

Delft University of Technology

Extending Source Code Pre-Trained Language Models to Summarise Decompiled
Binaries

Al-Kaswan, Ali; Ahmed, Toufique; Izadi, Maliheh; Sawant, Anand Ashok; Devanbu, Premkumar; van
Deursen, Arie
DOI
10.1109/SANER56733.2023.00033
Publication date
2023
Document Version
Final published version
Published in
Proceedings of the 30th IEEE International Conference on Software Analysis, Evolution and Reengineering
(SANER)

Citation (APA)
Al-Kaswan, A., Ahmed, T., Izadi, M., Sawant, A. A., Devanbu, P., & van Deursen, A. (2023). Extending
Source Code Pre-Trained Language Models to Summarise Decompiled Binaries. In C. Ceballos (Ed.),
Proceedings of the 30th IEEE International Conference on Software Analysis, Evolution and Reengineering
(SANER) (pp. 260-271). IEEE. https://doi.org/10.1109/SANER56733.2023.00033
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/SANER56733.2023.00033
https://doi.org/10.1109/SANER56733.2023.00033

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

Extending Source Code Pre-Trained Language
Models to Summarise Decompiled Binaries

Ali Al-Kaswan
Delft University of Technology

Delft, The Netherlands

a.al-kaswan@tudelft.nl

Toufique Ahmed
University of California, Davis

Davis, California, USA

tfahmed@ucdavis.edu

Maliheh Izadi
Delft University of Technology

Delft, The Netherlands

m.izadi@tudelft.nl

Anand Ashok Sawant
University of California, Davis

Davis, California, USA

asawant@ucdavis.edu

Premkumar Devanbu
University of California, Davis

Davis, California, USA

ptdevanbu@ucdavis.edu

Arie van Deursen
Delft University of Technology

Delft, The Netherlands

arie.vandeursen@tudelft.nl

Abstract—Binary reverse engineering is used to understand
and analyse programs for which the source code is unavailable.
Decompilers can help, transforming opaque binaries into a
more readable source code-like representation. Still, reverse
engineering is difficult and costly, involving considering effort
in labelling code with helpful summaries. While the automated
summarisation of decompiled code can help reverse engineers
understand and analyse binaries, current work mainly focuses on
summarising source code, and no suitable dataset exists for this
task. In this work, we extend large pre-trained language models of
source code to summarise de-compiled binary functions. Further-
more, we investigate the impact of input and data properties on the
performance of such models. Our approach consists of two main
components; the data and the model. We first build CAPYBARA,
a dataset of 214K decompiled function-documentation pairs
across various compiler optimisations. We extend CAPYBARA
further by removing identifiers, and deduplicating the data.
Next, we fine-tune the CodeT5 base model with CAPYBARA to
create BinT5. BinT5 achieves the state-of-the-art BLEU-4 score
of 60.83, 58.82 and, 44.21 for summarising source, decompiled,
and obfuscated decompiled code, respectively. This indicates that
these models can be extended to decompiled binaries successfully.
Finally, we found that the performance of BinT5 is not heavily
dependent on the dataset size and compiler optimisation level.
We recommend future research to further investigate transferring
knowledge when working with less expressive input formats such
as stripped binaries.

Index Terms—Decompilation, Binary, Reverse Engineering,
Summarization, Deep Learning, Pre-trained Language Models,
CodeT5, Transformers

I. INTRODUCTION

Reverse engineering binary programs has many applica-

tions, in particular, software security [1]. Binary reverse

engineering is a hard task, requiring highly skilled reverse

engineers [1, 2]. Disassemblers and decompilers can help

in this process. Disassemblers transform the binary into a

low-level intermediate representation, and decompilers lift

the representation to a high-level programming language-like

representation. But the output of decompilers is still difficult

to read and understand [1, 3]. Much of the work that goes

into reverse engineering a binary is spent labelling functions

with semantic descriptions [1]. Current approaches [4–10]

mainly focus on recovering aspects lost in the compilation

and decompilation process, such as names and types. Existing

works fail to address the inherent difficulties in binary code

comprehensibility, namely, the need for a high-level overview

of the code.

For source code, methods exist to automatically generate

summaries from code [11, 12]. Source code summarisation

is used to automatically generate short natural language de-

scriptions of code, which support program comprehension

and aid maintenance [12, 13]. While these methods have

been successfully applied to programming languages such as

Python, Java and PHP [14–16], using pre-trained language

models [14–16], none of these methods has been applied to

the relatively syntactically-poor output of decompilers (see

Figures 1a and 1b). Being able to quickly determine the

context and application of a function, can save valuable

analysis time, and greatly benefit reverse engineers. Function

and variable names alone, are inadequate representations of the

source code [12], which is why having descriptive summaries

of binaries is desirable.

Following [17], source code can be described as having

two information channels: the algorithmic channel and the

natural language channel. The algorithmic channel specifies

the execution of a program (semantics), while the natural

language channel explains the purpose and context of the

program to humans [17]. The natural channel includes function

and variable names, code comments and the specific human-

readable structure of programs. Processors only consider the

algorithmic channel to execute a program, while humans use

both the algorithmic channel and the natural channel to under-

stand a piece of code [17]. Furthermore, code is very regular

and predictable, even more so than natural languages [18].

The compilation process, which transforms readable code

into executable binaries, removes much of the information

contained in the natural channel. Especially stripped binaries

— binaries of which the symbol table is removed — are

challenging, since they have almost no identifiers at all as

260

2023 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER)

2640-7574/23/$31.00 ©2023 IEEE
DOI 10.1109/SANER56733.2023.00033

20
23

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 S

of
tw

ar
e

A
na

ly
si

s,
Ev

ol
ut

io
n

an
d

R
ee

ng
in

ee
rin

g
(S

A
N

ER
) |

 9
78

-1
-6

65
4-

52
78

-6
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
SA

N
ER

56
73

3.
20

23
.0

00
33

Authorized licensed use limited to: TU Delft Library. Downloaded on November 14,2023 at 09:27:47 UTC from IEEE Xplore. Restrictions apply.

can be observed in Figure 1c.

The goal of this paper is to advance the field of binary

reverse engineering by exploring the application of code

summarisation to decompiled binaries by taking advantage of

source code pre-trained language models.

However, there exists no dataset of aligned binaries and

source code summaries since this is a new and unexplored

task. As pointed out by LeClair and McMillan, the lack of

standardised datasets is a major barrier to ongoing research,

which we will address for this task [19]. In this paper, we

create a dataset containing pairs of decompiled and stripped-

decompiled functions and summaries of these functions. Dur-

ing the creation of this dataset, we conform to the current best

practices for dataset construction [19, 20].

We apply this dataset to an existing pre-trained language

model using transfer learning, by fine-tuning this pre-trained

model on our dataset. For this task, we selected a pre-trained

CodeT5 model, which was only trained on source code [14].

We perform experiments on this model to explore the

impact of decompilation, and the importance of identifiers.

Furthermore, we explore the impact of compiler optimisation

levels, the dataset size and the level of duplication.

Our findings are that the decompilation and alignment

of stripped functions has a very high failure rate; and the

resulting stripped model has low performance. But, we found

that the model shows state-of-the-art performance with both

decompiled code as well as demi-stripped stripped code, code

of which the identifiers were removed after decompilation. Our

experiments on data duplication and dataset size further show

that these models can be trained with few data, and that while

duplicates have a high impact on performance, their presence

is not paramount to model performance.

Our key result: language models pre-trained on source code
can be fine-tuned on binaries, opening up a range of new
possibilities for the automated analysis of binaries.

To summarise, the main contributions of this paper are:

• CAPYBARA1, a dataset of Combined Aligned de-
comPiled BinarY code And Related Annotations. A novel

dataset of aligned, C, decompiled, stripped-decompiled

and demi-stripped summary pairs2 (Section III);

• BinT53, a Binary summarisation CodeT5 model, a simple

and straightforward adaptation of a source code trained

code summarisation model to decompiled code using

CAPYBARA (Section IV);

• An empirical investigation on the impact of the properties

of decompiled code and the properties of CAPYBARA

(Sections V and VI);

The materials, including the processed and raw data1, the

trained model checkpoints and steps to replicate our exper-

iments3, are openly available in our replication package4.

1CAPYBARA: https://doi.org/10.5281/zenodo.7229809
2Decompiled code with strip-like obfuscation applied
3BinT5: https://doi.org/10.5281/zenodo.7229913
4Replication package: https://github.com/AISE-TUDelft/Capybara-BinT5

II. BACKGROUND

In this section, we introduce the background of compilers,

binary reverse engineering, transfer learning and the code

summarisation task.

A. Compilers and Optimisation Levels

Compilers are programs that convert source code from one

programming language to another, but generally, and in the

context of this work, the term is used to refer to programs

that translate high-level code, like C, to a lower-level language

such as machine code or bytecode. For our work, we focus

on the GNU Compiler Collection (GCC)5 and Clang/LLVM

(Clang)6.

Compilers feature optimisation levels. Generally, the goal

of optimisations is the improvement of runtime performance

or program size at the expense of compilation time and the

ability to debug [21].

By default, if GCC is invoked without any optimisation

options, the program will be compiled with -O0. -O1, -O2

and -O3 incrementally apply more optimisation to the binary

at the expense of a higher compilation time [22]. Optimisations

can restructure and transform the program in relation to the

source code, by changing the control flow or the data of the

program [23]. This obfuscation can complicate the reverse

engineering process by reducing the accuracy of tools [23].

B. Ghidra

Ghidra7 is a free and open-source reverse engineering

toolkit developed by the US National Security Agency. Ghidra

contains many separate analysis modules that allow a reverse

engineer to analyse binaries. Ghidra features a disassembler,

which assembles binaries back into an intermediate represen-

tation. In the case of x86-x64 binaries like the binaries this

work focuses on, the intermediate representation will be the

Assembly language. The decompiler, on the other hand, is a

processor language-agnostic transformation engine that takes

the disassembled code and creates a source code representa-

tion, namely pseudo-C. Pseudo-C follows the general language

conventions of C, but it cannot be compiled.

Observe the relatively simple rtp sess ssrc function from

creytiv/re8 shown in Figure 1a. We compile the project using

the -O3 compiler level as defined in the project. We decompile

the binaries using Ghidra’s decompiler using the standard

configuration, the resulting pseudo-code is shown in Figure 1b.

We observe that aside from the function name, almost the

entire natural channel has been destroyed by the compilation

and decompilation process. The parameter and variable names

are gone, any documentation is removed and the relatively

simple logic has been unrolled to a much more difficult-

to-understand representation. Ghidra also incorrectly labelled

many of the variable types and failed to identify the struct

datatype.

5GCC: https://gcc.gnu.org/
6Clang: https://clang.llvm.org/
7Ghidra: https://ghidra-sre.org/
8re: https://github.com/creytiv/re

261

Authorized licensed use limited to: TU Delft Library. Downloaded on November 14,2023 at 09:27:47 UTC from IEEE Xplore. Restrictions apply.

/**
* Get the Synchronizing source for an RTP/RTCP

Socket↪→
* @param rs RTP Socket
* @return Synchronizing source
*/
uint32_t rtp_sess_ssrc(const struct rtp_sock *rs){

return rs ? rs -> enc.ssrc : 0;}

(a) Source rtp sess ssrc function

ulong rtp_sess_ssrc(long param_1){
uint local_14 ;
if (param_1 == 0){

local_14 = 0;
} else {

local_14 = * (uint *) (param_1 + 4);}
return (ulong) local_14;

}

(b) Decompiled rtp sess ssrc function

ulong FUN_00100d30 (long param_1){
uint local_14 ;
if (param_1 == 0) {

local_14 = 0 ;
} else {

local_14 = * (uint *) (param_1 + 4);}
return (ulong) local_14 ;}

(c) Stripped decompiled rtp sess ssrc function

Fig. 1: Example source, decompiled and stripped code snippet

Using our trained BinT5 model we can summarise the

decompiled code and generate the following summary: Get

the source for an RTP/RTCP Socket. This summary gives us

an indication of the purpose of the function. Integrating this

generated summary into Ghidra increases the readability of

the entire binary. Keep in mind that a reverse engineer has

to understand not just this function, but hundreds of different

functions in a single binary.

C. Stripping

Aside from compiling with higher optimisation levels, bi-

naries can also be stripped to obfuscate the underlying code

and to resist analysis [24]. Commercial off-the-shelf software

is often stripped to reduce the memory and storage footprint

of the binaries, and to resist analysis to protect the intellectual

property of the creator. Many vulnerable and malicious bina-

ries are, unfortunately, also stripped to resist security analysis

and hide their faults [5].

Unix and Unix-like operating systems include a strip utility.

The strip utility removes any operands that are not nec-

essary for the execution of the binary while ensuring that

the execution of the binary remains unchanged. The exact

implementation and what constitutes unnecessary operands are

left to the implementor.9 The strip utility as implemented in

9strip: https://pubs.opengroup.org/onlinepubs/7908799/xcu/strip.html

GNU/Linux removes the symbol table from the binary. The

symbol table contains each symbol’s location, type and name.

Like higher optimisation levels, the use of stripping can

greatly complicate the efforts to reverse engineer a binary,

as well as reduce the accuracy and effectiveness of reverse

engineering tools [24].

For example, we compile, strip and decompile the function

in Figure 1a, and the resulting stripped decompiled function

is shown in Figure 1c. In addition to the details lost by the

decompilation process, the stripper removed all symbols, like

the function names.

D. Code Summarisation Task:

Code summarisation (also referred to as source code sum-

marisation) is the task of writing short descriptions from

source code, usually a single-sentence summary of the source

code. The main use is for software documentation, like the

one-sentence JavaDoc description used in Java [19]. This

documentation is important for program comprehension and

maintenance. But the process of writing and maintaining

these descriptions is a labour-intensive and time-consuming

task, which is where the benefits of automating that process

arise. Automatic code summarisation is an active and popular

research problem in the field of software engineering [19].

E. Transformer-based Models

Transformers were originally proposed by Vaswani et al.

as a sequence-to-sequence architecture [25]. Unlike the Re-

current Neural Networks [26] (RNN), the Long Short-Term

Memory [27] (LSTM) variant of RNNs [26] and Convolutional

Neural Networks [28] (CNN), Transformers only use a mecha-

nism called self-attention to capture dependencies between the

input and output. The current state-of-the-art NLP models for

programming languages such as CodeT5 [14], CodeBERT [15]

and PolyGlotCodeBERT [16] are all based on the Transformer

architecture [25].

F. Transfer Learning

Pre-trained Transformers-based language models, such as

RoBERTa [29], CodeBERT [15] and CodeT5 [14] utilise

a pre-train then fine-tune paradigm. The bespoke paradigm

was initially introduced by Kenton and Toutanova. In this

paradigm, the models are first trained in an unsupervised

manner on a large unlabelled dataset. These pre-trained models

can then be fine-tuned to perform a more specialised task,

such as summarisation. Transfer learning uses the knowledge

that is obtained in one task to solve a different task. It

allows the creation of general models that are trained once

on massive datasets. These general models, which contain

general domain knowledge can then be fine-tuned for a specific

downstream task. This approach is quicker and requires less

training data than training a model on the downstream task

from scratch [30].

262

Authorized licensed use limited to: TU Delft Library. Downloaded on November 14,2023 at 09:27:47 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: Data Collection Pipeline

III. CAPYBARA DATASET

We require a dataset of decompiled functions labelled with

a descriptive summary to create and assess our solution. This

dataset should be relatively large to suit the ‘data-hungry’

nature of deep-learning models. Furthermore, the dataset needs

to feature a diverse set of data representative of our solution’s

actual real-life use case.

A. Data Collection

To create such a large and diverse dataset we made use

of BinSwarm [7], an existing dataset of aligned decompiled

and stripped decompiled functions10. BinSwarm collects C-

based projects from Github. The projects are filtered to only

include those that are actively being developed, using Travis

CI and built for Ubuntu Linux. The projects are built using

Docker. The resulting binaries are then copied and stripped,

and both the stripped and unstripped binaries are decompiled

using Ghidra. The functions are extracted from the stripped

and unstripped decompiled code and aligned with the source

code. The BinSwarm dataset only contains aligned tuples of

source code and (stripped-) decompiled functions. We extract

documentation from the original source code files to add

descriptive comments to this dataset. To that end, we depend

on the documentation included in the source code by the

original authors in the form of single and multiline comments.

We locate the functions in the unbuilt project files and align the

decompiled functions with the comments in the source code

using srcML11 to extract any documentation located directly

before a function signature. A high-level overview of the entire

process is shown in Figure 2.

A function’s documentation often also contains other details

besides the descriptive summary. We found that C projects

do not follow a single documentation standard. For example,

Javadoc for Java has a short one-line description or summary

for each method at the beginning of the multiline comment

10BinSwarm: https://hub.docker.com/r/binswarm/cbuilds
11srcML: https://www.srcml.org/

/** @brief Select the source of Microcontroller
Clock Output↪→

* Exact sources available depend on your target.
* On devices with multiple MCO pins, this function

controls MCO1↪→
* @param[in] mcosrc the unshifted source bits
*/

Fig. 3: Example of documentation from jeanthom/ DirtyJTAG:

rcc set mco

block. In C, there is no singular documentation standard, so

there might not be a single-line summary, and we will need

to locate it in the comment block automatically.

a) Summary Extraction Rules: We observe that the ma-

jority of single-line data are descriptive summaries, so we

extract the first sentence. We identify many documentation

styles in our multi-line data, we define some automated rules

to extract summaries from the documentation:

• @brief or @purpose: If the documentation contains a

‘@brief’ or ‘@purpose’ tag, we extract the first sentence

after the tag. The ‘brief‘ tag is part of the Doxygen docu-

mentation standard12, an example is shown in Figure 3
13.

• Description: If the documentation contains a line with

‘Description:‘, we extract the following sentence.

• @param or @v: Documentation that contains an ‘@v’

or ‘@param’ tag, usually has a summary in the sentence

before the tag. We extract that sentence.

b) Filtering Rules: To improve the quality of the dataset

we filter out samples based on the rules used by the Code-

SearchNet dataset [20] included in the CodeXGlue benchmark

for the summarisation task [31]:

• Documentation length: We remove any summaries that

are too long or too short and remove anything shorter

than 3 or longer than 256 tokens.

• Special tokens: We follow the example of the Code-

SearchNet [20] and remove all documentation that con-

tains special tokens. We scan for web tokens (like

‘http://’), HTML tokens (like ‘<head>’), paths (like

‘C://Users/..’), since this documentation usually refers to

external resources. We additionally filter any developer

tokens (like ‘FIXME:’), as these documents do not pro-

vide meaningful information about the function itself, but

contain comments about the development process.

• Language: We filter out any documentation that was not

written in English using the FastText language identifica-

tion algorithm [32]. Around 92.19% of the documentation

is in English.

• Empty documentation: We find that a large number of

functions did not have any documentation associated with

them at all. We simply remove these samples from the

dataset.

12Doxygen:https://doxygen.nl/manual/docblocks.html
13jeanthom/DirtyJTAG:rcc set mco:https://gitlab.com/

insane-adding-machines/unicore-mx/-/blob/master/lib/stm32/common/
rcc common all.c#L192

263

Authorized licensed use limited to: TU Delft Library. Downloaded on November 14,2023 at 09:27:47 UTC from IEEE Xplore. Restrictions apply.

• Abstract Syntax Tree: The authors of the CodeSearch-

Net dataset [20] additionally, remove any samples that do

not parse into an AST. We choose to omit this step since

all of our samples have been successfully compiled and

have thus at one point been parsed into an AST by the

compiler.

B. Dataset Preparation

a) Synthesis of Demi-stripped Code: From the dataset

of decompiled functions, we also create another dataset. We

emulate the process of stripping by removing all the iden-

tifiers from the decompiled code and replacing them with

placeholders. For clarity, we call this demi-stripped data. Like

the stripped dataset, the identifiers are all removed, but this is

only done after the decompilation process. The decompiler still

had access to the identifiers and could use the symbol table

during decompilation. Most importantly, this demi-stripped

dataset still has the same structure and control flow as the

unstripped decompiled dataset and avoids any decompilation

issues arising from stripping.

b) Data Split: The dataset is split into a train, test and

validation set. These sets constitute approximately, 80%, 10%

and 10% [19] of the complete dataset. As recommended

by Shi et al. and LeClair and McMillan, we prevent leakage

of vocabulary and code patterns between the sets, by sampling

the sets in a cross-project manner [13, 19]. This means that an

entire project gets assigned to one of the sets, and functions

from the same project cannot be assigned to different sets. The

projects in the test and validation set are the same across all

datasets.

c) Duplication: Large corpora of code, like the cor-

pus gathered by BinSwarm, tend to have a high degree

of duplication [19]. As a result, snippets of code that are

relatively unchanged appear in multiple parts of the corpus.

This can be in the form of copied, generic or auto-generated

functions. These functions will appear in multiple repositories

and might be duplicated across the training and testing data.

Besides exact duplicates, near-duplicates can also occur. Near-

duplicates differ in a few minor aspects like additional code

comments or different function names. While removing exact

duplicates is relatively fast and straightforward, removing

near-duplicates is much more challenging and computationally

intensive [33]. The issue with code duplication in classical

code summarisation is that the models and tools are supposed

to be used to generate summaries for new and unseen code.

The evaluation metrics should therefore measure the gener-

alisation of the tool on new samples [33]. Duplicates and

near-duplicates are not defined as new samples. A user of

such a tool could simply look these samples up. Furthermore,

large, high-capacity models like CodeT5 with 220M [14] or

CodeBERT with 128M [15] parameters, have a large capacity

to memorise duplicated code [33].

However, the use case outlined in this work is more akin

to deobfuscation. As explained by Allamanis, deobfuscation

could be a use case where duplicates are valid and part of the

true distribution of the problem [33]. Compiled code contains

Fig. 4: Tokens in source C and decompiled code

a lot of duplicate code, and understanding this code is still

difficult and essential for understanding the binary. While

regular source code allows the reader to look up code snippets,

decompiled binaries have an additional obfuscation applied.

We, therefore, focus on the model’s performance on code

with duplicates as we believe duplicates to be part of the true

distribution of the data, but we also report the deduplicated

results.

C. Dataset Properties

Table I shows the size of the processed dataset. Of the 2.1M

aligned decompiled functions, we extract documentation for

215k of them, and we found that the majority of samples, 1.5M

did not have any documentation at all. Furthermore, BinSwarm

only provided us with 415k aligned stripped samples, and we

can extract documentation for only 14k of these samples.

Dataset Including duplicates Deduplicated

C/Demi/Decom 214,587 79,673
Stripped 14,245 7,826

TABLE I: Number of functions in dataset

The vast majority of documentation is in the form of

multi-line comments as opposed to single-line or double-slash

comments. We found that the documentation and comments

had a mean length of 42.60 and 8.14 tokens, respectively.

Figure 4 shows the distribution of the number of tokens in

source code and decompiled code. The source and decompiled

code have a mean length of 399 and 779 tokens, respectively.

Decompiled code also has close to double the LOC of source

code, with means of 30.77 and 53.42 lines for source and

decompiled, respectively.

The majority of decompiled functions are compiled with

optimisation level -O2, with a similar number of -O1 and -

O3 samples and relatively few -O0 samples. Stripped data has

a very even distribution of optimisation levels, with only -

O0 having significantly fewer samples. Note that there are

more optimisation levels than shown in Figure 5, for brevity

the different levels are grouped into their base optimisation

264

Authorized licensed use limited to: TU Delft Library. Downloaded on November 14,2023 at 09:27:47 UTC from IEEE Xplore. Restrictions apply.

Fig. 5: Distribution of optimisation levels in decompiled (left)

and stripped (right)

level. -Oa is grouped with -O0, -Of and -Og are grouped

with -O1, -Os is grouped with -O2. We also observe some

samples with an optimisation level higher than -O3 (-O8 and

-O7), as specified by the GCC documentation, these levels are

equivalent to -O314.

IV. BINT5

We select CodeT5 [14] as the base-model for our experi-

ments since it is the highest-scoring publicly-available model

on the CodeXGLUE [31] Code Summarisation benchmark15.

CodeT5 is a programming language model built on the T5

(Text-to-text Transfer Transformer) architecture [34] and pre-

trained on a mix of supervised and unsupervised tasks. CodeT5

employs an encoder-decoder architecture. In contrast to other

models, CodeT5 is trained using both unimodal (PL only) and

bimodal (NL-to-PL) tasks in eight programming languages.

This bimodal training allows CodeT5 to perform strong cross-

modal tasks such as code summarisation and code generation

(PL-to-NL). Many other models only use the data and lan-

guages included in the CodeXGlue dataset [15, 16, 31], while

CodeT5 also uses a mined dataset of C and C++ code for

its pre-training objectives [14]. The inclusion of C training

data should help the model with the CAPYBARA dataset.

There could be some overlap in the training data between

CAPYBARA and the dataset used by Wang et al. which would

cause leakage, we address these concerns in Section VII.
CodeT5 also utilises the transfer learning paradigm, which

allows us to train the model with relatively little data. In

this case, we make use of the CodeT5-base model, which

was trained on mixed upstream tasks by the authors [14].

We fine-tune this model on the code summarization task on

CAPYBARA. An overview of how we applied the model to

create BinT5 is provided in Figure 6.

V. EXPERIMENTAL SETUP

To assess the effectiveness of our approach, we first evaluate

the performance of the model, we then identify the aspects of

the data that make this task inherently difficult, and we finally

investigate aspects of the datasets and their influence on the

complexity of the task.

14GCC optimisation levels: https://gcc.gnu.org/onlinedocs/gcc-4.4.2/gcc/
Optimize-Options.html#Optimize-Options

15CodeXGLUE benchmark: https://microsoft.github.io/CodeXGLUE/

Fig. 6: BinT5 fine-tuning pipeline

A. Research Questions

In the context of the study, we thereby formulate the

Research Questions (RQ) as follows.

RQ1: How effective are fine-tuned Transformer-based models
at decompiled code summarisation? To investigate the

application of existing models to binaries using CAPY-

BARA, we set a baseline by training a model on the code

summarisation task on the source C-code dataset. We then

train a summarisation model on both the decompiled and

the stripped dataset. We use the evaluation metrics to

compare the performance of the different models.

RQ2: Which aspects of the input contribute most to model per-
formance? We investigate which aspects of decompiled

code increase the difficulty of the task. We, therefore,

look at the impact of the symbol table on decompilation,

for this, we fine-tune a model on the demi-stripped dataset

and compare it to the other models. We also investigate

the importance of the function name by removing just the

function name from the decompiled code. Furthermore,

we investigate the impact of the optimisation level by

exploring the performance per optimisation level.

RQ3: What is the impact of dataset properties on model per-
formance? We finally investigate how the construction

of CAPYBARA influences the models. To answer the

final research question we remove the duplicates from

the datasets and retrain the models, after which we

compare the performance to the baselines. Furthermore,

we investigate the impact of dataset size, by incrementally

reducing the size of the training sets.

B. Baselines

To first establish a performance baseline, we train a CodeT5-

base model on the summarisation task on source C. Note

that only samples which are aligned with decompiled code

are included in the source C dataset. The baseline is used to

compare the decompiled C, stripped decompiled C and the

demi-stripped datasets to the source code.

C. Evaluation Metrics

We evaluate the performance between the reference sum-

mary from CAPYBARA and the candidate summary produced

by BinT5 using the EM, BLEU-4 [35], ROUGE-L [36] and,

METEOR [37] metrics.

265

Authorized licensed use limited to: TU Delft Library. Downloaded on November 14,2023 at 09:27:47 UTC from IEEE Xplore. Restrictions apply.

a) Exact Match (EM): The simplest metric is the EM

which scores a prediction one if it matches its reference exactly

and zero otherwise.

b) BLEU-4: The most widely used metric in the code

summarisation task is the Bilingual Evaluation Understudy

Score (BLEU) [13]. BLEU-4 produces a percentage number

between 0 and 100, which defines the similarity between a

candidate and a set of reference sentences. BLEU-4 calculates

the cumulative 4-gram precision scores, the number of match-

ing 4-grams divided by the total number of 4-grams in the

candidate sentence [35]. The unigrams and bigrams account

for the adequacy of the candidate while the longer three and

4-grams account for fluency. To prevent short sentences the

result is multiplied by a brevity penalty as well. A smoothing

function is applied to prevent sequences with no matching 4-

grams to score zero [38]. While Shi et al. recommend BLEU-4

with smoothing method 4 [13], we opted to use the Moses [39]

implementation of BLEU-4 which uses smoothing method 2

since this is also utilised by CodeSearchNet, CodeXGlue and

CodeT5 [14, 20, 31].

c) ROUGE-L: ROUGE or Recall-Oriented Understudy

for Gisting Evaluation, is a package which includes several

metrics, the most popular among them is ROUGE-L [36].

ROUGE-L is more recall oriented than BLEU-4. ROUGE-L

simply finds the longest common subsequence (LCS) between

the reference and the candidate. Note that the words do not

need to be consecutive but they have to be in order.

d) METEOR: METEOR or Metric for Evaluation for

Translation with Explicit Ordering [37] uses word lists and

stemming to also take synonyms into account and calculates

the harmonic mean of the unigram precision and recall. Similar

to ROUGE-L, METEOR is more recall-focused. METEOR has

a higher correlation with human judgement than BLEU-4 [19]

at the sentence level.

D. Data deduplication

To create a deduplicated version of the CAPYBARA

dataset we make use of a fork16 of the near-duplicate-code-

detector [33]. We use this tool to compare all the datasets’

functions and find clusters of near-duplicate functions. We

randomly select one function per cluster and discard the rest

from the dataset. We use the standard tool configuration as

recommended by Allamanis. Of the removed duplicates, we

observe that a relatively large number originates from common

libraries, such as SQLite17, that are packaged with binary

programs. Thus a certain amount of duplication is also likely

to occur “in the wild”.

E. Configuration

We process and visualise the data with Pandas 1.4.3 and

Ghidra 10.0.418. FastText 1.0.3 with the largest lid.176.bin

16Near Duplicate Code Detector: https://github.com/SERG-Delft/
near-duplicate-code-remover

17SQLite: https://www.sqlite.org/index.html
18It is not recommended to use Ghidra versions before 10.1 since these

versions have not been patched against a Log4J RCE

BLEU-4 EM METEOR ROUGE-L

C 60.83 52.19 65.33 66.51
DecomC 58.82 48.92 63.14 64.51
Stripped 11.26 1.85 14.50 17.25

TABLE II: Result of fine-tuning CodeT5-base on mined

datasets

model is used to detect languages. We train the model using

Transformers version 4.16.2 running on Torch 1.9.0+cu111 in

the nvidia/cuda:11.4.0-base docker container image. We share

a Docker image with all the libraries required to run BinT5

pre-installed on DockerHub19.

A grid search of the optimal settings was infeasible from a

time perspective, so we performed training mainly using the

recommended settings from the CodeT5-base model [14]. We

double the source length for the decompiled, stripped, and

demi-stripped code to 512 tokens instead of the standard 256
tokens used for the source code to compensate for the fact

that the average length of decompiled code is almost twice as

long as the source code. We trained the model on a machine

with an NVIDIA GeForce RTX3080 with 10GB of VRAM

and an AMD Ryzen Threadripper 3990X 64-Core Processor

with 192GB of RAM running Ubuntu 20.04.4 LTS. The GPU

is running Nvidia driver version 510.60.02 with Cuda 11.6.

The authors of CodeT5 used an NVIDIA A100 GPU with

40GB of VRAM for fine-tuning [14]. To compensate for the

lack of memory, we reduced the batch size to 2, which was the

maximum length that could still fit in the VRAM, we increase

the ‘gradient accumulation steps’ to 24 to still achieve the

effective standard batch size of 48.

VI. RESULTS

We present the results of our experiments to answer the

research questions, results are grouped per research question.

The metrics are calculated for each sample from the test set,

and the average scores are presented.

A. RQ1: Model Effectiveness

The performance of the CodeT5-base model on each of the

datasets is presented in table II.

We found that the decompiled code model generally pro-

duced good summaries, evidenced by the BLEU-4 score of

58.82, which is slightly lower than the baseline set by the

source code. The stripped model mainly produced unusable

summaries, as evidenced by the BLEU-4 score of 11. The

high EM score could be an indication of a high duplication

factor.

Initial experiments with GraphCodeBERT [40] and Poly-

glotGraphCodeBERT [16] base models fine-tuned on CAPY-

BARA show performance around 5 and 3 BLEU-4 lower,

respectively. This is a relatively small difference, especially

considering the model size. This shows that the performance of

BinT5 does not heavily depend on the additional pre-training

19BinT5 Docker Image: https://hub.docker.com/r/aalkaswan/bint5/tags

266

Authorized licensed use limited to: TU Delft Library. Downloaded on November 14,2023 at 09:27:47 UTC from IEEE Xplore. Restrictions apply.

BLEU-4 EM METEOR ROUGE-L

DecomC 58.82 48.92 58.4 60.32
Demi 44.21 35.10 47.89 49.59
NoFunName 46.99 37.12 45.92 48.07

TABLE III: Result of fine-tuning CodeT5-base on synthetic

data

Opt level BLEU-4 EM METEOR ROUGE-L

-O0 72.88 34.18 73.19 74.84
-O1 50.30 59.84 55.36 54.84
-O2 62.31 46.23 64.50 66.05
-O3 54.68 54.99 58.25 59.28

TABLE IV: Average BLEU-4 score of decompiled code per

optimisation level

on C and C# performed by Wang et al.. Furthermore, this result

shows that it is improbable that significant dataset leakage has

taken place.

We found a relatively large difference between the number

of recovered decompiled and stripped decompiled functions.

This can likely be attributed to the fact that Ghidra struggles

a lot more with recovering stripped functions. Recall that the

symbol table commonly contains information regarding the

location and name of functions. When this table is dropped,

the start- and endpoints of functions are hard to infer by

automatic tools, especially since many functions get inlined,

and JUMP instructions replace CALL instructions. Aside from

difficulties in demarcating functions, it is also difficult to

align the associated source code function with the decompiled

function. With unstripped code, the function name remains,

meaning the functions can be aligned using the name. We

attempted to utilise an existing solution by Alves-Foss and

Song called Jima [41] to find function boundaries. Jima is the

current state-of-the-art tool for function boundary detection

in stripped binaries. The tool is implemented as a plugin for

Ghidra, but in our experiments, we find no statistical difference

between the base performance of Ghidra and Jima on our

dataset. The difficulties in extracting stripped functions, make

training and applying a model to stripped binaries challenging.

B. RQ2: Input Properties

As can be observed in Table III, the summaries produced

by the demi-stripped model were substantially worse than the

decompiled model, but most were still very usable, evident

by the BLEU-4 score above 44. Just removing the function

name gave quite similar results to demi-stripping. We find that

the loss of identifiers significantly lowers the performance of

the model, but stripped code also suffers from decompilation

faults, which seem to have a much larger impact on the model

performance. Hence, the performance of BinT5 on demi-

stripped code can be viewed as more representative of the

actual model and not impacted by faults introduced by Ghidra.

Table IV shows the average score per optimisation level. We

can observe that -O0 and -O2 perform better than -O1 and -

Fig. 7: BLEU-4 per trainset size for decompiled code and

deduplicated decompiled code

O3. Recall that -O0 is completely unoptimised, and that the

vast majority of our decompiled dataset is compiled with -O2,

which would explain why those optimisation levels perform

better.

C. RQ3: Dataset Properties

The performance of the base model on each of the dedupli-

cated datasets is presented in table V:

BLEU-4 EM METEOR ROUGE-L ΔBLEU-4

C 45.86 32.87 46.06 47.53 14.97
DecomC 42.48 28.08 25.23 27.66 16.34
Demi 25.38 14.51 42.47 44.47 18.83
Stripped 7.19 0.00 4.75 5.50 4.07

TABLE V: Result of fine-tuning CodeT5-base on the dedupli-

cated datasets and the difference with the baseline

We find that the influence of deduplication on our model’s

performance is relatively small on source code, at only 24%.

Duplicates have a relatively large impact on the decompiled

(28%) and demi-stripped (43%) code. Deduplication also

greatly decreases the EM rate across the board. Duplicates

have a relatively large impact on performance, but even with

the duplicates removed the model still produces many high-

quality summaries. The experiments on deduplication show

that the model seems to have a deeper understanding of the

data and is not simply reproducing previously seen samples.

As can be seen in Figure 7, the dataset size does not

have much of an impact, the model can be trained with

half or a quarter of the training samples without suffering

a considerable hit to performance. This could be attributed

to the high duplication factor of our dataset. It could also be

because the model was already pre-trained well by Wang et al.

and requires very little data for fine-tuning. This is a testament

to the relative ease with which these models could be extended

to decompiled code.

We also performed experiments where we did not apply the

filtering rules provided by CodeXGlue and where we always

mined the first sentence of any type of documentation. While

267

Authorized licensed use limited to: TU Delft Library. Downloaded on November 14,2023 at 09:27:47 UTC from IEEE Xplore. Restrictions apply.

we were able to collect around 480K decompiled samples, the

model performed substantially worse, only scoring 36.97 and

33.26 BLEU-4 on C and decompiled code, respectively. These

results show that the dataset quality also heavily impacts the

model performance.

VII. DISCUSSION

In the previous section, we found that BinT5 shows con-

siderable performance for decompiled code and demi-stripped

code on both regular as well as deduplicated data. While

this is a promising result, we conduct a small investigation

of the decompiled samples. We will put our observations on

identifiers into the context of the extreme summarisation task.

Based on this we discuss the implications of our work. Finally,

we will close this section by discussing the threats to validity.

A. Exploration of Results

To explore the results of BinT5 we pick 25 high and 25

low-scoring samples from the test set of the deduplicated

decompiled dataset. High samples have a BLEU-4 score higher

than 75 while low-scoring samples have a score lower than 25.

a) High Samples: With the high-performing samples

BinT5 tends to produce summaries which are very close to

the references. For instance, BinT5 produced Print description

of a datatype in XML against the baseline Dump description of

a datatype in XML. Of the 25 high-scoring samples we found

that all have counterparts with a similar function summary

in the training set. These functions also tend to have similar

names, but their decompiled function body was significantly

different, which is likely why deduplication didn’t remove

these functions.

b) Low Samples: From the low-performing samples we

observe that many summaries produced by BinT5 are seman-

tically very similar to the reference. For instance, the function

vl set simd enabled20, has the reference Toggle usage of

SIMD instructions while BinT5 produced Enable or Disable

the Simd Channel. This sample scores a BLEU-4 score of 0.0,

because of the limitations around the BLEU-4 metric, while

for a human evaluator the output is still very usable. Similarly,

for some samples, BinT5 produces shorter summaries contain-

ing shorthands. The reference Check if the given nickname is

blocked for ”normal client” use against Check whether nick is

blocked, also scores poorly. Of the 25 low-scoring samples

we observe that around 11 are semantically similar to the

reference and likely very useful for understanding the function.

B. Identifiers and Extreme Summarisation

We find a relatively small difference in performance be-

tween source code and decompiled code. This indicates that

in-function comments and variable names are relatively unim-

portant for the model performance. Although Ahmed and

Devanbu observed that identifiers might be more important

than syntax in the code-summarisation task [16], we can

20Colmap/Colmap:vl set simd enabled: https://github.com/colmap/
colmap/blob/87b3aa325bd8e5fb913788e29e9ac1e085e28b67/lib/VLFeat/
generic.c#L1070

further conclude that the function name is explicitly essential

for model performance. Removing just the function name from

the decompiled samples, as opposed to removing all identifiers

in demi-stripping, results in slightly higher performance than

demi-stripped code, which indicates a very high dependence

on the name of the function in the code summarisation task,

which is a logical finding in the context of the extreme code

summarisation task.

The extreme code summarisation task, as proposed by Al-

lamanis et al. aims to reproduce the function name given

a function body [16, 42]. It is framed as a summarisation

problem where the output is around 3 tokens in length, instead

of the 10+ tokens that regular code summarisation targets.

We found similar results when performing this task with

our dataset, namely, high performance on regular decompiled

code (with function names removed) and low performance on

stripped code.

A manual assessment of the stripped data shows that many

of the aligned functions were not decompiled properly. We

find that many functions are cut-off after a few instructions

because the decompiler did not recover the full control flow.

Other functions are missing side effects, like changes to global

variables.

C. Implications

We propose a novel solution to aid reverse engineers in

their work. If the application of NLP to binaries gets signifi-

cantly better, and the limitations around stripping and other

obfuscation techniques get resolved, it would have severe

implications for the cybersecurity domain. On one hand, it

could help malware analysts understand novel malware and its

weaknesses quickly. Software can be analysed to find possible

vulnerabilities and malicious payloads. Source code can be

reconstructed for old binaries for which the source code is

lost. But on the other hand, attackers can leverage these same

methods to find and exploit vulnerabilities and lift intellectual

property from binaries.

CAPYBARA itself could be used to create and assess

neural decompilation, to perform a deeper investigation into

the extreme summarisation task, or to simply train a code

summarisation model on C code. CAPYBARA consists of a

large corpus of C and decompiled C code, which could be used

to pre-train language models, such that these models could

support decompiled code out-of-the-box.

While our work focused on decompiled code, our observa-

tions show some limits of transformer-based models and their

applicability to different data. Our dataset can help and inspire

other researchers to improve upon our work. We hope other

researchers use this dataset to train and evaluate their own

models. Furthermore, the process outlined in Chapter III could

help others construct standardised datasets for other tasks and

languages.

D. Threats to Validity

Internal Validity questions if other factors could have

affected the outcome. The training and evaluation data contains

268

Authorized licensed use limited to: TU Delft Library. Downloaded on November 14,2023 at 09:27:47 UTC from IEEE Xplore. Restrictions apply.

a significant amount of noise, either in the form of badly de-

compiled functions or incorrect documentation. We carefully

collect and process the data, but we are unable to know to

which extent the documentation matches the original code.

While machine learning models (and specifically NLP models)

should be able to handle noisy data, this might introduce some

bias into the models. CodeT5 was also pre-trained on a C and

C# dataset, this dataset is unpublished and we were unable to

reach the authors. Some data leakage might have taken place,

but as explained in Section VI it is unlikely that it had much

of an impact. To prevent this threat from arising in any future

studies, we make CAPYBARA publicly available.

External Validity refers to the generalisability of our

results. This work only focuses on stripping and compiler

optimisations as a means of resisting binary analysis, other

techniques like control flow obfuscation and packing are

also used to prevent reverse engineering. Other works focus

on unpacking and deobfuscation, so we consider our work

orthogonal to theirs. The data gathered for CAPYBARA were

exclusively from open-source projects. Decompiling closed-

source projects is explicitly forbidden by some EULAs and the

lack of source code documentation makes it difficult to evalu-

ate using reference summaries. However, reverse engineering

open-source software is not very useful in practice, since the

source code is readily available. Closed-source software might

have different data distribution and will present other chal-

lenges like obfuscation. Finally, only functions that decompile

(Ghidra produces any output) and that are documented, are

represented in CAPYBARA. This is most apparent in the

stripped dataset, where we can only recover a small fraction

of the total number of functions. A deeper investigation into

new decompilation techniques for stripped code, specifically

into the aspect of function boundary detection is left as future

work.

Construct Validity relates to the adequacy of the theoretical

constructs and the use of appropriate evaluation metrics. The

leading metric in our evaluations does not capture semantic

meaning. While BLEU-4 is the most popular metric for this

task, its reliability has been called into question [43, 44]. We,

therefore, included other metrics, which do take semantics into

account, in our evaluation. Finally, our entire approach hinges

on the assumption that function summaries, as they are used

for source code, are useful for binary analysis. Whether or not

this is actually the case, should be further investigated with a

qualitative user study, this is left as future work.

VIII. RELATED WORK

Binary reverse engineering and the use of NLP for software

engineering are vast and active fields, so we select and discuss

the closest state-of-the-art works in the field. We categorise the

studies into identifier recovery and binary translation. Finally,

we will discuss the open challenges and the relation of our

own work to these challenges.

a) Recovering Identifiers from Stripped Binaries: De-
bin [5] aims to recover debug information from stripped

binaries. The authors use a tree-based classification and a

probabilistic graph-based model. All the variable names and

types are jointly recovered using a maximum a posteriori

probability inference. VarBERT [45] uses a Transformer-

based NLP model for the task of variable name recovery. The

authors pre-trained a BERT model which is then fine-tuned to

predict the names and types from unstripped binaries.

FUNCRE [7] uses a pre-trained and fine-tuned

ROBERTA [29] model to predict usages of inlined library

functions. Recall that compilers with optimisations enabled

can inline functions in the binary (Chapter II). The authors

use indelible markers, which do not get destroyed by the

compiler, to mark usages of library functions and to construct

a dataset and train a model.

b) Binary Translation: Neutron [10] frames decompila-

tion as a neural machine translation problem and utilises an

Attention-LSTM-based neural translation network to translate

disassembled binaries back to C source code. The binaries

are not stripped and do not have any optimisations enabled.

The translations created by Neutron can contain syntax errors,

so the authors apply regular expressions to create a tailor-

made syntax checker. Neutron achieves high accuracy on the

translation task, but only on unstripped and non-optimised

code.

c) Our Novelty: Several aspects have not been properly

addressed and investigated. The application of code summari-

sation methods to decompiled code has not been addressed

by any work at all. Furthermore, some works on binary code

fail to take compiler optimisations into account [10]. We,

therefore, investigate the application of code summarisation

methods to decompiled code and we enable compiler optimi-

sations.

IX. CONCLUSION

In this paper, we proposed a new automatic binary code

summarisation task. With this new task, we also introduce

CAPYBARA, a novel dataset to train and evaluate models

on this task, with both mined as well as synthetic data.

Paired with this dataset, we train BinT5, a Transformer-

based code summarisation model to show the effectiveness of

CAPYBARA. We used BinT5 to further explore the datasets,

outlining the inherent difficulties in the data.

We found that while BinT5 shows considerable performance

on regular decompiled code, but its performance is being

hampered by the decompiler on stripped code, evidenced by

BinT5s strong performance on demi-stripped code. Further-

more, we found that while duplicates have a large impact

on the model, their presence is not paramount to the model’s

performance. Finally, we observe that BinT5 could be trained

with just a fraction of the samples in CAPYBARA.

Our work has shown that a well-known and well-studied

task from the source code domain [13], namely source code

summarisation, can be applied to binary code. This is only one

of the many different applications of NLP for code. Our paper

constitutes the first step in the application of source code NLP

methods to such tasks on binary code.

269

Authorized licensed use limited to: TU Delft Library. Downloaded on November 14,2023 at 09:27:47 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] D. Votipka, S. Rabin, K. Micinski, J. S. Foster,

and M. L. Mazurek, “An observational investigation

of reverse engineers’ process and mental models,”

in Extended Abstracts of the 2019 CHI Conference
on Human Factors in Computing Systems, ser. CHI

EA ’19. New York, NY, USA: Association for

Computing Machinery, 2019, p. 1–6. [Online]. Available:

https://doi.org/10.1145/3290607.3313040

[2] Y. David, U. Alon, and E. Yahav, “Neural reverse

engineering of stripped binaries using augmented control

flow graphs,” Proceedings of the ACM on Programming
Languages, vol. 4, no. OOPSLA, nov 2020. [Online].

Available: https://doi.org/10.1145/3428293

[3] J. Caballero and Z. Lin, “Type inference on executables,”

ACM Comput. Surv., vol. 48, no. 4, May 2016. [Online].

Available: https://doi.org/10.1145/2896499

[4] L. Chen, Z. He, and B. Mao, “Cati: Context-assisted type

inference from stripped binaries,” in 2020 50th Annual
IEEE/IFIP International Conference on Dependable Sys-
tems and Networks (DSN), 2020, pp. 88–98.

[5] J. He, P. Ivanov, P. Tsankov, V. Raychev, and M. Vechev,

“Debin: Predicting debug information in stripped bina-

ries,” in Proceedings of the 2018 ACM SIGSAC Confer-
ence on Computer and Communications Security, 2018,

pp. 1667–1680.

[6] J. Lacomis, P. Yin, E. Schwartz, M. Allamanis,

C. Le Goues, G. Neubig, and B. Vasilescu, “Dire: A neu-

ral approach to decompiled identifier naming,” in 2019
34th IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 2019, pp. 628–639.

[7] T. Ahmed, P. Devanbu, and A. A. Sawant, “Learning to

find usage of library functions in optimized binaries,”

IEEE Transactions on Software Engineering, pp. 1–1,

2021.

[8] X. Jin, K. Pei, J. Y. Won, and Z. Lin, “Symlm: Predicting

function names in stripped binaries via context-sensitive

execution-aware code embeddings,” 2022.

[9] D. Lehmann and M. Pradel, “Finding the dwarf: Recov-

ering precise types from webassembly binaries,” 2022.

[10] R. Liang, Y. Cao, P. Hu, and K. Chen, “Neutron: an

attention-based neural decompiler,” Cybersecurity, vol. 4,

p. 5, 03 2021.

[11] C. Zhang, J. Wang, Q. Zhou, T. Xu, K. Tang, H. Gui,

and F. Liu, “A survey of automatic source code summa-

rization,” Symmetry, vol. 14, no. 3, p. 471, 2022.

[12] G. Sridhara, E. Hill, D. Muppaneni, L. Pollock, and

K. Vijay-Shanker, “Towards automatically generating

summary comments for java methods,” ser. ASE ’10.

New York, NY, USA: Association for Computing

Machinery, 2010, p. 43–52. [Online]. Available: https:

//doi.org/10.1145/1858996.1859006

[13] Shi, E. Wang, Y. Du, L. Chen, J. Han, S. Zhang,

H. Zhang, D. Sun, and H. Sun, “On the evaluation of

neural code summarization.” ICSE, 2022.

[14] Y. Wang, W. Wang, S. Joty, and S. C. Hoi,

“Codet5: Identifier-aware unified pre-trained encoder-

decoder models for code understanding and generation,”

in Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, 2021, pp.

8696–8708.

[15] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong,

L. Shou, B. Qin, T. Liu, D. Jiang et al., “Codebert: A pre-

trained model for programming and natural languages,”

in Findings of the Association for Computational Lin-
guistics: EMNLP 2020, 2020, pp. 1536–1547.

[16] T. Ahmed and P. Devanbu, “Multilingual training for

software engineering,” in 2022 IEEE/ACM 44th Inter-
national Conference on Software Engineering (ICSE).
IEEE, 2022, pp. 1443–1455.

[17] C. Casalnuovo, E. T. Barr, S. K. Dash, P. Devanbu,

and E. Morgan, “A theory of dual channel constraints,”

in Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering: New Ideas and
Emerging Results, 2020, pp. 25–28.

[18] A. Hindle, E. T. Barr, M. Gabel, Z. Su, and P. Devanbu,

“On the naturalness of software,” Commun. ACM,

vol. 59, no. 5, p. 122–131, apr 2016. [Online].

Available: https://doi.org/10.1145/2902362

[19] A. LeClair and C. McMillan, “Recommendations for

datasets for source code summarization,” in Proceedings
of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers). Minneapolis, Minnesota: Association for

Computational Linguistics, Jun. 2019, pp. 3931–3937.

[Online]. Available: https://aclanthology.org/N19-1394

[20] H. Husain, H.-H. Wu, T. Gazit, M. Allamanis, and

M. Brockschmidt, “CodeSearchNet challenge: Evaluat-

ing the state of semantic code search,” arXiv preprint
arXiv:1909.09436, 2019.

[21] K. Hoste and L. Eeckhout, “Cole: compiler optimization

level exploration,” in Proceedings of the 6th annual
IEEE/ACM international symposium on Code generation
and optimization, 2008, pp. 165–174.

[22] M. T. Jones, “Optimization in gcc,” Linux journal, vol.

2005, no. 131, p. 11, 2005.

[23] S. Blazy and S. Riaud, “Measuring the robustness

of source program obfuscation: Studying the impact

of compiler optimizations on the obfuscation of c

programs,” in Proceedings of the 4th ACM Conference
on Data and Application Security and Privacy, ser.

CODASPY ’14. New York, NY, USA: Association

for Computing Machinery, 2014, p. 123–126. [Online].

Available: https://doi.org/10.1145/2557547.2557577

[24] Z. Zhang, W. You, G. Tao, Y. Aafer, X. Liu, and

X. Zhang, “Stochfuzz: Sound and cost-effective fuzzing

of stripped binaries by incremental and stochastic rewrit-

ing,” in 2021 IEEE Symposium on Security and Privacy
(SP). IEEE, 2021, pp. 659–676.

[25] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,

270

Authorized licensed use limited to: TU Delft Library. Downloaded on November 14,2023 at 09:27:47 UTC from IEEE Xplore. Restrictions apply.

L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin,

“Attention is all you need,” in Proceedings of the 31st
International Conference on Neural Information Process-
ing Systems, 2017, pp. 6000–6010.

[26] D. E. Rumelhart, G. E. Hinton, and R. J. Williams,

Learning Representations by Back-Propagating Errors.

Cambridge, MA, USA: MIT Press, 1988, p. 696–699.

[27] J. Schmidhuber, S. Hochreiter et al., “Long short-term

memory,” Neural Comput, vol. 9, no. 8, pp. 1735–1780,

1997.

[28] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E.

Howard, W. Hubbard, and L. D. Jackel, “Backpropaga-

tion applied to handwritten zip code recognition,” Neural
computation, vol. 1, no. 4, pp. 541–551, 1989.

[29] L. Zhuang, L. Wayne, S. Ya, and Z. Jun, “A robustly

optimized BERT pre-training approach with post-

training,” in Proceedings of the 20th Chinese National
Conference on Computational Linguistics. Huhhot,

China: Chinese Information Processing Society of

China, Aug. 2021, pp. 1218–1227. [Online]. Available:

https://aclanthology.org/2021.ccl-1.108

[30] J. D. M.-W. C. Kenton and L. K. Toutanova, “Bert: Pre-

training of deep bidirectional transformers for language

understanding,” in Proceedings of NAACL-HLT, 2019,

pp. 4171–4186.

[31] S. Lu, D. Guo, S. Ren, J. Huang, A. Svyatkovskiy,

A. Blanco, C. Clement, D. Drain, D. Jiang, D. Tang,

G. Li, L. Zhou, L. Shou, L. Zhou, M. Tufano, M. Gong,

M. Zhou, N. Duan, N. Sundaresan, S. K. Deng, S. Fu,

and S. Liu, “Codexglue: A machine learning benchmark

dataset for code understanding and generation,” 2021.

[Online]. Available: https://arxiv.org/abs/2102.04664

[32] A. Joulin, E. Grave, P. Bojanowski, M. Douze, H. Jégou,

and T. Mikolov, “Fasttext.zip: Compressing text classifi-

cation models,” arXiv preprint arXiv:1612.03651, 2016.

[33] M. Allamanis, “The adverse effects of code duplication

in machine learning models of code,” in Proceedings
of the 2019 ACM SIGPLAN International Symposium
on New Ideas, New Paradigms, and Reflections
on Programming and Software. Athens Greece:

ACM, Oct. 2019, pp. 143–153. [Online]. Available:

https://dl.acm.org/doi/10.1145/3359591.3359735

[34] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang,

M. Matena, Y. Zhou, W. Li, and P. J. Liu, “Exploring

the limits of transfer learning with a unified text-to-text

transformer,” Journal of Machine Learning Research,

vol. 21, no. 140, pp. 1–67, 2020. [Online]. Available:

http://jmlr.org/papers/v21/20-074.html

[35] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: a

method for automatic evaluation of machine translation,”

in Proceedings of the 40th Annual Meeting of the
Association for Computational Linguistics. Philadelphia,

Pennsylvania, USA: Association for Computational

Linguistics, Jul. 2002, pp. 311–318. [Online]. Available:

https://aclanthology.org/P02-1040

[36] C.-Y. Lin, “ROUGE: A package for automatic evaluation

of summaries,” in Text Summarization Branches
Out. Barcelona, Spain: Association for Computational

Linguistics, Jul. 2004, pp. 74–81. [Online]. Available:

https://aclanthology.org/W04-1013

[37] A. Lavie and M. J. Denkowski, “The meteor metric for

automatic evaluation of machine translation,” Machine
translation, vol. 23, no. 2, pp. 105–115, 2009.

[38] B. Chen and C. Cherry, “A systematic comparison

of smoothing techniques for sentence-level BLEU,”

in Proceedings of the Ninth Workshop on Statistical
Machine Translation. Baltimore, Maryland, USA:

Association for Computational Linguistics, Jun. 2014,

pp. 362–367. [Online]. Available: https://aclanthology.

org/W14-3346

[39] H. Hoang and P. Koehn, “Design of the moses de-

coder for statistical machine translation,” in Software
Engineering, Testing, and Quality Assurance for Natural
Language Processing, 2008, pp. 58–65.

[40] D. Guo, S. Ren, S. Lu, Z. Feng, D. Tang, S. Liu, L. Zhou,

N. Duan, A. Svyatkovskiy, S. Fu et al., “Graphcodebert:

Pre-training code representations with data flow,” in

ICLR, 2021.

[41] J. Alves-Foss and J. Song, “Function boundary detection

in stripped binaries,” in Proceedings of the 35th
Annual Computer Security Applications Conference,

ser. ACSAC ’19. New York, NY, USA: Association

for Computing Machinery, 2019, p. 84–96. [Online].

Available: https://doi.org/10.1145/3359789.3359825

[42] M. Allamanis, H. Peng, and C. Sutton, “A convolutional

attention network for extreme summarization of source

code,” in Proceedings of The 33rd International
Conference on Machine Learning, ser. Proceedings of

Machine Learning Research, M. F. Balcan and K. Q.

Weinberger, Eds., vol. 48. New York, New York, USA:

PMLR, 20–22 Jun 2016, pp. 2091–2100. [Online].

Available: https://proceedings.mlr.press/v48/allamanis16.

html

[43] D. Roy, S. Fakhoury, and V. Arnaoudova, Reassessing
Automatic Evaluation Metrics for Code Summarization
Tasks. New York, NY, USA: Association for Computing

Machinery, 2021, p. 1105–1116. [Online]. Available:

https://doi.org/10.1145/3468264.3468588

[44] S. Haque, Z. Eberhart, A. Bansal, and C. McMillan,

“Semantic similarity metrics for evaluating source code

summarization,” arXiv e-prints, pp. arXiv–2204, 2022.

[45] P. Banerjee, K. K. Pal, F. Wang, and C. Baral, “Vari-

able name recovery in decompiled binary code using

constrained masked language modeling,” arXiv preprint
arXiv:2103.12801, 2021.

271

Authorized licensed use limited to: TU Delft Library. Downloaded on November 14,2023 at 09:27:47 UTC from IEEE Xplore. Restrictions apply.

