
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

Consistency Metrics
for LR-Systems
A Comparative Analysis

MSc Applied Mathematics: Thesis Project
Hester Klomp



Consistency Metrics
for LR-Systems

A Comparative Analysis

by

Hester Klomp
Student Name Student Number

Hester Klomp 5850797

Instructor TU Delft: J. Söhl
Instructor NFI: L. van der Ham
Project Duration: January, 2024 - October, 2024
Faculty: Faculty of Electrical Engineering, Mathematics and Computer Sciences, Delft

Cover: The Public Health Image Library from the Centers for Disease
Control and Prevention (CDC)

Style: TU Delft Report Style, with modifications by Daan Zwaneveld



Preface

Working on this thesis has been both challenging and rewarding. During the better part of this year, I
have spent day in day out thinking about likelihood ratios and consistency metrics. To have it come to
an end is bittersweet: while I am proud of the work that I have delivered and extremely satisfied with
everything that I have learned, I am also sad to say goodbye to it and with that conclude my Master’s
degree.

Having never worked in forensic science before, a whole new world has opened up to me and I
have learned so much over the past months. Writing a master’s thesis is never easy, but doing it about
such an interesting subject and in such a stimulating environment certainly helps. What helps even
more is having supportive people around you that you can fall back on if you need to.

I would first like to thank my supervisors, Jakob Söhl from TU Delft and Leen van der Ham from
the Netherlands Forensic Institute. All of our meetings and chats have helped me immensely. It is
a privilege to be able to work with such intelligent and helpful people, and I am very grateful for this
opportunity.

Secondly, I would like to thank my boyfriend Gonçalo for always encouraging me and proofreading
everything even though he has no idea what it is all about. I would also like to thank my friend Rosalie
for being a shoulder to cry on, not only during the thesis but during this whole degree. There is no way
I would have made it through without you.

Lastly I would like to thank my family, and in particular my parents, for their continuous support
during the highs and the lows of everything.

Thank you all for being part of this journey with me.

Hester Klomp
Delft, September 2024

i



Abstract

An important tool in forensic science is the likelihood ratio (LR), which quantifies the strength of ev-
idence. It does so by comparing the probabilities of the evidence under two mutually exclusive hy-
potheses, the prosecution hypothesis Hp and the defense hypothesis Hd. However, if the underlying
probability model to determine these probabilities is not correct, this can lead to misleading conclusions,
for example biases towards one of the hypotheses. The ability for an LR-system to produce LR-values
that reflect the true probabilities of the evidence under the hypotheses is called ‘consistency’. Ensuring
the consistency of LR-systems is necessary to prevent biases and inaccuracies.

Several methods to evaluate consistency of LR-systems have been developed over the past decade,
but there has been a lack of thorough comparisons to identify which one is the most effective with real
case data. In this thesis, the aim is to fill this gap by developing and optimizing the existing methods,
and comparing them to one another. An in-depth comparative analysis will be conducted of various
existing metrics, as well as some newly introduced metrics, to evaluate the consistency of LR-systems.

This study evaluates the consistency metrics Ccal
llr and devPAV. The individual metrics are optimized

before comparing them to each other. A third metric is introduced, which is named Fid. This metric
is based on advanced calibration techniques. It is compared to the previous two metrics to see which
one performs best on different datasets. This performance is evaluated based on the metrics’ abilities
to distinguish between consistent and inconsistent LR-systems, their reliability in terms of their output
and their sensitivity to dataset size. To measure this, several different datasets are used.

The results show that Ccal
llr outperforms the other metrics in distinguishing between consistent and

inconsistent LR-systems. However, it falls short in terms of reliability, as it fails to assign the same
values to different LR-systems that are all consistent. On the other hand, devPAV demonstrates high
reliability, showing both reliability across different datasets and across different dataset sizes. The
Fid metric shows similar performance to devPAV, but has the disadvantage of not working on smaller
datasets. Therefore, as a metric it might not be preferred, although the method itself definitely shows
interesting insights into the consistency of LR-systems.

These findings improve the tools we have for forensic evidence interpretation, helping to make foren-
sic practices more accurate and reliable. By identifying the best metric for consistency, this research
helps to make the criminal justice system fairer and more precise.
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1
Introduction

Forensic science plays an important role in the criminal justice system by providing scientific analyses
that support legal decisions. One of the key challenges in forensic science is the evaluation and in-
terpretation of evidence to determine its relevance and strength. A commonly used statistical tool to
determine this strength of evidence is the likelihood ratio (LR).

A likelihood ratio is a measure used to quantify the strength of evidence by comparing the probabil-
ity of observing the evidence under two competing hypotheses: the prosecution hypothesis (Hp) and
the defense hypothesis (Hd) [13]. These evidence assess whether or not the evidence comes from a
given source (for example, a suspect). The LR is calculated as the ratio of these probabilities. It pro-
vides a numerical value that indicates how much more likely the evidence is to be observed under one
hypothesis compared to the other. When determined correctly, the LR gives an objective assessment
of evidence strength, which can be used in legal decision-making.

Likelihood ratios are used in various forensic disciplines, such as DNA analysis, fingerprint exam-
ination, and glass fragment analysis [8], [11], [10]. In these areas, we speak of LR-systems. These
LR-systems allow for the automatic computation of LRs based on mathematical models trained on rel-
evant data. By automating this process, forensic scientists can provide more consistent and objective
evaluations of evidence, which is of great importance in supporting the judicial process. Moreover,
it becomes more reproducible and significantly quicker to calculate LRs, enhancing the efficiency of
forensic evaluations. However, a potential downside of using LR-systems is that the model could over-
look certain aspects of the evidence, and it may not account for the unique details of each individual
case.

An important aspect of using LR-systems is ensuring their consistency, i.e., their ability to produce
reliable and accurate LRs that reflect the true probabilities of the evidence under the different hypothe-
ses [9]. Inconsistent LR-values can lead to misleading conclusions, possibly affecting the outcomes of
legal cases. For instance, if an LR-system is not consistent, it might overestimate the strength of evi-
dence in favor of the prosecution or the defense, leading to potential biases in the legal decision-making
process.

In the past decade, different methods and metrics have been developed to evaluate the consistency
of LR-systems. These methods range from simple statistical checks to complex calibration techniques.
Some of these metrics have already been compared in [27]. This comparison gives us a lot of initial
insight into the performance of the metrics and their reliability. Many of the insights and methods from
this paper will be applied in this thesis. However, a normal distribution is assumed for the LR-data,
which is usually not in line with reality. There has not yet been a thorough comparison to see which one
of these methods work best with real forensic LR-data. This lack of comprehensive analysis means we
still do not have a clear understanding of which metrics are the most reliable across various types of
evidence and forensic contexts.

This thesis aims to fill this gap by evaluating and comparing already existing metrics, as well as a
newly introduced one, used to measure the consistency of LR-systems. By developing and optimizing
these metrics, this study hopes to provide a robust framework for evaluating the reliability of assessing
forensic evidence. This, in turn, will help increase the fairness and accuracy of the criminal justice
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system. A reliable consistency metric ensures that forensic evidence is evaluated correctly, minimizing
the risk of wrongful convictions or acquittals based on misinterpreted evidence.

The structure of this thesis is as follows: in Chapter 2, the relevant existing literature on LR-systems
and consistency metrics is reviewed. The theoretical framework is outlined, and all the important def-
initions are introduced and explained. The chapter provides a solid foundation for understanding the
various approaches to measuring consistency and their applications in forensic science. Chapter 3 de-
scribes the methodology used in this study for the comparison of the metrics, including the construction
and optimization of the metrics. The chapter describes in detail the experimental setup, data collection,
and analytical techniques used to ensure a thorough comparison. Chapter 4 presents the results of the
comparative analysis, showcasing the performance of different metrics across various datasets and
forensic scenarios. The chapter includes detailed statistical analyses and visualizations. Chapter 5
discusses the findings, implications, and conclusions of this research. It also highlights the practical
applications of the developed framework and suggests directions for future research.

This research does not only identify the most effective metrics for evaluating the consistency of LR-
systems, but also contributes to the broader field of forensic science by improving the tools available for
evidence interpretation. By providing a clear and comparative analysis of existing metrics, this thesis
lays the groundwork for more reliable and accurate methods in forensic science.



2
Literature Review

2.1. Likelihood Ratios
In criminal cases, we often encounter situations where some evidence, denoted as E, is available, but
its strength or direction is not immediately clear. This is where forensic experts come into play: to help
quantify the strength of the evidence. A common tool for this purpose is the likelihood ratio (LR), first
introduced in [13], which is used to measure the strength of the evidence. A few key components are
required to compute the LR.

Firstly, two competing hypotheses are commonly used: the prosecution hypothesis Hp, and the
defense hypothesis Hd. The hypotheses depend on the question that needs to be answered. The
question, in turn, usually depends on the evidence and background information available. Sometimes
there is a suspect. Other times, there is no suspect yet, but only two traces, and the aim is to compare
the traces to each other. Typically, the prosecution hypothesis asserts that the source of the evidence
E and the suspect are the same person, or in the case where there is no suspect, that two traces come
from the same source. For example, the trace found on the crime scene belongs to the suspect, the
two fingerprints are from the same person, etc. The defense hypothesis on the other hand, asserts
that the evidence does not belong to the suspect, or that two traces come from different sources. One
can use different formulations of hypotheses that might influence the values of the LRs in different
ways. The hypotheses do not need to be defined on source-level, as we did now. They can also be
on activity-level, stating that a certain activity has taken place, or on subject-level, emphasizing on the
people involved. It is important to be very specific and clear about what exactly the hypotheses are.
More on this in Section 2.1.1.

Normally, there is some background information available, which is referred to as I. This can be
anything varying from other evidence to background information on the subject or crime.

In a criminal case, it is interesting to know the following ratio:
P(Hp|E, I)

P(Hd|E, I)
. (2.1)

This ratio says something about the likeliness of Hp being true compared to Hd being true, given the
evidence and the context of the case. However, it is often not possible to directly determine the value
of this ratio.

According to Bayes’s theorem, as discussed in the textbook [4], Equation (2.1) provides a factoriza-
tion of the posterior odds:

P(Hp|E, I)

P(Hd|E, I)
=

P(E|Hp, I)

P(E|Hd, I)
× P(Hp|I)

P(Hd|I)
. (2.2)

Normally, the notation of the I is omitted and Equation (2.2) simplifies to
P(Hp|E)

P(Hd|E)
=

P(E|Hp)

P(E|Hd)
× P(Hp)

P(Hd)
. (2.3)

Now, the middle term is what is referred to as the ‘Likelihood Ratio’, or LR. In words:

Posterior Odds = LR × Prior Odds.

3



2.1. Likelihood Ratios 4

The job of the forensic examiner is only to determine the LR for a given situation. It is out of his/her
field of expertise to determine the prior odds or the posterior odds. This is the responsibility of the
legal expert. Sometimes, the LR is erroneously interpreted as the posterior odds. This phenomenon
is called the ‘prosecutor’s fallacy’, as explained in more detail in [12].

The LR tells us how much more likely it is to find the evidence E when Hp is true, compared to
finding E when Hd is true. In other words, it says something about the direction in which the evidence
points, and the strength with which it does so. An LR with a value greater than one indicates that the
evidence supports the prosecution hypothesis Hp, whereas an LR of a value smaller than one points
towards the defense hypothesis Hd. An LR of exactly one gives neutral information. In this case, the
evidence does not support a specific hypothesis. Given the evidence, both scenarios are equally likely.

Recently, ways have been developed to automatically compute LRs based on raw data, using math-
ematical models. These models have been trained on data relevant to the specific case. Such method-
ologies are referred to as ‘LR-systems’, as first introduced in [10]. The underlying models define the
LR-system. Examples of LR-systems already in use include those for analyzing glass fragments [11],
DNA profiles [8], and fingerprints [10].

Ideally, an LR-system outputs a value greater than one every time that Hp is true, and a value
smaller than one every time that Hd is true. Realistically, this almost never happens. Sometimes, an
LR-system gives a value that is indicative of the wrong hypothesis. When the LR-system outputs a
value smaller than one when Hp is true, or a value greater than one when Hd is true, we call this
‘misleading evidence’ [22].

The more extreme the LR, the stronger the evidence is considered to be. Theoretically, an LR
can become infinitely large or small. However, it is intuitively clear that when an LR-system is trained
on a very small dataset, it is undesirable to express infinite value of evidence. The reason is that
an LR-system trained on little data can potentially have very high variance, and not be an accurate
representation of reality. When there is more data available, there is more confidence in the LR values.
In practice, the LR is usually bounded from above by the number of Hd-true elements in the dataset
used to build it, and from below by one divided by the number of Hp-true elements. These bounds are
called the empirical lower and upper bounds, or ELUB bounds, and they were first introduced in [28].
So if there are Nd Hd-true elements in the dataset and Np Hp-true elements, in practice the LR is often
bounded as follows:

1

Np
≤ LR ≤ Nd. (2.4)

When the LR-system outputs a value smaller than the lower bound or larger than the upper bound it is
just set equal to the corresponding bound.

2.1.1. Common source versus specific source models
Equipped with a foundational understanding of likelihood ratios, a crucial distinction has to be made:
common source versus specific source models. This distinction was first introduced in [20].

As previously mentioned, LRs quantify the strength of evidence. The nature of the evidence itself
guides our hypotheses. In this section, the common source and specific source questions and models
will be introduced. Note that the terms ‘common source’ and ‘specific source’ will be used both to
address the type of question as well as the model used to solve it. This can be quite confusing, but it
is in line with the literature. It should be clear from the context, or else emphasized, which one of the
two options is referred to.

Firstly, it is important to distinguish between two types of questions that need to be addressed,
known as the specific source and common source questions. In the specific source question, there
is one or more first traces coming from a crime scene, and one or more second traces coming from
a suspect. The suspect is the specific source in this case. The question of interest is whether or not
the suspect is the donor of this/these trace(s). Samples can be taken both from the trace(s) with the
unknown source and the trace(s) from the suspect (the specific source). The results from the analysis
of these samples form the evidence E that the LR will be based on. The hypotheses in this case are
of the following form [19], [20]:

Hp: The trace originates from the specific source.
Hd: The trace does not originate from the specific source, but from some other source in the alter-

native source population.
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Here, the alternative source population can vary. All possible different sources can be considered,
or only those of a specific type. The LR might change depending on how the defense hypothesis is
chosen. It is important to be very specific in the phrasing of the hypotheses.

Another type of question is possible, which is referred to as the common source question. Here,
two traces have been found, either at the same site or different sites. A question of interest could be if
these two traces originate from the same, possibly unknown, source. This is an example of a common
source question. Samples will be taken from both of the traces, of which the analysis result will give
the evidence for the LR. In this case, the hypotheses will be structured as follows [19], [20]:

Hp: The two traces both originate from the same (unknown) source.
Hd: The two traces originate from different sources.

Consider the following two examples to help clarify the different types of scenarios.

Example 1 (Specific source). Suppose a cartridge casing has been found on a crime scene, and
the forensic expert is in possession of the gun of the suspect. Naturally, the question arises if the
cartridge casing was fired from the gun of the suspect (the specific source). In this case, it would make
sense to phrase the hypotheses as we have seen in the specific source scenario.

Example 2 (Common source). Suppose bullet cartridge casings have been found at two different
crime scenes. One can be interested in knowing whether or not the cartridge casings come from the
same firearm or not, without being in possession of this specific firearm. In this case, the hypotheses
would be phrased as we have seen in the common source scenario. This way we can say something
about the origin of the casings without having a reference weapon.

The following description, based on [26], compares two models for evaluating evidence: the com-
mon source model and the specific source model. The difference between the two models is that the
evidence is compared to either a fixed (specific) source or a random one under Hp. This distinction
impacts the background population considered and thus the sampling model. In the common source
model, where a random source is considered, only a single background population is taken into ac-
count, namely the one that the sources are presumably a part of. Samples are taken from subjects
of this population and compared with samples from the same subject and from different ones. The
distribution of pairs from the same source and pairs from different sources are modelled and compared
to the evidence.

In the specific source model, where the evidence is compared to a fixed source, two background
populations are of interest: one related to the specific source itself, and one to the random sources. So
samples are taken both from the specific source and from the random sources, and for both, distribu-
tions are modelled. The evidence is compared to both.

It depends on the specific case and on the data available which one of the models one should use.
If the question is phrased as in the common source scenario, there is only one possibility. In this case
there are two traces and no source of reference, so the only option is to use the common source model,
as there is no specific source to compare it to. If the question is of the specific source scenario, both
ways are theoretically possible. The specific source model can be used, in which case many samples
need to be taken from the specific source as well as from the alternative random sources. However, it
is also possible to take the common source approach. In this case, only few samples from the specific
source are needed, as well as samples from the alternative random source population. Now, instead
of checking if the trace comes from the specific source, one checks if the samples from the specific
source and the trace have the same common source (namely, the specific source).

In the specific source scenario where a specific reference source is available, using the specific
source model may be expected to give the best results, as some information gets lost when switching
to the common source model. However, there are some benefits to using the common source approach.
Firstly, it is not always possible to take a lot of samples from the specific source. More often than not, it
is only possible to take a few samples. With only a few samples at hand, it is difficult and often unreliable
to model a distribution for the specific source samples. In this case, one might want to switch to the
common source approach.

Another advantage of using the common source approach is the following. With each case, the
data of the traces can be added to a relevant database, for example a glass evidence database. This
database can again be used for each new case when using the common source approach, without
needing a lot of new samples. When using the specific source approach, however, one must ‘start
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over’ every time, because of the nature of the approach.
In practice, the advantages of the common source approach usually outweigh the advantages of

the specific source approach, and the common source approach is taken.

2.1.2. Feature-based versus score-based methods
When building an LR-system, both for a common source and a specific source approach, a choice
needs to be made between using a feature-based or score-based approach. In a feature-based ap-
proach, the evidence consists of feature vectors from reference subjects. The features of the subjects
are modeled directly, so a distribution is assumed for the specific features given the hypotheses. If the
feature vectors of subjects to be compared are denoted by x and y, then the LR in a feature-based
approach can be represented as

LR =
f(x, y|Hp)

f(x, y|Hd)
, (2.5)

where f denotes the density of the feature vectors under the competing hypotheses, following the
notation in [3].

In score-based systems, the focus is not on examining specific features but rather on comparing
differences between various subjects. The features of all possible pairs of subjects are taken into
account, and a similarity score is calculated for each pair. The evidence consists of these similarity
scores, say s(x, y). In this case, the LR can be represented as follows:

LR =
f(s(x, y)|Hp)

f(s(x, y)|Hd)
. (2.6)

Now, the distribution of the scores are modeled both for the pairs that come from the same subject, as
well as pairs that come from different subjects. Note that these are now functions of univariate variables,
as the multivariate features are reduced to a single score. Examples of scores are Pearson correlation
and Euclidean distance. It is also possible to use machine learning algorithms to determine the scores.

The type of method used, depends mostly on the data available. For example, for speaker recog-
nition, typically a score-based method is used [23]. For glass comparison, a feature-based method is
used [11]. Both of the methods have advantages and disadvantages.

According to [3], a downside of using score-based methods is that you may lose some information
when combining the features into a score. In turn, reducing the multivariate structure to a single dimen-
sion improves the robustness of score-based methods against minor fluctuations in one or multiple
features, albeit at the expense of their ability to accurately distinguish between weak and strong evi-
dence. Moreover, score-based methods usually do not take rarity into account. When two traces both
contain a rare feature, this detail is disregarded when using score-based methods because only the
difference between the traces is considered. In such instances the difference will be small, but so will
the difference between two traces who both have the same common feature. Ideally, more importance
would be given to these rare features. Feature-based models can account for that.

Although feature-based methods are more preserving of the available information, they are gen-
erally more difficult to implement. As previously mentioned, the data is often multi-dimensional, and
it is hard to find well-fitting models. Moreover, features often have correlation between them, and for
this reason one might accidentally be giving too much or too little weight to specific features. Although
some information is lost, the scores are much easier to work with than the features. For this reason,
score-based methods are usually preferred in practice.

For a more detailed discussion and examples, refer to [3].

2.2. Properties of LR-systems
LR-systems can have different types of properties. Understanding the properties of LR-systems is
essential for evaluating their effectiveness and reliability. Some desirable properties of LR-systems
are discrimination and consistency. This section will be devoted to explaining these properties, their
importance and how to measure them.

2.2.1. Consistency of LR-systems
In an LR-system, the main aim is to ensure that the reported LRs align accurately with the true proba-
bilities of observed evidence under the different hypotheses. The numerical outputs of the LR-system
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should accurately reflect the likelihood of a given scenario based on the available data. When this is the
case, the LR-system is said to be ‘consistent’ or ‘well-calibrated’, as first described by [9]. Consistency
is a spectrum: an LR-system can be more or less consistent.

As an LR only provides us with a ratio of probabilities, it is not possible to retroactively say whether
or not it was correct. The LR is just a number that says something about the likeliness of an event, but
it is not a classification system. An intuitive explanation for consistency of LR-systems is as follows. In
a consistent LR-system, at an LR of 5 (or 5 : 1), one would expect the relative frequency of Hp divided
by the relative frequency of Hd at an LR of 5 to be equal to 5. Here, our evidence is expressed by the
LR, which in this case is equal to 5. In other words, the relative frequency of Hp should be 5 times the
relative frequency of Hd at an LR of 5. This is equivalent to saying that the probability of the evidence
(in this case an LR of 5) given Hp divided by this probability given Hd is equal to the LR, which is 5.

It should be clear that consistency is an important property of LR-systems. If an LR-system is not
sufficiently consistent, it is not possible to draw any reasonable conclusions from it.

In Figure 2.1 the LR distributions of data simulated based on a perfectly consistent LR-system is
shown. Along the x-axis is the base 10 logarithm of the LR value intervals, and along the y-axis is their
relative frequency.

There are many ways in which an LR-system can be inconsistent. Some common ones are the
following, as described in [27]. An LR-system can consistently have LRs that are too large, shown by
a shift to the right in Figure 2.2. Similarly, the system can also consistently output too small LR-values,
shown by a shift to the left, as shown in Figure 2.2. Both these ways of inconsistency contribute to an
increase in misleading evidence. It is also possible for LR-values to be too extreme: too large for an
LR greater than one and too small for an LR smaller than one. Likewise, LR-values can be too weak.
These two ways of inconsistency can be seen by stretched out (too extreme) or pressed together (too
weak) LRs. This can be seen in Figure 2.3. For clarity, a dotted line is drawn at log LR (LLR) values of
0 in each of the figures.

Figure 2.1: Distribution of LRs based on data simulated from a perfectly consistent LR-system.
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Figure 2.2: Distribution of LRs based on data simulated from LR-systems skewed to the right (left) and to the left (right).

Figure 2.3: Distribution of LRs based on data simulated from too extreme (left) or too weak (right) LR-systems.

For a consistent LR-system, it should hold that ‘the LR of the LR is the LR’ [27]. For evidence E,
the following notation is employed:

LR(E) =
P(E|Hp)

P(E|Hd)

Now, saying that ‘the LR of the LR is the LR’ is equivalent to saying that for a consistent LR-system
denoted LRc, the following equality should hold, as discussed in [14] and further elaborated in [5]:

LR(LRc = V ) = V. (2.7)

Here, LRc is the consistent LR-system used, and LR just means ratio of the relative frequencies. So
LR(LRc = V ) is the relative frequency with which LRc = V occurs. This corresponds to the intuitive
explanation given earlier on in this section. The proof of Equality 2.7 goes as follows:

Proof.

LR(LRc = V ) =
P(LRc = V |Hp)

P(LRc = V |Hd)
(2.8)

(1)
=

P(Hp|LRc = V )

P(Hd|LRc = V )

P(Hd)

P(Hp)
(2.9)

(2)
= V

P(Hp)

P(Hd)

P(Hd)

P(Hp)
(2.10)

= V, (2.11)
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where (1) follows from isolating the middle term in Equation (2.3), and (2) follows from consistency.
Namely, in a consistent LR-system for an LR-value of V , the relative frequency of Hp if V times the
relative frequency ofHd. This gives the V multiplied with the prior odds (because it is about the relative
frequency).

A different proof for the equality is given in [5].
It is often possible to improve the consistency of an inconsistent LR-system. This process is called

calibration [21]. Possible ways to do so are isotonic regression, kernel density estimation and logistic
regression. Some of these methods will be discussed in Section 2.2.3.

2.2.2. Discrimination of LR-systems
In addition to consistency, another desirable characteristic in LR-systems is discrimination or discrimi-
nating power. Discrimination refers to the system’s capability to effectively distinguish between different
hypotheses based on the presented evidence, as first introduced in [9] and further explained in the con-
text of LR-systems in [21]. Ideally, every time Hp is true, the LR-system would report an LR of infinity,
and every time Hd is true, the LR-system would report an LR of zero. This system makes a clear
distinction between Hp and Hd.

An example of very poor discrimination, is when the LR is always equal to one. This LR-system
could still be consistent. However, it doesn’t provide any information whatsoever. Therefore, it is of no
use in casework. Ideally, the LR-system consistently assigns high values to cases where Hp was true,
and low values to cases where Hd was true.

There are several ways in which one can test the discriminating power of an LR-system. They will
not be discussed in this report as it is out of scope for this project.

2.2.3. Calibration methods for LR-systems
In this section, some methods will be discussed that can help transform an inconsistent LR-system into
a more consistent one. The methods that we will discuss are the PAV algorithm in Section 2.2.4 and
kernel density estimation in Section 2.2.5.

2.2.4. The PAV Algorithm
The Pooling Adjacent Violators (PAV) algorithm is a non-parametric method used to calibrate LRs. It
is an isotonic regression algorithm, fitting a monotonically increasing function to a dataset. Given a
specific dataset and when using a binary scoring method, it has been shown that the PAV algorithm
gives optimal consistency for LR-systems [7].

The PAV algorithm was first introduced in [1] and first applied in the context of LR-systems in [6].
The idea of the PAV algorithm is as follows. The data consists of pairs (xi, yi), where xi corresponds
to the LR-value and yi corresponds to the corresponding label (0 for Hd, 1 for Hp). Begin by sorting
the data points in non-decreasing order, based on the scores xi. After sorting, the label for each data
point should not be greater than the label of the subsequent data point. If this monotonicity constraint
is violated, the algorithm merges the non-conforming data points into their weighted average, where
the weights are determined by the number of data points in each group being merged. This procedure
continues until the entire sequence satisfies the monotonicity constraint. An example is shown in Figure
2.4.

Once amonotonic sequence of labels is achieved, the next step is to compute the new LRs based on
the adjusted, non-decreasing empirical probabilities derived from the merged data points. Specifically,
for each group of data points (or bucket) resulting from the PAV algorithm, calculate the empirical
probability pi of the class Hp as the ratio of the sum of labels in the bucket to the total points in that
bucket. Now, 1− pi represents the likelihood of the class Hd. The new likelihood ratio for each bucket
is then calculated using the formula:

LRi =
pi

1− pi
.

This new LR value is assigned to all the original data points within the corresponding bucket. Now,
the new LRs are monotonic and reflect the adjusted empirical probabilities.

From plotting the PAV transform against the original log LR values, it is possible to deduce in which
way the LR-system was inconsistent. Figure 2.5 shows the LR-values of data simulated based on
a perfect LR-system (on the x-axis) and its PAV transform (on the y-axis) plotted against each other.
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Figure 2.4: Example of PAV algorithm application.

Figure 2.6 shows the PAV-plots of LR-systems that are skewed to the right, meaning the LR values are
shifted to the right (biased in favour of the prosecution hypothesis) and skewed to the left (biased in
favour of the defense hypothesis. In Figure 2.7, PAV-plots of LR-systems with either too extreme or too
weak values are shown.

Figure 2.5: PAV plot of data simulated based on a perfectly consistent system.
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Figure 2.6: PAV plots of data simulated based right-skewed (left) and left-skewed (right) LR-systems.

Figure 2.7: PAV plots of data simulated based on too strong (left) or too weak (right) LR-systems.

2.2.5. Kernel Density Estimation
Usually, scores or features cannot immediately be transformed into LRs. A commonly used method
to transform scores or features into probability distributions is kernel density estimation (KDE), first
introduced in [24]. The idea of KDE is similar to normalizing and smoothing out a histogram. KDE
is a non-parametric method to estimate the probability density function of a random variable. This
means that it does not assume a specific form for the underlying distribution. However, it does require
the selection of one key parameter—the kernel width, which determines the standard deviation of the
distribution centered around each data point.

In KDE, a kernel function is applied to each data point, modeling a distribution with the data point as
the mean and the chosen standard deviation (kernel width). While the normal distribution is commonly
used as the kernel, other distributions can also be applied. The final KDE estimate is obtained by
summing and normalizing all these individual kernels. An example is shown in Figure 2.8. For more
detailed information on KDE, please consult [23].

2.3. Metrics to measure consistency
While discrimination is definitely important, the number one priority for an LR-system is to be consistent.
If there are multiple consistent LR-systems available, the one with the highest discriminating power
is generally the one that will be used. Naturally, this leads to the question: how can we measure
consistency? This has been a topic of research over the last few years. Several metrics have been
proposed, which will be presented in this section.
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Figure 2.8: Histograms and corresponding kernel density fit.

Some of these methods have been introduced and compared in [27] as well. However, in [27] the
data under Hp and Hd were assumed to have a normal distribution. This is definitely not always the
case! In this thesis, a comparison will be made without assuming normality of the data. Moreover, a
metric will be introduced that has not been discussed yet in [27].

Throughout this section, the letter m will be used to denote the number of LRs under Hd, and n to
denote the number of LRs under Hp.

2.3.1. Moments metric
The first metric takes the random variable LR and considers its moments. This metric has been in-
troduced by Good in [14]. He says that for a consistent LR-system, the following inequality should
hold:

E(LRn|Hp) = E(LRn+1|Hd). (2.12)

These moments can be approximated by the empirical data available, and an estimation of the consis-
tency of the LR-system can be made.

The following proof is for the case where the LR has a continuous distribution. The case for the
discrete distribution is almost identical. The only difference is that the integral needs to be replaced
with a sum, summing over the possible values of the LR.

Proof.

E(LRn|Hp) =

∫ ∞

0

LRn P(LR|Hp) dLR

=

∫ ∞

0

(
P(LR|Hp)

P(LR|Hd)

)n

P(LR|Hp) dLR

=

∫ ∞

0

(
P(LR|Hp)

P(LR|Hd)

)n+1

P(LR|Hd) dLR

=

∫ ∞

0

LRn+1 P(LR|Hd) dLR

= E(LRn+1|Hd).

Especially interesting in Equation (2.12) are the cases n = 0 and n = −1, because they give a one
on one side of the equality [25]. For n = 0 this gives:

1 = E(LR|Hd), (2.13)
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and for n = −1 this gives:
E
( 1

LR
|Hp

)
= 1. (2.14)

Equipped with a set of LR-values, one can estimate the unknown expectations by averaging over the
Hd and Hp sets, respectively. This gives, for a consistent LR-system:

1 ≈
∑m

i=1 LRdi

n
, (2.15)

and ∑m
i=1 1/LRpi

n
≈ 1 (2.16)

where the summations are over the sets of LRs for whichHd andHp are true respectively. LRdi
denotes

the i’th LR value for which Hd is true, and LRpi
denotes the i’th LR value for which Hp is true. The

sums are divided by the number of elements in the respective sets.
A reasonably consistent LR-system in practice usually has a distribution that’s slightly skewed to-

wards misleading evidence, so generally the values of Equations (2.15) and (2.16) will be smaller than
1 [27].

The approximate equalities in 2.15 and 2.16 naturally give rise tometrics to calculate the consistency
of LR-systems: the difference between the mean values and one.

2.3.2. Probability of misleading evidence
Intuitively, it is clear that when an LR-system leads to a lot of misleading evidence, this might indicate
inconsistency. Royall originally defined a metric in terms of the probability of misleading evidence in
[22]. This method is clearly summarized and explained in [27]. As it turns out, the following inequality
must hold for a consistent LR-system, for every constant k ≥ 1:

P(LR ≤ 1

k
|Hp) ≤

1

k
. (2.17)

In words, the chance that we find a small LR when Hp is true, is small and can be bounded. Equiv-
alently, for constant k ≥ 1, the following must also hold:

P(LR ≥ k|Hd) ≤
1

k
. (2.18)

So when Hd is true, the chances of finding a large LR are small and bounded.
It follows that for a consistent LR-system, the chances of misleading evidence are bounded. Filling

in values for k gives explicit bounds for the rates of misleading evidence. Specifically, for k = 2 this
yields the following inequalities:

P(LR ≥ 2|Hd) ≤
1

2
, (2.19)

and

P(LR ≤ 1

2
|Hp) ≤

1

2
. (2.20)

Now, a similar approach can be taken as done in Section 2.3.1. The probabilities in Equations (2.19)
and (2.20) can be approximated as follows: ∑

Hd
1LR≥2

m
, (2.21)

and ∑
Hp

1LR≤1/2

n
, (2.22)

counting the times that LR exceeds the values specified in Equations (2.19) and (2.20), divided by
the total number of LRs under Hd and Hp, respectively.

To define a metric, we can look at the difference between the quantities defined in (2.21) and (2.22),
and 1

k , where usually k is taken to be 2. It is also possible to look at the limiting rates of the probabilities
specified in Equations (2.17) and (2.18), as a function of k.
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2.3.3. Ccal
llr metric

Accuracy of assessments can also be measured by means of strictly proper scoring rules. Strictly
proper scoring rules are loss functions, assigning penalties to the posterior probability depending on
the ground-truth label. A scoring rule is proper if it is maximized for predictions that align with the true
distribution. It is strictly proper if, in addition to being proper, it is only maximized for predictions that
align with the true distribution. There are no other predictions that can maximize this score.

To measure consistency in LR-systems, the Empirical Cross-Entropy (ECE) is often used. This
method was introduced in [21], on which this section is based. It is based on the logarithmic strictly
proper scoring rule. This is a binary scoring rule, defined as follows:

LS = − 1

N1

∑
x:θ1 true

log2(P(θ1|x))−
1

N2

∑
x:θ2 true

log2(P(θ2|x)), (2.23)

whereN1 andN2 are the number of comparisons where θ1 and θ2 are true. It can be seen that this scor-
ing rule penalizes misclassifications, where the penalty goes to infinity the worse the misclassification
gets.

The ECE for LR-systems is defined as follows:

ECE = −P(Hp)

n

∑
i:Hp true

log2(P(Hp|Ei))−
P(Hd)

m

∑
j:Hd true

log2(P(Hd|Ej)), (2.24)

where the sums are taken over the validation sets where Hp and Hd are true respectively, and n and
m denote the number of elements in these sets. The ECE measures the cost in terms of the base 2
logarithm of the posterior probability of the ground truth, weighed by the priors. As it is a cost function,
it follows that the smaller the ECE value, the better the performance of the LR-system.

The following equality for the odds O is used, which can in turn be used to go from odds to proba-
bilities:

O(·) = P(·)
1− P(·)

.

It can now be derived for i = p, d that

P(Hi|E) =
LR ·O(Hi)

1 + LR ·O(Hi)

Writing everything out, we find that

ECE =
P(Hp)

n

∑
i:Hp true

log2

(
1 +

1

LR · P(Hp)
P(Hd)

)
+

P(Hd)

m

∑
j:Hd true

log2
(
1 + LR · P(Hp)

P(Hd)

)
. (2.25)

Usually, the prior odds are not known and the ECE is plotted as a function of the prior odds, or the
base 10 logarithm thereof.

An example of the ECE plot in a system where the LR is always equal to 1, is as follows:
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Figure 2.9: ECE plot of LR=1 always.

Often times, the ECE gets plotted for an LR-system both before and after applying isotonic regres-
sion (using the PAV algorithm) to the LR dataset, as a function of the prior log odds. As the PAV algo-
rithm reduces the ECE, a big difference between the curves is an indication that the original LR-system
was not consistent.

The ‘cost log likelihood ratio’, or Cllr, is a metric used to evaluate the performance of an LR-system.
It specifically measures how well the system’s likelihood ratios reflect the true probabilities at prior
odds of 1 (equivalently, prior log odds of 0). To assess how much the consistency of an LR-system
improves after calibration, the ‘calibrated cost log likelihood ratio’, Ccal

llr , is used. Ccal
llr is calculated as

the difference between the Cllr values before and after applying isotonic regression (using the PAV
algorithm) at prior odds of one. Ccal

llr is often used as a metric to measure consistency of LR-systems.
A large Ccal

llr value indicates a significant difference between the pre- and post-calibration perfor-
mance, suggesting that the original LR-system was inconsistent and that calibration was necessary
to improve its consistency. This is illustrated in Figure 2.10, where the ECE plot shows the effect of
calibration on the LR values.

Figure 2.10: Example of ECE plot of LR values before and after PAV.

2.3.4. devPAV metric
The devPAV metric is a more recently introduced metric. It was introduced in [27]. This metric makes
use of the PAV-transform of the LR dataset, just like the Ccal

llr metric which was introduced in Section
2.3.3.
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The devPAV metric is defined as the average absolute deviation of the PAV-transform to the identity
line x = y, both on a logarithmnic scale with base 10. An example is shown in Figure 2.11.

Figure 2.11: Example of the devPAV metric. a is the interval where the PAV-transform is finite. The red area is the value of
devPAV.

The PAV transform is seen as the optimal calibration given a specific dataset, and so the devPAV
measures the deviation from this optimal calibration. Naturally, a large value indicates inconsistency,
whereas a small value indicates better consistency.

For a more detailed explanation of the devPAV metric, please consult [27].

2.3.5. Calibration discrepancy metric
For this approach, introduced in [16], the property that ‘the LR of the LR is the LR’ is used, as introduced
in Section 2.2.1. This section is based completely on [16] and [15]. First, some notation is needed.

Let g(r) denote the probability density function (pdf) of the LR under Hp, so

g(r) = f(r|Hp).

Note that r here represents the LR as a random variable. Similarly, let h(r) denote the pdf of the LR
under Hd. Let G(r) and H(r) denote the corresponding cumulative distribution functions (cdf). Now,
from Section 2.2.1 it is known that for a consistent LR-system, the following must hold (for r ≥ 0,
f(r) ̸= 0):

g(r)

h(r)
= r,

or equivalently,
g(r) = rh(r).

Integrating both sides over the interval (a, b) (where 0 < a < b < ∞), using partial integration on the
right-hand side, gives the following equality:

G(b)−G(a) = bH(b)− aH(a)−
∫ b

a

H(r)dr. (2.26)

Now, taking the logarithm and subtracting the right-hand side on both sides in equation 2.26, it follows
that the following must hold for a consistent LR-system:

log10(G(b)−G(a))− log10
(
bH(b)− aH(a)−

∫ b

a

H(r)dr
)
= 0. (2.27)

The distributions G(r) and H(r) can be estimated with fiducial distributions obtained from the
ground-truth known empirical data, which consists of a set of LR values from cases where it is known
Hp was true, and a set of LR values from cases where it is known Hd was true.
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Now, define the ‘interval specific calibration discrepancy’ d(a,b)(G,H) for the interval (a, b) as

d(a,b)(G,H) = log10(G(b)−G(a))− log10(bH(b)− aH(a) +

∫ b

a

H(r)dr). (2.28)

If both of the terms within the log are zero, we set d(a,b)(G,H) to zero as well.
Note that G(b) − G(a) is the probability of observing an LR value in the interval (a, b) when Hp is

true. If d(a,b)(G,H) is smaller than zero, the value of evidence is overstated by the LR-system, because
fewer observations are falling in the interval (a, b) than would be expected for a consistent LR-system.
Equivalently, if the value of d(a,b)(G,H) is greater than zero, the value of the evidence is understated
by the LR-system.

Not only do the values of d(a,b)(G,H) tell us whether the evidence is being overstated or understated
in the interval (a, b), they also tell us the factor with which this has been done. Suppose d(a,b)(G,H) = x.
If x > 0, then, the LR values between a and b have been overstated by 10x in favour of the defense
hypothesis, on average. Equivalently, if x < 0, the evidence has been overstated by the same factor
in favour of the prosecution hypothesis.

Using the fiducial distributions G(r) and H(r) allow us to form confidence intervals for d(a,b)(G,H).
If the confidence bounds for an interval (a, b) do not include zero, it can be concluded that the LRs in
this interval are not consistent.

Now for a sequence 0 < a1 < · · · < an < ∞, define simultaneous confidence intervals

d(G,H) = (d(a1,a2)(G,H), d(a2,a3)(G,H), . . . , d(an−1,an)(G,H))T . (2.29)

Every interval that does not contain zero indicates inconsistency for that specific interval.
The approach can be visually represented using ‘calibration discrepancy plots’, an example of which

is given in Figure 2.12, taken from [15].

Figure 2.12: An example of a calibration discrepancy plot for an LR-system.

The vertical axis represents the discrepancy d(a,b)(G,H) and the horizontal axis represents the base
10 logarithm of the LR. The red line indicates perfect consistency with zero discrepancy. The light blue
lines are the 95% simultaneous confidence bounds and the black lines are the 95% pointwise confi-
dence bounds. The dark blue line is the median of the fiducial distribution and is therefore the estimate
of the calibration discrepancy. These confidence intervals can be determined as follows, following the
approach taken in [15].
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The first step is fiducial sampling. The original data is sorted, leaving us with two sorted datasets:
the Hp and the Hd dataset. Now, fiducial samples are determined. The number of fiducial samples we
used in this thesis is 100, but can be varied. In each fiducial sample, for the datasets sorted random
uniform numbers are generated between zero and one (the same amount as the number of elements
in the dataset), adding one at the beginning and zero at the end. These generated numbers represent
positions along the cumulative distribution function of the sorted data. Each number corresponds to a
specific quantile. Now, for each of the fiducial samples, these quantiles of the data are determined using
the empirical data at hand, resulting in a new sample that captures the distributional characteristics of
the observed data.

The second step is determining the survival and integral functions. To compute the survival func-
tions, we look at the probability that the LR is greater than a given value. This is done by using a grid
and capturing the relative frequencies of LR-values exceeding each grid point. The integral function
is determined by summing up contributions from adjacent data points, weighed by the corresponding
survival probability. The survival functions are used to determine the left-hand side of equation 2.26,
and for the right-hand side the survival functions are multiplied with the grid points and summed with
the integral functions.

In the third step, the fiducial difference is calculated by measuring the difference between the right-
hand side and the left-hand side of equation 2.26, using the values found in the previous step to ap-
proximate them. A positive outcome indicates higher LR-values for Hp data, whereas a negative value
indicates higher values for Hd data.

Lastly, the fiducial confidence intervals are determined. This is done by first calculating the median
of the fiducial difference distribution for each grid point, determining the maximal deviation from the
median and then determining the cut-off value to ensure the desired coverage probability. This way,
confidence intervals for the fiducial difference are constructed at each grid point.

A more detailed explanation on how these confidence bounds are determined can be found in [15].
The intervals where the red line is outside of the confidence bounds, are the intervals where the

LR-values are inconsistent. For example: the LRs between 104 and 105 are overstated by a factor of
at least 102.

An advantage of this method over other methods such as the commonly used Ccal
llr is that it does

not only give information about whether or not the LR-system is consistent, but also the degree with
which the evidence is being overstated. Theoretically, this could be used to make an LR-system more
consistent.

2.4. Building LR-systems
In this section, a step-by-step approach to build an LR-system will be presented. Several ingredients
are needed and several choices need to be made along the way. Most of this section is based on [17].
In this section we assume we are in a common-source scenario, using a score-based approach.

2.4.1. The data
First of all, the data for the LR-system needs to be collected and pre-processed. It is important to
understand the data well and format it correctly. Extreme values need to be investigated; errors need
to be distinguished from results caused by natural variability, and removed. Variables that have strong
correlation might be combined into one variable. For example, if data is collected from people, and you
have the variables weight, length and BMI, one of these might be removed, as BMI is just a combination
of weight and length.

Often times, the data is standardized to avoid the domination of certain variables just because they
have bigger values (e.g.: length in centimeters will usually give higher values than weight in kilos).

It is important to store the data appropriately so that it is easy to understand and easy to access.
Usually this is done using tables.

Now, the data must be split in subsets. Around 20% of the data will be used as a validation set. If
we are testing multiple LR-systems, the remaining data needs to be split into a selection set, containing
around 10 to 20% of the remaining data, and the training data, which is the rest. As observations over
the same subject are usually extremely correlated, it is advisable to split the data so that observations
on the same subject are in the same set.

First, the system is trained on the training data. Then, using the selection set, the best model is
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selected. The validation set is then used to validate the specific model.
It is possible to use cross-validation. In k-fold cross-validation, the data is split into k non-overlapping

sets or ‘folds’. Each round, one of the k folds is used as validation set and the model is trained on the
rest of the data. The performance characteristics are based on the combination of these k sets of LRs.
For a visual representation of k-fold cross-validation, see Figure 2.13. The same process can also be
done with the selection set.

Figure 2.13: Example of 3-fold cross-validation.

2.4.2. The scores
Now, a choice needs to be made, namely between a score-based and a feature-based LR-system. In
this section we will assume a score-based LR-system is used, as this is common practice. This step
needs to be adjusted accordingly when using a feature-based method.

First, we need to construct a new dataset containing a set of paired features forHp-comparisons and
a set of paired features forHd-comparisons. From these pairs, scores need to be deducted. Examples
are cosine similarity (the higher, the more similar) and Euclidean distance (the higher, the less similar).
Many score and distance functions are possible here. The score should differentiate between pairs
from the Hp set and pairs from the Hd set. It is also possible to use machine learning algorithms,
outputting high values for Hp pairs and low values for Hd pairs.

Now, the values of interest are the scores for pairs and the corresponding label (Hp-true pair or
Hd-true pair, they can be denoted by 1’s and 0’s respectively).

2.4.3. The LR values
Equipped with scores, we have to construct a function to transform them to LRs. There are several
options to do this. One option is to fit pdf’s to each of the two sets of scores. A commonly used method
is KDE, which was discussed in more detail in Section 2.2.5. It is also possible to fit a function that
relates the score to the posterior probability that Hp is true. Examples of such methods are logistic
regression and isotonic regression. Isotonic regression was discussed in Section 2.2.4.

2.4.4. Selection and validation
If multiple LR-systems have been built, the best one can now be selected by training the systems on
the training data and using the selection data to select the one that performs best. This can be done
by looking at different performance metrics, as discussed in Section 2.3 and by plotting the LR values
and looking at the discrimination. Usually, a simple model is preferred over a complicated one.

Now, with one LR-system left, the LR-system needs to be validated. The aim of validation of the sys-
tem is to study its performance on independent data. There are several methods that test performance
of LR-systems, most of which were discussed in Section 2.3.

Ideally (and usually), the system performs better when the quality or quantity of data increases.
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2.5. Comparing the metrics
In this thesis, a comparison will be done between different metrics, to find the optimal one. In [27], sev-
eral metrics have already been compared with regards to differentiation between more and less consis-
tent LR-systems, and stability across dataset size: the moments metric, the probability of misleading
evidence, Ccal

llr and the devPAV metric. It was shown that the moments metric and the probability of
misleading evidence performed significantly worse than Ccal

llr and devPAV. Between Ccal
llr and devPAV,

devPAV seemed to come out on top,although the difference was small.
However, an important assumption was made about the distribution of the LR data, which is defi-

nitely not always true: it was assumed that both the Hp- and the Hd-data are distributed according to
a normal distribution with equal variance and mirrored means. This is usually not in line with reality.

The moment metric and the probability of misleading evidence will not be taken into account in this
thesis, because of their poor performance in the comparison done in [27]. The calibration discrepancy
method has not yet been compared, so this one will be compared to Ccal

llr and devPAV.
In this comparison, several factors will be taken into account. Most importantly, it should differentiate

well between consistent and inconsistent LR-systems, and the degree of inconsistency. Moreover, it
should be stable for different means, different sample sizes etc. For a reliable metric, it is possible to
define a range of values in which the consistent LR-systems would fall.

In the upcoming sections, the aim is to determine which metrics best meet these criteria. By a
systematic evaluation of these metrics, we hope to gain insights into their respective strengths and
limitations, allowing us to select the best metric for different purposes.



3
Methods

The main goal of this thesis is to evaluate different metrics used to determine the consistency of LR-
systems, and to see which one works best. The process is split up into two steps. The first step is
the optimization of the metrics that we will be comparing. The second step is the comparison of these
optimized metrics.

The metrics we will be taking into account are the commonly used Ccal
llr as described in Section

2.3.3, the devPAV metric as described in Section 2.3.4 and the calibration discrepancy as described in
Section 2.3.5. Note that the last one is not a metric yet: it doesn’t output a single value, it is just a way
to gain insights into the consistency of LR-systems. We will derive several metrics from this method
and compare them to each other.

3.1. Step 1: Optimization of the metrics
Before comparing them to each other, the three above-mentioned metrics will be optimized. For each
of the metrics, a small investigation will be performed to find the optimal version of it. An example of
the code can be found in Appendix A.2.

For the metrics, the different versions will be compared to each other in the following manner, similar
to the approach taken in [27]. Nine different sets of values will be generated, which will be the log LR-
values (). The logarithm here is the natural logarithm (e-based). Unless differently specified, this holds
true in the rest of this report for all logarithms. Each set will be made up of same-source (referred to as
SS) and different-source (referred to as DS), where both groups will follow a normal distribution. The
nine sets can be divided into five categories, which will be generated as follows:

• Consistent LR-values: SS ∼ N(µSS , σ
2 = 2µSS), DS ∼ N(−µSS , σ

2),
• LR-values with bias favouring Hp: SS ∼ N(µSS + c1, σ

2), DS ∼ N(−µSS + c1, σ
2),

• LR-values with bias favouring Hd: SS ∼ N(µSS − c1, σ
2), DS ∼ N(−µSS − c1, σ

2),
• Too extreme LR-values: SS ∼ c2 ×N(µSS , σ

2), DS ∼ c2 ×N(−µSS , σ
2),

• Too weak LR-values: SS ∼ 1
c2
N(µSS , σ

2), DS ∼ 1
c2
N(−µSS , σ

2).

The set of consistent LR-values will be generated in Python, and the other sets are obtained by shifting
and rescaling these values.

For this comparison, µSS is chosen to be equal to 6. This corresponds to a log 10-LR of about 2.6
and a normal LR of about 403. For c1, the values 1 and 2 are used. For c2, we use 1.5 and 2.5. These
values are chosen equivalently to the values in [27].

We will look at three different sizes of the datasets to see how the metrics are affected by the
amount of data at hand. First, for each dataset, nSS = 150 same source LR-values are generated,
and nDS = 3 · 150 = 450 different-source LR-values. This gives a decently sized dataset where one
may expect the metrics to make an accurate distinction. We will also look at a smaller dataset, namely
nSS = 50 same-source LR-values and nDS = 150 different source LR-values. Lastly, we will look at
datasets of sizes nSS = 300 and nDS = 900. It is common for k same-source LR-values, to have(
k
2

)
different-source LR-values. However, this is quite computationally demanding, especially for the

fiducial method. For this reason we do not use this size of dataset for different-source LRs.

21



3.1. Step 1: Optimization of the metrics 22

After generating the data, for each of the dataset the metrics we want to compare are calculated.
The values are stored and this process is repeated N times, to minimize the impact of randomness.
For this project, we have taken N to be equal to 1000. For each metric, 1000 values are stored. The
distributions of these values are plotted to see if the metric makes a good distinction between consistent
and inconsistent LR-systems. This can be deducted from the overlap in the values of the metrics
for consistent and inconsistent LR-systems, where a lot of overlap indicates that the metric does not
distinguish well between systems. The overlap will be quantified with a percentage, where a small
percentage of overlap is preferable over a large percentage. This will be explained in more detail in
Section 4.1.

3.1.1. Optimization of Ccal
llr

For Ccal
llr the optimization will be done as follows. As previously explained, the Ccal

llr metric is based
on the Empirical Cross Entropy. The logarithmic scoring function at prior odds of 1 (or equivalently
prior log odds of 0) is evaluated both for the normal LR-values and for the LR-values after applying the
PAV-algorithm to them. The difference between these two values is Ccal

llr .
In the optimization step, we will research if it is possible to replace the logarithmic scoring rule used

for Ccal
llr with other possible scoring rules. The logarithmic scoring rule that is originally used for this

metric, has the important property that it is strictly proper, meaning that it is optimized for LR-values that
align with the real underlying distribution. It gives a high penalty for LRs that point in the wrong direction.
The stronger they point, the higher the penalty, limiting in infinity. This penalty grows logarithmically.
Although this might be useful in real-life situations, it is also interesting to look at more ‘symmetric’ score
functions, that do not penalize misleading LR-values as extremely. The scoring rules we are going to
look into are the Brier score, the spherical scoring rule and the zero-one loss.

The Brier score (BS) is strictly proper, just like the logarithmic scoring rule originally used for the
Ccal

llr . The formula for the Brier score is given by

BS(p, y) =
1

N

N∑
i=1

(pi − yi)
2,

where the pi’s are the posterior probabilities, derived from the LRs similarly as in Section 2.3.3, and
the yi are the corresponding ground truth labels, 1 for Hp true scenarios and 0 for Hd true scenarios.
In this formula, N equals the total number of LRs.

The spherical scoring rule (SP) is strictly proper as well. In the case of binary classification, it is
defined as follows:

SP (p, y) =
1

N

N∑
i=1

yipi + (1− yi)(1− pi)√
p2i + (1− pi)2

.

Lastly, the zero-one loss (S) is defined as follows:

S(p, y) =
1

N

N∑
i=1

1{pi>0.5 and yi=0} + 1{pi<0.5 and yi=1}.

The zero-one loss basically determines the percentages of misclassifications, where a misclassification
is defined as a posterior of greater than 0.5 with a corresponding ground-truth label of 0, or a posterior
of smaller than 0.5 with a corresponding ground-truth label of 1. The zero-one loss is not proper.

3.1.2. Optimization of devPAV
The devPAVmetric will be optimized in the following manner. As can be seen in Figure 2.11, the devPAV
metric is calculated by summing over a set of surfaces of a step function, obtained by performing isotonic
regression on the original LR-values. This surface is scaled by the x-range.

There are several ways in which this could be adjusted. Firstly, the devPAV value could be nor-
malized by dividing the value of the sum of the surfaces over the total surface, instead of just over the
length of the x-axis.

Another possible way to adjust devPAV is to ‘cut off half of the corners’ of the steps. This smooths
out the function a little bit, decreasing the effect of the big steps that usually appear at the beginning
and end of the function. The steps can be large here because these regions typically involve more
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extreme LR-values, where the PAV algorithm needs to make more substantial adjustments to enforce
monotonicity. These adjustments result in larger deviations of the line x = y, especially in areas where
the original LRs are sparse or where there are significant jumps in their values.

In Figure 3.1, the calculation of the original devPAV is shown: the x-axis shows the original LR-
values, the blue curve shows the corresponding LR-values after the PAV algorithm and the marked
area is summed up and divided by the x range to get devPAV. Now, in Figure 3.2, the graphs are
rotated so that the line x = y lies on the x-axis. The original step function is shown in blue, and the
smoothed function by cutting the corners is shown in orange.

Figure 3.1: The normal calculation of devPAV.
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Figure 3.2: The normal step function of the LR-values before versus after isotonic regression in blue, as well as the smoothed
function by cutting off corners of the steps in orange. On the x-axis the original LR-values are shown, and on the y-axis the

LR-values after applying the PAV-algorithm. The graph is rotated.

3.1.3. Optimization of fiducial metric
For the fiducial method, a metric has not been defined yet. We will look into several options and, using
the aforementioned method, check which one works the best in distinguishing between the consistent
and inconsistent systems. The three metrics we have defined are the following three.

The first metric we will take into consideration is perhaps the most intuitive one: simply averaging
over the median values of the fiducial confidence intervals for the specified LR-values. Since we do
not want positive and negative medians to cancel each other out, we take the absolute values of the
medians. The formula is given by

FImed =

k∑
i=1

|Mi|
k

,

whereMi is the median of the i’th interval, and k is the total number of intervals. The smaller the values
of the metric, the better.

Ideally, LR-systems which result in wider confidence intervals would give larger values of the metric
(where a smaller value is better) then LR-systems which result in smaller confidence intervals, if the
medians are the same. This results in a second metric to be taken into consideration: again, we sum
over the medians, but we weigh by the width of the confidence intervals:

FIscaled =

k∑
i=1

|Mi| × (Ui − Li)

k
,

where Ui is the upper bound of the confidence intervals and Li is the lower bound.
Lastly, a very simple metric is taken into account, namely simply counting the amount of times that

the value 0 does not lie within the confidence bounds. As explained in Section 2.3.5, this is an indication
of inconsistency. The metric is formulated as follows:

FI01 =

k∑
i=1

1{0/∈Ci}

k
,

where Ci is the i’th confidence interval.
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3.2. Step 2: Comparing the metrics
After optimizing the three metrics, they will now be compared to each other. This will be done differently
than the optimization process in the previous section. So far, we have only looked at normally distributed
LR-values, similar to the methods used in [27]. However, in a real-life setting the LR-values are not
usually distributed in this way. We would like to compare the metrics on distributions that are more
similar to distributions that we can find in real-life LR-systems.

We will generate more realistic datasets in the following way. We use seven existing datasets of
log10 LR-values that have been used in publications, as well as normally distributed generated data
as per Section 3.1. We will use the different-source , as we usually have more of these than of the
same-source , to generate new same-source . These same-source will be generated in such a way
that the different-source and the same-source together form a consistent LLR-system. From here, we
can adjust the as we have done in Section 3.2 by shifting and scaling them to create inconsistent
systems. By evaluating the different metrics on both the consistent and the inconsistent systems, we
can calculate the overlap percentage to see how well the metrics differentiate between them. We will
do this for different sizes of datasets, to also see how much the metrics depend on the size of the
dataset. Moreover, we will determine the values of the metrics for the different consistent LR-systems
we generated, to see how much the value differs between different datasets. Ideally, the values of the
metrics would be roughly the same for different consistent LR-systems, so that when we have a new
system and obtain a value for a metric, we can say something about the consistency of this system.

The exact procedure is explained in the following subsections.

3.2.1. Datasets
As previously mentioned, seven datasets have been used for this part of the thesis. The first five are
from [2] and contain LLRs about firearm toolmarks on cartridge case primers. Four of these datasets
correspond to those used in Figure 9 of [2], encompassing both the stages of cross-validation and the
final model. Each of these stages includes one dataset where the ELUB bounds are applied and one
dataset before applying the ELUB bounds. The fifth dataset corresponds to the data of the final model
used for Figure 29 of [2].

The other two datasets contain data about gun shot residue and gasoline traces.
Lastly, we use LR-data generated as per Section 3.1, where the follow a normal distribution. For

this part, we will use µSS = 6.
The datasets used are summarized in Tables 3.1 and 3.2. All percentiles are expressed using log10

LR-values.

Type of data ELUB bounds Number of SS Number of DS

Data 1 Firearm toolmarks on
cartridge case primers

Yes 188 477

Data 2 Firearm toolmarks on
cartridge case primers

No 188 477

Data 3 Firearm toolmarks on
cartridge case primers

Yes 188 1327

Data 4 Firearm toolmarks on
cartridge case primers

No 188 1327

Data 5 Firearm toolmarks on
cartridge case primers

Yes 199 6501

Data 6 Gun shot residue No 37 835

Data 7 Petrol Yes 99 5964

Normal
data

Generated data No - -

Table 3.1: Characteristics of the datasets.
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SS 5th Per-
centile

SS Median SS 95th
Percentile

DS 5th Per-
centile

DS Median DS 95th
Percentile

Data 1 -0.85 1.55 1.55 -0.85 -0.85 0.07

Data 2 -0.87 2.75 29.07 -0.97 -0.85 0.07

Data 3 -0.88 1.81 1.81 -0.88 -0.88 0.01

Data 4 -0.89 2.85 29.28 -0.92 -0.88 0.01

Data 5 1.63 3.76 3.76 -2.1 -2.1 -0.95

Data 6 -0.42 1.65 1.91 -1.88 -1.18 -0.07

Data 7 0.73 2.69 3.96 -100.0 -100.0 0.37

Normal
data

0.13 2.61 5.08 -5.08 -2.61 -0.13

Table 3.2: Percentile values for SS and DS LRs.

Note in Tables 3.1 and 3.2 that the characteristics of some datasets are very similar. This can be
explained as follows: Data 1 and Data 2 are based on the same data, only on Data 1, the ELUB bounds
are applied and in the second they are not. The same is true for Data 3 and 4.

3.2.2. Generate same-source data
In this section, the approach taken to generate same-source LLRs will be explained. All the correspond-
ing code can be found in Appendix A.1. To obtain a consistent LR-system from a given dataset, we
start by taking only the different-source LLR-values from the dataset. Note that, using the relation in
Equation 2.7, we can now generate same-source data so that this relation is satisfied and hence, the
system is consistent.

The straightforward approach would be to divide the different-source LLRs into bins. Now for each
bin, the average value is used as LLR and using the frequency of different-source LLRs in this bin
and the relation in 2.7, a corresponding same-source LLR frequency can be calculated. However, this
approach has a problem. As this relation uses the relative frequencies, we want the total of the relative
frequencies for both same-source and different-source to sum up to one. This is per construction the
case for the different-source . However, for the same-source it is not. Consider the following example:
if we have 100 different-source , all of which are equal to log(0.5). Then, as per 2.7 we would generate
0.5 ∗ 100 = 50% of our same-source LLR-values as being log(0.5), and we would not generate any
other values because we do not have different-source LLRs of different values.

To overcome this problem, we do the following. First, we use a kernel density estimate (KDE) to
approximate the distribution of the different-source LLR-values. This gives us a smooth approximate
rather than just the discrete bin values. Now, we generate a new curve for the same-source LLR-values
using the KDE so that Equation 2.7 holds. We then determine the surface under both of the curves,
which we want to be nearly equal to each other. At this point, the area under the KDE will be roughly
equal to one.

If the surface under the KDE curve is larger than the surface under the same-source curve, it means
that the total of the relative frequencies of the different-source is higher than the total of the relative
frequencies of the same-source LLRs. In this case, we ‘stretch’ the different-source LLR-values and
the corresponding KDE-values to the right, so we get larger LLR-values for the same frequencies. We
do this by shifting so that the smallest different-source LLR is zero, then multiplying by 1 + α, where
α = 0.001 and then shifting back. This way, the values of the are stretched out to the right. Because our
original frequencies are now tied to larger LLR-values (the height of the graph does not change, it is just
stretched out to the right), we generate higher frequencies of same-source LLR-values because of the
relation in 2.7. We keep repeating this procedure with the new stretched LLR-values and corresponding
curve until the areas under curves are almost the same, using a tolerance of 0.01. Note that the areas
under the curves no longer need to be equal to one: by stretching the KDE curve, we have changed
the area under it. We want the area under the same-source LLR-curve to be equal to the area under
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the different-source KDE to have the same frequency of same-source , and we could normalize them
to both equal one, however, this is not necessary: we are interested in the ratio of same-source versus
different-source , which does not change by normalizing.

It is also possible that the surface under the same-source curve is larger than the surface under the
different-source KDE curve. In this case, we want to generate lower frequencies of the same-source .
We do this by shifting the KDE curve to the left. Similarly as before, we shift the (and so the KDE) so that
the smallest LLR has value zero, then multiply by 1− α to obtain smaller frequencies of same-source
LLR values. After that, we shift back. So instead of stretching to the right, we now stretch to the left.
Again, this procedure is repeated until the areas under the curves are almost equal.

After performing the previously explained procedure, we have two curves corresponding to the
different-source and same-source LLR-frequencies as a function of the LLR-values. Using these
curves, we can now generate data according to these distributions that together specify a consistent
LR-system. In Section 4.2.1, the procedure is visualized.

3.2.3. Test metrics on new data
Now that we are equipped with a way to generate data based on a consistent LR-system, we can go
from here and shift and scale this data to make it inconsistent. In the exact same way as in Section
3.1, for each of the seven previously mentioned datasets, we test the metric on nine sets, divided into
five categories:

• Consistent LR-values,
• LR-values with a bias favouring Hp: shifted to the right by c1,
• LR-values with a bias favouring Hd: shifted to the right by c2,
• Too extreme LR-values: scaled by c2,
• Too weak LR-values: scaled by 1

c2
.

The consistent LR-values are generated as per Section 3.2.2. Again, for c1 the values 1 and 2 are used,
and for c2 the values 1.5 and 2.5 are used.

Similarly as before, we will look at small datasets, medium-sized datasets and large datasets. For
the small datasets, nSS = 50 and nDS = 150. For the medium-sized datasets we will use nSS = 150
and nDS = 450. For the large datasets nSS = 300 and nDS = 900.

We calculate the metrics for the datasets and repeat this process N times. N is chosen to be equal
to 1000.

The metrics will then be compared in three different ways.

• Differentiation: we see how the metrics distinguish between consistent and inconsistent systems.
For each dataset, each metric, and each dataset size (small, medium, large), we calculate the
metric values for both consistent and inconsistent systems. The goal is to assess how well a
given metric can distinguish between consistent and inconsistent systems. A good metric should
clearly differentiate between these two types of systems.

• Reliability across dataset type: for each dataset, we focus on the consistent data generated
according to this dataset. For a given dataset size, we compare themetric values of the consistent
data across all datasets. This means that we are not comparing within a single dataset but rather
across different datasets of the same size. Ideally, the metric should evaluate different consistent
systems similarly, indicating that the metric is reliable across different datasets of the same size.

• Reliability across dataset size: for each metric and each dataset size, we combine all consistent
data of a given size from all datasets. We then compare the metric values of this aggregated
consistent data across different dataset sizes. This comparison helps us understand how depen-
dent a given metric is on the size of the dataset, allowing us to determine if the metric behaves
consistently across varying dataset sizes.



4
Results

The results will be split up into two parts. In the first part, the results of the optimization of the individual
metrics will be discussed. Then, we will discuss the results of the comparison between the different
metrics.

4.1. Results of optimization of the metrics
In this section, we will discuss the results of the optimization of the three metrics individually. We have
selected three metrics or methods to gain insight into the consistency of LR-systems. For each of
these metrics, we have adapted them in different ways to see if we can improve them. We will look at
different ways to adjust them and finally select the version of the metrics that works the best, i.e. that
makes the best distinction between consistent and inconsistent LR-systems. This will leave us with
three optimized metrics, which we will then compare to each other in the next section of this report.

All the results will be shown using violin plots. An example of a violin plot is shown in Figure 4.1.
Violin plots are used as a visualization technique to represent the distribution of data. It combines the
aspects of boxplots and kernel density plots. Violin plots can be read as follows. The inner part of a
violin plot is a boxplot. Hence, the black ‘box’ shows the interquartile range (IQR), capturing the middle
50% of the data. The white line in the middle of the box represents the median. The lines above and
below the box are commonly referred to as ‘whiskers’. They extend from the top and bottom of the
box to indicate the range of the data distribution beyond which points are considered outliers. The
whiskers extend to the minimum and maximum values within 1.5 times the IQR from the lower and
upper quartiles, respectively. The shape of the violin represents the kernel density estimate of the
distribution. This can be seen by turning the violin on its side. The width of the violin represents the
density of the data distribution at different values. Wider sections indicate higher density of data points,
and narrower sections indicate lower density.

28
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Figure 4.1: Example of a violin plot.

When comparing metrics, we look at the violin plots of the values of metrics for both the inconsistent
and the consistent LR-systems. If there is a lot of overlap between two violin plots, it means that the
given metric does not distinguish well between those two LR-systems as it attributes similar values to
the different systems.

The overlap will be quantified as follows. For each LR-system (the consistent one and all the incon-
sistent ones), the values corresponding to the fifth and 95th percentiles will be calculated, determining
the boundaries of the 90% confidence interval. Now, these boundaries of the consistent LR-system will
be compared individually with each of the inconsistent systems in the following manner. The amount of
points in the 90% confident of the consistent system that also fall within the confidence bounds of the
inconsistent system is determined, as well as the amount of points in the 90% confidence interval of
the inconsistent system, that also fall within the confidence bounds of the consistent system. The mini-
mum of these to amounts is taken and divided by the total amount of points within the confidence points,
which is the same for both the consistent and inconsistent system. This number is then multiplied by
100 to obtain a percentage.

In formula form, the overlap between two systems is determined as follows:

Overlap =
min (PC , PI)

PT
× 100, (4.1)

where PC is the number of points within the 90% confidence interval of the consistent LR-system that
also fall within the confidence bounds of the inconsistent LR-system, PI is the number of points within
the 90% confidence interval of the inconsistent LR-system that also fall within the confidence bounds
of the consistent LR-system, and PT is the total amount of points in the confidence intervals.

A schematic example of how the overlap percentage is calculated for two datasets is shown in
Figure 4.2.
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Figure 4.2: Schematic example of overlap percentage of two datasets.

For a given metric, the total overlap is taken to be the average of the overlap percentages of the
consistent LR-system with all the inconsistent ones.

4.1.1. Optimization of Ccal
llr

For the metric Ccal
llr we have looked into different scoring rules to determine the value of the metric. The

original version uses the logarithmic scoring rule, defined in Section 2.3.3. We have compared this with
using the Brier score, the spherical score and zero-one loss, all three of which are defined in Section
3.1.1.

The results of the values obtained by using the method explained in Section 3.1 are displayed in the
following figures. In these figures, the sizes of the datasets are nSS = 150 and nDS = 450. In Figure
4.3 the results are shown for using the normal Ccal

llr , i.e. using the logarithmic scoring rule. Figure 4.4
shows the results when using the Brier scoring rule. In Figure 4.5 the results are shown using spherical
scoring rule. Lastly, in Figure 4.6 the results using the zero-one loss are visualized.

Figure 4.3: Values of normal Ccal
llr for different LR-systems, using nSS = 150 and nDS = 450.
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Figure 4.4: Values of Ccal
llr using the Brier score for different LR-systems, using nSS = 150 and nDS = 450.

Figure 4.5: Values of Ccal
llr using the spherical score for different LR-systems, using nSS = 150 and nDS = 450.

Figure 4.6: Values of Ccal
llr using zero-one loss for different LR-systems, using nSS = 150 and nDS = 450.

As is visible in the figures, the spherical scoring rule does a very poor job distinguishing between
the different LR-systems. This can be seen because there is a lot of overlap in the values of the metrics
for the given LR-systems. The total overlap percentage is 93.4%, meaning that it barely distinguishes
between consistent and inconsistent systems at all. The zero-one loss does slightly better, but only
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distinguishes for the shifted LR-values, not the more weak and extreme ones. Intuitively, this makes
sense: the zero-one loss counts the number of misclassifications, which does not change in the more
extreme andmore weak systems. This results in an overlap percentage of 74.0%. Note that both for the
spherical scoring rule and zero-one loss, the values of the metrics reach values below zero sometimes.
This means that sometimes these scoring rules attribute higher scores to the PAV LR-values than to the
original ones, even though we know that the PAV LR-values are more consistent than the original ones.
This implies that the values can be nonsensical and they do not give us a lot of accurate information.

The normal Ccal
llr using the logarithmic score and the Ccal

llr using the Brier score show better perfor-
mance in distinguishing between the different LR-systems. However, using the logarithmic scoring rule
shows slightly better results in the weaker and more extreme systems, resulting in a total overlap of
only 10.4% for the normal scoring rule versus 26.1% for the Brier score . Therefore, it is preferred to
use the original version of Ccal

llr over using the Brier score for this dataset size.
It is important to note that Ccal

llr performs significantly worse if the size of the dataset decreases,
both when using the logarithmic and the Brier scoring rule. In Figures 4.7 and 4.8, the results for the
two metrics are shown when using nSS = 50 and nDS = 150.

Figure 4.7: Values of normal Ccal
llr for different LR-systems, using nSS = 50 and nDS = 150.

Figure 4.8: Values of Ccal
llr using the Brier score for different LR-systems, nSS = 50 and nDS = 150.

It is clear that both of themetrics now do a rather poor job at distinguishing between different systems.
The 90% confidence intervals show a lot of overlap. For the normal Ccal

llr , we find an overlap percentage
of 32.9%. As for the version using the Brier score, the overlap is 44.3%. Therefore it is not possible to
make a very accurate assessment of consistency using these metrics when the data set is small.

The metric was also tested on a larger dataset. For nSS = 300 and nDS = 900, the results for Ccal
llr



4.1. Results of optimization of the metrics 33

using the logarithmic score can be seen in Figure 4.9 and the results for using the Brier score can be
seen in Figure 4.10.

Figure 4.9: Values of normal Ccal
llr for different LR-systems, using nSS = 300 and nDS = 900.

Figure 4.10: Values of Ccal
llr using the Brier score for different LR-systems, using nSS = 300 and nDS = 900.

We can see an improvement in the performance of both metrics, especially of the Ccal
llr using the

logarithmic score, which still works better than using the Brier score. The overlap percentages are
now 1.4% and 11.3% respectively. Although the metrics clearly improve with the larger dataset, the
difference is not as big as we will see later on with the devPAV metric in Section 4.1.2.

Overall, the original Ccal
llr works best of each dataset size. Therefore, we will continue with this

metric in the next comparisons.

4.1.2. Optimization of devPAV
To optimize the devPAV metric, we have looked into different variations, as described in Section 3.1.2.
The results of the three metrics when using nSS = 150 and nDS = 450 are shown in the following figures.
In Figure 4.11, we see the results for the original devPAV metric. Figure 4.12 shows the results for the
devPAV metric scaled by the total surface. Lastly, Figure 4.13 shows the results for the ‘smoothed’
version of devPAV where the corners of the steps in the graph are cut off, as can be seen in Section
3.1.2.
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Figure 4.11: Values of the original devPAV metric, using nSS = 150 and nDS = 450.

Figure 4.12: Values of the scaled devPAV metric, using nSS = 150 and nDS = 450.

Figure 4.13: Values of the smoothed devPAV metric, using nSS = 150 and nDS = 450.

From the figures, it can be seen that devPAV distinguishes decently well between different LR-
systems for this size of datasets. The distribution of the original devPAV values and the scaled ones
are almost identical, only the scaled values are smaller, which is to be expected. This is reflected in
the overlap percentage, which is 19.0% for the original devPAV and 18.7% for the scaled version. As
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for the smoothed devPAV, the distributions are similar as well, although for most systems it makes a
slightly better distinction. On the weak systems (W1.5 and W2.5) it does a little bit worse, because by
cutting the corners the PAV transformation line comes very close to the identity line, resulting in a small
value for the smoothed devPAV. The total overlap percentage for the smoothed devPAV is 18.3%. So
on this data with this size, the three devPAVs are very similar performance-wise.

For a smaller dataset, all versions of devPAV perform extremely poorly. This is visualized in Figures
4.14, 4.15 and 4.16.

Figure 4.14: Values of the original devPAV metric, using nSS = 50 and nDS = 150.

Figure 4.15: Values of the scaled devPAV metric, using nSS = 50 and nDS = 150.



4.1. Results of optimization of the metrics 36

Figure 4.16: Values of the smoothed devPAV metric, using nSS = 50 and nDS = 150.

Especially the scaled devPAVmakes almost no distinction at all between consistent and inconsistent
LR-systems. It has an overlap percentage of 58.1%. This is very undesirable. The normal and the
smoothed devPAV perform poorly as well, showing a lot of overlap between the different systems.
They have overlap percentages of 41.8% and 42.6%, respectively.

With a larger dataset, all versions of devPAV do noticeably better at distinguishing between the
consistent and inconsistent LR-systems. The results of using nSS = 300 and nDS = 900 can be seen
in Figures 4.17, 4.18 and 4.19.

Figure 4.17: Values of the original devPAV metric, using nSS = 300 and nDS = 900.
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Figure 4.18: Values of the scaled devPAV metric, using nSS = 300 and nDS = 900.

Figure 4.19: Values of the smoothed devPAV metric, using nSS = 300 and nDS = 900.

For each of the three metrics, there is almost no overlap between the values for the perfect LR-
system and the other ones. The overlap percentage of the 90% confidence intervals is 3.9% for the
normal devPAV, 2.3% for the scaled version and 3.3% for the smoothed version. All these percentages
are very low, which is of course very desirable.

Overall, all three of the devPAV metrics perform quite similarly on the different dataset sizes. The
scaled devPAV shows the worst performance, but not by much. The normal version and the smoothed
version show almost identical performance. For the rest of this report we will continue with the smoothed
version, as this one is expected to be a slightly more robust to different types of datasets. For the rest
of the Results section, when we refer to devPAV, we mean the smoothed version, unless specified
otherwise.

4.1.3. Optimization of fiducial metric
As described in Section 3.1.3, three possible metrics are considered for the fiducial method. In Figure
4.20, the results are shown for the first metric, taking the average of the medians of the fiducial confi-
dence intervals. In Figure 4.21, the results for taking the average of the medians scaled by the width of
the confidence intervals is shown. Lastly, in Figure 4.22 the results are shown when using the zero-one
metric.
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Figure 4.20: Values of the fiducial metric using the average of the medians for different LR-systems, using nSS = 150 and
nDS = 450.

Figure 4.21: Values of the fiducial metric using the scaled metric for different LR-systems, using nSS = 150 and nDS = 450.

Figure 4.22: Values of the fiducial metric using the zero-one loss for different LR-systems, using nSS = 150 and nDS = 450.

Firstly it is clear that the zero-one metric gives a rather weird violin-plot. The plots show many
bumps. This can be accredited to the discrete characteristic of the metric. There are usually four or
five intervals and the times that they don’t contain zero is being counted. This gives bumps at exactly
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those fractions. It can be seen that for the perfect system, they all contain zero most of the time. For
the R2, L2 and W2.5 distributions, it seems that all the intervals almost never contain zero. It can be
seen from the picture that this metric does not distinguish well between consistent and inconsistent
LR-systems. While the lower part of the violin plot for the ‘perfect’ system lies under the values for
most of the other systems, the higher part overlaps with almost every single one. This results in an
overlap percentage of 23.8%.

The other two metrics (the average of the medians and the scaled average of the medians) show
similar distributions, with the second one being scaled. However, the non-scaled average of medians
shows better performance, with an overlap percentage of 20.3%. The scaled average shows a higher
overlap percentage of 34.0%.

All metrics perform significantly worse with smaller data sets. Often times, the confidence intervals
can not be determined and the metrics do not produce any results at all. When they do show results, the
results are inconsistent and show large overlap percentages. Because of the unreliability we exclude
any results of the fiducial metrics on the small datasets, both here and in the rest of the thesis.

On a larger dataset, the three metrics all perform better. For the metric using the normal average
of the medians, the results are shown in Figure 4.23. It has an overlap percentage of 5.9%. For the
scaled average, the results can be seen in Figure 4.24. It has a significantly higher overlap percentage
of 19.9%. Lastly, the results of the zero-one metric, that are visualized in Figure 4.25, give us an overlap
percentage of 8.3%.

Figure 4.23: Values of the fiducial metric using the average of the medians for different LR-systems, using nSS = 300 and
nDS = 900.

Figure 4.24: Values of the fiducial metric using the scaled metric for different LR-systems, using nSS = 300 and nDS = 900.
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Figure 4.25: Values of the fiducial metric using the zero-one loss for different LR-systems, using nSS = 300 and nDS = 900.

The simple average of the medians performs significantly better than the other possible metrics.
Therefore, this will be the metric used for further comparisons. From now on, this metric will be referred
to as ‘Fid’.

4.2. Results of comparing the metrics
In this section, we will discuss the results of comparing the different metrics. As mentioned in Chapter
3, the three different metrics (Ccal

llr , devPAV and Fid) will be compared on eight different datasets to
see how well they distinguish between consistent and inconsistent LR-systems, how they are affected
by the size of the dataset and how reliable they are over different datasets. Part of this has already
been done in Section 3.1: we have already seen how the metrics differentiate between consistent and
inconsistent LR-systems when the systems are based on normally distributed LR-data. However, in
this section we will look at differently distributed data, while keeping the normally distributed data as
a reference point. The distributions we will look at are not known distributions. Rather, we use the
distribution of real-life different-source LR-systems.

4.2.1. Consistent versus inconsistent data
In this section the results will be presented on how well the different metrics distinguish between consis-
tent and inconsistent datasets. This will be done using the overlap percentages presented in Section
4.1. For illustration purposes, we will show the procedure in detail using one dataset, specifically Data
3. This dataset consists of 188 same-source LR’s and 1327 different-source LR’s. The same calcula-
tions apply to the remaining datasets presented in Section 3.2.1; hence, we will only present their final
results in the table without going into each step.

The distribution of the original same- and different-source data is shown in a histogram in Figure
4.26.
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Figure 4.26: Distribution of the 188 same-source and 1327 different-source LR’s of Data 3.

Note that the ELUB bounds are applied to this dataset, which results in peaks at the far-right and
far-left bins. Values larger than the right bound are moved to the far-right bin, while smaller values than
the left bound are moved to the far-left bin.

As explained in Section 3.2, we only use the different-source LR-data from the dataset, which we
use to generate new same-source data, thereby ensuring a consistent LR system. This is achieved
by applying a kernel density estimate (KDE) to the distribution of the different-source LR’s. For the
bandwidth selection of the KDE, we experimented with various methods across the datasets. The
objective was to get a smooth estimate without losing too much information. Additionally, we aimed to
determine a single method that could be consistently applied to all datasets, eliminating the need for
manual selection each time. We have experimented with the Silverman bandwidth, the Scott bandwidth
and manually changed both to be wider. We have also experimented with the Sheather-Jones plug-
in bandwidth. While the optimal bandwidth varied for each dataset, the Scott bandwidth performed
the best on average. It provided a good balance between smoothing the distributions and retaining
information.

The resulting KDE is illustrated in Figure 4.27 below.
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Figure 4.27: Kernel density estimate applied to distribution of different-source LR’s.

As explained in Section 3.1, we can now generate a corresponding distribution for the same-source
data so that Equation 2.7 holds. However, we also want the surfaces under the two curves to be close
to equal. So we stretch the KDE from Figure 4.27 out to the left or right, depending on which area under
the curve is larger, to generate new curves until we have the one that meets the criteria, namely that
Equation 2.7 holds and that the same-source and different-source curve have the same area under the
curve. This results in the same-source and different-source distributions shown in Figure 4.28
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Figure 4.28: Generated SS and DS distributions.

It can be seen that the two curves cross each other at LLR-values of 0 (or equivalently LR-values
of 1), which is always the case for a consistent LR-system. Left from 0, the DS-frequencies should
always be higher than the SS-frequencies, and vice versa on the right side of 0.

Now, nSS LR-values are sampled from the SS distribution given by the blue curve, and nDS LR-
values are sampled from the DS distribution given by the red curve. An example of a dataset generated
according to these distributions is shown in Figure 4.29.
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Figure 4.29: Generated consistent data according to SS and DS distributions.

These values form our consistent LR-system. The metrics are then calculated for this consistent
LR-system, as well as for the LR-systems we obtain by shifting them and scaling them, as described
in Section 3.2.3. This process is then repeated 1000 times for each set of values for nSS and nDS .

Just like before, we start with the medium-sized datasets: for nSS = 150 and nDS = 450, the results
are shown in Figures 4.30, 4.31 and 4.32.

Figure 4.30: Values of Ccal
llr for nSS = 150 and nDS = 450.
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Figure 4.31: Values of devPAV for nSS = 150 and nDS = 450.

Figure 4.32: Values of Fid for nSS = 150 and nDS = 450.

For this dataset size, the overlap percentages are the following:

• Ccal
llr : 0.3%,

• devPAV: 3.4%,
• Fid: 0.8%.

It can be seen that Ccal
llr does the best job at distinguishing between consistent and inconsistent

LR-systems, followed rather closely by Fid. devPAV does the worst, but not by much. All three metrics
give very good results for this dataset size.

For the small dataset with nSS = 50 and nDS = 150, the results are shown in Figures 4.33 and 4.34
for Ccal

llr and devPAV, respectively. Unfortunately, Fid does not work consistently on small datasets so
we will exclude any results for Fid on datasets of this size.
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Figure 4.33: Values of Ccal
llr for nSS = 50 and nDS = 150.

Figure 4.34: Values of devPAV for nSS = 50 and nDS = 150.

The overlap percentages are as follows:

• Ccal
llr : 21.9%,

• devPAV: 11.3%,
• Fid: -.

So it can be concluded that for this dataset with nSS = 50 and nDS = 150, devPAV performs
better than Ccal

llr at distinguishing between consistent and inconsistent LR-systems. Overall, both of
the metrics perform worse on the smaller dataset than on the medium-sized one, as expected.

Lastly, for nSS = 300 and nDS = 900, the results are shown in Figures 4.35, 4.36 and 4.37.
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Figure 4.35: Values of Ccal
llr for nSS = 300 and nDS = 900.

Figure 4.36: Values of devPAV for nSS = 300 and nDS = 900.

Figure 4.37: Values of Fid for nSS = 300 and nDS = 900.

This dataset size results in the following overlap percentages:

• Ccal
llr : 0.0%,

• devPAV: 0.0%,
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• Fid: 0.0%.

As expected, the performance of each metric improves with the enlargement of the dataset size.
All three of the metrics now show zero percent overlap, meaning that they make a perfect distinction
between consistent and inconsistent LR-systems at this dataset size.

This procedure is performed for every one of the datasets, resulting in different overlap percentages.
Tables 4.1, 4.2 and 4.3 present the overlap percentages for the various data sets under the different

metrics.

Medium Ccal
llr devPAV Fid

Data 1 0.8 3.8 1.2

Data 2 2.2 25.0 14.8

Data 3 0.3 3.4 0.8

Data 4 1.8 25.9 12.8

Data 5 4.3 19.3 15.4

Data 6 0.5 1.8 6.8

Data 7 4.2 6.4 30.3

Normal
data

10.4 18.3 20.3

Table 4.1: Values of metrics for consistent LR-systems based on different datasets, for nSS = 150 and nDS = 450.

Small Ccal
llr devPAV Fid

Data 1 11.9 24.0 -

Data 2 15.1 36.8 -

Data 3 21.4 11.3 -

Data 4 15.0 37.8 -

Data 5 14.8 34.1 -

Data 6 12.6 19.7 -

Data 7 21.7 29.5 -

Normal
data

32.9 42.6 -

Table 4.2: Values of metrics for consistent LR-systems based on different datasets, for nSS = 50 and nDS = 150.

From Table 4.1 it can be deduced that for nSS = 150 and nDS = 450 on average, Ccal
llr shows an

overlap percentage of 3.1%. For devPAV and Fid, this average is slightly higher with 13.0% and 12.8%
respectively.

For the datasets of sizes nSS = 50 and nDS = 150, the averages of the overlap percentages are
higher, as can be seen in Table 4.2. This is in line with the expectation: on smaller datasets, we expect
the metrics to perform worse. For Ccal

llr it goes up by 15.1%, resulting in an overlap percentage of
18.2%. For devPAV the overlap percentage is 29.1%, which is 16.1% higher than for the medium-sized
datasets. For Fid, we don’t have any results for this dataset size.

Lastly, for the datasets of sizes nSS = 300 and nDS = 900, the averages are the lowest, shown
in Table 4.3. The average overlap percentage of Ccal

llr drops by 2.8% compared to the medium-sized
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Large Ccal
llr devPAV Fid

Data 1 0.0 0.0 0.0

Data 2 0.0 13.3 9.1

Data 3 0.0 0.0 0.0

Data 4 0.0 12.8 7.4

Data 5 1.1 4.8 5.2

Data 6 0.0 0.0 0.0

Data 7 0.0 1.3 18.7

Normal
data

1.4 3.3 5.9

Table 4.3: Values of metrics for consistent LR-systems based on different datasets, for nSS = 300 and nDS = 900.

dataset, giving an overlap percentage of 0.3% for this dataset size. For devPAV it drops by 8.6%,
resulting in an overlap percentage of 4.4%. For Fid, the average overlap percentage is the highest by
just a bit with 5.8%, dropping by 7.0% from the medium-sized dataset.

Altogether, we conclude that Ccal
llr does the best job at distinguishing between consistent and incon-

sistent datasets. It outperforms the other two metrics at every dataset size that we have tested.

4.2.2. Reliability of the metrics across datasets
In this section, the results will be presented on how consistent the values of the metrics are across
consistent LR-systems based on different datasets. Instead of speaking of consistency, we will speak of
reliability, to avoid any confusion with the consistency of LR-systems. So reliability of a metric is defined
as its capability to to assign similar values to different consistent LR-systems. Specifically, for each of
the seven datasets introduced in Section 3.2.1, as well as for the normally distributed data, we will
evaluate the metrics for the consistent LR-systems generated from these datasets. We will determine
whether each metric provides similar values across the different consistent LR-systems, indicating its
reliability. This reliability is desirable because if we know a metric distinguishes well between consistent
and inconsistent LR-systems and it is reliable in the values it gives for consistent LR-systems, then we
can confidently use it to assess the consistency of new LR-systems based on the value the metric
assigns to it.

The seventh dataset is excluded in this section due to the computational cost.
As explained in Section 3.2.3, we will test the reliability of the metrics on the consistent LR-systems

generated using the different datasets. We will compare the distributions of the values of the metrics
across the consistent LR-systems. We do this for each dataset size and each metric. Again, we look
at an overlap percentage, but note that in this case, we want the overlap to be high, i.e. we want the
metrics to assign similar values to different consistent LR-systems. The overlap percentage we use
now is slightly different from the overlap percentage previously used in the following manner: we will
not compare one distribution to all the others, but we will compare each pair and take the average
overlap. This will become more clear from looking at the results.

In Figures 4.38, 4.39 and 4.40, the results when using nSS = 150 and nDS = 450 are visualized
for the three metrics. Specifically, in Figure 4.38, the distribution of the value of Ccal

llr is shown per
consistent LR-system based on a given dataset, specified above each column. For devPAV and Fid,
these distributions are shown in Figures 4.39 and 4.40.
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Figure 4.38: Values of Ccal
llr across datasets for nSS = 150 and nDS = 450.

Figure 4.39: Values of devPAV across datasets for nSS = 150 and nDS = 450.

Figure 4.40: Values of Fid across datasets for nSS = 150 and nDS = 450.

Now, as previously mentioned, the overlap percentages are not taken just from the first column with
the other columns, as we did before, but for each pair of columns, and then the average is taken. This
dataset size results in overlap percentages of 59.1% for Ccal

llr , 63.0% for devPAV and 64.3% for Fid.
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Recall that we want the overlap percentage here to be high, implying reliability of the metrics across
various consistent datasets. It follows that here, Fid outperforms Ccal

llr and devPAV by a little bit.
In Figures 4.41 and 4.42, the results are shown using dataset sizes nSS = 50 and nDS = 150. For

Fid, we do not have results for this dataset size, as explained in Section 4.1.3.

Figure 4.41: Values of Ccal
llr across datasets for nSS = 50 and nDS = 150.

Figure 4.42: Values of devPAV across datasets for nSS = 50 and nDS = 150.

For this dataset size, we find an overlap percentage of 60.3% for Ccal
llr , and 77.8% for devPAV. The

overlap percentages of Ccal
llr and devPAV have increased compared to the medium-sized datasets.

The results for nSS = 300 and nDS = 900 can be seen in Figures 4.43, 4.44 and 4.45.
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Figure 4.43: Values of Ccal
llr across datasets for nSS = 300 and nDS = 900.

Figure 4.44: Values of devPAV across datasets for nSS = 300 and nDS = 900.

Figure 4.45: Values of Fid across datasets for nSS = 300 and nDS = 900.

With the large datasets, we find an overlap percentage of 54.8% for Ccal
llr , 54.0% for devPAV and

60.4% for Fid. The overlap percentages have decreased in comparison with the smaller datasets. Just
like before, Fid outperforms the other two metrics, but again not by much.
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The findings show that Fid consistently provides the most reliable metric values across different
datasets, even though its performance decreases with larger dataset sizes. Ccal

llr and devPAV show
slightly more variability and less reliability across datasets, especially with larger dataset sizes. This
reliability is very important in practical application, as it shows that the metric can provide dependable
evaluations across different datasets. This observation is corroborated by [18], which collected and
compared values of Ccal

llr across various publications have been collected and compared to each other
to see if a ‘good’ value for Ccal

llr can be deduced. They also found that the values of Ccal
llr vary a lot and

so they do not give us a lot of information about the consistency of LR-systems.

4.2.3. Reliability of the metrics across dataset sizes
In this section, the results on the reliability of the metrics across dataset sizes will be presented. In
other words, we will see how much the metrics’ values for consistent LR-systems depend on the size
of the datasets. The sizes used here are equal to the sizes we used before: for the small dataset we
used nSS = 50 and nDS = 150, for the medium dataset we used nSS = 150 and nDS = 450 and for the
large dataset we used nSS = 300 and nDS = 900.

The seventh dataset is excluded in this section due to the computational cost.
First, we look at Ccal

llr . The value of Ccal
llr for all consistent LR-datasets of a given size are added

together. Then, the distributions of the values per dataset size are compared to each other. This is
visualized in Figure 4.46. Note that again, a higher overlap percentage is preferred, indicating reliability
of a metric across different dataset sizes.

Figure 4.46: Values of Ccal
llr for consistent datasets of different sizes.

For Ccal
llr , we find an overlap percentage of 25.0%. This is quite low. It can be seen from Figure 4.46

that this can mostly be attributed to the distribution of the values for the small datasets, as Ccal
llr performs

significantly worse on smaller datasets. For the larger datasets, there seems to be more overlap.
For devPAV, the results across dataset sizes are shown in Figure 4.47.

Figure 4.47: Values of devPAV for consistent datasets of different sizes.
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As can be seen in Figure 4.47, the overlap percentage is rather high: devPAV gives an overlap
percentage of 91.9% across dataset sizes.

Lastly, for Fid the results are shown in Figure 4.48

Figure 4.48: Values of Fid for consistent datasets of different sizes.

Fid gives the highest overlap percentage of 93.0% across dataset sizes, outperforming devPAV by
just a little bit. Note, however, that for Fid we are only comparing two dataset sizes instead of three, like
for the other metrics. This probably results in a higher overlap percentage, as the medium and large
dataset values are often closer to each other for each metric.

These results indicate that both devPAV and Fid demonstrate high reliability. The high overlap
percentages for devPAV and Fid show that these metrics are less sensitive to the size of the dataset,
making them more robust choices for evaluating the consistency of LR-systems across varying dataset
sizes. This insight is important for the application of these metrics in practical scenarios, ensuring that
the evaluations stay reliable regardless of the dataset size.
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Conclusions and Discussion

This study aimed to evaluate and compare different consistency metrics for LR-systems on realistic
data in order to identify the most effective metric. The evaluation focused on three types of metrics:
Ccal

llr , devPAV, and metrics based on fiducial distributions. Each metric was first optimized individually
by performing various adaptations and assessing their effect on the performance of the metric in dis-
tinguishing between consistent and inconsistent LR-systems. The dataset sizes used were nSS = 50
and nDS = 150 for the smaller datasets, nSS = 150 and nDS = 450 for the medium-sized datasets
and nSS = 300 and nDS = 900 for the larger datasets, where nSS denotes the number of same-source
LR-values and nDS denotes the number of different-source LR-values.

The individual metrics were optimized on normally distributed LR-data.
For Ccal

llr , the optimization was performed by comparing the original that uses the logarithmic score
to the same method using other scoring rules. This was tested on the different dataset sizes. The
original Ccal

llr performed the best on all dataset sizes, with overlap percentages of 32.9%, 10.4% and
1.4% for small, medium and large datasets, respectively. The versions of Ccal

llr using the other scores,
although improvements were seen on the large datasets, still had higher overlap percentages on each
of the dataset sizes.

For devPAV, several variations of the original metric were considered, namely scaling it by both the
x- and y-axis, instead of just the x-axis, and smoothing it by cutting off the corners from the step function.
The smoothed version of the devPAV metric was found to be the most reliable across different dataset
sizes. On smaller datasets, all versions performed poorly, with high overlap percentages. However,
on large datasets, the smoothed devPAV showed an overlap of only 3.3%, making it highly effective
in distinguishing between consistent and inconsistent systems. Although the original devPAV showed
similar performance, the smoothed devPAV was expected to be more robust to different datasets be-
cause it is less sensitive to large steps in the isotonic regression function, and was hence chosen to go
forward with.

Among the fiducial metrics, the simple average of the medians performed better than the scaled
average and the zero-one metric. The overlap percentage for the average of the medians was 5.9%
on large datasets, indicating that it might still be useful despite being less effective compared to Ccal

llr

and devPAV. This metric was named ‘Fid’. Unfortunately, for small datasets, the fiducial method does
not work.

When tested on real LR-data, Ccal
llr consistently outperformed the other two metrics in distinguishing

between consistent and inconsistent LR-systems. On the medium-sized datasets, the overlap percent-
age for Ccal

llr was 3.1%, for devPAV it was 13.0% and for Fid it was 12.8%. On average, Ccal
llr showed

an overlap percentage of 18.2% for the smaller datasets, compared to 29.1% for devPAV. On the large
datasets the overlap percentages were 0.3%, 4.4% and 5.8%, respectively. On every dataset size,
Ccal

llr shows the smallest overlap percentage, meaning that it distinguishes most accurately between
consistent and inconsistent LR-systems. devPAV and Fid show similar results, but devPAV has the
advantage of working on small datasets, which Fid does not.

Testing the metrics’ reliability across different consistent LR-systems showed that devPAV and Fid
outperform Ccal

llr . For medium-sized datasets, devPAV and Fid showed overlap percentages of 63.0%
and 64.3%, respectively, compared to an overlap percentage of 59.1% for Ccal

llr . When testing reliability,
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we want the overlap to be high, showing similar metric values across varying consistent LR-systems.
At the small dataset, the overlap percentage for devPAV was 77.8%, again outperforming Ccal

llr with an
overlap percentage of 60.3%. On the larger datasets the difference was smaller: Ccal

llr had an overlap
percentage of 54.8%, devPAV had an overlap percentage of 54.0% and Fid outperformed the other two
metrics with an overlap percentage of 60.4%.

Lastly, the reliability of themetrics across varying dataset sizes was tested. Ccal
llr showed poor results

with an overlap percentage of 25.0%, although it should be noted that this can mostly be attributed to
the smaller datasets. Both devPAV and Fid performed very well, showing overlap percentages of 91.9%
and 93.0%, respectively. However, Fid was only compared on two dataset sizes, resulting in a higher
overlap percentage.

In conclusion, the findings of this study provide a thorough comparison of three consistency metrics
for LR-systems, highlighting the strengths and limitations of each. Ccal

llr , using the original logarithmic
score, showed the best performance in distinguishing between consistent and inconsistent LR-systems,
while the smoothed devPAV emerged as the most reliable metric, assigning similar values to different
consistent LR-systems and being most robust to changes in the dataset size. Although Fid did not
perform worse than devPAV in most cases, it has the big disadvantage of not working on small datasets.
While as a metric it might be the poorer choice for this reason, the method itself still uses interesting
ideas and the fiducial plots give a lot of insight into the consistency of LR-systems.

While this study provided us with some valuable insights into the effectiveness of different consis-
tency metrics, there are a few limitations and areas for improvement that future work could explore.

The study was conducted on specific dataset sizes and distributions. For the first part of the opti-
mization, only normally distributed data was used. Although real-life LR-data was used for the second
part of the comparison, it was still a small amount of datasets, many of which contained LR-values
of the same type of LR-system. Exploring a wider range of dataset characteristics, including different
distributions (e.g. skewed distributions, bimodal distributions) and real-world variations, could provide
a more comprehensive understanding of metric performance.

Although several adaptations were explored, there may be other creative approaches to modify the
metrics that were not considered. Moreover, there are many options for new metrics altogether, for
example using scoring rules as metrics. Future research could look into adaptations and combinations
of existing metrics to improve the performance further.

The parameter tuning used in this study was quite basic. For example, the bandwidth for the KDE
was mostly chosen based on trying a few different methods and seeing which one seemed to work the
best, without a deeper analysis of why certain bandwidths might be better than others. More parameter
tuning could have optimized performance further.

Lastly, the implementation of fiducial metrics was slow and computationally heavy. Optimizing the
code for better efficiency, maybe through algorithmic improvements or faster computational techniques,
could make these metrics more practical for larger datasets.

In summary, this study provided a detailed evaluation of three consistency metrics for LR-systems,
with Ccal

llr emerging as the most effective metric for distinguishing between consistent and inconsistent
systems. The smoothed devPAV demonstrated the highest reliability across datasets of varying sizes,
making it a strong alternative. While the Fid metric performed similarly to devPAV in most cases, its
inability to handle small datasets limits its practical application. However, there is still room for refine-
ment and improvement. By addressing the limitations identified and exploring new approaches, this
study lays a foundation for future research to make LR-system evaluations even more accurate and
reliable. In this way it contributes to the development of better forensic analysis techniques.
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A
Source Code

Listing A.1: functions thesis.py
1 import numpy as np
2 import matplotlib.pyplot as plt
3 from math import sqrt, comb
4 from scipy.stats import gaussian_kde, norm
5 import lir
6 from scipy.interpolate import interp1d
7 import pandas as pd
8 from scipy.integrate import simps
9

10 # FUNCTIONS FOR DEVPAV
11

12 # this function is copied from the lir library
13 def _calcsurface(c1: (float, float), c2: (float, float)) -> float:
14 """
15 Helper function that calculates the desired surface for two xy-coordinates
16 """
17 # step 1: calculate intersection (xs, ys) of straight line through coordinates with

identity line (if slope (a) = 1, there is no intersection and surface of this
parrellogram is equal to deltaY * deltaX)

18 x1, y1 = c1
19 x2, y2 = c2
20 a = (y2 - y1) / (x2 - x1)
21

22 if a == 1:
23 # dan xs equals +/- Infinite en is er there is no intersection with the identity line
24

25 # the surface of the parallellogram is:
26 surface = (x2 - x1) * np.abs(y1 - x1)
27

28 elif (a < 0):
29 raise ValueError(f"slope␣is␣negative;␣impossible␣for␣PAV-transform.␣Coordinates␣are␣{

c1}␣and␣{c2}.␣Calculated␣slope␣is␣{a}")
30 else:
31 # than xs is finite:
32 b = y1 - a * x1
33 xs = b / (1 - a)
34 # xs
35

36 # step 2: check if intersection is located within line segment c1 and c2.
37 if x1 < xs and x2 >= xs:
38 # then intersection is within
39 # (situation 1 of 2) if y1 <= x1 than surface is:
40 if y1 <= x1:
41 surface = 0.5 * (xs - y1) * (xs - x1) - 0.5 * (xs - x1) * (xs - x1) + 0.5 * (

y2 - xs) * (x2 - xs) - 0.5 * (
42 x2 - xs) * (x2 - xs)
43 else:
44 # (situation 2 of 2) than y1 > x1, and surface is:

59
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45 surface = 0.5 * (xs - x1) ** 2 - 0.5 * (xs - y1) * (xs - x1) + 0.5 * (x2 - xs
) ** 2 - 0.5 * (x2 - xs) * (

46 y2 - xs)
47 # dit is the same as 0.5 * (xs - x1) * (xs - y1) - 0.5 * (xs - y1) * (xs - y1

) + 0.5 * (y2 - xs) * (x2 - xs) - 0.5 * (y2 - xs) * (y2 - xs) + 0.5 * (y1
- x1) * (y1 - x1) + 0.5 * (x2 - y2) * (x2 -y2)

48 else: # then intersection is not within line segment
49 # if (situation 1 of 4) y1 <= x1 AND y2 <= x1, and surface is
50 if y1 <= x1 and y2 <= x1:
51 surface = 0.5 * (y2 - y1) * (x2 - x1) + (x1 - y2) * (x2 - x1) + 0.5 * (x2 -

x1) * (x2 - x1)
52 elif y1 > x1: # (situation 2 of 4) then y1 > x1, and surface is
53 surface = 0.5 * (x2 - x1) * (x2 - x1) + (y1 - x2) * (x2 - x1) + 0.5 * (y2 -

y1) * (x2 - x1)
54 elif y1 <= x1 and y2 > x1: # (situation 3 of 4). This should be the last

possibility.
55 surface = 0.5 * (y2 - y1) * (x2 - x1) - 0.5 * (y2 - x1) * (y2 - x1) + 0.5 * (

x2 - y2) * (x2 - y2)
56 else:
57 # situation 4 of 4 : this situation should never appear. There is a fourth

sibution as situation 3, but than above the identity line. However, this
is impossible by definition of a PAV-transform (y2 > x1).

58 raise ValueError(f"unexpected␣coordinate␣combination:␣({x1},␣{y1})␣and␣({x2},
␣{y2})")

59 return surface
60

61 # this function is taken from the lir library
62 def _devpavcalculator(lrs, pav_lrs, y):
63 """
64 Function that calculates davPAV for a PAVresult for SSLRs and DSLRs.
65

66 Input:
67 - Lrs: np.array with LR-values.
68 - pav_lrs: np.array with LRs after PAV-transform. y = np.array with labels (1 for H1 and

0 for H2).
69

70 Output:
71 - devPAV value.
72

73 """
74 DSLRs, SSLRs = lir.Xy_to_Xn(lrs, y)
75 DSPAVLRs, SSPAVLRs = lir.Xy_to_Xn(pav_lrs, y)
76 PAVresult = np.concatenate([SSPAVLRs, DSPAVLRs])
77 Xen = np.concatenate([SSLRs, DSLRs])
78

79 # order coordinates based on x's then y's and filtering out identical datapoints
80 data = np.unique(np.array([Xen, PAVresult]), axis=1)
81 Xen = data[0, :]
82 Yen = data[1, :]
83

84 # pathological cases
85 # first one of four: PAV-transform has a horizonal line to log(X) = -Inf as to log(X) =

Inf
86 if Yen[0] != 0 and Yen[-1] != np.inf and Xen[-1] == np.inf and Xen[-1] == np.inf:
87 return np.Inf
88

89 # second of four: PAV-transform has a horizontal line to log(X) = -Inf
90 if Yen[0] != 0 and Xen[0] == 0 and Yen[-1] == np.inf:
91 return np.Inf
92

93 # third of four: PAV-transform has a horizontal line to log(X) = Inf
94 if Yen[0] == 0 and Yen[-1] != np.inf and Xen[-1] == np.inf:
95 return np.Inf
96

97 # fourth of four: PAV-transform has one vertical line from log(Y) = -Inf to log(Y) = Inf
98 wh = (Yen == 0) | (Yen == np.inf)
99 if np.sum(wh) == len(Yen):
100 return np.nan
101

102 else:
103 # then it is not a pathological case with weird X-values and devPAV can be
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calculated
104

105 # filtering out -Inf or 0 Y's
106 wh = (Yen > 0) & (Yen < np.inf)
107 Xen = np.log10(Xen[wh])
108 Yen = np.log10(Yen[wh])
109 # create an empty list with size (len(Xen))
110 devPAVs = [None] * len(Xen)
111 # sanity check
112 if len(Xen) == 0:
113 return np.nan
114 elif len(Xen) == 1:
115 return abs(Xen - Yen)
116 # than calculate devPAV
117 else:
118 deltaX = Xen[-1] - Xen[0]
119 surface = 0
120 for i in range(1, (len(Xen))):
121 surface = surface + _calcsurface((Xen[i - 1], Yen[i - 1]), (Xen[i], Yen[i]))
122 devPAVs[i - 1] = _calcsurface((Xen[i - 1], Yen[i - 1]), (Xen[i], Yen[i]))
123 # return(list(surface/a, PAVresult, Xen, Yen, devPAVs))
124 return surface / deltaX
125

126

127 def scaled_devpavcalc(lrs, pav_lrs, y):
128 """
129 Function that calculates the scaled davPAV for a PAVresult for SSLRs and DSLRs.
130

131 Input:
132 - lrs: np.array with LR-values.
133 - pav_lrs: np.array with LRs after PAV-transform.
134 - y: np.array with labels (1 for H1 and 0 for H2).
135

136 Output:
137 - scaled devPAV value.
138

139 """
140 DSLRs, SSLRs = lir.Xy_to_Xn(lrs, y)
141 DSPAVLRs, SSPAVLRs = lir.Xy_to_Xn(pav_lrs, y)
142 PAVresult = np.concatenate([SSPAVLRs, DSPAVLRs])
143 Xen = np.concatenate([SSLRs, DSLRs])
144

145 # Order coordinates based on x's then y's and filtering out identical datapoints
146 data = np.unique(np.array([Xen, PAVresult]), axis=1)
147 Xen = data[0, :]
148 Yen = data[1, :]
149

150 # pathological cases
151 # first one of four: PAV-transform has a horizonal line to log(X) = -Inf as to log(X) =

Inf
152 if Yen[0] != 0 and Yen[-1] != np.inf and Xen[-1] == np.inf and Xen[-1] == np.inf:
153 return np.Inf
154

155 # second of four: PAV-transform has a horizontal line to log(X) = -Inf
156 if Yen[0] != 0 and Xen[0] == 0 and Yen[-1] == np.inf:
157 return np.Inf
158

159 # third of four: PAV-transform has a horizontal line to log(X) = Inf
160 if Yen[0] == 0 and Yen[-1] != np.inf and Xen[-1] == np.inf:
161 return np.Inf
162

163 # forth of four: PAV-transform has one vertical line from log(Y) = -Inf to log(Y) = Inf
164 wh = (Yen == 0) | (Yen == np.inf)
165 if np.sum(wh) == len(Yen):
166 return np.nan
167

168 else:
169 # then it is not a pathological case with weird X-values and devPAV can be

calculated
170

171 # filtering out -Inf or 0 Y's
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172 wh = (Yen > 0) & (Yen < np.inf)
173 Xen = np.log10(Xen[wh])
174 Yen = np.log10(Yen[wh])
175 # create an empty list with size (len(Xen))
176 devPAVs = [None] * len(Xen)
177 # sanity check
178 if len(Xen) == 0:
179 return np.nan
180 elif len(Xen) == 1:
181 return abs(Xen - Yen)
182 # then calculate devPAV
183 else:
184 # determine the difference in x-values and y-values
185 deltaX = Xen[-1] - Xen[0]
186 deltaY = Yen[-1] - Yen[0]
187 surface = 0
188 for i in range(1, (len(Xen))):
189 surface = surface + _calcsurface((Xen[i - 1], Yen[i - 1]), (Xen[i], Yen[i]))
190 devPAVs[i - 1] = _calcsurface((Xen[i - 1], Yen[i - 1]), (Xen[i], Yen[i]))
191 # scale by surface
192 return surface / (deltaX*deltaY)
193

194 def devpav(lrs: np.ndarray, y: np.ndarray) -> float:
195 """
196 Function that calculates normal devPAV for LR data under H1 and H2.
197

198 Input:
199 - lrs: np.array with LR-values.
200 - y: np.array with labels, 1 for H1 and 0 for H2.
201

202 Output:
203 - devPAV value.
204 """
205 # Check if input is valid
206 if sum(y) == len(y) or sum(y) == 0:
207 raise ValueError('devpav:␣illegal␣input:␣at␣least␣one␣value␣is␣required␣for␣each␣

class')
208

209 # Determine pav lrs
210 cal = lir.IsotonicCalibrator()
211 pavlrs = cal.fit_transform(lrs, y)
212

213 # Return devpav
214 return _devpavcalculator(lrs, pavlrs, y)
215

216 def scaled_devpav(lrs: np.ndarray, y: np.ndarray) -> float:
217 """
218 Function that calculates scaled devPAV for LR data under H1 and H2.
219

220 Input:
221 - lrs: np.array with LR-values.
222 - y: np.array with labels, 1 for H1 and 0 for H2.
223

224 Output:
225 - scaled devPAV value.
226 """
227

228 # Check if input is valid
229 if sum(y) == len(y) or sum(y) == 0:
230 raise ValueError('devpav:␣illegal␣input:␣at␣least␣one␣value␣is␣required␣for␣each␣

class')
231

232 # Determine pav lrs
233 cal = lir.IsotonicCalibrator()
234 pavlrs = cal.fit_transform(lrs, y)
235

236 # Return scaled devpav
237 return scaled_devpavcalc(lrs, pavlrs, y)
238

239 def devpav_new(lrs: np.ndarray, y:np.ndarray) -> float:
240 """
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241 Function that calculates smoothed devPAV for LR data under H1 and H2.
242

243 Input:
244 - lrs: np.array with LR-values.
245 - y: np.array with labels, 1 for H1 and 0 for H2.
246

247 Output:
248 - smoothed devPAV value.
249 """
250 # determine pav lrs
251 cal = lir.IsotonicCalibrator()
252 pavlrs = cal.fit_transform(lrs, y)
253

254 # get original and pav lrs and ensure row vector
255 x = np.ravel(lrs)
256 y = np.ravel(pavlrs)
257

258 # calculating devPAV only makes sense if the original and transformed
259 # variables have the same domain; in this case they are both LRs with a
260 # domain between 0 and +inf.
261 if any(x < 0) or any(y < 0):
262 raise ValueError('Both␣variables␣should␣be␣non-negative.')
263

264 # Convert both coordinates to log10
265 x = np.log10(x)
266 y = np.log10(y)
267

268 # Sort values
269 x = np.sort(x)
270 y = np.sort(y)
271

272 # Exclude datapoints with one or two non-finite coordinates
273 finite = np.isfinite(x) & np.isfinite(y)
274 x = x[finite]
275 y = y[finite]
276

277 # Add initial and final points at the identity line
278 x = np.concatenate(([x[0]], x, [x[-1]]))
279 y = np.concatenate(([x[0]], y, [x[-1]]))
280

281 # Rotate the transformation line clockwise by 45 degrees
282 x_rot = (x + y) / np.sqrt(2)
283 y_rot = (y - x) / np.sqrt(2)
284

285 # Add new points to the line, where it crosses the (new rotated) X-axis.
286 # This is when the Y-values of two adjacent points have opposite signs.
287 i_cross = np.where(np.abs(np.diff(np.sign(y_rot))) == 2)[0]
288 # Add new points in backwards order, so the cross indices are unchanged
289 for i_p in range(len(i_cross) - 1, -1, -1):
290 i_c = i_cross[i_p]
291 x_dif = np.diff(x_rot[i_c:i_c + 2])
292 y_dif = np.diff(y_rot[i_c:i_c + 2])
293

294 # The added x-coordinate is shifted proportional to the y-values
295 x_add = x_rot[i_c] + x_dif * np.abs(y_rot[i_c] / y_dif)
296 x_add = np.array([x_add]).reshape(1, )
297 x_rot = np.concatenate((x_rot[:i_c + 1], x_add, x_rot[i_c + 1:]))
298 y_add = 0
299 y_rot = np.concatenate((y_rot[:i_c + 1], [y_add], y_rot[i_c + 1:]))
300

301 # Determine corners of step function
302 critical_points = []
303 critical_points.append((x_rot[0], y_rot[0]))
304 increasing = True
305 for i in range(1, len(y_rot)):
306 if increasing and y_rot[i] < y_rot[i - 1]:
307 # Transition from increasing to decreasing
308 critical_points.append((x_rot[i-1], y_rot[i-1]))
309 increasing = False
310 elif not increasing and y_rot[i] > y_rot[i - 1]:
311 # Transition from decreasing to increasing
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312 critical_points.append((x_rot[i - 1], y_rot[i - 1]))
313 increasing = True
314 critical_points.append((x_rot[-1], y_rot[-1]))
315

316 # Determine the triangles that form the steps (corners and middle point)
317 tuples = []
318 for i in range(0, len(critical_points) - 2, 2):
319 tuples.append([critical_points[i], critical_points[i+1], critical_points[i+2]])
320

321 # Determine all the lines of the step function
322 lines = []
323 for i in range(0, len(critical_points)-1, 1):
324 line = [(critical_points[i][0],critical_points[i][1]), (critical_points[i+1][0],

critical_points[i+1][1])]
325 lines.append(line)
326

327 # Determine the new points we want to interpolate linearly: corners stay, middle points
are cut off by

328 # determining middle points of lines from corner to middle point of triangle and drawing
line between

329 # middle points
330 points = []
331 points.append(lines[0][0])
332 for line in lines:
333 mid_x = (line[0][0] + line[1][0])/2
334 mid_y = (line[0][1] + line[1][1])/2
335 points.append((mid_x, mid_y))
336 points.append((lines[-1][1]))
337

338 # Determine x-values and y-values of points
339 xvals = np.array([point[0] for point in points])
340 yvals = np.array([point[1] for point in points])
341

342 # Interpolate linearly between the points, giving a piecewise linear function
343 interp_func = interp1d(xvals, yvals, kind='linear')
344

345 # Obtain corresponding y-values from the interpolation function
346 new_x = np.linspace(min(xvals), max(xvals), 100)
347 new_y = interp_func(new_x)
348

349 # Determine area
350 area = np.diff(new_x) * np.abs(new_y[:-1] + new_y[1:]) / 2
351 total_area = np.sum(area)
352

353 # Determine smoothed devPAV
354 x_range = np.max(new_x) - np.min(new_x)
355 smoothed_devpav = total_area / x_range
356

357 return smoothed_devpav
358

359 # FUNCTIONS FOR CLLR
360

361 def cllr(lrs, y):
362 """
363 Function that calculates cllr cal using logarithmic scoring rule for LR data under H1 and

H2.
364

365 Input:
366 - lrs: np.array with LR-values.
367 - y: np.array with labels, 1 for H1 and 0 for H2.
368

369 Output:
370 - cllr cal value.
371 """
372

373 # Determine total cllr and discrimination power and subtract to find cllr cal
374 cllrmax = lir.metrics.cllr(lrs, y)
375 cllrmin = lir.metrics.cllr_min(lrs, y)
376

377 return cllrmax - cllrmin
378
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379

380 def brier(lrs, y):
381 """
382 Function that calculates cllr cal using brier score for LR data under H1 and H2.
383

384 Input:
385 - lrs: np.array with LR-values.
386 - y: np.array with labels, 1 for H1 and 0 for H2.
387

388 Output:
389 - cllr cal value with brier score.
390 """
391

392 # Make dictionary of labels and corresponding LR-values
393 grouped_LR = {}
394 for label, LR in zip(y, lrs):
395 if label not in grouped_LR:
396 grouped_LR[label] = []
397 grouped_LR[label].append(LR)
398

399 l1 = len(grouped_LR.get(1, []))
400 l2 = len(grouped_LR.get(0, []))
401 sum_1 = 0
402 sum_2 = 0
403 for label, LR_list in grouped_LR.items():
404 # Determine Brier scores for labels using posterior
405 # H_p true
406 if label == 1:
407 for LR in LR_list:
408 if LR != 0 and LR != np.inf:
409 posterior = LR / (1 + LR)
410 sum_1 += ((posterior - 1) ** 2)
411 # H_d true
412 else:
413 for LR in LR_list:
414 if LR != 0 and LR != np.inf:
415 posterior = LR / (1 + LR)
416 sum_2 += (posterior ** 2)
417 # Determine ECE using Brier score
418 brier = 0.5 / l1 * sum_1 + 0.5 / l2 * sum_2
419

420 return brier
421

422 def zero_one(LRs, labels):
423 """
424 Function that calculates cllr using zero-one score for LR data under H1 and H2.
425

426 Input:
427 - lrs: np.array with LR-values.
428 - y: np.array with labels, 1 for H1 and 0 for H2.
429

430 Output:
431 - cllr cal value with zero-one score.
432 """
433

434 n = len(LRs)
435

436 # Count misclassifications by determining posteriors
437 misclas = 0
438 misclas2 = 0
439

440 for i in range(n):
441 if LRs[i] != 0 and LRs[i] != np.inf:
442 posterior = LRs[i] / (1 + LRs[i])
443 if posterior > 0.5 and labels[i] == 0:
444 misclas += 1
445 elif posterior < 0.5 and labels[i] == 1:
446 misclas += 1
447

448 # Determine frequency of misclassifications
449 misclas = misclas / n
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450

451 return misclas
452

453 def spherical(LRs, labels):
454 """
455 Function that calculates cllr using spherical scoring rule for LR data under H1 and H2.
456

457 Input:
458 - lrs: np.array with LR-values.
459 - y: np.array with labels, 1 for H1 and 0 for H2.
460

461 Output:
462 - cllr cal value with spherical scoring rule.
463 """
464 n = len(LRs)
465 spherical = 0
466 m = 0
467

468 # Determine ECE using spherical scoring rule
469 for i in range(n):
470 if LRs[i] != 0 and LRs[i] != np.inf:
471 posterior = LRs[i] / (1 + LRs[i])
472 spherical += (labels[i] * posterior + (1 - labels[i]) * (1 - posterior)) / sqrt(
473 posterior ** 2 + (1 - posterior) ** 2)
474 m += 1
475

476 # To avoid error
477 if m == 0:
478 m = 1
479

480 return spherical / m
481

482 # FUNCTIONS FOR FIDUCIAL METRICS
483

484 # This function is based on Jan Hannig's R-code
485 def fiducial_sample(data,nfid):
486 """
487 Function that makes fiducial samples of data.
488

489 Input:
490 - data: np.array of LR-values.
491 - nfid = amount of fiducial samples.
492

493 Output:
494 - Dictionary that contains the following keys:
495 - 'data': sorted data,
496 - 'u': fiducial samples,
497 - 'n': number of data points,
498 - 'nfid': number of fiducial samples.
499 """
500 n = len(data)
501

502 # Sort data
503 sorted_data = np.sort(data)
504 sorted_data = np.transpose(sorted_data)
505

506 # Make nfid fiducial samples of length ndata
507 u = np.sort([np.random.uniform(size=n) for _ in range(nfid)])
508 u = np.transpose(u)
509 u = u[::-1]
510

511 return {
512 'data': sorted_data, # Sorted data
513 'u': u, # Fiducial samples
514 'n': n, # Number of data points
515 'nfid': nfid # Number of fiducial samples
516 }
517

518 # This function is based on Jan Hannigs R-code
519 def particle_grid(xgrid, lrt_fsample):
520 """
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521 Function that defines grid for fiducial inference and calculates survival functions and
integral on grid.

522

523 Input:
524 - xgrid = grid for x-values,
525 - lrt_fsample = dictionary with following keys:
526 - 'data': sorted data,
527 - 'u': fiducial samples,
528 - 'n': number of data points,
529 - 'nfid': number of fiducial samples.
530 Output:
531 - Dictionary with following keys:
532 - 'grid': grid,
533 - 'survival': array of survival function values at each grid point for each fiducial

sample,
534 - 'bottom': array representing the integral of the survival function up to each grid

point for each fiducial sample
535 - 'nfid': number of fiducial samples,
536 - 'n': number of data points.
537 """
538

539 # Sort grid points
540 ngrid = len(xgrid)
541 grid = np.sort(xgrid)
542

543 # Extract and prepare the data and fiducial sample information
544 data = np.concatenate(([0],lrt_fsample['data'], [np.inf]))
545 n = lrt_fsample['n']
546 nfid = lrt_fsample['nfid']
547

548 # Initialize arrays for survival functions and integrals
549 both_integrals_survival = []
550 both_integrals_bottom = []
551

552 for i in range(nfid):
553 # Each fiducial sample processed separately
554 u = np.concatenate(([1], lrt_fsample['u'][:, i], [0]))
555 u = u.reshape(-1,1)
556 data = data.reshape(-1,1)
557

558 # Calculate the expression results based on fiducial sample and data
559 expression_result = u[n] * (data[n] - data[n-1] +(1 / n))
560 expression_result = expression_result.reshape(-1,1)
561

562 # Concatenate and compute the integral of survival function
563 concatenated = np.concatenate((expression_result, (data[n:0:-1]*u[n-1::-1] - data[n

-1::-1]*u[n:0:-1])/2))
564 # Cumulative sum to get the integral
565 dataint = np.cumsum(concatenated)
566 # Flip integral values for correct alignment
567 flipped_int = np.flip(dataint)
568 flipped_int = flipped_int.reshape(-1,1)
569 dataintegral = flipped_int + (data[n]*u[n]-data[0:(n+1)]*u[0:(n+1)])/2
570 dataintegral_f = dataintegral.flatten().tolist()
571

572 # Initialize arrays for survival function and integral results
573 survival_array = np.empty(ngrid)
574 integral_array = np.empty(ngrid)
575

576 # Evaluate survival and integral values at each grid point
577 for j in range(ngrid):
578 # Find the indices of data points that are nearest to the grid point
579 indeces_ub = np.where(data>=grid[j])
580 index_ub = indeces_ub[0][0]
581 indeces_lb = np.where(data <= grid[j])
582 index_lb = indeces_lb[0][-1]
583 # If exactly hitting a grid point
584 if index_ub <= index_lb:
585 survival_array[j] = u[index_lb]
586 integral_array[j] = dataintegral_f[index_lb]
587 # If grid point is beyond the range of the data
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588 elif index_ub == n+1:
589 gridoff = np.exp(-(grid[j] - data[n]) / (data[n] - data[n-1] + (1 / n)))
590 survival_array[j] = u[n] * gridoff
591 integral_array[j] = np.nan
592 # If grid point is between data points
593 else:
594 survival_array[j] = (u[index_ub] * (grid[j] - data[index_lb]) + u[index_lb] *
595 (data[index_ub] - grid[j]))/(data[index_ub] - data[

index_lb])
596 integral_array[j] = dataintegral_f[index_ub] + \
597 (data[index_ub] - grid[j]) * (survival_array[j] + u[

index_ub]) / 2
598

599 # Append the results for the current fiducial sample
600 both_integrals_survival.append(survival_array)
601 both_integrals_bottom.append(grid*survival_array + integral_array)
602

603 return {
604 'grid': grid,
605 'survival': np.transpose(np.array(both_integrals_survival)),
606 'bottom': np.transpose(np.array(both_integrals_bottom)),
607 'nfid': lrt_fsample['nfid'],
608 'n': lrt_fsample['n']
609 }
610

611 # This function is based on Jan Hannig's R-code
612 def fid_diff_log(particle_top, particle_bottom, coarse_index=None):
613 """
614 Function to calculate the log difference of fiducial sample values between two particles.
615

616 Input:
617 - particle_top: dictionary containing fiducial sample data for the top particle with keys

:
618 - 'grid': grid of x-values,
619 - 'survival': survival function values for each fiducial sample,
620 - 'nfid': number of fiducial samples,
621 - 'n': number of data points.
622 - particle_bottom: dictionary containing fiducial sample data for the bottom particle

with the same keys as particle_top.
623 - coarse_index: optional array of indices to coarsely sample the grid. If None, uses all

indices.
624

625 Output:
626 - Dictionary with the following keys:
627 - 'fsample_top': survival function values for the top particle,
628 - 'fsample_bottom': bottom function values for the bottom particle,
629 - 'n_top': number of data points for the top particle,
630 - 'n_bottom': number of data points for the bottom particle,
631 - 'nfid': number of fiducial samples,
632 - 'fdiff_logratio': logarithm of the ratio of differences between the top and bottom

fiducial samples,
633 - 'grid': grid of x-values,
634 - 'dgrid': coarse grid used for sampling.
635 """
636

637 grid = particle_top['grid']
638

639 # Check if grids and number of fiducial samples match
640 if np.sum(grid != particle_bottom['grid']) > 0 or particle_bottom['nfid'] != particle_top

['nfid']:
641 print('Mismatch␣of␣inputs')
642 return None
643

644 # Use all indices if coarse_index is not provided or is invalid
645 if coarse_index is None or len(coarse_index) <= 1:
646 coarse_index = np.arange(0, len(grid) + 1)
647

648 # Find intersection of coarse_index with valid grid indices
649 cindex = np.intersect1d(np.arange(0, len(grid) + 1), coarse_index)
650

651 if len(cindex) < 2:
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652 print('Incompatible␣coarse_index')
653 return None
654

655 # Extract fiducial samples
656 fidTop = particle_top['survival']
657 fidBottom = particle_bottom['bottom']
658

659 # Calculate the difference in fiducial samples
660 d_fid_Top = -np.diff(fidTop[cindex], axis=0)
661 d_fid_Bottom = -np.diff(fidBottom[cindex], axis=0)
662

663 # Compute the log difference between the top and bottom fiducial samples
664 fid_sample_slope_ratio = (np.log10(d_fid_Top) - np.log10(d_fid_Bottom))
665 coarsegrid = grid[cindex]
666

667 return {
668 'fsample_top': fidTop,
669 'fsample_bottom': fidBottom,
670 'n_top': particle_top['n'],
671 'n_bottom': particle_bottom['n'],
672 'nfid': particle_top['nfid'],
673 'fdiff_logratio': fid_sample_slope_ratio ,
674 'grid': grid,
675 'dgrid': coarsegrid
676 }
677

678 # This function is based on Jan Hannig's code
679 def fid_diff_CI(fid_dif_sample, alpha=0.05):
680 """
681 Function to calculate confidence intervals for the fiducial differences.
682

683 Input:
684 - fid_dif_sample: dictionary containing fiducial differences with keys:
685 - 'fdiff_logratio': logarithmic differences of fiducial sample ratios,
686 - 'dgrid': coarse grid used for sampling.
687 - alpha: significance level for confidence interval (default is 0.05 for 95% CI).
688

689 Output:
690 - Dictionary with the following keys:
691 - 'mean': central value of the fiducial slope,
692 - 'uniform_lower': lower bound of the uniform confidence interval,
693 - 'uniform_upper': upper bound of the uniform confidence interval,
694 - 'median': median of the fiducial slope,
695 - 'point_lower': lower bound of the pointwise confidence interval,
696 - 'point_upper': upper bound of the pointwise confidence interval,
697 - 'dgrid': coarse grid used for sampling.
698 """
699

700 fiducial_slope = fid_dif_sample['fdiff_logratio']
701

702 # Calculate the central quantile of the fiducial slope
703 CI_center = np.apply_along_axis(lambda x: np.quantile(x, 0.5, axis=0, keepdims=True), 1,

fiducial_slope)
704

705 # Calculate the scale of the confidence interval
706 CI_scale = np.mean(np.abs(fiducial_slope - CI_center), axis=1, keepdims=True)
707

708 # Calculate the scaled fiducial differences
709 fid_diff = fiducial_slope - CI_center
710 fid_scaled_diff = fid_diff / CI_scale
711 fid_abs_scaled_diff = np.abs(fid_scaled_diff)
712

713 # Compute the maximum of the scaled fiducial differences
714 fid_max = np.nanmax(fid_abs_scaled_diff, axis=0)
715

716 # Calculate the cutoff value for the confidence intervals
717 cut_off = np.quantile(fid_max, 1 - alpha, axis=0)
718

719 # # Calculate the confidence intervals
720 mean = CI_center
721 uniform_lower = CI_center - cut_off * CI_scale
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722 uniform_upper = CI_center + cut_off * CI_scale
723 median = CI_center
724 point_lower = np.apply_along_axis(lambda x: np.quantile(x, alpha / 2, axis=0, keepdims=

True), 1, fiducial_slope)
725 point_upper = np.apply_along_axis(lambda x: np.quantile(x, 1 - alpha / 2, axis=0,

keepdims=True), 1, fiducial_slope)
726

727 return {
728 'mean': mean,
729 'uniform_lower': uniform_lower,
730 'uniform_upper': uniform_upper,
731 'median': median,
732 'point_lower': point_lower,
733 'point_upper': point_upper,
734 'dgrid': fid_dif_sample['dgrid'],
735 }
736

737 def compare_CI(compare_sample, alpha=0.05):
738

739 """
740 Function to calculate confidence intervals for comparison samples.
741

742 Input:
743 - compare_sample: a 2D numpy array where each row represents a sample and each column

represents a different comparison.
744 - alpha: significance level for the confidence interval (default is 0.05 for 95% CI).
745

746 Output:
747 - Dictionary with the following keys:
748 - 'mean': central value of the confidence interval (median of the samples),
749 - 'uniform_lower': lower bound of the uniform confidence interval,
750 - 'uniform_upper': upper bound of the uniform confidence interval,
751 - 'median': median of the comparison samples,
752 - 'point_lower': lower bound of the pointwise confidence interval,
753 - 'point_upper': upper bound of the pointwise confidence interval.
754 """
755

756 # Calculate the center of the confidence interval
757 CI_center = np.apply_along_axis(np.quantile, 1, compare_sample, 0.5, na_rm=True)
758

759 # Calculate the scale of the confidence interval
760 CI_scale = np.mean(np.abs(compare_sample - CI_center), axis=1)
761

762 # Calculate fid_max (maximum of the scaled differences) and cutoff value for uniform
interval

763 fid_max = np.max(np.abs((compare_sample - CI_center) / CI_scale), axis=1, na_rm=True)
764 cut_off = np.quantile(fid_max, 1 - alpha, na_rm=True)
765

766 return {
767 'mean': CI_center,
768 'uniform_lower': CI_center - cut_off * CI_scale,
769 'uniform_upper': CI_center + cut_off * CI_scale,
770 'median': CI_center,
771 'point_lower': np.apply_along_axis(np.quantile, 1, compare_sample, alpha / 2, na_rm=

True),
772 'point_upper': np.apply_along_axis(np.quantile, 1, compare_sample, 1 - alpha / 2,

na_rm=True)
773 }
774

775 def fid_AUC(fid_sample_top, fid_sample_bottom):
776 """
777 Function to calculate the Area Under the Curve (AUC) for fiducial samples.
778

779 Input:
780 - fid_sample_top: dictionary containing fiducial sample data for the top particle with

keys:
781 - 'data': dorted data values,
782 - 'survival': survival function values for each fiducial sample,
783 - 'nfid': number of fiducial samples.
784 - fid_sample_bottom: Dictionary containing fiducial sample data for the bottom particle

with the same keys as fid_sample_top.
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785

786 Output:
787 - Dictionary with the following keys:
788 - 'AUC': array of AUC values for each fiducial sample,
789 - 'nfid': number of fiducial samples.
790 """
791

792 nfid = fid_sample_top['nfid']
793

794 # Combine and sort unique data values from both top and bottom samples
795 fullgrid = np.sort(np.unique(np.concatenate((fid_sample_top['data'], fid_sample_bottom['

data']))))
796

797 # Compute survival functions for the combined grid
798 top_surv = particle_grid(fullgrid, fid_sample_top)['survival']
799 bottom_surv = particle_grid(fullgrid, fid_sample_bottom)['survival']
800

801 # Initialize array to store AUC values
802 auc = np.zeros((nfid, 2))
803

804 # Determine auc values
805 for i in range(nfid):
806 j = (i % fid_sample_bottom['nfid'])
807 auc[i, 0] = 1 + np.sum(np.diff(np.concatenate(([1], top_surv[:, i], [0]))) *
808 (np.concatenate(([1], bottom_surv[:, j])) + np.concatenate(
809 (bottom_surv[:, j], [0]))) / 2)
810 auc[i, 1] = -np.sum(np.diff(np.concatenate(([1], bottom_surv[:, j], [0]))) *
811 (np.concatenate(([1], top_surv[:, i])) + np.concatenate((top_surv

[:, i], [0]))) / 2)
812

813 return {'AUC': np.mean(auc, axis=1), 'nfid': nfid}
814

815 def calibrationNumber(CI_NP):
816 """
817 Function to determine fiducial metric 1: average of medians.
818

819 Input:
820 - CI_NP: dictionary containing confidence interval data with the key 'median', which

holds
821 the median values of the confidence intervals.
822

823 Output:
824 - Value of average of absolute value medians
825 """
826

827 # Identify the index of the last non-NaN median value
828 ishow = max(np.where(~np.isnan(CI_NP['median']))[0])
829

830 # Sum over medians and determine average of absolute values
831 sum = 0
832 for i in CI_NP['median'][0:ishow+1]:
833 sum += np.abs(i)
834 calib = sum/(ishow+1)
835

836 return calib
837

838 def calibrationNumber2(CI_NP):
839 """
840 Function to determine fiducial metric 2: average of medians scaled by widths of intervals

.
841

842 Input:
843 - CI_NP: dictionary containing confidence interval data with the key 'median', which

holds
844 the median values of the confidence intervals.
845

846 Output:
847 - Scaled value of average of absolute value medians
848 """
849

850 # Identify the index of the last non-NaN median value
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851 ishow = max(np.where(~np.isnan(CI_NP['median']))[0])
852

853 # Sum over scaled medians and determine average
854 sum = 0
855 for i in range(ishow+1):
856 sum += np.abs(CI_NP['median'][i]) * (CI_NP['point_upper'][i] - CI_NP['point_lower'][i

])
857 calib = sum/(ishow+1)
858

859 return calib
860

861 def calibrationNumber3(CI_NP):
862 """
863 Function to determine fiducial metric 3: frequency of 0 falling outside of the confidence

interval.
864

865 Input:
866 - CI_NP: dictionary containing confidence interval data with the key 'median', which

holds
867 the median values of the confidence intervals.
868

869 Output:
870 - Frequency of zero falling outside of the confidence interval.
871 """
872

873 # Identify the index of the last non-NaN median value
874 ishow = max(np.where(~np.isnan(CI_NP['median']))[0])
875

876 # Count average amount of times that interval contains zero
877 sum = 0
878 for i in range(ishow+1):
879 if CI_NP['point_upper'][i] >= 0 >= CI_NP['point_lower'][i]:
880 sum += 1
881 calib = sum/(ishow+1)
882

883 return 1-calib
884

885 def LRtestNP(data, hlable=['P', 'D'], nfid=1000, ncores=1, GPDgrid=[], display_plot=False,
AUC=False):

886 """
887 Function to perform a likelihood ratio test and analyze results using fiducial inference.
888

889 This function processes LR data for two hypotheses, performs fiducial sampling,
calculates survival functions,

890 and optionally computes the Area Under the Curve (AUC). It can also generate plots to
visualize the results.

891

892 Input:
893 - data: dataFrame containing columns 'LLR' (log-likelihood ratios) and 'labels' (P for

H_p, D for H_d),
894 - hlable: list of two hypothesis labels to distinguish between the two groups in the data

,
895 - nfid: number of fiducial samples to generate for each hypothesis,
896 - ncores: number of cores for parallel processing (not used in the provided code),
897 - GPDgrid: custom grid for generating the particle grid. If empty, a default grid is used

,
898 - display_plot: boolean indicating whether to display diagnostic plots,
899 - AUC: Boolean indicating whether to compute and return the Area Under the Curve (AUC).
900

901 Output:
902 - A dictionary containing fiducial samples, AUC values (if computed), calibration metrics

, and other relevant information.
903 """
904

905 # Drop NAN values from data
906 data = data.dropna()
907

908 # Create arrays for (log) LR data H_p and H_d
909 log_topdata = np.sort(data['LLR'][data['labels'] == hlable[0]])
910 topdata = 10 ** log_topdata
911 log_bottomdata = np.sort(data['LLR'][data['labels'] == hlable[1]])
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912 bottomdata = 10 ** log_bottomdata
913

914 # Generate pregrid from min value of log_topdata to maxvalue of log_topdata, stepsize = 1
915 if len(GPDgrid) == 0:
916 pregrid = np.power(10, np.arange(np.floor(max(-2, min(log_topdata))), np.ceil(min(10,

max(log_topdata))) + 1, 1))
917 else:
918 pregrid = np.power(10, GPDgrid)
919

920 # Make sure bottomdata does not exceed certain threshold
921 bottomdata = np.minimum(bottomdata, 2 * max(pregrid))
922

923 # Define the grid and its indices in the pregrid
924 grid = np.sort(np.union1d(pregrid, pregrid))
925 idgrid = np.array([np.where(x == grid)[0][0] for x in pregrid])
926

927 # Plot the density
928 if display_plot:
929 plt.figure(figsize=(10, 8))
930 plt.subplot(2, 2, 1)
931 dtop = gaussian_kde(np.log10(topdata))
932 dbottom = gaussian_kde(np.log10(bottomdata))
933 x_range = np.linspace(min(log_topdata), max(log_bottomdata), 100)
934 plt.plot(x_range, dtop(x_range), color='red')
935 plt.plot(x_range, dbottom(x_range), color='blue')
936 plt.xlabel('log(LR)')
937 plt.ylabel('density')
938 plt.title('Density␣of␣log␣LR')
939

940 plt.subplot(2, 2, 2)
941 plt.plot(np.sort(np.log10(topdata)), 1 - (np.arange(1, len(topdata) + 1) / len(

topdata)), color='red')
942 plt.plot(np.sort(np.log10(bottomdata)), 1 - (np.arange(1, len(bottomdata) + 1) / len(

bottomdata)), color='blue')
943 plt.xlabel('log(reported␣LR)')
944 plt.ylabel('probability')
945 plt.title('Survival␣function␣of␣log␣LR')
946

947 # Make a fiducial sample for each hypothesis
948 # Generates dictionary with keys: data, u (nfid arrays of length len(data)), len(data),

nfid
949 fid_sample_top = fiducial_sample(topdata, nfid)
950 fid_sample_bottom = fiducial_sample(bottomdata, nfid)
951

952 # Create particle grid and compute survival functions and integrals
953 fid_sample_top_grid = particle_grid(grid, fid_sample_top)
954 fid_sample_bottom_grid = particle_grid(grid, fid_sample_bottom)
955

956 # Compute and plot AUC
957 if AUC != None:
958 fid_sample_auc = fid_AUC(fid_sample_top, fid_sample_bottom)
959 if display_plot:
960 plt.subplot(2, 2, 3)
961 plt.boxplot(fid_sample_auc['AUC'])
962 plt.ylabel('AUC')
963 plt.title('Fiducial␣distribution␣of␣AUC')
964

965 # Compute non-parametric fiducial differences and confidence intervals
966 fid_diff_NP = fid_diff_log(fid_sample_top_grid, fid_sample_bottom_grid , idgrid)
967 fid_CI_NP = fid_diff_CI(fid_diff_NP)
968

969 # Plot calibration diagnostics
970 if display_plot:
971 plt.subplot(2, 2, 4)
972 dgrid = np.log10(fid_CI_NP['dgrid'])
973 plt.plot(dgrid, np.zeros_like(dgrid), color='red', linestyle='--')
974 plt.plot(dgrid, fid_CI_NP['median'], color='blue')
975 plt.plot(dgrid, fid_CI_NP['uniform_lower'], color='cyan', linestyle='--')
976 plt.plot(dgrid, fid_CI_NP['uniform_upper'], color='cyan', linestyle='--')
977 plt.plot(dgrid, fid_CI_NP['point_lower'], color='black')
978 plt.plot(dgrid, fid_CI_NP['point_upper'], color='black')
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979 plt.xlabel('log10(reported␣LR)')
980 plt.ylabel('interval-specific␣calibration␣discrepancy')
981 plt.title('Calibration␣Diagnostic␣Plot')
982 plt.show()
983

984 # Calculate metric values
985 calib = calibrationNumber(fid_CI_NP)
986 calib2 = calibrationNumber2(fid_CI_NP)
987 calib3 = calibrationNumber3(fid_CI_NP)
988

989

990 if AUC != None:
991 return {'top': fid_sample_top_grid , 'bottom': fid_sample_bottom_grid , 'AUC':

fid_sample_auc['AUC'],
992 'CI_NP': fid_CI_NP, 'calib': calib, 'calib2': calib2, 'calib3': calib3}
993 else:
994 return {'top': fid_sample_top_grid , 'bottom': fid_sample_bottom_grid , 'CI_NP':

fid_CI_NP,
995 'calib': calib, 'calib2': calib2, 'calib3': calib3}
996

997 def calibrationPlot(CI_NP, my_title="Calibration␣Diagnostic␣Plot", yaxis=None):
998 """
999 Function to create a calibration diagnostic plot.
1000

1001 Input:
1002 - CI_NP: dictionary containing the calibration information with keys:
1003 'median': median of calibration discrepancies,
1004 'uniform_lower': lower bound of uniform confidence intervals,
1005 'uniform_upper': upper bound of uniform confidence intervals,
1006 'point_lower': lower bound of pointwise confidence intervals,
1007 'point_upper': upper bound of pointwise confidence intervals,
1008 'dgrid': the grid of log10(reported LR) values.
1009 - my_title: Title of the plot (default: "Calibration Diagnostic Plot").
1010 - yaxis: tuple specifying the y-axis limits; if None, limits are calculated automatically

.
1011

1012 Output:
1013 - Displays the calibration diagnostic plot.
1014 """
1015

1016 # Determine the range of valid indices (non-NaN) for plotting
1017 ishow = max(np.where(~np.isnan(CI_NP['median']))[0])
1018

1019 # Set y-limit if not inputted
1020 if yaxis == None:
1021 yaxis = [np.floor(min(0, np.nanmin(CI_NP['point_lower']))),
1022 np.ceil(max(0, np.nanmax(CI_NP['point_upper'])))]
1023

1024 # Convert grid values to log scale for x-axis plotting
1025 dgrid_const = np.log10(CI_NP['dgrid'][:ishow + 2])
1026 dgrid_const2 = np.sort(np.concatenate((dgrid_const[:-1], dgrid_const[1:])))
1027

1028 # Median calibration discrepancy
1029 result_1 = np.repeat(CI_NP['median'][0:ishow + 1], 2)
1030

1031 # Uniform confidence interval bounds
1032 result_2 = np.repeat(CI_NP['uniform_lower'][0:ishow+1], 2)
1033 result_3 = np.repeat(CI_NP['uniform_upper'][0:ishow+1], 2)
1034

1035 # Pointwise confidence interval bounds
1036 result_4 = np.repeat(CI_NP['point_lower'][0:ishow+1], 2)
1037 result_5 = np.repeat(CI_NP['point_upper'][0:ishow+1], 2)
1038

1039

1040 # Create plot
1041 plt.figure(figsize=(10, 8))
1042 plt.plot([min(dgrid_const), max(dgrid_const)], [0, 0], color='red', linestyle='--')
1043 plt.plot(dgrid_const2, result_1, color="blue")
1044 plt.plot(dgrid_const2, result_2, color="cyan", linestyle="--")
1045 plt.plot(dgrid_const2, result_3, color="cyan", linestyle="--")
1046 plt.plot(dgrid_const2, result_4, color="black")
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1047 plt.plot(dgrid_const2, result_5, color="black")
1048 plt.xlabel('log10(reported␣LR)')
1049 plt.ylabel('interval-specific␣calibration␣discrepancy')
1050 plt.title(my_title)
1051 plt.show()
1052

1053 # FUNCTIONS TO DETERMINE OVERLAP
1054 def overlap(array):
1055 """
1056 Function that determines (average) overlap percentage between one array with one or

several others.
1057

1058 Input:
1059 - array: array of arrays between which the overlap should be determined.
1060

1061 Output:
1062 - Average overlap percentage
1063 """
1064

1065 # Sort values of first array
1066 first_vals = np.sort([x for x in array[0] if x is not None])
1067 number = len(array)
1068

1069 # Determine percentiles of first array to get 90%-confidence interval
1070 perc_first_95 = np.percentile(first_vals, 95)
1071 perc_first_5 = np.percentile(first_vals, 5)
1072

1073 # Determine the values of the array and the range
1074 first_within = first_vals[(first_vals <= perc_first_95) & (first_vals >= perc_first_5)]
1075 ranges = (first_within[0], first_within[-1])
1076 number_vals = len(first_within)
1077

1078 # Initialize overlapping values at zero
1079 overlaps = 0
1080

1081 # Loop over other arrays and determine overlap percentage with first array
1082 for i in range(1, number):
1083 vals = np.sort([x for x in array[i] if x is not None])
1084 percentage_95 = np.percentile(vals, 95)
1085 percentage_5 = np.percentile(vals, 5)
1086 vals_within = vals[(vals <= percentage_95) & (vals >= percentage_5)]
1087 ranges_vals = (vals_within[0], vals_within[-1])
1088 number_vals2 = len(vals_within)
1089 count_within_range_1 = np.sum((vals_within >= ranges[0]) & (vals_within <= ranges[1])

)
1090 count_within_range_2 = np.sum((first_within >= ranges_vals[0]) & (first_within <=

ranges_vals[1]))
1091

1092 # Turn into percentage
1093 overlap_percentage = min(count_within_range_1 ,count_within_range_2) / min(number_vals

, number_vals2) * 100
1094 overlaps += overlap_percentage
1095

1096 # Determine average of overlap percentage
1097 overlaps = overlaps / (number - 1)
1098

1099 return overlaps
1100

1101

1102 def average_overlap(array):
1103 """
1104 Function that determines average pairwise overlap percentage between several arrays.
1105

1106 Input:
1107 - array: array of arrays between which the overlap should be determined.
1108

1109 Output:
1110 - Average overlap percentage
1111 """
1112

1113 # Initialize values
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1114 number = len(array)
1115 total_overlap = 0
1116 pair_count = 0
1117

1118 # Range over arrays and determine the percentiles
1119 for i in range(number):
1120 perfect_vals = np.sort([x for x in array[i] if x is not None])
1121 perc_perf_95 = np.percentile(perfect_vals, 95)
1122 perc_perf_5 = np.percentile(perfect_vals, 5)
1123 perf_within = perfect_vals[(perfect_vals <= perc_perf_95) & (perfect_vals >=

perc_perf_5)]
1124 ranges = (perf_within[0], perf_within[-1])
1125 number_vals = len(perf_within)
1126

1127 # Range over leftover arrays and determine overlap
1128 for j in range(i + 1, number):
1129 vals = np.sort([x for x in array[j] if x is not None])
1130 percentage_95 = np.percentile(vals, 95)
1131 percentage_5 = np.percentile(vals, 5)
1132 vals_within = vals[(vals <= percentage_95) & (vals >= percentage_5)]
1133 ranges_vals = (vals_within[0], vals_within[-1])
1134 number_vals2 = len(vals_within)
1135 count_within_range_1 = np.sum((vals_within >= ranges[0]) & (vals_within <= ranges

[1]))
1136 count_within_range_2 = np.sum((perf_within >= ranges_vals[0]) & (perf_within <=

ranges_vals[1]))
1137 overlap_percentage = min(count_within_range_1 , count_within_range_2) / min(

number_vals, number_vals2) * 100
1138 total_overlap += overlap_percentage
1139 pair_count += 1
1140

1141 # Determine average overlap
1142 average_overlap = total_overlap / pair_count if pair_count > 0 else 0
1143

1144 return average_overlap
1145

1146 # FUNCTIONS FOR SECOND PART OF RESULTS: GENERATING NEW LR-SYSTEMS
1147

1148 def LSS_calculator(LLRs, probabilities):
1149 """
1150 Function that determines frequencies of SS LLRs values based on frequencies of DS-LLRs so

that the LR of the LR is the LR.
1151

1152 Input:
1153 - LLRs: array of LLR-values (assuming log10 LR).
1154 - probabiities: array of frequencies with which the LLRs occur for DS.
1155

1156 Output:
1157 - Array of same-source LLR-values.
1158 """
1159

1160 # Initialize LSS array
1161 new_LSS = []
1162 num_bins = len(LLRs)
1163

1164 # Range over LLRs and generate corresponding SS frequency
1165 for i in range(num_bins):
1166 # Determine LR from LLR
1167 LR = 10**LLRs[i]
1168 prob_hd = probabilities[i]
1169 # Generate SS frequency of given LR
1170 prob_hp = LR * prob_hd
1171 new_LSS.append(prob_hp)
1172

1173 return new_LSS
1174

1175 def frequency_creator(data_DS):
1176 """
1177 Function that generates a consistent LR-system based on DS LRs and frequencies, so that

the LR of the LR is the
1178 LR and both the SS and DS frequencies sum up to 100.
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1179

1180 Input:
1181 - data_DS: array of DS LLR-values
1182

1183 Output:
1184 - array containing LDS frequencies, LSS frequencies and the corresponding LR values
1185 """
1186

1187 # Initialize alpha
1188 alpha = 1
1189

1190 # Create array of LLR-values, determine kde of DS-values and using kde, determine
frequencies of LLR values

1191 x_values = np.linspace(min(data_DS), max(data_DS), 10000)
1192 kde_original = gaussian_kde(data_DS, bw_method='scott')
1193 LDS_frequencies = kde_original(x_values)
1194

1195 # While the integrals of the SS and the DS LLRs are not almost equal, loop
1196 while True:
1197 # Stretch the LLRs by a factor alpha
1198 shifted_LLRs = x_values - min(data_DS)
1199 stretched_shifted = shifted_LLRs * alpha
1200 stretched_LLRs = stretched_shifted + min(data_DS)
1201

1202 # Determine LSS frequencies using the LDS frequencies and the stretched LRs
1203 LSS_frequencies = LSS_calculator(stretched_LLRs, LDS_frequencies)
1204

1205 # Integrate the two frequencies
1206 integral_kde = simps(LDS_frequencies, stretched_LLRs)
1207 integral_LSS = simps(LSS_frequencies, stretched_LLRs)
1208

1209 # If they are almost equal, done
1210 if np.isclose(integral_kde, integral_LSS, rtol=0.01, atol=0.01):
1211 break
1212 # If there are too many LSS values, decrease alpha
1213 elif integral_kde < integral_LSS:
1214 alpha -= 0.001
1215 # If there are too many LDS values, increase alpha
1216 else:
1217 alpha += 0.001
1218

1219 # Normalize
1220 LSS_frequencies = LSS_frequencies / np.sum(LSS_frequencies)
1221 LDS_frequencies = LDS_frequencies / np.sum(LDS_frequencies)
1222

1223 return [LDS_frequencies, LSS_frequencies, stretched_LLRs]
1224

1225 def calculate_metrics_all(data_SS, data_DS):
1226 """
1227 Function that calculates all optimized metrics for SS and DS data.
1228

1229 Input:
1230 - data_SS: array of SS LR-values.
1231 - data_DS: array of DS LR-valies
1232

1233 Output:
1234 - values of devPAV, cllr and Fid
1235 """
1236

1237 # Initialize metric values to prevent error
1238 dp = None
1239 c = None
1240 cal = None
1241

1242 # Make arrays of LRs and hypotheses
1243 lrs = np.concatenate((data_SS, data_DS))
1244 all_hypotheses = np.concatenate((np.array(['H1'] * len(data_SS)), np.array(['H2'] * len(

data_DS))))
1245 all_hypotheses_01 = np.where(all_hypotheses == 'H1', 1, 0)
1246

1247 # Determine the metric values
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1248 try:
1249 dp = devpav_new(lrs, all_hypotheses_01)
1250 except Exception as e:
1251 print(f"A␣devPAV␣error␣occurred:␣{e}")
1252 try:
1253 c = cllr(lrs, all_hypotheses_01)
1254 except Exception as e:
1255 print(f"A␣Cllr␣error␣occurred:␣{e}")
1256 try:
1257 cal = LRtestNP(pd.DataFrame({'LLR': np.log10(lrs),
1258 'labels': ['P'] * len(data_SS) + ['D'] * len(data_DS)

}),
1259 nfid=100, AUC=True)['calib'][0]
1260 except Exception as e:
1261 print(f"A␣Fid␣error␣occurred:␣{e}")
1262

1263 return [c, dp, cal]

Listing A.2: cllr test.py
1 import numpy as np
2 import matplotlib.pyplot as plt
3 import math
4 from math import comb, sqrt
5 from functions_thesis import *
6 import pandas as pd
7 from lir import *
8 import seaborn as sns
9

10 # Initialize mean, variation, amount of data and scaling factors
11 MU_ss = 6
12 SIGMA = sqrt(2 * MU_ss)
13 n_ss = 50
14 n_sd = 150
15 c = 1
16 c_2 = 2
17 d = 1.5
18 d_2 = 2.5
19

20 # Initialize amount of times to calculate metrics
21 N = 1000
22

23 # Initialize arrays to store normal Cllr values
24 cllr_p = []
25 cllr_r1 = []
26 cllr_r2 = []
27 cllr_l1 = []
28 cllr_l2 = []
29 cllr_e1 = []
30 cllr_e2 = []
31 cllr_w1 = []
32 cllr_w2 = []
33

34 # Initialize arrays to store Cllr values using the Brier score
35 brier_p = []
36 brier_r1 = []
37 brier_r2 = []
38 brier_l1 = []
39 brier_l2 = []
40 brier_e1 = []
41 brier_e2 = []
42 brier_w1 = []
43 brier_w2 = []
44

45 # Initialize arrays to store Cllr values using the zero-one score
46 zerone_p = []
47 zerone_r1 = []
48 zerone_r2 = []
49 zerone_l1 = []
50 zerone_l2 = []
51 zerone_e1 = []
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52 zerone_e2 = []
53 zerone_w1 = []
54 zerone_w2 = []
55

56 # Initialize arrays to store Cllr values using the spherical scoring rule
57 spher_p = []
58 spher_r1 = []
59 spher_r2 = []
60 spher_l1 = []
61 spher_l2 = []
62 spher_e1 = []
63 spher_e2 = []
64 spher_w1 = []
65 spher_w2 = []
66

67 # Create an array of log 10 prior odds ranging from -5 to 5
68 log_prior_odds = np.linspace(-5, 5, num=100) # Adjust the number of points as needed
69 # Calculate prior odds array
70 prior_odds = 10 ** log_prior_odds
71

72 for i in range(N):
73 # Generate consistent data
74 LSS_p = np.random.normal(MU_ss, SIGMA, n_ss)
75 LDS_p = np.random.normal(-MU_ss, SIGMA, n_sd)
76 SS_p = np.power(math.e, LSS_p)
77 DS_p = np.power(math.e, LDS_p)
78

79 # Generate data skewed to the right by c and c_2
80 LSS_r1 = LSS_p + c
81 LDS_r1 = LDS_p + c
82 SS_r1 = np.power(math.e, LSS_r1)
83 DS_r1 = np.power(math.e, LDS_r1)
84

85 LSS_r2 = LSS_p + c_2
86 LDS_r2 = LDS_p + c_2
87 SS_r2 = np.power(math.e, LSS_r2)
88 DS_r2 = np.power(math.e, LDS_r2)
89

90 # Generate data skewed to left by c and c_2
91 LSS_l1 = LSS_p - c
92 LDS_l1 = LDS_p - c
93 SS_l1 = np.power(math.e, LSS_l1)
94 DS_l1 = np.power(math.e, LDS_l1)
95

96 LSS_l2 = LSS_p - c_2
97 LDS_l2 = LDS_p - c_2
98 SS_l2 = np.power(math.e, LSS_l2)
99 DS_l2 = np.power(math.e, LDS_l2)
100

101 # Generate too extreme data, scaled by d and d_2
102 LSS_e1 = d * LSS_p
103 LDS_e1 = d * LDS_p
104 SS_e1 = np.power(math.e, LSS_e1)
105 DS_e1 = np.power(math.e, LDS_e1)
106

107 LSS_e2 = d_2 * LSS_p
108 LDS_e2 = d_2 * LDS_p
109 SS_e2 = np.power(math.e, LSS_e2)
110 DS_e2 = np.power(math.e, LDS_e2)
111

112 # Generate too weak data, scaled by d and d_2
113 LSS_w1 = (1 / d) * LSS_p
114 LDS_w1 = (1 / d) * LDS_p
115 SS_w1 = np.power(math.e, LSS_w1)
116 DS_w1 = np.power(math.e, LDS_w1)
117

118 LSS_w2 = (1 / d_2) * LSS_p
119 LDS_w2 = (1 / d_2) * LDS_p
120 SS_w2 = np.power(math.e, LSS_w2)
121 DS_w2 = np.power(math.e, LDS_w2)
122
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123 # Determine metrics for consistent data
124 all_data = np.concatenate((SS_p, DS_p))
125 all_hypotheses = np.concatenate((np.array(['H1'] * len(SS_p)), np.array(['H2'] * len(DS_p

))))
126 all_hypotheses_01 = np.where(all_hypotheses == 'H1', 1, 0)
127

128 # PAV lrs
129 cal = lir.IsotonicCalibrator()
130 lrmin = cal.fit_transform(to_probability(all_data), all_hypotheses_01)
131

132 # Determine normal cllr
133 cllr1 = cllr(all_data, all_hypotheses_01)
134 cllr_p.append(cllr1)
135

136 # Determine Brier-score difference between normal and PAV data
137 brierp_1 = brier(all_data, all_hypotheses_01)
138 brierp_2 = brier(lrmin, all_hypotheses_01)
139 brierp = brierp_1 - brierp_2
140 brier_p.append(brierp)
141

142 # Determine zero-one cllr
143 zeronep_1 = zero_one(all_data, all_hypotheses_01)
144 zeronep_2 = zero_one(lrmin, all_hypotheses_01)
145 zeronep = zeronep_1 - zeronep_2
146 zerone_p.append(zeronep)
147

148 # Determine spherical cllr
149 spherp_1 = spherical(all_data, all_hypotheses_01)
150 spherp_2 = spherical(lrmin, all_hypotheses_01)
151 spherp = spherp_1 - spherp_2
152 spher_p.append(spherp)
153

154 # Determine metrics for data skewed to the right
155 all_data = np.concatenate((SS_r1, DS_r1))
156 lrmin = cal.fit_transform(to_probability(all_data), all_hypotheses_01)
157

158 # Normal cllr
159 cllr2 = cllr(all_data, all_hypotheses_01)
160 cllr_r1.append(cllr2)
161

162 # Brier cllr
163 brierr1_1 = brier(all_data, all_hypotheses_01)
164 brierr1_2 = brier(lrmin, all_hypotheses_01)
165 brierr1 = brierr1_1 - brierr1_2
166 brier_r1.append(brierr1)
167

168 # Zero-one cllr
169 zeroner1_1 = zero_one(all_data, all_hypotheses_01)
170 zeroner1_2 = zero_one(lrmin, all_hypotheses_01)
171 zeroner1 = zeroner1_1 - zeroner1_2
172 zerone_r1.append(zeroner1)
173

174 # Spherical cllr
175 spherr1_1 = spherical(all_data, all_hypotheses_01)
176 spherr1_2 = spherical(lrmin, all_hypotheses_01)
177 spherr1 = spherr1_1 - spherr1_2
178 spher_r1.append(spherr1)
179

180 all_data = np.concatenate((SS_r2, DS_r2))
181 lrmin = cal.fit_transform(to_probability(all_data), all_hypotheses_01)
182

183 # Normal cllr
184 cllr3 = cllr(all_data, all_hypotheses_01)
185 cllr_r2.append(cllr3)
186

187 # Brier cllr
188 brierr2_1 = brier(all_data, all_hypotheses_01)
189 brierr2_2 = brier(lrmin, all_hypotheses_01)
190 brierr2 = brierr2_1 - brierr2_2
191 brier_r2.append(brierr2)
192
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193 # Zero-one cllr
194 zeroner2_1 = zero_one(all_data, all_hypotheses_01)
195 zeroner2_2 = zero_one(lrmin, all_hypotheses_01)
196 zeroner2 = zeroner2_1 - zeroner2_2
197 zerone_r2.append(zeroner2)
198

199 # Spherical cllr
200 spherr2_1 = spherical(all_data, all_hypotheses_01)
201 spherr2_2 = spherical(lrmin, all_hypotheses_01)
202 spherr2 = spherr2_1 - spherr2_2
203 spher_r2.append(spherr2)
204

205 # Determine metrics for data skewed to the left
206 all_data = np.concatenate((SS_l1, DS_l1))
207 lrmin = cal.fit_transform(to_probability(all_data), all_hypotheses_01)
208

209 # Normal cllr
210 cllr4 = cllr(all_data, all_hypotheses_01)
211 cllr_l1.append(cllr4)
212

213 # Brier cllr
214 brierl1_1 = brier(all_data, all_hypotheses_01)
215 brierl1_2 = brier(lrmin, all_hypotheses_01)
216 brierl1 = brierl1_1 - brierl1_2
217 brier_l1.append(brierl1)
218

219 # Zero-one cllr
220 zeronel1_1 = zero_one(all_data, all_hypotheses_01)
221 zeronel1_2 = zero_one(lrmin, all_hypotheses_01)
222 zeronel1 = zeronel1_1 - zeronel1_2
223 zerone_l1.append(zeronel1)
224

225 # Spherical cllr
226 spherl1_1 = spherical(all_data, all_hypotheses_01)
227 spherl1_2 = spherical(lrmin, all_hypotheses_01)
228 spherl1 = spherl1_1 - spherl1_2
229 spher_l1.append(spherl1)
230

231 all_data = np.concatenate((SS_l2, DS_l2))
232 lrmin = cal.fit_transform(to_probability(all_data), all_hypotheses_01)
233

234 # Normal cllr
235 cllr5 = cllr(all_data, all_hypotheses_01)
236 cllr_l2.append(cllr5)
237

238 # Brier cllr
239 brierl2_1 = brier(all_data, all_hypotheses_01)
240 brierl2_2 = brier(lrmin, all_hypotheses_01)
241 brierl2 = brierl2_1 - brierl2_2
242 brier_l2.append(brierl2)
243

244 # Zero-one cllr
245 zeronel2_1 = zero_one(all_data, all_hypotheses_01)
246 zeronel2_2 = zero_one(lrmin, all_hypotheses_01)
247 zeronel2 = zeronel2_1 - zeronel2_2
248 zerone_l2.append(zeronel2)
249

250 # Spherical cllr
251 spherl2_1 = spherical(all_data, all_hypotheses_01)
252 spherl2_2 = spherical(lrmin, all_hypotheses_01)
253 spherl2 = spherl2_1 - spherl2_2
254 spher_l2.append(spherl2)
255

256 # Determine metrics for too extreme data
257 all_data = np.concatenate((SS_e1, DS_e1))
258 lrmin = cal.fit_transform(to_probability(all_data), all_hypotheses_01)
259

260 # Normal cllr
261 cllr6 = cllr(all_data, all_hypotheses_01)
262 cllr_e1.append(cllr6)
263
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264 # Brier cllr
265 briere1_1 = brier(all_data, all_hypotheses_01)
266 briere1_2 = brier(lrmin, all_hypotheses_01)
267 briere1 = briere1_1 - briere1_2
268 brier_e1.append(briere1)
269

270 # Zero-one cllr
271 zeronee1_1 = zero_one(all_data, all_hypotheses_01)
272 zeronee1_2 = zero_one(lrmin, all_hypotheses_01)
273 zeronee1 = zeronee1_1 - zeronee1_2
274 zerone_e1.append(zeronee1)
275

276 # Spherical cllr
277 sphere1_1 = spherical(all_data, all_hypotheses_01)
278 sphere1_2 = spherical(lrmin, all_hypotheses_01)
279 sphere1 = sphere1_1 - sphere1_2
280 spher_e1.append(sphere1)
281

282 all_data = np.concatenate((SS_e2, DS_e2))
283 lrmin = cal.fit_transform(to_probability(all_data), all_hypotheses_01)
284

285 # Normal cllr
286 cllr7 = cllr(all_data, all_hypotheses_01)
287 cllr_e2.append(cllr7)
288

289 # Brier cllr
290 briere2_1 = brier(all_data, all_hypotheses_01)
291 briere2_2 = brier(lrmin, all_hypotheses_01)
292 briere2 = briere2_1 - briere2_2
293 brier_e2.append(briere2)
294

295 # Zero-one cllr
296 zeronee2_1 = zero_one(all_data, all_hypotheses_01)
297 zeronee2_2 = zero_one(lrmin, all_hypotheses_01)
298 zeronee2 = zeronee2_1 - zeronee2_2
299 zerone_e2.append(zeronee2)
300

301 # Spherical cllr
302 sphere2_1 = spherical(all_data, all_hypotheses_01)
303 sphere2_2 = spherical(lrmin, all_hypotheses_01)
304 sphere2 = sphere2_1 - sphere2_2
305 spher_e2.append(sphere2)
306

307 # Determine metrics for too weak data
308 all_data = np.concatenate((SS_w1, DS_w1))
309 lrmin = cal.fit_transform(to_probability(all_data), all_hypotheses_01)
310

311 # Normal cllr
312 cllr8 = cllr(all_data, all_hypotheses_01)
313 cllr_w1.append(cllr8)
314

315 # Brier cllr
316 brierw1_1 = brier(all_data, all_hypotheses_01)
317 brierw1_2 = brier(lrmin, all_hypotheses_01)
318 brierw1 = brierw1_1 - brierw1_2
319 brier_w1.append(brierw1)
320

321 # Zero-one cllr
322 zeronew1_1 = zero_one(all_data, all_hypotheses_01)
323 zeronew1_2 = zero_one(lrmin, all_hypotheses_01)
324 zeronew1 = zeronew1_1 - zeronew1_2
325 zerone_w1.append(zeronew1)
326

327 # Spherical cllr
328 spherw1_1 = spherical(all_data, all_hypotheses_01)
329 spherw1_2 = spherical(lrmin, all_hypotheses_01)
330 spherw1 = spherw1_1 - spherw1_2
331 spher_w1.append(spherw1)
332

333 all_data = np.concatenate((SS_w2, DS_w2))
334 lrmin = cal.fit_transform(to_probability(all_data), all_hypotheses_01)
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335

336 # Normal cllr
337 cllr9 = cllr(all_data, all_hypotheses_01)
338 cllr_w2.append(cllr9)
339

340 # Brier cllr
341 brierw2_1 = brier(all_data, all_hypotheses_01)
342 brierw2_2 = brier(lrmin, all_hypotheses_01)
343 brierw2 = brierw2_1 - brierw2_2
344 brier_w2.append(brierw2)
345

346 # Zero-one cllr
347 zeronew2_1 = zero_one(all_data, all_hypotheses_01)
348 zeronew2_2 = zero_one(lrmin, all_hypotheses_01)
349 zeronew2 = zeronew2_1 - zeronew2_2
350 zerone_w2.append(zeronew2)
351

352 # Spherical cllr
353 spherw2_1 = spherical(all_data, all_hypotheses_01)
354 spherw2_2 = spherical(lrmin, all_hypotheses_01)
355 spherw2 = spherw2_1 - spherw2_2
356 spher_w2.append(spherw2)
357

358 # Collect results of normal Cllr in dictionary
359 results_cllr = {
360 'Perfect': cllr_p,
361 'Right␣c=1': cllr_r1,
362 'Left␣c=1': cllr_l1,
363 'Extreme␣c=1.5': cllr_e1,
364 'Weak␣c=1.5': cllr_w1,
365 'Right␣c=2': cllr_r2,
366 'Left␣c=2': cllr_l2,
367 'Extreme␣c=2.5': cllr_e2,
368 'Weak␣c=2.5': cllr_w2,
369 }
370 df_results = pd.DataFrame(results_cllr)
371

372 # Compute overlap percentage
373 cllr_normals = np.array(list(results_cllr.values()))
374 overlap_normals = overlap(cllr_normals)
375 print('Normals␣overlap:', overlap_normals)
376

377 # Plot results
378 fig, axes = plt.subplots(ncols=len(df_results.columns), figsize=(15, 6), sharey=True)
379

380 for i, column in enumerate(df_results.columns):
381 sns.violinplot(data=df_results[column], ax=axes[i])
382 axes[i].set_title(column)
383 axes[i].set_ylabel('') # Remove y-axis label
384 plt.suptitle('Cllr␣normal', fontsize=16)
385 plt.tight_layout()
386 plt.show()
387

388 # Collect results of Brier Cllr in dictionary
389 results_brier = {
390 'Perfect': brier_p,
391 'Right␣c=1': brier_r1,
392 'Left␣c=1': brier_l1,
393 'Extreme␣c=1.5': brier_e1,
394 'Weak␣c=1.5': brier_w1,
395 'Right␣c=2': brier_r2,
396 'Left␣c=2': brier_l2,
397 'Extreme␣c=2.5': brier_e2,
398 'Weak␣c=2.5': brier_w2,
399 }
400 df_resultsb = pd.DataFrame(results_brier)
401

402 # Compute overlap percentage
403 cllr_briers = np.array(list(results_brier.values()))
404 overlap_briers = overlap(cllr_briers)
405 print('Briers␣overlap:', overlap_briers)
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406

407 # Plot results
408 fig, axes = plt.subplots(ncols=len(df_resultsb.columns), figsize=(15, 6), sharey=True)
409

410 for i, column in enumerate(df_resultsb.columns):
411 sns.violinplot(data=df_resultsb[column], ax=axes[i])
412 axes[i].set_title(column)
413 axes[i].set_ylim(0.0,0.05)
414 axes[i].set_ylabel('') # Remove y-axis label
415 plt.suptitle('Brier', fontsize=16)
416 plt.tight_layout()
417 plt.show()
418

419 # Collect results of zero-one Cllr in dictionary
420 results_zerone = {
421 'Perfect': zerone_p,
422 'Right␣c=1': zerone_r1,
423 'Left␣c=1': zerone_l1,
424 'Extreme␣c=1.5': zerone_e1,
425 'Weak␣c=1.5': zerone_w1,
426 'Right␣c=2': zerone_r2,
427 'Left␣c=2': zerone_l2,
428 'Extreme␣c=2.5': zerone_e2,
429 'Weak␣c=2.5': zerone_w2,
430 }
431 df_resultszer = pd.DataFrame(results_zerone)
432

433 # Compute overlap percentage
434 cllr_zerons = np.array(list(results_zerone.values()))
435 overlap_zerons = overlap(cllr_zerons)
436 print('Zero␣ones␣overlap:', overlap_zerons)
437

438 # Plot results
439 fig, axes = plt.subplots(ncols=len(df_resultszer.columns), figsize=(15, 6), sharey=True)
440

441 for i, column in enumerate(df_resultszer.columns):
442 sns.violinplot(data=df_resultszer[column], ax=axes[i])
443 axes[i].set_title(column)
444 axes[i].set_ylabel('') # Remove y-axis label
445 plt.suptitle('Zero-one', fontsize=16)
446 plt.tight_layout()
447 plt.show()
448

449 # Collect results of spherical Cllr in dictionary
450 results_spher = {
451 'Perfect': spher_p,
452 'Right␣c=1': spher_r1,
453 'Left␣c=1': spher_l1,
454 'Extreme␣c=1.5': spher_e1,
455 'Weak␣c=1.5': spher_w1,
456 'Right␣c=2': spher_r2,
457 'Left␣c=2': spher_l2,
458 'Extreme␣c=2.5': spher_e2,
459 'Weak␣c=2.5': spher_w2,
460 }
461 df_resultssph = pd.DataFrame(results_spher)
462

463 # Compute overlap percentage
464 cllr_sphers = np.array(list(results_spher.values()))
465 overlap_sphers = overlap(cllr_sphers)
466 print('Sphericals␣overlap:', overlap_sphers)
467

468 # Plot results
469 fig, axes = plt.subplots(ncols=len(df_resultssph.columns), figsize=(15, 6), sharey=True)
470

471 for i, column in enumerate(df_resultssph.columns):
472 sns.violinplot(data=df_resultssph[column], ax=axes[i])
473 axes[i].set_title(column)
474 axes[i].set_ylabel('')
475 plt.suptitle('Spherical', fontsize=16)
476 plt.tight_layout()
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477 plt.show()
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