




ST R U C T U R E - A WA R E B U I L D I N G M E S H S I M P L I F I C AT I O N

A thesis submitted to the Delft University of Technology in partial fulfillment
of the requirements for the degree of

Master of Science in Geomatics for the Built Environment

by

Vasileios Bouzas

June 2019



Vasileios Bouzas: Structure-aware Building Mesh Simplification (2019)
cb This work is licensed under a Creative Commons Attribution 4.0 International
License. To view a copy of this license, visit
http://creativecommons.org/licenses/by/4.0/.

The work in this thesis was made in the:

3D geoinformation group
Department of Urbanism
Faculty of Architecture & the Built Environment
Delft University of Technology

Supervisors: Dr. Liangliang Nan
Dr. Hugo Ledoux

Co-reader: Dr. Ravi Peters

http://creativecommons.org/licenses/by/4.0/


A B ST R A C T

In recent years, there is an ever-increasing demand — both by industry and academia
— for 3D spatial information and especially, for 3D building models. One of the
ways to acquire such models derives from the combination of massive point clouds
with reconstruction techniques, such as Ball Pivoting and Poisson Reconstruction.
The result of these techniques is the representation of individual buildings or entire
urban scenes in the form of surface meshes — data structures consisting of vertices,
edges and faces.

Despite their usefulness for visualization purposes, the high complexity of these
meshes, along with various geometric and topological flaws, stands as an obstacle
to their usage in further applications, such as simulations and urban planning. To
address the issue of complexity, the production of lightweight building meshes can
be achieved through mesh simplification, which reduces the amount of faces used in
the original representations. Moreover, simplification methods focus on conforming
the resulting mesh to the original one, in order to minimize the differences between
the two of them. As a consequence, simple and accurate building models are possible
to be acquired, whose geometric and topological validity is yet questionable.

In this thesis, we introduce a novel approach for the simplification of building
models, which results into a more compact representation, free of topological defects.
The main characteristic of our method is structure awareness — namely, the recovery
and preservation, for the input mesh, of both its primitives and the interrelation-
ships between them (their configuration in 3D space). This awareness asserts that
the resulting mesh closely follows the original and at the same time, dictates the
geometric operations needed for its construction in the first place — thus providing
accuracy, along with computational efficiency.

Our proposed methodology is divided into three main stages: (a) primitive detection
via mesh segmentation, (b) storage of primitive interrelationships in a structure graph
and (c) simplification. In particular, simplification is accomplished here by approxi-
mating the primitive borders with a building scaffold, out of which a set of candidate
faces is defined. The selection of faces from the candidate set to form the simplified
mesh is achieved through the formulation of a linear binary programming problem,
along with certain hard constraints to ensure that this mesh is both manifold and
watertight.

Experimentation reveals that our simplification method is able to produce simpler
representations for both closed and open building meshes, which highly conform to
the initial structure and are ready to be used for spatial analysis. Additionally, a fairly
good approximation of a given mesh is possible to be obtained within reasonable
execution times, regardless of the initial noise level or topological invalidity. Finally,
a comparative analysis shows that the accuracy of our method stands in parallel
with that of other available simplification techniques.

v





A C K N O W L E D G E M E N T S

I would like to express my gratitude to my first mentor, Dr. Liangliang Nan, for his
continuous and constant support during this graduation project. Special thanks also
to Dr. Hugo Ledoux for his very helpful suggestions on the project and assistance
with all sorts of university practicalities. Finally, many thanks to Dr. Ravi Peters and
Dr. Marjolein Spaans for their comments.

During my studies, my family was always here with me, despite the distance between
us. Given that, I honestly think that there is not enough space in this thesis to even
slightly describe how important that fact was to me. As for my friends, old and new
ones, I believe that thanking them is just a waste of my time, since I did warn them
from the start what they were getting into — now, why they still consider me as
their friend remains a great mystery to me...

vii





C O N T E N T S

1 introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Thesis overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 related work 7

2.1 Mesh reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Building mesh reconstruction . . . . . . . . . . . . . . . . . . . . 7

2.1.2 Building mesh regularization . . . . . . . . . . . . . . . . . . . . 8

2.1.3 Urban scene reconstruction . . . . . . . . . . . . . . . . . . . . . 9

2.2 Mesh simplification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Quadric error metrics . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2 Structure-aware mesh decimation . . . . . . . . . . . . . . . . . 12

2.2.3 Variational shape approximation . . . . . . . . . . . . . . . . . . 13

2.3 Building mesh simplification . . . . . . . . . . . . . . . . . . . . . . . . 14

3 methodology 17

3.1 Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.1 Planarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.2 Region growing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Structure graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.1 Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.2 Importance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.3 Graph construction . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Simplification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.1 Building scaffold . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.2 Candidate faces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3.3 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 implementation 35

4.1 Programming specifics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1.1 Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1.2 Structure graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1.3 Simplification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 Parameter tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5 results & analysis 43

5.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.2.1 Topological validity . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.2.2 Error analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2.3 Memory & Execution time . . . . . . . . . . . . . . . . . . . . . 48

5.2.4 Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6 conclusions 55

6.1 Research overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.2.1 Simplification or reconstruction? . . . . . . . . . . . . . . . . . . 56

6.2.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.3.1 Non-planar components . . . . . . . . . . . . . . . . . . . . . . . 58

6.3.2 Structure definition . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.3.3 Miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.4 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

a appendix 67

ix





L I ST O F F I G U R E S

Figure 1.1 Applications of 3D city models . . . . . . . . . . . . . . . . . . 1

Figure 1.2 Levels of detail . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Figure 1.3 Building model reconstruction . . . . . . . . . . . . . . . . . . 3

Figure 1.4 Surface mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Figure 1.5 Issues of building reconstruction . . . . . . . . . . . . . . . . . 4

Figure 1.6 Building model simplification . . . . . . . . . . . . . . . . . . . 4

Figure 1.7 Building model structure . . . . . . . . . . . . . . . . . . . . . . 5

Figure 1.8 Geometric defects . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Figure 1.9 Topological defects . . . . . . . . . . . . . . . . . . . . . . . . . 6

Figure 2.1 Polygonal surface reconstruction from point clouds . . . . . . 7

Figure 2.2 Plane-based surface regularization . . . . . . . . . . . . . . . . 8

Figure 2.3 Building model reconstruction from UAV images . . . . . . . . 8

Figure 2.4 Surface reconstruction from single-view images . . . . . . . . 8

Figure 2.5 Detection of planar regions in MVS meshes . . . . . . . . . . . 9

Figure 2.6 Image-based building regularization . . . . . . . . . . . . . . . 9

Figure 2.7 Large-scale structured urban reconstruction . . . . . . . . . . . 9

Figure 2.8 LOD generation for urban scenes . . . . . . . . . . . . . . . . . 10

Figure 2.9 Urban scene modelling from MVS meshes . . . . . . . . . . . . 10

Figure 2.10 Vertex pair contraction . . . . . . . . . . . . . . . . . . . . . . . 11

Figure 2.11 Quadric error metrics (QEM) . . . . . . . . . . . . . . . . . . . 12

Figure 2.12 Graph of proxies . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Figure 2.13 Structure-aware mesh decimation (SAMD) . . . . . . . . . . . 13

Figure 2.14 Non-consistent orientation . . . . . . . . . . . . . . . . . . . . . 13

Figure 2.15 Topological defects . . . . . . . . . . . . . . . . . . . . . . . . . 13

Figure 2.16 Variational shape approximation . . . . . . . . . . . . . . . . . 14

Figure 3.1 Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Figure 3.2 Principal component analysis . . . . . . . . . . . . . . . . . . . 18

Figure 3.3 k-ring neighbourhoods . . . . . . . . . . . . . . . . . . . . . . . 19

Figure 3.4 Halfedge data structure . . . . . . . . . . . . . . . . . . . . . . 19

Figure 3.5 Planarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Figure 3.6 Vertex and face planarity . . . . . . . . . . . . . . . . . . . . . . 20

Figure 3.7 Face normals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Figure 3.8 Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Figure 3.9 Segmentation refinement . . . . . . . . . . . . . . . . . . . . . . 24

Figure 3.10 Segmentation and architectural details . . . . . . . . . . . . . . 24

Figure 3.11 Region importance and face number . . . . . . . . . . . . . . . 25

Figure 3.12 Importance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Figure 3.13 Structure graph . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Figure 3.14 Adjacency preservation . . . . . . . . . . . . . . . . . . . . . . . 27

Figure 3.15 Building scaffold . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Figure 3.16 Building scaffold and supporting planes . . . . . . . . . . . . . 28

Figure 3.17 Structure graph and building scaffold . . . . . . . . . . . . . . 29

Figure 3.18 Face coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Figure 3.19 2D arrangement . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Figure 3.20 Proxy mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Figure 3.21 Face confidence . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Figure 3.22 Sharp edges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Figure 3.23 Face selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Figure 3.24 Simplified mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

xi



xii list of figures

Figure 4.1 Plane update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Figure 4.2 Corners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Figure 4.3 Simplified corners . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Figure 4.4 Scaffold edges . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Figure 4.5 Edge splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Figure 4.6 Edge intersection . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Figure 4.7 Edge cross-split . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Figure 4.8 Polygon-polygon intersection . . . . . . . . . . . . . . . . . . . 40

Figure 4.9 Energy coefficients . . . . . . . . . . . . . . . . . . . . . . . . . 41

Figure 4.10 Importance influence . . . . . . . . . . . . . . . . . . . . . . . . 42

Figure 5.1 Simplification results . . . . . . . . . . . . . . . . . . . . . . . . 44

Figure 5.2 Consistent orientation . . . . . . . . . . . . . . . . . . . . . . . 47

Figure 5.3 Structure errors (segmentation) . . . . . . . . . . . . . . . . . . 48

Figure 5.4 Structure errors (optimization) . . . . . . . . . . . . . . . . . . 48

Figure 5.5 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Figure 5.6 Method comparison (338 faces) . . . . . . . . . . . . . . . . . . 51

Figure 5.7 Method comparison (134 faces) . . . . . . . . . . . . . . . . . . 51

Figure 5.8 Error analysis (338 faces) . . . . . . . . . . . . . . . . . . . . . . 52

Figure 5.9 Error analysis (134 faces) . . . . . . . . . . . . . . . . . . . . . . 52

Figure 5.10 Proxy comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Figure 5.11 Method comparison (73 proxies) . . . . . . . . . . . . . . . . . 53

Figure 5.12 Error analysis (73 proxies) . . . . . . . . . . . . . . . . . . . . . 53

Figure 6.1 Curved components . . . . . . . . . . . . . . . . . . . . . . . . 59

Figure 6.2 Incomplete structure . . . . . . . . . . . . . . . . . . . . . . . . 59

Figure 6.3 Region projection . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Figure 6.4 Region projection and simplification . . . . . . . . . . . . . . . 60

Figure 6.5 By-products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61



L I ST O F TA B L E S

Table 5.1 Error analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Table 5.2 Mesh statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Table 5.3 Execution time . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

xiii





L I ST O F A LG O R I T H M S

Algorithm 1 Region growing with k-ring planarity . . . . . . . . . . . . . . 67

xv





A C R O N YM S

CGAL Computational Geometry Algorithms Library

HDS Halfedge Data Structure

LiDAR Light Detection And Ranging

LOD Level Of Detail

MRF Markov Random Field

MVS MultiView Stereo

OGC Open Geospatial Consortium

PCA Principal Component Analysis

QEM Quadric Error Metrics

RANSAC RANdom SAmple Consensus

RMS Root Mean Square

SAMD Structure-Aware Mesh Decimation

SfM Structure from Motion

UAV Unmanned Aerial Vehicle

VSA Variational Shape Approximation

xvii





1 I N T R O D U C T I O N

This chapter begins with a brief discussion on the motivation behind this graduation
project, as well as its relation to the field of Geomatics. Based on these facts, the
main research questions to be addressed in the project are defined. Finally, a general
overview of the thesis is presented in the last section.

1.1 motivation
In recent decades, there is an ever-increasing demand — both by academia and
industry — for 3D spatial information and especially, for 3D City models [Biljecki
et al., 2015]. The main reason behind this demand is that 3D data either provides a
much more enriched context for some applications — in comparison to the already
available 2D data — or makes the conduction of others possible. Applications, which
may benefit from the use of 3D data, vary from infrastructure planning, utility
management and 3D cadastre to solar potential estimation and visibility analysis
(see Figure 1.1).

Figure 1.1: Applications of 3D city models [Biljecki et al., 2015]

As a consequence of the above, 3D City models have been an objective of extensive
scientific research in all fields closely related to spatial information processing, Ge-
omatics included [Lancelle and Fellner, 2010; Jain et al., 2013; Billen et al., 2014].
In fact, interest in this particular type of spatial information has further increased
recently, since advances in modern technology allow the derivation of 3D models
from different acquisition techniques. Apart from architectural models and drawings
[Donkers et al., 2015; Yin et al., 2009; Lewis and Sequin, 1998], other methods —
such as photogrammetry and laser scanning [Süveg, 2003; Haala and Kada, 2010;
Veljanovski et al., 2011; Tomljenovic et al., 2015] — can also contribute to the pro-

1



2 introduction

duction of 3D models, based on the existence of any relevant 2D geoinformation or
independently.

This variety of methods and techniques results to the construction of City models
with a wide spectrum of different characteristics. These characteristics need to be
taken into consideration in order to decide which model type is actually suitable
for a certain kind of application. For example, in the case of spatial analyses such
as the estimation of the gross volume or insolation of buildings, accuracy is often
dependent on the Level Of Detail (LOD) of the model to be used [Biljecki et al.,
2018]. The term LOD refers to the level of abstraction of a model, in reference to its
real-world counterpart. According to the current standards by the Open Geospatial
Consortium (OGC), five different levels of detail can be defined for a given building
model (see Figure 1.2):

• LOD0: The 2D footprint of the building

• LOD1: A prismatic solid, resulting from the extrusion of the building footprint
in 3D space

• LOD2: A prismatic solid, enhanced with a simplified roof shape

• LOD3: An architecturally detailed model of the outer shell of a building

• LOD4: A detailed model of the building, including indoor features

Figure 1.2: Levels of detail [Biljecki et al., 2016]

Since the required LOD highly depends on each individual application, the production
of multiple LODs for the same building model is often needed. For the generation
of individual buildings or entire urban scenes for different LODs, a lot of techniques
are based on the integration of 2D data (such as building footprints) with 3D
point clouds [Awrangjeb and Lu, 2014; Commandeur, 2012; Xiong et al., 2014].
Nowadays, it is possible to acquire these clouds either by means of Light Detection
And Ranging (LiDAR) or aerial imagery, combined with Structure from Motion (SfM)
and MultiView Stereo (MVS) methods [Furukawa and Hernández, 2015].

Apart from combining them with 2D spatial information to derive city models, point
clouds have also been used separately to reconstruct building models and urban
scenes (see Figure 1.3). Various methods have been developed in the last decades
for the reconstruction of models from point clouds, two of them being Ball Pivoting
[Bernardini et al., 1999] and Poisson Reconstruction [Kazhdan et al., 2006]. The
reconstructed result is the representation of the original building in the form of
a surface mesh (see Figure 1.4). A surface mesh is the representation of a surface
consisting of vertices, faces and edges [Jonsson, 2016].

Although the quality of these meshes is sufficient for visualization purposes, still
it is not enough for other applications, such as urban planning and simulations
[Holzmann et al., 2017]. The main reasons for this are the following (see Figure 1.5):

• Semantic information: The most critical problem of reconstructed meshes is the
lack of semantic information, which is necessary for the estimation of building
energy demand, the cadastre or other applications. However, these meshes
are so complex (e.g. composed of a high number of faces or inconsistently
oriented components) that semantic information cannot be easily added to
them; editing is almost impossible.



1.1 motivation 3

(a) Aerial imagery (b) Point cloud

(c) Reconstructed model (d) With texture

Figure 1.3: Building model reconstruction

Figure 1.4: Surface mesh

• Large memory size: The main concept behind reconstruction techniques is the
fitting of a surface over a point cloud. This surface usually consists of a
high number of primitives, adding unnecessary complexity and redundant
information. Both this complexity and extra information incommode any
further processing of the resulting model.

• Missing information: There are also cases where parts of a model cannot be
reconstructed, due to incompleteness of the original point cloud. A usual cause
of this incompleteness is occlusion — a common phenomenon for urban scenes,
where the view to parts of a given scene is blocked by high objects, such as
buildings or vegetation.

• Noise / Undesired structures: Outliers in the original point cloud or flaws in
the reconstruction method used can result to defects in the final mesh (e.g.
self-intersecting parts or holes).



4 introduction

(a) Semantics (b) Missing information

(c) Noise / undesired structures

Figure 1.5: Issues of building reconstruction

To address these problems in building reconstruction, there are mainly two options.
The first one is to develop a mesh reconstruction method that deals with them
during the creation of the original models. However, the main drawback of this
approach is that in many cases, only the reconstructed model is publicly available
(e.g. mesh models on Google Earth) and the original data (imagery or point cloud)
is inaccessible.

The other option is mesh simplification. Surface mesh simplification is defined as the
process of reducing the number of faces used for the representation of a given model
[The Computational Geometry Algorithms Library (CGAL), 2018]. The result of this
process is the production of meshes composed of a few number of simple geometric
shapes, thus minimizing both complexity and memory requirements (see Figure 1.6).

(a) Original model (b) Simplified model

Figure 1.6: Building model simplification [Nan and Wonka, 2017]

In respect to the above, the goal of this project is to develop a methodology that
processes the surface mesh of a given building and transforms it into a simpler, piecewise-
planar mesh — a mesh with a smaller number of vertices, edges and faces than the
original one, which consists only of planar primitives.



1.2 research questions 5

1.2 research questions
Although a simpler presentation is much more efficient from a computational
perspective, a dramatic alteration in the characteristics of the original building model
(dimensions, volume etc.) will have a profound impact on the accuracy of any
analysis. Hence, one of the main requirements for mesh simplification is that the
simplified model should closely follow the structure of the original. Similar to the
work of Mitra et al. [2013], the notion of structure is also defined here as the ensemble
of the model primitives and their interrelationships:

• Primitives: This term refers to the individual components that compose a
building model (see Figure 1.7). In reality, these primitives correspond to parts
of the original building, such as walls, roof segments and other architectural
details.

• Interrelationships: Each primitive is connected to others through topological
relationships — in other words, their configuration in 3D space. For example,
a wall might be adjacent to another but at the same time, it is not associated
with the chimneys, lying on the roof.

Figure 1.7: Building model structure

Based on the motivation behind this project and the aforementioned definition of
structure, the main research question can be defined as follows:

Is it possible to obtain a simpler, compact representation of a building mesh, while
preserving the initial structure?

As it has already been mentioned in Section 1.1, reconstructed building models
have been used up until now primarily for visualization purposes, due to their
complexity. Complexity aside, geometric (Figure 1.8) and topological flaws (Figure
1.9) have also been a hindrance to the use of these models in applications, with
simulations being an example of them. The main reason is that simulation software
is usually developed on the assumption that the input model is free of these types
of inconsistencies. With respect to that, we set as an additional condition for our
simplified mesh that it should be free of any geometric and topological defects, so it
can be later used for other applications.

All additional requirements can be briefly summarized in the next research sub-
question:

• Can we ensure that the resulting mesh is free of topological defects?

Contrary to other techniques, which might require additional information (images,
point clouds etc.), we demand that the only input needed for our proposed methodol-
ogy should be the mesh model of a given building. Furthermore, this project focuses
on simplifying the geometry of a given model, without any use of texture; recovering
any semantic information on the model is out of the scope of this research. Finally,
our methodology will be based on the assumption that the input mesh comprises



6 introduction

only piecewise-planar objects, thus ignoring the simplification of any objects with
different geometry (cones, cylinders etc.).

(a) Hole & islands (b) Gap (c) (Self-)intersection (d) (Near) degeneracy

Figure 1.8: Geometric defects [Attene et al., 2013]

(a) Isolated elements (b) Singular edge (c) Singular vertex (d) Variable orientation

Figure 1.9: Topological defects [Attene et al., 2013]

1.3 thesis overview
The main content of this thesis extends in five chapters. Chapter 2 is an elementary
introduction to the scientific research related to this graduation project; in particular,
mesh reconstruction and simplification for building models and urban scenes.

In Chapter 3, the methodology proposed to address the research questions of this
project are overviewed and each individual processing step is analysed with the use
of an example mesh. Further details on the implementation of our methodology in
practice are provided in Chapter 4.

In Chapter 5, results are presented from the application of our proposed methodology
to other exemplary meshes. These results are used to reflect on the methodology,
first by examining them individually and afterwards, by comparing them with the
respective ones from other available methods.

The thesis concludes in Chapter 6. There, the degree, in which the research questions
have been addressed, is first discussed, followed by the contributions of our proposed
methodology to the current state of art. Then, the limitations of our methodology
are presented, which serve as the ground for the recommendation of some future
work.



2 R E L AT E D W O R K

In this chapter, the scientific research related to this graduation project is reviewed.
In particular, three different subjects are to be discussed in individuals sections:
mesh reconstruction, mesh simplification and building mesh simplification.

2.1 mesh reconstruction
As mentioned in Section 1.1, there are basically two approaches to address problems
that emerge from building mesh reconstruction, with the use of point clouds. The
first one is to develop a methodology that deals with these problems, either during
the original reconstruction or in a post-processing step by regularizing the model.
Regularization is the process of enforcing a mesh to conform to certain geometric or
topological constraints. An example of such a constraint could be that the vertices
belonging to a planar primitive of a given mesh should all lie on the same plane.

According to the above, it is possible to divide the various tecnhiques for building
mesh reconstruction into three main categories: (a) building mesh reconstruction, (b)
building mesh regularization and (c) urban scene reconstruction.

2.1.1 Building mesh reconstruction

An algorithm for polygonal surface reconstruction from SfM point clouds was intro-
duced by Nan and Wonka [2017]. The algorithm starts with the detection of planar
primitives in a given cloud, by means of RANdom SAmple Consensus (RANSAC) [Fis-
chler and Bolles, 1981; Schnabel et al., 2007]. Afterwards, the pairwise intersections
of theses planes are computed in order to produce a set of candidate faces — polygons
that might be used later for the construction of the model. The selection of valid
faces to form the resulting model is based on an energy optimization problem (see
Figure 2.1).

Figure 2.1: Polygonal surface reconstruction from point clouds [Nan and Wonka, 2017]

Holzmann et al. [2017] have also proposed a method for reconstructing plane-based
regularized 3D meshes from point clouds. At first, planes are detected with RANSAC

in the input cloud and the points are projected on them to minimize noise. After
that, the cloud is subdivided into tetrahedra, which are labelled with an energy
minimization problem as either inside or outside of the surface to be reconstructed.
Finally, the surface mesh is computed as the interface between sets of inside and
outside tetrahedra (see Figure 2.2).

7



8 related work

Figure 2.2: Plane-based surface regularization [Holzmann et al., 2017]

On the other hand, Li et al. [2016] have developed a method for the reconstruction of
building models, using point clouds generated with Unmanned Aerial Vehicle (UAV)
images. In this approach, the SfM input cloud is first segmented into clusters, repre-
senting objects of three classes: ground, building and tree. The clusters corresponding
to the building class are then processed for modelling individual structures. Specifi-
cally, a set of contours describing the roof structure of buildings are extracted and
then, regularized with the Douglas-Peucker algorithm. The reconstructed model is
finally produced by extruding these contours in the third dimension, with the use of
elevation information from the cloud (see Figure 2.3).

Figure 2.3: Building model reconstruction from UAV images [Li et al., 2016]

Another method for addressing issues of MVS meshes along the reconstruction step
was proposed by Bódis-Szomorú et al. [2015]. Its main objective is the reconstruction
of 3D meshes, by integrating a given SfM point cloud with single-view images. These
images are part of the imagery used to create the cloud in the first place. In the first
step, the cloud is decomposed in 3D point clusters in order to identify the individual
components. Afterwards, 2D meshes are derived from the imagery, by means of
Delaunay triangulation. To add the third dimension to these 2D meshes, an energy
optimization problem is formulated, based on the relevant information from the 3D
point clusters. A general overview of the methodology can be seen in Figure 2.4.

Figure 2.4: Surface reconstruction from single-view Images [Bódis-Szomorú et al., 2015]

2.1.2 Building mesh regularization

Contrary to the above, regularization methods focus on the reconstructed mesh,
rather than the reconstruction process itself. An example of such a method was
introduced by Jonsson [2016], where the input mesh is first decomposed into planar
segments via the formulation of a Markov Random Field (MRF) problem. After that,
the segmentation is gradually refined by merging different segments with a defined
set of criteria. At the end, the mesh is regularized by projecting the vertices on their
respective planar segment (see Figure 2.5)



2.1 mesh reconstruction 9

Figure 2.5: Detection of planar regions in MVS meshes [Jonsson, 2016]

Similar to the aforementioned methodology, Wang et al. [2016] have also developed
an algorithm for regularization of MVS meshes after reconstruction. In this case, the
original imagery is used to recover the sharp features of the given model with an
edge detection algorithm. These edges are the basis for the construction of a scaffold
that provides information about the structure of the original object. The regularized
result is achieved by enforcing the reconstructed model to conform to the scaffold
(see Figure 2.6).

Figure 2.6: Image-based building regularization [Wang et al., 2016]

Except for the original imagery and point cloud, additional data might be used
to regularize the reconstructed model. Kelly et al. [2017] have developed such a
method, based on complementary data. In particular, their method exploits three
different, available data sources: the reconstructed surface mesh of a building, the
street-level imagery of its facade and its 2D footprint. By combining these sources,
information describing the building geometry is extracted in three different forms: a
set of planar segments representing parts of the facade, a collection of line segments
forming profiles of the building and a group of edges consisting the ground plane.
The final model is produced by fusing these forms via optimization (see Figure 2.7).

Figure 2.7: Large-scale structured urban reconstruction [Kelly et al., 2017]

2.1.3 Urban scene reconstruction

Different methods have also been developed to address the reconstruction of entire
urban scenes for different LODs. Verdie et al. [2015] have demonstrated a method,
where the only input required is the reconstructed scene. At first, the given scene is



10 related work

semantically segmented via MRF into four classes: ground, tree, facade and roof. For all
LODs, ground is represented by a Delaunay triangulation. For LOD2 and lower levels,
buildings are approximated by detecting, regularizing and intersecting the planar
components from which they are defined.

The addition of architectural details (windows, chimneys etc.) for LOD3 building
models is based on two concepts: the construction of a height map and the process of
iconization. A height map is the depiction of how far two given meshes are from each
other — in literature, this distance is usually referred to as Hausdorff distance. On
the other hand, iconization depends on the definition of a set of geometric objects
(icons), whose dimensions are encoded into parameters. Using a height map, objects,
not included in the corresponding LOD2 approximation, are detected in the original
model. Then, the icon, whose geometry best describes the detected object, is adjusted
and then, added to the LOD2 model (see Figure 2.8).

Figure 2.8: LOD generation for urban scenes [Verdie et al., 2015]

Zhu et al. [2018] followed a similar approach for the reconstruction of large urban
scenes, for levels between LOD0 and LOD2. In the beginning, the semantic segmenta-
tion of the input scene is achieved by applying MRF on orthophotos, initially used to
reconstruct the scene itself. Similar to Verdie et al., the scene is decomposed again
into four different classes: ground, grass, tree and building. Each connected building
is then isolated from the rest of the scene and modelled separately. Assuming that
the building walls can be represented as vertical planar segments, candidate roof
segments are detected both on the reconstructed model and the orthophotos. Finally,
to model the roof, valid faces are selected via MRF formulation on a dual graph — a
graph where each vertex corresponds to a roof segment and each edge connects two
adjacent segments (see Figure 2.9).

Figure 2.9: Urban scene modelling from MVS meshes [Zhu et al., 2018]

The aforementioned techniques, along with all others described in this section, al-
low the reconstruction of regularized MVS building models and urban scenes, the
resulting meshes might still consist of a high number of faces, making their use in ap-
plications difficult. Moreover, some of them may also require additional data sources
(building footprints, imagery etc.), when, in most cases, only the reconstructed mesh
is accessible. Thus, to achieve a simpler, more compact representation for the same
building, based only on its MVS mesh, simplification is the other solution available.



2.2 mesh simplification 11

2.2 mesh simplification
Except for mesh reconstruction, mesh simplification can be also applied to address
the various issues in reconstructed models, as those discussed in Section 1.1. As
mentioned also in the same section, simplification is the process of reducing the
number of faces for a given mesh, while preserving its geometric, topological or
other properties.

Up until now, simplification methods have been mostly applied to produce lightweight
versions for any kind of model (building or not), mainly for visualization or anima-
tion purposes. In literature, the results of mesh reconstruction techniques — like
the ones described in Section 2.1 — are often compared to three main simplification
approaches: Quadric Error Metrics (QEM), Structure-Aware Mesh Decimation (SAMD)
and Variational Shape Approximation (VSA). These two approaches will be discussed
in this section.

2.2.1 Quadric error metrics

QEM is one of the most commonly used methods for simplification of polygonal
models. It was first introduced by Garland and Heckbert in 1997. This method is
based on pair contraction — namely, the selection and merge of vertex pairs. These
pairs are formed, either by two vertices connected with an edge or in a distance
smaller than a predefined threshold. In the former case, faces in the original mesh
become degenerate and are removed during contraction. In the latter, the pair
contraction forces two originally unrelated regions of the input mesh to be connected
(see Figure 2.10).

(a) Edge contraction (b) Non-edge contraction

Figure 2.10: Vertex pair contraction [Garland and Heckbert, 1997]

Furthermore, each vertex is associated with a cost value in order to decide which
vertex pairs should be contracted along the simplification process. This value is
derived, by considering the vertex as the intersection of all its incident triangles and
their corresponding planes. With the use of the parameters describing the incident
planes, a matrix is formed, which approximates the error of a vertex and thus, its
cost.

Based on the above, the main steps of QEM can be summarized as follows:

• Vertex pairs are detected in the original mesh, either by edge connection or a
distance threshold

• The error matrix (cost) of each vertex is calculated and thus, the error of all
vertex pairs

• The pair with the minimum cost is replaced by a new vertex and the costs of
all vertices and pairs are re-calculated

• The whole process is repeated till the number of mesh simplexes is reduced,
according to a threshold defined by the user

An example from the application of this method to a building model is shown in
Figure 2.11.



12 related work

(a) Original (27,258 faces) (b) Simplified (250 faces)

Figure 2.11: Quadric error metrics (QEM)

2.2.2 Structure-aware mesh decimation

Although QEM is useful for decreasing the initial complexity of a surface mesh, still
some of its characteristics, needed to be preserved afterwards (such as dimensions
or volume), may be severely altered, depending on the degree of simplification.
With respect to these problems, Salinas et al. [2015] further extended the aforemen-
tioned algorithm to handle cases of oversimplification, by contributing the following
elements:

• Structure awareness: To preserve the initial structure, the planar segments
composing the model are detected by means of mesh segmentation techniques,
such as region growing or RANSAC. Information on the primitives and their
exact configuration is stored in a graph of proxies, where every primitive is
represented with a vertex (see Figure 2.12). Additionally, two vertices of
the graph are connected with an edge, if their corresponding primitives are
adjacent to each other. Based on this graph, the simplification is then conducted
in iterations; after each one, the result is compared with the graph, in order to
verify that the number of primitives and their interrelationships are preserved.
If not, the simplification process is terminated.

Figure 2.12: Graph of proxies [Salinas et al., 2015]

• Boundary preservation: Contrary to the approach of Garland and Heckbert, the
method of Salinas et al. is based purely on edge, instead of pair, decimation,
while the edge error is approximated by two individual matrices. The first
defines the error of the triangles adjacent to a given edge, while the second
the boundary error of the planar segment to which the edge belongs. In this
way, the initial boundary of the model remains as intact as possible during
simplification.

Despite the improvement in the preservation of the initial structure by the method
of Salinas et al. (see Figure 2.13), some topological flaws may still be observed in the
simplified model:

• Non-consistent orientation: For a surface model to be valid, all of its faces must
have the same orientation; in other words, they must be defined by a sequence
of vertices, either in a clockwise or counter-clockwise order, when viewed from
the outside. Depending on the level of simplification, some wrongly oriented
faces may still appear in the resulting mesh (see Figure 2.14).



2.2 mesh simplification 13

(a) Original (27,258 faces) (b) Simplified (250 faces)

Figure 2.13: Structure-aware mesh decimation (SAMD)

(a) Original (b) Simplified (80% vertices preserved)

Figure 2.14: Non-consistent orientation

• Topological defects: Inconsistencies in the topology of the original mesh, such as
self-intersecting parts or holes, are preserved in various simplification stages
(see Figure 2.15).

(a) Intersection (Original) (b) Intersection (20% vertices preserved)

(c) Hole (Original) (d) Hole (20% vertices preserved)

Figure 2.15: Topological defects

2.2.3 Variational shape approximation

VSA has also become popular as a simplification technique, since it was first proposed
by Cohen-Steiner et al. in 2004. Similar to other methods, this one also depends
on first decomposing the initial mesh into planar segments. These segments are
represented by their supporting plane and in particular, its origin (a point in 3D



14 related work

space) and its normal (a 3D vector defining the orientation of the plane). Both the
origin and the normal can be computed with the application of Principal Component
Analysis (PCA) on the vertices belonging to each segment.

In a following step, the segments are approximated by a shape (proxy) in order to
construct the simplified mesh. As a basic requirement for any simplification method,
this set of proxies should be defined in a way that minimizes distortion — the
difference between the original and the simplified model. To quantify the distortion
for each proxy, several metrics have been formulated (like the error quadrics used in
QEM), some of which are members of the so-called L-metric family — the Hausdorff
distance (mentioned in Section 2.1) is one of these metrics. Out of this family, the L2

metric is the one most commonly used, recording the difference between a given
proxy and the projection of the original segment on that proxy.

However, VSA introduced a new L2,1 metric instead. This metric stands as an
indicator of the difference between the normal (orientation) of a mesh segment
and its corresponding proxy. This change in metrics can be justified, based on
two different facts. First, curvature variations can be detected easily, since higher
curvature translates into higher variation in local orientation. Furthermore, the
amount of computations is significantly decreased, due to the fact that only the
normals of segments are now required to evaluate the proxy error. So, rather
than relying on PCA which is computationally expensive, the segment normals are
computed by averaging the normals of the segment faces.

With the help of the L2,1 metric, the initial segmentation of the input mesh is
iteratively optimized till the overall distortion is minimum. The result of applying
VSA in a given mesh is shown in Figure 2.16. In general, this simplification method
produces better results in comparison to approaches such as QEM, which rely on
simplex removal (either vertices or edges). Nevertheless, the use of an iterative
process acts as a hindrance to its scalability, since the required processing time might
be three to twenty times longer [Cohen-Steiner et al., 2004].

(a) Original (27,258 faces) (b) Simplified (336 faces)

Figure 2.16: Variational shape approximation

2.3 building mesh simplification
The various methods, discussed in Sections 2.1 and 2.2, have as their main objective
either the regularization of MVS building meshes or the simplification of meshes,
in general. Nonetheless, various issues may occur by their application for the
production of building models.

With respect to reconstruction methods, some of them result in a regularized version
of the original model which still comprises a high number of faces, thus maintaining
the initial unnecessary information and complexity. Others may require additional
data (building footprints, imagery etc.), while this type of information is not always
accessible.



2.3 building mesh simplification 15

On the other hand, simplification approaches usually focus on the production of
lightweight meshes for general purposes (such as visualization and animation),
without paying attention to structure preservation. Especially in cases of oversim-
plification, where a concise representation with fairly low complexity is required,
alterations in structure might be significant. Furthermore, the resulting building
models may not be usable for other applications (spatial analyses, simulations etc.),
mainly due to geometric and topological distortions.

In this graduation project, we aim to the formulation of a methodology that produces
a simpler and more compact representation for a building model, while preserving
its initial structure as much as possible. At the same time, the resulting model should
be ready to be used for spatial analyses and not for visualization alone. Finally,
our approach should be also computationally efficient, allowing its integration in
techniques for the reconstruction of 3D City models.





3 M E T H O D O LO GY

The content of this chapter is the analysis of the methodology developed to address
the research questions of this graduation project (see Figure 3.1). Based on our
definition of structure, this methodology is divided into three main steps: (a) detection
of primitives via segmentation, (b) storage of primitive interrelationships in a structure
graph and (c) structure-aware simplification. The whole pipeline will be presented for
an example model, where each step is to be discussed in separate sections.

(a) Original mesh (b) Segmentation (c) Structure graph

(d) Candidate faces (e) Optimization (f ) Simplified model

Figure 3.1: Pipeline: The input MVS building mesh (a) is first decomposed into planar primi-
tives (b) and its structure is defined (c). Based on this definition, a set of candidate
faces is produced (d), which, by means of optimization (e), is used to construct the
simplified model (f).

3.1 segmentation
In the first step of our methodology, the planar components composing the input
mesh are identified with a new region growing algorithm, developed for the purposes
of this project and based on related work.

3.1.1 Planarity

As already mentioned in Sections 1.1 and 1.2, our methodology is based on the
assumption that the building mesh to be simplified is composed of planar compo-
nents alone. This assumption is introduced mainly for reasons of simplicity and can
be considered relatively valid for the majority of building types, encountered in a
typical urban environment. However and contrary to some reconstruction methods,
our methodology is not constrained by the Manhattan World assumption [Holzmann
et al., 2017], which states that each planar component needs to be also parallel to
one of the Cartesian axes. The main reason for this is that the embrace of such an
extreme approach, which further simplifies the problem, eventually prevents the

17



18 methodology

recovery of roof superstructures with inclined segments, often appearing in various
models.

Based on the above, our simplification process starts with identifying planar compo-
nents in the given mesh via mesh segmentation. As stated by Wu et al. [2017], the term
segmentation refers to the partition of a mesh into meaningful subparts. Of course,
what is considered as meaningful may differ from case to case. For our methodology,
we characterize as significant segments those planar regions that correspond to three
different classes of the original building parts: floor, facade and roof. Any architectural
details, such as windows or chimneys, are ignored. Due to the limited resolution of
MVS meshes, these objects are usually represented by a small amount of faces and
subsequently, cannot be approximated with a set of planar components [Verdie et al.,
2015].

Before proceeding to the segmentation itself, it is first needed to establish a parameter
that stands as an indicator of ”flatness”. This parameter should sufficiently describe
the mesh curvature at a local level, thus allowing the detection of curvature variations
which appear on the border of neighbouring planar segments. In this way, the
boundaries of individuals segments can be identified, as well as the mesh simplexes
(vertices, edges and faces) that belong to them.

In mesh segmentation, two indicators of ”flatness” are most commonly used, which
are, in fact, equivalent: curvature and planarity [Wu et al., 2017]. By definition,
curvature is equal to 0 for a straight line (or a plane in 3D space), while it approximates
1 for a circle (or a sphere in 3D space) of infinitesimal radius — for the planarity,
the values are exactly opposite in each case. Since these indicators basically express
the same notion (the degree of fitting a plane to a given set of points), the selection
between the two of them becomes trivial. In our case, planarity was chosen arbitrarily
as the basis for segmentation.

With that given, it is also necessary now to establish a method for computing
planarity. Either planarity or curvature, in meshes or point clouds, are usually
computed by means of PCA [Pauly et al., 2002]. This method can be applied to a
point cloud (or a mesh) by first defining a local neighbourhood for each point (or
vertex). Then, the centroid of each neighbourhood and the position vectors of all
points belonging to the neighbourhood are computed. Finally, a covariance matrix is
formed, based on these position vectors, and its eigenvalues are calculated. For 3D
space, this matrix has three unique eigenvalues, often denoted in literature as λ0, λ1
and λ2 in ascending order (see Figure 3.2).

(a) Local neighbourhood (b) Covariance ellipsoid

Figure 3.2: Principal component analysis [Pauly et al., 2002]

Computation of planarity (or curvature) can be accomplished using these eigenvalues.
There are different formulae and approximations for this task and for the purposes
of our methodology, the planarity p of a given mesh vertex is defined with Equation
3.1:

p = 1− λ0

λ1
, p ∈ [0, 1] (3.1)



3.1 segmentation 19

Furthermore, the concept of the local neighbourhood around a vertex also needs to be
defined explicitly. In the case of a mesh, this concept can be related with the notion
of the k-ring neighbourhoods [Gatzke and Grimm, 2006], both for vertices and faces.
For example, the 1-ring neighbourhood of a vertex consists of all vertices adjacent to it
— in other words, those which are connected with it through an edge. This notion
can be further extended to a 2-ring neighbourhood (which also includes the vertices
adjacent to those forming the 1-ring neighbourhood) and so forth (see Figure 3.3).

(a) 1-ring (b) 2-ring (c) 3-ring

Figure 3.3: k-ring neighbourhoods

It is possible to recover adjacent vertices by exploiting the Halfedge Data Structure
(HDS), a topological structure commonly used for mesh representation [Campagna
et al., 1998]. The main idea behind this representation is the concept of the halfedge,
an oriented edge connecting two vertices (originating and terminating vertex), along
with its double (opposite edge). For each halfedge, additional information is stored
about the halfedge terminating at the originating vertex (previous halfedge) and the
one originating from the terminating vertex (next halfedge). Every halfedge is also
adjacent to a unique mesh face, thus establishing complete connectivity between all
types of mesh simplexes (see Figure 3.4).

Figure 3.4: Halfedge data structure [The Point Cloud Librarty (PCL), 2018]

With the above, a pipeline is provided for the computation of planarity on all vertices
of a given mesh and for different k-ring neighbourhoods, if needed (see Figure 3.5).
By increasing the ring order and thus enlarging the neighbourhood of each vertex,
”flatness” can be estimated for extended mesh regions. As a consequence of that,
the borders between neighbouring planar regions are further enhanced, but the
processing time also increases dramatically, since PCA is computationally expensive
in general.

3.1.2 Region growing

Having established a method to estimate the mesh ”flatness” at a local level, we now
proceed to the analysis of the segmentation process itself, of which planarity is the
cornerstone. As mentioned before, the purpose behind this segmentation process is
the detection of planar regions in the original mesh, which serve later as the basis
for the definition of the structure and simplification.



20 methodology

(a) 1-ring planarity (b) 3-ring planarity

Figure 3.5: Planarity: In this figure, vertices of low planarity (close to 0) are coloured in blue,
while those of high planarity (close to 1) in red.

The first choice needed to be taken is the exact type of segmentation method to be
used. One of the most popular group of segmentation techniques is the region growing
algorithmic family [Wu et al., 2017; Fang et al., 2018; Vieira and Shimada, 2005].
These techniques are founded on the selection of mesh simplexes (either vertices or
faces) which are referred to as seeds. These seeds are the basis for the development of
regions — groups of simplexes that share some common characteristics. If a simplex
— of the same type as of the seed — conforms to the criteria of a specific region, it
is included in it and subsequently, each region grows till no more simplexes can be
added to it.

In our methodology, it is decided that segmentation is to be performed over the
mesh faces, not the vertices. The main reason behind this decision is that borders of
planar regions comprise vertices and edges, thus faces are the only simplexes able to
be classified definitely to one region or another. However, this approach causes a
problem; since planarity is computed for vertices as mentioned in subsection 3.1.1,
it is needed to transfer this property to the faces of the mesh in order to perform
segmentation. To solve this inconsistency, it is chosen that each face should inherit
as planarity the average planarity of its vertices. A comparison between vertex and
face planarity, following this approach, is shown in Figure 3.6.

(a) Vertex planarity (b) Face planarity

Figure 3.6: Vertex and face planarity: As in Figure 3.6, simplexes of low planarity are coloured
in blue, while those of high planarity in red (3-ring neighbourhood). Notice that
any difference between the two states is minor and does not significantly alter the
result.

In accordance to the above, our segmentation process starts with first detecting
the face with the highest planarity. This choice is made due to the fact that the
”flatness” of its surroundings indicates that this face is probably located at the centre
of a planar region we wish to detect. Using that face as a seed, we then check its
neighbouring faces in order to further expand the new region we initialized.



3.1 segmentation 21

To decide if a face is to be included or not in a growing region, we need to define a
set of criteria. A criterion that could be possibly used for this purpose is orientation,
which, for a mesh face, is related to its normal. If the angle between the normal of
a face and another normal — which stands as reference — is below a predefined
threshold, then the face is included in the currently expanding region. However,
the main disadvantage of this is that the segmentation becomes highly sensitive to
orientation variations. While these variations are normally found on mesh regions
with high curvature (borders between planar regions), they may also appear inside
planar regions when the mesh is ”noisy” (see Figure 3.7).

(a) ”Clean” model (b) ”Noisy” model

Figure 3.7: Face normals: Here are shown two models, one ”clean” and one ”noisy”, and in
each one, the face normals of a fairly planar region. While the face orientation is
relatively consistent in (a), instead it is highly irregular in (b).

Instead of the orientation, the criterion used in our segmentation technique is the
distance of the face vertices from the reference plane of each region (supporting plane).
If the distance of all the vertices from the supporting plane is lower than a predefined
threshold, then the face becomes a member of the respective region. For this plane
to be defined, both an origin point and a normal vector are needed. Both of them
can be computed, again by performing PCA on the face vertices currently belonging
to a region. The centroid of these vertices is appointed as the origin of the plane,
while the eigenvector corresponding to the smallest eigenvalue λ0 of the covariance
matrix stands as a good approximation of the plane normal.

To construct a reference plane when a region is first initialized (since the region
consists of only one face in the beginning), the k-ring neighbours of the highest
planarity face (seed) are collected, again with HDS. This initial plane should be repre-
sentative of the supporting plane and at the same time, correspond to the estimation
of planarity, performed during the pre-processing step of the segmentation. For
these reasons, the order of the k-ring, used for the plane definition, is set equal to the
one used for the planarity computation. After calculating the initial plane, the 1-ring
neighbouring faces of the seed and of every other face, also assigned to the region,
are checked till no more members can be added. As new faces are being added to
the current region, the plane is regularly updated with better approximations.

The result of applying our segmentation technique in the example mesh is shown
in Figure 3.8, while the complete pipeline of our segmentation algorithm can be
summarized as follows (for more details, see Algorithm 1 in the Appendix A):

1. For all mesh vertices, their k-ring planarity is computed and then, inherited to
all faces.

2. The face of the highest planarity (seed) is identified and with it, the first region
is initialized.

3. The k-ring neighbours of the seed are collected and a reference plane is con-
structed via PCA.



22 methodology

4. The 1-ring neighbouring faces of the seed are checked. If all the vertices of
a face are within the distance threshold from the reference plane, this face is
marked as a member of this region.

5. Using all the faces currently belonging to the region, the reference plane is
updated.

6. The steps (3)-(4) are repeated again and again, for all the newly appointed
members of the region. The expansion is terminated as soon as no more faces
can be added.

7. As the search for a region is finalized, a new region is initialized by repeating
the steps (1)-(5) to the remaining faces of the mesh.

8. The segmentation process stops when all mesh faces have been finally assigned
to a region.

(a) Original model (b) Segmented model

Figure 3.8: Segmentation: In this figure, the planar regions of the example mesh, identified
by our segmentation method, are shown in different colours.

3.2 structure graph
Having identified the planar components, out of which the input mesh is composed,
we proceed to the definition of the model structure. In our methodology, the notion
of structure is closely associated with a graph, to which we refer from now on by
the name ”structure graph”.

3.2.1 Refinement

Using our segmentation technique, developed for the purposes of this graduation
project and discussed in Section 3.1, the planar components, out of which the input
mesh is composed, are detected. The next step should be to define the structure
of the mesh, since our simplification method aims to a more compact and simpler
representation, while preserving this characteristic. However, as mentioned in
Section 1.1, our notion of ”structure” is not only related to the model primitives,
which are approximated here by the planar regions of our mesh segmentation. More
than that, there is also a need for the detection of their interrelationships — in other
words, the topological relations between these primitives.

The main topological relationship, on which we primarily focus in the context of
this project, is that of the adjacency. With respect to that, the task of recovering
interrelationships between the model primitives translates into the detection of
adjacencies between the planar regions representing them. In our methodology,
two primitives are considered to be adjacent when their respective regions share a
common border, formed out of vertices and edges. As a consequence of that, two
regions are assumed to be adjacent when they share common vertices and edges.



3.2 structure graph 23

From the above, it becomes clear that in order to discover all the adjacency relations
in the input mesh, it is required to compare the border of each planar region with
the respective borders of all others. However, it is possible for this task to become
computationally demanding, as the number of regions increases. This may occur
due to the complexity of the original model or because of over-segmentation, a term
which refers to the detection of a much larger number of mesh subparts than the one
needed. Of all these subparts, only some of them can be related to components of the
original model and are meaningful for further processing. The rest can be considered
as irrelevant and be discarded. So, the detection of all region adjacencies, without
any further processing of the initial segmentation, may not only be computationally
expensive, but also unnecessary.

To deal with the problem of over-segmentation, a refinement process is applied
over the initial segmentation, similar to the work of Nan and Wonka [2017]. The
objective of this refinement is to reduce the original number of planar segments,
by iteratively merging them into new ones, still meaningful for our purposes. The
whole process should terminate as soon as no more segments can be merged together.
To decide which planar regions are suitable for merging, a set of rules needs to be
defined, based on characteristics common to all segments and useful for detecting
any similarities between them.

As mentioned in subsection 3.1.2, each planar region is associated with a reference
plane (also referred to as supporting plane). During the segmentation process, a face
is appended to a region, if the distance of its vertices from the supporting plane is
lower than a predefined threshold. A similar approach can also be followed to merge
regions during the refinement step. To merge two regions, we can simply check if
the faces of the first lie on the supporting plane of the second and vice versa, while
using the same distance threshold from the mesh segmentation. If this condition
holds true, then a new segment is formed out of the faces from both regions and its
supporting plane is computed. Afterwards, the old regions are discarded and the
refinement process continues.

Since the objective of our refinement process is to reduce the number of planar
segments as much as possible, the set of merge criteria we set are not that strict.
Hence, two planar regions are considered to be similar, only if a few faces from one
of them lie on the supporting plane of the other — specifically, at least one fifth (20%)
of the total number of faces belonging to that region. Taking also into consideration
that the end result should be planar segments still meaningful for our purposes,
an additional criterion is used, based on the orientation of the supporting planes.
According to it, two regions are candidate for merging, if only the angle between the
normal vectors of their supporting planes is small — in other words, if these planes
are almost parallel. A maximum normal angle of 10

◦ seems to fit our purposes. The
result of the segmentation refinement in the example mesh is shown in Figure 3.9.

3.2.2 Importance

Although the refinement procedure reduces the number of planar regions in the
initial segmentation, there might be still segments which are not of use for our
purposes and therefore, they must be discarded. One example of such segments are
those that correspond to architectural details, like chimneys. Each of these building
components is often represented by a single planar region, instead of one for each of
its individual parts. Therefore, it is not possible for the structure of the component
to be recovered (since a 3D object is simulated only by a plane). In such a case, the
respective region only adds to the complexity of the segmentation (see Figure 3.10).

From the above, it becomes apparent that the formulation of a mechanism is needed
in order to select only those segments, which are meaningful to us, and disregard the
rest. This task actually translates into assigning a notion of importance to each one



24 methodology

(a) Initial segmentation (b) Post refinement

Figure 3.9: Segmentation refinement: In this figure, the result of our segmentation technique
(a) is shown, in parallel with the one from our refinement procedure (b). Notice
the merge of the two ground segments in the initial segmentation or of the planar
regions corresponding to the building wall, presented in the close-up view.

Figure 3.10: Segmentation and architectural details: Architectural details, such as chimneys,
cannot be easily detected by segmentation techniques due to the limited resolu-
tion of MVS meshes. Even when found, they are approximated by a single planar
region, thus any sense on the dimensionality of the object is diminished.

of the planar segments. According to this approach, segments of high importance
are to be used in later processing steps, while those of low importance are to be
ignored. As a consequence, it is necessary to discover which characteristic of the
planar regions could be possibly associated with this notion of importance.

One option could be to assume that the importance of a planar segment is a function
of the number of mesh faces it consists of — the larger this number, the higher the
segment importance. Although this intuitive approach sounds as reasonable, still
there is a major flaw in it. Consider the case of a planar segment that occupies a
large part of a given mesh. If for some reason this mesh part comprises only a few
faces, then the planar region should be regarded as one of small importance and
therefore, discarded. In the opposite case, a planar segment could occupy a limited
mesh area covered by a large number of faces and still be regarded as important (see
Figure 3.11).

Another solution to this problem could be based on the fact that the main components
of a building (walls, roof segments etc.) are those extending over a large area of it.
Architectural details, despite being also parts of the entire structure, still occupy only
a limited space on it. So the key to assigning importance to planar regions seems
to be directly related with the area of these regions and particularly, their area as
a percentage of the surface area of the entire mesh. Even more, this characteristic is
not only independent of the face density for a given mesh, but also independent of
the model scale. No matter the change in the mesh size, this proportion between the
region area and the mesh area remains constant.

Based on the above, an importance threshold can be defined in order to select only
those planar segments, which are meaningful and can be used for the simplification



3.2 structure graph 25

(a) (b)

Figure 3.11: Region importance and face number: It is possible for a planar region of the
same extent to be composed of a small (a) or large (b) number of mesh faces.
Relating the region importance to the number of faces leads to a contradiction,
since in the first case the region can be regarded as insignificant, while in the
second as important.

of the input mesh in a later processing stage. This threshold is the minimum
percentage of the mesh area that a segment should occupy, so it can be considered
as important. The application of such a threshold in the example mesh is shown in
Figure 3.12.

(a) Original mesh (b) Important regions

Figure 3.12: Importance: In this figure, planar regions in the example mesh that occupy
more than 1% of the total surface area are coloured in yellow. These regions are
considered as important and will be used later for simplification. Regions of
lower importance (coloured in blue) such as chimneys are disregarded.

3.2.3 Graph construction

Both with the segmentation refinement and the importance threshold, discussed in
subsections 3.2.1 and 3.2.2 respectively, a set of planar segments is formed, which can
be considered representative of the model primitives. Hence, to complete the model
structure, as we have defined it in the context of our project, the interrelationships
of these primitives need to be detected. While these interrelationships are found,
information, both on them and the model primitives, is recorded in the form of a
structure graph, inspired by the graph of proxies in the work of Salinas et al. [2015].

Contrary to a mesh, a graph is a data structure, consisting only of vertices and edges
[Trudeau, 2015]. Each vertex often corresponds to a certain object and two vertices
are connected with an edge, if the respective objects are connected with some sort of
”relation”. In respect to that, the vertices of our structure graph actually correspond
to the model primitives, while an edge is formed when the respective primitives of
two vertices are connected with a topological relationship. Since, in our case, the only
topological relationship we are interested in is that of the adjacency, two vertices are
linked via an edge, if their primitives are adjacent.

Furthermore, an adjacency relation between two primitives holds true for both of its
members — if a planar region is adjacent to another, then the opposite statement
is also valid. As a consequence, the links of our graph should be bidirectional. A



26 methodology

graph of this type is usually called undirected, since discovering the entirety of vertex
relations depends on following both directions of every edge — from vertex A to
vertex B and vice versa.

Based on the above, the construction of the structure graph starts with the definition
of its vertices. The number of these vertices is equal to the size of the set of primitives,
as it results from applying, in order, our segmentation technique, the refinement
process and finally, an importance threshold on the mesh to be simplified. The
only thing missing to complete the graph and thus, the model structure, is to also
define the links, connecting the vertices with each other — in other words, find the
primitive adjacencies.

As stated in subsection 3.2.1, to discover the primitive adjacencies, it is required to
compare the border of each one with the borders of all others and identify common
simplexes — vertices or edges. At the same time, it is necessary to clarify when two
primitives can be considered as adjacent. One way to address this problem could be
the statement that two primitives are adjacent, if their respective planar regions share
at least a certain amount of common vertices or edges and therefore, an extended
common border.

Although justified, this approach is slightly complicated, since it requires both a
thorough research of the primitive borders and the use of an additional parameter,
in order to define the minimum number of simplexes which guarantees the region
adjacency. Not only that, it also ignores the case where two primitives may be
connected with a common border, composed of a very small number of simplexes. As
a result, we follow here a less strict approach, in which two primitives are considered
adjacent, if the borders of their planar regions share, at least, one common vertex.

Of course, adopting such a moderate approach also entails the risk of detecting
topological relationships between primitives, for which any connection is, in fact,
meaningless — despite them sharing a common vertex. This might occur due
to flaws in mesh segmentation, which, unfortunately, appear also in our method.
However, these flaws also ensure that our graph cannot possibly describe the model
structure accurately, even in an ideal situation. There will always be some invalid
relations recorded in it, but an issue will arise only if the relations required to provide
a basic notion of the model structure are not included (see Figure 3.13).

(a) (b)

Figure 3.13: Structure graph: In this figure, the structure graph is visualized, along with the
segmentation (a) and separately in a close-up view (b), by placing each vertex
on the centroid of its respective planar region.

3.3 simplification
With the structure of the input mesh recovered in the form of a graph, we now
proceed to the simplification step itself. The main objective of our simplification
technique is to produce a simpler, more compact representation of the same model,
while recovering and preserving the structure as much as possible.



3.3 simplification 27

3.3.1 Building scaffold

Having defined successfully both the model primitives and their interrelationships
that we need to preserve, we proceed to the final step of our methodology, which is
the simplification itself. In this stage, the main goal is to obtain a mesh with less faces
than the original one, which, at the same time, follows the initial structure as much
as possible. To achieve that goal, it is necessary to exploit any information available,
both in the original mesh and from our pre-processing stages of segmentation and
structure definition.

Starting with the mesh segmentation, the primitives of the input mesh, that should
be also present — in one form or another — in the simplified version, are known and
represented in the form of planar regions — groups of mesh faces, lying on the same
supporting plane. Furthermore, the borders and thus, the shapes of these regions are
also known and well-defined. as sets of mesh vertices and edges. However, these
borders are characterized by high complexity, usually consisting of a significant
amount of simplexes. Therefore, the main task of our simplification should be the
recovery of the region shapes in a much more concise form, while retaining any region
adjacencies — meaning that if two regions are originally adjacent, their simplified
versions need to share this type of relation too (see Figure 3.14).

(a) (b) (c)

Figure 3.14: Adjacency preservation: The shapes of two adjacent planar regions in the orig-
inal segmentation (a) need to be simplified as much as possible (b), without
compromising their connectivity (c).

A possible approach to obtain simpler region shapes could be based on the simplifi-
cation of their borders, by applying a curve decimation method like the Douglas-
Peucker algorithm [Douglas and Peucker, 1973]. Since this algorithm operates on
2D polylines, its application would require to isolate each planar region from the
rest and then, project it on its supporting plane, thus compromising the region
connectivity. However, the connectivity could be restored with the identification,
beforehand, of several “anchor” points, which are maintained during simplification
and used afterwards in order to “stitch” the simplified borders together. Such points
could be selected, for example, from the set of vertices forming the common borders
of all regions.

Although different, our solution is still based on the concept of “anchor” points.
Buildings, as man-made objects, are characterized by geometric regularity and clearly
distinct features. Two types of such features are the building corners and the building
edges. In a typical model, building corners can be defined as points, where three
different building components come into contact. For example, a roof corner might
actually be the connection between a roof segment and two walls. In the same sense,
building edges can be similarly defined as linear segments, on which two building
components meet each other (for example, a roof segment and a wall). These edges
link the corners between them, resulting into the formation of a scaffold (see Figure
3.15), that resembles the surface scaffold structure of Wang et al. [2016].

Since the planar regions from the mesh segmentation correspond to the building
components, our solution actually focuses on approximating the region borders with



28 methodology

Figure 3.15: Building scaffold: In a typical model, edges (yellow segments) are located at
the border of two individual building components while corners (red points)
connect three of them. This set of vertices and edges defines a scaffold to which
the building components conform.

Figure 3.16: Building scaffold and supporting planes: Using the supporting planes of the
planar regions from our mesh segmentation, the vertices and edges of the
building scaffold can be constructed to define the shape of building components
in the simplified version.

the construction of such a building scaffold. In particular, the scaffold vertices can be
computed as the intersecting points of three planar regions, by using their supporting
planes. In the same fashion, to restore the connectivity between the vertices, the
scaffold edges can be constructed, based on the intersecting lines of two supporting
planes (see Figure 3.16).

Of course, to define both the vertices and edges of the scaffold, it is necessary to
know the region adjacencies. For this purpose, our structure graph, in which the
topological relationships between primitives are encoded, can be used. To retrieve
the part of the scaffold surrounding a certain planar region, first the graph vertex
corresponding to that region is identified. By also identifying the adjacent vertices of
that vertex, the adjacent segments of the original region can be recovered. Finally, the
supporting planes of both the region in study and its adjacent regions are collected
and their intersections are computed. In this way, the building scaffold is being
gradually constructed, by traversing the structure graph and detecting the adjacent
vertices of each vertex (see Figure 3.17).

3.3.2 Candidate faces

With the construction of the building scaffold, a simplified version of the original
mesh is achieved, in the form of a wireframe mesh — a mesh consisting only of
vertices and edges. Since the main objective of our methodology is to obtain a
fully-defined mesh that represents the original building in a simpler way, the faces
of this wireframe mesh have to be defined as well. In this way, the primitives of the
input mesh will be defined in the simplified version as sets of polygonal faces, which
later can be further subdivided into triangular faces, if necessary.



3.3 simplification 29

(a) Structure graph (b) Building scaffold

Figure 3.17: Structure graph and building scaffold: By traversing the structure graph (a), the
adjacent segments for each planar region can be recovered. Thus, the scaffold
vertices and edges (b) are computed as the intersections of their supporting
planes.

There are many different topological structures to represent meshes, but one of the
most commonly used is the face-vertex convention [Smith, 2006]. In this structure,
mesh faces are defined as ordered sequences of vertex indices — in other words, it is
not enough to know only the vertices belonging to a face, but also the order in which
they should be traversed in order to reconstruct it. Similarly, to define a certain face
in our wireframe mesh, only the ordered set of its vertices is needed and not the
exact geometry — which in this case, it is that of a 3D polygon.

However, before proceeding any further, it is also necessary to take another fact
into consideration. As mentioned in subsection 3.2.3, it is not guaranteed that our
structure graph captivates the building structure precisely. As a consequence of that,
the wireframe mesh may also include a number of parts (vertices or edges), which,
in fact, are completely irrelevant to the components of the original model. The use of
these parts results into the production of facets that cannot, in any case, be related
to any of the original primitives. Hence, apart from the face definition, it is also
important to establish a method, by which only the faces corresponding to some
primitive can be selected as valid and the rest are discarded.

Available information in the original mesh could possibly provide a means to check
the faces, produced from the wireframe mesh — which, from now on, will be referred
to as candidate faces. Since we demand that each of these faces should correspond to
or, at least, be part of an original primitive, a comparison between them and their
respective planar regions should suffice for evaluating their validity. It is also vital
to remember that both scaffold vertices and edges, forming the border of a planar
region, have resulted from the intersection of its supporting plane with the respective
ones of the adjacent regions. Consequently, the entirety of the simplexes, from which
a candidate face will be composed, lies by definition on the supporting plane — in
other words, the face will be planar. In a similar fashion, the region faces can be
enforced to lie on the same plane, by projecting their vertices on it (see Figure 3.18).

Figure 3.18: Face coverage: Using the scaffold vertices and edges belonging to a planar region
(here coloured in green), a polygonal face can be defined. To check its validity, the
faces of the region are also projected on the supporting plane. Then, a confidence
level can be assigned based on the face coverage by the original region.



30 methodology

With both the candidate face and its corresponding region projected on the same
plane, a comparison between them can be conducted in order to assign a level of
confidence to the face. An intuitive approach, which is also followed here, is to
define this confidence as the proportion between the total area of the face and its
area, covered by the original region — the greater this proportion, the higher the
face confidence. However, this task actually translates into computing the overlap
between the candidate face and the region faces — therefore, the 2D projection of the
face is needed in the form of a 2D polygon. So, as mentioned earlier, the 3D geometry
of the face is not required for its definition, but its 2D projection is needed for checking
its validity.

Considering the above, both tasks of face definition and validity are combined into
one process, consisting of the following steps:

• For each planar region, the scaffold edges (as linear segments), resulting from
the intersection of its supporting plane with the respective ones of the adjacent
regions, are collected and projected in 2D.

• This collection of linear segments forms a 2D arrangement (see Figure 3.19) — a
subdivision of the plane into vertices, edges and faces [Agarwal and Sharir,
2000]. The faces of this arrangement are used for:

– The definition of the candidate faces, representing the original region in
our simplified version

– The recovery, for each face, of its 2D projection, later to be used for
checking the face validity

• The original faces of the planar region are also projected into the supporting
plane.

• For each candidate face, the overlap between its 2D projection and that of the
original faces is computed. The overlapping area, as a proportion to the total
area of the face, provides a confidence level for it.

Figure 3.19: 2D arrangement: A 2D arrangement of linear segments (s) is the subdivision of
the plane in vertices (v), edges (e) and faces (f).

The result of this process is an initial, simplified version (proxy mesh), which approxi-
mates the original model (see Figure 3.20).

3.3.3 Optimization

The proxy mesh, defined by the projected edges of the building scaffold, is just a
set of candidate faces, that may correspond or not to parts of the original model.
Therefore, the final step of our methodology should be the selection of faces in order
to construct our simplified version for the input mesh. To accomplish this task, the
face confidences, also computed during the previous step, are needed in order to
assess their validity (see Figure 3.21).

At a first glance, a simple confidence threshold seems to be sufficient for selecting
faces and forming our simplified mesh. However, as mentioned in Section 1.2,



3.3 simplification 31

Figure 3.20: Proxy mesh: The 2D arrangements of the scaffold edges form a set of can-
didate faces for the definition of the proxy mesh. Notice that errors in the
structure graph may cause the production of additional faces (red arrow) or
self-intersections (yellow arrow).

(a) (b)

Figure 3.21: Face confidence: For each of the candidate faces (a), a confidence level is assigned
(b), expressed as the percentage of its area covered by the original planar region.

an additional condition has been set, apart from a simpler representation of the
original mesh; the simplification process should also result into a topologically valid
mesh, which can be later used in applications. For our purposes, this condition
of topological validity actually translates into the formation of a 2-manifold and
watertight polygonal surface — in other words, a mesh in which each edge is adjacent
to exactly two faces.

To address this problem, we adopt the approach followed by Nan and Wonka [2017]
for the reconstruction of polygonal surfaces from point clouds. Similar to that
method, the selection of candidate face is also achieved here through optimization.
This optimization process is based on the formulation of a binary linear programming
problem — a method to achieve the optimal result for a mathematical model whose
requirements are represented by linear relationships [Sierksma and Zwols, 2015].
In this problem, several hard constraints are also imposed in order to enforce the
resulting mesh to be topologically valid. The solution of it is the assignment of a
value to each of the candidate faces; if the face is to be selected, then this value is
equal to one (otherwise, it is equal to zero).

The optimization starts with the formulation of an objective function for each of
the candidate faces xi, consisting of three energy terms: face coverage, data fitting and
model complexity. The face coverage term is closely related to the confidence notion, as
introduced before:

Ec =
1

area(M)

N

∑
i=1

xi · (area( fi)− area(Ma
i )) (3.2)

where area(M) is the total surface area of the simplified mesh, area( fi) the area of
the candidate face and area(Ma

i ) the face area, covered by the original region. This
term favours faces with high coverage from the original mesh, which, at the same
time, have the highest probability of corresponding to one of the original planar
regions. To reduce complexity, the area of the simplified mesh is approximated



32 methodology

beforehand. Since the simplified version should conform to the original mesh as
much as possible, its bounding box has to be similar in size with the original one too.
Therefore, we assume that area(M) ≈ area(bbox).

Although coverage is probably sufficient by itself, it is still better to also include an
additional method for further ensuring the validity of a candidate face. Hence, an
additional term is introduced, which is directly related to the fitting of a face to the
original model. According to this approach, the validity of a face is proportional
not only to the total area, but also to the total number of original faces from which is
covered. This is expressed through the following data fitting term:

E f = 1− 1
|F|

N

∑
i=1

xi · support( fi) (3.3)

where |F| is the total number of the original faces and support( fi) the number of
those faces covering the candidate face. As a consequence, faces with a great amount
of supporting faces have a higher chance to be selected in the final solution.

However, the data-fitting term seems to comply to discontinuities in the original
mesh (such as holes), which might be also reproduced in the simplified version. This
need to avoid gaps in the final model and enforce the creation of large planar regions
is addressed by introducing yet another energy term. This term is associated with
the model complexity — in other words, the presence or not of distinct features (details).
In general, theses features are produced by sharp edges, which connect non-planar
faces (see Figure 3.22).

(a) Planar edge (b) Sharp edge

Figure 3.22: Sharp edges: Contrary to planar edges (a), sharp edges (b) are used to define
distinct features in meshes.

Subsequently, the model complexity can be assessed in our energy term, by eval-
uating the ratio of sharp edges over the total number of edges in the simplified
version:

Em =
1
|E|

|E|

∑
i=1

corner(ei) (3.4)

where |E| is the total number of edges in the proxy mesh. On the other hand,
corner(ei) is an indicator function, whose value is determined by the configuration of
the candidate faces adjacent to an edge and selected in the final optimization solution.
If the faces are co-planar, the function has a value of zero. Otherwise, if the faces are
non-planar (sharp edge), the function is equal to one.

The optimal set of candidate faces to form the simplified model is finally selected,
by minimizing the weighted sum of the above energy terms. The whole optimization
problem, along with the hard constraints to ensure that the resulting mesh is both
manifold and watertight, are summarized in Equation 3.5.



3.3 simplification 33

min
x

λ f · E f + λc · Ec + λm · Em

s.t.

 ∑
j∈N(ei)

xj = 2 or 0 , 1 ≤ i ≤ |E|

xi ∈ {0, 1} , 1 ≤ i ≤ N

(3.5)

The result of our optimization method is shown in Figure 3.23. With the optimization
step, our method concludes, resulting into a final, simplified version of the input
mesh. Both the original mesh and our simplified version are shown in parallel in
Figure 3.24, while a thorough comparison between the two meshes will be provided
in Chapter 5. There, different results will be presented in order to further support
the effectiveness of our proposed methodology.

Figure 3.23: Face selection: The optimization results into the selection of candidate faces to
form the simplified mesh. Notice that it is not necessary for a face (like the one
indicated by the yellow arrow) to be chosen, despite its high confidence. This is
due to the hard constraints used, in order to ensure that the simplified mesh will
be manifold and watertight.

Figure 3.24: Simplified mesh: In this figure, the original building mesh and the result of our
simplification process are shown in parallel. Even though various defects are
present in the original mesh (holes, self-intersections, occlusions etc.), still our
proposed method is able to produce a simplified version of the original.





4 I M P L E M E N TAT I O N

In this chapter, the implementation details of our methodology are to be discussed.
These details can be divided into two parts: (a) programming specifics and (b)
parameter tuning.

4.1 programming specifics
Here, a brief analysis is provided on the implementation of our methodology in a
programming environment. For the purposes of this project, the methodology was
implemented in C++, along with the use of Computational Geometry Algorithms
Library (CGAL) 1. Nevertheless, the following analysis focuses on details necessary
for implementing the methodology in general, no matter the programming language
or software to be used.

4.1.1 Segmentation

The implementation of our segmentation technique is straightforward and can be
easily achieved by adopting our method of planarity inheritance from vertices to
faces. The exact pipeline is presented in Algorithm 1 (Appendix A). As mentioned
before, it is chosen to conduct the segmentation on the mesh faces and not the
vertices. However, the algorithm is flexible and open to any modifications in order to
decompose the mesh into vertex groups, if needed. Although there might be minor
differences, both approaches are actually equivalent, since any analysis on the planar
segments, such as the calculation of their supporting planes, is still performed at a
vertex and not a face-level.

In our methodology, the computation and update of supporting planes during mesh
segmentation is accomplished by means of PCA. The main disadvantage of this
approach is that PCA is computationally expensive, so it is a good practice to limit its
use as much as possible. Our segmentation algorithm tries to balance computational
efficiency with accuracy by re-computing the supporting plane at certain intervals.
In particular, the first update takes place after the 1-ring neighbours of the seed face
are checked. For all of these faces finally included in the currently expanding region,
their 1-ring neighbours are also collected, checked and used at the end for re-fitting
yet again a new plane. In this way, the supporting plane is updated only after each
k-ring neighbourhood around the seed face is inspected (see Figure 4.1).

Since the supporting planes are needed later during the refinement process and the
simplification itself, it is preferred to store them as soon as a region is finalized, thus
avoiding their re-computation. This procedure is also followed in the refinement
step itself, when a new region is created out of the merge of two others. In this case,
the supporting plane is computed using the faces from both regions and then, stored
away. At the same time, the planes of the old regions are deleted to save memory
space. During both the segmentation and refinement steps, establishing a connection
between a plane and its respective region is of paramount importance. In this way,

1 The original code can be accessed in the following link:
https://github.com/VasileiosBouzas/MeshSimplification

35

https://github.com/VasileiosBouzas/MeshSimplification


36 implementation

Figure 4.1: Plane update: Starting with a seed face and a supporting plane, a region is grown
by first checking the ring neighbourhood of the seed. Before proceeding to the
next ring, the initial plane is updated, using all the faces currently belonging to
the region.

every time a region needs to be processed in a later stage, its plane can be easily
accessed too.

4.1.2 Structure graph

To implement the refinement procedure, as described in subsection 3.2.1, an iterative
process is chosen here. Since regions consisting of only a few faces are less likely
to correspond to a primitive, they need to be merged first. For this reason, the
refinement starts with the sorting of all regions in an ascending order, based on their
number of faces. Then, the smallest region is checked according to the merging
criteria we have defined, also in subsection 3.2.1. When a region suitable for merge
is found, then the faces of both regions are marked as members of a new, larger
segment. The older regions are deleted and the refinement starts all over. This whole
process terminates when a region merging can no longer take place.

After the end of the refinement step, importance is assigned to the remaining
segments by calculating their surface area. The area of a region, which is simply the
total area of the faces belonging it, is then compared to the total surface area of the
entire mesh. If the resulting importance is lower than the predefined threshold, the
whole region is discarded to save memory space, since it is no longer needed for
later stages. In this way, the number of primitives to be used for simplification is
finally fixed and we can proceed to the definition of the model structure with our
structure graph.

The structure graph is initialized by first appointing a vertex to each of the re-
gions resulting from the segmentation, refinement and importance steps. With the
primitives defined, the structure can be completed by adding the interrelationships
between them. For this task, it is required to compare the border of each region
with the border of all others and identify, at least, a common vertex. Here, this
is accomplished by collecting all vertices belonging to a region and checking the
neighbouring faces of each one. If a face is marked in a different region than the
one in study, then a connection between these two regions is formed by linking their
respective graph vertices with an edge.

Similar to the supporting planes, a connection is also established between a graph
vertex and its respective region to facilitate later processing. Specifically, this connec-
tion is built to be bidirectional; when a region is to be processed, its graph vertex can
be accessed and vice versa. The first connection type is used during the construction
of the structure graph, when two regions need to be connected via an edge and
their vertices have to be detected in the graph. The second type is helpful during
the simplification process; while traversing the graph, the respective region of every
vertex can be retrieved and consequently, its supporting plane.



4.1 programming specifics 37

4.1.3 Simplification

With the structure graph complete, we are able to proceed to the final stage of our
methodology, the simplification itself. The first step in the simplification process is
the construction of the building scaffold. For this purpose, the graph is traversed —
with the help of the connections described above, so that the vertices and edges of
the scaffold can be defined as intersections of supporting planes. Vertices are the
first to be constructed as intersections of plane triplets. Furthermore, to deal with
flaws in the definition of the model structure in our graph, any resulting vertex, not
enclosed by the bounding box of the original mesh, is considered invalid and it is
discarded. For the remaining set of vertices, their connectivity needs to be recovered
in order to obtain the scaffold edges.

Due to arithmetic precision, individual vertices cannot be identified by their location,
since the geometry of a vertex will slightly differ when computed as an intersecting
point of various plane triplets (see Figure 4.2). Even more, it may occur that two
vertices actually correspond to different building corners, despite being located
at exactly the same point. To address these problems, each vertex is uniquely
distinguished from others not by its location, but by the plane triplet from which it
was originally constructed. Although this approach may result into multiple vertices,
representing the same corner at the simplified model (see Figure 4.3), it still enables
the recovery of the scaffold edges in a much more simpler way than actually trying
to merge these vertices into one.

(a) (b)

Figure 4.2: Corners: There are cases where building corners connect more than three adjacent
components (a). Due to arithmetic precision, each triplet of supporting triplets
results into a different point, corresponding to the same corner (b).

(a) Original mesh (b) Simplified mesh

Figure 4.3: Simplified corners: The area corresponding to a building corner, where four or
more planar regions meet (a), is approximated in our simplified version with a
group of faces (b), instead of a unique vertex.

In particular, the scaffold edges are recovered by computing the intersections of
adjacent plane pairs. If the intersection of such a pair is a line, any vertex, constructed
from the intersection of this pair with a third plane, should lie on it. Hence, if two
vertices share the same plane pair, they should be connected in the scaffold through
an edge. If only two vertices were lying on each of the scaffold edges, then this



38 implementation

connection could be established directly. However, due to refinement, there are cases
in which more than two points are lying on a given line (see Figure 4.4).

(a) (b)

Figure 4.4: Scaffold edges: Without refinement (a), only two vertices lie in any line produced
by the intersection of plane pairs. However, due to refinement (b), there are cases
in which multiple vertices are located along the same line.

To solve this problem, the following approach has been devised; at first, each line is
converted into a linear segment by clipping it with the bounding box of the original
mesh. Afterwards, all the vertices, sharing two common planes with a given segment,
are collected. Using one of the segment endpoints as a reference, the vertices are
ordered according to their distance from it. Finally, the original segment is divided
into sub-segments by linking each vertex with its next in order (see Figure 4.5).

(a) Line clipping (b) Distance sorting (c) Edge construction

Figure 4.5: Edge splitting: To construct scaffold edges, an intersecting line must be first
clipped with the original bounding box (a). Then, all the vertices lying on this line
are sorted by distance from one of the endpoints (b). Finally, edges are formed by
linking each vertex with its next in order (c).

With the aforementioned approach, the connectivity between the scaffold vertices can
be fully restored. If a precise definition of the model structure was provided, then
all edges should intersect with others only at their endpoints; namely, the scaffold
vertices. Unfortunately, due to flaws in our structure graph, it might happen that
two edges intersect in some other point in 3D space (see Figure 4.6). At a first glance,
this inconsistency seems trivial, but it might affect the definition of candidate faces
at a later processing stage. Therefore, any intersecting edges should be further split
by defining a new vertex at the point they meet each other.

To split two scaffold edges, their intersecting point is required, but, due to arithmetic
precision, its computation proves to be impossible most of the times. To solve the



4.1 programming specifics 39

(a) (b)

Figure 4.6: Edge intersection: There are cases where scaffold edges meet at a point other
than their endpoints (a). Since this inconsistency might affect the definition of
candidate faces at a later stage, the intersecting edges should be further split by
defining a new vertex at their meeting point (b).

problem of edge intersection, we are able to adopt here an alternative solution. Since
it is known for each edge from which plane pair it was originally constructed, we
can check for intersections between all edges sharing one common plane — in other
words, between edges lying on the same plane 2. Then, the first edge is compared
with the other plane of the second one. If its endpoints are located at different sides
of the plane (one in the negative side and one in the positive), then we can deduce
that the lines intersect. As a common point for both edges, we can assign the one
resulting from the intersection of the first edge with the other plane of the second
(see Figure 4.7).

(a) (b) (c) (d)

Figure 4.7: Edge cross-split: For two intersecting edges (a) lying at the same plane (green),
the other two planes (blue & purple) are retrieved (b). For each edge, the position
of its endpoints, in reference to the plane of the other, is checked. If the endpoints
are located at different sides (c), the intersecting point of the edge with the plane
is used to construct four new segments (d).

This final addition of vertices and edges completes the construction of the building
scaffold, resulting into a wireframe mesh whose faces need to be defined next.
As mentioned in subsection 3.3.2, the candidate faces are produced by the 2D
arrangements of scaffold edges belonging to the same plane. For this purpose, the
structure graph is traversed and the supporting plane of each region is collected.
Then, all edges, resulting from the intersection of this plane with others, are retrieved
and projected on it to form the arrangement. Here, the formation of the arrangement
can be accomplished with the respective package of CGAL or some other library of
computational geometry. Finally, the arrangement faces are used to produce (a) the
ordered sequence of vertices defining a candidate face and (b) the 2D projection of
this face on the plane.

Before proceeding to the optimization, some additional information is necessary
for each of the candidate faces; namely, (a) the total area of the face covered by
the original region and (b) the number of original faces supporting the candidate

2 Edges sharing the same plane pair can be safely excluded, since they result from the same intersecting line
and we have already ensured that they are connected at their endpoints (see Figure 4.5c for an example)



40 implementation

one. Hence, the original region is also projected on the plane, converting the whole
process into a polygon-polygon intersection problem. The computation of such
intersections are generally expensive, especially in our case where each candidate
face has to be compared with hundreds, if not thousands, originals.

To achieve optimal performance, a candidate face is first compared to an original
one, by examining the overlap of their bounding rectangles. If there is none, then the
two faces are completely irrelevant. Otherwise, the positions of all the vertices in the
original are then checked in reference to the candidate. When all vertices are inside
the candidate, then the total area of the original covers it and there is no need for
intersection computation 3. If even one of them lies outside, then the interior vertices
are collected, along with the intersecting points of the edges from both faces. Finally,
the area of the convex hull, formed from these vertices, is added to the covered area
of the candidate face (see Figure 4.8).

(a) (b) (c)

Figure 4.8: Polygon-polygon intersection: If the bounding rectangles of two polygons do not
overlap (a), then there is no intersection. When all the vertices of one are inside
the other (b), then the intersection is the polygon itself. If even one vertex lies
outside (c), the intersection is a polygon formed by the interior vertices and the
intersecting point of the polygon edges.

The final stage in the simplification process is the optimization presented in subsec-
tion 3.3.3. In this step, faces from the candidate set are selected to form the final,
simplified version of the original mesh. The binary linear problem, formulated for
this purpose, is solved here with the Gurobi solver 4. Notice that for the hard con-
straints used to ensure that the final mesh is manifold and watertight, information
on the adjacent faces for each of the scaffold edges is required. This information is
acquired along the construction of the candidate faces from the 2D arrangements of
the edges. Based on this information, the constraints are set as follows; if an edge
is adjacent to less than two faces, then these faces are disregarded. In the opposite
case, only two of them are to be selected.

4.2 parameter tuning
From the analysis of our methodology provided in Chapter 3, it can be deduced that
the basic parameters of our simplification method are the following:

• The order of the k-ring neighbourhoods for the computation of planarity

• The distance threshold for our segmentation method

• The importance threshold for the selection of planar segments to be used for
simplification

• The coefficients of the three energy terms in our optimization process

3 In our approach, only those faces are considered as supporting of the candidate one
4 http://www.gurobi.com/

http://www.gurobi.com/


4.2 parameter tuning 41

Although these parameters could remain as user-defined, still we would like to make
the whole simplification process as simple as possible in its use. Therefore, a much
more automated approach — at least to some extent — is preferred here. To achieve
this, some of the different parameters, appearing in our method, have been tuned
through experimentation in order to apply to the majority of available models.

Starting with the coefficients of the energy terms in our optimization, their values
can be set equal to those used by Nan and Wonka, who originally designed the
method for the selection of the candidate faces. According to this method, the
coefficient values, for most models available, are the following: λ f = 0.43, λc = 0.27
and λm = 0.30. A wide range of these values is also able to produce the same
results, with the exception of cases where one of the data-fitting or coverage terms
is extremely favoured over the other (in a proportion greater than four to one). A
small coverage coefficient allows the selection of a larger amount of faces, while a
high value of it reduces the candidate faces to only a few (see Figure 4.9). In general,
the data-fitting coefficient should always be slightly higher, since coverage is a much
stricter indicator of face validity, thus disregarding most of the candidate set.

(a) λc = 0.14, λ f = 0.56 (b) λc = 0.27, λ f = 0.43 (c) λc = 0.56, λ f = 0.14

Figure 4.9: Energy coefficients: The data-fitting coefficient balances the effect of the coverage
energy term over the simplified mesh (b). However, if one of the coefficients is
extremely favoured over the other, a larger (a) or smaller (c) amount of candidate
faces will be preserved in the final result.

At this point, it is necessary to notice something important. As stated in subsection
3.3.3, the model complexity term allows the formation of large planar regions by
limiting the number of sharp edges in the final model. However, in our methodology,
the majority of edges in our building scaffold represents the boundaries between
adjacent planar regions. Therefore, the scaffold consists, almost entirely, of sharp
edges, rendering the use of the complexity term meaningless. Still, we choose to
include this term in our method as a safety measure, instead of just setting it equal to
zero. Even with this choice, the selection of candidate faces is highly dependent, for
most models, on the proportion between the data-fitting and coverage coefficients.

A comparative analysis on the order of the k-ring neighbourhoods for the compu-
tation of planarity has already been conducted in subsection 3.1.1 (see Figure 3.5).
There, it is shown that neighbourhoods of order 3 are more than sufficient for the
detection of borders between adjacent planar regions. Any lower order is not sensi-
tive enough for this task, while any higher order increases the computational time
considerably. Furthermore, it is vital to take into consideration that the same ring is
to be used also for the initial definition of supporting planes in our segmentation
technique. While a close, first approximation of a region plane is needed, still its
initialization should not be time-consuming.

With regard to the distance threshold, its automation proves to be difficult, mainly
because it is also dependent, among other things, on the model scale. However,
experimentation indicates that our segmentation technique closely follows the tri-
angulation of the original mesh — that is to say, the threshold is comparable to the
average edge length of this mesh. Therefore, the computation of this value provides
the user, in most cases, with a pretty good suggestion on the distance threshold,
needed for a meaningful segmentation of any given mesh.



42 implementation

With all that said, the only parameter left completely user-defined is the importance
threshold. Nevertheless, still some suggestions can be also provided for the use
of this parameter. As stated in subsection 3.2.2, the main purpose behind our
notion of importance is the selection of the main building components to be used
for simplification. Components (such as architectural details), which cannot be
approximated via mesh segmentation, are discarded as of low importance. Hence,
the simplification of model filled with architectural details requires a much higher
importance threshold than those of low complexity.

Generally, a threshold of 1% seems to be sufficient for the simplification of any
given model. Experimentation also reveals that this parameter can have a maximum
range from 0.1% to 5%, in which it still produces simplified meshes, conforming
adequately to the original structure (see Figure 4.10).

(a) Original Mesh (b) imp = 5.0 (c) imp = 2.0

(d) imp = 1.0 (e) imp = 0.5 (f ) imp = 0.2

Figure 4.10: Importance influence: By adjusting the importance parameter, it is possible to
obtain simplified versions of a given model for different levels of detail.



5 R E S U LT S & A N A LYS I S

In this chapter, various results are presented from the application of our simplification
method on a set of available MVS building meshes. For these meshes, analyses are
conducted to assess their conformity to the goals we have defined for our project.
Finally, a comparison is provided between other simplification techniques and ours.

5.1 results
The implementation of our methodology in a programming environment provides
the possibility of testing it, in reference to the requirements we have defined for our
project. As mentioned in Section 1.2, our main objective is the production of a mesh,
which should be a simpler, more compact representation of the original model. This
mesh should also follow the original structure of the input model (as defined for the
purposes of this project), as much as possible. Furthermore, an additional condition
of topological validity has been set to ensure that our simplification result is ready
to be used in further applications.

As stated before, the only input needed for our simplification method is the MVS

mesh of a given building — any information on the original point cloud or imagery
is considered as unavailable. Moreover, this mesh can be either closed or open,
depending on whether each of its edges is adjacent to two faces or not. Although our
methods results into a closed mesh, still the input is allowed to be open — which is
common, especially for building models extracted from urban scenes. However, In
this case, a ground plane is required in order to complete the simplified model. As
of right now, this plane must be provided from the original scene, out of which the
model was extracted. However, an alternative implementation could possibly allow
the user to import such a plane, according to their needs.

With respect to the above, our simplification method was applied in a set of available
MVS building meshes. The results, shown in Figure 5.1, mostly refer to open meshes
— with the exceptions of the models (d) and (g). Furthermore, simplification is
performed over models of individual buildings, again with the exception of the model
(a) — also used in Chapter 3 for the analysis of our proposed methodology. These
models consist only of planar components in various configurations, especially for
roof superstructures — varying from simple, flat roofs [(h), (i)] to more complicated
assemblies [(e), (f)]. The level of noise in those models is also variable, from clean
[(d), (g)] to more distorted ones [(h), (i)], and dependent on the noise of the original
point cloud.

At a first glance, our method seems to produce a well-defined, simplified version of
the original model. Of course, it is also necessary to analyse these models according
to the prerequisites we have established for them. In the following sections of this
chapter, further details on the models are presented, which serve as a ground for a
brief discussion on their different aspects.

43



44 results & analysis

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

Figure 5.1: Simplification results: In this figure, results are presented from the application
of our simplification method on a set of MVS building meshes. From left to right:
original model, refined segmentation, candidate faces and simplified mesh.



5.1 results 45

Mesh
Error RMS (% BBox Diagonal)

Original Simplified Error RMS

(a) 0.5%

(b) 0.4%

(c) 0.3%

(d) 0.1%

(e) 0.4%

(f) 0.5%

(g) 0.1%

(h) 1.0%

(i) 0.8%

Table 5.1: Error analysis: From left to right, the original and simplified meshes are presented,
along with a visualization of their Hausdorff distance. At the final column, the
Root Mean Square (RMS) error of this distance is also provided, as a percentage of
the bounding box diagonal.



46 results & analysis

5.2 analysis
In this section, further details on our results are presented and a discussion is
conducted on five different aspects of them: topological validity, error analysis,
memory reduction, execution time and comparisons with other available methods

5.2.1 Topological validity

We start our discussion with details on the topological validity of our results, since it
is closely related with evidence, which supports our claim of achieving simplified
versions of building models. As mentioned in Chapter 1, simplification is the process
of reducing the amount of faces for any given mesh. That is to say, our simplification
should result in a mesh with less faces than the original. In Table 5.2, topological
information is presented, both on the input meshes and our simplified versions of
them.

Mesh
Original Simplified

V E F M (kB) V E F M (kB) Compression

(a) 23,811 47,030 70,910 1,542 20 48 32 1 0.1%

(b) 7,050 20,913 13,839 639 25 69 46 2 0.3%

(c) 11,026 32,498 21,454 1,003 57 165 110 3 0.3%

(d) 13,631 40,887 27,258 797 171 507 338 9 1.1%

(e) 3,131 9,308 6,172 282 33 93 62 2 0.7%

(f) 5,067 14,998 9,923 456 21 57 38 2 0.4%

(g) 19,524 58,566 39,044 1,891 144 426 284 8 0.4%

(h) 20,000 60,005 39,948 1,901 67 195 130 4 0.2%

(i) 18,721 56,005 37,269 1,773 52 150 100 3 0.2%

Table 5.2: Mesh statistics: For both the original and simplified mesh, the number of vertices
(V), edges (E) and faces (F) is presented. The memory of both meshes is also pro-
vided, along with the respective compression rate. Notice that for this comparison,
the polygonal faces of the simplified meshes have been previously triangulated,
similar to the originals.

A simple comparison between the two versions of each model reveals that the result
of our method always consists of less faces than the original, thus simplifying it
significantly. By inspecting the simplexes of the simplified version separately, it is
also possible to deduce that it is topologically valid. The requirement that the result
of our method should be manifold and watertight mathematically translates into
having an object, which is topologically homeomorphic to a sphere. A sphere, as
well as the surface of any convex polyhedron, has an Euler characteristic equal to two
(which derives from the relation V-E+F) or a genus of zero.

To confirm these facts for each of the simplified meshes, their Euler characteristics
can be first calculated with the help of Table 5.2. Notice that since the model (a)
comprises two components and not one like the rest, its characteristic should be
equal to four (the sum of the component characteristics). Computation of the genus



5.2 analysis 47

was also conducted both in Meshlab 1 and Val3dity 2. These pieces of information
can ensure, to some extend, that our simplified meshes are free of any geometric
and topologically defects, such as self-intersections and holes. However, they do not
assert that the mesh is also consistently oriented.

It is easy to observe that our methodology deals with the definition of a simplified
mesh through the construction of polygonal faces, without paying attention to their
orientation. This issue is, instead, addressed in a post-processing step, after the
simplification. Due to our optimization, each edge of our simplified meshes is
always adjacent to two faces. For the orientation to be consistent, an edge has to
be also defined in both faces with opposite directions (see Figure 5.2). Thus, the
face orientation can be corrected by first collecting all the face edges. Afterwards, a
random face is selected as properly oriented and its edges are located, along with
their duplicates. If a duplicate has a direction similar to that of the original edge, its
face is reversed. This procedure continues for face after face, till all mesh edges have
been traversed.

(a) (b)

Figure 5.2: Consistent orientation: If two faces have opposite orientations (a), their common
edge is defined with the same direction in each of them. Instead, with the same
orientation (b), the edge appears in the mesh with both directions.

The aforementioned procedure corrects any flaws in the face orientation, thus solving
this topological issue too. Nevertheless, the topological validity does not ascertain
that our mesh can be used for further applications, due to the fact that it consists
of polygonal, instead of triangular, faces. Problems might also be caused, since
the mesh faces do not necessarily have the same shape (triangle, quad etc.) or are
concave, instead of convex. Taking that into consideration, our implementation also
triangulates all faces, before finally exporting the resulting mesh.

5.2.2 Error analysis

Apart from a simpler representation, it is also necessary to examine if the initial
structure of the model has been also preserved. For this to be true, both the model
primitives and their interrelationships, as we have detected them in the input mesh,
need to remain intact. This can be also interpreted that the simplified mesh should
conform to the original; namely, the distance between the two meshes should be
minimum. Hence, the structure preservation can be assessed by computing the
Hausdorff distance of the meshes.

A common method for computing the Hausdorff distance is based on the construc-
tion of random points around the comparing meshes. For this purpose, the meshes
need to be aligned at first. Then, the Euclidean distance of each point is calculated
from both meshes, while the Hausdorff distance is finally estimated as the difference.
Since this estimation gets better and better as the amount of sampling points rises, it
is considered as the best practice, both for accuracy and computational efficiency, to
have a sample equal, in size, to the vertices of the most detailed mesh; namely, the

1 http://www.meshlab.net/
2 https://github.com/tudelft3d/val3dity

http://www.meshlab.net/
https://github.com/tudelft3d/val3dity


48 results & analysis

original one. Based on these, the results of our error analysis, conducted in MeshLab,
are shown in Table 5.1.

From the above table, it can be observed that for all cases, both closed and open
meshes, the mean error is small. This indicates that our simplified versions closely
follow the initial building models, especially when the original mesh is clean [(d),
(g)]. However, our simplification method performs rather well, also when the input
model is quite noisy [(h), (i)]. A comparison between model (a) and models (b), (c)
reveals that although it is possible for the method to be applied in an urban scene,
still it is better to process each building model individually in order to achieve the
optimal result.

Furthermore, our error analysis reveals certain inconsistencies that might be observed
between the original models and our simplified versions. These inconsistencies are
related to parts of structure that appear (a) with different geometry in each model or
(b) only in one of the two models. The former error (see Figure 5.3) is associated
with flaws due to segmentation — mainly, the detection of less planar components
than the ones necessary to fully approximate a given model part. The latter one (see
Figure 5.4) with the hard constraints imposed in our optimization process to ensure
the manifoldness of the final result. If candidate faces in the building scaffold, with
low confidence, do not entail a risk to the manifoldness of the simplified mesh, the
hard constraints still attempt to incorporate them in the resulting model, one way or
another.

(a) Original (b) Segmentation (c) Simplified

Figure 5.3: Structure errors (segmentation): In this example, the original model contains
a roof segment, consisting of two inclined planes. However, our segmentation
technique is able to detect — for the given distance threshold — a unique planar
region. As a consequence, the segment is finally approximated by a single planar
component in our simplified version.

(a) Original (b) Segmentation (c) Simplified

Figure 5.4: Structure errors (optimization): In this example, there are certain parts in our
simplified version that cannot be identified in the original model. The main
cause of this inconsistency is that the hard constraints of our optimization process
enforce the construction of such parts, since they do not affect the manifoldness
of the final result.

5.2.3 Memory & Execution time

Since the number of simplexes used for the definition of a model significantly
decreases due to our simplification method, we should notice, at the same time, a
similar reduction in memory space. Indeed, such a reduction is observed, as shown
in Table 5.2. This decrease in memory space means that our simplified meshes are



5.2 analysis 49

more manageable than their originals, while they still conform successfully to the
initial structure. This allows the performance of any spatial analysis on them, in a
much simpler fashion. This fact further supports interoperability, due to the fact that
the low memory size of our simplified meshes permits their fast transfer through
the Web.

Apart from memory depletion, execution time is also an important factor in order
to assess the efficiency of our methodology. Of course, this time highly depends
on the given implementation in a programming environment, but it still provides
us with some clues on the general performance and scalability of the method. For
our implementation, the execution times 3 for the application of the method on the
available dataset are presented in Table 5.3.

Mesh
Execution time (sec)

Planarity Segmentation Structure graph Simplification Total

(a) 0.9 12.4 0.5 0.2 14.0

(b) 0.3 1.3 0.1 0.1 1.8

(c) 0.4 1.4 0.2 0.2 2.2

(d) 0.5 2.5 0.2 0.6 3.8

(e) 0.1 0.1 0.1 0.1 0.4

(f) 0.2 0.3 0.1 0.1 0.7

(g) 0.7 5.7 0.4 0.9 7.7

(h) 0.8 23.1 0.5 0.3 24.7

(i) 0.7 10.9 0.4 0.2 12.2

Table 5.3: Execution time: From left to right are presented the execution times (in seconds)
for the following four stages of our simplification method: planarity computation,
segmentation (with refinement), structure graph and simplification.

As presented in the above table, the most demanding step of our method (in terms
of processing time) is the mesh segmentation and mainly, its refinement. This is
justified by the fact that the latter is the only method stage performed in iterations.
As a consequence, the required time is highly dependent not only on the initial
number of segments, but, most of all, on their configuration — which dictates if
planar regions can actually merge together (see Figure 5.5). When a new region is
formed, the whole process needs to start all over, in order to check for merges in the
new available set of planar regions. The number of merges also increases in cases
where the input mesh is over segmented, mainly due to noise [(h), (i)].

Even with this, the method can still produce the simplified version of a given mesh
in a matter of seconds. Again, a comparison between model (a) and models (b), (c)
reveals that the method performs better on individual buildings, rather than entire
urban scenes. The fast execution times in the latter models further proves that our
method can be possibly incorporated in urban scene reconstructions, as long as
buildings can be isolated from their surroundings with semantic segmentation.

3 Processor: Intel(R) Core(TM) i5-7300HQ CPU @ 2.50GHz, RAM: 8.00 GB



50 results & analysis

(a) Initial segmentation (b) After refinement

Figure 5.5: Scalability: In this figure, the execution times (in secs) are shown for the models
of the available dataset, with respect to the number of segments in the initial
segmentation (a) and after refinement (b).

5.2.4 Comparisons

At this point, we would like to compare our simplification method to similar tech-
niques, presented in Section 2.2; namely, QEM [Garland and Heckbert, 1997], SAMD

[Salinas et al., 2015] and VSA [Cohen-Steiner et al., 2004]. To assess the performance
of all methods, we choose, out of the available dataset (see Table 5.1), the model (a),
since it is quite clean and contains only building components. The source code 4,
used here for QEM and SAMD, is provided by Salinas et al., while a package on VSA

(under the name “Triangulated Surface Mesh Approximation”) has been introduced
in CGAL v4.14

5.

QEM / SAMD

For a critical comparison between these methods and ours, we have applied all three
of them in an example mesh to create a simplified version of it with the same number
of faces (see Figure 5.6). The mean error of their results is also computed, with
reference to the original model, in order to assess the degree on which they conform
to the initial structure. Again, this error is estimated with the use of the Hausdorff
distance, in a fashion similar to the one described in subsection 5.2.2. This analysis
is presented in Figure 5.8.

At a first sight, it appears that our simplified version bears the greatest error out of
the three methods, while SAMD is, by far, the best — mainly, because it is capable of
approximating non-planar components of the original model much more efficiently.
Still, there is an important fact we need to take into consideration. As mentioned
before, our method approximates the original model polygonal faces, which are
later replaced with co-planar triangles, so that the simplified mesh can be used in
further applications. As a consequence of that, the original amount of faces for our
simplified mesh is way smaller than the one we present here. In particular, our
simplification for the example mesh used here initially comprises 134 faces, instead
of the 338 faces after triangulation.

With respect to the above, the methods in comparison are applied again on the
example mesh, but this time, for the original number of faces in our simplified mesh.
The results are shown in Figure 5.7. As it can be observed from specific details of
the example mesh in all three methods, our proposed methodology produces a far
more accurate result for the same number of faces. This statement is also further
supported by the error analysis, presented in Figure 5.9, where the mean error of our

4 The code is available at https://www-sop.inria.fr/members/Florent.Lafarge/codes.html
5 https://www.cgal.org

https://www-sop.inria.fr/members/Florent.Lafarge/codes.html
https://www.cgal.org


5.2 analysis 51

result is the smallest of all three. Furthermore, the analysis reveals the conformity
error distributes evenly across the mesh surface in our result, while for the other two
methods is located at specific features of the original model.

(a) Original (b) Ours

(c) QEM (d) SAMD

Figure 5.6: Method comparison (338 faces)

(a) Original (b) Ours

(c) QEM (d) SAMD

Figure 5.7: Method comparison (134 faces)

For both number of faces, the execution time of our method (4 secs) stands in the
middle between the respective ones of QEM (2 secs) and SAMD (10 secs). Finally, it is
important to notice that QEM and SAMD accomplish the gradual simplification of a
given model, by allowing the user to specify the desired number of faces (or vertices)
of the final result. On the contrary, our method is not that flexible and produces
a unique, simplified version of a building mesh, corresponding to a level of detail
equivalent to LOD2 (a prismatic solid with a simplified roof shape). However, the



52 results & analysis

level of model detail can be altered by adjusting the importance parameter (for an
example of this, see Section 4.2).

(a) Ours (RMS=0.14) (b) QEM (RMS=0.09) (c) SAMD (RMS=0.03)

Figure 5.8: Error analysis (338 faces)

(a) Ours (RMS=0.14) (b) QEM (RMS=0.27) (c) SAMD (RMS=0.16)

Figure 5.9: Error analysis (134 faces)

VSA

From all the simplification methods that we presented in Section 2.2, VSA is the one
which is most closely associated with ours. Both our approach and VSA attempt to
simplify a given model by approximating it with a set of planar components (proxies).
Based on these proxies, an entirely new, more compact mesh is constructed which
consists of polygonal faces, later decomposed into triangles if necessary.

(a) Ours (b) VSA

Figure 5.10: Proxy comparison

Similar to our method, VSA is also based on a mesh segmentation technique for
the detection of planar components on the original mesh. Since this segmentation
technique differs from ours, the resulting set of proxies for both methods might
be also quite different (see Figure 5.10). Therefore, a possible comparison between
the two methods can be conducted by analysing their respective results for the
same number of proxies. Specifically, we apply VSA on the example mesh for a
number of proxies equal to the amount of segments detected by our method before



5.2 analysis 53

(a) Ours (b) VSA

Figure 5.11: Method comparison (73 proxies)

(a) Ours (RMS=0.14) (b) QEM (RMS=0.18)

Figure 5.12: Error analysis (73 proxies)

the refinement step (see Figure 5.11). Finally, we conduct an error analysis for both
results, again based on the Hausdorff distance (see Figure 5.12).

It can be deducted from our analysis that the error of VSA is slightly higher than that
of our own approach. Furthermore, one of the main inputs of this method is the
number of proxies needed to be detected by its segmentation technique — meaning
that an accurate approximation for the original model can be only accomplished
through a try-and-error process. Atlhough it does not ensure the topological validity
of the simplified mesh, still it is applicable — unlike our approach – to building
models which consist of both planar and not-planar primitives.





6 C O N C LU S I O N S

In this final chapter, the research questions of this graduation project are reviewed
in order to assess the degree in which they have been finally addressed. Based on
this, our contributions to the current state of the art are presented, along with the
limitations of our proposed methodology. With respect to these limitations, some
future work is also recommended.

6.1 research overview
At this point, we review the research questions we have defined for this graduation
project in Section 1.2. For each question, a short answer is provided, based on the
degree the question was finally addressed. At the same time, these answers are
supported by evidence, which has been presented in previous chapters.

QUESTION:

Is it possible to obtain a simpler, compact representation of a building mesh, while
preserving the initial structure?

ANSWER: YES

In this thesis, we have presented a methodology for the simplification of a given
MVS building mesh, along with details on its implementation in a programming
environment. This methodology is based on the assumption that information of any
kind on the original building (imagery, point cloud etc.) is inaccessible, so the only
input required is the building mesh itself (closed or open). The results, presented
in subsection 5.2.1, reveal that our method produces a polygonal surface mesh,
consisting of a less amount of faces than its original counterpart. With this, a simpler,
compact representation of a building model is achieved in a reasonable execution
time, which reduces the need for memory space significantly (see subsection 5.2.3).

Furthermore, we have offered an explicit definition for the structure of a building,
purely for the purposes of this project. According to it, the structure can be possibly
defined as the assembly of the building primitives (components), along with their
interrelationships (configuration) in 3D space. This notion of structure is further
incorporated in the context of our methodology with the form of a structure graph;
an undirected graph whose vertices correspond to an individual building primitive,
while each edge represents an adjacency relation between two primitives.

The structure graph serves as the cornerstone of our method and practically, dictates
the rules by which the simplified mesh should be constructed in order to preserve
the initial structure. In this way, the result of our simplification conforms as much
as possible to the original model, thus minimizing distortion; namely, the distance
between the input mesh and its simplified representation. In subsection 5.2.2, it is
shown that the mean error of our simplified versions is small in general, while it
stands in parallel with other methods, such as QEM and SAMD (see subsection 5.2.4).

55



56 conclusions

QUESTION:

Can we ensure that the resulting mesh is free of topological defects?

ANSWER: YES

As an additional condition, we demanded that the result of our simplification method
should be a compact representation of the original building mesh, which, at the same
time, is topologically valid. This condition should hold true, even if any geometric
and topological defects are present in the original state. This way, we ensure that
the building model can be used in further applications, such as urban planning and
simulations.

To achieve that, our methodology takes advantage of any available information
from the input mesh, such as the coverage of a candidate face from the respective
planar region. However, simplification is not accomplished here by reducing the
number of simplexes in the input — an approach followed by techniques, such as
QEM and SAMD. Instead, similar to VSA, a new mesh is constructed with the help of
the structure graph, in which the primitives identified in the original are represented
by simpler shapes. The main advantage of this is that any topological errors in
the original model are not inherited in the simplified version — see Section 2.2 for
examples.

To address any geometric or topological inconsistencies that may occur from flaws in
our structure graph, a binary linear problem is formulated, originally introduced by
Nan and Wonka [2017]. This problem imposes certain hard constraints that ensure
that the final, simplified mesh is both manifold and watertight; in other words, each
of its edges is adjacent to two faces. In this way, most defects (self-intersections,
isolated edges etc.) are eliminated and the problem of consistent orientation remains
to be solved in a post-processing step. Since the simplified mesh comprises polygonal
faces of different shapes, it is finally converted into a triangular mesh to achieve
uniformity.

Proof on the topological validity of our results can be found in subsection 5.2.1.
There, both the Euler characteristics and the genus of the simplified meshes are
examined to assert that they are topologically equivalent to a closed polyhedral
surface.

6.2 discussion

6.2.1 Simplification or reconstruction?

In this thesis, we have proposed a methodology that results in a compact building
model, given a MVS mesh as input. Although our method is presented along the
thesis as a simplification technique, still its numerous similarities with building model
reconstruction (see Section 2.1) may give rise to the following question: Is this a
simplification or reconstruction method?

The main reason for this question to arise is that there is not a clear distinction
between simplification and reconstruction. In general, simplification aims to a
compact representation for a given mesh which consists of less faces than the original
one, while the main objective of reconstruction techniques is the production of mesh
representation from various sources (imagery, point cloud, mesh etc.), regardless
of the complexity. Furthermore, simplification techniques, such as QEM and SAMD,
often focus on the reduction of the simplexes forming the original mesh; on the
contrary, reconstruction methods create an entirely new mesh based on information
from the original.



6.2 discussion 57

Nonetheless, there are several techniques encountered in scientific literature which
are clearly assigned to one category and at the same time, share several traits of
the other. Such an example is the reconstruction technique introduced by Nan and
Wonka [2017]; while its primary focus lies on the production of polygonal surface
meshes from point clouds, these meshes also need to be lightweight, consisting of
only a few faces. In contrast, VSA — which is closely related to our own method —
simplifies a given mesh by approximating it with a set of planar proxies, finally used
for the construction of an entirely new mesh.

From the above, it becomes apparent that whether our method could be categorized
as a simplification or reconstruction technique is mostly a matter of choice. Here, the
method is characterized as simplification since the primary goal of our project was the
production of simpler versions for already-existing models and not the construction of
a model for a given object in the first place. In any case, it is our honest belief that
our proposed methodology is able to contribute to the current state of the art for
both simplification and reconstruction.

6.2.2 Contributions

Along this project and in this thesis, several concepts have been presented for the
formulation of our methodology. Although these concepts are not novel and they
might be traced in the related work, it is still our belief that our approach on them
can contribute to the current state of the art. Our most notable contributions are the
following:

• Structure definition: Although various notions on structure can be found in
scientific literature [Mitra et al., 2013], still a universally accepted definition has
not been formulated yet. This task proves to be even more difficult for natural
objects with no distinct geometry — for example, vegetation. In our case,
however, we are dealing with buildings, which are generally characterized by
geometric regularity. This allowed us to form our own definition of structure,
in order to captivate this characteristic in the original mesh and preserve it,
as much as possible, during simplification. Of course, it is possible for this
definition to be adopted or even, further extended for other applications.

• Mesh Segmentation: For the purposes of this project, we have devised a
region growing algorithm for the segmentation of a given mesh into planar
components. This algorithm is not radically new, in comparison to similar
approaches, and of course, is limited only to planar geometries (spheres,
cylinders and cones are excluded). Nonetheless, several elements of it (for
example, the inheritance of planarity from vertices to planes) can be further
used in segmentation techniques or other applications. The set of criteria, used
for the refinement of our segmentation, can also contribute to the research for
the detection of planar shapes in meshes, especially for structural scales.

• Structure graph: One of the novelties introduced for this project is that of the
structure graph. Similar data structures have appeared in literature (remember
the graph of proxies in the work of Salinas et al. [2015]), but the way this graph
is utilized here is completely different. Apart from the definition of structure
in our method, the graph basically dictates also the formation of the simplified
version for the input mesh, by indicating which pairwise intersections of the
supporting planes should be computed or not. Contrary to other methods for
the reconstruction of buildings, which rely on the pairwise intersection of all
available planes, this approach dramatically reduces the amount of necessary
computations, thus maximizing efficiency.



58 conclusions

• Importance: Another novelty is the definition of an importance threshold, for
the selection of planar components from the initial mesh segmentation. Similar
to the structure graph, this concept does not appear for the first time in our
method; however, its utilization differs here. Similar thresholds are defined
also in other methods (examples can be found in the work of Verdie et al.
[2015]), but they are used only to address over-segmentation and to avoid
selecting segments, based only on the amount of their faces. Furthermore,
these thresholds are set in reference to a specific region area, meaning that they
are valid only for a certain model scale. Importance is, instead, assigned here
to regions, according to the proportion between their area and the total surface
area of the mesh. Not only that, the adjustment of this threshold can possibly
dictate the level of detail for our simplified mesh.

• Building Scaffold: Similar structures have appeared in related work (remem-
ber the work of Wang et al. [2016]) for the regularization of meshes, but not
their construction. Contrary to these methods, the scaffold is produced here
with information available only in the original mesh and not other sources
(such as imagery). In this way, both the borders of the initial planar regions
and their adjacencies are preserved in the result of our simplification. Later on,
the scaffold is also used to define the faces of the simplified mesh, with the
help of 2D arrangements formed out of its edges.

• Implementation: For the implementation of our methodology in a program-
ming environment, we have presented several techniques, especially to address
issues related to arithmetic precision or problems of computational geometry.
While these techniques might not be always applicable, they could still inspire
the formulation of other approaches in order to solve such problems.

6.3 limitations
Apart from the contributions of our methodology in the current state of the art, there
are also certain limitations of it that we would like to discuss in this section. These
limitations actually reveal when our simplification technique is bound to produce
an acceptable, simplified version of a given building mesh or where it fails. With
this information at hand, it is possible to recommend some future work in order to
address the various issues and improve the viability of our proposed framework.

6.3.1 Non-planar components

The first of these limitations is closely related with our assumption that the input
mesh consists of only planar components; namely, the building primitives can be
approximated by planes. While this assumption is valid for the majority of building
types encountered in a typical urban environment, still there are cases where this
fact no longer holds true. An example of this are components with curvature, such
as cones and cylinders. Although these components can be approximated with a set
of planes, still the resulting shape does not conform accurately to the original (see
Figure 6.1).

6.3.2 Structure definition

The main issue in our simplification method currently stems from our attempt to
combine two different properties for the resulting mesh: (a) structure awareness and
(b) topological validity. In our proposed framework, the notion of structure is explicitly
expressed through the concept of the structure graph, while the topological validity is



6.3 limitations 59

(a) Original mesh (b) Simplified mesh

Figure 6.1: Curved components: Although curves components of the original mesh can be
approximated by plane sets, still the resulting shape does not conform to the
original geometry.

imposed through the hard constraints, included as part of our optimization process.
However, the combination of these properties does not always function properly.

As mentioned in Section 1.2, our definition of structure is based on the detection of
the building primitives, along with their interrelationships — which, in our case, are
limited only to adjacency relations. This requires that both these elements need to
be recovered, so that the model structure is completely acquired. This is not always
possible, mainly because of two reasons — both related to mesh segmentation (see
Figure 6.2):

(a) The set of building primitives is not fully recovered. This occurs due to the de-
fined distance threshold or when the input mesh is overall “smooth” — meaning
that the curvature on the borders of planar regions changes gradually. As a con-
sequence of that, certain components cannot be represented with a planar region
and therefore, are ignored during the construction of the building scaffold.

(b) The topological relationships, necessary to recover the border of a planar region
in the building scaffold (as vertices and edges), are not included in the structure
graph. This occurs due to the fact that the region extends in a limited area of the
mesh. This means that it shares a common border (is adjacent to) with a number
of regions, smaller than the one required to define a closed shape.

Figure 6.2: Incomplete structure: The structure of a building model might not be fully
recovered, either because components cannot be detected via mesh segmentation
(a) or the adjacency relations, necessary for the definition of their borders (b), are
not retrieved.

The above issues might be the cause for the presence of holes in the proxy mesh,
constructed out of the initial set of candidate faces. Since the hard constraints of
the optimization process enforce the simplified mesh to be manifold, these parts
are even eventually excluded or even worse, they compromise the manifoldness
of the final result in such a degree that in the end, no model is produced. With
respect to that, the structure graph provides, on the one hand, a means to achieve
computational efficiency and high conformity of our simplified version to the original



60 conclusions

mesh. Unfortunately, at the same time, it does not guarantee that the proxy mesh
would be enough by itself for the hard constraints to result into a topologically valid
mesh.

Nevertheless, there is possibly a way to address this problem for a lot of cases,
based on our experimentation. One common way to lower the level of noise in a
given mesh depends on the detection of planar primitives in it and the projection of
their faces to their respective supporting plane. It is also possible to incorporate this
approach in our segmentation of the input mesh, by projecting a planar region to its
plane after its definition, thus achieving the upcoming effects (see Figure 6.3):

(a) Original segmentation (b) With region projection

Figure 6.3: Region projection: The projection of the region vertices on their supporting planes
”stretches” the faces of narrow, elongated building components, thus facilitating
their detection and increasing their importance.

(a) The projection of vertices on their reference plane increases the face area of
narrow, elongated components, thus facilitating their detection during segmenta-
tion.

(b) This rise in the face area of a given region also increases its importance and
as a result, its probability to be selected for simplification with the importance
threshold.

The above effects enable the enrichment of the structure graph, with the addition of
both primitives and adjacency relations, thus completing any information missing.
This enrichment also has a profound effect to the final result of our simplification
(see Figure 6.4). Regardless of the effectiveness of this approach, a revision on the
extraction of adjacencies between planar regions is still required for our method to
be further improved.

(a) Original mesh (b) Simplified mesh (c) With region projection

Figure 6.4: Region projection and simplification: For a given mesh (a), finer parts of the initial
parts cannot be retrieved, causing their omission from the simplified version (b).
However, the projection of regions to their supporting planes enhances these
features, thus enabling their addition in the final result (c).

6.3.3 Miscellaneous

The hard constraints to assert the manifoldness of our simplified mesh might also
result into various by-products, for different segmentations of the input mesh (see
Figure 6.5). The main cause for these by-products is the fact that the constraints



6.4 future work 61

utilize the set of candidate faces to construct as many closed, polygonal surfaces as
possible. As a consequence of that, there are cases where surfaces are still produced,
despite the low confidence of their faces.

(a) d = 0.80, imp = 1.0 (b) d = 0.85, imp = 1.0

Figure 6.5: By-products: Different segmentations of the input mesh might result into closed,
polygonal surfaces which cannot be related to building components.

Finally, some further limitations of our method have been already discussed in the
context of previous chapters. One of them is the handling of corners, which serve as
the intersecting points of four or more planar regions (for an example, see Figure
4.3). Although this approach facilitates the construction of the building scaffold, a
representation of these corners with a unique vertex in our simplified mesh is still
needed. Another limitation is related to the automatization of the method. As of
right now, the method is semi-automatic, mainly requiring from the user to define the
necessary importance threshold and possibly, the distance for the mesh segmentation.
Nevertheless, a fully-automated process would be much more user-friendly and
allow the incorporation of our methodology in further applications.

6.4 future work
Based on the limitations presented in Section 6.3, we would like to recommend
some future work in this final section of this thesis. These recommendations aim to
further improve our proposed methodology and allow its incorporation into other
applications. For this purpose, some of our suggestions are the following:

• Mesh Segmentation: As mentioned in Section 6.3, many current limitations of
our method are closely related to mesh segmentation. Although we introduced
our own region growing algorithm to address the detection of planar regions
in a given mesh, experimentation with other, available techniques could be
proven useful. In this way, our segmentation method could be further improved
or even, replaced in order to produce better results. For this purpose, it is
necessary to study the combination of our simplification framework with
different mesh segmentation techniques, especially those of the RANSAC family.
Furthermore, the detection of geometries other than planar (spheres, cylinders,
cones), via mesh segmentation, would allow the simplification of a wider
variety of building types.

• Structure Definition: Our definition of building structure has proven sufficient
for the purposes of our project, but some extensions to it are possible. As of
right now, the interrelationships between primitives are limited to topological
relations and specifically, only adjacencies. The addition of geometric relations,
such as orthogonality (an attribute, relating the orientation of a primitive in
reference to the z-axis), could facilitate the regularization of the simplified mesh.
An example of that could be the construction of faces, exactly parallel to the
z-axis, for the definition of building walls. Of course, this would require, at the



62 conclusions

same time, the construction of multiple structure graphs, each one with the
same amount of primitives, but different types of relations connecting them.

• Structure Graph: Even without redefining our structure definition, still some
changes are necessary in order for the structure graph to be functional, espe-
cially in its construction. Currently, the adjacencies recorded in the graph are
detected by locating common vertices in region borders. However, even this
naive approach has proven to be quite demanding in several cases, thus forcing
us to search for an alternative solution. A possible way to address this issue
could be to regard as adjacent regions those, for which the minimum distance
between their vertex sets is smaller than a predefined threshold — although
this would lead to the addition of one extra parameter, highly dependent on
the model scale.

• Building Scaffold: The construction of the building scaffold could be also
revisited, especially for handling the intersections of four or more planar
regions. To address this particular issue, this type of corners need to be located
first in the structure graph. This can be accomplished by examining all graph
cliques and isolating those of order higher than three (3). Then, the vertices,
resulting from the intersection of plane triplets for a group of such primitives,
could be merged into one, unique vertex.

• Automatization: Further automatization would make our simplification tech-
nique much more user-friendly and allow its incorporation in further appli-
cations, such as urban scene reconstruction. A fixed value could be probably
assigned to the distance parameter, if the model scale in study is also fixed.
Although the importance parameter remains user-defined in order to allow the
level of detail for the simplified mesh, it could be still defined as an constant
and then, further details could be obtained via iconization.

• Level of Detail: As of right now, our method produces simplified versions
of building meshes for LOD2 — buildings with simple roof structure, without
architectural details. However, as we have shown in Section 4.2, it is possible
to alter the level of detail through the adjustment of the importance parameter,
originally introduced to select the planar segments for simplification. For
buildings with flat roofs, this allows the construction of LOD1 models, but still
not of LOD0 (building footprint).

To address this problem, a possible solution could be the addition of semantic
information to our simplified models, through geometric regulations. In this
case, the face orientation could be proven useful; for example, faces parallel to
the z-axis could correspond to building walls, while those perpendicular to it
and with low z-value could be assigned to the building floor. According to this
approach, faces to form the simplified model are selected, according to their
orientation, in a post-processing step, depending on the desired level.



B I B L I O G R A P H Y

Agarwal, P. K. and Sharir, M. (2000). Arrangements and Their Applications. In
Handbook of Computational Geometry, pages 49 – 119. North-Holland, Amsterdam.

Attene, M., Campen, M., and Kobbelt, L. (2013). Polygon mesh repairing: An
application perspective. ACM Comput. Surv., 45(2):15:1–15:33.

Awrangjeb, M. and Lu, G. (2014). Automatic Building Footprint Extraction and
Regularisation from LIDAR Point Cloud Data. In 2014 International Conference
on Digital Image Computing: Techniques and Applications (DICTA), pages 1–8.

Bernardini, F., Mittleman, J., Rushmeier, H. E., Silva, C. T., and Taubin, G. (1999).
The Ball-Pivoting Algorithm for Surface Reconstruction. IEEE Trans. Vis. Comput.
Graph., 5(4):349–359.

Biljecki, F., Heuvelink, G., Ledoux, H., and Stoter, J. (2018). The effect of acquisition
error and level of detail on the accuracy of spatial analyses. Cartography and
Geographic Information Science, 45(2):156–176.

Biljecki, F., Ledoux, H., and Stoter, J. (2016). An improved LOD specification for 3D
building models. Computers, Environment and Urban Systems, 59:25 – 37.

Biljecki, F., Stoter, J., Ledoux, H., Zlatanova, S., and Çöltekin, A. (2015). Applications
of 3D City Models: State of the Art Review. ISPRS International Journal of
Geo-Information, 4(4):2842–2889.

Billen, R., Cutting-Decelle, A., Marina, O., Duarte de Almeida, J.-P., Caglioni, M.,
Falquet, G., Leduc, T., Métral, C., Moreau, G., Perret, J., Rabino, G., Garcı́a, R.,
Yatskiv, I., and Zlatanova, S. (2014). 3D City Models and urban information: Current
issues and perspectives.

Bódis-Szomorú, A., Riemenschneider, H., and Gool, L. J. V. (2015). Superpixel meshes
for fast edge-preserving surface reconstruction. In CVPR, pages 2011–2020. IEEE
Computer Society.

Campagna, S., Kobbelt, L., and Seidel, H.-P. (1998). Directed Edges; A Scalable
Representation for Triangle Meshes. J. Graph. Tools, 3(4):1–11.

Cohen-Steiner, D., Alliez, P., and Desbrun, M. (2004). Variational shape approxima-
tion. ACM Trans. Graph., 23(3):905–914.

Commandeur, T. (2012). Footprint decomposition combined with point cloud seg-
mentation for producing valid 3D models. Master’s thesis, Delft University of
Technology.

Donkers, S., Ledoux, H., Zhao, J., and Stoter, J. (2015). Automatic conversion of IFC
datasets to geometrically and semantically correct CityGML LOD3 buildings.
Transactions in GIS, 20.

Douglas, D. and Peucker, T. (1973). Algorithms for the Reduction of the Number of
Points Required to Represent a Digitized Line or its Caricature. Cartographica:
The International Journal for Geographic Information and Geovisualization, 10(2):112–
122.

Fang, H., Lafarge, F., and Desbrun, M. (2018). Planar Shape Detection at Structural
Scales. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Salt Lake City, United States.

63



64 BIBLIOGRAPHY

Fischler, M. A. and Bolles, R. C. (1981). Random Sample Consensus: A Paradigm for
Model Fitting with Applications to Image Analysis and Automated Cartography.
Commun. ACM, 24(6):381–395.

Furukawa, Y. and Hernández, C. (2015). Multi-View Stereo: A Tutorial. Foundations
and Trends in Computer Graphics and Vision, 9(1-2):1–148.

Garland, M. and Heckbert, P. S. (1997). Surface Simplification Using Quadric Error
Metrics. In Proceedings of the 24th Annual Conference on Computer Graphics and
Interactive Techniques, SIGGRAPH ’97, pages 209–216, New York, NY, USA. ACM
Press/Addison-Wesley Publishing Co.

Gatzke, T. and Grimm, C. (2006). Estimating Curvature on Triangular Meshes.
International Journal of Shape Modeling, 12:1–28.

Haala, N. and Kada, M. (2010). An update on automatic 3D building reconstruction.

Holzmann, T., Oswald, M., Pollefeys, M., Fraundorfer, F., and Bischof, H. (2017).
Plane-based Surface Regularization for Urban 3D Reconstruction. In 28th British
Machine Vision Conference.

Jain, K., Gurjar, S. P., and Mandla, V. (2013). Virtual 3D City modeling: Techniques
and Applications. volume XL-2/W2.

Jonsson, M. (2016). Make it Flat : Detection and Correction of Planar Regions in
Triangle Meshes. Master’s thesis, Linköping University, Computer Vision.

Kazhdan, M. M., Bolitho, M., and Hoppe, H. (2006). Poisson surface reconstruction.
In Symposium on Geometry Processing, volume 256 of ACM International Conference
Proceeding Series, pages 61–70. Eurographics Association.

Kelly, T., Femiani, J., Wonka, P., and Mitra, N. J. (2017). BigSUR: large-scale structured
urban reconstruction. ACM Trans. Graph., 36(6):204:1–204:16.

Lancelle, M. and Fellner, D. (2010). Current issues on 3D city models. Proceedings of
the 25th International Conference in Image and Vision Computing, pages 363—-369.

Lewis, R. and Sequin, C. (1998). Generation of 3D building models from 2D architec-
tural plans. Computer-Aided Design, 30:765–779.

Li, M., Nan, L., Smith, N., and Wonka, P. (2016). Reconstructing building mass
models from UAV images. Computers & Graphics, 54:84–93.

Mitra, N. J., Wand, M., Zhang, H. R., Cohen-Or, D., Kim, V. G., and Huang, Q. (2013).
Structure-aware shape processing. In SIGGRAPH Asia 2013, Hong Kong, China,
November 19-22, 2013, Courses, pages 1:1–1:20.

Nan, L. and Wonka, P. (2017). PolyFit: Polygonal Surface Reconstruction from Point
Clouds. In ICCV, pages 2372–2380. IEEE Computer Society.

Pauly, M., Gross, M., and Kobbelt, L. P. (2002). Efficient Simplification of Point-
sampled Surfaces. In Proceedings of the Conference on Visualization ’02, VIS ’02,
pages 163–170, Washington, DC, USA. IEEE Computer Society.

Salinas, D., Lafarge, F., and Alliez, P. (2015). Structure-Aware Mesh Decimation.
Comput. Graph. Forum, 34(6):211–227.

Schnabel, R., Wahl, R., and Klein, R. (2007). Efficient RANSAC for Point-Cloud
Shape Detection. Comput. Graph. Forum, 26(2):214–226.

Sierksma, G. and Zwols, Y. (2015). Linear and integer optimization: Theory and practice.
Taylor & Francis Group, 3 edition.

Smith, C. (2006). On Vertex-vertex Systems and Their Use in Geometric and Biological
Modelling. PhD thesis, Calgary, Alta., Canada, Canada. AAINR19574.



BIBLIOGRAPHY 65

Süveg, I. (2003). Reconstruction of 3D building models from aerial images and maps.
PhD thesis. Series: Netherlands Geodetic Commission NCG : Publications
on Geodesy : New Series; 53. PhD Thesis Netherlands Geodetic Commission,
summaries in English and Dutch.

The Computational Geometry Algorithms Library (CGAL) (2018).
https://www.cgal.org/.

The Point Cloud Librarty (PCL) (2018).

Tomljenovic, I., Höfle, B., Tiede, D., and Blaschke, T. (2015). Building Extraction
from Airborne Laser Scanning Data: An Analysis of the State of the Art. Remote
Sensing, 7:3826–3862.

Trudeau, R. J. (2015). Introduction to graph theory.

Veljanovski, T., Kanjir, U., and Oštir, K. (2011). Object-based image analysis of remote
sensing data. Geodetski vestnik, 55:641–664.

Verdie, Y., Lafarge, F., and Alliez, P. (2015). LOD Generation for Urban Scenes. ACM
Trans. Graph., 34(3):30:1–30:14.

Vieira, M. and Shimada, K. (2005). Surface mesh segmentation and smooth surface
extraction through region growing. Computer Aided Geometric Design, 22(8):771–
792.

Wang, J., Fang, T., Su, Q., Zhu, S., Liu, J., Cai, S., Tai, C., and Quan, L. (2016).
Image-Based Building Regularization Using Structural Linear Features. IEEE
Trans. Vis. Comput. Graph., 22(6):1760–1772.

Wu, K., Rashad, M., and Khamiss, M. (2017). A Review on Mesh Segmentation
Techniques. International Journal of Engineering and Innovative Technology (IJEIT),
6.

Xiong, B., Elberink, S. O., and Vosselman, G. (2014). Building Modeling from Noisy
Photogrammetric Point Clouds. ISPRS Annals of the Photogrammetry, Remote
Sensing and Spatial Information Sciences, Volume II-3.

Yin, X., Wonka, P., and Razdan, A. (2009). Generating 3D Building Models from
Architectural Drawings: A Survey. IEEE computer graphics and applications, 29:20–
30.

Zhu, L., Shen, S., Gao, X., and Hu, Z. (2018). Large Scale Urban Scene Modeling
from MVS Meshes. In ECCV (11), volume 11215 of Lecture Notes in Computer
Science, pages 640–655. Springer.





A A P P E N D I X

Algorithm 1 Region growing with k-ring planarity
Input:
• Triangle Surface MeshM with faces F
• k-ring Planarity Estimates {p}
• k-ring Neighbouring Face Finding Function Ωk(.)
• Distance Threshold dt

Output: Triangles assigned to segments
Initialize:
• Regions {R}← ∅ // a list of list of integers (face indices)
• Available Faces {F}← {1, 2,..., m} // a list of integers (face integers)

while {V} 6= ∅ do
- Current Region: {Rc}← ∅ // face indices
- Current Seeds: {Sc}← ∅ // face indices
Face with highest planarity {F}← fmax
{Sc}← {Sc} ∪ fmax
{V}← {V} \ fmax
Find k-ring neighbouring faces {Bc}← Ωk{ fmax}
Fit plane to Neighbors plane ← PCA{Bc}
while {Sc} 6= ∅ do
{Bc}← ∅ // face indices
for s in {Sc} do
{Bc}← {Bc} ∪ Ω1{s} // 1-ring neighbors
{Sc}← {Sc} \ s

end for
for B in {Bc} do
{vB}← vertices of B
if B ∈ {F} and dist(B, plane) ≤ dt then
{Rc}← {Rc} ∪ B
{V}← {Vc} \ {vB}
{Sc}← {Sc} \ {vB}

end if
end for
Re-fit plane to current region plane ← PCA{Rc}

end while
Add current region {R}← {Rc}

end while

67



colophon
This document was typeset using LATEX. The document layout was generated using
the arsclassica package by Lorenzo Pantieri, which is an adaption of the original
classicthesis package from André Miede.




	1 Introduction
	1.1 Motivation
	1.2 Research questions
	1.3 Thesis overview

	2 Related work
	2.1 Mesh reconstruction
	2.1.1 Building mesh reconstruction
	2.1.2 Building mesh regularization
	2.1.3 Urban scene reconstruction

	2.2 Mesh simplification
	2.2.1 Quadric error metrics
	2.2.2 Structure-aware mesh decimation
	2.2.3 Variational shape approximation

	2.3 Building mesh simplification

	3 Methodology
	3.1 Segmentation
	3.1.1 Planarity
	3.1.2 Region growing

	3.2 Structure graph
	3.2.1 Refinement
	3.2.2 Importance
	3.2.3 Graph construction

	3.3 Simplification
	3.3.1 Building scaffold
	3.3.2 Candidate faces
	3.3.3 Optimization


	4 Implementation
	4.1 Programming specifics
	4.1.1 Segmentation
	4.1.2 Structure graph
	4.1.3 Simplification

	4.2 Parameter tuning

	5 Results & analysis
	5.1 Results
	5.2 Analysis
	5.2.1 Topological validity
	5.2.2 Error analysis
	5.2.3 Memory & Execution time
	5.2.4 Comparisons


	6 Conclusions
	6.1 Research overview
	6.2 Discussion
	6.2.1 Simplification or reconstruction?
	6.2.2 Contributions

	6.3 Limitations
	6.3.1 Non-planar components
	6.3.2 Structure definition
	6.3.3 Miscellaneous

	6.4 Future work

	A Appendix

