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Abstract

Broccoli for the fresh market in the Netherlands is still harvested manually, which is labor-intensive
and increasingly difficult to sustain as seasonal labor declines. Existing mechanized harvesters cut
entire fields at once and cannot account for plant-to-plant variation, leading to substantial losses when
heads differ in maturity. These constraints motivate plant-level, data-driven growth modeling to support
selective and more efficient harvesting.

This thesis investigates how field-based measurements can be used to model broccoli growth at the
level of individual plants. The work addresses four problems: converting raw field video into plant-level
growth curves, investigating which environmental parameters best describe the growth, determining
whether cumulative temperature or thermal time better represents broccoli development, and evaluat-
ing how different growth models capture head diameter growth. A preliminary study using an external
dataset creates the methodological foundation by analysing broccoli growth and benchmarking classi-
cal and neural models. A field study in a Dutch production environment expands this work through the
development of a data-processing pipeline that includes head detection, plant identification, tracking,
diameter estimation, and integration with local weather data. Across both studies, thermal time provides
a more biologically meaningful predictor of development than cumulative temperature. Model compar-
ison shows that classical parametric models capture general developmental trends, while a multi-layer
perceptron achieves the highest predictive accuracy, with a mean absolute error of 0.583 cm, when
multiple environmental variables are included. The results demonstrate that field-based predictive mod-
eling can support precision-agriculture applications such as harvest planning and selective mechanized
harvesting.
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Introduction

1.1. Background and Motivation

Broccoli is widely regarded as a healthy, high-quality vegetable, being rich in fiber, calcium, and vitamin
C. In The Netherlands, roughly 2,500 hectares are used for broccoli cultivation and are therefore an
important part of the Dutch horticulture. Currently, the harvest of broccoli is still often done by hand.
During the Dutch harvesting season (May to November), harvest workers visually assess and select
each broccoli head individually, judging its size and maturity. This labor-intensive method involves
a high physical burden on the pickers and is becoming increasingly challenging given the declining
availability of seasonal laborers.

One promising solution to labor constraints and costs is mechanized harvesting. Single-pass ma-
chines for field-grown broccoli already exist, but they do not yet account for individual head-size varia-
tion, since all plants are harvested in bulk at the same time, regardless of their individual developmental
status [3]. Therefore, a large portion of the harvested broccoli is not suited for commercial use. A study
by Walton and Casada showed that in a single cutting, the maximum percentage of harvestable heads
depends on the broccoli cultivar and can range from 30-90%, with most being under 50% [36]. This inef-
ficiency highlights a growing interest in precision agriculture—based solutions that enable plant-specific
monitoring and decision support, allowing harvesting operations to be guided by actual crop develop-
ment rather than uniform field averages. However, recent developments have shown the potential for
using broccoli harvest machines that cut plants based on individual broccoli head sizes [39].

Moreover, the Dutch Climate Agreement stipulates that by 2030 at least 50% of agricultural land
should be managed under precision-agriculture methods [30, p. 143]. Similarly, in Greenports Ned-
erland’s Nationale Tuinbouwagenda, innovation is explicitly listed as one of six priority themes [14].
Therefore, these policy developments underline the importance of advancing precision-agriculture tech-
nologies to promote more sustainable and efficient agricultural practices in the Netherlands.

As such, there is a strong motivation to move beyond manual labor toward data-driven, plant-level
solutions. For broccoli, this implies the need to monitor and model individual head growth, which can
then be used for different applications. For example, previous work has shown that drones can monitor
individual plant growth and detect issues such as uneven irrigation and necrosis [21]. This allows
for individualized care of plants and opens the possibility of (automated) decision-making systems by
using visual imagery collected from the drones. Another example is a recent study that demonstrated
that recurrent neural network models integrating weather data can predict the optimal harvest date of
broccoli with an average error below 2.5 days [25]. This enables growers to schedule harvest timing
more precisely and reduce losses caused by harvesting too early or leaving heads in the field past their
marketable size.

1.2. Research Questions

This thesis aims to investigate how predictive models based on field measurements can be used to
understand the growth dynamics of broccoli. More specifically, the main research question is:

How can predictive models based on field measurements be used to understand the growth
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2 1. Introduction

dynamics of broccoli under Dutch growing conditions?

To address this question, it is broken down into four smaller sub-questions:

1. How can field-based video recordings be converted into plant-level growth trajectories suitable
for modeling?

2. Which environmental parameters best explain variation in broccoli growth dynamics?

3. Considering temperature representation, does cumulative temperature or thermal time better de-
scribe the underlying biological growth process?

4. How do various machine learning models differ in their ability to represent the growth dynamics
of broccoli?

1.3. Contributions

This thesis contributes to the field of data-driven precision agriculture through a combination of method-
ological development and applied growth modeling. This work involves the creation, processing, and
validation of a new field dataset collected under commercial growing conditions. A core contribution,
therefore, lies in the development of an end-to-end automated processing pipeline that transforms
overhead RGB video and depth imagery into plant-level broccoli head diameter measurements. This
pipeline consists of head detection, plant tracking, diameter estimation, and data filtering, and was
designed to operate under realistic field conditions where variability in lighting and camera motion is
present.

A contribution is the design and implementation of a novel plant identification and assignment strat-
egy that enables tracking of individual plants across repeated measurement days. This approach es-
timates plant displacement based on camera movement and local velocity cues and integrates track-
repair mechanisms to resolve temporary detection failures. By enabling assignment of measurements
to plant ID, this method makes it possible to construct growth trajectories from raw field video.

In addition to the methodological contributions, this work provides quantitative findings on broccoli
growth modeling. The thesis evaluates the suitability of cumulative temperature and thermal time as
representations of developmental progress and validates whether thermal time is the more biologically
meaningful predictor under the studied conditions. Furthermore, the research investigates which en-
vironmental parameters contribute most strongly to head diameter development, offering insight into
the relative importance of temperature, humidity, soil moisture, solar radiation, and wind speed within
a field setting.

Finally, this thesis conducts a comparative assessment of multiple predictive modeling approaches,
ranging from parametric growth curves to neural architectures. By benchmarking these models, the
study identifies which techniques provide the most accurate and robust predictions of broccoli growth
under field conditions. Together, these methodological and analytical contributions demonstrate how
automated field sensing can support scalable, plant-level growth monitoring and predictive modeling
for future precision agriculture applications.

1.4. Structure

This thesis is embedded in a broader Dutch research project aimed at improving the prediction of broc-
coli growth and developing a more automated, plant-level measurement pipeline to support precision
harvesting as described in Section 1.1. Accurate growth prediction is a central goal, but equally im-
portant is understanding what should be measured in the field and how these measurements can be
reliably collected and processed to feed predictive models. Building such a pipeline requires both exper-
imentation with machine learning techniques and hands-on experience with real-world data acquisition
under commercial field conditions. This work builds on practical measurements and experiences col-
lected directly in Dutch fields, while continuously comparing these findings with insights from existing
literature, and in particular with the knowledge obtained from a preliminary study.

With this context, this thesis is organized into several chapters that build toward understanding and
modeling broccoli growth. Chapter 2 provides background information on broccoli growth dynamics and
relevant environmental factors through a review of related literature, concluding with the hypotheses
that guide the research. Chapter 3 outlines the overall approach to growth modeling, describing the
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different model types and feature-engineering strategies used to represent environmental influences
on crop development. Chapter 4 presents a preliminary study conducted on an external dataset, which
served to establish the methodological framework and benchmark model performance. Chapter 5
describes the field-based study carried out in a Dutch production environment, including data collection,
preprocessing, and model application. Chapter 6 reports the results and comparative evaluation of the
field-based study. Chapter 7 presents the main conclusions of the thesis, and finally Chapter 8 proposes
suggestions for future research.






Background and Literature Review

This chapter provides the background for the growth modeling work in this thesis. It brings together two
complementary perspectives. On one side, existing biological knowledge describes which environmen-
tal factors influence broccoli development and why these factors matter for head formation and growth.
On the other side, data-driven modeling relies on measurable features that can support prediction. The
chapter, therefore, reviews the main growth phases of broccoli, the environmental parameters that are
known to affect development, and the modeling approaches that have been proposed in related work.
These elements together form the basis for the hypotheses outlined at the end of the chapter and for
the feature selection and modeling choices in the remainder of the thesis.

2.1. Growth Phases
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Growth Progression
Figure 2.1: Growth stages of broccoli

Broccoli development proceeds through a series of growth stages, summarized in Figure 2.1. Five
distinct growth phases are defined in the life cycle of broccoli: Transplanting, Vegetative Growth, Apex
Initiation, Head Initiation, and Maturity.

Transplanting marks the beginning of field-based growth. At this point, young seedlings are moved
from the nursery to the field. This marks the start of field-based growth.

Following transplanting, the plant enters the vegetative growth phase. During this stage, the plant
focuses on producing leaves and establishing its canopy. Leaf production continues until the plant
reaches a sufficient developmental stage to initiate reproductive growth.

Apex initiation occurs when the shoot apical meristem transitions from producing vegetative organs
to reproductive structures. This stage represents the internal onset of head development, although no
visible head is yet present.

Head initiation follows, during which the developing floral structures begin to differentiate. At this
point, reproductive development becomes visible as the emerging head rises above the canopy.

The final stage is maturity, when the broccoli head has fully formed and reached a commercially
acceptable size and structure for harvest. This stage concludes the crop cycle and determines the
timing of the harvest.

This study focuses exclusively on the development from head initiation to maturity, since this is the
period in which the head becomes visible, and its size can be measured reliably. In this study, growth
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6 2. Background and Literature Review

is defined as the diameter of the head, which cannot be assessed before head initiation, and therefore
places the earlier phases outside the scope of the analysis. Although the focus lies on the period from
head initiation to maturity, the earlier phases remain part of the same field growth cycle and define the
developmental context from which the head emerges.

2.2. Environmental Parameters

Broccoli growth can be influenced by a number of environmental factors throughout the growth cycle.
Air temperature influences developmental rate, while humidity affects transpiration and water balance.
Soil moisture determines how effectively plants take up water, and solar radiation drives photosynthesis
and energy availability. Wind exposure can alter plant structure through mechanical stress. In addition
to these external factors, the timing of head initiation plays a critical role in determining when visible
head development begins. These factors are relevant both from a biological perspective, where they
help explain variation in growth, and from a modeling perspective, where they inform which features
may be used in a predictive pipeline. The following subsections describe each of these factors in more
detail.

2.2.1. Air Temperature

Air temperature is one of the most influential environmental factors determining the growth, develop-
ment, yield, and final quality of broccoli heads [19, 34]. As a cool-weather crop, broccoli exhibits optimal
growth under relatively mild climatic conditions and is particularly sensitive to temperature fluctuations
outside this range. The species thrives between 5°C and 25°C, with an optimal growth window typi-
cally reported between 15°C and 23°C [19]. Within this range, physiological processes such as leaf
expansion, photosynthesis, and reproductive development occur efficiently, resulting in uniform and
compact head formation. Outside of this range, both low and high temperature stress can interfere
with developmental processes, leading to growth retardation or morphological abnormalities [34].

To quantify the effect of temperature on plant development, many studies have introduced temperature-
based growth models, often expressed as Thermal Time or Growing Degree Days (GDD). Thermal time
models assume that development progresses linearly with accumulated effective temperature, but only
within a biologically active temperature range. This range is defined by a lower base temperature (T}, 45¢)
below which growth ceases, and an upper limit (T,.,) beyond which physiological processes slow or
stop. Temperatures outside this range contribute little to growth and are therefore excluded from the
calculation. In contrast, a simple cumulative temperature model sums daily mean temperatures irre-
spective of their biological relevance, potentially overestimating development during periods of heat or
cold stress. Thermal time models, therefore, could provide a more biologically grounded and realistic
representation of developmental progress.

Reported values for T}, in broccoli vary between studies, ranging from 0°C [40, 15] to 3°C [10]
and 7°C [12]. Likewise, the optimal temperature for growth has been estimated between 15°C and
17°C, while the maximum temperature threshold is typically found near 26°C [12]. These differences
can be attributed to the use of different broccoli cultivars, which are chosen to match specific growing
conditions, such as seasonal timing and local climate.

Elevated temperatures, especially those exceeding the optimal range, can deteriorate the quality
of broccoli heads and reduce marketable yield [34]. Studies have shown that a rise in average air
temperature by 4.4-5.4 °C can lead to a substantial reduction in marketable production, ranging from
42% to 92% due to degradation of head quality [19]. Effects of heat stress on the developing head
include the formation of uneven flower bud sizes, the presence of leaves between flower buds, an
uneven head surface, and reduced head weight and diameter. These temperature effects motivate
the use of temperature-based features, such as cumulative temperature and thermal time, as core
predictors in the modeling pipeline.

2.2.2. Humidity

Vapor pressure deficit (VPD) is a key indicator describing how humidity and temperature jointly affect
plant physiology. It quantifies the difference between the saturation vapor pressure and the actual
vapor pressure of the air and therefore reflects the drying power of the atmosphere. High VPD values
indicate dry air with strong evaporative demand, while low values correspond to humid conditions with
limited drying capacity. Because VPD is directly linked to transpiration, it strongly influences stomatal
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conductance, photosynthesis, and overall plant water balance [16].

When VPD is moderate, plants can maintain open stomata, allowing efficient gas exchange and
photosynthetic activity. At high VPD levels, however, excessive transpiration causes stomatal closure
to prevent water loss, reducing carbon dioxide uptake and slowing growth. Conversely, very low VPD
values result in air that is too humid, lowering transpiration to the point where nutrient transport and leaf
cooling become insufficient [16]. General plant research indicates that extremes in VPD hinder growth
[22]. Ding et al. confirmed this relationship in tomato cultivars and found that elevated VPD suppressed
tomato fruit expansion by intensifying water loss relative to water import, leading to reduced fresh weight
[9]. Given these physiological responses, VPD is included as a potential predictive feature to capture
periods in which humidity-related stress may influence head development.

2.2.3. Soil Moisture

Previous research has shown that adequate soil water availability during and after head formation
is critical for optimal head development [27, 18]. The results of a recent study demonstrated that
water deficit conditions decreased the growth, yield, and quality of broccoli, while enhancing water use
efficiency [18]. Akter et al. found a correlation between higher volumetric water contents and plant
heights [1]. Furthermore, broccoli is a shallow-rooted crop and is particularly sensitive to water stress
[18]. Studies also indicate that a dry-wet irrigation regime, where soil moisture is kept low until the
start of head formation and increased thereafter, can yield head sizes similar to those achieved under
continuous watering [27]. This suggests that the timing of water availability may be as important as total
water input, with early deficit followed by adequate supply reducing water use without compromising
marketable yield. Because these moisture conditions affect water uptake and growth, soil moisture is
used as a predictive variable in the modeling framework.

2.2.4. Solar Radiation

Prior research has shown that intensified radiation, projected to rise by 32—-75% under climate change
scenarios, contributes to reductions in marketable yield by as much as 42-92% as a result of head
quality deterioration under thermal stress [19]. Moreover, irrigation requirements increased by 14—
61%, implying higher production costs. Additionally, Lindemann-Zutz et al. developed a process-
based growth model that incorporates engineered features to simulate the influence of solar radiation
on broccoli head development [23]. Their results demonstrated that radiation-driven variation in head
induction timing could explain up to 79% of the observed variability in head size. Similarly, Marshall and
Thompson found that although temperature accounted for most of the variation in broccoli development
time, solar radiation contributed an additional 17.7% to the variation in the duration to maturity [26].
Since radiation influences energy availability and developmental timing, it is considered a predictive
feature.

2.2.5. Wind Speed

Wind speed will be considered as a potential factor influencing broccoli morphology and growth. In-
creased wind exposure has been shown to reduce leaf area and promote the development of shorter,
sturdier stems. These morphological changes are commonly observed in plants subjected to mechan-
ical stress from wind [17, 38, 20]. However, studies applying mechanical stress factors, including
simulated wind, reported no significant effect on total yield [20].

2.2.6. Head Initiation

Cultivar variation and temperature thresholds play a critical role in determining the timing and success of
head initiation in broccoli. Studies consistently report that excessive temperatures can delay or prevent
the transition from vegetative to reproductive development. For instance, Siomos et al. observed that
the number of leaves required before head initiation increased with temperature, from 16.7 leaves at
13°C to 26.6 leaves at 30°C, indicating a delay in reproductive transition under warmer conditions [34].
Similarly, Lindemann-Zutz et al. reported a complete absence of head formation in the ’Ironman’ cultivar
at 25°C and above [23]. These findings align with broader evidence that head formation typically does
not occur above 23-24°C, though some studies report failures only at temperatures exceeding 30°C
[34]. Fellows et al. further demonstrated that in calabrese, apex initiation does not occur at extreme
temperatures, failing both at 0°C and at 30-35°C [13].
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Differences among cultivars further complicate temperature responses. Wurr et al. and Grevsen
demonstrated that ’'Shogun’ exhibits delayed and abnormal head development above 20°C, whereas
‘Caravel’ and 'Emperor’ show greater tolerance to elevated temperatures [41, 15]. This highlights
the importance of cultivar-specific responses when predicting developmental outcomes under variable
thermal regimes.

Different thermal time-based models have been used to model the required time until the head
initiation phase. Temperature thresholds for these models are generally reported within the following
ranges: base temperatures between 0 and 9.9°C, optimal temperatures between 10 and 21°C, and
upper thresholds ranging from 18 to 35°C, depending on the cultivar [34]. Wurr et al. found that apex
diameter growth peaks at around 15.6°C, with development largely ceasing below -2.8°C and above
23.6°C [41]. Furthermore, De Maria and Mourao estimated a base temperature of approximately 0.7°C
and a thermal time requirement of roughly 680°C-days for head initiation in calabrese [8], a value close
to those reported by Tan et al. for 'Fiesta’ (670°Cd), 'Greenbelt’ (612°Cd), and 'Marathon’ (627°Cd) [35].
However, large within-cultivar variation for the ’Marathon’ genotype limited the predictive accuracy of the
thermal time model in some cases. Cammarano et al. further demonstrated that required thermal time
increases for later transplanting dates, as crops develop more slowly under suboptimal temperatures
later in the season [5].

Chilling treatments can accelerate head development. Miller et al. found that chilling 14-day-old
seedlings under a diurnal cycle of 2°C to 14°C for 28 days advanced flowering by 16 days and reduced
node number by 7-8 compared to non-chilled controls. In this context, nodes are the points on the
stem where leaves or buds are attached. Prolonged chilling beyond 28 days provided no additional
benefit, indicating a threshold beyond which vernalization is saturated [28]. This aligns with earlier work
showing that low temperatures not only influence the rate of development but also the developmental
threshold for transitioning into the head initiation phase.

2.3. Growth modeling

A wide range of modeling approaches has been used to represent plant development. Parametric
growth models are commonly applied because they show biologically plausible structure while remain-
ing computationally simple. Logistic functions have been used to model Brassica development rates
and maturity timing under varying temperature conditions [40], capturing the characteristic slow—fast—
slow progression of head expansion. Quadratic functions provide a more flexible empirical alternative
and have been used to approximate growth responses across temperature regimes, although they lack
biological constraints and can extrapolate unrealistically outside the observed range [32]. Grevsen in-
troduced a broccoli-specific double-exponential model that better fits the expansion and deceleration
of head diameter [15]. These parametric approaches are interpretable and require limited data, but this
limits their ability to account for environmental variability or nonlinear interactions.

Neural models offer greater flexibility by learning nonlinear relationships directly from data. Multi-
layer perceptrons (MLPs) have shown competitive performance in agricultural prediction tasks where
environmental variables interact in complex ways [6]. Long Short-Term Memory (LSTM) networks ex-
tend this capability by modeling temporal dependencies, allowing them to capture delayed effects of
different conditions on growth. Alhnaity et al. demonstrated that LSTM models, which use sequen-
tial weather data, can predict tomato plant growth with high accuracy [2]. Neural models, therefore,
provide strong predictive power but require more data and hyperparameter tuning, and their lack of
interpretability can be a limitation when biological insight is important.

Mechanistic approaches aim to represent physiological processes directly rather than fitting ob-
served growth trajectories. Lindemann-Zutz et al. developed a broccoli model that combines vernal-
ization dynamics with radiation-driven dry-matter production and a model for biomass allocation to the
head [24]. The model incorporates dynamic representations of leaf area development and light-use
efficiency to simulate intercepted radiation and total dry matter.

Generative modeling represents a further direction in plant-growth prediction. Drees et al. proposed
a temporal GAN that forecasts future plant appearances from drone images, using segmentation masks
to estimate plant size and structural changes over time [11]. The predictions focus only on these images
and do not include any environmental variables.

In this thesis, only a subset of the reviewed models is implemented, as the goal is to predict head
diameter from field-based video measurements combined with environmental data. Parametric mod-
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els such as the quadratic, logistic, and Grevsen formulations align well with this objective because
they produce explicit diameter estimates, require limited inputs, and have been applied successfully
in Brassica growth studies. Neural models, specifically MLPs and LSTMs, are included because they
can integrate multiple environmental features and capture nonlinear or delayed effects that parametric
curves cannot. In contrast, the mechanistic stochastic model by Lindemann-Zutz et al. predicts dry
and fresh weight rather than diameter and requires detailed physiological parameters unavailable in
a field-video context. Likewise, the temporal GAN approach focuses on synthesising future plant im-
ages and does not incorporate environmental variables or provide direct numeric diameter predictions.
These methods, therefore, fall outside the scope of the modeling goals in this work.

2.4. Hypotheses

The hypotheses in this study start from the expectation that broccoli development during the head
growth phase can be described by the parameters outlined in Section 2.2. These hypotheses serve
two complementary roles. From a biological perspective, they summarise established knowledge about
how temperature, humidity, soil moisture, solar radiation, wind, and developmental timing are under-
stood to influence growth. From a predictive perspective, they motivate which factors may be relevant
as features in the modeling pipeline, even when formal hypothesis testing is not feasible. The field
data used in this thesis covers only a limited range of environmental conditions, which constrains the
extent to which individual effects can be evaluated directly. The following sections, therefore, present
biologically informed expectations that guide feature selection and interpretation, rather than claims
that each parameter can be tested with the available dataset.

2.4.1. Air Temperature
It is hypothesized that broccoli growth and head development will be most favorable when air tem-
peratures remain within the optimal range of 15°C to 23°C during the period from head initiation to
harvest. Temperatures outside this range, particularly those exceeding the upper threshold of 26°C,
are expected to negatively impact both the quality and marketable yield of the crop. Based on litera-
ture, it is also hypothesized that broccoli development can be accurately predicted using thermal time
models with base temperatures between 0°C and 7°C, though the specific base temperature that best
fits observed growth patterns may vary depending on cultivar and local conditions. Furthermore, it is
expected that elevated temperatures will correlate with visual and structural defects in head formation,
such as uneven bud development, the presence of leaves within the head, and reduced head size.
These expectations reflect established biological knowledge. In the Verdonk dataset, however,
temperatures remained within a relatively narrow and mostly favorable range, which limits the ability to
evaluate heat stress or to identify optimal and suboptimal temperature thresholds directly. In this thesis,
temperature-related hypotheses therefore act as biologically motivated expectations rather than strictly
testable claims.

2.4.2. Humidity

It is hypothesized that high VPD values will correspond to reduced stomatal conductance and lower
photosynthetic activity, which leads to decreased broccoli growth. Under such conditions, increased
transpiration results in greater water loss, while stomatal closure limits the carbon dioxide uptake, which
inhibits biomass accumulation. On the other hand, it is also hypothesized that very low VPD values
indicate high relative humidity and low evaporative demand that may limit growth by reducing transpi-
ration rates to levels that reduce nutrient transport and leaf cooling. It is therefore expected that the
collected data will show optimal broccoli development under intermediate VPD conditions.

While these relationships are supported by plant physiological research, the humidity levels in the
Verdonk dataset show limited extremes, which constrain the extent to which reduced growth under very
high or very low VPD can be observed. The hypothesis is therefore included as a biological expectation,
with the understanding that only modest variation can be explored in the available data.

2.4.3. Soil Moisture

It is hypothesized that higher soil moisture levels will be associated with increased head size. It is
further hypothesized that water deficit conditions in the field data will correlate with reduced growth
rates, head quality, and lower yields. Given the sensitivity of shallow-rooted broccoli plants to water
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stress, even short-term moisture deficits are expected to impact development. As per the water stress
levels described by Akter et al., deficit conditions for loam soils are defined by values under 15%
volumetric water content [1].

These expectations follow findings from controlled irrigation studies. The field dataset used here,
however, does not contain clear water deficit periods or a wide range of moisture levels, meaning
that strong correlations between moisture and head size cannot be tested directly. This hypothesis,
therefore, provides a biological context, while the data-driven analysis can only explore limited variation
in soil moisture.

2.4.4. Solar Radiation

Based on previous work, it is hypothesized that solar radiation contributes to the growth of broccoli
heads. While temperature remains the primary driver of head growth, solar radiation appears to play a
complementary role in influencing growth dynamics. It is therefore expected that, within non-stressful
temperature ranges, increased solar radiation during the head development phase will be associated
with a larger head size and potentially a shorter time to maturity.

Since only one growth cycle was measured, the variability in radiation levels remains limited and re-
flects only the specific timing within that particular season, which restricts the extent to which radiation-
related effects can be examined. As a result, this hypothesis serves mainly as a biologically informed
expectation rather than a factor that can be examined in depth with the available observations.

2.4.5. Wind Speed
Itis hypothesized that increased wind speed will lead to small observable changes in plant architecture,
such as reduced leaf area and more compact, structurally reinforced stems. Despite these adaptations,
it is further hypothesized that wind speed variation will not significantly affect broccoli yield. The expec-
tation is that the collected data will not show reductions in the growth of the head.

Although wind-related morphological responses are documented, this study focuses on predicting
head diameter rather than structural adaptations. Wind speed is therefore included in the dataset as a
potential feature, but it is not expected to contribute meaningfully to the final predictive performance.

2.4.6. Head Initiation
It is hypothesized that the timing of head initiation in broccoli, defined as the first visible emergence
of the head following vegetative growth, mainly depends on thermal time from the point of transplant-
ing, but this pattern changes depending on the interaction between average temperature and cultivar-
specific thermal sensitivity. While previous studies suggest a relatively narrow range of optimal tem-
peratures for head formation, it is expected that, within our dataset, the cultivar used will differ in both
the total thermal time required and the upper temperature thresholds beyond which head initiation is
delayed or suppressed. Specifically, under moderate conditions (approximately 8-22°C), thermal time
models are anticipated to accurately predict head initiation, but under warmer regimes, the rate of
development will decline or stall, leading to a divergence from linear thermal accumulation. This is
expected to be cultivar dependent, with some showing delayed or failed head initiation at mean daily
temperatures exceeding 23°C, while others may sustain development at slightly higher temperatures.
The biological mechanisms behind head initiation are well established, but this study covers only
a single growth cycle in one field. Since no variation across fields or seasons is available and head
initiation cannot be observed directly, it is included here only as a relevant stage in the full growth cycle
and in the timing of harvest, without further analysis in this work.



Growth Modeling

This chapter presents the models developed to predict the growth of broccoli. The primary objective of
these models is to estimate the diameter of broccoli heads over time, enabling precision agriculture ap-
plications such as optimal harvest planning and mechanized harvesting. Several modeling approaches
are introduced, ranging from simple linear models to more complex deep learning architectures. Each
model is evaluated on its ability to accurately predict growth trajectories under varying environmental
conditions. Following the description of the models, the chapter also discusses the approach used to
tune hyperparameters for the neural-based models.

3.1. Overview of Growth Models

This section gives a more detailed explanation of the different models used in this study. The subsec-
tions describe the individual models, ranging from simple parametric formulations to neural models.

3.1.1. Baseline

The baseline model is defined as a simple linear regression model fitted on the entire training set.
It captures the relationship between broccoli head diameter and thermal time using a strictly positive
linear function. This model provides a benchmark against which more complex growth models can be
evaluated. To construct the baseline model, a standard ordinary least squares regression is applied
using thermal time as the independent variable and broccoli diameter as the dependent variable. The
resulting linear function takes the following form:

d =max(a-T + b,0) (3.1)

where T represents thermal time, a is the slope of the linear regression, and b is the intercept. The
maximum operator ensures that the predicted diameter remains non-negative, which is a biologically
necessary constraint since the broccoli head diameter cannot fall below zero.

The baseline model is intentionally kept very simple. It makes a strong assumption that broccoli
growth progresses linearly with thermal time and does not include any other variables. This simplicity
has both advantages and disadvantages. On the one hand, the model is computationally efficient,
highly interpretable, and easy to implement. These properties make it useful as an initial approximation
and as a reference model against which more sophisticated models can be evaluated. On the other
hand, the linear form limits its ability to capture biologically realistic growth patterns.

3.1.2. Quadratic

The quadratic model is a natural extension of the baseline linear model, introducing a non-linear compo-
nent to capture curvature in the growth trajectory. This model assumes that the relationship between
broccoli head diameter and thermal time can be described by a second-degree polynomial. Such a
form allows the model to express a broader range of growth dynamics, like an acceleration in growth.
The general formulation of the quadratic model is given by:

d=a+b-T+c-T? (3.2)
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Where T denotes thermal time and a, b, and c the parameters of the model. These parameters are
estimated from the training data using non-linear least squares fitting.

The inclusion of a quadratic term enables the model to accommodate both concave and convex
growth trends. However, this flexibility also introduces the risk of producing unrealistic extrapolations
outside the observed data range. To mitigate such risks, the model is fitted exclusively on the training
data, and its predictions are only interpreted within a meaningful thermal time interval. The quadratic
model provides a simple yet more expressive alternative to the linear baseline and serves as a useful
intermediary between purely linear and more complex non-linear growth formulations.

3.1.3. Logistic

The logistic growth model is a classical representation of bounded biological growth, in which the rate
of increase accelerates initially and then slows as the system approaches a limiting maximum. This
behavior aligns well with observed patterns in broccoli development, where head diameter increases
rapidly during intermediate stages and gradually levels off as maturation is reached.

In this study, two versions of the logistic model are implemented: a one-dimensional model based
solely on thermal time, and a two-dimensional model that additionally incorporates soil moisture. The
1D model assumes that growth is exclusively a function of thermal time, while the 2D variant captures
the joint influence of temperature and soil moisture.

The 1D logistic model is defined as:

L
1+exp(—=k- (T —-Ty))

Where T denotes thermal time, L is the asymptotic maximum diameter, k controls the steepness of
the curve, and Ty is the inflection point where the growth rate is maximal. This formulation was fitted to
the training data using non-linear regression, and predictions were subsequently made on both training
and test sets.

To extend the model’s capacity to account for environmental variation, a 2D logistic model was
constructed by integrating the soil moisture, which represents volumetric water content measured at a
depth of 30cm. This feature was selected as this is believed to be the second most important variable
in model growth based on previous work.

The 2D logistic model is given by:

d=

(3.3)

L
1+exp(—(a-T+b-S+c))
Where T is thermal time, S is the soil moisture, L represents the upper asymptote of the logistic
function, as in the 1D case, and a, b, and ¢ are model parameters that govern the influence of each

input. The model thus incorporates both inputs using a linear combination within the exponent, enabling
it to capture interaction effects between temperature and moisture on the growth rate.

d=

(3.4)

3.1.4. Grevsen

The Grevsen model is a biologically inspired non-linear growth model originally derived from the work
of Grevsen et al. [15], and adapted in the formulation proposed by Wang et al. [37]. It is specifically
designed to represent the asymptotic and decelerating nature of crop development. The model was
initially presented in logarithmic form as:

In(d) =a—b-exp(—c-T) (3.5)

Where d denotes the estimated head diameter, T thermal time, and a, b, and ¢ the parameters of
the model. However, for this research, a simplified variant is used, consistent with the implementation
found in [37]. The resulting expression avoids logarithmic transformation and is directly defined as:

d =a-exp(—exp(=b - (T —c))) (3.6)

A variant of the model, referred to as the biased Grevsen model, is also used, which introduces an
additional bias term, allowing the entire growth curve to shift vertically. This biased form is given by:

~

d=a-exp(—exp(—=b-(T—-c)))+d (3.7)
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These Grevsen models are particularly suitable for modeling the growth of broccoli head diameter
due to their capacity to capture the nature of biological growth processes. The double-exponential
structure reflects an initial phase of rapid expansion followed by a gradual deceleration as the plant
approaches physiological maturity.

Moreover, the model has been shown to generalize reasonably well across seasons. In the study by
Wang et al., the model was validated using cross-year predictions, where a model trained on data from
one year was used to predict head diameter in another [37]. While early-stage predictions yielded an
acceptable correlation with drone-measured values (r? > 0.57), performance declined at later stages.
However, this occurred under conditions where the broccoli heads had already grown beyond market
standards and would not be left unharvested in real production scenarios. As such, the reduced accu-
racy in the late phase does not undermine the model’s practical utility. Additionally, Wang et al. also
observed that although one-to-one prediction accuracy declined over time, the overall distribution of
predicted versus actual head sizes remained similar. This indicates that the model is still useful for
approximating the general trends in broccoli development.

3.1.5. Multi-Layer Perceptron

The multi-layer perceptron (MLP) is a feedforward neural network model designed to approximate com-
plex, non-linear relationships between environmental features and broccoli head diameter. In contrast
to the previously described parametric models, the MLP is a purely data-driven approach that learns
directly from the structure and scale of the input data. This flexibility allows the model to capture subtle
interactions and dependencies that may not be easily expressed in closed-form equations. An addi-
tional advantage of the MLP is its ability to incorporate a wide range of input features, making it highly
adaptable to diverse sources of environmental data.

The MLP architecture consists of an input layer, one or more hidden layers, and a single output
neuron corresponding to the predicted diameter d. Each hidden layer is followed by a rectified linear unit
(ReLU) activation function, and dropout regularization is optionally applied to prevent overfitting. The
final output layer is a linear transformation that maps the learned feature representation to a continuous
scalar output.

The model is trained using mini-batch gradient descent with the Adam optimizer and MAE as the
loss function. The input and output features are scaled using the MinMaxScaler to ensure numerical
stability and to accelerate convergence. The entire training process is performed over 20 epochs, and
model performance is evaluated after each epoch on both the training and test sets. The architecture
and training parameters used in this model are based on the optimal configuration identified during the
hyperparameter tuning procedure described in Section 3.3.

The MLP model represents a flexible and powerful approach to growth modeling. Unlike predefined
functional models, it does not impose specific assumptions on the form of the growth curve, making it
well-suited for learning from complex datasets. Furthermore, its architecture can easily accommodate
multiple input variables, enabling the integration of additional explanatory features such as soil proper-
ties or sensor data. However, this comes at the cost of interpretability and requires careful validation
to avoid overfitting.

3.1.6. Long Short-Term Memory

The long short-term memory (LSTM) model is a recurrent neural network architecture specifically de-
signed to capture temporal dependencies in sequential data. Unlike feedforward models such as the
multi-layer perceptron, which operate on static input vectors, LSTMs process sequences of inputs and
are therefore well-suited for time series tasks. In the context of broccoli growth modeling, this capability
could be valuable, as plant development is a temporal process influenced by evolving environmental
conditions over time, and the LSTM also takes weather data from previous days into account.

The LSTM operates by maintaining an internal memory state that is updated at each time step
based on the current input and the previous state. This structure enables the model to retain relevant
information from earlier time steps while discarding noise, effectively learning which parts of the se-
quence are most important for the prediction. The model is composed of a sequence-processing layer
followed by a linear transformation that maps the hidden state at the final time step to a single scalar
output, representing the estimated head diameter d.

In this study, the LSTM is trained on fixed-length input sequences of environmental features and
past measurements. For each plant, the data is segmented into overlapping sequences. Each input
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sequence consists of a temporally ordered set of feature vectors, and the corresponding target is the
diameter at the next time step. This structure allows the model to learn how historical environmental
conditions relate to subsequent growth outcomes.

The LSTM model is trained using mini-batch gradient descent with the Adam optimizer, and MAE
is used as the loss function. Inputs and targets are normalised using the MinMaxScaler to ensure
numerical stability and faster convergence during training. The model configuration used corresponds
to the best-performing parameter combination identified through the hyperparameter tuning procedure
described in Section 3.3.

By explicitly modeling sequences, the LSTM can use temporal structure in the data that other models
ignore. This includes trends, lags, and accumulations in the feature values that may influence growth in
complex and delayed ways. Such dynamics are difficult to represent using static models and highlight
the potential of recurrent architectures in agricultural time series modeling. However, this flexibility also
introduces increased model complexity, making LSTMs more computationally demanding and harder
to interpret compared to simpler alternatives.

3.2. Feature Engineering

In this section, we describe the derived features that are used to model broccoli head growth. These
features are constructed from raw weather measurements and diameter data, and are designed to cap-
ture biologically relevant factors such as effective thermal exposure and atmospheric moisture demand.
In particular, we focus on vapor pressure deficit and thermal time, two well-established indicators of
crop development potential. Additionally, we further refine the thermal time feature by introducing an
offset that estimates the unobserved early-stage development. All of these features are added to the
dataset of both the Tanashi and the Verdonk use cases.

3.2.1. Vapor Pressure Deficit
VPD is an environmental variable that reflects the drying power of the air and is closely linked to plant
transpiration and stomatal regulation, as described in Section 2.2.2. High VPD values typically increase
transpiration rates, which can accelerate water loss and stress the plant, while low VPD values reduce
transpiration but may also limit nutrient transport and cooling.

VPD is calculated using the equation:

VPD = | RH 3.8
= s 100 )’ (3.8)

where RH is the relative humidity and e, is the saturation vapor pressure. For temperatures above
0°C, e, can be estimated using Tetens’ formula [29]:

(3.9)

_oeto78 17.27T
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Where T is the air temperature in degrees Celsius and e, is expressed in kilopascals.

In this study, VPD is computed daily using the daily mean temperature and relative humidity. The
resulting values are then used as environmental features in the modeling process to capture the effect
of atmospheric moisture demand on broccoli growth.

3.2.2. Thermal Time

While cumulative temperature is a direct summation of daily mean temperatures, thermal time is a bi-
ologically informed measure that has been widely adopted in agronomic literature to model growth, as
mentioned in Section 2.2.1. Thermal time accounts for the fact that plant development only proceeds
within a biologically active temperature range. Temperatures below a base threshold or above a maxi-
mum threshold are not assumed to contribute to physiological development. This allows thermal time
to focus on periods when meaningful growth can occur.

Mathematically, the growing degree days (GDD) for day t is defined as:



3.2. Feature Engineering 15

0 if T < Tpase
GGDy =4 Trax — Thase If T> Tmax
T — Tpase otherwise

where T is the mean temperature, and Ty ,5, and T,,,, are the base and maximum temperatures,
which are parameters chosen for the specific application.

The daily growing degree value depends on how the observed temperature compares to the biolog-
ical threshold range. Temperatures below the base value contribute nothing, and temperatures above
the upper limit are capped. If T falls below T, ..., the daily contribution is zero. If T exceeds T4y, the
contribution is set to Ty, — Thase- Otherwise, the contribution is T — Ty,s.. For the preliminary study,
the values are set as T 45. = 2°C and Ty, = 26°C as described in the literature.

Thermal time TT is then defined as the running sum of daily GDD values:

t
TT, = Z GDD; (3.10)
i=0

3.2.3. Thermal Time Offset

One limitation of the datasets is that the broccoli measurements do not start from the moment of head
initiation, that is, the point where the head diameter is effectively zero. As a result, a portion of the
early growth phase is missing from the data. This means that for all broccoli plants, regardless of
whether they initiated head formation early or late, the thermal time values begin accumulating from
an arbitrary point in the growth cycle. As such, different individuals can exhibit the same thermal time
despite having developed at different rates. This introduces bias in the temporal alignment of growth
data and limits the biological interpretability of thermal time as a predictor.

Given that thermal time is the most important feature in our modeling pipeline, increasing its accu-
racy is especially important. To address this, we introduce a thermal time offset, which estimates the
amount of thermal exposure that is unaccounted for before the first measurement. This offset aims to
reconstruct the missing portion of each broccoli’'s development trajectory.

The approach is based on the assumption that average broccoli growth is approximately linear over
time when plotted against thermal time. Using this relationship, we can estimate how much thermal
time would have been required to reach the observed initial diameter, had measurements begun at
head initiation.

To compute the offset, we begin by fitting a simple linear model relating head diameter to thermal
time across the full dataset. The model takes the form:

N

d=a-T+p (3.11)

where d is the estimated head diameter, T is thermal time, « the global slope and g the bias. Using
this global slope, we estimate the thermal time offset for each broccoli i as the amount of thermal
exposure required to produce the observed initial diameter:

d;
ATT; = =2, (3.12)
a
Where d; , is the initial observed diameter of broccoli i, and ATT is the estimated missing thermal
time before the first measurement. The adjusted thermal time for broccoli i at time t is then computed

as:

TT;; = TT;; + ATT,;. (3.13)

This correction effectively shifts each growth curve backward in thermal time to better reflect its true
developmental timeline.
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3.3. Hyperparameter Tuning

To ensure optimal predictive performance, hyperparameter tuning was conducted for both the MLP and
LSTM models. Given the sensitivity of neural networks to architectural and training choices, systematic
exploration of hyperparameter configurations is essential. The goal of the tuning process is to identify
the parameter combinations that minimize the MAE on validation data.

For the MLP, the hyperparameters tuned included the number and size of hidden layers, the learn-
ing rate, and the dropout rate. A grid search was conducted over a predefined parameter space using
10-fold cross-validation. Each fold involved standardising the input and target features using a Min-
MaxScaler, training the model over 20 epochs, and evaluating performance on the validation fold. The
configurations yielding the lowest average validation MAE were selected for final model training. This
procedure ensured a robust comparison across different model capacities and regularisation settings.

For the LSTM model, the tuning process also followed a grid search strategy, but with additional
attention to the temporal structure of the data. Specifically, a grouped 10-fold cross-validation was
applied, where folds were split based on the broccoli plant ID. This approach ensured that all measure-
ments of a given plant were restricted to either the training or validation set within each fold, preventing
data leakage. The parameters explored included the sequence length, the number and length of hid-
den units, the learning rate, and the batch size. For each configuration, the model was trained for 20
epochs, and performance was evaluated using the MAE on the validation set.

In both cases, the parameter combinations were ranked based on the mean and standard deviation
of the validation MAE across folds. The configuration with the lowest average validation MAE was used
for the final experiments of both studies. This procedure provided a principled and data-driven approach
to model selection, ensuring that the reported results were not biased by arbitrary or suboptimal design
choices.

3.4. Feature Importance

To gain insight into the contribution of individual input features to model predictions, permutation feature
importance analysis was performed for the MLP and LSTM models. These models, while flexible and
powerful, are inherently non-transparent: they do not offer a direct or interpretable mapping between
inputs and outputs. In contrast to mechanistic or parametric models, neural networks operate as black
boxes, making it difficult to understand how specific input variables influence the predicted broccoli
head diameter. Feature importance analysis helps overcome this limitation by measuring how much
each input contributes to the model’s predictive accuracy.

Permutation feature importance evaluates the effect of randomly permuting each input feature on
the model’'s prediction error. For every feature, its values are shuffled across the dataset, thereby
breaking any relationship between that feature and the target variable. The model is then used to
make predictions on this altered data, and the performance is re-evaluated. If a feature is important
for accurate prediction, then disrupting its values should degrade the model’s performance. On the
other hand, if permuting a feature has little effect, likely, the feature is not strongly used by the model.
This procedure is repeated multiple times for each feature to reduce the effect of randomness in the
permutations. The average increase in prediction error is reported as a measure of importance, and
confidence intervals can be computed to quantify uncertainty.

Applying this method to the MLP and LSTM models allows identification of which features most
affect the predicted broccoli diameter. This analysis enhances the interpretability of neural network
models and offers valuable guidance for feature selection and understanding the underlying drivers of
growth in data-driven modeling.



Preliminary Study: Tanashi

For the development and validation of our broccoli growth prediction models, we made use of an ex-
ternal dataset described in the study by Wang et al., which is called 'Tanashi’ [37]. This dataset was
obtained from multi-year field experiments conducted in Japan and comprises detailed measurements
of individual broccoli heads using a combination of destructive and non-destructive techniques. This
preliminary study is used to establish a methodological foundation for the growth-modeling work in this
thesis. By analyzing the noise characteristics, testing smoothing strategies, and benchmarking sev-
eral modeling approaches, we can identify which models are most suitable for representing broccoli
head-diameter development and which smoothing method is the most suitable. We will use the same
models as described in Section 3.1. Based on prior literature, we hypothesize that parametric models
will capture broad developmental trends, while neural models will achieve higher predictive accuracy
when more environmental variables are included.

4.1. Method

This section outlines the methodological framework used in the preliminary study. First, the datasets,
field measurements, and the drone-based imaging pipeline used to construct plant-level growth trajec-
tories are described. Then we define the evaluation criteria applied to quantify predictive performance.
Next, we describe the cross-validation and statistical testing procedures used to assess differences be-
tween modeling approaches. Finally, we explain the experimental setup used to compare alternative
temperature representations under identical modeling conditions. Together, these sections define the
complete experimental protocol used to ensure reproducible and consistent evaluation of all models
presented in this study.

4.1.1. Data Acquisition

The dataset includes data collected over three consecutive years (2020-2022), capturing both spa-
tial and temporal variations in broccoli development. The data contains repeated measurements of
individual plants from the 'Jet Dome’ cultivar throughout their growing seasons, with non-destructive
measurements, enabling time-series growth tracking, and destructive measurements. The exact num-
ber of available sample sizes per year was manually inspected to be:

* 2020: 480 broccoli heads were measured non-destructively on 4 different dates, and 563 individ-
uals were destructively sampled.

* 2021: 400 broccoli heads were measured non-destructively on 5 different dates, and 557 individ-
uals were destructively sampled.

» 2022: 180 broccoli heads were measured non-destructively on 21 different dates. There is no
data available on destructive samples.

Destructive measurements were conducted indoors after harvesting the broccoli heads, allowing for
more precise measurement of traits such as head diameter and weight. Non-destructive measurements
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Figure 4.1: An example image of the Tanashi dataset on which the broccoli diameters are extracted.

were performed directly in the field. These involved image-based assessment of the head diameter,
enabling repeated observations of the same plant across multiple dates.

The imaging-based data acquisition pipeline used for non-destructive measurements involved low-
altitude drone flights. Aerial surveys were conducted using RGB cameras mounted on commercial
drones (e.g., DJI Phantom 4 and Mavic 2 Pro), with image resolutions of 5472 x 3648 pixels. Drone
flights were executed at altitudes between 10 and 15 meters. Ground control points (GCPs) and RTK-
GNSS were used to achieve georeferencing accuracy.

To extract head diameter information, a multi-stage computer vision pipeline was employed. This
consisted of:

1. Broccoli position detection using YOLOV5 during the seedling stage, which was feasible due
to the high contrast between plants and soil.

2. Head segmentation using a pretrained BiSeNet v2 network. The segmentation model was fine-
tuned using a limited set of manually annotated training images.

3. Geometric conversion from pixel-based segmentations to real-world units (centimeters), using
backward-projected spatial transformations derived from photogrammetry.

The drone-based head diameter estimates were validated against field measurements and achieved
an RMSE of approximately 7-12 mm between measurement dates, which is comparable to state-of-
the-art close-range image-based methods.

4.1.2. Metrics

The predictive performance of all models in this preliminary study is evaluated using the Mean Absolute
Error (MAE). MAE measures the average magnitude of the difference between predicted and observed
head diameters, expressed in centimeters. Formally, for a set of predictions v ... 3, and corresponding
ground truths y; ... y,:

n
1 A
MAE = = |y, = 34 (4.1)
i=1

MAE is chosen because it provides a direct and interpretable link between model performance and
the practical decisions that depend on accurate diameter estimates. Since broccoli head diameter
is measured in centimeters and directly determines harvest timing and marketability, an error metric
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expressed in the same units allows the results to be read without further transformation or statistical
interpretation. A grower can immediately assess what an average error of, for example, 0.6 cm means
in relation to commercial size thresholds and cutting decisions. As a result, MAE aligns the evaluation
criterion with both the biological meaning of the target variable and the operational interpretability of
prediction accuracy, making it the most suitable metric for analyzing broccoli head-growth models in
this preliminary study.

To ensure that the MAE values reported in this study are reproducible and reliable, the metric is
always computed under controlled and consistent evaluation conditions. All models are evaluated
using the same splits, preprocessing steps, and fixed random seeds, which prevents variation caused
by stochastic effects or inconsistent data partitioning. Reliability is further supported by reporting the
mean and standard deviation of MAE across folds rather than relying on a single measurement. This
approach ensures that the reported performance reflects typical model behavior and is not driven by
favorable or unfavorable data splits. As a result, the MAE values presented throughout this study
represent stable, repeatable estimates of performance rather than incidental outcomes of individual
training runs.

4.1.3. Model Comparison

All models in this study are compared using a 10-fold cross-validation procedure. The dataset is par-
titioned into ten equally sized folds. In each iteration, nine folds are used for training, and one fold is
used for testing. This process rotates until every fold has served once as the test set. This approach
ensures that every data point contributes to both training and evaluation, which provides a more robust
estimate of model performance than a single train-test split. Because the folds differ in composition,
the resulting variation in performance across them reflects how sensitive a model is to sampling fluctu-
ations in the data, offering an indication of the model’s reliability. Model performance within each fold is
quantified using the MAE. After completing all ten iterations, the average MAE across folds is taken as
the model’s overall performance indicator, and the standard deviation across folds reflects variability
due to differences in data partitions.

To determine whether differences in performance between models are statistically meaningful, pair-
wise statistical tests are performed for every combination of models. Specifically, we apply paired t-tests
to the fold-wise MAE values. The tests are paired because each model is evaluated on the same folds.
Every fold yields one MAE value per model, and these values naturally form linked observations. A
paired test, therefore, controls for fold-specific effects, such as difficulty or noise in particular subsets
of the data. Using an unpaired test would treat the MAE values from different models as independent
samples, which would ignore this natural correspondence and reduce statistical power. The paired
t-test instead isolates performance differences attributable to the models themselves, providing a more
sensitive and appropriate comparison in this setting. The statistical significance of the pairwise com-
parisons will be annotated using the standard star notation (* for p < 0.05, ** for p < 0.01, and *** for
p < 0.001).

Together, the cross-validation procedure and paired statistical testing offer a consistent and repro-
ducible framework for evaluating and comparing the predictive accuracy of the growth models in this
study.

4.1.4. Thermal Time vs Cumulative Temperature

To evaluate whether thermal time or cumulative temperature provides a more effective representation
of broccoli development, we conduct a model comparison in which the same models are trained twice:
once using thermal time as the main temperature-derived feature, and once using cumulative tempera-
ture. All other inputs, preprocessing steps, and cross-validation folds remain identical between the two
runs. This ensures that any performance differences can be attributed specifically to the temperature
representation rather than to differences in data handling or model configuration.

The evaluation focuses on two aspects. First, we compare the average MAE across folds between
the thermal time and cumulative temperature versions of each model. This indicates which represen-
tation yields more accurate predictions. Second, we assess whether these differences are statistically
significant by applying paired tests on the fold-wise MAE values.

This setup allows us to determine not only which representation performs better, but also whether
the advantage is large enough to be considered meaningful rather than coincidental.
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4.2. Utility of the Dataset

The dataset offers several aspects that make it a valuable resource for modeling broccoli growth. First,
the dataset contains a good number of broccoli across all years, which ensures enough data points
for evaluation. Furthermore, it includes measurements of head diameter, which is the primary feature
of interest for growth prediction and harvest optimization. Next to this, the same individual broccoli
plants were measured repeatedly over the course of the entire growth cycle. This temporal consistency
enables us to create time-series models that capture the plant growth dynamics, which is essential for
predicting harvest-ready size based on weather. Moreover, the precise location of the experimental
field is described in the original publication. This allows for the retrieval of weather data from external
sources, such as weather APls, which we can use in our growth models. In this study, the Open-Meteo
weather AP| was used to retrieve the weather variables like hourly temperature, humidity, and radiation
data from the exact coordinates of the experimental site.

However, the data collected in 2020 and 2021 suffer from a limited number of measurement dates
(four and five, respectively), which are deemed insufficient to model continuous growth curves. As
such, these two subsets do not meet the temporal requirements necessary for our modeling objectives.
For this reason, we will exclusively use the 2022 portion of the dataset, which comprises 180 broccoli
plants with 21 diameter measurements each. This data contains enough measurement dates to model,
validate, and evaluate the different models.

4.3. Diameter Smoothing

In order to model broccoli growth over time, accurate measurements of head diameter are essential.
However, initial inspection of the dataset revealed the presence of noise in the diameter measurements.
Given that broccoli head growth is a monotonic biological process during the main development phase,
decreases in diameter across measurement dates are not physiologically plausible. This requires a
detailed review of the raw data and the use of smoothing methods to reduce measurement artifacts.
Each broccoli head in the dataset is measured from four angles, and the maximum of these four values
is taken as the final diameter, following the methodology described in the original dataset publication.
To illustrate the nature of the noise, Figure 4.2 shows the diameter measurements of a single broccoli,
plotted separately for each angle. The values sometimes decrease, as seen, for example, on the 24th.
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Figure 4.2: Diameter over time for a single broccoli measured from four angles.

Even after aggregating the values across angles using common statistics like minimum, mean, and
maximum, such fluctuations persist. This indicates that the noise is not specific to individual angles but
affects the measurement process more broadly.



4.3. Diameter Smoothing 21

Min, Max, and Mean Diameter Over Time for Samples
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Figure 4.3: Diameter values for four broccoli over time, showing the minimum, mean, and maximum of the four angles.

To quantify the extent of these implausible fluctuations, we define a negative dip as any instance
where a diameter measurement decreases compared to the previous time point. This metric was
computed per angle across all broccoli. The goal is to understand whether noise is angle-dependent
or systematic across all viewpoints.

Sum of Negative Dips per Angle

Total Negative Dip Magnitude
|
o
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Figure 4.4: Sum of the magnitude of all negative dips per angle, across all broccoli. Each dot represents one broccoli; the mean
per angle is shown.

Figure 4.4 shows that substantial dips are present in all four angles. This results in a cumulative
negative dip value with a mean between -2cm and -4cm for a single broccoli growth cycle. This value
can reach up to a magnitude of 16cm as seen in the 135° data. The growth period for this broccoli
can be seen in Figure 4.5. The distributions of the negative dips are similar across all angles, which
indicates that the number of dips is not dependent on the angle from which the diameter was measured.
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Figure 4.5: Diameter values for the broccoli with the highest cumulative negative dips, shown per angle.

To investigate whether the noise is tied to particular stages in the growth cycle, we aggregated
the count of negative dips per measurement date. Figure 4.6 shows the distribution of the number of
negative dips per day. This analysis was performed both per angle and on the maximum diameter. For
both configurations the distributions are nearly identical the negative dip counts, which confirms that
the noise is not angle-specific and persists even by taking the maximum diameter value over all angles.

Furthermore, the counts are not uniformly distributed over all the dates. Instead, there are cer-
tain dates with substantially more dips than others. This suggests that the measurement noise may
not be random but could be the result of external conditions or procedural inconsistencies on specific
days. There are several potential explanations for this. One possibility is that varying environmental
conditions, such as changes in lighting, fog, or rain, affected the quality of the drone images or the seg-
mentation accuracy. Another explanation could be inconsistencies in flight altitude, angle, or camera
calibration during data acquisition.
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Figure 4.6: Count of negative dips per measurement date, grouped by angle.

Having established that the maximum diameter contains the same noise problem, we focus the rest
of our analysis on this metric, as it is the one ultimately used in modeling. We analyzed the distribution
of the magnitude of negative dips in the maximum diameter across all broccoli, shown in Figure 4.7. The
distribution begins at zero and exhibits a power-law-like shape, with the frequency of dips decreasing
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rapidly as the magnitude increases. The largest observed dip reaches a value of 2.4cm, which is
considerable given the typical growth increments in broccoli head development.

Distribution of Negative Dips in Broccoli Diameter Measurements
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Figure 4.7: Distribution of the magnitude of negative dips for the maximum diameter across all broccoli. Most dips are small, but
large deviations occur.

To address this issue, we apply three different smoothing techniques to the max diameter signal:
polynomial regression, Locally Weighted Scatterplot Smoothing (LOWESS), and the Savitzky-Golay
filter. Each method attempts to fit a plausible growth curve to the noisy data while preserving the
overall trend and shape of the true signal.
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Figure 4.8: Comparison of smoothing methods applied to the maximum diameter of the noisiest broccoli: (a) Polynomial regres-
sion, (b) LOWESS, and (c) Savitzky-Golay.

The first approach to smoothing the diameter measurements is polynomial regression. The core
idea behind this method is to approximate the noisy diameter trajectory of each broccoli with a con-
tinuous, smooth function. Specifically, a second-degree polynomial is fitted to the data. This type of
function can capture general upward or downward trends with some degree of curvature, while avoid-
ing abrupt local fluctuations and ensuring monotonicity. Figure 4.8a illustrates the result of polynomial
smoothing on the broccoli sample with the largest cumulative negative dips. The raw data, shown
as a dotted line, shows large fluctuations and multiple decreases in diameter. In contrast, the fitted
polynomial curve is nearly linear, suggesting that the quadratic term has very limited influence on the
overall fit. This indicates that while the polynomial has effectively removed the implausible dips, it has
also eliminated the finer-grained structure of the original growth pattern. As such, while this method
provides a smooth approximation, it may oversimplify the underlying growth dynamics.

The second smoothing method we apply is locally weighted scatterplot smoothing (LOWESS). Un-
like global approaches such as polynomial regression, LOWESS operates by fitting simple models,



24 4. Preliminary Study: Tanashi

typically low-degree polynomials, locally around each point in the data. Each fitted value is obtained
by weighting nearby observations based on their distance to the target point, giving more influence to
points closer to the target and less to those farther away. In our implementation, we use a fraction of
0.3 of the data when estimating each diameter, which provides a balance between smoothness and
local adaptability. This results in a smooth curve that adapts to local variations while still reducing high-
frequency noise. LOWESS is particularly well-suited for data where the underlying trend is expected
to be smooth but not necessarily captured by a single global function. In the context of broccoli growth,
this allows us to retain moderate local variations that may reflect meaningful differences in growth rate,
while filtering out unlikely short-term decreases in head diameter. Figure 4.8b shows the result of ap-
plying LOWESS smoothing to the broccoli with the largest cumulative negative dips. Compared to the
raw measurements, the smoothed curve follows the overall increasing trend while still capturing some
subtle curvature present in the original data.

The third smoothing method we consider is the Savitzky-Golay filter. This technique smooths a
signal by applying a moving window across the data and, within each window, fitting a low-degree
polynomial using least-squares regression. The fitted polynomial is then evaluated at the central point
of the window, and this value is used as the smoothed output. This process is repeated for every
point in the series, producing a smoothed signal that locally approximates the data while enforcing a
consistent polynomial structure. Figure 4.8c shows the result of applying Savitzky-Golay smoothing to
the broccoli with the largest cumulative negative dips using a window length of 7 and a second-degree
polynomial. Again, the smoothed curve preserves the general upward trend while still reflecting some
of the subtle patterns in the original data.

Figure 4.9 presents a comparison of all three smoothing methods applied to the broccoli with the
highest cumulative negative dips. The polynomial fit results in a nearly linear curve and does not capture
any of the localized structure present in the raw data. Both LOWESS and Savitzky-Golay, on the other
hand, produce curves that closely follow the local trends in the data, preserving subtle changes in the
growth trajectory. One notable observation is that the Savitzky-Golay method shows a slight decrease
in diameter at the final time step, which is not consistent with expected growth behavior. This behavior
is likely a consequence of edge artifacts, which are known to occur for the Savitzky-Golay method
due to reduced support at the boundaries [33]. In contrast, the LOWESS method provides a similarly
smooth and locally responsive curve but does not exhibit such boundary effects.

Given this observation, we will not use the Savitzky-Golay smoothing in the remainder of this study.
Since its behavior is highly similar to that of LOWESS, we select it as the preferred method for smoothing
diameter measurements before model fitting. However, we will also include the polynomial smoothing
in our model evaluation to compare its impact on predictive performance relative to LOWESS.

Smoothing of Max Diameter for ID 885
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Figure 4.9: Comparison of all three smoothing methods applied to the maximum diameter of the same broccoli.

4.4. Results

This section presents the results of the preliminary study. It begins with the outcomes of the addition
of an offset to the cumulative temperature representation. Afterwards, the results of the hyperparam-
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eter tuning procedure for the neural models are examined, followed by an overall comparison of all
model classes evaluated on the Tanashi dataset. The results then examine how the choice of temper-
ature representation influences predictive accuracy by comparing models trained on thermal time and
cumulative temperature. Finally, the section contains results for the feature importance analysis for
the neural models to provide insight into which environmental variables contribute most strongly to the
predictions. These findings are revisited under real field conditions in Section 6.3.

4.4.1. Thermal Time Offset

Figure 4.10 compares broccoli head diameter plotted against the original thermal time and the adjusted
thermal time after applying the offset for the Tanashi dataset. In the uncorrected representation, many
data points align in dense vertical bands. This indicates that large numbers of plants share identical
thermal time values while being at clearly different developmental stages. This effect results from all
plants accumulating thermal time from the same reference point despite having initiated head growth
at different moments.

After applying the thermal time offset, the scatter becomes more evenly distributed along the thermal
time axis. Individual growth trajectories show improved separation, producing a pattern that better
reflects biological variability in developmental timing between plants. The vertical dispersion at given
thermal time values is reduced, indicating a clearer mapping between accumulated thermal exposure
and observed head size.

This result shows that the offset improves the temporal alignment of individual growth curves by
correcting for unobserved early development. As a consequence, the adjusted thermal time represen-
tation produces a more realistic depiction of broccoli growth dynamics and provides a better foundation
for model training and evaluation.
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Figure 4.10: Diameter plotted against original thermal time and adjusted thermal time with offset of the Tanashi dataset.

4.4.2. Hyperparameter Tuning Results

For the MLP model, the tuning results indicate that higher dropout rates consistently led to worse
predictive performance. The learning rate and batch size had a minimal effect on performance. The
values explored in the grid search all ensured that the training loss plateaued within the fixed number
of epochs used, meaning that these parameters were not a limiting factor for convergence. The final
selected configuration for the MLP used a learning rate of 0.0005, a batch size of 64, a dropout rate of
0.0, and 2 hidden layers with 128 and 64 neurons, respectively.

For the LSTM model, the tuning results reveal a clear negative correlation between sequence length
and performance. Shorter sequence lengths consistently resulted in lower validation MAE values, with
the best results obtained when the sequence length was at its minimum value. This outcome suggests
that broccoli growth is not strongly dependent on previous weather and that incorporating multiple
previous days’ data introduces additional noise rather than providing useful predictive information. As
such, it is hypothesized that an MLP is better suited for this task than a recurrent architecture, as it
relies only on the current set of input features without attempting to model temporal dependencies,
which appear to be irrelevant for accurate growth prediction. As with the MLP, the learning rate and
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batch size had minimal influence on performance, with all tested values ensuring convergence within
the set number of epochs. The final selected configuration for the LSTM used a learning rate of 0.001,
a batch size of 32, a hidden state size of 64, and a sequence length of 2.

In conclusion, the hyperparameter tuning process confirmed that architectural choices have a large
impact on performance. For the MLP, limiting or excluding dropout improved accuracy, while for the
LSTM, minimizing sequence length was critical for optimal results. These findings reinforce the idea
that broccoli growth modeling benefits more from static feature-based prediction than from sequential
temporal modeling.

4.4.3. Overall Comparison Across Models

Means and 95% CI of MAE after 10-fold Cross Validation
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Figure 4.11: Fold-level MAE results for each model on the Tanashi dataset using LOWESS smoothing, including mean values
with 95% confidence intervals and significance annotations from paired t-tests. Significance levels are denoted by conventional
asterisks: * for p < 0.05, ** for p < 0.01, and *** for p < 0.001. The MLP model shows the lowest error across all models and
is significantly better than some models.

Model MAE (Mean) MAE (Std)
MLP 0.749 0.050
Baseline 0.774 0.044
Quadratic 0.774 0.045
LSTM 0.781 0.082
Logistic 2D 0.790 0.032
Grevsen 0.791 0.055
Logistic 1D 0.810 0.051
Grevsen Bias 0.826 0.105

Table 4.1: MAE performance comparison across models. The MLP model has the lowest MAE and the Logistic 2D model has
the lowest variance.
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The results of the 10-fold cross-validation on the external dataset reveal clear differences in pre-
dictive performance among the evaluated models, as measured by the MAE. Figure 4.11 presents the
fold-level MAE distributions for all models, along with the mean and associated 95% confidence inter-
vals. Table 4.1 shows for each model its mean MAE and the standard deviation. Finally, Figure 4.12
shows the predictions of all models on an example broccoli growth trajectory.

The MLP achieves the lowest overall MAE of 0.749(+0.05) with low variability across folds, indicating
both high predictive accuracy and stability. The performance advantage of the MLP over many other
models is supported by the paired t-tests, with statistically significant improvements over the baseline,
quadratic, and logistic models. Its strength lies in the ability to incorporate multiple weather-related
features and base its predictions solely on the current weather state, without relying on temporal se-
quences. This allows the MLP to capture complex non-linear growth patterns that extend beyond the
influence of temperature alone, resulting in a robust and accurate predictive model.

The baseline and quadratic thermal-time models achieve very similar performance, with MAE values
of approximately 0.774(x0.044), and both significantly outperform the logistic model. The results of the
baseline and quadratic models are almost identical. This is explainable due to the fact that, although
the quadratic model allows for a quadratic term, in practice this fitted quadratic coefficient has little
influence, resulting in a shape that is very close to linear. Consequently, both models behave similarly,
with the baseline representing a straight line between the average starting and ending points, and the
quadratic model approximating this same linear trend.

The Grevsen and Grevsen Bias models perform less competitively in this dataset, with MAE values
of 0.791(x0.051) and 0.826(+0.105) respectively. While the Grevsen model remains reasonably close
to the best-performing temperature-only models, the Grevsen Bias variant suffers from higher error
and higher variability across folds, indicating that the additional bias term does not yield a predictive
advantage in this scenario.

The logistic 2D model, which incorporates soil moisture alongside thermal time, achieves an MAE
of 0.790(x0.032), performing similarly but more stably to the Grevsen model and better than the logistic
model in its single-feature form. The slight improvement over the 1D logistic confirms the added value
of including a second environmental variable. However, its lack of statistical superiority over the MLP
and LSTM suggests that while additional features can be beneficial, model flexibility and non-linear
learning capacity are still important determinants of performance.

The LSTM achieves an MAE of 0.781(+0.082), but shows relatively high variance across folds.
This is likely due to its sequence-based nature, which introduces additional noise rather than providing
useful temporal information. The absence of statistically significant differences between the LSTM and
other models indicates that its recurrent structure does not provide a clear advantage in this application.
The observed negative correlation between sequence length and performance suggests that temporal
dependencies beyond the current weather contribute little to improving predictive accuracy for broccoli
growth.



28

4. Preliminary Study: Tanashi

Diameter (cm)

Model Predictions for Broccoli ID: 9841

20.04
Baseline
Grevsen
175 Grevsen Bias
. Logistic1D
Logistic2D
Quadratic
15.0 Mip
Lstm Sequence
e True Diameter
4 >
125 /
10.0 | ’/
7.5 1 e
. ~
'//./
5.0 -~
)
—
2.5 1
0.0 T T T T T T
A o ] . $H <l “J
et & o & & e o e
,é‘:\' FP'\:" ,é"T d ,é‘:\' ,P'\f" ,P'\f" F’g\:"
Date

Figure 4.12: An example broccoli sample with predicted values from all models. Most models follow the trend of the example
broccoli growth well.

4.4.4. Thermal Time vs. Cumulative Temperature

Mean and 95% CI of MAE for Cumulative Temperature vs Thermal Time Models
for 10-fold Cross Validation
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Figure 4.13: Cross-validated MAE for models using cumulative temperature vs. thermal time. Each subplot shows the fold-level
MAE, mean with 95% confidence interval, and significance annotation. Significance levels are denoted by conventional asterisks:
*for p < 0.05, ** for p < 0.01, and *** for p < 0.001. All models, except the neural models, show significantly better results
when using Thermal Time.
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The fold-level MAE distributions are visualized in Figure 4.13. For each model, a pair of vertical scatter
plots is shown, one for the cumulative temperature configuration and one for the thermal time config-
uration. The plots indicate individual fold MAE scores, the mean MAE with 95% confidence intervals,
and the statistical significance of the difference where applicable.

These findings demonstrate that thermal time is a more biologically grounded and effective temporal
feature for predictive modeling of broccoli growth. Across the eight evaluated models, six show statisti-
cally significant improvements when thermal time is used instead of cumulative temperature, with most
achieving highly significant results (p < 0.001). This indicates that accounting for biologically active
temperature ranges, by excluding ineffective extremes, leads to more accurate growth predictions.

The only models for which the difference is not statistically significant are the MLP and LSTM. A
plausible explanation for this result is that both models incorporate multiple additional environmental
features beyond temperature alone. As a consequence, the relative influence of the temporal predictor
(thermal time versus cumulative temperature) is reduced. A similar pattern is observed in the 2D logistic
model, which includes soil moisture as an additional input. Although this model still benefits from the
use of thermal time, the performance difference is less pronounced than in the corresponding 1D logistic
model, which depends solely on temperature-based input.

Overall, the results indicate that thermal time is a more effective temperature-based predictor, par-
ticularly when time is the main explanatory variable. When additional features are included in the model,
thermal time still offers an advantage, though its relative influence is reduced. A direct replication of
this analysis on the Verdonk dataset is presented in Section 6.4.

4.4.5. Feature Importance

To better understand how the MLP model makes its predictions, permutation feature importance anal-
ysis was conducted to determine which environmental variables most strongly influence the predicted
broccoli head diameter. The results of this analysis are summarized in Figure 4.14. Each bar in the
figure represents the mean increase in prediction error after permuting a specific feature, with error
bars showing the standard deviation across 20 repeated permutations.

The results clearly show that Thermal Time is by far the most influential variable, with an importance
score of 3.69 + 0.06. This confirms that accumulated temperature, constrained by biological limits, is
the primary driver of broccoli development and head growth. The remaining features contribute much
less to the model’s predictive power, indicating that while environmental conditions influence growth,
their effect is secondary to temperature-based development.

In comparison, maximum temperature, soil moisture at shallow depth, and mean humidity show
only a very slight influence, with importance scores an order of magnitude lower (between 0.28 and
0.35). These factors provide only minimal improvement to predictive accuracy and are likely associated
with short-term effects on plant stress or water balance rather than direct growth progression.

All remaining features, including those related to soil temperature, solar radiation, and precipitation,
contribute negligibly to the model. Their low importance indicates that they do not play a meaningful role
in predicting head diameter within the observed environmental range. Overall, the analysis confirms
that broccoli growth is primarily driven by Thermal Time, with other environmental variables having only
minimal influence. Feature importance is re-evaluated on the field dataset in Section 6.5.
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Permutation Feature Importance with Cl (20 Repeats, CI=0.95)
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Figure 4.14: Permutation feature importance results for the MLP model trained on the Tanashi dataset. Bars show the mean
increase in MAE after feature permutation, with standard deviation across repetitions as error bars.

4.5. Conclusions

The preliminary study on the Tanashi dataset provided a first validation of the modeling framework de-
veloped in this research. The analysis offered valuable insights into both the quality of the data and the
performance of the different modeling approaches. Although the dataset contained a sufficient num-
ber of measurements to study broccoli growth, it also showed clear measurement noise. The analysis
of negative dips in head diameter revealed systematic fluctuations across measurement angles and
dates, suggesting that part of the noise originated from varying imaging conditions rather than random
variation. Smoothing was therefore essential to obtain biologically plausible, monotonic growth curves.
Among the evaluated techniques, LOWESS proved to be the most reliable method, as it removed
implausible fluctuations while still preserving local changes in growth and avoiding artifacts near the
boundaries. For this reason, LOWESS was selected as the preferred preprocessing approach for all
subsequent modeling.

Across the eight evaluated models, the MLP achieved the lowest mean absolute error in the pre-
liminary study, with an average MAE of 0.75 cm across the 10 cross-validation folds. In the Tanashi
dataset, broccoli heads grew approximately 0.68 cm per day, meaning that the MLP’s residual error
corresponds to 1.1 days of growth. This level of error is acceptable for most growth-monitoring and
model-comparison purposes, since harvest decisions are typically made on a multi-day basis rather
than at sub-daily precision. The LSTM, despite its ability to model temporal dependencies, did not
outperform the MLP. Its MAE of 0.78 cm and the highest overall standard deviation of 0.08 cm indicate
that incorporating historical environmental sequences introduces more variability than useful predic-
tive structure for this dataset. This suggests that broccoli head diameter in the preliminary study is
explained primarily by the current environmental state rather than by accumulated temporal patterns,
making static models such as the MLP more suitable. Overall, the MLP not only achieved the best
statistical performance but did so with an error magnitude that is small relative to both daily biological
growth and the operational precision required for practical applications, making it the most effective
model in this preliminary study.

The comparison between cumulative temperature and thermal time demonstrated that thermal time
provides a more biologically meaningful and statistically better predictor of broccoli development. For
six out of eight models, using thermal time significantly reduced prediction errors, confirming that filter-
ing out temperature extremes improves accuracy. The effect was most pronounced for models that rely
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mainly on temperature-based inputs, while the difference was smaller and non-significant for the MLP
and LSTM, which include additional environmental variables. Overall, thermal time can be considered
the most reliable temperature-related feature for modeling broccoli growth.

Finally, the feature importance analysis provided clear evidence that thermal time is by far the most
influential variable, confirming its dominant role in explaining head diameter variation. Other features,
such as maximum temperature, soil moisture, and humidity, contributed only slightly, and the remaining
environmental variables had a negligible impact. This confirms that, within the observed environmental
conditions, broccoli growth is mainly determined by temperature rather than by short-term fluctuations
in other weather factors.

In summary, the preliminary study validated the modeling pipeline, established LOWESS as the
preferred smoothing technique, identified thermal time as the most effective predictor, and showed that
the MLP achieved the most accurate predictions. These findings form a strong foundation for applying
the same modeling framework to the newly collected field data in the Verdonk study.






Field-Based Data Acquisition and
Processing

To complement the external dataset and evaluate the performance of the developed models under con-
trolled conditions, we collected a new dataset in a commercial broccoli field, and it is therefore named
after the grower, Verdonk Broccoli. This dataset captures plant-level observations over time and in-
cludes environmental measurements from the field. The following sections describe the measurement
setup used in the field, the structure of the data collection process, and the preprocessing pipeline
used to convert raw video data into usable inputs for growth modeling. The field measurements used
in this study were collected by a researcher from Inholland at the field of Verdonk. This included prepar-
ing the measurement setup, installing and maintaining the camera harness, and performing the video
recordings during the season.

5.1. Measurement Setup

To collect broccoli field data, a custom measurement setup was developed to capture high-resolution,
repeatable observations of individual broccoli plants over time. The setup was designed to be mobile,
nondestructive to the plants, and capable of operating in outdoor conditions without the need for fixed
installations.

At the core of the setup is a laptop mounted on the operator using two adjustable straps to secure
the laptop around the shoulders, holding it stably at hip height. This height ensures that the recording
devices are well-positioned above the broccoli heads. Two Intel RealSense D415 RGB-D cameras
are attached to either side of the laptop. These cameras extend outward such that each records a
separate crop line as the operator walks through the field. A schematic representation of this setup
can be seen in Figure 5.1a. The setup allows for two simultaneous measurements of two parallel
broccoli rows, maximizing spatial coverage and ensuring that each plant is visible from above. These
cameras capture both video images, used for broccoli head detection and segmentation, and depth
information. An example of such a frame is shown in Figure 5.1b. Together, these are used to estimate
head diameter, which serves as a time series input for the different growth models.

The operator walks through a corridor between two parallel rows of broccoli plants, with each camera
capturing one of the rows from above. This configuration allows for the simultaneous observation of
two crop lines during each pass through the field. The walking path ensures that all plants along both
rows are recorded in a single traversal.

5.2. Data Collection

The data collection took place in a broccoli field where a fixed experimental layout was established
to ensure consistent measurements over time. This layout was designed to reflect a similar scenario
for future automated crop monitoring, as motivated by the precision-agriculture objectives outlined in
Chapter 1. Although manual measurements would have been possible to produce a dataset for model
evaluation, this approach would have severely limited the dataset size due to the manpower required

33
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(a) (b)
Figure 5.1: a) Schematic representation of the setup used to extract RGB-D data from Verdonk’s broccoli fields. b) Example
camera output where the top row shows the RGB frame and the bottom row shows the frame’s depth channel, which is color-
coded to show the depth.

to repeatedly measure hundreds of individual plants. Moreover, a central objective of this study is
to investigate how field video can be transformed into reliable plant-level growth data, making the
development and validation of an automated acquisition pipeline an integral part of the research rather
than a purely instrumental choice.

In total, 12 measurement days were performed from the 30th of June to the 25th of July, covering
a full broccoli growth cycle from early head initiation to harvest maturity. Every broccoli plant in the
experiment belonged to the Ironman cultivar, which is the most used crop by Verdonk. The field was
structured around two parallel crop lines, each consisting of 300 individual broccoli plants, and located
in the North-Holland province of The Netherlands. These two lines were measured simultaneously
using the dual-camera setup described in the previous section, with each camera capturing one crop
line from above.

To help with spatial referencing and ensure consistency across measurement days, the crop lines
were segmented into smaller units. Visual markers were placed at regular intervals along the rows,
dividing each line into 10 segments of 30 broccoli plants. Each marker was positioned between two
adjacent plants, at the boundary between segments. These markers provided smaller and more man-
ageable videos, helped with finding a specific plant for validation of methods, and enabled more reliable
assignment of plant IDs across different measurement days. An example of such a marker is visible in
Figure 5.2a.

For measuring soil-specific data, Agurotechs’ Saturnia Parva climate pole, provided by Vertify, was
used. At the center of the two crop lines, the sensor was installed to continuously record environmental
conditions. The pole measured soil temperature, moisture, and electrical conductivity at depths of
15 and 30 cm. lts central position ensured that the recorded climate data were representative of the
conditions experienced by all plants within the experimental area. Figure 5.2b shows how this climate
pole is installed in the field.
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(a)
Figure 5.2: a) Example frame where a marker is clearly visible, indicating the start of a new segment. b) Photo of the installed
climate pole.

5.3. Head Detection

This section describes the approach used to detect broccoli heads in the field video data, which rep-
resents the first step of the automated processing pipeline. Reliable head detection is essential for
all subsequent stages, including plant identification, tracking, and diameter estimation, since detection
errors propagate directly through the pipeline and affect measurement quality.

5.3.1. Preliminary Head Detection Model

A preliminary head detection model was previously developed at Inholland to automate the detection
of broccoli heads from RGB imagery under field conditions. This model, based on the YOLOv8n archi-
tecture, demonstrated reliable detection performance across diverse lighting and occlusion scenarios,
achieving an F1-score of 96% and further cross-validated on an external dataset by Blok et al. with an
F1-score of 98% [4]. The associated training and evaluation code from this work served as the basis
for the development of the head detection model used in this study.

5.3.2. Model Training for This Study

Building upon the earlier Inholland research, the same YOLOv8n architecture was adopted as the
basis for the head detection model used in this study. The model was trained from scratch using newly
collected data from the Verdonk broccoli fields, ensuring that the detection performance was tailored
to the specific visual characteristics of this dataset.

Dataset and Annotation

The training dataset consisted of manually annotated RGB images extracted from the recorded mea-
surement videos. From each of the seven measurement days, 50 random frames were selected in
which at least one broccoli plant was visible. Each annotation contained a bounding box around a vis-
ible broccoli head. Not all selected frames contained plants with a head. Some of the selected frames
did not contain visible heads, either because the plant had not yet reached its head initiation phase on
earlier dates or because the head had already been harvested on later dates. This resulted in a total
of 250 annotated samples rather than the extracted 350.

The original dataset, therefore, showed an imbalance in the representation of measurement days,
with some days contributing substantially more images than others. This imbalance led to reduced
model sensitivity to small broccoli heads, which were primarily present during the earlier growth stages.
In contrast, the performance on large broccoli heads did not suffer from this imbalance. This can be
explained by the higher visual distinctiveness of mature heads, which show a more defined contour and
larger bounding box areas, making them easier to detect even when fewer examples are present in the
training data. To address the reduced performance on smaller heads, additional annotated frames from
the first two measurement days were added, improving both temporal balance and the representation
of earlier growth stages. As shown in Figure 5.3, the resulting final dataset contains a slightly higher
proportion of images from the early measurement days, ensuring better representation of smaller broc-
coli heads and improving detection performance across developmental stages. Figure 5.4 shows one
example annotated video frame for each measurement date.
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Figure 5.3: Distribution of annotated images per measurement day for the original and the final dataset. The stacked bar chart
shows the addition of early-stage samples to improve model sensitivity to small broccoli heads.

Figure 5.4: Examples of 7 annotated video frames, each from a different measurement date.

Model Training and Evaluation
The YOLOv8n model was trained using the complete dataset described above, with an 80/20 split for
the training and test sets. The loU threshold was set to 0.6, consistent with the previous implementation.
Model performance was evaluated on the independent test set using standard object detection
metrics. The model achieved a precision of 0.9305, a recall of 0.9872, and an F1-score of 0.958. The
MAP@50 was 0.988, while the stricter mMAP@50-95 metric reached 0.808. These results demonstrate
that the retrained YOLOv8n model is capable of accurately detecting broccoli heads across different
developmental stages, including early growth phases that were underrepresented in the original anno-
tation set.

5.4. Plant ID Assignment

A challenge in constructing a consistent time series of broccoli growth is the assignment of consistent
plant IDs across all measurement days. Since the data are collected from video recordings while
walking through the field, there is no inherent spatial reference system available that marks each plant
individually. To address this, a slot-based identification method was developed, which is based on the
estimation of camera motion throughout the video as seen in Figure 5.5.

For each measurement session, the video for each segment was manually trimmed such that the
first and last frames both show a broccoli plant positioned at the center of the image. These two
boundary frames serve as ground truth for the spatial placement of the slot centers and are therefore
used to correctly infer the boundaries of all intermediate slots.

To identify the relative position of each broccoli plant within the segment, we first estimated the
total vertical motion of the camera throughout the video. This was achieved by computing frame-to-
frame pixel displacements using OpenCV’s Enhanced Correlation Coefficient (ECC) algorithm with
affine motion estimation. To improve the robustness of the ECC registration under variable lighting
conditions, each frame was preprocessed using Contrast Limited Adaptive Histogram Equalization
(CLAHE). This enhances local contrast, allowing for more accurate alignment, particularly in outdoor
environments with uneven illumination.

For each pair of consecutive frames, the vertical translation component was extracted and accumu-
lated to compute the total vertical camera displacement over the segment. Given that each segment
always contains exactly 30 plants, we divided the total vertical movement into 30 equally spaced slots.
Each slot corresponds to a single broccoli plant. As the operator walks through the segment, each
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Figure 5.5: Overview of the slot-based broccoli identification pipeline: (A) trimmed input video segment with visible broccoli plants
and segment markers, (B) frame-to-frame camera motion estimation, cumulative displacement, and frame-to-slot conversion,
and (C) uniform slot assignment of plant IDs across the segment.

detection is assigned to a slot based on the cumulative vertical displacement at the time of detection.
This effectively links detections to plant positions based on their relative location in the video. To en-
sure proper boundary handling, the first and last slots are assigned only half the width of the others,
reflecting the fact that the first and last frames center a broccoli plant in the middle of the frame. This
avoids assigning detections outside the visible range of the segment.

5.5. Tracking

After the individual broccoli detections were obtained for each frame, a tracking pipeline was imple-
mented to transform these isolated detections into temporally consistent trajectories, or fracks, each
corresponding to a single broccoli plant. The purpose of this step was to ensure that every detected
broccoli head received a unique ID that persisted across consecutive frames, thereby enabling the
combination of different measurements of the same broccoli for a more consistent data point. The pro-
cess integrated both spatial and temporal reasoning and was designed to be robust to detection noise,
camera motion, and false positive detections. A visual representation of 3 intermediate steps can be
seen in Figure 5.6

5.5.1. Detection Linking

The tracking algorithm operates sequentially across video frames. For each frame, all detections that
pass a spatial filter are extracted. Detections whose horizontal position lies outside the central crop area
are removed to prevent the inclusion of detections that correspond to other broccoli columns. For every
detection, the center coordinates of its bounding box are calculated, forming a set of two-dimensional
points that represent the spatial positions of the broccoli heads in that frame.

To associate detections across frames, a cost matrix is constructed that quantifies the dissimilar-
ity between the positions of currently active tracks and the detections in the new frame. The spatial
distance between the bounding box centers serves as the main matching criterion, while a temporal
penalty is added to account for skipped frames. The total association cost between a track and a
detection is defined as a linear combination of spatial and temporal components:
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Figure 5.6: Overview of the tracking and slot refinement process. (a) Broccoli detections before trimming of video and track
creation, showing all detections of a single video. (b) Initial tracking results after detection linking, including the preliminary slot
boundaries derived from cumulative camera displacement. (c) Final refined tracks after velocity-based repair and slot boundary
refinement, showing continuous trajectories and corrected plant slot alignment.

Cij = alyi — y;| + Blxi — x| + vAt (5.1)

where (x;,y;) and (x;, y;) denote the centers of two detections which are part of two distinct tracks, At
is the frame gap since the track was last updated, and «, 8, and y are weighting parameters controlling
the contribution of each term. In this study, the parameters were empirically setto a« = 1, § = 0, and
y = 10. The horizontal weight § was set to zero because the horizontal position of the broccoli heads
remains relatively constant across frames, as the camera movement primarily occurs along the vertical
(y) axis. Consequently, variations in x carry little information for matching detections between frames.
A maximum matching distance threshold of 100 ensures that detections that are too far from any active
track initiate a new trajectory rather than being incorrectly assigned.

5.5.2. Velocity-Based Track Repair

Although the frame-to-frame association captures most trajectories correctly, it is intentionally designed
to be conservative in merging detections to minimize the risk of incorrect associations between distinct
broccoli heads. To reconstruct continuous plant trajectories, a post-processing procedure based on
estimated vertical motion was applied. This method exploits the regular camera movement along the
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crop row, where each broccoli appears to move vertically through the frame at a near-constant rate.

For each track, the average vertical velocity is estimated using the global displacement between
detections. Using this velocity, the algorithm predicts the expected position of a track in the following
or preceding frames. When another track starts or ends close to this predicted position and within a
defined spatial gap, both tracks are merged. This merging is constrained by several checks to prevent
erroneous associations: (1) tracks are not merged if an intermediate object lies between them in the
frame sequence, (2) excessive positional jumps are disallowed, and (3) tracks are not merged if the pre-
dicted positional difference exceeds the expected vertical movement range of a broccoli head between
consecutive frames, ensuring that only spatially plausible displacements are considered. This itera-
tive repair process is repeated until no further merges are possible, producing smooth and complete
broccoli trajectories.

5.5.3. Slot Boundary Refinement and ID Assignment

The initial slot boundaries derived from camera motion estimation provide a first approximation of plant
positions, but this approach is not perfect. Small inaccuracies in the estimation of frame-to-frame
displacement accumulate progressively over time, resulting in increasing spatial drift along the vertical
axis. This accumulation of error is minimal near the start and end of the segment, where the first and
last frames are manually aligned, but it typically reaches its maximum in the center of the segment. As
a result, the initially uniform slot division can deviate from the true spatial arrangement of the broccoli
plants.

To correct these accumulated errors, the slot boundaries are refined using the actual broccoli detec-
tions obtained from the tracking results. The refinement algorithm analyzes pairs of adjacent broccoli
trajectories to identify the frame at which their bounding boxes are most symmetrically positioned with
respect to the center of the frame. This symmetry represents the location of the true boundary between
two neighboring plants. When this point deviates from the initially estimated slot boundary, a correction
is applied by locally shifting the boundary position to align with the observed symmetry in the detections.

This process is repeated across all adjacent track pairs, progressively refining each slot boundary
based on empirical detection data rather than on accumulated camera displacement alone. Through
this refinement, the spatial alignment of the slots becomes more consistent with the visual evidence
from the video, effectively correcting for drift and improving the accuracy of plant ID assignment across
the segment.

5.5.4. Output and Validation

The final output consists of a list of trackings indexed by frame and track identifier, where each entry
contains the bounding box, confidence score, median depth, and estimated head diameter. The result-
ing tracks were visualized by plotting the vertical position of each broccoli over time, which revealed
clear, continuous trajectories corresponding to the plants’ passage through the camera’s field of view.
To further validate and manually refine the results, a small GUI was developed. This interface allowed
the visual inspection of each frame with the corresponding track and slot identifiers overlaid on the
video. Using this tool, erroneous detections could be interactively removed, and incorrect slot assign-
ments could be corrected. This manual validation step ensured that false positives were excluded and
that each broccoli track was correctly associated with its physical plant slot, resulting in a clean dataset
for subsequent growth analysis.

5.6. Diameter Estimation

After the head detection model has generated bounding boxes for all broccoli heads, these detections
are then used to estimate the physical diameter of each head. The initial formula used to compute the
diameter is defined as:

_ Dpx * H1
fx

Where D, denotes the diameter in pixels, H; the depth estimated from the camera, and f, the focal
length. However, this approximation consistently underestimated the true diameter of the broccoli head.
This error is explained by the depth used in the calculation being measured at the center of the crown,

(5.2)
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whereas the diameter is determined by the edges. Since the depth at the edges is greater than at the
center, this leads to the difference.

To reduce this, a correction factor based on empirical measurements was introduced. The updated
formula accounted for an empirically derived ratio C;,. This enhancement yields the new formula:

Dy - Hy - (]]Ecxz"' Dpx - Cp) (5.3)

D =

This revised approach provided a more accurate estimation of crown diameters. This ratio is em-
pirically determined at 0.1.

To estimate the depth H; used in these calculations, a cropped region of interest was defined at
the center of each detection’s bounding box. This region covered 50% of the box width and height
to exclude background pixels and noisy border regions. The median depth value within this region
was then taken as the representative depth of the broccoli head. The diameter in pixels, D,,, was
approximated as the largest side length of the bounding box, providing a consistent estimate of the
visible crown size independent of orientation. By combining the pixel-based diameter, the median
depth, and the intrinsic camera parameters, the physical diameter was computed for each detection
using Equation 5.3.

After the creation of the broccoli tracks, the diameter estimation was applied to each detection
belonging to a given track. This means that for every frame in which a broccoli was detected, a diameter
value was calculated using Equation 5.3. As a result, each track contains multiple estimates of the same
broccoli head diameter.

The diameter estimations occasionally produced outlier values caused by partial visibility or tempo-
rary occlusions of the broccoli heads. In particular, detections where the broccoli was located near the
borders of the frame and detections that suffered from occlusions by leaves tended to underestimate
the true diameter as the head was only partially visible. To address this, the lower 50th percentile of
all estimated diameters within each track was removed before calculating the final value. The median
of the remaining estimates was then taken to represent the final diameter of that broccoli at the time of
measurement. This approach effectively reduces the influence of extreme or underestimated values,
resulting in more stable and reliable measurements for subsequent growth modeling. Specifically, it
reduces the mean standard deviation of measurements from a single broccoli from 0.61 cm to 0.14 cm.
Figure 5.7 shows an example of all measurements of a single broccoli and the final extracted diameter
value.
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Figure 5.7: An example of all measurements of one broccoli from one video. The lower 50th percentile points are not taken into
account when taking the median diameter of all measurements.
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5.7. Data Filtering

Before using the extracted diameter data for model development, several filtering steps were applied to
remove unreliable measurements and biologically implausible growth patterns. These steps ensured
that only consistent and realistic growth trajectories were retained for the subsequent analysis. The fil-
tering procedure was applied sequentially and focused on removing plants or individual measurements
that showed inconsistent temporal behavior or measurement artifacts.

5.7.1. Decreasing Diameter

As broccoli head growth is a monotonic process during the main development phase, any decrease in
measured diameter over time is biologically implausible and therefore likely the result of detection errors
or partial occlusions. To identify such cases, the time series of each broccoli was inspected for negative
differences in diameter between consecutive measurement dates. If a decrease was detected at any
point, the entire broccoli track was removed from the dataset. This procedure eliminated all plants that
exhibited at least one dip in diameter across the recorded period, retaining only those with continuously
increasing growth profiles.

5.7.2. Initial Growth Slope

In the early stages of the measurement period, the detection model occasionally produced false positive
detections in frames where no visible broccoli head was yet present. These false detections typically
resulted in abnormally low or even negative initial growth rates when compared to the subsequent
measurements. To identify and correct these cases, the first two diameter measurements of each
broccoli were used to calculate an initial growth slope, expressed in centimeters per day.

The distribution of these initial slopes was then analyzed, and the lowest 2% were considered abnor-
mal, as they represented unrealistic or biologically implausible growth rates. For all plants in this range,
only the first measurement was removed, since the following measurements generally corresponded
to valid detections once the broccoli head became visible. This selective removal step effectively elim-
inated false early detections while retaining the reliable portions of each broccoli’s growth trajectory.

5.7.3. Local Growth Slopes

Next, the local slope between every pair of consecutive measurements was computed for each broccoli.
This local slope quantifies the short-term growth rate and allows for detecting inconsistent or negative
growth intervals within otherwise valid trajectories. Measurements whose local growth slope fell below
the 2nd percentile of the overall slope distribution were flagged as abnormal and removed. These
instances typically correspond to measurements with partial occlusion of the broccoli crown.

5.7.4. Final Dataset

After applying all filtering steps, the dataset was reduced from 599 broccoli growth curves, with a total of
2,736 individual measurements, to 546 curves containing 2,639 measurements. The remaining dataset
contained smooth, monotonic growth trajectories that accurately reflected the biological development
of the broccoli heads.

To ensure the correctness of the filtering procedure, the removed data points were manually verified
by inspecting the corresponding frame images. This visual validation confirmed that the excluded
measurements indeed originated from incorrect detections or incomplete visibility of the broccoli heads.
Some examples of these removals are shown in Figure 5.8. Overall, the final dataset consisted of clean,
realistic, and continuous growth profiles suitable for further modeling and analysis.
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Figure 5.8: Examples of removed detections. The first row shows three cases of initial growth slope removals. The second row
presents three cases of local growth slope removals and decreasing diameters.

5.8. Weather Data

To complement the visual measurements of broccoli growth, environmental data were collected for
the Verdonk field experiments. These data provide the necessary climatic and soil context required to
model and interpret the observed growth patterns. Two primary sources of weather data were used:
direct field measurements from the climate pole installed on-site, and meteorological data obtained
from the Open-Meteo API.

The climate pole, positioned centrally between the two measured crop rows, continuously recorded
soil and environmental variables throughout the growing period. Measurements were taken approxi-
mately every thirty minutes at two soil depths, 15 cm and 30 cm, corresponding to the upper and lower
root zones of the broccoli plants. For each depth, the pole measured the soil temperature, electrical
conductivity, and volumetric water content. These values indicate soil thermal conditions, salinity, and
moisture availability, which are key factors that influence water uptake and nutrient transport in the
plant.

In addition to the in-field measurements, broader atmospheric variables were retrieved using the
Open-Meteo API, which sources its information directly from the Royal Netherlands Meteorological
Institute (KNMI). The retrieved variables included near-surface air temperature, relative humidity, pre-
cipitation, wind speed, and incoming shortwave radiation. Together, these features capture the main
environmental drivers of plant development.

Because the meteorological and soil variables were recorded hourly, they were aggregated to daily
values to create a uniform dataset suitable for integration with the growth measurements. Specifically,
for each day, the mean, minimum, and maximum were computed for air temperature, while relative hu-
midity, wind speed, shortwave radiation, electrical conductivity, soil temperature, and volumetric water
content were averaged. Precipitation was summed over the day to capture total daily rainfall.

Finally, additional derived features were engineered using the methods described in Section 3.2.
Specifically, the VPD was calculated from temperature and relative humidity to quantify the atmospheric
moisture demand, while thermal time was calculated to describe how plant development accumulates
over time as a result of temperature. An additional offset as described in Section 3.2.3 was applied
to this thermal time to account for the early growth period that was not captured before the first mea-
surement, ensuring that the results remain consistent with the modeling approach used for the external
dataset. Together with the climate pole sensor and the APl weather data, these features finalize the
environmental factors that will be used in the growth modeling and are analysed in Chapter 6.



Field Study Results

This chapter presents the predictive modeling results obtained from the field dataset collected in the
Verdonk study, as described in Chapter 5. This chapter is parallel to the preliminary analysis on the
Tanashi dataset reported in Section 4.4, enabling a direct comparison between the external dataset
and the field measurements. Using the same modeling approaches and evaluation metrics introduced
in Chapter 3, the results in this chapter quantify model performance on the Verdonk dataset and assess
the influence of environmental features under commercial growing conditions.

6.1. Thermal Time Offset

Figure 6.1 shows the effect of the thermal time offset on the field-based Verdonk dataset. Similar to the
preliminary study, the original thermal time representation produces clustering of diameter measure-
ments at common thermal time values, despite visible differences in plant development. This confirms
that variations in head initiation timing also occur in the realistic production setting.

After applying the offset correction, the growth trajectories become more dispersed and better
aligned along the developmental timeline. Individual plants exhibit clearer progression patterns, and di-
ameter variation at shared thermal time values decreases. This indicates that the offset effectively com-
pensates for missing early-stage development and harmonizes growth curves across different plants.

These results confirm that the thermal time offset improves the biological consistency of the field
dataset, not only in a controlled benchmark study but also under real commercial growing conditions.
The adjusted representation supports more reliable learning of growth patterns and enhances the in-
terpretability of downstream predictive modeling results.
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Figure 6.1: Diameter plotted against original thermal time and adjusted thermal time with offset of the Verdonk dataset.
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6.2. Hyperparameter Tuning Results

For the MLP model, the tuning results for the field-based dataset largely confirm the trends observed
in the preliminary study. Higher dropout rates again resulted in reduced predictive accuracy, while the
learning rate and batch size showed only minor influence on model performance. All tested configura-
tions converged within the fixed number of training epochs, indicating that the learning rate range was
sufficiently broad to ensure stable optimization. The final selected configuration for the MLP used a
learning rate of 0.001, a batch size of 256, a dropout rate of 0, and three hidden layers with 128, 256,
and 128 neurons, respectively. This configuration achieved the lowest mean validation MAE across
folds and was therefore used in all experiments.

For the LSTM model, similar patterns to those seen in the preliminary study emerged. Performance
decreased with increasing sequence length, with shorter sequences consistently achieving lower val-
idation errors. This again suggests that broccoli growth is primarily determined by the current envi-
ronmental conditions rather than by longer historical dependencies. Incorporating extended temporal
information appears to introduce noise rather than informative structure. The influence of the learn-
ing rate and batch size remained limited, with all configurations reaching convergence within the fixed
training schedule. The optimal LSTM configuration was found with a learning rate of 0.01, a batch size
of 32, a hidden state size of 64, and a sequence length of 2.

The hyperparameter tuning outcomes confirm the observations made in the preliminary study. The
MLP again performed best when no dropout was applied. Similarly, the LSTM achieved optimal results
when the temporal dependency was kept minimal, with the shortest tested sequence length yielding the
lowest validation error. Together, these results highlight the importance of systematic hyperparameter
tuning, as small architectural and training adjustments, such as dropout rate or sequence length, can
substantially influence the model’s ability to learn meaningful relationships from the available data.

6.3. Overall Comparison Across Models

Model MAE (Mean) MAE (Std)
MLP 0.583 0.038
Logistic 2D 0.632 0.056
Quadratic 0.642 0.035
Baseline 0.658 0.034
Logistic 0.664 0.029
Grevsen 0.665 0.053
LSTM 0.803 0.093
Grevsen Bias 0.854 0.075

Table 6.1: MAE performance comparison across models. The MLP model has the lowest MAE, and the Logistic 1D model has
the lowest variance.

This section directly addresses Research Question 4 by comparing the ability of different models
to represent broccoli growth dynamics. The results of the 10-fold cross-validation on the field-based
dataset demonstrate clear differences in predictive performance among the evaluated models. Fig-
ure 6.2 displays the fold-level MAE distributions for all models, along with the mean values and 95%
confidence intervals. Table 6.1 shows for each model its mean MAE and the standard deviation. Finally,
Figure 6.3 shows the predictions of all models on an example broccoli growth trajectory.

The MLP model achieves the lowest overall MAE of 0.583 (+0.038) with relatively low variability
across folds, confirming its robustness and predictive accuracy under field conditions. The improve-
ment of the MLP compared to the other models is statistically significant for most pairwise comparisons,
except for the logistic 2D model. Similar to the findings from the Tanashi dataset, the superior perfor-
mance of the MLP can be attributed to its ability to model non-linear relationships between multiple
environmental features while relying on only the current weather state instead of including previous
days.

The logistic 2D model, which includes both thermal time and soil moisture, achieves the second-best
performance with an MAE of 0.632 (£0.056). This confirms that incorporating soil moisture information
improves predictions relative to the one-dimensional logistic model with an MAE of 0.664 (+0.029). The
improvement is statistically significant compared to the Grevsen Bias and LSTM model.
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Figure 6.2: Fold-level MAE results for each model on the Verdonk dataset, including mean values with 95% confidence intervals
and significance annotations from paired t-tests.

The quadratic model performs slightly better than the baseline model, with MAE values of 0.642
(£0.035) and 0.658 (+0.034), respectively, and this difference is statistically significant. Similar to the
findings from the preliminary study, the fitted quadratic coefficient is minimal, indicating that the inclusion
of a second-order term provides only limited curvature to the growth trajectory. As aresult, the predicted
growth curves of both models are nearly identical. This suggests that broccoli growth progresses in
a nearly linear manner with respect to thermal time, and that higher-order terms do not meaningfully
enhance predictive accuracy. However, the small difference in performance is still significant.

The logistic and Grevsen models yield nearly identical MAE values with an MAE of 0.664 (+0.029)
and 0.665 (+0.053), respectively, confirming that the differences between these biologically inspired
formulations are minor in this dataset. The Grevsen Bias variant performs notably worse with an MAE
of 0.854 (+0.075), and this underperformance is statistically significant compared to all other models
except the LSTM, indicating that the added bias term introduces unnecessary flexibility that does not
correspond to meaningful biological variation.

The LSTM model, designed to capture temporal dependencies, shows the highest variability and
one of the poorest mean performances with an MAE 0.803 (+0.093). This result is consistent with
the observations from the Tanashi dataset, where sequence-based learning did not improve accuracy.
The relatively weak performance and large fold-level variance indicate that sequential dependencies
across measurement days do not enhance predictive power and that the added complexity of recurrent
modeling introduces noise rather than useful information.

Overall, the ranking of the models reveals both consistencies and differences compared to the
preliminary study. The MLP again emerges as the best-performing model in both datasets, confirming
its robustness and ability to generalize across experimental conditions. Likewise, the Grevsen Bias
model consistently ranks as the worst-performing approach, showing that the addition of a free bias
term systematically reduces predictive reliability.
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However, some differences in the intermediate rankings are observed between the two studies.
These deviations are small and likely result from measurement uncertainty in the field-based data rather
than from true model performance differences, although cultivar variation may also play a minor role.
As such, these shifts are of limited practical importance, and the focus lies primarily on the consistent
outliers: the MLP, which performs best in both datasets, and the Grevsen Bias model, which remains
the least effective across studies.
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Figure 6.3: An example broccoli sample with predicted values from all models. Most models follow the trend of the example
broccoli growth well.

6.4. Thermal Time vs. Cumulative Temperature

This section addresses Research Question 3 by empirically comparing the two temperature represen-
tations. As in the preliminary study, this experiment compared the predictive performance of models
trained using cumulative temperature against those using thermal time as the primary air temperature
feature. Both configurations were applied to the same eight growth models, and performance was
evaluated through ten-fold cross-validation. The MAE per fold was calculated for each model and each
configuration. The fold-level results were then compared using paired two-sided t-tests to determine
whether the differences in prediction error between the cumulative temperature and thermal time rep-
resentations were statistically significant. The resulting distributions of the cross-validated MAE scores
are presented in Figure 6.4.

Across the tested models, the results align with the findings from the Tanashi dataset. The mod-
els based only on temperature inputs, such as the baseline, quadratic, logistic, and Grevsen models,
all perform significantly better when thermal time is used instead of cumulative temperature. This con-
firms that integrating biologically informed temperature thresholds (T} ,se and Tp,ax) €nhances predictive
accuracy by excluding temperature extremes that do not contribute to physiological development. In
contrast, models that incorporate additional explanatory variables show a less pronounced difference
between the two configurations.

In contrast, models that incorporate additional explanatory variables show a less pronounced dif-
ference between the two configurations. Specifically, all thermal time models achieved statistically
significant improvements over their cumulative temperature counterparts, except for the MLP, LSTM,
and logistic2D models. The absence of a significant difference for the MLP and LSTM models is consis-
tent with the preliminary study and can be attributed to their multi-variable nature. Both models utilize
additional environmental features beyond temperature, such as humidity, radiation, and soil moisture,
which collectively reduce the relative influence of the temporal feature.

In this study, the logistic2D model also showed no statistically significant difference between the
two configurations. A plausible explanation for this deviation from the Tanashi results is the improved
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quality of the soil moisture data in the Verdonk experiment. Whereas the Tanashi dataset relied on
API-derived moisture estimates, the Verdonk dataset includes direct sensor measurements from the
field, providing more accurate and representative soil moisture information. As a result, the inclusion
of soil moisture sensor data contains enough information for the relative improvement of thermal time
over cumulative temperature to be reduced such that there is no statistical significance anymore. This
is supported by the comparison with the 1D logistic model, which does show a statistically significant
difference between the two temperature representations.

In summary, the results demonstrate that thermal time is a more biologically grounded and effective
temporal feature for modeling broccoli head growth. Models that rely only on temperature-based inputs,
such as the baseline, quadratic, logistic, and Grevsen models, show statistically significant improve-
ments when thermal time is used instead of cumulative temperature. This confirms that incorporating
biologically meaningful thresholds filter out temperature extremes, leading to more accurate predictions
of developmental progress.
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Figure 6.4: Cross-validated MAE for models using cumulative temperature vs. thermal time. Each subplot shows the fold-level
MAE, mean with 95% confidence interval, and significance annotation. Significance levels are denoted by conventional asterisks:
*for p < 0.05, **for p < 0.01, and ***for p < 0.001.

6.5. Feature Importance

This section contributes to Research Question 2 by evaluating which environmental parameters most
strongly influence predictive performance. To investigate which environmental factors most strongly
influence the predictions of the MLP model, permutation feature importance analysis was performed.
This approach quantifies the contribution of each input variable by measuring the increase in model
prediction error after randomly permuting that feature. Features that cause a larger rise in prediction
error when permuted are considered more influential in determining broccoli head diameter. Each
feature was permuted 20 times to account for random variation, and the mean increase in MAE with
its 95% confidence intervals was computed.

The results of the analysis are shown in Figure 6.5. As expected, Thermal Time remains the most
influential variable, with an importance score of 3.27 + 0.05. This finding aligns with the outcome
from the preliminary study and confirms that temperature-based accumulation within biologically active
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Figure 6.5: Permutation feature importance results for the MLP model trained on the Verdonk dataset. Bars show the mean
increase in MAE after feature permutation, with 95% confidence intervals across 20 repetitions as error bars.

thresholds is the dominant driver of broccoli head development.

The second most important variable is the VPD, with a considerably lower importance score of
1.02 + 0.02. This suggests that humidity-related stress, expressed through VPD, plays a notable but
secondary role in growth. It reflects the influence of atmospheric moisture demand on transpiration
and, consequently, on the plant’s ability to sustain photosynthetic activity under varying field humidity
conditions.

Among soil-related variables, the volumetric water content at both 15 cm (0.51 + 0.01) and 30 cm
(0.52 + 0.02) depths ranks next in importance. These features indicate that soil moisture availability
contributes to predictive accuracy, likely by capturing variations in water supply that influence the growth
rate and stress tolerance of the plants. The similar magnitude of the two depths suggests that both
shallow and deeper root-zone moisture are relevant to the Ironman cultivar’s water uptake.

All remaining environmental variables, including air temperature, soil temperature, humidity, wind
speed, radiation, and precipitation, show only a negligible influence on the model’s predictions. This
indicates that within the relatively uniform and moderate weather conditions of the Verdonk field, these
factors contribute little additional information to the prediction of head diameter.

6.6. Validation of T},;sc and T',ax

To determine the optimal values of Tase and Tpax in the thermal time calculation, a grid search was
performed across a predefined range of possible thresholds. The base temperature Ty s, Was varied
from 0°C to 10°C in increments of 1°C. Similarly, the maximum temperature T, Was varied from 20°C
to 32°C in increments of 1°C. For each combination of these parameters, daily minimum and maximum
temperatures were clipped to the corresponding thresholds, and the resulting growing degree days
were calculated. Thermal time was then computed for each plant over the growing period. To correct
for the unobserved early growth phase before the first measurement, the offset method described in
Section 3.2.3 was applied, ensuring consistent temporal alignment of all growth trajectories.

For each pair of Tpase and Tax, the four growth models that use only thermal time as an explanatory
variable (baseline, quadratic, logistic, and Grevsen) were fitted. A 10-fold cross-validation was applied,
and the MAE was calculated for each model across folds. The overall performance for each parameter
combination was determined as the mean MAE averaged across all four models. The pair of T4 and
Tmax Values with the lowest mean MAE was selected as the optimal parameter combination.

The results of the grid search identified an optimal Ty, Of 3°C and a T,,ox Of 23°C. These val-
ues yielded the lowest average MAE across the four evaluated models, indicating that this temperature
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range best represents the biologically active window for broccoli growth within the observed field condi-
tions. These findings are consistent with previous studies on temperature-dependent growth of broccoli
and related Brassica species, where reported Tp,se Values for broccoli typically range between 0°C and
7°C [40, 15, 10, 12]. Likewise, the found T,ax of 23°C lies close to the reported value of 26°C in the
study by Dufault [12]. The identified thresholds, therefore, fall well within the range observed in existing
literature, supporting the plausibility of the obtained values.

6.7. Interpretations and Limitations

This section interprets the results of the field-based study in the context of the research goals and
examines the limitations that affect their validity and generalisability. The discussion connects model
performance to practical applicability, assesses how dataset size and environmental variability influence
the findings, and reflects on methodological constraints in both data acquisition and modeling.

6.7.1. Predictive Accuracy

Before focusing on the MLP specifically, it is important to briefly position its performance relative to
the other evaluated models. Parametric approaches, including the baseline linear, quadratic, logistic,
and Grevsen model, captured the global growth trend but showed larger errors and reduced flexibility
in modeling variability and environmental interactions. The LSTM model did not outperform the static
MLP, likely due to the limited importance of previous days with respect to the growth rate of broccoli.
Across both studies, the MLP achieved the lowest mean error, justifying the focus on this model in the
following discussion.

The MLP model achieved an MAE of 0.58 cm on the Verdonk dataset, with a standard deviation
of only 0.04 cm across 10 cross-validation folds. This low variability demonstrates that the model
generalizes consistently across plants and measurement subsets, indicating strong robustness under
field conditions.

To evaluate the practical meaning of this error, it can be related to the average daily head diameter
increase. In the Verdonk field data, broccoli heads expanded by approximately 1.06 cm per day, while in
the external Tanashi dataset, this growth rate averaged 0.68 cm per day. The residual error of 0.58 cm,
therefore, corresponds to around half a day of growth under Verdonk conditions and around one day of
growth under the slower Tanashi conditions. This prediction error is small enough for harvest planning
applications, where harvest decisions are typically made on a multi-day basis rather than at the level of
individual hours. In the Verdonk study, for example, three harvest events occurred within a seven-day
window, indicating that the model’s average error of less than one day of growth is sufficiently precise
to support reliable harvest timing estimation.

The MLP model achieved an MAE of 0.58 cm on the field-based dataset, which is very accurate
when considered in the context of commercial broccoli production. Harvest-ready broccoli typically
exceeds a head diameter of 12 cm, implying that the residual model error represents less than five
percent of the final size. From a practical perspective, such an error margin is acceptable for field-level
decision-making tasks, including harvest scheduling and yield estimation, where predictions are aggre-
gated across large plant populations. The model closely follows the overall growth trajectory, which is
particularly relevant for population-scale forecasting. Nevertheless, small systematic offsets between
predicted and measured diameters were observed for individual plants. These deviations likely re-
sult from variations in individual plant characteristics, such as genetic variation or slight measurement
noise.

Additionally, prediction accuracy depends not only on the trained model itself but also on the accu-
racy of its input variables. Environmental parameters such as air temperature, humidity, soil moisture,
and solar radiation are subject to measurement noise and forecast uncertainty, which directly propa-
gate into the predictions. Short-term forecasts, specifically temperature, which is the most important
input, typically maintain relatively high input accuracy and therefore support reliable growth predictions.
However, as predictions are extended to more days ahead, forecast errors in weather variables accu-
mulate and increase total prediction uncertainty, gradually reducing the reliability of diameter estimates.
In this work, such uncertainty propagation was not explicitly modeled, but is possible using stochastic
modeling.

The measurement uncertainty in the diameter estimation process remains a contributing factor to
the observed prediction error. The standard deviation of the median of the upper 50th percentile mea-
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surements, from which the final diameter values were derived, was 0.14 cm, corresponding to about
24% of the MLP’s overall MAE. This indicates that while measurement noise accounts for only part of
the residual error, it still contributes meaningfully to the total uncertainty and helps explain the remaining
variability that the model cannot capture.

Moreover, the estimation pipeline assumes that broccoli heads can be approximated as perfectly
circular objects. In reality, head shapes deviate from this idealized geometry, introducing an approx-
imation error that is not reducible through improved modeling alone. This further highlights that the
reported MAE reflects a combined effect of modeling limitations, sensor noise, and geometric assump-
tions.

An important practical consideration is that harvesting decisions are based on head weight rather
than diameter, and the economic value of broccoli does not increase linearly with size. Heads below
approximately 500 g are not suitable for the fresh market and therefore represent no commercial value,
while heads that grow beyond roughly 700 g imply a loss of usable product, as the excess mass is eco-
nomically wasted. In practice, the optimal harvest target lies just above the 500 g threshold, maximizing
marketable yield while minimizing overgrowth. As such, an underestimate may delay harvest and push
heads toward the overgrowth region, while an overestimate may trigger harvest too early, resulting in
sub-threshold heads that cannot be sold. As a result, the risk of prediction errors is most pronounced
for plants close to the 500 g threshold, where the margin for error is minimal.

Overall, these findings demonstrate that the MLP provides accurate and consistent growth predic-
tions under field conditions. Its low cross-validation variability, small relative error compared to daily
growth, and limited influence of measurement noise collectively indicate that the model performs close
to the practical limit of attainable accuracy for this dataset. Therefore, the MLP can be considered
sufficiently reliable for operational use in harvest scheduling and yield forecasting, offering a robust
foundation for data-driven decision support in precision broccoli production.

6.7.2. Model Selection and Practical Applicability

Although the MLP model demonstrates the highest predictive accuracy among all tested approaches, its
implementation requires the integration of multiple environmental variables, which are obtained through
an API connection to external meteorological databases and a climate pole. This dependency on
multiple data sources introduces potential challenges in operational settings. In particular, APl-based
access to high-frequency weather data may involve subscription costs. Secondly, a climate pole or
similar sensor should be bought to provide accurate measurements of soil moisture. Therefore, while
the MLP model is the most accurate, its practical deployment must consider both data accessibility and
economic feasibility.

The primary variable that benefits from direct local sensing is soil moisture, which is not reliably
captured by regional meteorological services and shows field-specific variability. However, even for
soil moisture, measurements from nearby sensor installations or representative field probes may pro-
vide sufficiently accurate estimates for predictive purposes, particularly when deploying models over
larger production areas. As such, the need for an on-site climate pole must be weighed against cost
considerations and the required level of prediction accuracy.

For theoretical cases where data connections are constrained, alternative models provide suitable
compromises between complexity and accuracy. The two-dimensional logistic model represents a
strong secondary option. It requires only two environmental inputs, namely thermal time and soil mois-
ture, and still achieves reasonable predictive accuracy. Because of the reduction of input variables
and the known formula, the model is biologically more interpretable, and its parameters make it more
transparent.

In minimal sensor setups where only temperature information is available, the quadratic model
provides a practical fallback solution. Although it lacks the complex modeling capacity of the MLP
and the environmental sensitivity of the logistic2D model, its simplicity enables robust predictions with
minimal data requirements.

In this context, the choice between models depends on the trade-off between available sensor
infrastructure and the desired prediction accuracy. For precision agriculture applications where real-
time weather data can be reliably accessed, the MLP remains the preferred model. In contrast, for
low-cost or small-scale operations, the logistic2D or quadratic model may be more appropriate.
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6.7.3. Generalization and Data Limitations

The conclusions drawn from this study are based on a dataset representing a single cultivar, grown
within one specific field under relatively uniform weather conditions. While this controlled setup enabled
the systematic evaluation of model behavior and reduced confounding factors, it also limits the gener-
alizability of the findings. The environmental variability during the measurement period was modest,
with only small fluctuations in temperature, humidity, and soil moisture. As a result, the models were
primarily exposed to growth conditions that remained close to the optimal range for broccoli cultivation.
Under such stable circumstances, differences between models may appear less pronounced, since
extreme environmental effects, such as heat stress or droughts, were largely absent.

This limited variability implies that the models were validated within a narrow climatic window, and
their robustness under more diverse or challenging conditions remains uncertain. Diameter sizes
may behave differently when extended to broader temperature ranges or different soil moisture lev-
els. Therefore, while the MLP model achieved the lowest prediction error within this dataset, its better
performance should be understood in the context of the relatively stable conditions of this study, rather
than as evidence of universal applicability across all growing environments. Some confidence in this
finding can nevertheless be derived from the fact that the same conclusion was reached in the prelim-
inary study, which was conducted under different environmental and geographical conditions and also
identified the MLP as the best-performing model.






Conclusions

This study set out to investigate how predictive models based on field measurements can be used to
describe broccoli growth under Dutch growing conditions. This was addressed through four research
questions focusing on (1) the construction of plant-level growth trajectories from field video, (2) the
influence of environmental factors on head development, (3) the representation of temperature through
cumulative temperature versus thermal time, and (4) the comparative performance of different modeling
approaches. The conclusions synthesise the findings from both the preliminary study and the Verdonk
field study.

7.1. Field-Based Data Processing Pipeline

The first research question describes how field-based video recordings can be converted into plant-level
growth curves that are suitable for modeling. This process involves several consecutive steps, starting
with automated head detection and ending with the integration of environmental data. A YOLOv8n-
based model, retrained on field images from the Verdonk dataset, accurately detected broccoli heads
across developmental stages, achieving an F1-score of 0.958. To ensure consistent plant identification
across frames and measurement days, a novel slot-based ID system was developed using camera
motion estimation, effectively linking detections to fixed plant positions.

Detected heads were then tracked over time to form continuous trajectories, corrected for missed
links and drift using velocity-based repair and slot boundary refinement. Each detection was used to
estimate physical head diameter based on RGB-D data, corrected for depth curvature, and filtered
to remove outliers. This reduced measurement variability and produced stable diameter estimates.
A series of filtering steps ensured data quality by removing implausible decreases in diameter and
abnormal growth slopes.

Finally, in-field weather data from a climate pole were combined with external meteorological data
retrieved from the Open-Meteo API. These were aggregated into daily values and used to calculate
derived variables such as vapor pressure deficit and thermal time. The resulting dataset provides
accurate, temporally aligned growth trajectories that form the foundation for the predictive modeling of
broccoli development.

7.2. Environmental Parameters

The second research question examined which environmental parameters most strongly influence
broccoli growth dynamics. This was addressed through permutation feature importance analysis, con-
ducted for both the preliminary study and the Verdonk field dataset.

Across both datasets, Thermal Time emerged as by far the most influential predictor. In the pre-
liminary study, it achieved an importance score of 3.69, while a similarly dominant contribution was
observed in the Verdonk study at 3.27. This consistent result confirms that accumulated tempera-
ture within biologically active thresholds is the primary driver of broccoli head development, and that
temperature-based progression governs growth more strongly than any other measured variable.

In the preliminary study, all remaining environmental features showed only marginal importance.
Maximum temperature, shallow soil moisture, and mean humidity contributed weakly, with importance
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scores between 0.28 and 0.35, and all other factors, including soil temperature, radiation, and precipi-
tation, were negligible. This indicated that while short-term variations in water balance or atmospheric
stress may influence growth locally, these effects were not as pronounced as temperature-driven vari-
ables.

The Verdonk field study revealed a more differentiated pattern. While Thermal Time remained
dominant, VPD emerged as the second most influential feature with an importance of 1.02, indicating
a measurable role of atmospheric moisture demand in regulating transpiration and stomatal behavior.
In addition, soil moisture at both 15 cm and 30 cm depths contributed moderately to predictive per-
formance (0.51 and 0.52, respectively), suggesting that water availability across the root zone affects
growth rate and stress tolerance of the Ironman cultivar under field conditions. The similar importance
values at both depths imply the relevance of both surface and deeper soil water reserves for plant
uptake.

As in the preliminary study, all remaining environmental variables showed negligible importance
in the Verdonk analysis. Their limited contribution reflects the relatively stable and moderate envi-
ronmental conditions during the single observed growing season, which restricted the range of stress
responses that could be captured.

Taken together, the feature importance results from both datasets demonstrate that broccoli growth
is mainly controlled by temperature accumulation, as represented by Thermal Time. Secondary influ-
ences from humidity-related stress and soil moisture contribute only slightly to the growth variation.
Other environmental parameters play only a minor role in explaining growth dynamics within the con-
ditions examined in this thesis.

7.3. Thermal Time vs. Cumulative Temperature

The third research question compared cumulative temperature and thermal time to determine which
measure better describes the biological growth process. Both approaches were evaluated using iden-
tical model configurations, and their prediction errors were compared through cross-validation. The
results show that models based solely on temperature, such as the baseline, quadratic, logistic, and
Grevsen models, significantly performed better when using thermal time. This improvement confirms
that applying biologically meaningful temperature thresholds enhances predictive accuracy by exclud-
ing non-contributory temperature extremes.

For models that also incorporated additional environmental variables, such as the MLP, LSTM, and
logistic2D models, the difference between the two temperature representations was not statistically
significant. This reduced effect can be explained by the inclusion of other weather variables like hu-
midity, radiation, and soil moisture, which already capture part of the environmental variability related
to growth. In particular, the logistic2D model’s improvement is attributed to the higher accuracy of the
soil moisture sensor data in the Verdonk field when compared to the preliminary study, which uses API
data for this variable and is therefore less accurate.

In addition, the optimal temperature thresholds for the thermal time calculation were validated
through a grid search across a range of possible values for Tyse and Tax. The best-performing com-
bination was found at Tpase = 3°C and Tax = 23°C, representing the biologically active window for
broccoli growth under the measured field conditions. These values align with previously reported tem-
perature ranges for broccoli cultivars, confirming that the chosen thresholds are physiologically realistic
and well-suited for modeling growth within temperate climates.

In summary, thermal time provides a more biologically grounded and effective temporal variable
for modeling broccoli growth. It improves accuracy for models driven mainly by temperature inputs,
while its advantage becomes less pronounced in multi-variable models where additional environmental
factors already capture much of the relevant physiological variation.

7.4. Model Comparison

The fourth research question focused on the ability of different models to represent the growth dynamics
of broccoli. To evaluate this, eight models were compared using 10-fold cross-validation on the field-
based dataset. The results show clear differences in predictive accuracy, with the MLP achieving the
lowest mean absolute error of 0.583 and demonstrating high robustness across folds. Its performance
can be attributed to its ability to capture complex non-linear relationships between multiple environ-
mental variables, relying only on the current weather state without requiring temporal sequences. This
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outcome closely mirrors the findings from the preliminary study, where the MLP likewise outperformed
parametric growth curves, indicating that its flexibility generalizes beyond the external dataset to real
field conditions.

In contrast, the LSTM model, which uses the same environmental variables as the MLP but addition-
ally incorporates historical weather information, performed worse. This behavior was also observed in
the preliminary study, where the inclusion of sequential information did not lead to improved predictive
accuracy. Together, these results indicate that temporal dependencies between consecutive measure-
ment days do not enhance growth prediction for broccoli under the studied conditions. The current
environmental state, combined with a cumulative temperature representation, appears sufficient to de-
scribe plant development, and adding historical observations introduces additional noise rather than
valuable temporal structure.

Overall, the consistent ranking of model performance across both the preliminary and the Verdonk
field studies demonstrates that the MLP model provides the most accurate and robust representation of
broccoli growth dynamics. This agreement between studies strengthens confidence in the validity of the
modeling approach and confirms that temporal modeling offers no advantage in this application, while
growth can be effectively predicted using instantaneous environmental inputs alongside a cumulative-
based temperature feature.

7.5. Implications

The outcomes of this thesis have several direct implications for the practical deployment of predictive
monitoring systems within precision agriculture. First, the performance of thermal time as the primary
growth driver, confirmed in both the preliminary study and the Verdonk field study, implies that reliable
growth prediction can be achieved with relatively limited sensor inputs. Accurate air temperature data
alone already enables baseline performance, while the inclusion of a small set of additional variables,
particularly vapor pressure deficit and soil moisture, further improves predictive accuracy. This indicates
that fully instrumented, high-cost infrastructures are not a strict requirement for operational application,
and that many farms could make use of predictive modeling through publicly available meteorological
data complemented by a small number of low-cost field sensors.

Second, the demonstrated performance of the MLP model over both parametric and temporal neu-
ral models implies that practical systems do not need to rely on complex sequence-based architectures
or high-frequency historical data streams. Growth predictions can be generated using daily environ-
mental data combined with cumulative temperature metrics. This substantially lowers computational
requirements and eases system integration, making it feasible to run prediction pipelines on standard
agricultural data platforms without specialized hardware or advanced machine-learning infrastructure.

Third, the ability to extract stable, plant-level diameter trajectories from field video demonstrates
that non-destructive crop monitoring can realistically support selective harvesting strategies. Accurate
head-size predictions enable growers to move beyond field-wide cutting approaches and toward more
targeted harvest scheduling, either by identifying sections of fields that are ready for harvest or by
enabling size-based selection in mechanized harvesting systems. This has the potential to reduce
premature harvesting losses and decrease the volume of produce rejected for being undersized or
overmature.

Finally, the low dependence of the best-performing models on dense sensor networks and temporal
modeling increases the scalability of such systems. Predictive services could be extended to multiple
fields or farms using shared regional weather data sources while maintaining acceptable accuracy. This
makes the approach accessible not only to large commercial producers but also to smaller operations,
supporting broader adoption of data-driven decision support tools across the sector.

Together, these implications show that field-based predictive growth modeling is not only method-
ologically feasible but also practically deployable. With limited additional investment in sensing and
data integration, growers can use predictive models to support harvest planning, mechanized selec-
tion, and general crop monitoring, thereby improving both efficiency and marketable yield.






Future Work

While this research demonstrates that field-based predictive modeling can provide accurate estimates
of broccoli head growth, several directions remain to further enhance both the precision and appli-
cability of such models in practical agricultural settings. The following subsections discuss different
suggestions for future work concerning data acquisition, computer vision, and optimization.

8.1. Improving Diameter Estimation through Segmentation

The current method for diameter estimation relies on the depth measured at the center of the broccoli
crown. This approach introduces a systematic underestimation due to the curvature of the broccoli
head, where the true diameter corresponds to a depth at the contour rather than at the center. A
segmentation-based method would mitigate this error by explicitly extracting the head boundary and
determining the diameter along the contour points using the depth map. Such an approach would also
allow partial head reconstruction in cases of occlusion, where the full crown is not visible, by estimating
the radius from a visible subset of the head.

A similar approach by Blok et al. is to use a learned model that directly extracts object size from
depth data by first segmenting the crop in the RGB image with a segmentation network and then fitting
a circle to the resulting mask, converting the pixel radius to a diameter through depth values from the
depth image [4]. This method, demonstrated for broccoli heads, shows that combining RGB segmenta-
tion with depth-based geometric fitting can provide accurate diameter estimates even under substantial
occlusion. Using these methods, we can get a more reliable estimation of the broccoli head diameter
when occlusion by, for example, leaves takes place.

8.2. Time Interval of Field Measurements

The measurement period of the Verdonk field experiment covered 14 days from the beginning of head
initiation to harvest, with only seven distinct measurement days. While this was considered sufficient for
constructing growth trajectories, a higher measurement interval would enable a more detailed charac-
terization of growth dynamics and improve model calibration. Increasing the number of measurement
days would better capture variations and allow for finer validation of model predictions. However, this
would also increase the operational workload, as each measurement day requires the presence of a
human operator in the field. Future research could therefore explore the integration of automated or
semi-autonomous data collection systems to increase frequency without additional manual labor.

8.3. Autonomous Drones

An ideal precision agriculture workflow would replace human camera operators with automated image-
collection platforms capable of operating independently across production fields, identifying points of
interest, and enabling continuous large-scale monitoring while reducing labor demands. Such data
acquisition does not necessarily need to rely exclusively on drones. Alternative approaches include
cameras mounted on standard agricultural machinery performing routine field operations, as well as
satellite-based Earth observation systems that provide regular, large-area coverage. Each of these
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platforms can, in principle, support the generation of visual crop monitoring data required for growth
modeling. However, it would require high-definition imagery, which in satellite observations might not
be operational and economically feasible.

Drones represent one particularly flexible option within this broader monitoring landscape, as they
can offer high spatial resolution and targeted data collection. Stakeholders in the agricultural sector
already expect increasing levels of autonomous aerial sensing to become necessary for efficient and
sustainable production in the near future [31]. In addition, an existing drone-based pipeline has been
developed by Wang et al. to measure the head diameters of broccoli for entire fields [37], demonstrating
the technical feasibility of this approach.

However, the analysis in [31] shows that the Dutch regulations do not yet permit this level of auton-
omy. Fully autonomous missions fall within the Specific category, requiring operator training, registra-
tion, an operational manual, and a Specific Operations Risk Assessment (SORA). These requirements
are manageable, but the critical barrier is the prohibition of Beyond Visual Line of Sight (BLOS) oper-
ations without direct pilot oversight. As a result, current agricultural drones remain automated rather
than autonomous. They follow pre-programmed paths while a pilot keeps them within visual range,
which makes the replacement of human operators still economically and operationally unfeasible.

There is, however, some encouraging progress. Recent developments show that at least one op-
erator in the Netherlands has received authorization to fly multiple agricultural drones simultaneously
within visual range as part of a broader precision-agriculture innovation initiative [7]. This suggests
that regulation and industry are beginning to adapt, which could open a pathway toward more scalable
image-based crop monitoring systems in the near future. If regulatory evolution continues and technical
safeguards improve, the economic feasibility of automated or semi-automated aerial monitoring may
become viable for a broader range of farms.

8.4. Expanding to Multiple Fields and Weather Conditions

The current study was limited to a single field and growth cycle, resulting in homogeneous environmen-
tal conditions. Within the Verdonk dataset, the observed weather ranges were narrow: daily mean air
temperatures varied approximately between 11.7 - 24.4 °C, vapor pressure deficit ranged from 0.36—
0.54 kPa, and volumetric soil moisture fluctuated between 23.3 - 39.7% at 15 cm and 26.4 - 38.0%
at 30 cm depth. Mean solar radiation remained within 226.4 - 305.4 W/m?2, and no prolonged periods
of extreme heat, drought stress, or excessive humidity were observed. These conditions are repre-
sentative of a typical Dutch summer growing season but do not capture the full spectrum of weather
extremes reported in earlier literature. As a result, the predictive models developed in this thesis are
effectively validated only within this limited environmental domain.

To improve generalization and capture a broader range of weather effects, future studies should
include measurements from multiple fields, ideally representing different geographic locations and sea-
sonal conditions. Measuring the same cultivar in different climates would help improve how the models
capture environmental effects and could show how it copes with non-ideal conditions.

With multiple fields, additional analyses would become possible. Cross-field validation could be
used to test how well a model trained under one set of conditions performs in another, providing insight
into the generalizability of both mechanistic and data-driven models. Moreover, the broader variability
in weather would allow a more detailed sensitivity analysis of environmental factors, revealing how
variables such as vapor pressure deficit and soil moisture interact under stress conditions. Finally,
fitting models across several environments would make it possible to evaluate whether parameters
such as Tpuse and Tax Vary between regions or seasons, leading to a more robust and transferable
formulation of thermal time.

8.5. Measurement Setup

Future improvements to the field measurement setup should focus on enhancing both the reliability of
plant detection and the spatial accuracy of the recorded data. Two key aspects that warrant attention
are illumination control and spatial referencing.

The detection model used in this study occasionally struggled to identify broccoli heads under chal-
lenging lighting conditions, particularly during the early growth stages when the developing head re-
mains partially hidden since it sits low in the plant and surrounding leaves block sunlight. In such cases,
the center of the plant is often shaded, resulting in insufficient contrast between the head and the sur-
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rounding foliage. These illumination issues led to missed or uncertain detections in several recordings.
Adding an external light source near the cameras would mitigate this limitation by providing a more
stable and uniform lighting condition across all measurement sessions. Such illumination would allow
the detection model to more reliably identify small or occluded heads during head initiation, thereby
improving the consistency and completeness of the diameter dataset.

In addition to improving lighting conditions, the spatial accuracy of plant tracking can be enhanced
through the integration of a GPS module. In the current setup, the distance travelled by the operator
is estimated using the ECC algorithm, as described in Section 5.4. Although this method provides an
approximate measure of displacement, it is susceptible to cumulative error and drift. The inclusion of
a GPS unit would provide a reduction in the uncertainty of the estimated camera motion and enabling
more reliable assignment of plant identities across measurement days.
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