimi et al., 2013]. The satellite-derived
ET fluxes (which also accounts for blue water use) can also
provide crucial information for hydrological modelling in
highly utilized and water stressed river basins [Winsemius
et al., 2008; Zwart et al., 2010; Romaguera et al., 2012].

[65] A major limitation in deriving remote-sensed ET
especially for land use types on higher elevations in the
humid to subhumid tropics is the persistent cloud cover. As
such, the multitemporal scales provided by MODIS (Table
2) offered a range of images at a reasonable interval (for
this case 8 day). These images also enhance the quality of
the cloud filling procedure adopted in this study that relies
on the next or previous good quality image. This advantage
is however limited by the moderate spatial scale of the
MODIS images (250 m, 1 km thermal).
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