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Inertia–Gravity Waves Breaking in the Middle Atmosphere at High Latitudes: Energy
Transfer and Dissipation Tensor Anisotropy
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Aerodynamics Group, Faculty of Aerospace Engineering, Technische Universiteit Delft, Delft, Netherlands
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ABSTRACT

We present direct numerical simulations of inertia–gravity waves breaking in the middle–upper me-

sosphere. We consider two different altitudes, which correspond to the Reynolds number of 28 647 and

114 591 based on wavelength and buoyancy period. While the former was studied by Remmler et al.,

it is here repeated at a higher resolution and serves as a baseline for comparison with the high-Reynolds-

number case. The simulations are designed based on the study of Fruman et al., and are initialized by

superimposing primary and secondary perturbations to the convectively unstable base wave. Transient

growth leads to an almost instantaneous wave breaking and secondary bursts of turbulence. We show

that this process is characterized by the formation of fine flow structures that are predominantly located

in the vicinity of the wave’s least stable point. During the wave breakdown, the energy dissipation rate

tends to be an isotropic tensor, whereas it is strongly anisotropic in between the breaking events. We find

that the vertical kinetic energy spectra exhibit a clear 5/3 scaling law at instants of intense energy dis-

sipation rate and a cubic power law at calmer periods. The term-by-term energy budget reveals that the

pressure term is the most important contributor to the global energy budget, as it couples the vertical and

the horizontal kinetic energy. During the breaking events, the local energy transfer is predominantly

from the mean to the fluctuating field and the kinetic energy production is in balance with the pseudo

kinetic energy dissipation rate.

1. Introduction

The inherent multiscale nature of atmospheric phe-

nomena makes accurate numerical weather predictions a

challenging task. At least for the near feature, solving

the complete set of governing equations is out of reach

(Bauer et al. 2015). Parameterization techniques, ei-

ther based on a simplified physical description of the

atmospheric processes or based on statistics (e.g.,

stochastic parameterization; Berner et al. 2017) will

therefore continue to gain attention. Nevertheless,

steady progress in this area requires unveiling the

rationale small-scale atmospheric phenomena. In this

regard, direct numerical simulations (DNS) of sim-

plified scenarios can help us understand at least part of

the problem.

Among the myriad of processes that take place in the

atmosphere, gravity waves have been recognized as an

important player for the middle and upper atmosphere.

One interesting aspect is that due to instabilities they

can break and induce turbulence and dissipation in the

overall large-scale flow (gravity wave drag). Further,

gravity waves transport energy and momentum from

where they are created to regions far away. Typical

wavelengths of gravity waves are usually unresolved by

the numerical grid, which implies that their effects have

to be included in simulations through parameterization.

For example, the deposition of momentum and heat

dissipation in the large-scale flow are usually based on

linear wave theory models, such as those originally in-

troduced by Lindzen (1981), or based on nonlinear wave

interactions, as in the Doppler-spread parameterization

of Hines (1997).

Several studies have focused on gravity waves giving

special attention to the growth of instabilities and the

breakdown process. The studies of Andreassen et al.

(1994), Fritts et al. (1994), and Isler et al. (1994), for

instance, were among the first to recognize the full
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three-dimensional character of the breakdown pro-

cess and to investigate the structure of the eddy mo-

tion, as well as its influence on the transport of

momentum and heat. More recently, the focus has

been shifted toward expanding the parameter space,

while fully resolving the smallest turbulent scales. The

DNS by Fritts et al. (2009a,b) considered two gravity

waves above and below the threshold for static in-

stability and at Reynolds number O (104) (based on

the wavelength and the buoyancy period), and Fritts

et al. (2013) and Fritts and Wang (2013) analyzed the

breakdown of a monochromatic wave due to interac-

tion with vertically varying fine structure.

Whereas most studies like the ones cited above have

focused on high-frequency inertia–gravity waves (HGWs)

for which the effects of the Coriolis force can be ne-

glected, little attention has been paid to low-frequency

inertia–gravity waves (IGWs). In fact, it can be argued

that HGWs are more relevant, since the background

frequency due to stratification supersedes the Coriolis

parameter in the atmosphere. Nevertheless, the dy-

namics of gravity waves depend on their frequency and

must be studied separately (Achatz 2005, 2007a,b).

Regarding the breakdown of IGWs, to the best of our

knowledge the work of Remmler et al. (2013) was the

first to present resolved three-dimensional simulations.

In that work, the authors considered a statically unstable

monochromatic wave superimposed with its primary

and secondary perturbations derived from the linear

theory studies of Achatz (2007b) and Fruman and

Achatz (2012). The DNS by Remmler et al. (2013, 2015)

showed that the breakdown process constitutes of a

sequence of turbulent bursts, accompanied by a rapid

reduction of the wave amplitude. Additionally, their

analyses indicate that the duration of the breaking

events in 3D simulations are shorter than in typical

investigations, which assume a three-component ve-

locity field with a two-dimensional spatial depen-

dency (also known as 2.5D simulations), and that the

energy dissipation rate is less homogeneous than

for HGWs.

In the present contribution, we build on the work of

Remmler et al. (2013) and turn attention to the breaking

mechanism of IGWs at higher Reynolds numbers. Our

aim is to provide high-fidelity simulation data, which, on

the one hand highlight some of the underlying features

of the energy conversion during the breakdown process,

and, on the other hand, serve as reference data for

models that do not resolve inertia–gravity waves and

wave-generated turbulence and instead account for

their effects through parameterization. Using the same

setup as in Fruman et al. (2014) and Remmler et al.

(2013), we perform DNS at two distinct Reynolds

numbers. We start off with flow-field visualizations de-

scribing the breaking events. Second, we investigate the

temporal evolution of the kinetic energy and the avail-

able potential energy and of their associated energy

dissipation rate, as well as the vertical energy spectra.

Last, we turn our focus to the energy transfer process.

We analyze it from the aspect of the relevance of each

term in the energy budget equation, as well as from the

view of energy transfers between the mean and the

fluctuating field.

2. Methodology

a. Governing equations

We consider fluid motion in Earth’s atmosphere gov-

erned by the Boussinesq equations on the f plane:

= � u5 0, (1)

›u

›t
1 u � =u52=p1 bn2 f

c
n3 u1 n=2u , (2)

›b

›t
1u � =b52u �N2n1a=2b . (3)

Here, u5 [u, y, w] is the velocity field, t denotes time,

p is the pressure field, and b is the buoyancy field, which

is defined as normalized deviations of the potential

temperature T from the vertically averaged temper-

ature T*(z). That is, b5 g(T2T*)/T0, where T0 and g

are the reference temperature and the magnitude of

the gravity field, respectively. Further, the properties

of the fluid are the kinematic viscosity n and the

thermal diffusivity a, and fc 5 2VE sinb is the Coriolis

parameter withVE the Earth’s angular velocity and b the

latitude on the f plane. The Brunt–Väisälä frequency

is N2 5 (g/T0)dT*/dz and n is the negative gravity unit

vector. The coordinate system for a fixed observer on

Earth is [x0, y0, z0].
For vanishing viscosity and thermal diffusivity,

Eqs. (1)–(3) admits wavelike solutions of the form

<f[û, ŷ, ŵ, b̂] exp(If)g, where < denotes the real part,

û, ŷ, ŵ, and b̂ are complex amplitudes of the velocity and

buoyancy field, f is the phase (Achatz and Schmitz

2006), and I is the imaginary unit. Here, we will focus on

two-dimensional waves that propagate at an angle Q
with the x0 direction (see Fig. 1a). In these cases, the

gravity wave can be written as

[u0, y0,w0,b0]5<
�
a

�
I
v

k
,
f
c

k
,2I

v

m
,2

N2

m

�
eI(kx

01kx02vt)

�
,

(4)

where k and m are the components of the base wave-

number vector K, such that the wavelength is L 5 2p/K
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with K5 kKk5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 1m2

p
. In Eq. (4), the wave fre-

quency v is defined as

v2 5N2 cos2Q1 f 2c sin
2Q , (5)

and a is a nondimensional amplitude. For a5 1 and t5 0

the wave is neutrally stable at its least static stable point,

i.e., ›b/›z0 52N2 atf5 kx0 1mz0 5 3p/2; see Yau et al.

(2004), for example.

We consider inertia–gravity waves with phase ve-

locity cp and group velocity cg as illustrated in Fig. 1.

To ease the representation of the inertia–gravity

wave, we introduce a sequence of coordinate trans-

formations, which is better understood by looking at

Figs. 1a and 1b. The first transformation is a coun-

terclockwise rotation by p/2 2 Q around the positive

y0 direction, such that in the rotated coordinate sys-

tem (j, y0, h), the h direction is aligned with the wave-

number vector K. The second transformation, on the

other hand, simply rearranges the coordinate system

through a g 5 p/2 counterclockwise rotation around h.

This set of transformation leads to the double-rotated

coordinate system [x, y, z], which is related to Earth’s

coordinate system [x0, y0, z0] by

x0 52y sinQ1 z cosQ ,

y0 5 x ,

z0 5 y cosQ1 z sinQ . (6)

Accordingly, the relation between the velocity field

[u0, y0, w0] in Earth’s coordinate frame and the velocity

field [u, y, w] in the double-rotated coordinate system

is essentially the same as Eq. (6), but with the spatial

coordinates replaced by the corresponding velocities,

since, e.g., dx/dt5 u and dx0/dt5 u0. Upon substitution

in Eq. (4), and taking the real-valued part only, it can

be shown that the monochromatic inertia–gravity wave

assumes the following form:

u5
af

c

K cosQ
cosf ,

y52
av

K sinQ cosQ
sinf ,

w5 0,

b5
aN2

K sinQ
cosf . (7)

Note that f 5 (kx0 1 mz0 2 vt) 5 (Kz 2 vt), which

can be obtained with the aid of k 5 K cosQ and

m 5 K sinQ.

b. Numerical setup

The design of the initial conditions for the simulations

uses previous knowledge on the instability of the inertia–

gravity waves. Following Achatz (2007a), Fruman and

Achatz (2012), and Fruman et al. (2014), first a normal

mode (NM) analysis of the base wave is performed to

identify the perturbation with the largest growth rate. The

velocity field of this primaryperturbationhas threenonzero

components that vary along the two spatial directions x and

z and which is independent of the third coordinate y.

Second, a tangent linear stability analysis about the initial

2.5D dynamics developing after perturbing the wave by its

leading normal mode is performed to obtain the fully 3D

secondary perturbation, which is taken as the singular

vector (SV) that maximizes the perturbation growth within

the chosen optimization time (5min). The initial conditions

FIG. 1. Sketch showing the relation between the different coordinate systems and the base wave. (a) The rotation

of Earth’s coordinate system [x0, y0, z0] about the y0 axis such that the base wavenumberK is alignedwith the vertical

axis h. (b) The computational domain in the two-times rotated coordinate system [x, y, z].
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are then finally composed of the base wave superimposed

with its primary (NM)and secondary (SV)perturbations and

are fully three-dimensional owing to the singular vector—see

Fig. 2 for an illustration of the initial conditions.

Using this technique, we examine two inertia–gravity

waves with vertical wavelength L5 3000m propagating

at an inclination Q 5 89.58 and at different altitudes in

the middle atmosphere, namely, at 81 and 72 km. The

corresponding horizontal wavelength of the base wave

in the Earth frame of reference is Lx0 5 343 km. The

Coriolis parameter is taken from the f-plane approxi-

mation for a latitude b5 708, i.e., fc 5 1.3673 1024 s21,

and the Brunt–Väisälä frequency is taken as constant in

the range 72–81 km with N 5 2 3 1022 s21. In terms of

physical parameters, the only difference between the

two cases, henceforth referred to as IGW81 and IGW72,

is the kinematic viscosity n, which we estimate from the

U.S. standard atmosphere model for the corresponding

altitudes. The Reynolds number based on the wave-

length of the base wave L and on the buoyancy period

Tb5 2p/N is Re5L2/(nTb)5 28 647 (case IGW81) and

Re 5 114 591 (case IGW72). In both cases, the ratio of

kinematic viscosity to thermal diffusivity is assumed to

be Pr 5 n/a 5 1, where Pr is the Prandtl number.

The wavelength of the base wave (L) defines the ex-

tension of the numerical domain in the z direction,

whereas the wavelengths of the perturbations, i.e., the

leading NM with Lk 5 3981m and the SV with L? 5
400m, determines the normal (x) and the transversal (y)

domain size: [Lx, Ly, Lz] 5 [Lk, L?, L] 5 [3981,

400, 3000] m.

The set of Eqs. (1)–(3) are solved numerically using

the pseudospectral technique. To compute the spatial

gradients, we employ dealiased (2/3 rule) fast Fourier

transforms (Pekurovsky 2012). For time integration, we

use a third-order low-storage Runge–Kutta scheme to

integrate the nonlinear, the Coriolis, and the buoyancy

diffusivity terms, whereas the viscous forces are inte-

grated exactly using the integrating factor technique

(Rogallo 1977). For comparison, note that in Remmler

et al. (2013) the spatial gradients are approximated

with a fourth-order finite-volume scheme. Further, as in

Remmler et al. (2013), we continuously translate the

numerical domain along the direction of wave propa-

gation, i.e., z, as if we were following the base wave. The

translation velocity equals to themagnitude of the phase

velocity.

The numerical tool is essentially the same as in

Pestana and Hickel (2019), with little modifications to

accommodate the solution of an additional scalar

transport equation for the buoyancy field. The total

number of grid points isNp 5 23043 2463 1728 in case

IGW81 and Np 5 3072 3 294 3 2304 in case IGW72.

The corresponding numerical resolution along the dif-

ferent directions [Dx, Dy, Dz] is [1.73, 1.63, 1.74] m for

IGW81 and [1.30, 1.36, 1.30] m for IGW72.

For a summary of the physical and numerical pa-

rameters, please refer to Table 1.

3. Results

Before we present the results, let us first introduce

some notations. For any variable, angular brackets

represent spatial averages, i.e., h�ixyz are box averages,
whereas h�ixy represent plane averages along the x

and y directions. Spatial fluctuations with respect to

plane averages are denoted by a prime, e.g., the

fluctuation of the velocity in the x direction is u0 5
u2 huixy. When convenient, we use indices to denote

the different Cartesian directions, i.e., the velocity

field [u, y, w] is also referred to as [u1, u2, u3]. Unless

stated otherwise, summation over repeated indices is

implied.

Cases IGW72 and IGW81 were integrated in time for

6 h. The total simulated time is slightly shorter than the

wave period Tw 5 L/cp, which is approximately 8 h. As

we will see in the qualitative and quantitative analysis

below, the most interesting differences in the breaking

behavior of the two cases occur within the simulated first

couple of hours.

To assess the sufficiency of the numerical resolution in

resolving the smallest scales of turbulence, we estimated

the Kolmogorov length scale by computing

‘
kolmo

5
n3

«
k

� �1/4

(8)

FIG. 2. Contours of the buoyancy field depicting the initial con-

dition for the simulations of cases IGW81 and IGW72. The yellow

isosurfaces (b 5 0) spanning the x and y directions outlines the

primary and the secondary perturbations of the base wave.
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locally and for every instant of time. In Eq. (8), «k 5
2SijSij is the local kinetic energy dissipation rate, with

Sij 5 (›ui/›xj 1 ›uj/›xi)/2 the strain-rate tensor. We

find that for case IGW81, the numerical resolution

guarantees that approximately at all times D,p‘kolmo

(Kaneda et al. 2003), where D is the smallest grid

width, i.e., D 5 min{Dx, Dy, Dz}. For case IGW72,

the resolution is lower and satisfies, on average,

D, 1:43p‘kolmo. We are thus confident that both sim-

ulations resolve the small-scale turbulent motion and

that the results would remain unchanged if the mesh is

further refined.

a. Flow-field description

A flow-field visualization provides us with the general

picture of the problem. In addition to several instanta-

neous snapshots (Figs. 3 and 4 ), two videos are included

as online supplementary material (see Movie 1 and

Movie 2 at https://doi.org/10.1175/JAS-D-19-0342.s1).

During the course of the simulation, we observe that

bursts of turbulence induce small-scale motion in the

overall large-scale flow. In both cases, however, turbu-

lence is not omnipresent; it is instead confined to certain

regions of the domain and peculiar of specific time in-

tervals. The main qualitative difference between cases

IGW81 and IGW72 is the presence of much finer scales

of motion in the latter, a natural consequence of its

higher Reynolds number.

The primary and secondary perturbations that de-

fine the initial conditions cause the wave to break

almost instantly in both cases. The breaking events

begin with three-dimensional flow structures devel-

oping in the upper half of the domain where the base

wave is least stable, i.e., f 5 3p/2 for z 5 3L/4 5
2250m (cf. section 2a). (Note that the unstable region

remains always located in the upper half of the do-

main, because the coordinate system is continuously

translated with the phase speed). Thereupon, the flow

structures are continuously transported horizontally and

eventually they spread over the entire domain. Although

these features are salient during the first hours of the

simulation (Figs. 3a–f and 4a–f), this sequence of events

also reoccurs at later times, but in weaker intensity.

To identify the actual time and the number of breaking

events, we follow the temporal evolution of the total

energy dissipation rate:

h«
t
i
xyz

5 2nhS
ij
S
ij
i
xyz

1
a

N2

	
›b

›x
i

›b

›x
i



xyz

, (9)

where the first and the second term on the right-hand

side are the kinetic energy dissipation rate h«kixyz
and the potential energy dissipation rate h«bixyz,
respectively.

The total energy dissipation rate increases signifi-

cantly at the times for which turbulent spots dominate

the flow field. By following the time evolution of

h«tixyz (Fig. 5), we observe four peaks in h«tixyz for case
IGW81, whereas three peaks are seen for case IGW72.

By searching for local maxima, we identify the time

of each breaking event as tbe 5 {0.44; 1.84; 4.05;

4.95} h for IGW81 and tbe 5 {0.38; 1.92; 4.88} h for

IGW72. Although the evolution of h«tixyz is alike

during the first breakdown for the two Reynolds

numbers, differences in magnitude and duration are

evident for the remaining breaking events. For ex-

ample, for the second breaking event, at around t 5
1.88 h, h«tixyz is approximately 1.6 times larger for case

IGW81 than for case IGW72; the inverse is, however,

observed for the last breaking event, at around t5 5 h,

TABLE 1. Physical and numerical parameters for the simulation of cases IGW72 and IGW81.

Domain size Lx 5 3981m; Ly 5 400m; Lz 5 3000m

Wavelength of the base wave L 5 3000m

Wavelengths of the perturbations Lk 5 3981m; L? 5 400m

Wave vector orientation Q 5 89.58
Nondimensional wave amplitude a 5 1.2

Base wave amplitude u 5 8.97m s21; y 5 14.56m s21; b 5 0.23m s21

Phase velocity cp 5 20.106m s21

Coriolis parameter fc 5 1.367 3 1024 s21

Brunt–Väisälä frequency N 5 2 3 1022 s21

Case IGW81

Kinematic viscosity n 5 1m2 s21

No. of grid points Np 5 2304 3 246 3 1728

Numerical resolution Dx 5 1.73m; Dy 5 1.63m; Dz 5 1.74m

Case IGW72

Kinematic viscosity n 5 0.25m2 s21

No. of grid points Np 5 3072 3 294 3 2304

Numerical resolution Dx 5 1.30m; Dy 5 1.36m; Dz 5 1.30m
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FIG. 3. Instantaneous flow-field visualizations for case IGW81 showing the isosurfacesQ5 0.004 s2 on top of contours of the buoyancy field

on the plane y 5 400m. (a)–(f) The first, (g)–(i) third, and (j)–(l) fourth breaking events.
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FIG. 4. Instantaneous flow-field visualizations for case IGW72 showing the isosurfacesQ5 0.03 s2 on top of contours of the buoyancy field

on the plane y 5 400m. (a)–(f) The first, (g)–(i) second, and (j)–(l) correspond to the and the third breaking events.
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where h«tixyz for case IGW72 is larger than for IGW81

by roughly the same amount.

This sequence of breaking events causes the non-

dimensional wave amplitude a to decay monotoni-

cally with time (Fig. 6). For t & 0.5 h, a(t) follows the

same trend in both cases and decays rapidly. This is

probably a consequence of the well-defined initial

conditions, which cause the first breaking event to be

similar in both cases. At posterior times, the decay

rate reduces significantly and case IGW72 exhibits a

slower decay rate, which is expected from a laminar

decay: for Pr 5 1, the nondimensional wave ampli-

tude of an unperturbed laminar wave evolves as

alam(t) 5 a0 exp(2nK2t) (Fruman et al. 2014). More

interesting, we also notice that the third and fourth

breaking for case IGW81 occurs although the non-

dimensional amplitude is below the limit for static

instability, i.e., a , 1. For case IGW72, a . 1 for most

part of the simulation, but during the last breaking

event a is also smaller than 1.

b. Dissipation tensor anisotropy

The contributions of the kinetic and the potential

energy dissipation rate to h«tixyz [Eq. (9)] differ strongly
between both cases and varies over time. In fact, Fig. 7

shows that the main contributor to h«tixyz is h«kixyz. By
comparing the temporal evolution of the kinetic and

potential energy dissipation rates, we find from Figs. 7a

and 7b that at the peak of the first breaking event the

ratio h«kixyz/h«bixyz is approximately 1.96 irrespective of

the Reynolds number. Nevertheless, the disparity be-

tween the two quantities increases at later times. For

example, at the last breaking event of case IGW72 the

ratio is approximately 16.1.

More information regarding the structure of the en-

ergy dissipation tensor is obtained by decomposing it in

its individual components along the three Cartesian di-

rections, i.e.:

h«
k
i
xyz

5
1

2
(h«

k,11
i
xyz

1 h«
k,22

i
xyz

1 h«
k,33

i
xyz

). (10)

By assessing the relative importance of each term on

the right-hand side of the equation above (Fig. 8), we

find that all three components contribute almost equally

to h«kixyz at instants of time corresponding to the wave

breakdown. The later observation, however, is more

explicit for the higher-Reynolds-number case (Fig. 8b).

Although we also observe the same tendency for the

lower-Reynolds-number case (Fig. 8a), the difference

between the components is still significant. Put together,

these results indicate that for increasing Reynolds num-

ber, we can expect the energy dissipation tensor to attain

an isotropic structure during the phases with high tur-

bulence intensity, while during calmer periods, we can

expect the kinetic energy dissipation tensor to have a

strongly anisotropic structure. A certainly interesting

observation is that the component aligned with the di-

rection of wave propagation has the smallest contribu-

tion to the energy dissipation for both cases.

c. Hovmöller diagrams

Now, we turn our attention to the distribution of dif-

ferent quantities along the direction of wave propaga-

tion. In particular, we look at the spatial distribution of

«k and «b and their relation to the Richardson number

(Ri). For this purpose, we average the different quan-

tities over planes normal to the direction of propagation

to obtain h«kixy, h«bixy and hRiixy. Whereas the kinetic

FIG. 5. Time evolution of the total energy dissipation rate h«tixyz
for cases IGW81 (blue) and IGW72 (black). The filled circles in-

dicate local maxima and the instant of each breaking event.

FIG. 6. Time evolution of the nondimensional wave amplitude a for

cases IGW81 (blue) and IGW72 (black).
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and potential energy dissipation are obtained similarly

to Eq. (9), the Richardson number follows from the local

balance between buoyancy gradients and shear rate. In

Earth’s frame of reference, it is given as

Ri5
N2 1 (›b/›z0)

(›u/›z0)2 1 (›y/›z0)2
. (11)

The Richardson number is computed in the rotated

frame of reference [x, y, z] by projection of the gradients.

A first hint toward the spatial distribution of the

energy dissipation rate can be obtained from the pre-

vious flow-field visualization. For instance, a compari-

son of the first breaking event in both cases (Figs. 3a–f

and 4a–f) shows that the regions of stronger spatial

gradients in the buoyancy field (lower half of the do-

main cf. Fig. 3c) do not coincide with the location of the

eddies. In the upper half of the domain, the isopycnals

are primarily horizontal and neatly separated from

each other, whereas the lower half of the domain shows

regions of intense mixing in the buoyancy field and

consequently larger spatial gradients.

To confirm these observations, we present in Fig. 9

Hovmöller diagrams of h«kixy, h«bixy and hRiixy, i.e.,
their evolution as a function of z and t. From Figs. 9a and

9d, we see that large values of h«kixy dominate the region

z . 1.5 km and persist in this location for the entire

simulation time. On the contrary, Figs. 9b and 9e show

that high dissipation of potential energy is found for z,
1.5 km and it is restricted to t, 2h. Overall, we see that

the upper half of the domain is marked by a higher level

of turbulence activity (stronger spatial gradients), in

agreement with the visualization of finer scales in the

same region.

Regardless of the Reynolds number, the regions of

intense dissipation of kinetic energy are more likely to

be found within an envelope delimited by the stability

threshold, i.e., hRiixy5 0.25. Figures 9c and 9f show that

values for which hRiixy , 0.25 are predominantly lo-

cated in the upper half of the domain, thus evidencing

FIG. 8. Time evolution of the components of the kinetic energy

dissipation-rate tensor for cases (a) IGW81 and (b) IGW72:

h«k,11ixyz (solid), h«k,22ixyz (dotted), and h«k,33ixyz (dashed).

FIG. 7. Time evolution of the kinetic and potential energy dis-

sipation rate for cases (a) IGW81 and (b) IGW72: h«kixyz (solid)
and h«bixyz (dashed).
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the unstable nature of the upper half of the wave domain.

For comparison, we superimpose the contour hRiixy 5
0.25 on the distribution of h«kixy and h«bixy—see Figs. 9a,

9b, 9d, and 9e. We observe that hRiixy 5 0.25 delin-

eates well the region of high kinetic energy dissipa-

tion, indicating a correlation between both quantities.

For these results, there are no significant differences

between cases IGW81 and IGW72, apart from the fact

that in case IGW72, the regions of intense kinetic energy

dissipation are broader and better defined than in case

IGW81. Incidentally, as observed by Remmler et al.

(2013) for case IGW81, Figs. 9a and 9b also show that in

both cases the last breaking event occurs when remnant

turbulence from the first breaking event meets the least

unstable region of the base wave. This observation fol-

lows from tracking the evolution of a fixed point in

Earth’s frame of reference, as represented by the dashed

line in that figure. Although case IGW81 shows a clearer

region of somewhat high kinetic energy dissipation

traveling with the phase speed in the comoving frame of

FIG. 9. Hovmöller plots of the (top) kinetic and (middle) potential energy dissipation rates, and (bottom) the

Richardson number. Cases (a)–(c) IGW81 and (d)–(f) IGW72. The black solid line represents the contour lineRi5
0.25, and the dashed line tracks a fixed position in Earth’s frame of reference.
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reference, case IGW72 indicates that an even lower

small-scale turbulence activity might be already suffi-

cient to trigger instabilities and be amplified.

d. Energy spectra

The distinct turbulence level characteristic of the

different time instants is also reflected in both the

kinetic and potential energy spectra. In Fig. 10 we

show the spectra in terms of the vertical wavelength

lz for both cases. The kinetic and potential energy

spectra, Ek(lz) and Ep(lz), respectively, are defined

such that

ð
lz

E
k
(l

z
) dl

z
5 hKi

xyz
(12)

and ð
lz

E
p
(l

z
) dl

z
5 hAi

xyz
, (13)

whereK5 (uiui)/2 andA5 b2/(2N2) are the local kinetic

and potential energy. For the following comparison of

the energy spectra, we intentionally select two time

instants during the breaking event and two additional

ones at calmer periods, which correspond to off-peak

locations in the evolution of h«tixyz.
At time instants corresponding to the breaking events,

Ek(lz) and Ep(lz) scales in good agreement with l5/3
z .

For instance, in case IGW72 (Figs. 10c,d) we observe

that for t 5 0.39 h and t 5 4.88 h, i.e., approximately

during the first and the third breaking events, respec-

tively,Ek(lz) andEp(lz) exhibits a l
5/3
z scaling from lz5

37m to lz 5 750m. On the other hand, the same figure

shows that quiescent periods, e.g., t5 3.20 and 4.27 h, the

scaling of the energy spectramatches better a l3
z law. Put

together, these results suggest that during the break-

ing events the flow field is isotropic, and follows a

Kolmogorov scaling of the type l5/3
z , which is canonical

for homogeneous isotropic turbulence. Further, the l3
z

scaling at calmer periods indicates that buoyancy effects

are more relevant during periods of decay rather than

during the periods of intense wave breaking, since a l3
z is

expected in the inertial-range of strongly stratified flows

(Brethouwer et al. 2007; Remmler and Hickel 2013).

Although the power-law dependencies are best seen

in case IGW72 (Figs. 10c,d), their footprint is also clear

in case IGW81 (Figs. 10a,b). Therefore, we hypothesize

FIG. 10. Compensated (left) kinetic and (right) potential energy spectra plotted over the vertical wavelength lz
for different time instants. (a),(b) Case IGW81. (c),(d) Case IGW72. The thin dashed blue lines indicates the l5/3

z

and l3
z scaling laws.
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that these power-laws should remain for even higher

Reynolds number.

e. Kinetic and potential energy

Here, we leave the Reynolds number comparison

aside and focus on the temporal evolution of the box-

averaged kinetic energy and available potential energy,

as well as on the evolution of their individual compo-

nents. We only show results for the high-Reynolds-

number case IGW72, since the qualitative behavior for

case IGW81 is essentially the same.

The box-averaged kinetic and potential energy evolve

in time according to

dhKi
xyz

dt
2 hbu

i
n
i
i
xyz

1 h«
k
i
xyz

5 0 (14)

and

dhAi
xyz

dt
1 hbu

i
n
i
i
xyz

1 h«
b
i
xyz

5 0: (15)

Figure 11 shows each term of the equations above

as a function of time. Not surprisingly, dhKixyz/dt and
dhAixyz/dt are mostly negative, as it is expected for a

decaying wave. This observation is in agreement with

the previous flow-field visualizations, from which we

have already seen that flow structures fade away and

are less likely to be found toward the end of the sim-

ulation. Nevertheless, Fig. 11 shows that for certain

time windows there is a surplus of energy that causes

positive variations in either the kinetic or the potential

energy. From Eqs. (14) and (15) it is clear that this can

only occur when the transfer term hbuiniixyz becomes

larger than the energy dissipation rate. For the kinetic

energy, Fig. 11a shows that this is the case for 2, t, 4 h

(approximately), whereas for the potential energy,

Fig. 11b shows positive variations of dhAixyz/dt within
the interval 4 , t , 6 h. Further, we also notice that

during the breaking events, i.e., when dissipation is

highest, potential energy is converted into kinetic en-

ergy, whereas the opposite prevails during calmer pe-

riods; to see that, contrast for example in Fig. 11 the

behavior of hbuiniixyz at t ’ 0.5 h and t ’ 5 h with its

behavior at t ’ 3 h.

Now, we analyze the individual contributions of the

three Cartesian velocity components to the kinetic en-

ergy by following in time huuixyz, hyyixyz, and hwwixyz,
and the buoyancy variance hbbixyz/N25 2hAixyz. Results

in Fig. 12 show that energy is mostly contained in the

huuixyz and hyyixyz components. In fact, both of them

account for 99% of the total kinetic energy and ap-

proximately 69% of the total energy; the potential

energy stores the remaining 31% of the total energy. If

we focus on the first hour of the simulation, i.e., t ,
0.5 h (first breaking event), we observe that huuixyz
and hyyixyz decrease in magnitude, whereas hwwixyz
and hbbixyz/N2 increase. This suggests that during the

breaking events energy is transferred to hwwixyz and

also stored as potential energy. Indeed, at the last

breaking event, i.e., t 5 4.88 h, hbbixyz/N2 rises once

again, although less remarkable than during the first

breaking event at t 5 0.38 h.

Regarding the cross correlations, Fig. 12 shows that

huyixyz is mostly positive, but undergoes a sign change

during the third breaking event, huwixyz is slightly neg-

ative throughout the whole simulation; hywixyz on the

other hand, fluctuates weakly around null (Fig. 12b).

f. The energy transfer mechanism

A more detailed notion of the energy transfer

mechanism can be obtained through an energy budget

analysis. To this end, we write the (componentwise)

evolution equations for the kinetic and potential energy,

which are obtained fromEqs. (1)–(3) uponmultiplication

with the corresponding velocity and buoyancy fields fol-

lowed by a box average:

FIG. 11. Box-averaged (a) kinetic and (b) potential energy budget as defined in Eqs. (14) and (15).
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›hu
i
u
i
i
xyz

›t
5 hT

pres,ii
i
xyz

2 hT
cor,ii
* i

xyz

1 hT
buoy,ii
* i

xyz
2 h«

k,ii
i
xyz

(16)

and

1

N2

›hbbi
xyz

›t
52hT

buoy,11
i
xyz

2 hT
buoy,22

i
xyz

2 hT
buoy,33

i
xyz

2 2h«
b
i
xyz

. (17)

Equations (16) and (17) refer to the components of twice

the kinetic and potential energy, respectively. In Eq. (16),

no implicit summation over repeated indices is considered,

and the subscript imerely indicates theCartesian direction,

i.e., i5 {1, 2, 3} implies {x, y, z}. The terms on the right-hand

side of Eqs. (16) and (17) represent the contributions due

to the pressure field (Tpres), the Coriolis force (Tcor), the

buoyancy force (Tbuoy) and the energy dissipation rate.

Also, note that a superscript asterisk (*) appears in

Eq. (16) to denote the terms that contain contributions

from the pressure field, as explained next.

We isolate the influence due to the Coriolis and the

buoyant forces in Eq. (16) by eliminating their contri-

bution from the pressure field and adding it to their re-

spective transfer terms. That is, first we split the pressure

field p, which satisfies the Poisson equation

=2p52= � (u � =u)2= � (f
c
n3 u)1= � (bn) , (18)

such that p 5 padv 1 pc 1 pb, where padv, pc, and pb are

the solutions of Eq. (18) considering either the first,

second, and third term on the right-hand side, respec-

tively. Then, we include the effects of pc and pb to Tcor,ii

and Tbuoy,ii, to form hTcor,ii
* ixyz and hTbuoy,ii

* ixyz. Hence,

hTpress,iiixyz in Eq. (16) contains only the usual contri-

bution due to padv. The individual pressure contributions

in hTpress,iiixyz, hTcor,ii
* ixyz, and hTbuoy,ii

* ixyz do neither

produce nor destroy kinetic energy, but rather redis-

tribute energy between the three velocity components in

such a way that the fluid volume is conserved (incom-

pressible flow). The buoyancy term appears in Eq. (17)

without an asterisk, since the pressure field does not

play a role in this equation.

The evolution of each term is presented in Fig. 13.

Figures 13a–c show the term-by-term energy budget for

i 5 {1, 2, 3} and Eq. (16), whereas Fig. 13d presents the

results from Eq. (17). By individually analyzing the

temporal evolution of each term, we find that Tpress is

the main supplier of energy to hwwixyz; this energy is

transferred away from huuixyz, as clearly visible during

the first breaking event, for which it is evident that

hTpress,11i is negative (Fig. 13a) and hTpress,33i is positive
with roughly the same shape (Fig. 13c).We attribute this

fact to the primary instability, which is predominantly

aligned with the x and y directions and the main reason

for the roll-up of eddies observed prior to the first

breaking event.

Regarding the conversion from kinetic to potential en-

ergy, we see fromFig. 13d that hTbuoy,33ixyz is positive when
the wave breaks, and the corresponding hTbuoy,33

* ixyz is es-
sentially negative in Fig. 13c. Therefore, we conclude that

most of the energy gained by hwwixyz through hTpress,33ixyz
is converted into potential energy by hTbuoy,33ixyz. The
difference between the sink hTbuoy,33

* ixyz in the hwwixyz
balance and hTbuoy,33ixyz, which is a source for hbbixyz/N2, is

due to the pressure contribution which transfers energy to

the other components of the kinetic energy, in particular to

huuixyz. In Fig. 14, we include a diagram that summarizes

the transfer mechanism and the function/relevance of each

term in Eqs. (16) and (17).

g. Turbulent kinetic and potential energy

So far, we have looked at the wave breakdown from a

global sense, i.e., the velocity and buoyancy fields

FIG. 12. Time evolution of the individual components of the kinetic and potential energy and the cross correlations

for case IGW72. The data are split in (a) and (b) for better visibility.
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represented both the decaying base wave and the turbu-

lent structures. Although information about the global

quantities are valuable for modeling approaches which do

not resolve any scale of the wave, more refined models

would probably aim at resolving at least the basewave and

parameterizing only small-scale turbulent fluctuations. To

this end, we decompose the velocity and the buoyancy

field in two contributions: one related to the base wave

and a second related to small-scale fluctuations.

To split the fields we first average them over x–y

planes and then compute the difference between the

average and the local solution, e.g., the x component of

the velocity field is u(x, y, z) 5 huixy(z) 1 u0(x, y, z).
Throughout time, the vertical profiles of the mean ki-

netic and mean potential energy of the large scales, i.e.,

huiixyhuiixy/2 and hbixyhbixy/(2N2), remain similar to the

profiles obtained with the full field (not shown). From

the terms that constitute the mean kinetic energy,

huixyhuixy is the one that changes the most in time (al-

thoughmodestly). In fact, we already saw in the previous

section that this term is the one responsible for supplying

energy to the third velocity component.

The temporal evolution of the fluctuation covari-

ances, i.e., hu0u0ixyz, hy0y0ixyz, hw0w0ixyz, and hb0b0ixyz/N2,

shows that during the breaking events there is a signifi-

cant increase of energy in the small-scale fluctuations,

thus consistent with the idea that when the wave breaks,

energy is extracted from the base wave (mean flow).

This is clear from Fig. 15, which also shows that the

energy gain by the fluctuations is more pronounced for

the first breaking event, reinforcing that this event is

indeed stronger than the others.

FIG. 13. Energy budget showing the time evolution of the contribution due to the Coriolis force (Tcor), pressure

(Tpres), buoyancy (Tbuoy), and dissipation (h«k,iiixyz) for case IGW72 with (a)–(c) i5 {1, 2, 3} in Eq. (16) and (d) the

terms of Eq. (17).

FIG. 14. Schematic of the energy transfer mechanism and the

role of each term during the wave breaking event. Line styles

are as in Fig. 13. The pressure term (Tpres) appears as a thicker

line to highlight its dominance over the other terms. Note that

we have omitted the dissipation in the diagram, since its role is

evident.
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The split of the velocity field allows us also to explore the

energy transfer between the mean and the fluctuating field.

Writing the governing equations for the energy of themean

and the fluctuating fields, one sees that they include cou-

pling terms, namely, the production of kinetic and potential

energy, which are sink terms for the mean kinetic and po-

tential energy equation, and source terms in the corre-

sponding equation for the energy of the fluctuations. The

production of kinetic and potential energy are defined as

hP
k
i
xy
52hu0

iu
0
jixy

›hu
i
i
xy

›x
j

(19)

and

hP
b
i
xy
52

1

N2
hb0u0

jixy
›hbi

xy

›x
j

, (20)

respectively. The decomposition also yields the pseudo

kinetic and potential energy dissipation rate, which are

based on the fluctuations, and are given as

h«0kixy 5 n

*
›u0

i

›x
j

›u0
i

›x
j

+
xy

(21)

and

h«0bixy 5
a

N2

*
›b0

›x
j

›b0

›x
j

+
xy

, (22)

respectively. Notice that the above quantities are all

functions of the vertical coordinate z and that h«0kixy and
h«0bixy are positive quantities, whereas hP kixy and hP bixy
can assume both positive and negative values. The

complete set of equations including all terms that con-

tribute to the evolution of the mean and the fluctuating

part can be found in Achatz (2007b). We do not include

them here, since the other terms do not contribute to the

energy exchange between the horizontal mean and the

horizontally dependent deviations.

Figures 16 and 17 show the production of kinetic and

potential energy for cases IGW81 and IGW72 normal-

ized by the corresponding pseudo energy dissipation

rate. From Fig. 16, we see that the in upper half of the

domain, the ratio hP kixy/h«0kixy is approximately unity

(cf. the zoomed panels). In fact, for the first breaking

event of case IGW81 (Fig. 16a) the ratio is 1.12 when

averaged in the range 1500, z, 3000m, and for the last

breaking event of case IGW72 (Fig. 16d) the averaged

ratio in the interval 1500 , z , 2500m is 0.97.

Conversely, we do not identify any sign of a local

balance between the production and the dissipation of

potential energy (Fig. 17); although we only show the

results at the first breakdown, similar results are ob-

tained for the other breaking events.

These figures also reveal that the vertical profiles of

hP kixy and hP bixy at the wave breakdown are inhomo-

geneous distributed in space. The fact that we find both

positive as well as negative values of hP kixy and hP bixy
indicates that energy transfers occur from the mean field

to the fluctuations, and vice versa. Specifically, for the

kinetic energy, we find that hP kixy is predominantly

positive in the upper half of the numerical domain (z .
1500m). The large ratios of hP kixy/h«0kixy observed in

Figs. 16b and 16d are a consequence of the low energy

dissipation rate, as already observed in the Hovmöller
diagrams in section 3c.

4. Conclusions

We have presented results from fully resolved three-

dimensional simulations of a inertia–gravity wave break-

ing in themiddle atmosphere. Two cases were considered,

FIG. 15. Time evolution of the small-scale fluctuation covariances for (a) case IGW81 and (b) case IGW72.

Different line colors denote the different terms: hu0u0ixyz (black), hy0y0ixyz (red), hw0w0ixyz (blue), and hb0b0ixyz/N2

(green).
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which correspond to two differentReynolds numbers and,

accordingly, two different geopotential altitudes.

Both cases IGW81 and IGW72 undergo a sequence of

breaking events, which aremarked by a rise in the kinetic

energy dissipation rate. The general picture of the wave

breakdown is somewhat similar for both Reynolds num-

bers. Flow-field visualization illustrates the outbreak of

fine scales of motion in the vertical upper half of the

numerical domain, which are finer in case IGW72 (higher

Reynolds number). Along the same line, Hovmöller di-
agrams show that the kinetic energy dissipation rate is

more intense in the upper half of the domain, signalizing

the dominance of large spatial velocity gradients where

the base wave is least stable. The Richardson number can

be used as a diagnostic tool to detect these regions.

At the time of the wave breakdown, the kinetic energy

dissipation rate tensor exhibits an equipartition of dis-

sipation among its individual components, and the ver-

tical kinetic energy spectrum displays a 5/3 scaling for a

broad range of wavelengths. At periods in-between the

breaking events, on the other hand, the kinetic energy

dissipation rate tensor is strongly anisotropic and the

vertical kinetic energy spectrum scales with a cubic

power law, indicating the relevance of buoyancy effects

at these times.

Through an energy budget analysis we saw that the

energy transfer mechanism during the wave breakdown

is dominated by the energy transfer from huuixyz to

hwwixyz. This was shown to be due to the pressure term,

which drives the perturbation field toward an isotropic

FIG. 16. Vertical profiles of the ratio between the kinetic energy production and the (pseudo) kinetic energy

dissipation rate for (a),(b) case IGW81 and (c),(d) case IGW72, corresponding to the (a),(c) first and (b),(d) last

breaking events.
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state while ensuring volume conservation, and due to

the subsequent conversion into potential energy. The

role of the Coriolis force, although less relevant, was

also present in shifting energy from hyyixyz to huuixyz.
Complementing these observations, we also decom-

posed the velocity and the buoyancy fields into a mean

and a fluctuating part. These results show that the local

transfer of kinetic energy between the mean and the

fluctuating parts is mainly forward, i.e., from themean to

the fluctuations. In the upper half of the numerical do-

main, where finer scales of motion were identified, we

found that the pseudo kinetic energy dissipation rate

and the kinetic energy production are roughly in balance

during the breaking events.
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