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To analyze the passivity of non-linear, time-varying systems we study an entry cap-
sule that enters the atmosphere in a lift-down con�guration (i.e., a bank angle larger than
90�) to avoid skipping ight, and which is controlled by a Reaction Control System only.
Deriving the passivity conditions for rotational motion, and evaluating these conditions
along the trajectory shows that the (non-linear) entry capsule is Almost Strictly Passive, and
the su�cient conditions to apply Simple Adaptive Control are met. Further, the prelim-
inary design of an attitude-control system using the theory of Simple Adaptive Control
is discussed and analyzed. The two designs for both a low and a high dynamic-pressure
operating condition show an excellent performance. Each design uses its own controller
parameters (i.e., weighting matrices, zero integral gain and integral-gain �lter parameter),
which necessitates the use of an interpolation scheme once a trajectory with changing op-
erating conditions is own. The nominal mission (entry at 220 km altitude with a velocity
of 11 km/s, and �nal conditions at Mach = 1) can be own without any di�culty. The
angle-of-attack command is provided by a trim law, and although some deviations are
observed when the capsule becomes less aerodynamically stable, this deviation does not
diverge in spite of the pitch-thruster saturation. Responses due to errors in the initial
attitude and angular rates show smooth curves in both attitude motion and thruster con-
trols. A Monte-Carlo analysis that includes errors in the initial attitude, angular rate and
inertia properties shows similar results, and it can be concluded that the performance of
the controller given the current dispersions is satisfying.

I. Introduction

Previous publications have presented successful application of Simple Adaptive Control (SAC) in the
�eld of autopilot design,1,2 robotics,3 optical telescopes4 and re-entry vehicles.5,6 However, as adaptive
controllers (as well as fuzzy controllers and neuro-controllers) use non-stationary control, one must have a
guarantee of stability that goes beyond the cases that are presented in simulations. Otherwise, even slight
changes in the real-world environment may result in grave deterioration of performance and may even lead to
total instability. The main problem with non-stationary systems or controllers is that the proofs of stability
could be very di�cult, in particular for larger systems. Therefore, one may try to replace the theoretical
proofs with practical tests and demonstrations of stable behavior. One may feel su�ciently con�dent to
believing that a system is stable after one had tested it for almost all imaginable conditions. On the other
hand, it may be quite di�cult to �nd that speci�c situation that may destabilize the non-stationary system.

Such examples, along with past experience, may explain why in adaptive control one takes the pain of
attempting to �nd rigorous proofs of stability and clarify the passivity conditions that are needed to �nd the
proofs. It is the designer decision whether to use the methodology (i.e., adaptive, fuzzy, neuro-controller,
etc.) that works, and just test it in various environmental conditions, or take the pain of going through the
thorough theoretical analysis. To apply Simple Adaptive Control theory to non-linear and non-stationary
systems, it needs to be Almost Strictly Passive (ASP), which is an extension of the Almost Strictly Positive
Real (ASPR) condition for linear, time-invariant systems.2 To ful�ll the ASP condition, the controlled, non-
linear system has to be minimum-phase (i.e., it needs to have stable zero dynamics), and there is a speci�c
condition for the product of output and input matrix, which will be detailed later on in this paper.
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The use of SAC for the longitudinal and lateral control of winged re-entry vehicles has resulted in very
robust controllers that remain stable in the presence of vehicular and environmental uncertainties, even when
some of the actuators are saturated for a noticeable period of time.6 However, it was actually never analyzed
why the performance of SAC was so good, as it was applied to the non-linear and non-stationary vehicle ad
hoc, i.e., it was not checked whether the system is ASP or not.

From previous work8 it was found that the linearized system was, in fact, not ASPR, which was not
an encouraging start for analyzing the non-linear system, despite the very good performance of the actual
guidance and control system. The straightforward approach of solving the di�erential ASP equations for the
general non-linear case appeared to be a very big, if not impossible, task, and we concluded that the system
under study had to be either simpli�ed or changed. Therefore, to continue this work we take one step back.
Two issues prevented us from proving that even the LTI system was ASPR, the �rst being the fact that
the system was non-minimum phase when ying with zero bank angle. The second issue basically showed
that whenever there is hybrid control, i.e., multiple control actuators for a single axis (i.e., yaw control was
established by combined reaction and aerodynamic control), the second ASPR condition cannot be met.

Therefore, we will be proving the passivity for a slightly less demanding system, i.e., an Apollo-shaped
re-entry capsule that enters the atmosphere in a lift-down con�guration (i.e., a bank angle larger than 90�)
and has only reaction-control thrusters as control actuators. Without going into detail of the actual GNC
system design, for the sake of the discussion we assume that both guidance and control system will be
based on Simple Adaptive Control theory. Since the translational motion is discussed elsewhere,12 here we
will focus on the rotational motion and thus on the control system that has to enforce closed-loop stability
throughout the ight.

The layout of this paper is as follows. Section II will give some background material on Simple Adaptive
Control theory and stability analysis of non-linear systems. In Section III, the model is described as well
as a summary of the ight mechanics of the entry capsule. Section IV presents the results of the passivity
analysis. A typical example of Simple Adaptive Control is discussed in Section V, where the preliminary
control-system design of the entry capsule is analyzed. Section VI, �nally, concludes this paper.

II. Theoretical Background

A. Simple Adaptive Control

In this section, some background material will be presented on the set-up of an MRAG and/or MRAC
system, taken from a recent work on direct adaptive control algorithms.2 A favorable approach is that of
Simple Adaptive Control based on output feedback. The algorithm aims at matching the response of the
system that is to be controlled (the plant) to that of a reference model (the model). The basic adaptive
algorithm to compute the plant input up is as follows (Fig. 1):

up(t) = Kr(t)r(t) (1)

where

r(t) = [ey(t) xm(t) um]T (2)

and

Kr(t) = [Ke(t) Kx(t) Ku(t)] (3)

To compute the adaptive gains, Kr is de�ned to be the sum of an integral and a proportional component,
i.e.,

Kr(t) = Ki(t) + Kp(t) (4)

with

_Ki(t) = eyrT (t)Ti (5)

Kp(t) = ey(t)rT (t)Tp (6)
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Figure 1. Basic architecture of a Simple Adaptive Control algorithm.

It can be seen that the model input um and model state xm are required to form part of the input signal
up to the plant. Moreover, the so-called output error ey serves as a feedback quantity to form the third
element that composes up. The three gains, i.e., Kx, Ku and Ke, are adaptive. The weighting matrices
Tp and Ti are positive semi-de�nite and positive de�nite, respectively. Note that the proportional gain
component has a direct inuence on the transient tracking behavior, but is strictly speaking not required to
enforce asymptotic tracking. This is guaranteed by the integral gain. To improve the transient response by
only using an integral gain, a constant gain value can be added to Ki. An advantage over the use of the
proportional gain is that this constant value is independent of ey, and is therefore non-zero even if ey is
zero. In that case, the integral gain derived from Eq. (6) becomes

Ki(t) = Ki;0 +

tZ
0

_Ki(t)dt (7)

The damping of the system can be improved by including the error derivatives in the output error vector.
Thus, the error for output y becomes:

ey = KT
y (ym � yp) + KT

_y ( _ym � _yp) (8)

with KT
y and KT

_y being a proportional and derivative output gain, respectively.
To guarantee that all states and gains in the adaptive system are bounded and the output error is

asymptotically stable, it is necessary that a linear plant is ASPR. This means, for practical purposes, that
the plant can be stabilized by any su�ciently high, constant or time-variable, output gain. For time-varying,
non-linear plants there is the similar condition of ASP. Note that it is not trivial whether a non-linear system
is ASP or not, so in some cases the controller is designed ad hoc and validated by extensive simulation. To
apply the adaptive algorithm to a much wider class of systems, various modi�cations have been developed.
One modi�cation is to augment the plant with a so-called feed-forward compensator, such that the class of
ASPR systems is increased. If the compensator dynamics is given by the strictly proper transfer function
matrix Gc(s) with realization _xc = Acxc(t)+Bcup(t) and yc = Ccxc(t) such that the augmented output to
be controlled is ya(t) = yp(t) +yc(t) then the augmented system Ga(s) = Gp(s) +Gc(s) is ASPR provided
that:

� Gc(s) is such that the relative degree of Ga(s) is m (number of inputs), and
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� G�1
c stabilizes the closed-loop output feedback system.

In general, while using plant feed-forward compensators the model-following error will be bounded but
not zero. This can be alleviated by a second extension to the adaptive algorithm, i.e., to apply not only
feed-forward around the plant but also around the reference model.

So far, an ideal environment has been considered. To cope with environmental disturbances that lead to
a persistent non-zero error and therefore to a continuous change in the integral gain Ki, a robust design can
be applied to adjust the integral gain and preventing it from reaching very high values. The integral term
of Eq. (6) is adjusted as follows:

_Ki = ey(t)rTTi � �iKi(t) (9)

Without the �i-term, Ki(t) is a perfect integrator and may steadily increase (and even diverge) whenever
perfect output following is not possible. Including the �i-term, Ki(t) is obtained from a �rst-order �ltering
of ey(t)rTTi and, therefore, cannot diverge, unless the output error diverges.

B. Su�cient Conditions

Suppose that the plant to be controlled is LTI and given in state-space form by

_xp = Apxp(t) + Bpup(t)
yp = Cpxp(t)

(10)

It can be shown that any strictly minimum-phase LTI system with a positive de�nite symmetric product
CpBp is ASPR. In other words, considering a (�ctitious) constant output feedback controller, i.e., up =
�Keyp, there exist two positive de�nite symmetric matrices P and Q such that the �ctitious closed-loop
system using the unknown gain Ke satis�es simultaneously the following SPR conditions:

P [Ap �BpKeCp] + [Ap �BpKeCp]T P =
PAK + AT

KP = �Q < 0
(11)

PBp = CT
p (12)

Thus, the original plant is denoted as ASPR, because only a constant feedback gain separates it from being
SPR.

Eq. (11) shows that the �ctitious closed-loop SPR system is asymptotically stable, whereas from Eq.
(12) one gets the condition CpBp = BT

p CT
p = BT

p PBp > 0 (i.e., positive de�nite symmetric). Using the
ASPR conditions and setting up a Lyapunov equation for the adaptive closed-loop system, one can prove
that the adaptive system is stable. It is worth mentioning that only the transfer function should rigorously
be called SPR or ASPR, while the system itself should be called Strictly Passive or Almost Strictly Passive.
An important extension led to the applicability of the important SPR and ASPR properties to the class of
systems where the non-symmetric CpBp is diagonizable and has real positive eigenvalues.9

These concepts can be extended to non-linear time-varying systems, and similar (though more compli-
cated) expressions can be derived.3 Let the non-stationary plant to be controlled be given in state-space
form by

_xp = Ap(xp; t)xp(t) + Bp(xp; t)up(t)
yp = Cp(xp; t)xp(t)

(13)

The need for the ASP condition appears during the proof of stability of the adaptive control system using
Lyapunov functions of the form

V (t) = eT
x (t)Pex(t)+

+ trace
n

S [K(t)�K] T�1
i [K(t)�K]T ST

o (14)
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In Eq. (14) K is an (unknown) ideal constant gain that would allow asymptotically perfect following. The
Lyapunov function contains the constant nonsingular matrix S that allows mitigating the symmetry condition
on CpBp. De�ning W = STS, one can show that stability of the nonlinear system with adaptive control is
guaranteed if there exist two uniformly positive de�nite symmetric matrices, P(xp; t) and Q(xp; t), and the
constant positive de�nite symmetric matrix W such that the following ASP conditions are satis�ed:

_P + P [Ap �BpKeCp] + [Ap �BpKeCp]T P
= PAK + AT

KP = �Q < 0
(15)

PBp = CT
p W (16)

From (16) one gets

BT
p PBp = BT

p CT
p W = WCpBp (17)

Although conditions (15)-(17) may still look obscure for the designer, it has been shown that they are
satis�ed for any non-stationary system that satis�es the following two conditions:

1. The controlled plant is minimum-phase (i.e., it has stable zero dynamics), and

2. The not-necessarily symmetric positive de�nite product CpBp can be made symmetric via a constant
transformation S, namely:

Cp(xp; t)Bp(xp; t)S = SR(xp; t) (18)

Here, R(xp; t) is symmetric.
While the test of condition (18) is simple and is trivially satis�ed when CpBp is symmetric, the test of

zero-dynamics stability is more complex in non-stationary systems. To this end, one de�nes two matrices,
N(xp; t) and M(xp; t), that satisfy the relations

C(xp; t)M(xp; t) = 0 N(xp; t)B(xp; t) = 0 N(xp; t)M(xp; t) = I (19)

These matrices always exist, and one can use the transformation

xp = M(xp; t)z (20)

which leads to the di�erential equation

_z(t) =
�

_N(xp; t) + N(xp; t)Ap(xp; t)
�

M(xp; t)z(t) (21)

This is called the zero dynamics because it isolates the output from the input, as the output that corresponds
to this dynamics is

yp(t) = Cp(xp; t)xp = Cp(xp; t)M(xp; t)z(t) = 0 (22)

Therefore, one must �nd appropriate matrices N and M and test condition (18) and stability of the
zero-dynamics (21). If condition (18) is not too di�cult to check and satisfy, checking Eq. (21) seems
to be a rather elaborate task for a general non-stationary non-linear system, although it becomes quite
simple in special classes of systems, such as robotic manipulators, etc.3 In those nonlinear systems where
the parameters may change from case to case, yet they can be considered constant during the task, it is
su�cient to treat the system as LTI and check conditions in extreme situations.1,3 From previous work,6

it has become clear that the that the transient e�ect (i.e., time-varying aspects) plays less of a role while
studying the rotational motion. Therefore, for the stability analysis we can limit ourselves to scaled-down
intervals of the total ight regime and assume the translational motion to be in equilibrium.
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III. Model Description

The model that is used in this study is that of an Apollo-like entry capsule (mass m = 4976 kg), which is
on a return leg from the Moon. It enters the atmosphere at 220 km altitude with a relative velocity of V =
11 km/s, and a corresponding ight-path angle of  = �9:536�, see Fig. 2, top, for the reference trajectory.
To avoid excessive fuel consumption for attitude control, the z-location of the c.o.m. has been moved down
from the symmetry axis to provide a natural hypersonic trim condition with an angle of attack of about
� = �24:5�. Angle-of-attack control is therefore only used to stabilize the angle of attack around this trim
condition; bank-angle-control is used to orient the lift in a lift-down conditon to avoid skipping ight, and
is e�ectively the only guidance means. Since at this point no guidance system is yet available we will take
the attitude pro�les from an open-loop, 6 degrees-of-freedom simulation (Fig. 2, bottom), smooth them and
assume them to be the (nominal) guidance commands, where the angle of sideslip has been put to zero.

Figure 2. Reference trajectory (top) and attitude pro�le (bottom) for a free-fall entry.

The motion of re-entry vehicles is mainly driven by the combination of aerodynamic and gravitational
forces and moments. Depending on the inherent non-linearities in the vehicles aerodynamic characteristics,
the extent of the ight regime under consideration, and asymmetry in the mass distribution of the vehicle,
this motion can only be accurately described by a set of coupled �rst-order non-linear di�erential equations.
To describe the translational motion of a rigid body, a set of 6 di�erential equations is required. The form of
these equations depends on the selected state variables, but in general they can be found in many textbooks.
In this paper we use spherical components for position (distance R, longitude � , and latitude �) and velocity
(velocity V , ight-path angle  and heading �).13,14 The state vector is thus given by x = (V; ; �;R; �; �)T

and u = (�; �)T . In case of guidance, the control vector u includes the commanded angle of attack, �, and
bank angle, �, which will be determined by the guidance system. The corresponding equations of motion
read:

_V = �D
m

+ g sin  + !2
cbR cos �(sin  cos � � cos  sin � cos�) (23)

V _ =
L cos�
m

� g cos  + 2!cbV cos � sin�+
V 2

R
cos  + !2

cbR cos �(cos � cos  + sin  sin � cos�) (24)

V cos  _� =
L sin�
m

+ 2!cbV (sin� cos  � cos � sin  cos�) +
V 2

R
cos2  tan � sin�+ !2

cbR cos � sin � sin� (25)

_R = _h = V sin  (26)

_� =
V sin� cos 
R cos �

(27)

_� =
V cos� cos 

R
(28)
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In the above equations, !cb is the rotational rate of the Earth, and D and L are the drag and lift force,
respectively. Note that  is negative when the velocity is below the local horizon, and � = 0� when ying to
the north.

The rotational motion of entry capsules is mainly driven by the combination of aerodynamic and thruster
moments. To describe the rotational motion of a rigid body, a set of 6 di�erential equations is required as
well. In this paper we use a set of Euler angles for the attitude de�nition, namely the angle of attack, angle
of sideslip and bank angle, in this case related to the groundspeed rather than the airspeed of the capsule.
Since we will need the equations of rotational motion for the subsequent passivity analysis, they will be
discussed more elaborately. The starting point for our model setup is a set of equations in the form:

_x = f(x) + g(x;u) y = h(x) = Cx (29)

where f , g and h can be determined from the general formulation of the equations of motion.8

Let us begin with the most general case of full state tracking. In Eq. (29), x = (p; q; r; �; �; �)T and
u = (MT;x;MT;y;MT;z)T . The control vector u includes the three RCS thruster moments around the X, Y
and Z-axis of the body frame, respectively. These thruster-moments are independent of the vehicle state,
so g(x;u) = g(u). To determine the functionals f and g, we begin with the Euler equations of rotational
motion:

_! = I�1
�

~Mcm � ! � I!
�

(30)

with

~Mcm = (Mx;My;Mz)
T = sum of external moments about the c.o.m., expressed in compo-

nents along the body axes

I =

264 Ixx �Ixy �Ixz
�Ixy Iyy �Iyz
�Ixz �Iyz Izz

375 = inertia tensor of the re-entry vehicle, referenced to the body frame

! = (p; q; r)T = the rotation vector of the body frame with respect to the inertial
frame, expressed in components along the body axes (roll rate p,
pitch rate q and yaw rate r)

Solving the above equations requires the inversion of the inertia tensor. However, in a number of cases,
these equations can be simpli�ed. In the case of a mass-symmetrical vehicle, two out of three products
of inertia are equal to zero (or all three, when the vehicle has two symmetry planes). When the plane
of symmetry is the XBZB-plane, which is the case since the location of the c.o.m. is only shifted down
in ZB-direction, then Ixy = Iyz = 0. Eq. (30) can in that case be written as the following three scalar
equations:

_p =
Izz
I� Mx +

Ixz
I� Mz +

(Ixx � Iyy + Izz) Ixz
I� pq +

(Iyy � Izz) Izz � I2
xz

I� qr (31)

_q =
My

Iyy
+
Ixz
Iyy

�
r2 � p2

�
+
Izz � Ixx
Iyy

pr (32)

_r =
Ixz
I� Mx +

Ixx
I� Mz +

(Ixx � Iyy) Ixx + I2
xz

I� pq +
(�Ixx + Iyy � Izz) Ixz

I� qr (33)

with I� = IxxIzz � I2
xz. The external moments Mx;My and Mz are the sum of the aerodynamic moments

and the input from the RCS thrusters. Moreover, since in the original aerodynamic database15 the moment
reference point is not the c.o.m, but the apex of the capsule, the aerodynamic moments also include a
component due to the aerodynamic forces. Since we need explicit expressions for these moments, we will
�rst compute the total aerodynamic moment and then use regression analysis to �nd these expressions.

The kinematic attitude equations are given by:14
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_� cos� = �p cos� sin� + q cos� � r sin� sin�+

+sin�
h

_� cos  � _� sin� sin  + ( _� + !cb) (cos � cos� sin  � sin � cos )
i

+

�cos�
h

_ � _� cos�� ( _� + !cb) cos � sin�
i

(34)

_� = p sin�� r cos�+ sin�
h

_ � _� cos�� ( _� + !cb) cos � sin�
i

+

+ cos�
h

_� cos  � _� sin� sin  + ( _� + !cb) (cos � cos� sin  � sin � cos )
i (35)

_� = �p cos� cos� � q sin� � r sin� cos�+

+ _� sin� � _� sin  � _� sin� cos  + ( _� + !cb) (cos � cos� cos  + sin � sin )
(36)

In these equations, _, _�, _� and _� are related to the rotation of the local horizontal plane, as a consequence of
the sphericity of the Earth. However, when considering attitude motion that is expected to be at least one
order of magnitude faster than the translational motion, it is allowed to consider a "frozen" local horizontal
plane. This e�ectively puts _, _�, _� and _� to zero.

Rewriting the dynamic and kinematic equations of motion in the form of Eq. (29) yields for the functionals
f and g:

f1(x) =
(Ixx � Iyy + Izz) Ixz

I� pq +
(Iyy � Izz) Izz � I2

xz

I� qr +
Izz
I� L(h; V; �) +

Ixz
I� N (h; V; r; �) (37)

f2(x) =
Ixz
Iyy

�
r2 � p2

�
+
Izz � Ixx
Iyy

pr +
M(h; V; q; �)

Iyy
(38)

f3(x) =
(Ixx � Iyy) Ixx + I2

xz

I� pq +
(�Ixx + Iyy � Izz) Ixz

I� qr +
Ixz
I� L(h; V; �) +

Ixx
I� N (h; V; r; �) (39)

f4(x) = �p cos� tan� + q � r sin� tan� (40)

f5(x) = p sin�� r cos� (41)

f6(x) = �p cos� cos� � q sin� � r sin� cos� + f4 sin� (42)

g1(x;u) =
Izz
I� MT;x +

Ixz
I� MT;z (43)

g2(x;u) =
MT;y

Iyy
(44)

g3(x;u) =
Ixz
I� MT;x +

Ixx
I� MT;z (45)

g4 = g5 = g6 = 0 (46)

In the functionals f1, f2 and f3, the aerodynamic roll, pitch and yaw moments, L;M and N , appear
that are functions of the states h; V; �; �; q and r:15,16
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L(h; V; �; �) = Cl(M(h; V ); �; �)
1
2
�(h)V 2Sd (47)

M(h; V; �; �) =
�
Cm(M(h; V ); �; �) + Cmq (M(h; V ); �; �)

qd

V

�
1
2
�(h)V 2Sd (48)

N (h; V; �; �) =
�
Cn(M(h; V ); �; �) + Cnr

(M(h; V ); �; �)
rd

V

�
1
2
�(h)V 2Sd (49)

where �(h) is the altitude-dependent atmospheric density and M(h; V ) is the Mach number, through the
speed-of-sound dependency with altitude (through the temperature) a function of both h and V . S and d are
the aerodynamic reference area and length (i.e., the vehicle diameter), respectively. To derive expressions
for the aerodynamic coe�cients over the complete ight range will lead to very complex expressions. In our
approach we have assumed that the rotational motion is decoupled from the translational motion, which
removes any velocity and altitude dependency. This yields design points with a constant Mach number,
atmospheric density and dynamic pressure. The moment equations (47)-(49) can thus be simpli�ed to:

L(�; �) = Cl(�; �)�qeSd (50)

M(�; �; q) =
�
Cm(�; �) + Cmq

(�; �)
qd

Ve

�
�qeSd (51)

N (�; �; r) =
�
Cn(�; �) + Cnr (�; �)

rd

Ve

�
�qeSd (52)

In the above equations, the subscript e indicates the design point’s equilibrium state for translational motion;
�qe = 1

2�(he)V 2
e is the dynamic pressure.

For each of the design points the functionals f1, f2 and f3 in Eqs. (37) through (39) are therefore
expressed by

f1(x) =
(Ixx � Iyy + Izz) Ixz

I� pq +
(Iyy � Izz) Izz � I2

xz

I� qr +
Izz
I� L(�; �) +

Ixz
I� N (�; �; r) (53)

f2(x) =
Ixz
Iyy

�
r2 � p2

�
+
Izz � Ixx
Iyy

pr +
M(�; �; q)

Iyy
(54)

f3(x) =
(Ixx � Iyy) Ixx + I2

xz

I� pq +
(�Ixx + Iyy � Izz) Ixz

I� qr +
Ixz
I� L(�; �) +

Ixx
I� N (�; �; r) (55)

Furthermore, after inspecting the aerodynamic database more carefully shows that there is not so much
variation in the coe�cients for Mach numbers larger than M = 3.4 for the angle-of-attack and angle-of-
sideslip range of interest. Therefore, we can assume Mach-independent aerodynamic properties for M � 3:4
and � 2 [�30�;�15�] and � 2 [�5�; 5�], which means that we can use the same aerodynamic model for
all Mach numbers from entry down to M = 3.4. For each lower Mach number - or an extension of the
attitude-angle range - a separate model should be derived; this remains to be done as future work. Note
that as mentioned earlier, the contribution of the aerodynamic forces to the moment will be included in the
regression model for the moment coe�cients.

The following regression models are derived (with � and � in radians):

Cl = 0:01� + 0:01�� � 0:08�2� (56)

Cm = 0:12 + 1:25�+ 3:64�2 + 3:18�3 + 1:55��2 + 0:91�2�2 (57)

Cn = 1:75� � 0:16�� � 1:80�2� (58)

Clp = 0 (59)

Cmq
= �0:010� 1:021��2 � 3:960�2�2 � 4:031�3�2 (60)

Cnr
= 0:06� ��0:35�2� � 4:06�2�3 � 0:43�3� � 8:21�3�3 (61)

Substituting the above expressions in Eqs. (53)-(55) yields:
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f1(x) =
(Ixx � Iyy + Izz) Ixz

I� pq +
(Iyy � Izz) Izz � I2

xz

I� qr+

+
Izz
I�

�
0:01 + 0:01�� 0:08�2

�
��qeSd+

Ixz
I�

�
1:75� 0:16�� 1:80�2

�
��qeSd+

+
Ixz
I�

�
0:06� 0:35�2 � 4:06�2�2 � 0:43�3 � 8:21�3�2

�
�
rd

Ve
�qeSd

(62)

f2(x) =
Ixz
Iyy

�
r2 � p2

�
+
Izz � Ixx
Iyy

pr+

+
1
Iyy

�
0:12 + 1:25�+ 3:64�2 + 3:18�3 + 1:55��2 + 0:91�2�2

�
�qeSd+

+
1
Iyy

�
�0:010� 1:021��2 � 3:960�2�2 � 4:031�3�2

� qd
Ve

�qeSd

(63)

f3(x) =
(Ixx � Iyy) Ixx + I2

xz

I� pq +
(�Ixx + Iyy � Izz) Ixz

I� qr+

+
Ixz
I�

�
0:01 + 0:01�� 0:08�2

�
��qeSd+

Ixx
I�

�
1:75� 0:16�� 1:80�2

�
��qeSd+

+
Ixx
I�

�
0:06� 0:35�2 � 4:06�2�2 � 0:43�3 � 8:21�3�2

�
�
rd

Ve
�qeSd

(64)

Finally, Eqs. (62)-(64), together with Eqs. (40)-(46) mapped on Eq. (13) gives us:0BBBBBBBB@

_p
_q
_r
_�
_�
_�

1CCCCCCCCA
= Ap

0BBBBBBBB@

p

q

r

�

�

�

1CCCCCCCCA
+ Bp

0B@ MT;x

MT;y

MT;z

1CA (65)

Here,

Ap =

2666666664

app 0 apr 0 ap� 0
aqp aqq aqr aq� 0 0
arp 0 arr 0 ar� 0
a�p a�q a�r 0 0 0
a�p 0 a�r 0 0 0
a�p 0 a�r 0 0 0

3777777775
(66)

with

app =
(Ixx � Iyy + Izz) Ixz

I� q

apr =
(Iyy � Izz) Izz � I2

xz

I� q

ap� =
Izz
I�

�
0:01 + 0:01�� 0:08�2

�
�qeSd+

Ixz
I�

�
1:75� 0:16�� 1:80�2

�
�qeSd+

+
Ixz
I�

�
0:06� 0:35�2 � 4:06�2�2 � 0:43�3 � 8:21�3�2

� rd
Ve

�qeSd

aqp = �Ixz
Iyy

p

aqq =
1
Iyy

�
�0:010� 1:021��2 � 3:960�2�2 � 4:031�3�2

� �qeSd2

Ve
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aqr =
Ixz
Iyy

r +
Izz � Ixx
Iyy

p

aq� =
1
Iyy

�
0:12
�

+ 1:25 + 3:64�+ 3:18�2 + 1:55�2 + 0:91��2

�
�qeSd

arp =
(Ixx � Iyy) Ixx + I2

xz

I� q

arr =
(�Ixx + Iyy � Izz) Ixz

I� q

ar� =
Ixz
I�

�
0:01 + 0:01�� 0:08�2

�
�qeSd+

Ixx
I�

�
1:75� 0:16�� 1:80�2

�
�qeSd+

+
Ixx
I�

�
0:06� 0:35�2 � 4:06�2�2 � 0:43�3 � 8:21�3�2

� rd
Ve

�qeSd

a�p = � cos� tan�

a�q = 1

a�r = � sin� tan�

a�p = sin�

a�r = � cos�

a�p = �cos�
cos�

a�r = � sin�
cos�

and

Bp =

2666666664

Izz

I� 0 Ixz

I�

0 1
Iyy

0
Ixz

I� 0 Ixx

I�

0 0 0
0 0 0
0 0 0

3777777775
(67)

Note that the de�nition of Ap is only one out of more possible de�nitions, depending on how the coe�cients
are extracted from the functionals f and g.

Next, we need to set up the output equation of Eq. (29). Full state feedback requires that Cp(xp; t) is the
6x6 identity matrix. However, as the adaptive controller requires only three outputs to compute the three
thruster moments, per input-output channel the six states will be combined to improve the damping and the
performance of the closed-loop system. This is best done according to the optimal gain matrix K that follows
from solving the Algebraic Riccati Equation,8,12 yielding yp(t) = Cp(xp; t)xp(t) = K(xp; t)xp(t). In case
we neglect the smaller terms in K(xp; t) and put them to zero, the longitudinal and lateral motion will be
decoupled, which is allowed for the control-system design. That means that for complete state measurement
Cp(xp; t) changes to:

Cp(xp; t) =

264 Kpp 0 Kpr 0 Kp� Kp�

0 Kqq 0 Kq� 0 0
Krp 0 Krr 0 Kr� Kr�

375 (68)

In Fig. 3 the time history of the optimal gains is plotted. Note the change in angle-of-attack and sideslip-
related gains around t � 100 s. At this moment the dynamic pressure is su�ciently large to induce angle-
of-attack and angle-of-sideslip oscillations (see Fig. 2). With ever increasing dynamic pressure the thrusters
need to counteract growing aerodynamic moments, which requires larger thruster gains.
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Figure 3. Time history of the optimal gains for the roll (left), pitch (middle) and yaw (right) thrusters.

IV. Passivity Analysis

A. Linear System

As a �rst step in the analysis we consider an LTI version of the model given by Eqs. (37)-(46), to see
whether the LTI system ful�lls the ASPR requirements Eq. (11)-(12). Linearizing Eqs. (37)-(46) and
realizing that Ixz cannot be neglected with respect to Ixx; Iyy and Izz we obtain the following state-space
system of equations, where we have retained only the �rst derivatives of the aerodynamic moments:

� _x = Am�x + Bm�u (69)

with

Am =

2666666664

(Ixx�Iyy+Izz)Ixz

I� qe
(Ixx�Iyy+Izz)Ixz

I� pe + (Iyy�Izz)Izz�I2xz

I� re
(Iyy�Izz)Izz�I2xz

I� qe � � �
�2 Ixz

Iyy
pe + Izz�Ixx

Iyy
re 0 Izz�Ixx

Iyy
pe + 2 Ixz

Iyy
re � � �

(Ixx�Iyy)Ixx+I2xz

I� qe
(Ixx�Iyy)Ixx+I2xz

I� pe + (�Ixx+Iyy�Izz)Ixz

I� re
(�Ixx+Iyy�Izz)Ixz

I� qe � � �
0 1 0 � � �

sin�e 0 � cos�e � � �
� cos�e 0 � sin�e � � �

� � � 0
�
Izz

I�
@Cl

@� + Ixz

I�
@Cn

@�

�
�qeSd 0

� � � 1
Iyy

@Cm

@� �qeSd 0 0

� � � 0
�
Ixz

I�
@Cl

@� + Ixx

I�
@Cn

@�

�
�qeSd 0

� � � 0 0 0
� � � 0 0 0
� � � 0 0 0

37777777775
(70)

and Bm = Bp, see Eq. (67). The nominal angular velocities pe; qe and re are derived from the requirement
_� = _� = _� = 0�, i.e.,

pe = c1 sin�e + c2 cos�e (71)

qe =
Le
mVe

� ge
Ve

cos e cos�e (72)
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Figure 4. Eigenvalues for the longitudinal motion (top) and lateral motion (bottom). Evaluation done for
discrete time points.

re = �c1 cos�e + c2 sin�e (73)

with c1 = ge

Ve
cos e sin�e and c2 = Le

mVe
tan e sin�e.14

To have some more insight in the system at hand, in Fig. 4 the variation of eigenvalues of the entry
capsule has been plotted as a function of ight time. It is clear that the open-loop longitudinal motion of the
linearized system is marginally unstable right from the moment the capsule is entering the atmosphere. With
decreasing Mach number the eigenvalues become more positive, although not so much. The lateral motion
consists of a lightly damped oscillatory motion and two aperiodic motions that are marginally unstable.
Summarized, this type of open-loop behavior should not pose any problems for any attitude controller.

Checking for CpBp > 0 con�rms that for the output matrix Eq. (68) this condition is ful�lled throughout
the ight (i.e., the non-symmetric matrix product is diagonizable). Also the zero dynamics is stable, see
Fig. 5. It is shown that the real part of the zero dynamics is negative, although it becomes less negative
towards the end of the ight. The erratic behavior is due to the relatively abrupt angle-of-attack excursions,
see also Fig. 2. So, in conclusion, since the LTI ful�lls both su�cient conditions it is ASPR with the current
de�nition of the output matrix.

For the current analysis we have recalculated the optimal gain matrix K(xp; t) for each time point.
However, a simple analysis shows that if we keep the gain matrix (and thus Cp(xp; t)) constant, the LTI
system is still ASPR. This means that the selection of the proper output matrix is not so critical, although
the right combination of angular rate and attitude angles should be taken. On the other hand, if we would
only feed back the angular rates the zero dynamics is only partially stable, which means that the LTI system
is not always ASPR. Finally, if only the attitude angles are fed back the system is not ASPR.

B. Non-Linear System

For the analysis of the non-linear system, we will use again the output matrix Eq. (68), which led to
CpBp > 0 for the LTI system. To check the stability of the zero dynamics, Eq. (21), we need to de�ne the
matrices Nn�m;n and Mn;n�m, such that the equalities of Eq. (19) are ful�lled. With 6 states (n = 6) and
3 RCS control moments (m = 3), Eq. (19) is fully written out as:
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Figure 5. Zero dynamics for the LTI system (n=6, m=3), evaluated at discrete time points: the imaginary
pair (left) with the time history of the real part (middle), and the real component versus time (right).

264 n11 n12 n13 n14 n15 n16

n21 n22 n23 n24 n25 n26

n31 n32 n33 n34 n35 n36

375
2666666664

m11 m12 m13

m21 m22 m23

m31 m32 m33

m41 m42 m43

m51 m52 m53

m61 m62 m63

3777777775
=

264 1 0 0
0 1 0
0 0 1

375 (74)

264 c11 0 c13 0 c15 c16

0 c22 0 c14 0 0
c31 0 c33 0 c34 c36

375
2666666664

m11 m12 m13

m21 m22 m23

m31 m32 m33

m41 m42 m43

m51 m52 m53

m61 m62 m63

3777777775
=

264 0 0 0
0 0 0
0 0 0

375 (75)

264 n11 n12 n13 n14 n15 n16

n21 n22 n23 n24 n25 n26

n31 n32 n33 n34 n35 n36

375
2666666664

b11 0 b13

0 b12 0
b31 0 b33

0 0 0
0 0 0
0 0 0

3777777775
=

264 0 0 0
0 0 0
0 0 0

375 (76)

In the above equations we have adapted the notation bij and cij to indicate the non-zero elements of Bp

and Cp, respectively. With these 27 equations 36 coe�cients have to be derived, which means that we have
9 extra degrees of freedom. So, we need to (cleverly) assume values for 9 coe�cients before we can derive
the remaining 27. This is not a trivial task, since not every combination that we tried resulted in a solution
for the 27 coe�cients. Below, we will summarize the approach that we followed to reach the �nal solution.

We begin with Eq. (76), since due to the many zero coe�cients in Bp it is relatively easy to isolate some
nij . The individual scalar equations read:

n11b11 + n13b31 = 0 (77)

n12b22 = 0 (78)

n11b13 + n13b33 = 0 (79)
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n21b11 + n23b31 = 0 (80)

n22b22 = 0 (81)

n21b13 + n23b33 = 0 (82)

n31b11 + n33b31 = 0 (83)

n32b22 = 0 (84)

n31b13 + n33b33 = 0 (85)

From Eqs. (78), (81) and (84) it automatically follows that n12 = n22 = n32 = 0. Eq. (77) yields
n11 = � b31b11n13 and substituted in Eq. (79) gives�

�b31b13
b11

+ b33

�
n13 = 0 (86)

This results in n13 = 0, and thus also n11 = 0. Similarly, we �nd also that n21 = n23 = n31 = n33 = 0.
Eq. (75) written out gives:

c11m11 + c13m31 + c15m51 + c16m61 = 0 (87)

c11m12 + c13m32 + c15m52 + c16m62 = 0 (88)

c11m13 + c13m33 + c15m53 + c16m63 = 0 (89)

c22m21 + c24m41 = 0 (90)

c22m22 + c24m42 = 0 (91)

c22m23 + c24m43 = 0 (92)

c31m11 + c33m31 + c35m51 + c36m61 = 0 (93)

c31m12 + c33m32 + c35m52 + c36m62 = 0 (94)

c31m13 + c33m33 + c35m53 + c36m63 = 0 (95)

Assuming that m21 = 1, m22 = 0 and m23 = 1, Eqs. (90)-(92) give us m41 = � c22c24 , m42 = 0 and
m43 = � c22c24 . From the remaining 6 equations we can solve m32;m33;m51;m53;m61 and m62, once we
assume values for the remaining 6 mij , i.e., m11 = m12 = m13 = m31 = m52 = m63 = 1. The �nal result for
M is now:

M =

2666666664

1 1 1
1 0 1
1 � c11c36�c16c31+c15c36�c16c35

c13c36�c16c33 � c11c35�c15c31�c15c36+c16c35
(c13c35�c15c33

� c22c24 0 � c22c24
� c11c36�c16c31+c13c36�c16c33

c15c36�c16c35 1 c11c33�c13c31�c13c36+c16c33
c13c35�c15c33

c11c35�c15c31+c13c35�c15c33
c15c36�c16c35

c11c33�c13c31�c13c35+c15c33
c13c36�c16c33 1

3777777775
(96)

With the above found values for nij (= 0), with i = 1,2,3 and j = 1,2,3, and all mij with i = 1,...,6 and
j = 1,2,3, Eq. (74) reduces to

n14m41 + n15m51 + n16m61 = 1 (97)

n15 + n16m62 = 0 (98)

n14m43 + n15m53 + n16 = 0 (99)

n24m41 + n25m51 + n26m61 = 0 (100)

n25 + n26m62 = 1 (101)

n24m43 + n25m53 + n26 = 0 (102)
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n34m41 + n35m51 + n36m61 = 0 (103)

n35 + n36m62 = 0 (104)

n34m43 + n35m53 + n36 = 1 (105)

where we have kept some of the mij-notation for the sake of clarity.
These equations can be solved by groups of three, e.g., Eqs. (97)-(99) are three equations with three

unknowns n14, n15 and n16. After some manipulation we �nd for the complete N:

N =

2664
0 0 0 � m53�m62�1

m41(1�m61+m51�m62�m53�m62)
� m62
m61�m51�m62+m53�m62�1

1
m61�m51�m62+m53�m62�1

0 0 0 � m51�m53�m61
m41(1�m61+m51�m62�m53�m62)

m61�1
m61�m51�m62+m53�m62�1 � m51�m53

m61�m51�m62+m53�m62�1

0 0 0 � m61�m51�m62
m41(1�m61+m51�m62�m53�m62)

m62
m61�m51�m62+m53�m62�1 � 1

m61�m51�m62+m53�m62�1

3775
(106)

where, for obvious reasons, we have again kept some of the mij-notation. It is noted that both M and N are
a function of the coe�cients cij (with i = 1,2,3 and j = 1,...,6). Because these coe�cients are time varying
- see Fig. 3 - both matrices are time varying.

Now that we have derived expressions for M and N, we need to check Eq. (21) for stable zero dynamics:

_z(t) =
�

_N(xp; t) + N(xp; t)Ap(xp; t)
�

M(xp; t)z(t)

= Zp(xp; t)z(t)
(107)

Evaluating for the complete trajectory the 3x3 matrix Zp at discrete time points, spaced by �t = 0.5 s
(where we have calculated _N by backward di�erencing) and calculating the eigenvalues gives us the plot of
Fig. 6. The eigenvalues are a mix of a real one and a complex pair, and sometimes three real eigenvalues.
They have in common that (mostly) the real parts are negative, hereby indicating stable zero dynamics.
Only a few points show a positive real part. Inspecting the time history of the real parts, we �nd that this
happens around t = 100 s, but then only for a few seconds, see Fig. 7. Analyzing the individual matrices
in Eq. (107) shows that the rapid change of N and thus large values for components of _N is the cause of
this. Since both M and N are a function of cij , which are actually the gain values of a controller for the
LTI system, this means that apparently the gains are changing rapidly. Going back to Fig. 3 con�rms this:
around t = 100 s the gains related to � and � indeed change signi�canly. As explained earlier, this is caused
by a(n) (sudden) increase in dynamic pressure, requiring larger thruster moments to counter possible large
aerodynamic moments.

Since the gains are here only used to get an output vector (see Eq. (68)) and the system is not so
sensitive to the particular values of the gains - note that the linear system with a constant gain matrix was
still ASPR - it seems that by changing the rate of change of the gains this problem can be �xed. However,
it may require a few iterations - we found that constant gains would not work for the non-linear system -
and therefore this is left as future work.

In conclusion, the current non-linear entry system ful�lls the passivity conditions so the use of Simple
Adaptive Control will lead to a stable controller con�guration. It is expected that only a minor e�ort is
required to correct the few (� 3) seconds of ight, where the passivity conditions are not met.

V. Example: Preliminary Control-System Design

To conclude the paper the preliminary design of the attitude controller for the non-linear entry capsule
is presented. For the nominal trajectory shown in Fig. 2 we will select two design points for which the
weighting matrices Tp and Ti (Eqs. (5) and (6)) will be setup by means of a step-response analysis (Section
V.A). Subsequently the controller performance is analyzed for the complete trajectory (Section V.B).

A. Control System

The general layout of the MRAC system is shown in Fig. 8. Five distinct elements can be identi�ed, namely
a Mission Management system providing, for instance, setpoints, the reference model, the adaptive-gain
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Figure 6. Eigenvalues for the zero-dynamics coe�cient matrix Zp(xp; t), evaluated at discrete time points for
the nominal entry trajectory.

Figure 7. Real parts of the eigenvalues of the zero-dynamics coe�cient matrix for a selected part of the ight.
The maximum (positive) value is about 60, and concerns a single datapoint.

algorithm, the feed-forward compensators and the actual plant (Apollo). The reference model is a linearised
state-space model of the entry capsule with decoupled longitudinal and lateral motion. For either motion
channel, the system is stabilised by a state-feedback controller. The adaptive algorithm is based on Eqs. (1)
through (9), and the corresponding weighting matrices will be determined during the design process. The
feed-forward compensators around reference model and plant each may have the same basic form. They take
the model control vector um and plant control vector up as input. However, in the current (preliminary)
design we will not include them.

The three elements of the MRAC system, i.e., reference model, adaptive algorithm and compensators
are all digitised using a zero-order hold discretisation scheme. The algebraic loops that are present in the
loop for the feed-forward compensator as well as for the feed-back control system are removed by adding
one-sample delays. The sample frequency for the controller has been put to 50 Hz.

1. Baseline design

Usually, the approach to come to a converged design is the following. For a number of trajectory points, a
state-space model is derived from the trimmed equilibrium state. For these linearised systems, an MRAC
system is designed and the performance is optimised by either manually tuning the controller parameters or
by applying an optimization technique. In case the weighting matrices Tp and Ti vary signi�cantly due to
the changing ight conditions, a(n) (linear) interpolation scheme between the related control-system designs
(read: weighting matrices) should be applied.

Currently, we want to apply MRAC to a non-linear entry capsule that has to y not only a nominal
entry, but also cope with uncertainties. Therefore, as an example we will present the results for two design
points using step responses. In the next Section V.B the performance for the complete trajectory will be
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Figure 8. Model Reference Adapive Control implementation for the entry capsule.

discussed, as well as the controller robustness against uncertainties in mission parameters, vehicle design and
environmental conditions.

Based on prior results,6 a linearised reference-model, stabilised by means of a linear state-feedback con-
troller (LQR) was designed with maximum allowable state deviations of ��max = 1�;��max = 2�;��max =
3�;�pmax = �qmax = �rmax = 2�=s. The maximum control e�ort is equal to the allowable ranges of the
control e�ectuators, the reaction-control thrusters. For now, these have been chosen to be: �MT;xmax

= 500
Nm, and �MT;ymax

= �MT;zmax
= 1,000 Nm. The resulting reference-model control law is given by

um = �Km(xc � xm) (108)

with Km being the LQR gain matrix and xc the commanded reference-model state, which follows from the
command generator (or guidance system).

As mentioned, the damping of the system can be improved by including the error derivatives in the
output error vector. The output errors for �, � and � become:

e� = K�(�m � �p) +K _�( _�m � _�p) (109)
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roll thrusters pitch thrusters yaw thrusters
element Tp Ti Tp Ti Tp Ti

ex 5 3 - - - -
ey - - 80 24 - -
ez - - - - 15 20
pm 10 3 - - 30 30
qm - - 30 24 - -
rm 4 3 - - 30 30
�m - - 30 24 - -
�m 2 3 - - 30 30
�m 10 3 - - 30 30

MT;xm
1 3 - - 7.5 5

MT;ym
- - 20 8 - -

MT;zm
0.3 0.5 - - 30 10

Table 1. Weighting matrices for the low dynamic pressure design point

e� = K�(�m � �p) +K _�( _�m � _�p) (110)

e� = K�(�m � �p) +K _�( _�m � _�p) (111)

However, when there is a strong coupling between the three axes of motion, it is not possible to assign
just a single error to a corresponding actuator, e.g., a yaw-thruster yields both a roll and a yaw moment
due to the inertia coupling. This means that the errors should be blended together. A fairly simple way
of blending would be to use the gain matrix Km, like we did for the passivity analysis (Eq. (68)), since it
is computed by using (linearised) information of the coupling between the axes (through Am and Bm). It
means that we require full (rigid-body) state information about the plant, i.e.,

yT
p = xT

p = (pp; qp; rp; �p; �p; �p)T (112)

Note that in case of the presence of, for instance, elastic modes, one could still base the output error on the
same rigid-body states, so full state knowledge would then not be required. Concluding, the output error
becomes

ey = Km(ym � yp) (113)

2. Step Responses

To design the control system, we select two design points and analyze the performance on the basis of
step responses. The �rst point is chosen at the entry interface of h = 220 km and V = 11 km/s, and is
characterized by a very low dynamic pressure. The atmosphere is very thin here, and for practical (control)
purposes we can assume this to be part of the exoatmospheric mission phase. Note that due to the large
velocity, the dynamic pressure will build up rapidly, resulting in large aerodynamic forces and moments. For
a �rst design, only diagonal weighting matrices will be used. Each of the three thruster controls has its own
set of matrices, which need to be tuned separately. The reference vector r in Eq. (1) has a dimension of 7
for roll and yaw control (the corresponding output error, i.e., ey;x or ey;z, and pm, rm, �m, �m, MT;xm

and
MT;zm

), and 4 for pitch control (ey;x, qm, �m and MT;ym
). The applied (not optimised) weighting factors

for the thrusters are listed in Table 1. Finally, the zero integral-gain values are chosen to be 0.1 for the error
terms and 0.01 for the others. The �i values are taken to be 0.1, but only for the error terms.

As test for the controller performance, we de�ne a simultaneous step function for the angle of attack
(��step = 1�) and bank angle (��step = 2�), whereas for the angle of attack and angle of sideslip we assume
errors in the initial condition of ��0 = 0:5� and ��0 = 1�. The initial angular rates are put to the trim
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(a) Attitude-angle history.
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(b) Thruster moments.

Figure 9. Low dynamic-pressure design point.

values that provide _� = _� = _� = 0. The resulting attitude-angle response is shown in Fig. 9(a). It is obvious
that the response is smooth and well-damped, without much overshoot. In Fig. 9(b) the corresponding
thruster moments are plotted.

The second design point is one with a high dynamic pressure, i.e., around �q = 20,000 N/m2, notably the
conditions at t = 180 s. The selected values for the weighting matrices are listed in Table 2. As before, the
zero integral-gain values are chosen to be 0.1 for the error terms and 0.01 for the others. The �i values are
taken to be 0.1, again only for the error terms. With a similar step function for the bank angle (��step = 2�),
and errors in the initial conditions of ��0 = 1� and ��0 = 1�, the response of the attitude angles is shown
in Fig. 10(a). The response of the angle of attack has become very fast. This is due to the fact that the entry
capsule is stable around its trim attitude, and the initial error forces the capsule back to this trim condition.
The aerodynamic moment is in this case aiding the control. However, without control this motion would
become oscillatory, albeit quite well damped. The control system improves the damping and suppresses
the oscillatory motion. Note that applying a step function on the angle of attack would mean forcing the
capsule away from its trim equilibrium. Since the aerodynamic moments will become large, even for small
deviations from the trim attitude, it would require very large thruster moments to sustain this step. The
current thrusters are by no means powerful enough. Finally, the small-amplitude angle-of-sideslip oscillation
is a sensitivity in the control system that is normally �ltered out, either by a �lter on the error input channel,
or by the �nite step-accuracy (i.e., discretization) of the actuators. In Fig. 10(b), the corresponding thruster
moments are shown.

B. Results

1. Nominal Mission

Using the weighting matrices that were established during the control-system design in the previous section,
and using linear interpolation as a function of dynamic pressure, we will simulate now the complete trajectory
(see Fig. 2 for the reference trajectory). From an uncontrolled entry simulation we see that despite the natural
trim attitude, there appear high-frequency oscillations (Fig. 11) in case there are only small errors in the
initial conditions. One of the objectives for the control system is to suppress these oscillations. Looking
at the results of the controlled entry, i.e., the nominal mission, we see that indeed the oscillations are gone
(Fig. 12(a) and Fig. 12(b)). It is clear that at some point (t � 235 s), when the capsule becomes less
aerodynamically stable, the pitch thrusters saturate. However, the attitude motion remains very smooth.
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roll thrusters pitch thrusters yaw thrusters
element Tp Ti Tp Ti Tp Ti

ex 20 80 - - - -
ey - - 5 2.5 - -
ez - - - - 0.011 0.011
pm 40 20 - - 0.55 0.55
qm - - 50 25 - -
rm 40 40 - - 0.11 0.11
�m - - 100 25 - -
�m 60 100 - - 0.55 0.44
�m 100 40 - - 0.55 0.44

MT;xm
20 20 - - 0.022 0.022

MT;ym
- - 1 0.5 - -

MT;zm
10 10 - - 0.022 0.022

Table 2. Weighting matrices for the high dynamic pressure design point

2. Sensitivity Analysis

For the (limited) sensitivity analysis we will consider two cases, i.e., a Monte Carlo analysis to get a picture
of the overall performance and a single run with a selected set of maximum dispersions in the initial attitude
and angular rates to get a feeling of the actual controller response. In all cases we run the simulations for
60 s, which covers an altitude range of about 100 km. When doing the Monte-Carlo runs, sampling the
initial-condition errors from a uniform distribution with the attitude errors 2 [�5; 5]� and the angular-rate
errors 2 [�5; 5]�/s, it appeared that there are quite some combinations of errors that resulted in controls
oscillating between the minimum and maximum values. So, for these errors the weighting matrices need to
be re-tuned, possibly through an optimization process. This remains to be done as future work. To show
some results we will reduce the maximum initial-condition errors to [�3; 3]� and [�1; 1]�/s, and will also
include a -5% to 5% error on the inertia properties, Ixx, Iyy, Izz and Ixz. A total of 200 runs will be executed.

To get an indication of the performance we de�ne 6 performance metrices:

X
�err

=

tZ
0

q
(�c � �p)2dt

X
�err

=

tZ
0

q
(�c � �p)2dt

X
�err

=

tZ
0

q
(�c � �p)2dt (114)

X
x

=

tZ
0

jMT;xj dt
X
y

=

tZ
0

jMT;yj dt
X
z

=

tZ
0

jMT;zj dt (115)

These metrices are the integrated state deviation (attitude angles) and the integrated control e�ort. It is
obvious that these metrices should all be as small as possible.

To begin with the single run, we have de�ned ��0 = 3�, ��0 = �3�, ��0 = 3�, �p = �1�/s, �q = �1�/s
and �r = 1�/s. The corresponding responses and thruster moments are shown in Fig. 13(a) and Fig. 13(b),
respectively. The responses are smooth, and well within the range of the RCS thrusters. For reference,
the shown responses give numerical values of these metrices of

P
�err

= 3.57�s,
P
�err

= 7.70�s,
P
�err

= 7.52�s,P
x

= 146:2 Nms,
P
y

= 488:3 Nms and
P
z

= 341:1 Nms. Note that although the curves are shown for the

interval 0-20 s, the metrices have been calculated for the full 60 s of simulation.
Finally, the results of the Monte-Carlo runs are shown in Fig. 14. From the results it can be concluded

that the metrices are in the same order of magnitude as those for the single run (in fact, the mean value is
somewhat smaller). This leads to believe that the individual responses will be similar, which is an acceptable
result. Of course, more simulations need to be done as well as a more detailed analysis of the results. This
remains to be done as future work.
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(a) Attitude-angle history.
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Figure 10. High dynamic-pressure design point.
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Figure 11. Attitude-angle history for an uncontrolled entry, with errors in the initial pitch and yaw rate of
0.25�/s.

VI. Conclusions and Recommendations

In this paper, the stability properties for a control-system design based on Simple Adaptive Control
theory are studied for a non-linear and non-stationary entry capsule. Even though previous implementations
for winged re-entry vehicles have been successful without theoretical stability analysis, an e�ort was made to
obtain the analytical expressions that would allow the test of the su�cient passivity conditions that guarantee
the robustness of system stability. The conclusion of this work is that the ASP conditions are satis�ed for
the non-linear system. As these are su�cient conditions, one can therefore safely use the adaptive controller.

Subsequently, the preliminary design of a control system for the entry capsule using reaction-control
thrusters around each of the three axes is discussed. The two designs for both a low and a high dynamic-
pressure operating condition show an excellent performance. Each design uses its own controller parameters
(i.e., weighting matrices, zero integral gain and integral-gain �lter parameter), which necessitates the use of
an interpolation scheme once a trajectory with changing operating conditions is own.

The nominal mission (entry at 220 km altitude with a velocity of 11 km/s, and �nal conditions at Mach
= 1) can be own without any di�culty. The angle-of-attack command is provided by a trim law, and
although some deviations are observed when the capsule becomes less aerodynamically stable, this deviation
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Figure 12. Nominal-mission results.

does not diverge in spite of the pitch-thruster saturation. The response due to errors in the initial attitude
and angular rate shows smooth curves in both attitude motion and thruster controls. A Monte-Carlo analysis
that includes errors in the initial attitude, angular rate and inertia properties shows similar results, and it
can be concluded that the performance of the controller given the current dispersions is satisfying.

Due to the changing gains when the dynamic pressure starts building up, there is a brief period of about
3 seconds where the passivity conditions are not met, because these gains are used in the output de�nition
of the entry capsule. By changing the rate of change of the gains this problem can be �xed, although it
may require a few (analysis) iterations. This will have to be the �rst step in the (on-going) research about
stability of non-linear entry systems. Concerning the control-system design, future work aims at �ne tuning
the controller parameters, possibly through some optimization process, and to include more error sources
in the sensitivity analysis. The design of a guidance system, �nally, will enable a complete analysis of a
guidance and control system for re-entry-capsules.

Acknowledgments

I would like to thank Itzhak Barkana for his insight and the many discussions that we have had about
Simple Adaptive Control in general, and about stability of non-linear systems in particular.

References

1Barkana, I., "Classical and Simple Adaptive Control for Non-Minimum Phase Autopilot Design", Journal of Guidance,
Control, and Dynamics, Vol. 24, No. 4, pp. 631-638, July-August 2004.

2Kaufman, H., Barkana, I. and Sobel, K., Direct adaptive control algorithms: Theory and applications, Second edition,
Springer-Verlag, New York, 1998.

3Barkana, I., Output Feedback Stabilizability and Passivity in Nonstationary and Nonlinear Systems, International Jour-
nal of Adaptive Control and Signal Processing, Vol. 24, No. 7, pp. 568-591, July 2010 (Published on-line 3 November 2009).

4Mehiel, E.A. and Balas, M.J., "Adaptive Control for a Deployable Optical Telescope", AIAA-04-5222, From: AIAA
Guidance, Navigation, and Control Conference, Providence, RI, August 16-19, 2004.

5Mooij, E., "Model Reference Adaptive Guidance for Re-entry Trajectory Tracking ", AIAA-04-4775, From: AIAA
Guidance, Navigation, and Control Conference, Providence, RI, August 16-19, 2004a.

6Mooij, E., "Simple Adaptive Bank-Reversal Control of a winged Re-entry Vehicle ", AIAA-04-4869, From: AIAA Guid-
ance, Navigation, and Control Conference, Providence, RI, August 16-19, 2004b.

7Mooij, E., Robustness Analysis of an Adaptive Re-entry Guidance System", AIAA-05-6146, AIAA Guidance, Navigation,
and Control Conference, San Francisco, CA, August 15-18, 2005.

8Mooij, E. and Barkana, I., "Theoretical Stability Analysis of Simple Adaptive Control for a Winged Re-entry Vehicle",
AIAA-06-6417, From: AIAA Guidance, Navigation, and Control Conference, August 21-24, 2006, Keystone, CO.

9Barkana, I., "Comment on Design of Strictly Positive Real Systems Using Constant Output Feedback", IEEE Transac-
tions on Automatic Control, Vol. 49, No. 11, November 2004.

23 of 25

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 T

E
C

H
N

IS
C

H
E

 U
N

IV
E

R
SI

T
E

IT
 D

E
L

FT
 o

n 
Fe

br
ua

ry
 2

8,
 2

01
3 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

1-
64

85
 



0 2 4 6 8 10 12 14 16 18 20
−23

−22

−21

−20

−19

time (sec)

an
gl

e 
of

 a
tta

ck
 (d

eg
)

0 2 4 6 8 10 12 14 16 18 20
−3

−2

−1

0

1

time (sec)

an
gl

e 
of

 s
id

es
lip

 (d
eg

)

 

 

0 2 4 6 8 10 12 14 16 18 20
108

110

112

114

time (sec)

ba
nk

 a
ng

le
 (d

eg
)

command
actual

(a) Attitude-angle history.

0 2 4 6 8 10 12 14 16 18 20
−200

0

200

400

600

time (sec)

M
T,

x (N
m

)

0 2 4 6 8 10 12 14 16 18 20
−1000

−500

0

500

1000

time (sec)

M
T,

y (N
m

)

0 2 4 6 8 10 12 14 16 18 20
−1000

−500

0

500

time (sec)

M
T,

z (N
m

)

(b) Thruster moments.

Figure 13. Combined errors in the initial conditions, single run.
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Figure 14. Performance metrices for the 200 Monte-Carlo runs.
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