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TENSOR GRAPH DECOMPOSITION FOR TEMPORAL NETWORKS

Bishwadeep Das and Elvin Isufi

ABSTRACT

Temporal networks arise due to certain dynamics influencing their
connections or due to the change in interactions between the nodes
themselves, as seen for example in social networks. Such evolution
can be algebraically represented by a three-way tensor, which lends
itself to using tensor decompositions to study the underpinning fac-
tors driving the network evolution. Low rank tensor decompositions
have been used for temporal networks but mostly with a focus on
downstream tasks and have been seldom used to study the temporal
network itself. Here, we use the tensor decomposition to identify a
limited number of key mode graphs that can explain the temporal
network, and which linear combination can represent its evolution.
For this, we put for a novel graph-based tensor decomposition ap-
proach where we impose a graph structure on the two modes of the
tensor and a smoothness on the temporal dimension. We use these
mode graphs to investigate the temporal network and corroborate
their usability for network reconstruction and link prediction.

Index Terms— Dynamic networks, tensors, adjacency matrix,
alternating optimization.

1. INTRODUCTION

Studying the driving mechanisms behind temporal networks is key
to understanding complex systems where relations change over time
[1]. In studying these networks, we often resort to studying their
algebraic representation and identifying key properties that could
explain their dynamics [1]. Three-way tensors have consistently
been used to represent temporal networks, where we stack the time-
varying adjacency matrices across the third dimension, usually indi-
cating time [2–4]. This representation allows to use tensor decompo-
sitions [5–7] to analyze, compress, or complete temporal networks.

Tensor decomposition has been used for different tasks in tem-
poral networks. For example, [8] uses the CP decomposition to infer
graph topologies from correlation matrices, whereas [2] uses it for
community detection. The work in [9] uses a tensor decomposition
to infer dynamic network states from EEG signals. Also [10] uses
a temporally-constrained CP decomposition on a stacked adjacency
tensor to detect dynamic network states corresponding to communi-
ties. The block term decomposition (BTD) is used in [3] to decom-
pose tensors comprising multi-aspect graphs and in [11] to inves-
tigate functional brain temporal networks. In other network-based
disciplines, tensors have also been used for temporal knowledge base
completion [12], analyzing temporal social networks [13], temporal
collaborative filtering [14], or for topology inference from data [15].

This research is supported by the TTW-OTP project GraSPA (project
number 19497) financed by the Dutch Research Council (NWO) and by
the TU Delft AI programme. The authors are with the Multimedia Com-
puting Group, Faculty of Electrical Engineering, Mathematics and Com-
puter Science, Delft University of Technology, The Netherlands. e-mails:
{b.das,e.isufi-1}@tudelft.nl

Tensors have also been used to compress temporal networks in [16]
or to identify communities in [17].

All these works rely on some sort of low-rank decomposition.
This decomposition could identify key factors to solve the specific
tasks but typically does not possess any graph structure, which may
be of interest to identify key mode graphs that can represent the tem-
poral network. Thus, we question if it is possible to obtain a few key
mode graphs that can help us unravel the dynamics behind tempo-
ral networks. Targeting this question, we resort to low-rank tensor
decompositions and propose a new approach to identify a few graph
modes in which linear combination contributes to representing the
overall dynamics. We formulate this as an optimization problem
where we impose a sparse graph structure on the modes of decompo-
sition akin to the recent conditions adopted in graph signal process-
ing [18]. We also impose a smooth temporal variation on the tempo-
ral graph as well as a non-overlapping support condition across the
mode graphs to identify different meaningful structures. This op-
timization problem is solved in an alternating fashion between the
mode graphs and the temporal factor variables.

We compare the proposed approach with BTD alternatives that
do not impose a graph structure as well as with [11] for adjacency
tensor reconstruction and completion tasks. Besides achieving a sub-
stantially superior performance, our findings shed light on the fea-
tures of the mode graphs, ultimately, providing a new perspective to
study temporal networks and adjacency tensors in general.

2. PROBLEM FORMULATION

Consider a temporal graph Gt = (V, Et) with node set V =
{1, . . . , N} and evolving edge set Et containing edges between
nodes i and j at time t = 1, . . . , T . We represent the temporal graph
via its three-dimensional adjacency tensor X ∈ RN×N×T , where
the t-th frontal slice X:,:,t ∈ RN×N is the adjacency matrix at time
t. Our ultimate objective is to represent the evolution of Gt as a lin-
ear combination of R ≪ T modal graphs with adjacency matrices
A1, . . . ,AR ∈ RN×N that could unravel important hidden connec-
tivity factors, as well as be used for subsequent downstream tasks
such as temporal link prediction, graph reconstruction, or anomaly
detection [13, 14].

To obtain the modal graphs, we propose to approximate the ad-
jacency tensor X via the following decomposition

X̂ =
R∑

r=1

Ar ◦ cr := [[A,C]] (1)

where cr ∈ RT and the outer product Ar ◦ cr ∈ RN×N×T is
the rth rank-one block term. Decomposition (1) expresses X as a
sum of R rank one block term tensors, each of which corresponds
to an adjacency matrix scaled over time. This is different from the
popular low-rank decomposition, which would require also a low-
rank structure on each adjacency matrix Ar but the latter is typically
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unrealistic. The tth temporal slice of X reads as

X:,:,t = X̂:,:,t +E:,:,t =

R∑
r=1

crtAr +E:,:,t. (2)

where crt is the tth element of cr and E:,:,t is the tth temporal slice
of a tensor E that captures dynamics like added/subtracted edges or
noise.

Given X, our objective transforms into estimating Ar and cr for
all r = 1, . . . , R by imposing a graph structure into each adjacency
matrix Ar . We achieve this by solving

minimize
A,C

l(X, [[A,C]]) +

R∑
r=1

g(Ar) + h(A) + i(C)

subject to Ar ∈ S, A = [A1, . . . ,AR], C = [c1, . . . , cR]

(3)

where l(·) is a data-fitting term that we fix to the squared Frobenius
norm l(·) = ||X −

∑R
r=1 Ar ◦ cr||2F , and g(·), h(·), i(·) impose

desired constraints on each adjacency matrix Ar separately, on all of
them A, and on the temporal factor matrix C, respectively. Finally,
set S imposes desired properties on matrices Ar . We recognize that
problem (3) is generic and could be tailored to different setting. We
specifically consider:

• The adjacency matrices to be elementwise positive and have
a zero diagonal (no self-loops). This is achieved via the con-
straint set S = {S ∈ RN×N : S ≥ 0, tr(S) = 0} [19].

• Sparsity on each adjacency matrix through the ℓ1−norm
g(Ar) = ||Ar||1 since real-world and meaningful graphs
are sparse [20]. For graphs with positive edge weights, this
leads to g(Ar) = 1⊤

NAr1N , where 1 is the all one vector.

• Penalizing shared support across Ars, i.e., that one inter-
action appears ideally on a single mode graph. Our ra-
tionale is to avoid redundancy in the different graphs Ar .
This could be achieved via the penalty term h(A) =∑R

ℓ,k=1 vec(Aℓ)
⊤vec(Ak) with vec(·) the vectorization

operator. Since all adjacency matrices are element-wise pos-
itive, the dot product of their vector forms is lower when
they share fewer edges with a lower weight; i.e., ideally if
[Aℓ]i,j ̸= 0, then [Ak]i,j = 0 for k ̸= ℓ. By penalizing
h(A) via a weight β/2, we could control this shared sup-
port as sharing some edges may still be beneficial to find
consistency across the modal graphs.

• A slow varying temporal graph Gt with no sudden changes,
i.e., each cr changes slowly over time. This is the case for
edge-rewirings, where a small number of edges are rewired
over time, as seen in biological networks [21]. We impose
this by setting i(C) = ||DC||2F =

∑R
r=1 ||Dcr||22, where D

is the (T−1)× T temporal difference matrix.

With this in place, our problem reads as

min
A,C

1

2

∥∥X− [[A,C]]
∥∥2

F
+ γ

R∑
r=1

1⊤Ar1+
β

2

R∑
ℓ,k=1
ℓ̸=k

vec(Aℓ)
⊤vec(Ak)

+ ||DC||2F
subject to Ar ∈ S, A = [A1, . . . ,AR], C = [c1, . . . , cR]

(4)

where scalars γ, β > 0 give emphasis to the sparsity and to the non-
alignment constraint, respectively.

Remark 1. Note that (1) is can also be seen as a matrix factoriza-
tion. We found the Tensor Formulation to be more useful in terms
of representing the dynamics, but it is true that for the optimization
problem, this amounts to solving a low rank matrix problem.

3. TENSOR GRAPH DECOMPOSITION METHOD

Problem (4) is jointly non-convex but it is disjointly convex in each
Ar and C, and it is typically approached via alternating minimiza-
tion [22, 23]. We here detail the steps to solve it by alternating be-
tween A and C, and then discuss its computation cost.

3.1. Solving for the Adjacency Matrices

Given some initialization of the matrices Ar and vectors cr , we
solve for each matrix Ar sequentially. Thus, we first write the
loss function explicitly as a function of Ar . For this, we vec-
torize each observed adjacency matrix over time and build ma-
trix X◦ = [vec(X:,:,1), vec(X:,:,2), . . . , vec(X:,:,T )] ∈ RN2×T .
We also build the analogous matrix for the modal graphs A◦ =

[vec(A1), vec(A2), . . . , vec(AR)] ∈ RN2×R and write the data-
fitting loss as l(X, [[A,C]]) = ||X◦ − A◦C

⊤||2F . Then, upon
defining the connectivity residue that is not represented by the tuple
(Ar, cr),

Yr = X◦ −
R∑

k=1,k ̸=r

vec(Ak)c
⊤
k , (5)

we can express the loss in terms of Ar as

l(X, [[A,C]]) =
1

2
||Yr − vec(Ar)c

⊤
r ||2F . (6)

The optimization problem for Ar then reads as

min
Ar

1

2
||Yr − vec(Ar)c

⊤
r ||2F + γ1⊤Ar1+

β

2
vec(Ar)

⊤
R∑

k=1
k ̸=r

vec(Ak)

subject to Ar ∈ S.

Dual problem. By considering the structure of set S, we can write
the Lagrangian of the above problem as

L(Ar,Λ, ν) =
1

2
||Yr − vec(Ar)c

⊤
r ||2F + γ1⊤Ar1

+
β

2
vec(Ar)

⊤
R∑

k=1,k ̸=r

vec(Ak)− tr(Λ⊤Ar) + νtr(Ar)
(7)

where Λ ≥ 0 and ν are the dual variable. Then, we consider the
inverse vectorization operator that gives matrix Zr = vec−1(Yrcr)
and rewrite the Lagrangian in terms of matrix Ar as

L(Ar,Λ, ν) =
||cr||2

2
tr(A⊤

r Ar)− tr(A⊤
r Zr) +

1

2
tr(YrY

⊤
r )

+ γ1⊤Ar1+
β

2
tr(

R∑
k=1
k ̸=r

A⊤
r Ak)− tr(Λ⊤Ar) + νtr(Ar)

(8)

where the first line on the r.h.s. is due to the loss term [cf. (6)].1

The Lagrangian is convex in Ar and thus we can solve the opti-
mization problem in the dual domain. The dual function d(Λ, ν) =

1This is obtained by exploiting ∥A∥2F = tr(AA⊤) and
vec(A⊤)vec(B) = tr(A⊤B).
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Algorithm 1 Tensor Graph Decomposition (TGD)
1: Input: Tensor X ∈ RN×N×T ; tensor rank R, Ni, Nd, K, γ, β.
2: Output Mode graph adjacency matrices {Ar}Rr=1, C
3: Initialization: Initialize {Ar}Rr=1, C
4: For k = 1 : K (alternating steps between {Ar}Rr=1 and C)
5: For ni = 1 : Ni (update steps for each Ar)
6: For r = 1 : R (scan over matrices {Ar}r=1:R)
7: (Optimize for Ar)
8: Compute Dr as in (9)-(10)
9: For nd = 1 : Nd (update steps of the dual)

10: Perform the dual update in (11)
11: end
12: Update Ar as in (9)
13: end
14: end
15: Update C as in (12)
16: end

minAr L(Ar,Λ, ν) is the Lagrangian obtained at Ar corresponding
to ∇ArL(Ar,Λ, ν) = 0 which is obtained at

Ar =
1

||cr||2
(Λ+Dr − νI) (9)

and where . The dual function has then the form

d(Λ, ν) =
1

||cr||2

(
tr((Λ+Dr − νI)⊤(Λ+Dr − νI))−

tr((Λ+Dr − νI)⊤Zr) +
1

2
tr(YrY

⊤
r ) + γ1⊤(Λ+Dr − νI)1

+
β

2
tr(Λ⊤(Λ+Dr − νI)) + νtr(Λ+Dr − νI)

)
.

(10)

In turn, this leads to solving maxΛ,ν d(Λ, ν) subject to Λ ≥ 0
which is concave in both variables. We can solve for its maximum
by alternating Nd times between the iterations updates

Λ = max{0; νI−Dr} and ν =
1

N
tr(Λ+Dr) (11)

until convergence and along with it for Ar [cf. (9)]. The above
procedure is repeated for Ni steps across all Ars or until the cost
function reaches stabilizes before proceeding with the update on C.

3.2. Solving for the Temporal Factor

Given the update of A, we now update C, which consists of mini-
mizing the convex cost ||X◦ − A◦C

⊤||2F + ||DC||2F . Taking the
derivative and using the vec(·) and vec−1(·) operators, we get the
closed form solution

C⋆ = vec−1((A⊤
◦ A◦ ⊗ IT + IR ⊗D⊤D)−1vec(X⊤

◦ A◦)
)
.

(12)

Algorithm 1 summarizes the tensor graph decomposition procedure.

Hyperparameters and computational complexity. The proposed
approach has the following hyperparameters that affect the solution:
i) the sparsity regularizer weight γ in (4); ii) the shared support pe-
nalization parameter β in (4); iii) the number of iterations K to alter-
nate between the solutions of A and C; iv) the number of alternating

iterations Ni over the Ars; v) the alternating iterations Nd in (11).
The parameters to be estimated is (N2 −N)R+ TR: (N2 −N)R
are the parameters of the R matrices Ar with zero diagonals and TR
are the parameters of C.

The computational complexity is of order O(KRNiTN
2 +

KRNiNdN
2 + KR3T 3). The computations for estimating A are

governed by equations (9) and (4). In both of them, we need to
compute matrix Dr that has a cost of order O(TN2) that is gov-
erned by Zr . In (9), we update the R matrices Ar for Ni steps
leading to a cost O(RNiTN

2). Then, in (11) we alternate over Nd

iterations and have N2 element-wise projections, leading to a cost
of order O(RNiNdN

2). For the C update, we ignore the compu-
tation of D⊤D because of its high sparsity and the dominant terms
are A⊤

◦ A◦ and the inverse of cost O(R3T 3). All these have to be
repeated K times leading to the overall cost.

Remark 2. Our focus is in recovering the components given R. A
discussion on selecting R is omitted because it is out of the scope of
this paper. Interested readers can refer to the relevant literature.

4. EXPERIMENTAL RESULTS

We corroborate the proposed approach on two datasets for the tasks
of graph reconstruction and spatiotemporal link completion.

4.1. Experimental Setup

We consider a synthetic and a real data experimental setting. The
synthetic experiments are run over a stochastic block model (SBM)
graph with 100 nodes and two communities. We use a standard edge
rewiring to impose graph dynamics, where at each time instant, we
re-wire 5 edges at random for T = 50 time instants. This is done
on 5 realizations of the SBM. For the real data experiments, we con-
sider the Enron employee email interaction dataset [24]. It contains
151 users as nodes and an edge indicates an email exchange at a par-
ticular time stamp. We split the time intervals into T = 50 blocks
and obtain the adjacency matrix for each block based on the edge
data at that time. We compare the following alternatives:

1. Uncon: this comprises solving (4) without the constraints. It
ignores the graph structure on Ars.

2. BTD: this is the classical low-rank block term decomposition
[7], which ignores any graph structure all over the problem.2.

3. SBTD: this is the BTD approach proposed in [11] that forces
symmetry and low-rankness on each Ar while also ignoring
a graph structure in it.

4. TGD (proposed): Tensor Graph Decomposition is the ap-
proach in Algorithm 1. The hyper-parameters γ and β are
grid searched respectively from [0.01, 10] and [0.01, 16]. We
also set K = 10, Ni = 10, and Nd = 5.

We set the number of components to R = 3 and the internal rank
for the BTS approaches to five. First, we consider the task of tensor
reconstruction, where we aim to obtain the original tensor from its
low rank approximations. We measure the performance via the the
normalized squared error NMSE = ||X− X̂||2F /||X||2F . Then, we
consider the task of link prediction, where we mask a section of the
observed tensor and use the reconstructed X̂ to predict links over it.
We have two types of masking (i) uniformly at random, where we
mask randomly 20% of the edges; (ii) unobserved nodes, where we

2http://dimitri.nion.free.fr/Codes/Tensor_
Decompositions.html
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Table 1. Average NMSE and F1 score for all methods for the
stochastic block model and the Enron dataset. (top row block)
NMSE for reconstruction; (middle) F1 for uniformly at random spa-
tiotemporal link prediction (bottom) F1 for node-specific link pre-
diction. All standard deviations are of order 10−2 or lower.

Dataset TGD TGD Uncon BTD SBTD
γ = 0.01 γ = 9
β = 0.01 β = 16

SBM 0.15 0.24 0.15 0.37 0.44
Enron 0.74 0.82 0.71 0.76 0.98
SBM 0.92 0.93 0.58 0.48 0.48
Enron 0.18 0.40 0.07 0.03 0.03
SBM 0.90 0.90 0.52 0.43 0.43
Enron 0.17 0.19 0.06 0.03 0.0

Table 2. Graph entropy (no. of connected components) for the re-
covered components for different γ and β on the SBM graph.

β = 0.01 β = 6 β = 16
γ = 0.01 4.35(1) 4.29(1) 4.18(1.2)
γ = 5 4.2(1) 4.25(1.2) 4.12(1.26)
γ = 9 4.2(1.3) 4.19(1.4) 3.94(1.66)

remove interactions between a random set of 20 nodes after t = 25.
We measure the performance via the F1 score.

In addition to the task-driven goodness of fit metrics, we also
evaluate the graph entropy, which is the entropy of the degree distri-
bution [25], and the number of connected components of the recov-
ered graphs for further insight. A higher degree entropy indicates a
more irregular and richer structure, while a lower entropy indicates
a more regular degree distribution. The strongly connected compo-
nents can quantify the global structure of the matrices estimated.

4.2. Numerical Results

Table 1 shows that the proposed approach matches the performance
of the the unconstrained approach for SBM, while being lower for
the Enron data-set. However, the reconstruction F1 scores for both
the proposed alternatives are better across all data, showcasing that
a graph structure on Ar is a strong inductive bias to represent ad-
jacency tensors. This enhancement is more apparent as we move
towards higher values of γ and β, as in for the SBM data. This
comes however, with a trade-off. The proposed method also out-
performs the other alternatives, with the exception of BTD in the
Enron dataset. The results suggest overall that putting more empha-
sis on the sparsity of the factors and penalizing shared edges across
them does not affect the solution space, ultimately, leading to more
insightful factors.

Table 2 shows the entropy and the number of connected com-
ponents averaged over the R = 3 factors for the synthetic data.
For comparison, the starting graph has an entropy of 4.05 and one
strongly connected component. An increase in γ and β in general re-
sults in a lower average entropy and a higher average number of con-
nected components. The entropy is higher than that of the starting
graph, suggesting that the obtained mode graphs have more struc-
tural diversity, but combined they lead to an adjacency matrix with
lesser diversity. The increase in the number of components can be
attributed to the increase in the graph sparsity, which could be used
for example to infer key edges in the mode graphs.

Fig. 1. (Top row) Recovered adjacency matrices with β = 16 and
γ = 9 and R = 3. The respective graph entropies are (from left to
right), 2.8, 1.2, and 2.6 and the number of connected components
is 75, 134, and 78. (Middle row) Recovered factors for the uncon-
strained formulation. Each factor has an entropy of 7.19 and one
connected component. (End row) The factors recovered from the
SBTD. The factors recovered do not resemble adjacency matrices.

Figure 1 illustrates the support of the mode graphs along with
their respective entropies and the number of connected components
for the Enron dataset. The graphs show different scales of connectiv-
ity. We also see that the graph with more edges is structurally more
diverse. For the unconstrained formulation, we see that all factors
look very similar suggesting that it fits one representative adjacency
matrix for depicting all the dynamics. The entropies for the factors
are 7.23, 7.19, and 7.23, respectively. This suggests only one tem-
plate of a richer structure is captured, which may not always give
insights about the temporal evolution of the graph.

5. CONCLUSION

We propose a method to represent temporal graphs as a linear com-
bination of a few modal graphs. We represent the temporal graph
via its adjacency tensor and propose a novel tensor-based decom-
position that incorporates graph-based structures along two factors
representing the node-to-node pairs. We formulate a constrained op-
timization problem, which allows us to put graph-prior into the re-
covered factors as well as to impose graph sparsity and slower tem-
poral evolution. Following conventional techniques, we solve this
via alternating optimization. Numerical results on synthetic and real
data corroborate our method and show there’s a trade-off between
the reconstruction accuracy and the structure of the recovered graphs
while outperforming typical tensor low-rank decomposition that ig-
nores the graph structure. Future work will investigate the conver-
gence guarantees, uniqueness of the recovered matrices, as well as
incorporating graph signals into the problem.
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