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Abstract We study the “Immediate Exchange Model”, a wealth distribution model intro-
duced in Heinsalu and Patriarca (Eur Phys J B 87:170, 2014). We prove that the model has a
discrete dual, where the duality functions are natural polynomials associated to the Gamma
distribution with shape parameter 2 and are exactly those connecting the Brownian Energy
Process (with parameter 2) and the corresponding Symmetric Inclusion Process in Carinci
et al. (J Stat Phys 152:657–697, 2013) and Giardinà et al. (J Stat Phys 135(1):25–55, 2009).
As a consequence, we recover invariance of products of Gamma distributions with shape
parameter 2, and obtain ergodicity results. Next we show similar properties for a more gen-
eral model, where the exchange fraction is Beta(s, t) distributed, and product measures with
Gamma(s + t) marginals are invariant. We also show that the discrete dual model itself is
self-dual and has the original continuous model as its scaling limit. We show that the self-
duality is linked with an underlying SU (1, 1) symmetry, reminiscent of the one found before
for the Symmetric Inclusion Process and related processes.

1 Introduction

Kinetic wealth exchange models (KWEMs) constitute a popular class of econophysical
models in which agents exchange their wealth according to some stochastic rules, always pre-
serving the total amount of wealth in the economy. The aim is to understand some important
properties of the dynamics of wealth distribution, such as wealth concentration, stationary
distributions and time dependent correlation functions. For a recent review about KWEMs,

B Frank Redig
F.H.J.Redig@tudelft.nl

Bart van Ginkel
G.J.vanGinkel@student.tudelft.nl

Federico Sau
F.Sau@tudelft.nl

1 Delft Institute of AppliedMathematics, Delft University of Technology,Mekelweg 4, 2628 CDDelft,
The Netherlands

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10955-016-1478-z&domain=pdf


B. Ginkel et al.

we refer to [3]. The apparently economically strong assumption of wealth conservation—
which also rules out the possibility of (endogenous) growth—is justifiable by choosing the
appropriate time scale (or time unit) for the economy. An interesting feature of KWEMs is
their similarity with another family of models, known as (generalized) KMP processes [1].
Introduced in [7], KMP models are microscopic models of heat conduction and are meant to
provide a microscopic foundation of the Fourier law; in those models the exchanged quan-
tity represents energy. As shown in [1], duality is a powerful tool to study the properties of
these KMPmodels. Thanks to duality it is possible to investigate invariant measures, ergodic
results, and important macroscopic properties such as hydrodynamic limits, the propagation
of local equilibrium, and the local equilibrium of boundary-driven non-equilibrium states.
In [4], the authors show that duality can also be fruitfully applied to kinetic wealth exchange
models, obtaining relevant information about the stationary distributions of a model with
saving propensities.

In this paper we aim to extend the use of duality techniques in the field of KWEMs,
by focusing our attention on a recent model, the so-called “Immediate Exchange Model”.
The model has been first proposed in [5], where it is studied via simulations, and it has
been later analytically explored in [6]. In that model, upon exchange, each agent gives a
fraction of his/her wealth to the other. In [6] it is proved that, if this fraction is a uni-
formly distributed random variable with support [0, 1], then the exchange process has a
product invariant measure, which is the product of Gamma(2) distributions. It is now
worth noticing that an invariant measure which is a product of Gammas also occurs in
the redistribution models presented in [1]. In these models duality is characterized by dual-
ity polynomials that are naturally associated with the Gamma distribution and it is shown
that these polynomials are also the duality functions linking a discrete particle system, the
symmetric inclusion process SI P(k), with a diffusion process, the Brownian energy process
BEP(k). It is therefore natural to conjecture that these polynomials also occur as duality
functions in the Immediate Exchange Model of [5], relating this model to a simpler dis-
crete dual model. In this paper we show that this is indeed the case, and we generalize
the Immediate Exchange Model to the case in which the random fraction of wealth the
agents exchange is Beta(s, t) distributed. In this more general setting, the invariant measure
shows to be a product of Gamma(s + t) distributions. As in [4], using duality we are able
to directly infer basic properties of the time-dependent expected wealth, together with an
ergodic result.

The rest of our paper is organized as follows: in Sect. 2 we describe the Immediate
Exchange Model when the economy is just made up of two agents and prove duality with a
discrete two-agent model. In Sect. 3 we extend the model to the case of many agents and we
give some relevant consequences of duality. In Sect. 4 a further generalization is proposed,
by assuming Beta(s, t)-distributed exchanged fractions of wealth; also for this generalized
model we obtain duality with a discrete model and stationary product measures which are
Gamma with shape parameter s + t . In Sect. 5 we study various properties of the discrete
dual process, which is an interesting model in itself. We characterize its reversible product
measures and prove that in an appropriate scaling limit it scales to a simple variation of the
original continuum model. Finally, in Sect. 6 we show self-duality of the discrete model for
the general case via a Lie algebraic approach, where we actually obtain the full SU (1, 1)
symmetry of the discrete model, and, as a further consequence, of the continuous model,
too. Self-duality then follows by acting with an appropriate symmetry on the so-called cheap
duality function obtained from the reversible product measure [2].
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2 The Immediate Exchange Model with Two Agents and Its Dual

2.1 Definition of the Model

We start by considering a toy economy with just two agents, as given in [5] and [6]. More
complex models can be built by addition of two-agent generators along the edges of a graph.
Most properties such as duality and self-duality transfer immediately from the two-agent
model to the many agent models. We will define the processes in terms of their infinitesimal
generators, and refer to [10,11] for general background on Markov processes, generators,
ergodicity andduality.More formally,wewrite (x, y) ∈ �,with� = [0,∞)2.With s = x+y
we indicate the total wealth in the economy. Then the dynamics of two agents is described
as follows, starting from an initial state (X0, Y0) = (x, y), after an exponential waiting time
(with mean one), an exchange of wealth occurs, whereby the wealth configuration (x, y) is
updated towards (x ′, y′), with

x ′ = x(1 −U ) + yV

y′ = y(1 − V ) + xU, (1)

whereU and V are two i.i.d.Uni f orm(0, 1) random variables. This gives a continuous-time
Markov jump process (Xt , Yt ) for which the total wealth Xt + Yt = X0 + Y0 = x + y is
conserved.

The infinitesimal generator of this exchange process is defined on bounded continuous
functions f via

L f (x, y) = lim
t→0

Ex,y f (Xt , Yt ) − f (x, y)

t

=
∫ 1

0

∫ 1

0
( f (x(1 − u) + yv, y(1 − v) + xu) − f (x, y)) dudv. (2)

Notice that L can be rewritten as P − I , where P is the discrete-time Markov transition
operator

P f (x, y) =
∫ 1

0

∫ 1

0
f (x(1 − u) + yv, y(1 − v) + xu)dudv,

and I is the identity.
We denote (X0, Y0) = (x, y) to be the initial wealth configuration of the two agents, and

(Xt , Yt ) indicates the wealth of the two agents at time t ≥ 0.

2.2 Duality for the Two-Agent Model

Wewill now first define a discrete wealth distribution model, i.e., where wealth can only be a
nonnegative integer quantity. See Fig. 1 for the continuous model and its discrete dual. This
model will be related to the original one via a duality relation.

In the discrete model the couple (x, y) ∈ � is replaced by a couple (n,m) ∈ N
2, where

N denotes the set of non-negative integers (including zero).
On this couple we define a continuous-time Markov process with generator

L f (n,m) =
n∑

k=0

m∑
l=0

1

n + 1

1

m + 1
( f (n − k + l,m − l + k) − f (n,m)). (3)

In this process,when initiated at (n,m), for a given k, l with 0 ≤ k ≤ n, 0 ≤ l ≤ m, thewealth
configuration changes from (n,m) to (n−k+ l,m− l+k) at rate 1

(n+1)(m+1) . We denote this
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Fig. 1 The continuous model and its discrete dual

discrete state space continuous-time Markov process by (Nt , Mt ), with (N0, M0) = (n,m).
It follows from an easy detailed balance computation that for 0 < θ < 1 the product of
discrete Gamma(2) measures given by

νθ (k, l) = (1 − θ)4
(
θk(k + 1)θ l(l + 1)

)
, k, l ∈ N (4)

is reversible for the process with generator (3) (cf. also proposition 5.1 below for a more
general case).

We now show that the processes (Xt , Yt ) and (Nt , Mt ) are related via duality. To introduce
this, we need some further notation.
Define, for x ∈ [0,∞), n ∈ N, the polynomial

d(n, x) = xn
�(2)

�(2 + n)
= xn

(n + 1)! (5)

and
D(n,m; x, y) = d(n, x)d(m, y). (6)

The d(n, ·) polynomials are naturally associated to the Gamma distribution νθ with shape
parameter 2 and scale parameter θ , i.e.

νθ (dx) = 1

θ2
xe−x/θdx

by ∫
d(n, x)νθ (dx) = θn

for all n ∈ N.
With a slight abuse of notation, we will denote by νθ (dxdy) the product measure with
marginals νθ .
We are now ready to state the first main result.

Theorem 2.1 The processes (Xt , Yt ) and (Nt , Mt ) are each others dual with duality function
given by (6).
More precisely, for all (x, y) ∈ [0,∞)2, (n,m) ∈ N

2, and for all t > 0, we have

Ex,y D(n,m; Xt , Yt ) = Ên,mD(Nt , Mt ; x, y), (7)

whereEx,y and Ên,m are the expectations in the path-spacemeasures started from (X0, Y0) =
(x, y) and (N0, M0) = (n,m) respectively.
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Proof To prove (7) it is sufficient to show the same relation at the level of the generators. In
other words, we have to show that

LD(n,m; x, y) = LD(n,m; x, y), (8)

for all (x, y) ∈ [0,∞)2 and (n,m) ∈ N
2, and where L works on (x, y), and L on (n,m).

We compute

PD(n,m; x, y)
=

∫ 1

0

∫ 1

0

1

(n + 1)!(m + 1)! (x(1 − u) + yv)n(y(1 − v) + ux)m dudv

= 1

(n+1)!(m+1)!
n∑

k=0

m∑
l=0

(
n

k

)(
m

l

)
xn−k yk ym−l xl

∫ 1

0

∫ 1

0
(1− u)n−kvk(1− v)m−l ul dudv

= 1

(n + 1)!(m + 1)!
n∑

k=0

m∑
l=0

(
n

k

)(
m

l

)
xn−k+l ym−l+k k!(m − l)!

(k + m − l + 1)!
l!(n − k)!

(n − k + l + 1)!

= 1

(n + 1)!(m + 1)!

×
(

n∑
k=0

m∑
l=0

n!
(n − k)!k!

m!
(m − l)!l!

k!(m − l)!
(k + m − l + 1)!

l!(n − k)!
(n − k + l + 1)! x

n−k+l ym−l+k

)

=
n∑

k=0

m∑
l=0

1

(n + 1)(m + 1)
D(n − k + l,m − l + k; x, y).

Now we have
n∑

k=0

m∑
l=0

1

n + 1

1

m + 1
= 1. (9)

Therefore, we indeed find that

LD(n,m; x, y) =
n∑

k=0

m∑
l=0

1

n + 1

1

m + 1
(D(n − k + l,m − l + k; x, y) − D(n,m; x, y))

= LD(n,m; x, y). (10)

�	
As a consequence of duality, and thanks to the relation between the duality functions

and the measure νθ , we obtain relevant information about the invariant measures. Let us
denote by P f the set of probability measures on [0,∞)2 with finite moments of all order
and which are such that their finite moments determine the probability measure uniquely.
I.e., two measures in P f with identical moments are equal. We say that such a measure
satisfies the “finite moments condition”. Similarly for a probability measure on [0,∞) we
say that it satisfies the “finite moments condition” if it has finite moments of all order and
which are such that these finite moments determine the probability measure uniquely. This is
e.g. assured by the Carleman’s moment growth condition. We will focus from now on only
probability measures in this set P f .

Theorem 2.2 A probability measure ν ∈ P f is invariant if and only if its D-transform

ν̂(n,m) =
∫

D(n,m; x, y)ν(dxdy)
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is harmonic for the dual process, i.e., if and only if

Ên,m ν̂(Nt , Mt ) = ν̂(n,m).

for all n,m ∈ N. In particular the product measures νθ (dxdy) are invariant for the process
(Xt , Yt ).

Proof To have invariance of ν ∈ P f , it is sufficient to have, for all (n,m) ∈ N
2

∫
Ex,y D(n,m; Xt , Yt )ν(dxdy) =

∫
D(n,m; x, y)ν(dxdy) = ν̂(n,m). (11)

Combining this with duality and Fubini’s theorem we obtain

ν̂(n,m) =
∫

Ex,y D(n,m; Xt , Yt )ν(dxdy)

=
∫

Ên,mD(Nt , Mt ; x, y)ν(dxdy) = Ên,m ν̂(Nt , Mt ).

As a result, we find that ν is invariant if and only if

Ên,m ν̂(Nt , Mt ) = ν̂(n,m).

To show the invariance of the νθ measures, just notice that

ν̂θ (n,m) = θn+m,

and recall that in the process (Nt , Mt ) the sum Nt + Mt is conserved. �	
Another consequence of duality is the ergodicity of the process (Xt , Yt ). i.e., starting

from any initial condition (x, y) the process converges to a unique stationary distribution
determined by the conserved sum x + y. Indeed, the dual process starting from (n,m) is an
irreducible continuous-time Markov chain on the finite set �n+m := {(k, l) ∈ N

2 : k + l =
n +m} and therefore converges to a unique stationary distribution on the set �n+m , denoted
by νn+m , and given by

νn+m(k, l) = (k + 1)(l + 1)

Zn+m
, (k, l) ∈ �n+m (12)

where
Zn+m =

∑
k,l:k+l=n+m

(k + 1)(l + 1). (13)

This follows from the reversibility (for the dual process) of the product measure given in (4),
and the fact that conditioning this product measure on the sum k + l being equal to n + m
gives exactly the “micro-canonical” measure (12).

For all (n,m) ∈ N
2 we can therefore obtain

lim
t→∞Ex,y D(n,m; Xt , Yt ) = lim

t→∞ Ên,m(D(Nt , Mt ; x, y))
=

∑
k,l:k+l=n+m

D(k, l; x, y)νn+m(k, l) (14)

It then follows from an easy computation using (12) that

∑
k,l:k+l=n+m

D(k, l; x, y)νn+m(k, l) = (x + y)n+m

(n + m)!Zn+m
. (15)
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where Zn+m is given by (13) i.e., the limit in the r.h.s. of (14) only depends on x + y.
On the other hand, in the process (Xt , Yt ) we know that the sum Xt + Yt is conserved.
Therefore, the conditional measure obtained by conditioning the stationary product measure
νθ on the sum being equal to s is an invariant measure concentrating on the set {(u, v) ∈
[0,∞)2 : u + v = s}. This measure is exactly the distribution of (sε, s(1− ε)), with ε being
Beta(2, 2) distributed. If we combine this fact with (14), we obtain the following ergodic
theorem and complete characterization of the set of invariant measures satisfying the finite
moment condition.

Theorem 2.3 (a) The process (Xt , Yt ) is ergodic, i.e., (Xt , Yt ) converges in distribution to
(Sε, S(1 − ε)), with ε ∼ Beta(2, 2) and S = X0 + Y0.

(b) The set of invariant measures contained in P f is given by the distributions of couples of
the form (Sε, S(1 − ε)) where S is an arbitrary random variable on [0,∞) satisfying
the finite moments condition and ε is independent (of S) and Beta(2, 2) distributed.

3 Generalization to Many Agents

Consider now an economy populated by many agents. Let us assume that the economy can
be represented by a countable set of agents V , i.e., each element (vertex) i ∈ V represents an
agent. Consider now an irreducible symmetric random walk kernel p(i, j) on V , i.e., such
that p(i, i) = 0, p(i, j) = p( j, i) ≥ 0,

∑
j p(i, j) = 1, and for all i, j ∈ V there exists n

with p(n)(i, j) > 0.
In this setting, the wealth configuration of the economy is an element of the set � =

[0,∞)V . For x ∈ � (from now on simply x), we denote with xi the wealth of the agent i ,
that is of vertex i .
We then define the generator of the model via

L f (x, y) =
∑
i j

p(i, j)Li j f (x), (16)

with

Li j f (x) =
∫ (

f (xi j;uv) − f (x)
)
dudv,

where

xi j;uv
k =

⎧⎪⎨
⎪⎩
xk if k /∈ {i, j}
xi (1 − u) + x jv if k = i

x j (1 − v) + xi u if k = j

.

Accordingly, the dual process has state space N
V and the elements of this state space are

denoted by ξ (from now on just ξ ), where ξi is the number of “dual units” at vertex i . A
configuration ξ is called finite if |ξ | = ∑

i ξi is finite.
The generator of the dual process is then

L f (n) =
∑
i j

p(i, j)Li j f (n), (17)
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with

Li j f (ξ) =
ξi∑

K=0

ξ j∑
L=0

1

(ξi + 1)(ξ j + 1)

(
f
(
ξ i j;K L

)
− f (ξ)

)
dudv,

where

ξ
i j;K L
k =

⎧⎪⎨
⎪⎩

ξk if k /∈ {i, j}
ξi − K + L if k = i

ξ j − L + K if k = j

.

Now, for ξ ∈ N
V and x ∈ �, define

D(ξ, x) =
∏
i∈V

d(ξi , xi ) (18)

The relation between these duality polynomials and the product measure νθ := ⊗i∈V νθ (dxi )
is ∫

D(ξ, x)νθ (dx) = θ |ξ | (19)

with

|ξ | =
∑
i∈V

ξi

the number of dual particles.
In the many agents economy model, the duality relation between both processes is then

given by the following theorem. Its proof is direct from the two agents case, because the
generator is a sum of two agents generators.

Theorem 3.1 Let ξ ∈ N
V be a finite configuration. For all x ∈ � and for all t > 0, we have

Ex D(ξ, xt ) = Êξ D(ξt , x). (20)

As a consequence, the product measures νθ = ⊗i∈V νθ (dxi ) are invariant.

Notice that when V is finite, the product measures⊗i∈V νθ (dxi ) can never be ergodic because
the total wealth is conserved. However, for infinite V , we have ergodicity under an additional
condition. Let us denote by pt (ξ, ξ ′) the probability to go from the finite configuration ξ ∈ N

S

to the finite configuration ξ ′ in time t > 0, in the dual process with generator (16). Assume
that

lim
t→∞ pt (ξ, ξ ′) = 0 (21)

for all ξ, ξ ′ ∈ N
V . As an example we have V = Z

d and p(i, j) symmetric nearest neighbor
random walk.

Proposition 3.1 Let V be infinite and let p(i, j) be such that (21) holds. Then the product
measure ⊗i∈V νθ (dxi ) is ergodic

Proof Abbreviate ν := ⊗i∈V νθ (dxi ). Because ergodicity is implied by mixing, it suffices to
show that

lim
t→∞

∫
Ex D(ξ, xt )D(ξ ′, x)ν(dx) =

∫
D(ξ, x)ν(dx)

∫
D(ξ ′, x)ν(dx) = θ |ξ |+|ξ ′| (22)
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because linear combinations of the polynomials D(ξ, x) are dense in L2(νθ ). To prove (22)
denote ξ ⊥ ξ ′ if the support of ξ and ξ ′ are disjoint, i.e., if there are no vertices i ∈ V which
contain both particles from ξ and ξ ′. If ξ ⊥ ξ ′ then under the measure νθ , the polynomials
D(ξ, ·) and D(ξ ′, ·) are independent. Because of (21) it then follows, using duality and
conservation of the total number of particles in the dual process:

lim
t→∞

∫
Ex D(ξ, xt )D(ξ ′, x)ν(dx)

= lim
t→∞

∑
ζ

pt (ξ, ζ )

∫
D(ζ, x)D(ξ ′, x)ν(dx)

= lim
t→∞

∑
ζ⊥ξ ′

pt (ξ, ζ )

∫
D(ζ, x)D(ξ ′, x)ν(dx)

= lim
t→∞

∑
ζ⊥ξ ′

pt (ξ, ζ )

∫
D(ζ, x) ν(dx)

∫
D(ξ ′, x) ν(dx)

= lim
t→∞

∑
ζ⊥ξ ′

pt (ξ, ζ )θ |ξ |+|ξ ′|

= lim
t→∞

∑
ζ

pt (ξ, ζ )θ |ξ |+|ξ ′|

= θ |ξ |+|ξ ′|

�	
Notice that, for a single dual particle, that is to say when ξ = δi , we have

D(ξ, x) = xi
2

.

In the dual process, the motion of a single dual particle is simply a continuous-time random
walk jumping with rate p(i, j)

2 from i to j .
If we denote by pt (i, j) the time t > 0 transition probability of this walk, then duality with
a single dual particle implies the following “random walk” spread of the expected wealth at
time t > 0.

Proposition 3.2 In the model with generator (16), for all x ∈ � and i ∈ V we have

Ex (xi (t)) =
∑
j

pt (i, j)x j .

4 Generalized Immediate Exchange Model

Consider the update rule (1) and assume that U and V are now independent and Beta(s, t)
distributed (the original model is then recovered for s = t = 1). In other words, we consider
the generator

Ls,t f (x, y) =
∫ 1

0

∫ 1

0
( f (x(1 − u) + yv, y(1 − v) + xu) − f (x, y)) φs,t (u, v)dudv,

(23)

where

φs,t (u, v) =
(

1

B(s, t)

)2

us−1(1 − u)t−1vs−1(1 − v)t−1.
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is the probability density of two independent Beta(s, t) distributed random variables.
As before, the generator can be rewritten as L = P − I , where I is the identity and P the

discrete Markov transition operator

Ps,t f (x, y) =
∫ 1

0

∫ 1

0
f (x(1 − u) + yv, y(1 − v) + xu)φs,t (u, v)dudv.

In this generalized setting, the polynomials which we need for duality are now given by

ds,t (k, x) = xk�(s + t)

�(s + t + k)
(24)

and
Ds,t (n,m; x, y) = ds,t (n, x)ds,t (m, y). (25)

These polynomials are associated to theGamma distribution νs+t
θ (dx)with shape parameter

s + t ,

νs+t
θ (dx) = xs+t−1e−x/θ 1

�(s + t)θ s+t
dx

via ∫
ds,t (k, x)ν

s+t
θ (dx) = θk . (26)

As before, with a slight abuse of notation we also denote νs+t
θ (dxdy) the product measure

with marginals νs+t
θ (dx).

The same computation as the one following (8) now yields that for a given k, l with
0 ≤ k ≤ n, 0 ≤ l ≤ m, the dual process will jump from (n,m) towards (n−k+ l,m− l+k),
at rate

rs,t (n,m; k, l) = n!m!
B(s, t)2

(k+s− 1)!(m− l+ t− 1)!(n− k+ t−1)!(l + s − 1)!
(s+ t + n− 1)!(s+ t+ m − 1)!(n − k)!k!(m − l)!l! (27)

where the factorials are to be interpreted as x ! = �(x + 1), when x is non-integer. Notice
that as before in (9) we have that the rates sum up to one

n∑
k=0

m∑
l=0

rs,t (n,m; k, l) = 1. (28)

This follows via rewriting

rs,t (n,m; k, l) = ws,t (n, k)ws,t (m, l)

with

ws,t (n, k) = n!(k + s − 1)!(n − k + t − 1)!
B(s, t)(s + t + n − 1)!k!(n − k)!

and recognizing the probability mass function of the Beta binomial distribution with para-
meters n, s, t , given by

BetaBin(n, s, t)(k) =
(
n

k

)
1

B(s, t)

(∫ 1

0
pk(1 − p)n−k ps−1(1 − p)t−1dp

)

as a consequence one has

n∑
k=0

ws,t (n, k) = 1
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We can then state the generalized duality result, and its consequences, as in Theorem
2.1. The dual process when initiated at (n,m) is once more an irreducible continuous-time
Markov chain on the finite set {(k, l) : k + l = n +m} which converges to unique stationary
distribution which we denote by νs+t

n+m(k, l) and is given by

νs+t
n+m(k, l) = �(s + t + k)

�(s + t)k!
�(s + t + l)

�(s + t)l!
1

Zs+t
n+m

(29)

where

Zs+t
n+m =

∑
k,l:k+l=n+m

�(s + t + k)

�(s + t)k!
�(s + t + l)

�(s + t)l! (30)

Notice now that we have the analogue of (15), i.e., if we consider the product measure
νs+t
θ (k, l) conditioned on k + l = n + m then

∑
k,l:k+l=n+m

D(k, l; x, y)νs+t
n+m(k, l) = (x + y)n+m

(n + m)!Zs+t
n+m

(31)

is only a function of x+y. As a consequence, we obtain the following result in the generalized
model.

Theorem 4.1 1. Theprocesses (Nt , Mt )and (Xt , Yt )with generator (23)and rates (27)are
dualwith duality function (25). Thismeans that, for all (n,m) ∈ N

2 and (x, y) ∈ [0,∞)2,
we have

E
s,t
x,y Ds,t (n,m; Xt , Yt ) = Ê

s,t
n,mDs,t (Nt , Mt , x, y).

2. As a consequence, the product measure ν
s,t
θ (dxdy) is invariant.

3. Moreover, starting from any initial state (x, y), the process (Xt , Yt ) converges in distrib-
ution to (Sε, S(1−ε))where ε is Beta(s+t, s+t)-distributed, and S = x+y = X0+Y0.

4. The invariantmeasureswith finitemoments are of the form (Sε, S(1−ε)), with εBeta(s+
t, s + t)-distributed.

We can then build the analogue of this model for many agents associated to the vertices
of a graph V , as in equations (16) and (17). First notice that for a single dual particle, when
ξ = δi , we get

D(ξ, x) = xi
s + t

.

Just as before, the motion of single dual particle in the dual process is a continuous-time
random walk, jumping with rate p(i, j) s

(s+t) from i to j . If we denote by pt (i, j) the time
t > 0 transition probability of this walk, we then have the following result.

Proposition 4.1 In the model with generator (16), for all x ∈ �, i ∈ V we have, for all
r > 0

E
s,t
x (xi (r)) =

∑
j

pr (i, j)x j (0).
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5 Properties of the Discrete Dual Process

The discrete dual process is a redistribution model of independent interest. In the case of the
KMP process, introduced in [7], it was already found that the discrete dual process is also
a natural discrete analogue of the original process, in the sense that the total mass of the
two vertices (continuous in the original KMP process, and discrete in its discrete dual) is
uniformly redistributed over the two vertices. The same holds for the one-parameter family
of KMP-like processes, called Thermalized Brownian Energy process and their dual discrete
Thermalized SIP processes in [1]. Here the redistribution of the total mass is Beta(s, s)
distributed.

In our context, the dual of the generalized immediate exchange model is a discrete redis-
tribution model of the same type as the original continuous model exactly as in the context of
the KMP process and its generalizations in [1]. It is therefore useful also here to understand
more about the discrete dual process and its connection to the original process.

5.1 Reversible Measures

Define the discrete Gamma distribution with shape parameter s + t and scale parameter
0 < θ < 1 as the probability measure on N with probability mass function

νs+t
θ (n) = 1

Zθ

θn

n!
�(s + t + n)

�(s + t)
(32)

where Zθ = (1 − θ)−s−t is the normalizing factor. We first recall that the dual process has
generator

L f (n,m) =
n∑

k=0

m∑
l=0

rs,t (n,m; k, l) ( f (n − k + l,m − l + k) − f (n,m)) (33)

where the rates are given by (27). It is important to notice here that this generator can be
rewritten as follows

L f (n,m) = E f (n − X1 + X2,m − X2 + X1) − f (n,m) (34)

where X1 = X (n)
1 is Beta binomial distributed with parameters n, s, t and X2 = X (m)

1
independent Beta binomial with parametersm, s, t , andE is expectationw.r.t. these variables.

Proposition 5.1 For all θ ∈ (0, 1), the product probability measures with marginals νs+t
θ (n)

are reversible for the process with generator (33).

Proof The reversibility of νs+t
θ for the generator L follows from a standard detailed balance

computation. Indeed, fix two configurations (n,m) and (n′,m′) ∈ N
2 with n+m = n′ +m′;

now, for any 0 ≤ k ≤ n and 0 ≤ l ≤ m such that n′ = n − k + l and m′ = m − l + k,
it trivially follows that l ≤ n′ = n − k + l and k ≤ m′ = m − l + k and n = n′ − l + k,
m = m′−k+l. In other words, for each redistribution of (n,m) according to r(n,m; k, l), we
can find a “reverse” redistribution of (n′,m′) according to r(n′,m′; l, k). Furthermore, these
two redistributions are indeed reversible, as one may see by explicit computation, combining
(27) and (32) that

r(n,m; k, l)νs+t
θ (n)νs+t

θ (m) = r(n + l − k,m + k − l; l, k)νs+t
θ (n + l − k)νs+t

θ (m + k − l)

which implies detailed balance and thus reversibility. �	
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5.2 Scaling Limit

The fact that the rescaled Beta Binomial converges to the Beta distribution (by the law of
large numbers) provides a connection between the discrete dual process and the continuous
process. The continuous process arises as a limit of the discrete dual process where the
number of initial “coins” is suitably rescaled to infinity. This is expressed in the following
result.

Theorem 5.1 Let nK ,mK be a sequence of integers indexed by K ∈ N, and such that

nK
K

→ x,
mK

K
→ y

as K → ∞. Then we have that the corresponding processes nK (t)/K ,mK (t)/K, with
generator (33) converge to the continuous process with generator (23), starting from (x, y).

Proof Define a number A > x + y. Because convergence of generators on a core implies
convergence of the processes, it suffices to show that for smooth f : [0, A]2 → R

lim
K→∞(L fK )(nK ,mK ) = Ls,t f (x, y) (35)

where fK (n,m) = f (n/K ,m/K ),L is given by (33), and Ls,t by (23). Consider X (nK ) Beta
binomial with parameters nK , s, t , and X (mK ) independent Beta binomial with parameters
mK , s, t . By the law of large numbers it follows that

X (nK )

K
→ xYs,t ,

X (mK )

K
→ yY ′

s,t

with Ys,t , Y ′
s,t being independent Beta(s, t) distributed. Therefore, by smoothness of f and

dominated convergence, as K → ∞ we have

lim
K→∞E( fK (nK − X (nK ) + X (mK ),mK − X (mK ) + X (nK )))

= E( f (x − xYs,t + yY ′
s,t , y − yY ′

s,t + xYs,t )

= Ls,t f (x, y) + f (x, y)

which shows (35). �	

6 Self Duality and SU(1, 1) Symmetry of the Dual Process

In this section we show self-duality with the self-duality polynomials which are naturally
associated to the reversible discrete Gamma distributions. More precisely, we define the
following discrete polynomials:

ds,t (k, n) = n!
(n − k)!

�(s + t)

�(s + t + k)
(36)

where negative factorials are defined to be infinite. These polynomials are naturally connected
to the discrete reversible Gamma distribution via∑

n

ds,t (k, n)νs+t
θ (n) = ρ(θ)k (37)

with ρ(θ) = θ/(1 − θ). Next we have the associated polynomial in two variables:

Ds,t (k, l; n,m) = ds,t (k, n)ds,t (l,m) (38)
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Notice that in the case n = Nx�,m = Ny�, divided by Nk+l , and in the limit N → ∞,
these discrete polymials converge to the duality polynomials (25). We recall that the dual
process has a generator of the form

L f (n,m)=
n∑

k=0

m∑
l=0

rs,t (n,m; k, l)( f (n− k+ l,m+ k− l) − f (n,m)) = (P− I ) f (n,m)

where the discrete transition operator

P f (n,m) =
n∑

k=0

m∑
l=0

rs,t (n,m; k, l) f (n − k + l,m + k − l)

is indeed a Markov transition operator because, as we showed before,
n∑

k=0

m∑
l=0

rs,t (n,m; k, l) = 1.

To prove self-duality of the process with generator (33), we show that it commutes with a
SU (1, 1) raising operator K+

1 + K+
2 , from which we can generate the self-duality function

via the strategy described in [2], namely by acting with eK
+
1 +K+

2 on a cheap self-duality
function coming from the reversible product measure.

In order to proceed with this, we introduce the SU (1, 1) raising operators [9],

K+ f (n) = (s + t + n) f (n + 1). (39)

For a function f (n,m) of two discrete variables, we denote K+
1 , resp. K+

2 the operator K+
defined in (39) working on the first (resp. second) variable. Similarly we have the lowering
and diagonal operators

K− f (n) = n f (n − 1), K 0 f (n) = ( s+t
2 + n

)
f (n). (40)

Together, the K−, K+, K 0 generate a discrete (left) representation of SU (1, 1); i.e. they
satisfy the SU (1, 1) commutation relations

[K+, K−] = 2K 0, [K±, K 0] = ±K±. (41)

where [A, B] = AB − BA denotes the commutator. We will show in this subsection that
the generator L defined in (33) has SU (1, 1) symmetry and that the self-duality follows as a
consequence, in the spirit of [1,9]. We start by noticing that by reversibility of the measure
νs+t
θ , the function

D(n′,m′; n,m) = δn′,nδm′,m
n!�(s + t)

�(s + t + n)

m!�(s + t)

�(s + t + m)

is a “cheap” self-duality function [2,9]. Furthermore, we remark that the claimed self-duality
polynomials can be obtained via

D(n′,m′; n,m) = eK
+
1 +K+

2 D(n′,m′; n,m)

where the operator eK
+
1 +K+

2 isworking on then′,m′ variables. Therefore, in order to prove that
self-duality holds with the claimed polynomials (36), (38), it suffices to prove that K+

1 +K+
2

commutes with the generator. Indeed, then from the general theory developed in [9], see
also [2], it follows that eK

+
1 +K+

2 D(k, l; n,m), which arises from the action of a symmetry
(an operator commuting with the generator) on a self-duality function, is again a self-duality
function.
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Theorem 6.1 The generator L in (33) and the operator K+
1 + K+

2 commute, i.e., for all
f : N2 → R we have

L(K+
1 + K+

2 ) f = (K+
1 + K+

2 )L f. (42)

Remark 6.1 (Hypergeometric Functions) We briefly recall some definitions and properties
about hypergeometric functions we will need in the proof of Theorem 6.1. On a suitable

subdomain of {z ∈ C : �(z) > 0}, the hypergeometric function 2F1
[
a b
c ; z

]
is defined via

the following series expansion

2F1

[
a b

c
; z

]
=

∞∑
k=0

(a)k(b)k
(c)k

zk

k! , (r)k :=
{
1 if k = 0

r(r + 1) · · · (r + k − 1) if k > 0.

Note that for all n, k ∈ N and t ∈ R+,

(−n)k = (−1)kn · (n − 1) · · · (n − k + 1) = (−1)k
�(n + 1)

�(n − k + 1)

and

(1 − n − t)k = (−1)k
�(n + t)

�(n − k + t)
.

Moreover, as a particular case of Gauss’s summation theorem ([8, Theorem 2]), we can state
that

2F1

[ −n s

1 − n − t
; 1

]
= �(t)�(n + s + t)

�(s + t)�(n + t)
, n ∈ N, s, t > 0.

Some useful formulas are listed below:
n∑

k=0

�(s + k)

�(1 + k)

�(t + n + k)

�(1 + n − k)

= �(s)�(n + t)

�(n + 1)

n∑
k=0

(−1)2k
(−n)k(s)k

(1 − n − t)k

1

k! =: �(s)�(n + t)

�(n + 1)
2F1

[ −n s

1 − n − t
; 1

]
,

n∑
k=0

�(k + s)

�(k + 1)

�(n − k + t)

�(n − k + 1)

(
θ1

θ2

)−k

= �(s)�(n + t)

�(n + 1)
2F1

[ −n s

1 − n − t
; θ2

θ1

]
,

n∑
k=0

�(k + s)

�(k)

�(n − k + t)

�(n − k + 1)

(
θ1

θ2

)−k

=
(

θ2

θ1

)
�(s + 1)

�(n + t − 1)

�(n)
2F1

[−n + 1 s + 1

2 − n − t
; θ2

θ1

]
.

Proof Let us prove that for all functions f : N2 → R and (n,m) ∈ N
2

P
(
K+
1 + K+

2

)
f (n,m) = (

K+
1 + K+

2

)
P f (n,m). (43)

By straightforward computations and substitutions, if we adopt the notation[
a
b

]
s,t

:= �(a + s + t)

�(b + s)�(a − b + t)
, a ≥ b ≥ 0, s, t > 0,
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the l.h.s. rewrites (K+ := K+
1 + K+

2 )

PK+ f (n,m) =
n∑

k=0

m∑
l=0

ws,t (n, k)ws,t (m, l)
((
K+
1 + K+

2

)
f
)
(n − k + l,m − l + k)

= 1

B(s, t)2

n∑
k=0

m∑
l=0

((
n

k

)(
m

l

)) /([
n
k

]
s,t

[
m
l

]
s,t

)

×
(

(s + t + (n − k + l)) f (n − k + l + 1,m − l + k)

+ (s + t + (m − l + k)) f (n − k + l,m − l + k + 1)

)
,

while the r.h.s

K+P f (n,m) = (s + t + n)P f (n + 1,m) + (s + t + m)P f (n,m + 1)

= s + t + n

B(s, t)2

n+1∑
k′=0

m∑
l ′=0

(
n + 1

k′

)(
m

l ′

)/ ([
n + 1
k′

]
s,t

[
m
l ′

]
s,t

)

× f (n + 1 − k′ + l ′,m − l ′ + k′)

+ s + t + m

B(s, t)2

n∑
k′′=0

m+1∑
l ′′=0

(
n

k′′

)(
m + 1

l ′′

)/([
n
k′′

]
s,t

[
m + 1
l ′′

]
s,t

)

× f (n − k′′ + l ′′,m + 1 − l ′′ + k′′),

Let us introduce another shortcut:

zs(k) := �(k + s)

�(k + 1)
, k ∈ N, s > 0.

As it is enough to show the identity only for the functions f : N2 → R in the form

f (n,m) := θn1 θm2 , θ1, θ2 ∈ (0, 1), (n,m) ∈ N
2,

we can recast (43) as follows:

n!m!
�(n + s + t)�(m + s + t)

n∑
k=0

m∑
l=0

zs(k)zt (n − k)zs(l)zt (m − l)·
(
(s + t + (n − k + l))θn−k+l

1 θm−l+k
2 θ1 + (s + t + (m − l + k))θn−k+l

1 θm−l+k
2 θ2

)

= (n+s+ t)(n+1)!m!
�(n+1+s+ t)�(m+s+ t)

n+1∑
k=0

m∑
l=0

zs(k)zt (n+1− k)zs(l)zt (m − l)θn−k+l
1 θm−l+k

2 θ1

+ (m+s+ t)n!(m+1)!
�(n+s+ t)�(m+1+s+ t)

n∑
k=0

m+1∑
l=0

zs(k)zt (n− k)zs(l)zt (m+1− l)θn−k+l
1 θm−l+k

2 θ2

⇐⇒
n∑

k=0

m∑
l=0

zs(k)zt (n − k)zs(l)zt (m − l)

(
θ1

θ2

)l−k

·
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·
{
θ1

[
(n + s + t) − (n + 1)

n − k + t

n − k + 1

]
+ θ2

[
m + s + t − (m + 1)

m − l + t

m − l + 1

]}

+ (θ1 − θ2)

n∑
k=0

m∑
l=0

zs(k)zt (n − k)zs(l)zt (m − l)

(
θ1

θ2

)l−k

(l − k)

= θ1(n + 1)zs(n + 1)zt (0)

(
θ1

θ2

)−(n+1) m∑
l=0

zs(l)zt (m − l)

(
θ1

θ2

)l

+

+ θ2(m + 1)zs(m + 1)zt (0)

(
θ1

θ2

)m+1 n∑
k=0

zs(k)zt (n − k)

(
θ1

θ2

)−k

.

Since

n + s + t − (n + 1)
n − k + t

n − k + 1
= s − (1 − t)

k

n − k + 1
,

we can further simplify

s(θ1 + θ2)

n∑
k=0

m∑
l=0

zs(k)zt (n − k)zs(l)zt (m − l)

(
θ1

θ2

)l−k

+ (1− t)
n∑

k=0

m∑
l=0

zs(k)zt (n− k)zs(l)zt (m− l)

(
θ1

θ2

)l−k

·
{
θ1

k

n−k+1
+θ2

l

m − l + 1

}

+ (θ1 − θ2)

n∑
k=0

m∑
l=0

zs(k)zt (n − k)zs(l)zt (m − l)

(
θ1

θ2

)l−k

(l − k)

= θ1(n + 1)zs(n + 1)zt (0)

(
θ1

θ2

)−(n+1) m∑
l=0

zs(l)zt (m − l)

(
θ1

θ2

)l

+ θ2(m + 1)zs(m + 1)zt (0)

(
θ1

θ2

)m+1 n∑
k=0

zs(k)zt (n − k)

(
θ1

θ2

)−k

.

Now, by noting that

k

�(k + 1)
= 1

�(k)
and

1

�(n − k + 1)(n − k + 1)
= 1

�(n − k + 2)
,

and by using the shortcuts

N :=
n∑

k=0

zs(k)zt (n − k)

(
θ1

θ2

)−k

and M :=
m∑
l=0

zs(l)zt (m − l)

(
θ1

θ2

)l

,

N̂ :=
n∑

k=0

�(k+s)

�(k)

�(n−k+ t)

�(n−k+1)

(
θ1

θ2

)−k

and ˆ̂N :=
n∑

k=0

�(k + s)

�(k)

�(n − k + t)

�(n − k + 2)

(
θ1

θ2

)−k

,

and similarly for M̂ and ˆ̂M , we can continue with
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M

(
sθ1N + (1 − t)θ1

ˆ̂N − (θ1 − θ2)N̂ − θ2
�(n + 1 + s)�(t)

�(n + 1)

(
θ1

θ2

)−n
)

= N

(
−sθ2M − (1 − t)θ2

ˆ̂M − (θ1 − θ2)M̂ + θ1
�(m + 1 + s)�(t)

�(m + 1)

(
θ1

θ2

)m)
. (44)

Note that, as in Remark 6.1, we can rewrite these quantities N , N̂ etc., in terms of hyperge-
ometric functions as follows

N = �(s)
�(n + t)

�(n + 1)
2F1

[ −n s

1 − n − t
; θ2

θ1

]
,

N̂ = θ2

θ1
�(s + 1)

�(n − 1 + t)

�(n)
2F1

[
1 − n 1 + s

2 − n − t
; θ2

θ1

]
,

and

ˆ̂N = θ2

θ1

1

�(n + 1)

(
�(s + 1)�(n − 1 + t)2F1

[−n 1 + s

2 − n − t
; θ2

θ1

]

− �(t − 1)�(n + 1 + s)

(
θ1

θ2

)−n
)

.

Therefore, the expression

sθ1N + (1 − t)θ1
ˆ̂N − (θ1 − θ2)N̂ − θ2

�(n + 1 + s)�(t)

�(n + 1)

(
θ1

θ2

)−n

simplifies to

�(s + 1)
�(n + t − 1)

�(n + 1)
·
{
θ1(n + t − 1)2F1

[ −n s

1 − n − t
; θ2

θ1

]

+ θ2(1 − t)2F1

[−n 1 + s

2 − n − t
; θ2

θ1

]
− θ2n

(
1 − θ2

θ1

)
2F1

[
1 − n 1 + s

2 − n − t
; θ2

θ1

]}
(45)

By some standard manipulations of hypergeometric functions, the expression

(1 − t)2F1

[−n 1 + s

1 − n − t
; θ2

θ1

]
− n

(
1 − θ2

θ1

)
2F1

[
1 − n 1 + s

2 − n − t
; θ2

θ1

]

reduces to

−(n + t − 1)2F1

[ −n s

1 − n − t
; θ2

θ1

]
.

In conclusion, if we go back and plug the latter expression into (45), we can rewrite the l.h.s.
in (44) as

�(s)
�(m + t)

�(m + 1)
2F1

[ −n s

1 − n − t
; θ2

θ1

]

×
{
�(s + 1)

�(n + t − 1)

�(n + 1)
(θ1 − θ2) (n + t − 1)2F1

[ −n s

1 − n − t
; θ2

θ1

]}

= (θ1 − θ2)s�(s)2
�(n + t)

�(n + 1)

�(m + t)

�(m + 1)
2F1

[ −n s

1 − n − t
; θ2

θ1

]
2F1

[ −m s

1 − m − t
; θ1

θ2

]
.
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By simply replacing n by m, θ1 by θ2 etc. and exchanging the sign in the latter expression,
one simply obtains the explicit form of the r.h.s. in (44), which indeed proves identity (43).

�	
Weextend now the commutation of the generatorwith K+

1 +K+
2 to full SU (1, 1) symmetry

of both the discrete and the continuous model. For this we need some additional notation.
Denoting the operators Kα (for α ∈ {+,−, 0}) working on functions f : [0,∞) → R via

K+ f (x) = x f (x) (46)

K− f (x) = (
x∂2x + (s + t)∂x

)
f (x) (47)

K0 f (x) = (
x + s+t

2

)
f (x) (48)

we have that the algebra generated by Kα forms a (right) representation of SU (1, 1), i.e.,
satisfy the commutation relations (41) with opposite sign. Moreover, this continuous right
representation is linked with the discrete left representation used before via the duality poly-
nomials (24), i.e.,

Kαds,t (n, x) = K αds,t (n, x), α ∈ {+,−, 0} (49)

where K works on x , and K on n (see e.g. [2] for the proof).
We now first formulate a simple lemma, showing that θ−1K− is the adjoint of K+ in

L2(νθ ).

Lemma 6.1 Let νs+t
θ be the reversible measure for the discrete dual process, defined in (32).

We have in L2(νs+t
θ )

(K+)∗ = 1

θ
K−

where K α are the operators introduced in (39),(40).

Proof Let f, g : N → R be functions with compact support, then we compute∑
n≥0

f (n)K+g(n)νs+t
θ (n)

= 1

Zθ

∑
n≥0

f (n)(n + s + t)g(n + 1)
θn

n!
�(s + t + n)

�(s + t)

= 1

Zθ

∑
n≥0

f (n)g(n + 1)
θn

n!
�(s + t + n + 1)

�(s + t)

= 1

θ

1

Zθ

∑
n≥1

n f (n − 1)g(n)
θn

n!
�(s + t + n)

�(s + t)

= 1

θ

∑
n≥0

K− f (n)g(n)νs+t
θ (n)

�	
We are now ready to prove the full SU (1, 1) symmetry of both the original continuous

process and the discrete dual process. To explain this, we denote the coproduct

� : U(SU (1, 1)) → U(SU (1, 1)) ⊗ U(SU (1, 1))

which is defined on the generators as �(K α) := K α
1 + K α

2 and extended to the algebra as a
homomorphism. We then say that the process with generator L has full SU (1, 1) symmetry
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if it commutes with every element of the form �(A), A ∈ U(SU (1, 1)). This in turn follows
if it holds for the generators K α , by the bilinearity of the commutator.

Theorem 6.2 Let L denote the generator of the discrete dual process, defined in (33), and
L the generator of the continuous process defined in (23). Then we have for α ∈ {+,−, 0}
the commutation properties

[L, K α
1 + K α

2 ] = [L ,Kα
1 + Kα

2 ] = 0 (50)

As a consequence both L and L have full SU (1, 1) symmetry.

Proof We start with the discrete process. Because the sum of the wealths is conserved, L
trivially commutes with K 0

1 + K 0
2 . We showed in (42) that it commutes with K+

1 + K+
2 . To

show that it commutes with K−
1 + K−

2 we use lemma 6.1 and the fact that L is self-adjoint
in L2(νs+t

θ ) by the reversibility of νs+t
θ .

[L, K−
1 + K−

2 ] = θ [L∗, (K+
1 + K+

2 )∗] = −θ
([L, (K+

1 + K+
2 )])∗ = 0

We then turn to the continuous model, using (49). We show the commutation withK+
1 +K+

2 ,
the other cases are similar. We consider Ds,t (n,m; x, y), the duality polynomial defined in
(25), (26), and abbreviate it simply by D, where in what follows we tacitly understand that
operators of the form K are working on x, y and of the form K on n,m. In this notation,
remark that operators working on different variables always commute (e.g.K commutes with
L, etc.). We can then proceed as follows, using duality which reads LD = LD.

L(K+
1 + K+

2 )D = (K+
1 + K+

2 )LD

= (K+
1 + K+

2 )LD

On the other hand, via (49)

L(K+
1 + K+

2 )D = L(K+
1 + K+

2 )D

= (K+
1 + K+

2 )LD

= L(K+
1 + K+

2 )D

= L(K+
1 + K+

2 )D

where in the third equality we used the commutation of L with K+
1 + K+

2 . Combination of
these computations then gives indeed

(K+
1 + K+

2 )L = L(K+
1 + K+

2 )

on the functions D, and then by standard arguments on all f in L2(νs+t
θ ). �	
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