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Abstract

In this project the transversal vibrations of an accelerating elevator cable system are studied, with the aim
to find the resonance times, the resonance duration and the resonance amplitude.

The elevator cable is modelled as an axially moving string, with length given by l(t) = l0 + 1
2at

2, with a
the acceleration and t the time. The cable is sinusoidally excited at the top and fixed at the bottom. It is
assumed that the axial acceleration is small compared to the transversal acceleration, that the cable mass is
small compared to the car mass, and that the excitation amplitude is small compared to the length of the
cable. Using these estimations, the solution for the transversal displacement u is approximated up to O(ε),
with ε a small parameter.

The elevator cable goes through a cascade of autoresonances: the eigenfrequencies of the cable are varying
because the cable length is varying, and at several times an eigenfrequency matches the excitation frequency.

These are the resonance times, and they have been found as t+ =
√

2
εa1l0

arccos(
√

Ωl0
χk

), with t+ a measure

of oscillation of t, Ω the angular excitation frequency, l0 the initial length, χk the eigenfrequency of mode k
and εa1 = a. The duration of the resonances (the timescale) is shown to be O( 1

4
√
ε
) if χk 6= Ωl0 and O( 1

6
√
ε
)

if χk = Ωl0 (a bifurcation of the problem). The amplitude scale is thus O(
4
√
ε3) or O(

6
√
ε5), respectively,

and solutions for the amplitude are calculated both outside and inside the resonance zone.
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1 Introduction

Many appliances and systems with axially moving elements can be modelled with the wave equation or the
beam equation. A few of these are conveyor belts, transport cables and elevator cables. The last two are
characterized by time-varying length, space-time-varying tension, and constant or time-varying axial veloc-
ity. These models are one-dimensional in space and thus depend only on one spatial coordinate, and on time.

This project is about elevator cable dynamics. There have been several researchers that studied mod-
els that can be used for elevator cables: Zhu and Ni [12] have investigated general stability characteristics
of horizontally and vertically translating strings and beams, with arbitrary varying length and with vari-
ous boundary conditions. Vibrations in strings can be longitudinal or transversal. Chi and Shu [2] have
calculated the natural frequencies associated with the longitudinal vibration of a stationary elevator sys-
tem. Zhu and Ren [13] have done this for transversal vibrations. Sandilo and van Horssen [7]-[10] have
studied transversal vibrations in a string with time-varying length with constant and time-varying axial
velocity. For the case l(t) = l0 + εβ0 sin(ωt), it has been shown that there are infinitely many values of ω
giving rise to internal resonances in the elevator system, and for the case l(t) = l0 + εt it has been shown
that a cascade of autoresonances with decreasing amplitudes occurs, on an unexpected timescale of order 1√

ε
.

In this project we investigate transversal vibrations in an elevator cable with time-varying velocity, so
that the elevator car is uniformly accelerating. This situation corresponds to the start of every elevator
ride and is thus of practical interest. In order to improve the design of elevators, it is important to develop
a better understanding of elevator cable dynamics and to construct new methods to effectively reduce the
vibrations, which can lead to wear on the cables, noise and transversal movement of the elevator car. The
elevator system is modelled by a vertically hung string which is excited periodically at the upper end by
a horizontal displacement of the building from its equilibrium due to the wind. Attached at the lower end
of the cable is a rigid point mass m, the elevator car, which we assume to have rigid suspension against
the guide rails. We also assume the transversal vibrations to be uncoupled from the longitudinal vibrations
because the excitation is very small compared to the height of the building. The length of the cable will be

given by l(t) = l0 + at2

2 and the external excitation at the top by u(0, t) = α sin(Ωt). In these formulae l0
is the initial cable length, a the constant acceleration or deceleration, u(x, t) the horizontal displacement of
the cable with x the vertical space coordinate with its origin at the top, α is the amplitude of the excitation
at the top, and Ω is its angular frequency. This excitation is modelled to be present only at the top of the
building. Gaiko and van Horssen [4] have researched the case of constant velocity taking the effect of the
excitation along the entire building into account.

It is assumed that the longitudinal acceleration is small compared to the transversal acceleration (l̈ �
utt < g), that the cable mass is small compared to the car mass (ρL� m), and that the excitation amplitude
is small compared to the length of the cable (α � L). Here ρ is the cable mass density, m the car mass,
g the gravitational acceleration and L the maximum length of the cable. The parameters which we found
to be small are O(ε), with ε a small dimensionless parameter. The solution of the problem will then be
approximated up to O(ε).

The length of the cable is constantly changing, and so are it’s natural frequencies. When a natural fre-
quency mode of the cable vibrations gets near the excitation frequency, resonance occurs. A simple equation
that describes resonance in general is y′′(t) +ω2y(t) = sin(f(t)). The natural frequency is ω, and the excita-
tion frequency is the first coefficient of the power series of f(t). If they near each other the excitation term
will be integrated to a term linear in t in the solution, thus going to infinity when t → ∞. The amplitude
thus grows significantly; for constant velocity it was shown in [9] that for an O(ε) excitation, the amplitude
will grow with

√
ε (note that

√
ε > ε as ε � 1). After a certain time, the system gets out of the resonance

zone, until the next frequency mode matches the excitation frequency and the process repeats itself. The
cable is getting into and out of the resonance zone by its own movement, so it is called an autoresonance,
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and an elevator cable is thus subdued to a cascade of autoresonances.

The goal of this project is to find the times at which the resonances occur, the amplitudes of the resonances
and their duration (the timescale), in the case of varying velocity. We will follow an approach similar to that
taken in [9]. This paper consists of the following: in section 2 the equation of motion for a vertically moving
string is adapted for general time-varying length: it is made dimensionless, the inhomogeneous boundary
condition corresponding to the excitation is made homogeneous, and the order of all the terms is estimated.
In section 3 the above-mentioned equation for l(t) is applied and the equation is adapted further: the time-
varying domain is converted to a fixed domain, the functions are expanded in Fourier sine series, and a new
time variable is introduced. In section 4 an interior layer analysis is applied to the secular terms of the
resulting equation. The resonance times and duration are determined and the solution for this simplified
equation is calculated outside and inside the resonance region. Finally, in section 5 the results are presented
and in section 6 conclusions are drawn, the analysis is summarized, and recommendations are made for
future work.
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2 The governing equation for general transversal motion

We will first consider the general case of a vertically translating cable with an attached mass. The cable
has density ρ [kg

m ] and a time-varying length l(t) [m]. The transversal and longitudinal motions of the cable
are assumed to be uncoupled, and the latter are not considered in this project. We are interested in the
transversal displacement of a cable particle instantaneously located at spatial position x at time t, with
0 ≤ x ≤ l(t). The equation of motion for an axially moving string with transversal vibrations u, having
time-varying length and space-time-varying tension are obtained by modifying the standard wave equation:

utt − c2uxx = utt −
T

ρ
uxx = 0, (1)

with T [N] the tension force and c =
√

T
ρ [m

s ] the wave speed. In the current situation the cable moves in the

longitudinal direction, so instead of the variables x and t on their respective domains we are dealing with
x ∈ [0, l(t)] and t, so the domain of x depends on t. This means we need to replace utt in the following way:

utt → utt + 2uxt l̇ + ux l̈ + uxx l̇
2. (2)

We can also write down the forces that constitute the tension force:

Tuxx →
((
mg + ρ(l(t)− x)g −ml̈ − ρ(l(t)− x)l̈

)
ux

)
x
≡ (P (x, t)ux)x, (3)

which are the axial force caused by the weight of the car and the cable, and the tension force caused by
vertical acceleration of the car and the cable, respectively. Using these expressions, multiplying eq. (1) with
ρ and adding the conditions we arrive at:

ρ(utt + 2l̇uxt + l̈ux + l̇2uxx)− (P (x, t)ux)x = 0, t > 0, 0 < x < l(t), (4)

u(0, t) = α sin(Ωt), u(l(t), t) = 0, t > 0, (5)

u(x, 0) = f(x), ut(x, 0) = h(x), 0 < x < l(0), (6)

where α and Ω are the amplitude and frequency of the excitation at the upper end (x = 0), g is the gravita-
tional acceleration, l̇ and l̈ are the first and second derivative of the length of the cable, corresponding to the
velocity and acceleration of the car, and f(x) and h(x) are the initial displacement and velocity, respectively.
Before applying the needed transformations in order to handle the above-mentioned equation of motion, we
put them into a non-dimensional form, by transforming all introduced parameters to dimensionless ones:

u∗ =
u

L
, x∗ =

x

L
, l∗ =

l

L
, l∗0 =

l0
L
, α∗ =

α

L
, f∗ =

f

L
,

l̇∗ = l̇

√
ρ

mg
, h∗ = h

√
ρ

mg
, u∗t = ut

√
ρ

mg
,

l̈∗ = l̈
Lρ

mg
, u∗tt = utt

Lρ

mg
,

Ω∗ = ΩL

√
ρ

mg
, u∗xt = uxtL

√
ρ

mg
,

t∗ =
t

L

√
mg

ρ
, µ =

ρL

m
, u∗xx = uxxL, u∗x = ux,

(7)

with L the maximum length of the string. We can now derive the equation of motion in non-dimensional
form:

ρ

(
mg

Lρ
u∗tt + 2l̇∗

√
mg

ρ
u∗xt

1

L

√
mg

ρ
+ l̈∗

mg

Lρ
u∗x + l̇2

mg

ρ
u∗xx

1

L

)
−mgu∗xx

1

L
− ρ(l∗L− x∗L)gu∗xx

1

L
+ml̈∗

mg

Lρ
u∗xx

1

L
+ ρ(l∗L− x∗L)l̈∗

mg

Lρ
u∗xx

1

L

+ρgu∗x − ρl̈∗
mg

Lρ
u∗x = 0, 0 < x < l(t), t > 0,

(8)
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u∗(0, t)L = α∗L sin

(
Ω∗

1

L

√
mg

ρ
t∗L

√
ρ

mg

)
, u∗(l(t), t)L = 0, t∗ > 0, (9)

u∗(x, 0)L = f∗(x)L, u∗t (x, 0)

√
mg

ρ
= h∗(x)

√
mg

ρ
, 0 < x∗L < l∗0L, (10)

which reduces to the following after dividing the equations by mg
L , L, L, L and

√
mg
ρ , respectively, removing

the asterisks and rearranging:

utt − uxx = −2l̇uxt −

(
l̇2 +

l̈

µ
+ (l̈ − µ)(l(t)− x)

)
uxx − µux, 0 < x < l(t), t > 0, (11)

u(0, t) = α sin(Ωt), u(l(t), t) = 0, t > 0, (12)

u(x, 0) = f(x), ut(x, 0) = h(x), 0 < x < l0, (13)

One of the boundary conditions in eq. (12) is inhomogeneous. In order to solve the problem, we have to
convert it into one with only homogeneous boundary conditions, using the following transformation:

u(x, t) = ū(x, t) +

(
1− x

l(t)

)
α sin(Ωt), (14)

where ū(x, t) satisfies the homogeneous boundary conditions. This yields:

ūtt − ūxx =

(
2xl̇2

l3
− xl̈

l2
− 2l̇2

l2
+
µ

l

)
α sin(Ωt) +

(
−2xl̇

l2
+

2l̇

l

)
αΩ cos(Ωt)

−
(

1− x

l

)
αΩ2 sin(Ωt)− 2l̇ūxt −

(
l̇2 +

l̈

µ
+ (l̈ − µ)(l − x)

)
ūxx − µūx, 0 < x < l(t), t > 0

(15)

ū(0, t) = 0, ū(l(t), t) = 0, t > 0, (16)

ū(x, 0) = f(x), ūt(x, 0) + αΩ

(
1− x

l0

)
= h(x), 0 < x < l0, (17)

We will assume the following about the parameters l̈, l̇, µ and α and the initial conditions f(x) and h(x):
the longitudinal acceleration and velocity are small compared to the transversal acceleration and velocity
(l̈ � utt < g, l̇ � ut), the cable mass is small compared to the car mass (ρL � m), and the oscillation
amplitude is small compared to the length of the cable (α � L). These assumptions are supported in the
Appendix by using realistic numbers in the equations. It is also assumed that both initial conditions are
O(ε). For these reasons, we can write l̈ = εl̈1, l̇ = εl̇1, µ = εµ1, α = εα1, f(x) = εf̄(x) and h(x) = εh̄(x),
which means that l̈, l̇, µ, α, f(x) and h(x) are assumed to be O(ε) (and the newly introduced l̈1, l̇1, µ1, α1, f̄(x)
and h̄(x) are O(1)). The new equation of motion for ū(x, t; ε) is now:

ūtt +

(
l̈1
µ1
− 1

)
ūxx = ε

(
−2l̇1ūxt − (l̈1 − µ1)(l(t)− x)ūxx

−µ1ūx + α1Ω2

(
1− x

l(t)

)
sin(Ωt)

)
+O(ε2), 0 < x < l(t), t > 0,

(18)

ū(0, t; ε) = 0, ū(l(t), t; ε) = 0, t > 0, (19)

ū(x, 0; ε) = εf̄(x) +O(ε2), ūt(x, 0; ε) = ε

(
h̄(x)− α1Ω

(
1− x

l0

))
+O(ε2), 0 < x < l0. (20)

In the next section we will specify l(t) and then proceed to adapt the equation further.
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3 The model for an accelerating cable

In the preceding section, we have made the governing equation
of motion dimensionless, removed the inhomogeneous boundary
condition, and used assumptions to estimate all terms, yielding a
general result for cables with time-varying length. In this project
we examine the situation where the car is in uniformly accelerat-
ing motion, so:

l(t) = l0 +
at2

2
, (21)

where a = εa1 = l̈ = εl̈1 is the constant axial downward
acceleration and l0 = O(ε). The most general form for uniformly

acceleration or deceleration is l(t) = l0 + v0t+ at2

2 . However, the
extra term makes upcoming transformations much more difficult
to handle analytically, so eq. (21) has been chosen to proceed
with. Note that the problem of uniformly accelerating motion
starting with any initial velocity can be reduced to a problem of
the presented form by extrapolating back to the moment when
the initial velocity was zero, and the same holds for decelerating
motion. In this text we will work with accelerating motion, so
we take a > 0.
This expression can be filled in in the equations in the place of
l and its derivatives from now on, however, we will still use the
latter in most places for the sake of brevity. Please note at this
point that the index 0 is used for an initial situation, and the
index 1 for the O(1) parameters as introduced in the preceding
section. An increase in length x corresponds to extension of the
cable (downward movement of the car) and a decrease in length
to retraction (upward movement of the car).

Figure 1: Sketch of the elevator shaft with the
used parameters indicated. Modified after [9].

We can now proceed to modify the equation of motion using this specified length function:
In the obtained equations the spatial domain is time-varying: x ∈ [0, l(t)]. We would like to convert this
to a fixed domain, with a new independent non-dimensional spatial coordinate in the place of x: ξ ∈ [0, 1].
This is done with the transformation ξ = x

l(t) , so that the new variable for the transversal deviation is

û(ξ, t; ε) = ū(x, t; ε). The derivatives of u also transform and are calculated using the rules of total derivatives:

ūx =
∂û

∂ξ

∂ξ

∂x
=

ûξ
l(t)

, (22)

ūxx =
∂

∂ξ

(
ûξ
l(t)

)
∂ξ

∂x
=

ûξξ
l2(t)

, (23)

ūt =
∂û

∂ξ

∂ξ

∂t
+
∂û

∂t

∂t

∂t
= − ûξ l̇(t)ξ

l(t)
+ ût, (24)
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ūtt =
∂

∂ξ

(
− ûξ l̇(t)ξ

l(t)
+ ût

)
∂ξ

∂t
+
∂

∂t

(
− ûξ l̇(t)ξ

l(t)
+ ût

)
∂t

∂t
=

(
− ûξξ l̇(t)ξ

l(t)
− ûξ l̇(t)

l(t)
+ ûtξ

)
−ξl̇(t)
l(t)

+(
− ûξt l̇(t)ξ

l(t)
− ûξξ

∂

∂t

(
l̇(t)

l(t)

)
+ ûtt

)
=
ûξξ l̇

2(t)ξ2

l2(t)
+ 2

ûξ l̇
2(t)ξ

l2(t)
− 2

ûξt l̇(t)ξ

l(t)
− ûξ l̈ξ

l(t)
+ ûtt,

(25)

ūxt =
∂

∂ξ

(
ûξ
l(t)

)
∂ξ

∂t
+
∂

∂t

(
ûξ
l(t)

)
∂t

∂t
= − ûξξ l̇(t)ξ

l2(t)
+
ûξt
l(t)
− ûξ l̇(t)

l2(t)
. (26)

Before we apply these transformations to the equation, we need to determine the timescale and with that

the order of the factors p ≡ εt
l(t) , q ≡ εt

l2(t) and r ≡ ε2t2

l2(t) , which appear in the transformations when l, l̇ and

l̈ are filled in. To this end we determine the maximum in t by setting the derivatives to zero. For p and r,

the maximum is tmax =
√

2l0
εa1

, and for q the maximum is tmax =
√

2l0
3εa1

. So we find t = O( 1√
ε
), filling this

in in p, q and r yields p = O(
√
ε), q = O(

√
ε) and r = O(ε).

Using the transformations and t = O( 1√
ε
) (so that

√
εt = O(1) and εt2 = O(1), eqs. (18)-(20) transform to:

ûtt +
a1 − µ1

µ1l2(t)
ûξξ =

√
ε2

√
εa1t(ξ − 2)

l(t)
ûξt + ε

((
εt2a2

1(2ξ − ξ2)

l2(t)
− (a1 − µ1)(1− ξ)

l(t)

)
ûξξ

+

(
2
εt2a2

1(1− ξ)
l2(t)

+
a1ξ − µ1

l(t)

)
ûξ + α1Ω2 (1− ξ) sin(Ωt)

)
+O(ε2), 0 < ξ < 1, t > 0,

(27)

û(0, t; ε) = 0, û(1, t; ε) = 0, t > 0, (28)

û(ξ, 0; ε) = εf̂(ξ) +O(ε2), ût(ξ, 0; ε) = ε
(
ĥ(ξ)− α1Ω(1− ξ)

)
+O(ε2), 0 < ξ < 1, (29)

where f̂(ξ) = f̄(x) and ĥ(ξ) = h̄(x) at t = 0. The boundary conditions are now ready to be satisfied, which
is done by expanding u in a Fourier sine series in ξ: û(ξ, t; ε) =

∑∞
n=1 un(t; ε) sin(nπξ). This yields the

following for the differential equation and its initial condition:

∞∑
n=1

(
ün(t; ε)− a1 − µ1

µ1

(
nπ

l(t)

)2

un(t; ε)

)
sin(nπξ) =

√
ε

∞∑
n=1

2

√
εa1t(ξ − 1)nπ

l(t)
u̇n(t; ε) cos(nπξ)

+ε

∞∑
n=1

(((
2
εt2a2

1(1− ξ)nπ
l2(t)

+
(a1ξ − µ1)nπ

l(t)

)
cos(nπξ)

+

(
(a1 − µ1)(1− ξ)n2π2

l(t)
− εt2a2

1(2ξ − ξ2)n2π2

l2(t)

)
sin(nπξ)

)
un(t; ε)

+α1Ω2(1− ξ) sin(Ωt)

)
+O(ε2), 0 < ξ < 1, t > 0,

(30)

∞∑
n=1

un(0; ε) sin(nπξ) = εf̂(ξ) +O(ε2),

∞∑
n=1

u̇n(0; ε) sin(nπξ) = εq̂(ξ) +O(ε2), 0 < ξ < 1, (31)

where q̂(ξ) = ĥ(ξ)− α1Ω(1− ξ). We can now remove the ξ-dependency from the equations, by multiplying
them with sin(kπξ), integrating from ξ = 0 to ξ = 1, using the orthogonality properties of the eigenfunctions,
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and multiplying the equation by two. This turns the PDE into an ODE (one for every k):

ük(t; ε)− a1 − µ1

µ1

(
kπ

l(t)

)2

uk(t; ε) =
√
ε

−√εa1t

l(t)
u̇k(t; ε) +

∞∑
n=1,n6=k

4

√
εa1t(f1(n, k)− f2(n, k))nπ

l(t)
u̇n(t; ε)


+ε

[(
− a1

2l(t)
+

(
a1 − µ1

2l(t)
− εt2a2

1

l2(t)

(
2

3
− 1

2k2π2

))
k2π2

)
uk(t; ε) +

2α1Ω2

kπ
sin(Ωt)

+

∞∑
n=1,n6=k

(
nπ

(
4
εt2a2

1(f2(n, k)− f1(n, k))

l2(t)
+ 2

a1f1(n, k)− µ1f2(n, k)

l(t)

)

−n2π2

(
2(a1 − µ1)f3(n, k)

l(t)
+ 2

εt2a2
1(2f3(n, k)− f4(n, k))

l2(t)

)
un(t; ε)

)]
+O(ε2), t > 0,

(32)

uk(0; ε) = 2εF̂ (k) +O(ε2), u̇k(0; ε) = 2εQ̂(k) +O(ε2), (33)

where

F̂ (k) =

∫ 1

0

f̂(ξ) sin(kπξ)dξ, Q̂(k) =

∫ 1

0

q̂(ξ) sin(kπξ)dξ,

f1(n, k) =

∫ 1

0

ξ cos(nπξ) sin(kπξ)dξ, f2(n, k) =

∫ 1

0

cos(nπξ) sin(kπξ)dξ,

f3(n, k) =

∫ 1

0

ξ sin(nπξ) sin(kπξ)dξ, f4(n, k) =

∫ 1

0

ξ2 sin(nπξ) sin(kπξ)dξ.

(34)

Note that we can expect oscillatory solutions if the prefactor of uk(t; ε) in the left-hand side of eq. (32)
is a positive constant: using eq. (7) we have µ1 = ρL

mε and a1 = ρLa
mgε with a the non-dimensionless

acceleration. This yields a1
µ1

= a
g < 1 by assumption. So we have −a1−µ1

µ1

(
kπ
l(t)

)2

> 0. To make

this into a constant, we introduce a variable to replace t that is a measure of the period of oscillation:

t+ =
∫ t

0
ds
l(s) =

∫ t
0

ds
l0+εa1s2/2

=
√

2
εa1l0

arctan
(√

εa1
2l0
t
)

. t+ is monotonically increasing with t. The inverse

transformation is t =
√

2l0
εa1

tan

(√
εa1l0

2 t+
)

. In the case that a < 0 one would obtain exponential and

logarithmic functions for this transformation.
We can now substitute uk(t; ε) = ûk(t+; ε). The length function l is transformed as:

l̂(t+) = l0 +
εa1t

2

2
= l0 +

εa1

2

2l0
εa1

tan2

(√
εa1l0

2
t+

)

= l0

(
1 + tan2

(√
εa1l0

2
t+

))
= l0 sec2

(√
εa1l0

2
t+

)
.

(35)

The time derivatives of u are transformed as:

u̇k =
dûk
dt+

dt+

dt
=
dûk
dt+

1

l0

1
εa1
2l0
t2 + 1

=
dûk
dt+

1

l̂(t+)
, (36)

ük =
d2ûk
dt+2

(
dt+

dt

)2

+
dûk
dt+

d2t+

dt2
=
d2ûk
dt+2

1

l̂(t+)2
− dûk
dt+

εa1t

l̂(t+)2
. (37)
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The new equation for ûk(t+; ε), coming from eqs. (32) and (33) is, after multiplying by l2(t):

d2ûk
dt+2 +

µ1 − a1

µ1
(kπ)2ûk =

√
ε

∞∑
n=1,n6=k

4
(√
εa1t(f1(n, k)− f2(n, k))nπ

) dûn
dt+

+ ε

[(
−a1 l̂(t

+)

2

+

(
(a1 − µ1)l̂(t+)

2
− εt2a2

1

(
2

3
− 1

2k2π2

))
k2π2

)
ûk +

2α1Ω2 l̂2(t+)

kπ
sin(Ωt)

+

∞∑
n=1,n6=k

(
nπ
(

4
(
εt2a2

1(f2(n, k)− f1(n, k))
)

+ 2 (a1f1(n, k)− µ1f2(n, k)) l̂(t+)
)

−n2π2
(

2(a1 − µ1)f3(n, k)l̂(t+) + 2εt2a2
1(2f3(n, k)− f4(n, k))

)
ûn

)]
+O(ε2),

(38)

ûk(0; ε) = 2εF̂ (k) +O(ε2),
dûk(0; ε)

dt+
= 2εl0Q̂(k) +O(ε2), (39)

where t is not substituted everywhere in order to avoid even longer expressions. This is the final differential
equation with initial conditions that needs to be solved to obtain the vibration amplitudes u. In the next
section, an internal layer analysis will be performed on this equation to obtain the resonance times, the time
scale, the resonance angle and a set of differential equations that defines an expression for u.
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4 Interior layer analysis on the obtained ODE

In the last section we derived the ODE for u as a function of t+. We will now study the behaviour of the
secular terms by averaging them. The secular terms of the equation are the terms that lead to a solution
with terms that go to infinity when the time goes to infinity. These are the terms that can cause resonance.
We will first determine which terms are secular and then apply this to eq. (38).

4.1 Secular terms

We can now take any term on the right hand side of eq. (38) separately and qualitatively (disregarding
prefactors) determine to what solutions this leads. We will work out the case where ûk itself is the term on
the right hand side, and comment on the other cases. Since t+ is the only variable left, derivatives can be
written with accents again:

û′′k + χ2
kûk = εûk, , (40)

with χk = kπ
√

µ1−a1
µ1

. If we expand the solution as ûk = ûk,0 + εûk,1 +O(ε2), eq. (40) becomes:

û′′k,0 + χ2
kûk,0 = 0 → ûk,0 = c1 cos(χkt

+) + c2 sin(χkt
+), (41)

û′′k,1 + χ2
kûk,1 = ûk,0 → ûk,1 = c3 sin(χkt

+) + c4 cos(χkt
+) + c5χkt

+ sin(χkt
+) + c6χkt

+ cos(χkt
+). (42)

The last two terms go to infinity when t→∞, so we see that ûk is a secular term. The same can be derived
for û′k and û′′k . This derivation depends on the fact that ûk and its derivatives have the same eigenfrequency
χk as is present in the left hand side. For this reason the summation terms

∑∞
n=1,n6=k ûn and

∑∞
n=1,n6=k û

′
n

are not secular terms, since all ûn’s appear but ûk. Lastly, the excitation term will also lead to resonance
under certain conditions (which will be derived), so it belongs to the secular terms.

4.2 Interior layer analysis using the secular terms

The secular terms of eq. (38) are:

û′′k + χ2
kûk = ε

[(
−a1 l̂(t

+)

2
+

(
(a1 − µ1)l̂(t+)

2

−εt2a2
1

(
2

3
− 1

2k2π2

))
k2π2

)
ûk +

2α1Ω2 l̂2(t+)

kπ
sin(Ωt)

]
+O(ε2).

(43)

On this equation we will perform the averaging method. The first step is to find the form of the solution,
and to apply variation of constants:
The homogeneous solution (for ε = 0) of eq. (43) can be written as:

ûk(t+) = Ak cos(χkt
+) +Bk sin(χkt

+), (44)

for certain constants Ak and Bk. This yields the following for û′k:

û′k(t+) = −χkAk sin(χkt
+) + χkBk cos(χkt

+). (45)

Now we apply variation of constants: we assume that eq. (43) for nonzero ε is still given by eq. (44), but
now with time-varying Ak and Bk. The problem of finding ûk is thus changed into the problem of finding
Ak and Bk, so an extra unknown has been introduced. This means we can impose a condition in addition
to eq. (44), which will be: eq. (45) still holds for time-varying Ak and Bk. Comparing eq. (45) to the real
û′k:

û′k(t+) = −χkAk(t+) sin(χkt
+) + χkBk(t+) cos(χkt

+) +A′k(t+) cos(χkt
+) +B′k(t+) sin(χkt

+), (46)
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we find the following condition:

A′k(t+) cos(χkt
+) +B′k(t+) sin(χkt

+) = 0. (47)

This condition will form a system of two equations together with the differential equation. In order to write
the DE as function for Ak and Bk we still need the second derivative of ûk, which we find by differentiating
eq. (45):

û′′k(t+) = −χ2
kAk cos(χkt

+)− χ2
kBk sin(χkt

+)− χkA′k sin(χt+) + χkB
′
k cos(χkt

+). (48)

So we find for the DE:

χkA
′
k sin(χt+)− χkB′k cos(χkt

+) = ε

[(
a1 l̂(t

+)

2
−
(

(a1 − µ1)l̂(t+)

2

−εt2a2
1

(
2

3
− 1

2k2π2

))
k2π2

)
(Ak cos(χkt

+) +Bk sin(χkt
+))− 2α1Ω2 l̂2(t+)

kπ
sin(Ωt)

]
.

(49)

We can now form expressions for A′k and B′k from eqs. (47) and 49):

A′k =
1

2χk
ε

[(
a1 l̂(t

+)

2
−
(

(a1 − µ1)l̂(t+)

2
− εt2a2

1

(
2

3
− 1

2k2π2

))
k2π2

)
(Ak sin(2χkt

+) +Bk(1− cos(2χkt
+)))− 2α1Ω2 l̂2(t+)

kπ
sin(χkt

+) sin(Ωt)

]
,

(50)

and

B′k = − 1

2χk
ε

[(
a1 l̂(t

+)

2
−
(

(a1 − µ1)l̂(t+)

2
− εt2a2

1

(
2

3
− 1

2k2π2

))
k2π2

)
(Ak(cos(2χkt

+) + 1) +Bk sin(2χkt
+)) +

2α1Ω2 l̂2(t+)

kπ
cos(χkt

+) sin(Ωt)

]
.

(51)

We can now assess which terms in these equations will average out when an averaging method is applied
(the fast-varying terms) and which will not (the slow-varying terms). We will examine all t+-dependent

terms or factors. All but the last term consist of a multiplication of either l̂(t+) or t2 with either a sine,

cosine or constant. We know that l̂(t+) = l0 sec2

(√
εa1l0

2 t+
)

and t2 = 2l0
εa1

tan2

(√
εa1l0

2 t+
)

. Both are

slowly oscillating functions because the small
√
ε makes the period large. Furthermore, the sine and cosine

are fast-varying, and the constant is invariant. Thus the terms containing the sine or cosine are fast-varying
and the others are slowly-varying. We will now look at the last term:

Firstly, we rename some of the expressions appearing in the equations: τ =
√

εa1l0
2 t+, φ = χkt

+ and

ψ = Ω
√

2l0
εa1

tan(τ).

The derivatives of these are τ ′ =
√

εa1l0
2 , φ′ = χk and ψ′ = Ωl0 sec2(τ) and we have τ(0) = φ(0) = ψ(0) = 0.
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Using this and some trigonometrics in eqs. (50) and (51) we find the following five differential equations:

A′k =
1

2χk
ε

[(
a1 l̂(t

+)

2
−
(

(a1 − µ1)l̂(t+)

2
− εt2a2

1

(
2

3
− 1

2k2π2

))
k2π2

)
(Ak sin(2χkt

+) +Bk(1− cos(2χkt
+))) +

α1Ω2 l̂2(t+)

kπ
(cos(φ+ ψ)− cos(φ− ψ))

]
,

B′k = − 1

2χk
ε

[(
a1 l̂(t

+)

2
−
(

(a1 − µ1)l̂(t+)

2
− εt2a2

1

(
2

3
− 1

2k2π2

))
k2π2

)
(Ak(cos(2χkt

+) + 1) +Bk sin(2χkt
+)) +

α1Ω2 l̂2(t+)

kπ
(sin(φ+ ψ)− sin(φ− ψ))

]
.

τ ′ =

√
εa1l0

2
, τ(0) = 0,

φ′ = χk, φ(0) = 0,

ψ′ = Ωl0 sec2(τ), ψ(0) = 0.

(52)

Resonance due to the last term in the first two equations can be expected when the argument of the
sine and cosine is (approximately) constant, because then the term will integrate to a linearly increasing
contribution. This happens when φ′ + ψ′ = 0 or φ′ − ψ′ = 0. Since we know that φ′ > 0 and ψ′ > 0, the
only case left is φ′ − ψ′ = 0 ⇐⇒ χk − Ωl0 sec2(τ) = 0. We know that τ, χk,Ω, l0 > 0 so this corresponds

to sec(τ) =
√

χk

Ωl0
⇐⇒ τ = arccos

(√
Ωl0
χk

)
. These are the resonance times. The further analysis of the

equations above can be divided in the case inside the resonance zones and the case outside the resonance
zones. We will both cases in the following subsections.

4.3 Outside the resonance zone

Outside the resonance zone the excitation term is averaged out. Averaging over φ and ψ yields the following
for A′k and B′k:

A′k =
1

2χk
ε

(
a1 l̂(t

+)

2
−
(

(a1 − µ1)l̂(t+)

2
− εt2a2

1

(
2

3
− 1

2k2π2

))
k2π2

)
Bk,

B′k = − 1

2χk
ε

(
a1 l̂(t

+)

2
−
(

(a1 − µ1)l̂(t+)

2
− εt2a2

1

(
2

3
− 1

2k2π2

))
k2π2

)
Ak.

(53)

If we now define ck(t+) ≡ 1
2χk

ε

(
a1 l̂(t

+)
2 −

(
(a1−µ1)l̂(t+)

2 − εt2a2
1

(
2
3 −

1
2k2π2

))
k2π2

)
, this can rewritten as

A′k = ck(t+)Bk,

B′k = −ck(t+)Ak.
(54)

In order to solve eq. (54) we need to remove the t+-dependency of the prefactors of Ak and Bk. This is
done by introducing another time transformation, which transforms Ak(t+) to Âk(s) and Bk(t+) to B̂k(s),

defined as: s =
∫ t+

0
ck(t+′)dt+′. This leads to dAk

dt+ = dÂk

ds
ds
dt+ = dÂk

ds ĉk(s) = ĉk(s)B̂k(s). Then system (54)
reduces to

Â′k = B̂k,

B̂′k = −Âk.
(55)
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The solution to this is found by differentiating and substituting the equations, and setting t+ = 0 to find
the constants. It is given by:

Ak(t+) = Ak(0) cos(s) +Bk(0) sin(s),

Bk(t+) = −Ak(0) sin(s) +Bk(0) cos(s).
(56)

4.4 Inside the resonance zone

We will now focus on the resonance zone. We will use Φ = φ− ψ for the resonance frequency determined in

section 4.2, and rescale the zone with τ − arccos
(√

Ωl0
χk

)
= δ(ε)τ̄ , where τ̄ = O(1) and δ(ε) is the rescaling

parameter. So we find Φ′ = φ′ − ψ′ = χk − Ωl0 sec2(τ) = χk − Ωl0 sec2
(
δ(ε)τ̄ + arccos

(√
Ωl0
χk

))
.

The Taylor series of sec2(x+ b) around x = 0 is sec2(x+ b) = sec2(b) + 2x tan(b) sec2(b) +O(x2), so we can
further rewrite this as:

Φ′ = χk − Ωl0

 χk
Ωl0

+ 2δ(ε)τ̄

√(
χk
Ωl0

)3

−
(
χk
Ωl0

)2
 = −2δ(ε)τ̄

√
χ3
k

Ωl0
− χ2

k +O(δ(ε)2). (57)

In the case that χk = Ωl0 this term vanishes, so we have a bifurcation. We need to use the next term in the
Taylor series, leading to:

Φ′ = −χkδ(ε))2 +O(δ(ε)3). (58)

The system of five DE’s (52) can be rewritten as a system of six DE’s:

A′k =
1

2χk
ε

[(
a1 l̂(t

+)

2
−
(

(a1 − µ1)l̂(t+)

2
− εt2a2

1

(
2

3
− 1

2k2π2

))
k2π2

)
(Ak sin(2χkt

+) +Bk(1− cos(2χkt
+))) +

α1Ω2 l̂2(t+)

kπ
(cos(φ+ ψ)− cos(Φ))

]
,

B′k = − 1

2χk
ε

[(
a1 l̂(t

+)

2
−
(

(a1 − µ1)l̂(t+)

2
− εt2a2

1

(
2

3
− 1

2k2π2

))
k2π2

)
(Ak(cos(2χkt

+) + 1) +Bk sin(2χkt
+)) +

α1Ω2 l̂2(t+)

kπ
(sin(φ+ ψ)− sin(Φ))

]
,

τ̄ ′ =

√
εa1l0

2

1

δ(ε)
, τ̄(0) = −

arccos
(√

Ωl0
χk

)
δ(ε)

,

Φ′ = −2δ(ε)τ̄

√
χ3
k

Ωl0
− χ2

k +O(δ(ε)2), Φ(0) = 0,

φ′ = χk, φ(0) = 0,

ψ′ = χk + 2δ(ε)τ̄

√
χ3
k

Ωl0
− χ2

k, ψ(0) = 0.

(59)

The resonance region is where Φ varies slowly, so when Φ′ ≈ τ̄ ′. Then averaging over φ and ψ will not remove

the term with Φ, i.e. resonance occurs. Ignoring prefactors, this balancing condition can be written as
√
ε

δ(ε) =

δ(ε) so our rescaling parameter is δ(ε) = 4
√
ε. This leads to τ̄ ′ =

√√
εa1l0
2 , Φ′ = −2 4

√
ετ̄
√

χ3
k

Ωl0
− χ2

k +O(
√
ε)

and ψ′ = χk + 2 4
√
ετ̄
√

χ3
k

Ωl0
− χ2

k. Going back to t+ we find for Φ:

Φ′ = −2

(√
εa1l0

2 t+ − arccos
(√

Ωl0
χk

))√
χ3
k

Ωl0
− χ2

k +O(
√
ε). So our resonance angle, Φ itself, is:
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Φ = −2

(√
εa1l0

8 t+
2 − arccos

(√
Ωl0
χk

)
t+
)√

χ3
k

Ωl0
− χ2

k +O(
√
ε).

In the case that χk = Ωl0 the balancing condition is
√
ε

δ(ε) = δ2(ε) so that δ(ε) = 6
√
ε, τ̄ ′ = 3

√
ε
√

a1l0
2 ,

Φ′ = − 3
√
εχk +O(

√
ε) and Φ = − 3

√
εχkt

+ +O(
√
ε).

Now that we know all about our resonance angle, we can integrate the equations for A′k and B′k in (59) to
obtain Ak and Bk in the resonance region. Averaging over φ and ψ yields:

A′k =
1

2χk
ε

[(
a1 l̂(t

+)

2
−
(

(a1 − µ1)l̂(t+)

2
− εt2a2

1

(
2

3
− 1

2k2π2

))
k2π2

)
Bk −

α1Ω2 l̂2(t+)

kπ
cos(Φ)

]
,

B′k = − 1

2χk
ε

[(
a1 l̂(t

+)

2
−
(

(a1 − µ1)l̂(t+)

2
− εt2a2

1

(
2

3
− 1

2k2π2

))
k2π2

)
Ak −

α1Ω2 l̂2(t+)

kπ
sin(Φ)

]
.

(60)

If we define ck(t+) as in section 4.3, ak(t+) ≡ 1
2χk

εα1Ω2 l̂2(t+)
kπ cos(Φ) and bk(t+) = 1

2χk
εα1Ω2 l̂2(t+)

kπ sin(Φ), this
reduces to

A′k = ck(t+)Bk − ak(t+),

B′k = −ck(t+)Ak + bk(t+).
(61)

In order to solve eq. (61) we need to remove the t+-dependent prefactors of Ak and Bk again, so we need to
use the transformation from t+ to s again, as was introduced in section 4.3. The system reduces to:

Â′k = B̂k −
âk
ĉk

(s),

B̂′k = −Âk +
b̂k
ĉk

(s).

(62)

This can be solved using the fundamental matrix method and variation of parameters, as can be found
in section 3.12 of [1]. The solution of an initial-value-system ẋ = Ax + f(s) with x(s0) = x0 is given by

x(s) = X(s)X−1(s0)x0 + X(s)
∫ s
s0
X−1(s′)f(s′)ds′. If we now set s0 = 0, x(s) =

[
Âk(s)

B̂k(s)

]
, A =

[
0 1
−1 0

]
and f(s) =

[
− âkĉk (s)
b̂k
ĉk

(s)

]
, then we have written system (62) in this form. It remains to determine X(s) and x0.

Using eqs. (44) and (39) we find that x0 = x(0) =

[
Âk(0)

B̂k(0)

]
=

[
ûk(0)
ûk

dt+ (0)

]
=

[
2εF̂ (k)

2εl0Q̂(k)

]
.

To find the fundamental matrix X(s) we need the solutions to the homogeneous problem and write them as

x(s) = X(s)

[
c1
c2

]
. These were calculated in section 4.3, and we find: X(s) =

[
cos(s) sin(s)
− sin(s) cos(s)

]
.

The solution for x(s) is thus:

x(s) =

[
cos(s) sin(s)
− sin(s) cos(s)

] [
1 0
0 1

] [
2εF̂ (k)

2εl0Q̂(k)

]
+

[
cos(s) sin(s)
− sin(s) cos(s)

] ∫ s

0

[
cos(s′) − sin(s′)
sin(s′) cos(s′)

] [− âkĉk (s′)
b̂k
ĉk

(s′)

]
ds′

=

[
2εF̂ (k) cos(s) + 2εQ̂(k)l0 sin(s)

−2εF̂ (k) sin(s) + 2εQ̂(k)l0 cos(s)

]
+

[
cos(s) sin(s)
− sin(s) cos(s)

] ∫ s

0

[
− âkĉk (s′) cos(s′)− b̂k

ĉk
(s′) sin(s′)

− âkĉk (s′) sin(s′) + b̂k
ĉk

(s′) cos(s′)

]
ds′.

(63)
Thus, we have found an expression for Ak and Bk.
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5 Results

The goal of this project was to determine the resonance times, the resonance amplitudes and the resonance
duration for a downwards accelerating elevator cable.

In section 4 we found the resonance times to be τ = arccos
(√

Ωl0
χk

)
, which can be rewritten as

t+ =
√

2
εa1l0

arccos(
√

Ωl0
χk

). We see that any k ∈ Z+ such that χk > Ωl0 will lead to resonance capture.

If we use the values of the parameters as stated in the Appendix, and set L = 250 m, we find that χk > Ωl0
for 2 ≤ k ∈ Z. A graph of the resonance times for k = 2 to k = 10 is presented in Figure 2.

Figure 2: Graph of the first 9 resonance times of the elevator cable.

In the case where χk = Ωl0 there is a resonance immediately, at t+ = 0. Using the same parameters, we
find that this occurs for k = 1 when L = 243 m.

From the interior layer analysis it can be gathered that for χk 6= Ωl0 the duration of the resonances
(timescale) is O(ε−

1
4 ). Thus the resonance amplitude is ε · O(ε−

1
4 ) = O(ε

3
4 ), since the excitation term is

integrated to a term linear in t+, so that the amplitude is proportional to εt+. When χk = Ωl0 we find
O(ε−

1
6 ) and O(ε

5
6 ). In both cases the amplitude is larger than the original excitation of O(ε) because ε < 1.

The solutions to the system of ODE’s for Ak and Bk have been calculated both inside and outside the
resonance zone, but using only the secular terms. These solutions can then be used to find an approximation
to the solution for u. Outside the resonance zone the solution for Ak and Bk is given by eq. (56), and inside
the resonance zone it is given by (63). With these solutions one could find back the solution for u by using
eq. (44), then sum all un(t; ε)’s in the Fourier sine series to obtain û(ξ, t; ε), and finally use eq. (7) to find
u in meters.
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6 Conclusions and recommendations

In this project the transversal vibrations of an elevator cable system have been studied. The system was
modelled as an initial-boundary value problem for an axially accelerating string; the length of the cable is
given by l(t) = l0 + 1

2at
2. The upper end of the string is excited sinusoidally, while the lower end is fixed.

The length of the cable is changing and so are its eigenfrequencies. When one of the eigenfrequencies fits
the excitation frequency the system goes through resonance. After a while the eigenfrequency again fits the
excitation frequency, the process repeats itself, and thus we get a cascade of autoresonances. The goal of this
project was to determine the resonance times, the resonance amplitudes and their duration (the timescale).

In section 2 the starting point was the general wave equation for the transversal displacement u, which
was rewritten for an axially moving string, which applies to the situation of the moving elevator cable, and
the boundary conditions and initial condition were added. The equation was made dimensionless through
transformations using known parameters, before proceeding with a transformation that made the inhomo-
geneous boundary condition at x = 0 (the excitation) homogeneous. After that, several parameters were
estimated to be O(ε), and after filling in these parameters the equation could be approximated to O(ε), and
higher terms were disregarded.

In section 3 the general movement of section 2 was specified with a formula for l(t). The domain of x was
t-dependent; x ∈ [0, l(t)], so x was replaced by ξ ∈ [0, 1] through transformation, so that u could be expanded
as a Fourier sine series. Multiplying the equation with sin(kπξ) and integrating over the domain removed the
ξ-dependency and yielded an ODE for uk. The ODE could be expected to have oscillatory solutions when
the prefactor of uk(t; ε) in the left-hand side was independent of t. In order to reach this, a transformation of
t to t+ was introduced, so that the prefactor of ûk(t+; ε) in the new equation was independent of t+, leading
to the oscillatory solutions.

In section 4 interior layer analysis has been applied on the secular terms of the ODE for t+: using the
method of variation of parameters the problem of finding uk was changed to finding Ak and Bk. After
that it was assessed which terms were fast-varying and would average out when using the method of av-
eraging. The excitation term was treated separately; a new time coordinate τ was introduced, as well as

the numbers φ and ψ, which were used to find the resonance times, which are at τ = arccos(
√

Ωl0
χk

), or

t+ =
√

2
εa1l0

arccos(
√

Ωl0
χk

). Then the equations for Ak and Bk were ready to be solved both outside and

inside the resonance zone. Inside the resonance zone this involved the explicit calculation of Φ = φ− ψ and
the balance condition Φ′ = τ ′. The solution was calculated using the fundamental matrix method. The
balancing method yielded a timescale of O( 1

4
√
ε
) for the case that χk 6= Ωl0 and O( 1

6
√
ε
) for χk 6= Ωl0. The

amplitude scales are thus O(
4
√
ε3) and O(

6
√
ε5), respectively. The actual expression for the amplitudes Ak

and Bk outside and inside the resonance is given by eq. (56) and eq. (63), respectively.

The results in this text are obtained using only the secular terms of eq. (38). Future work could include
the calculation of the solution by applying a perturbation method to eq. (38) as was done in [9] for constant
velocity. Furthermore, the mathematical model can be improved by taking the excitation displacement into
account over the entire cable length. This has been done in [4] for constant velocity. Lastly, one could
combine the results for constant velocity and for varying velocity and analyse a full elevator trajectory;
accelerating, moving with constant velocity, and decelerating. Elevator manufacturers can then use the
results in their investigation of how to reduce the negative effects of the resonances.
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Appendix

In this paper, we have assumed l̈, l̇, µ and α to be O(ε). We will now calculate typical values of these
parameters to support this claim. A ride with an elevator consist of an accelerating period, a period
of constant maximum velocity, and a decelerating period. The acceleration was assumed to be constant
and equal to the deceleration in absolute value. The standard acceleration for a comfortable elevator ride
according to literature [6] is 4 ft

s2 = 1.22 m
s2 , but the maximum velocity seems to get higher every time a taller

skyscraper is built [3]. This is due to the fact that larger velocities do not make the ride less comfortable,
and the taller the building, the longer the car can be accelerated. Using ordinary mechanics formulas on
this, we find the following formula for l̇:

l̇max = l̈tend = l̈

√
2L

l̈
=
√

2l̈L, (64)

In order to calculate the other parameters, and their dimensionless values, we will need values for the
constants m, ρ, g, α and Ω. Firstly, g = 9.81 m

s2 . The maximum load of an elevator car is mostly around
1000 kg, while the car itself weighs around 600 kg. We will use the average value, so m = 1100 kg. The
elevator cables are virtually always made of steel (ρsteel = 7900 kg

m3 ), and have a typical diameter of half an

inch [11], which sets ρ = 1.001 kg
m . Buildings are known to be swaying with periods of around 5 seconds,

and the amplitude of the building sway is known to be in the order of decimetres, as seen for example in
[5]. We will thus take Ω = 2π · 0.2 rad

s and α = 1 m. We can now calculate the dimensionless values of the
parameters under consideration using the transformations of eq. 7:

l̈∗ = l̈
Lρ

mg
= 1.1 · 10−4L, l̇∗ = l̇

√
ρ

mg
=
√

2l̈L

√
ρ

mg
= 0.015

√
L,

µ =
ρL

m
= 9.1 · 10−4L,α∗ =

α∗

L
=

1

L
,Ω∗ = ΩL

√
ρ

mg
= 0.012L

(65)

We observe that for buildings of around a few hundred meters tall, the variables can be assumed to be O(ε).
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