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Abstract—This paper presents a new instance in a series of 
discrete proof-of-concept implementations of comprehensively 
intelligent built-environments based on Design-to-Robotic-
Production and -Operation (D2RP&O) principles developed at 
Delft University of Technology (TUD). With respect to D2RP, 
the featured implementation presents a customized design-to-
production framework informed by optimization strategies 
based on point clouds. With respect to D2RO, said 
implementation builds on a previously developed highly 
heterogeneous, partially meshed, self-healing, and Machine 
Learning (ML) enabled Wireless Sensor and Actuator Network 
(WSAN). In this instance, a computer vision mechanism based 
on open-source Deep Learning (DL) / Convolutional Neural 
Networks (CNNs) for object-recognition is added to the 
inherited ecosystem. This mechanism is integrated into the 
system’s Fall-Detection and -Intervention System in order to 
enable decentralized detection of three types of events and to 
instantiate corresponding interventions. The first type pertains 
to human-centered activities / accidents, where cellular- and 
internet-based intervention notifications are generated in 
response. The second pertains to object-centered events that 
require the physical intervention of an automated robotic 
agent. Finally, the third pertains to object-centered events that 
elicit visual / aural notification cues for human feedback. These 
features, in conjunction with their enabling architectures, are 
intended as essential components in the on-going development 
of highly sophisticated alternatives to existing Ambient 
Intelligence (AmI) solutions.   

Keywords—Design-to-Robotic-Production & -Operation; 
Wireless Sensor and Actuator Network; Ambient Intelligence; 
Computer Vision; Object-Recognition 

I.  INTRODUCTION

Ambient Intelligence (AmI) [1] promotes a vision of the 
future dwelling space as a digital living room, where 
automated and intuitive embedded-technologies enhance the 
inhabitants’ experience and comfort. Since its conception, 
discussions of AmI have centered around ICTs, rendering 
considerations pertaining to the built-environment as 
incidental—an overview of the current AmI literature 
confirms this assertion, e.g., [2, 3]. The implementation of 
sophisticated ICT systems in static built-environments 
unnecessarily and inadvisably subjects new technologies and 
methods to the limitations of outdated modes of building and 
dwelling. This is tantamount to methodological retrofitting, 

which hinders the potential of such solutions and the 
effectiveness of their services. In order to avoid this 
unintended consequence, the sophistication of built-
environments must be commensurate and complementary to 
that of deployed technologies. In ascertaining so, a more 
holistic intelligent built-environment emerges, one capable 
of intuitive, enriching, and effective interactions as well as 
interconnections between users and their ICTs-integrated 
built-environments [4]. At present, established research 
groups and/or projects are developing expressions of such 
environments (or variations thereof) with promising 
results—e.g., the Aware Home Research Initiative [5]; The 
Center for Advanced Studies in Adaptive Systems [6]; and 
PlaceLab [7], etc. 

In this paper, Design-to-Robotic-Production and -
Operation (D2RP&O) [8, 9] principles inform the 
development of a discrete and sophisticated proof-of-concept 
intelligent built-environment. Architectural considerations 
with respect to form, fabrication, and integration of 
materially heterogeneous physical components are informed 
by D2RP, while technical and technological considerations 
pertaining to computational / robotic services deployed in the 
resulting environment are informed by D2RO. Furthermore, 
decisions adopted in the physical domain are considered in 
the computational / robotic and vice versa, resulting in a 
more deliberate design strategy where neither form nor 
services are incidental with respect to one another. More 
specifically, in the present implementation, and with respect 
to D2RP (Sections II.B and III.A), a real-scale fragment of a 
conceptual student housing unit is fabricated as a multi-
layered hybrid component consisting of concrete and 
Expanded Polystyrene (EPS). Its overall form, distribution of 
cavities, and densities of porosities are determined by 
structural optimization, Interior Environmental Quality 
(IEQ) [10] considerations, and the integration of anticipated 
ICTs. With respect to D2RO (Sections II.A, II.C, III.B), this 
implementation expands on the System Architecture of a 
previously developed prototype [11] to include object-
recognition via Deep Learning (DL) / Convolutional Neural 
Networks (CNNs). This vision mechanism is integrated in an 
inherited Fall-Detection and -Intervention System (FADIS) 
[12] in order to identify three human-centered as well as
object-centered events and to instantiate automated
interventions accordingly for the promotion of well-being.
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II. CONCEPT AND APPROACH 

A. Overview of inherited heterogeneous, scalable, self-
healing, and partially meshed System Architecture 

The present implementation inherits a previously 
developed WSAN, whose system architecture consists of 
four subsystems briefly summarized as follows (for more 
technical descriptions, see [11]):  

1) Dynamically Clustering Local nodes 
A variety of Microcontroller Units (MCUs) and 

development platforms (e.g., Raspberri Pi 3 (RPi3) and Zero 
W (RPiZW)) serve as nodes dependent on a local structured 
environment. More powerful nodes may be clustered 
dynamically to yield a single node with higher computational 
power depending on load-requirements. All nodes exchange 
data in a combination of wired (e.g., Ethernet, USB, Serial) 
and wireless (WiFi, BLE, and ZigBee) protocols, depending 
on latency and frequency requirements.  

2) Wearable devices  
A set of three LightBlue Beans™ (LBBs) conform the 

location-dependent wearables while a Fitbit® Charge HR™ 
activity tracker represents the location-independent wearable. 
The LBBs detect movement in the upper-body, upper- and 
lower-extremities and advises the system to listen for Open 
Sound Control (OSC) packets corresponding to 
accelerometer data sent from a smartphone for Human 
Activity Recognition (HAR). The activity tracker enables a 
constant feed of physiological data while the user is outside 
of the structured environment.  

3) Ad hoc Support devices  
In the last five years, smartphones have become 

convenient and ubiquitous tools for HAR via Machine 
Learning (ML) [13, 14], which in conjunction with their 
battery life and rechargeability render them a preferred 
means of accelerometer-data gathering in intelligent built-
environment implementations.  

4) Remote / Cloud Services  
Six cloud-based services conform this subsystem: (I) 

external ML mechanism via MATLAB® (in case the local 
ML mechanism fails); (II) data exchange with Fitbit®’s 
servers via its API [15]; (III) cloud data-storage and -plotting 
via Plotly®’s API [16]; (IV) Amazon®’s Alexa Voice Service 
[17]; (V) automated SMS notifications, both via Twilio®’s 
API [18] as well as via a T35 GSM module; and (VI) 
automated email notifications via Gmail©’s API [19]. 

B. An Informative Framework for Multi-Layering 
Materiality Design-to-Robotic-Production (D2RP) 

For the present implementation, an integrated single-
occupant student housing unit is conceptualized. This unit is 
formally defined by optimization strategies based on point-
clouds, where each point bears both physical and non-
physical information about the envisioned space. Various 
sets of points provide different types of information—i.e., 
sets corresponding to spatial definition, structure analysis, 
heating and cooling, lighting requirements, and the 
integration of ICT devices (see Fig. 1 and Fig. 2).  

 
Fig. 1. Schematic design of student housing by M. Moharram, H. Hesham, 
and M. Elmeligy [20]. 

The real-scale fragment representative of the conceptual 
unit is developed in three main steps. First, structural loads 
and supports locations are determined based on the 
configuration of the initial form. By using the resulting 
geometry and the identified locations of supports and loads, a 
finite element model is created and the its corresponding 
stress lines extracted. These lines are then used to generate 
the structural elements inside the building component. 
Second, required lighting is determined based on activities 
and their corresponding minimum / maximum thresholds of 
illumination during a typical 24-hour period. This informs 
the shape and the location of porosities and cavities in the 
component, enabling the integration of LED-based 
illumination systems where necessary. Third, heating and 
cooling requirements—as identified by Comité Européen de 
Normalisation (CEN) Standard EN15251-2007 [21]—inform 
the orientation of ventilation openings, the integration of 
intelligent ventilation systems, and the position of required 
sensors for automated control of said openings to ascertain 
partial IEQ. Finally, these considerations determined the 
composition and arrangement of different materials (i.e., 
concrete and EPS) and identified optimal locations for the 
integration of ICT devices, which collectively shaped the 
resulting component. 

 

 
Fig. 2. Sets of point-clouds corresponding to different types of information 



 

 

C. Object-Recognition via Deep Learning / Convolutional 
Neural Networks as a visual component of Design-to-
Robotic-Operation (D2RO) 

The newly integrated object-recognition component is 
intended to enable decentralized detection of three types of 
events and to instantiate corresponding interventions (see 
Section IV): 

1) Human-centered event: Fall-Detection and -
Intervention System, ver. 2.0. 

The object-recognition mechanism is integrated with the 
inherited WSAN’s FADIS in order to detect a variety of 
human- and object-centered events and to yield 
corresponding reactions / interventions to promote well-
being. The existing FADIS adopts a laser-reflectivity method 
[22] in order to detect the presence of collapsed objects and 
their estimated size. If the shape and size of the detected 
object corresponds to the dimensions of a person, the system 
gauges the probability of a collapsed person as high. 
Consequently, large inanimate objects may cause the system 
to instantiate false-positives. 

The object-recognition component represents an added 
layer of verification that decreases the probabilities of false-
positives, as its enabling DL / ANNs mechanism is trained to 
detect human faces and shapes. In this particular instance, 
the object-recognition component needs only one camera, 
integrated into the ceiling of the scanned environment. 
However, the system architecture intends for multiple 
cameras be integrated in the same and in various regions 
across several nodes in the overall built-environment in order 
to further increase the probabilities of accurate detections by 
cross-referencing purported detections. That is to say, we 
may imagine a scenario where lasers have detected a human-
size object and its shape has indeed been identified—via that 
particular space’s integrated ceiling-camera—to correspond 
to that of a human’s. Nevertheless, it may still be a false 
positive.  

In order to reduce the probabilities of this scenario, a 
number of new features—including the discussed object-
recognition component—have been added to FADIS ver. 
2.0. First, via a wearable (e.g., LBBs and/or Fitbit activity 
tracker) and/or smart-device, the presence of the occupant is 
registered by the WSAN (i.e., the WSAN is programmed to 
detect the presence and signal intensity of particular MAC 
addresses within its structured environment). If the occupant 
is indeed confirmed to be present, and if he/she is detected—
via both lasers and a ceiling-camera—to have collapsed in 
the bathroom, the WSAN will take one final verification step 
before instantiating appropriate intervention mechanisms 
(i.e., SMS / email notifications to family-members and/or 
caretakers). That is, the WSAN requests information from all 
other nodes controlling the remaining cameras deployed in 
the overall space in order to detect instances of ambiguities. 
For example, if the occupant was detected to be in the 
bathroom as well as in the living-room in the single-occupant 
unit, then one or more detections may be false-positives. If 
the occupant has indeed collapsed in the bathroom, then the 
remaining camera-controlling nodes must not be able to 
return positive detections.  

Hence, and to summarize, if lasers in a given region have 
detected a collapsed large-object; and if the region’s 
corresponding camera has identified said large-object’s 
shape as that of a human’s, and if the wearables / smart-
devices associated with the occupant are detected to be 
within the structured environment; and if no other camera in 
any other region of the overall unit has detected human-like 
objects; then the built-environment may instantiate 
aforementioned intervention mechanisms with a high degree 
of confidence.   

2) Object-centered event, robotic intervention:  
In this type of events, if FADIS ver. 2.0 detects the 

unexpected presence of a small object in an otherwise empty 
region, it engages the object-detection mechanism to attempt 
to identify it. The identification process is enhanced by 
cross-referencing the detection via several cameras in whose 
field of vision the object is found. As may be seen in Fig. 4, 
an object may be identified by fragments of it—i.e., in said 
figure, the object-recognition mechanism detects a “cup” by 
its overall shape and by its handle. This feature is necessary 
for the present type of events in questions, as its principal 
purpose is to detect the presence of broken and/or 
unexpected idle objects on the floor.  

In the example of the cup, if from multiple angles (i.e., 
multiple cameras) a detached handle provides the necessary 
confidence level for a “cup” to be identified, the WSAN 
engages a robotic agent inherited from FADIS (i.e., a 
TurtleBot® [12, 23]) in order to retrieve it. Admittedly, there 
are considerable limitations with this feature stemming from 
object-recognition via fragments (see Section IV for a brief 
discussion of possible solutions).   

3) Object-centered event, visual / aural warning:  
This type of events is similar to the previous one, except 

for robotic intervention is replaced with both more passive 
visual and/or aural interventions as well as palpable 
vibrations. It may be imagined that an unexpected object, 
broken or not, may be too large for the TurtleBot® to 
remove. In such a scenario, visual cues in the form of rapid 
light-bursts and/or aural warnings in the form of a range of 
sound-emissions are first instantiated in order to elicit human 
action. If no response follows, the WSAN sends SMS and 
email notifications to the occupant, who may consequently 
instruct the system to ignore the object via an SMS response.  

The intervention mechanisms associated with this type of 
events may provide an additional assistive service to visually 
and/or aurally impaired individuals who would otherwise 
have no means of preemptively learning about unexpected 
collapsed objects.   

III. METHODOLOGY AND IMPLEMENTATION 

A. D2RP: Realization of real-scale fragment 

The design-to-production framework is tested by 
robotically producing the real-scale fragment / prototype as a 
multi-layered hybrid component consisting of concrete, EPS, 
and smart devices. This fragment follows componentiality 
and hybridity principles characteristic of D2RP&O. That is 



 

 

to say, with respect to the former, complex geometries are 
intelligently divided into components following a structural 
analysis to identify optimal division-seams that do not 
compromise physical integrity (see Fig. 3).  

 

 
 

 
 
Fig. 3. Top: Real-scale fragment’s multi-layered fabrication / integration 
logic. Bottom: Robotically fabricated concrete (left) and EPS (right) 
fragments. 

With respect to the latter, the composition of each 
component unit consists of the integration of materially 
heterogeneous layers, each design in direct response to a 
purpose or a function. For example, the concrete layer is 
formed following the stress lines extracted from the final 
element model. Similarly, some of the cavities in the EPS 
layer are designed with ICT-integration in mind, while others 
with CEN-identified ventilation requirements.  

B. D2RO: Deploying the Object-Recognition Mechanism 
and Corresponding Intervention Mechanisms 

The object-recognition mechanism is implemented with 
open-source BerryNet® [24], which is built with a 
classification model (viz., Inception® ver. 3 [25]) as well as a 
detection model (viz., TinyYOLO® [26]). The classification 
model uses CNNs, which are at the forefront of ML research 
[25]. An advantage of BerryNet® is that it is a fully localized 
DL gateway implementable on a cluster of RPi3s. On an 
individual RPi3, the inference process is slow, requiring a 
delay between object-recognition sessions. This situation is 
ameliorated by the dynamic clustering feature of the WSAN 
(see Fig. 4).  

Another benefit-cum-limitation is that BerryNet®’s 
classification and detection models are pretrained, which 
avoids the need to generate said models locally (see Section 
IV for an elaboration on limiting consequences as well as the 
generation of local models if and/or when necessary). 

In Section II, it was asserted that the object-recognition 
mechanism was intended to be deployed across a variety of 
cameras in the overall built-environment, and that instances 
of detection were to be cross-referenced to minimize false 
positives. In order to implement this setup, each RPi3 node 
in the WSAN was equipped with a low-cost Raspberry Pi 
Camera® V2.1, then BerryNet® was installed in every node 
and the inference mechanism tested individually. The next 
step was to enable the nodes to share their detection results, 
which could be done via WiFi. Nevertheless, in order to 
reduce energy-consumption for every object-detection cross-
referencing instance, ZigBee was preferred. In order to 
enable ZigBee on BerryNet®’s detection_server.py and 
classify_server.py were modified and made compliant with 
python-xbee [27].  

 

Fig. 4.  Multiple-object detection via BerryNet [24]: ‘person’, ‘cup’. 



 

 

IV. RESULTS AND DISCUSSION 

A. Human-centered event, limited demonstration: 

The first scenario was verified by having (1) the original 
FADIS detect a collapsed large-object; (2) a BerryNet®-
enabled ceiling-integrated RPi3 detect a ‘person’; (3) 
surrounding BerryNet®-enabled RPi3 nodes (with 
corresponding cameras) exchange each other’s inference 
results via XBee-antennas; (4) corresponding SMS and email 
notifications sent.  

A caveat pertaining to step 3: while a majority of 
surrounding RPi3 nodes identified the same object—in 
varying angles—as likely to be a person, not all of them did. 
Depending on lighting conditions and body-postures, some 
inference results read ‘car’, ‘lamp’, ‘sofa’. In these instances, 
the probability of the object being a person was simply 
determined by whether the majority of inferring RPi3 nodes 
returned ‘person’ or not. One way to improve the 
probabilities that the majority of nodes identify a same object 
accurately would be to train the classification models 
particularly and further, but even this would not ascertain 
absolute certainty. A better approach would be to keep 
adding correlation factors via a variety of sensors in order to 
identify false-positives.  

B. Object-centered event, robotic intervention, limited 
demonstration: 

The second scenario was verified by having the object-
recognition mechanism accurately detect a cup on the floor, 
which caused the WSAN to relay the XY-coordinates of the 
object to the TurtleBot® in order for the rover to reach the 
cup’s location (see Fig. 5). Rviz [28] was used to enabled the 
rover to identify the boundaries of its deployment space. In 
the executed sample runs, the rover was able to arrive at the 
defined destination while avoiding collision with non-target 
object on the way. However, at present the TurtleBot® is 
only able to drag the object away via a rudimentary hook.  

Consequently, further development of this system would 
require the design of a gripper system capable of sensing 
pressure. Another limitation is that during initial execution, 
the rover must be placed at its origin position, as defined in 
the process of generating the environment’s map. Over time 
and inaccuracies of perception, etc., the rover’s position and 
orientation will become uncontrollably inaccurate. This 
could be ameliorated by the addition of reference touch-
sensors or switches in key locations within the environment 
in order to reset the rover’s position and orientation.  

C. Object-centered event, visual / aural warning, limited 
demonstration:  

The third scenario was verified in tandem with the 
second. At the detection of the object on the floor, and while 
the rover was sent to fetch it, a LED and a buzzer emitted 
light and sound, respectively. This was repeated at 
predetermined intervals, only to stop when a corresponding 
SMS was sent to the SIM-card installed in the fee-based 
SMS-sending and -receiving T35 GSM module. 

 

 

Fig. 5. Robotic intervention based on object-centered events. Top: Rover 
sent to the location of detected object (circled in red). Bottom: Abstracted 
robotic vision on the rover.  

V. CONCLUSION 

The present discrete proof-of-concept implementation 
adds two important contributions to the on-going 
development of the Architecture and Systems Architecture of 
D2RP&O-driven intelligent built-environments.  

With respect to Architecture, the developed multi-
layered, materially heterogeneous, and structurally optimized 
fragment herein described illustrates the benefits and 
feasibility of componentiality and hybridity in the 
development of building components. Each layer is informed 
by a particular consideration (e.g., structural loads, 
ventilation, illumination requirements, ICT-integration) and 
therefore justified formally and economically. This approach 
embeds intelligence from the onset of the design process.  

With respect to Systems Architecture, the detailed object-
recognition mechanism adds another means for the system to 
become aware of its built-environment. In this paper, this 
mechanism has been used to ascertain greater probabilities 
for accurate object-identification. In the present scope, the 
capabilities of this mechanism have been limited to 
recognizing general objects. But it may be extended to detect 
particular faces and features, which may later be correlated 
to specific events. In the setup discussed, the deployment 
scenario was construed as a single-occupant housing unit. 
But in a scenario with more occupants, the recognition of 



 

 

each individual may instantiate actuations and 
transformations in the built-environment specific to each 
individual’s preferences and taste. Furthermore, it may also 
be extended to conform a security mechanism. In this 
development, ZigBee was used to exchange inference data 
between nodes. But as part of a security mechanism, a WiFi 
communication layer would render live-streaming from any 
camera to any node (via assigned static IP-addresses) within 
the WSAN. In conjunction, all security cameras could be 
trained to identify—via CNNs—one or more particular faces 
as ‘dangerous’, etc., and the WSAN would proceed to notify 
pertinent services accordingly.  
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