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Abstract
This paper addresses compositional and incremental type checking for object-oriented program-
ming languages. Recent work achieved incremental type checking for structurally typed functional
languages through co-contextual typing rules, a constraint-based formulation that removes any
context dependency for expression typings. However, that work does not cover key features of
object-oriented languages: Subtype polymorphism, nominal typing, and implementation inher-
itance. Type checkers encode these features in the form of class tables, an additional form of
typing context inhibiting incrementalization.

In the present work, we demonstrate that an appropriate co-contextual notion to class tables
exists, paving the way to efficient incremental type checkers for object-oriented languages. This
yields a novel formulation of Igarashi et al.’s Featherweight Java (FJ) type system, where we
replace class tables by the dual concept of class table requirements and class table operations
by dual operations on class table requirements. We prove the equivalence of FJ’s type system
and our co-contextual formulation. Based on our formulation, we implemented an incremental
FJ type checker and compared its performance against javac on a number of realistic example
programs.

1998 ACM Subject Classification D.3.3 Language Constructs and Features, F.3.1 Specifying
and Verifying and Reasoning about Programs, F.3.2 Semantics of Programming Languages

Keywords and phrases type checking; co-contextual; constraints; class table; Featherweight Java

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2017.18

1 Introduction

Previous work [6] presented a co-contextual formulation of the PCF type system with records,
parametric polymorphism, and subtyping by duality of the traditional contextual formulation.
The contextual formulation is based on a typing context and operations for looking up,
splitting, and extending the context. The co-contextual formulation replaces the typing
context and its operations with the dual concepts of context requirements and operations for
generating, merging, and satisfying requirements. This enables bottom-up type checking that
starts at the leaves of an expression tree. Whenever a traditional type checker would look up
variable types in the typing context, the bottom-up co-contextual type checker generates
fresh type variables and generates context requirements stating that these type variables need
to be bound to actual types; it merges and satisfies these requirements as it visits the syntax
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18:2 A Co-contextual Type Checker for Featherweight Java

+new List().add(1).size() new LinkedList().add(2).size();

(R1) List.init() (R4) LinkedList.init()
(R2) List.add : Int→ U1 (R5) LinkedList.add : Int→ U2

(R3) U1.size : ()→ U3 (R6) U2.size : ()→ U4

Figure 1 Requirements generated from co-contextually type checking the + expression.

tree upwards to the root. The co-contextual type formulation of PCF enables incremental
type checking giving rise to order-of-magnitude speedups [6].

These results motivated us to investigate co-contextual formulation of the type systems for
statically typed object-oriented (OO) languages, the state-of-the-art programming technology
for large-scale systems. We use Featherweight Java [8] (FJ) as a representative calculus for
these languages. Specifically, we consider two research questions: (a) Can we formulate an
equivalent co-contextual type system for FJ by duality to the traditional formulation, and
(b) if yes, how to define an incremental type checker based on it with significant speedups?
Addressing these questions is an important step towards a general theory of incremental type
checkers for statically typed OO languages, such as Java, C], or Eiffel.

We observe that the general principle of replacing the typing context and its operations
with co-contextual duals carries over to the class table. The latter is propagated top-down and
completely specifies the available classes in the program, e.g., member signatures and super
classes. Dually, a co-contextual type checker propagates class table requirements bottom-
up. This data structure specifies requirements on classes and members and accompanying
operations for generating, merging, and removing these requirements.

However, defining appropriate merge and remove operations on co-contextual class table
requirements poses significant challenges, as they substantially differ from the equivalent
operations on context requirements. Unlike the global namespace and structural typing of
PCF, FJ features context dependent member signatures (subtype polymorphism), a declared
type hierarchy (nominal typing), and inherited definitions (implementation inheritance).

For an intuition of class table requirements and the specific challenges concerning their
operations, consider the example in Figure 1. Type checking the operands of + yields the
class table requirements R1 to R6. Here and throughout the paper we use metavariable U to
denote unification variables as placeholders for actual types. For example, the invocation of
method add on new List() yields a class table requirement R2. The goal of co-contextual type
checking is to avoid using any context information, hence we cannot look up the signature of
List.add in the class table. Instead, we use a placeholder U1 until we discover the definition
of List.add later on. As consequence, we lack knowledge about the receiver type of any
subsequent method call, such as size in our example. This leads to requirement R3, which
states that (yet unknown) class U1 should exist that has a method size with no arguments
and (yet unknown) return type U3. Assuming + operates on integers, type checking the
+ operator later unifies U3 and U4 with Int, thus refining the class table requirements.

To illustrate issues with merging requirements, consider the requirements R3 and R6
regarding size. Due to nominal typing, the signature of this method depends on U1 and U2,
where it is yet unknown how these classes are related to each other. It might be that U1
and U2 refer to the same class, which implies that these two requirements overlap and the
corresponding types of size in R3 and R6 are unified. Alternatively, it might be the case
that U1 and U2 are distinct classes, individually declaring a method size. Unifying the types
of size from R3 and R6 would be wrong. Therefore, it is locally indeterminate whether a
merge should unify or keep the requirements separate.
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To illustrate issues with removing class requirements, consider the requirement R5.
Suppose that we encounter a declaration of add in LinkedList. Just removing R5 is not
sufficient because we do not know whether LinkedList overrides add of a yet unknown
superclasss U , or not. Again, the situation is locally indeterminate. In case of overriding,
FJ requires that the signatures of overriding and overridden methods be identical. Hence,
it would necessary add constraints equating the two signatures. However, it is equally
possible that LinkedList.add overrides nothing, so that no additional constraints are necessary.
If, however, LinkedList inherits add from List without overriding it, we need to record the
inheritance relation between these two classes, in order to be able to replace U2 with the
actual return type of size.

The example illustrates that a co-contextual formulation for nominal typing with subtype
polymorphism and implementation inheritance poses new research questions that the work
on co-contextual PCF did not address. A key contribution of the work presented in this
paper is to answer these questions. The other key contribution is an incremental type checker
for FJ based on the co-contextual FJ formulation. We evaluate the initial and incremental
performance of the co-contextual FJ type checker on synthesized FJ programs and realistic
java programs by comparison to javac and a context-based implementation of FJ.

To summarize, the paper makes the following contributions:
We present a co-contextual formulation of FJ’s type system by duality to the traditional
type system formulation by Igarashi et al. [8]. Our formulation replaces the class table by
its dual concept of class table requirements and it replaces field/method lookup, class table
duplication, and class table extension by the dual operations of requirement generation,
merging, and removing. In particular, defining the semantics of merging and removing
class table requirements in the presence of nominal types, OO subtype polymorphism,
and implementation inheritance constitute a key contribution of this work.
We present a method to derive co-contextual typing rules for FJ from traditional ones
and provide a proof of equivalence between contextual and co-contextual FJ.
We provide a description of type checker optimizations for co-contextual FJ with incre-
mentalization and a performance evaluation.

2 Background and Motivation

In this section, we present the FJ typing rules from [8] and give an example to illustrate how
contextual and co-contextual FJ type checkers work.

2.1 Featherweight Java: Syntax and Typing Rules
Featherweight Java [8] is a minimal core language for modeling Java’s type system. Fig-
ure 2 shows the syntax of classes, constructors, methods, expressions, and typing contexts.
Metavariables C, D, and E denote class names and types; f denotes fields; m denotes method
names; this denotes the reference to the current object. As is customary, an overline denotes
a sequence in the metalanguage. Γ is a set of bindings from variables and this to types.

The type system (Figure 3) ensures that variables, field access, method invocation,
constructor calls, casting, and method and class declarations are well-typed. The typing
judgment for expressions has the form Γ;CT ` e : C, where Γ denotes the typing context, CT
the class table, e the expression under analysis, and C the type of e. The typing judgment
for methods has the form C;CT `M OK and for classes CT ` L OK.

In contrast to the FJ paper [8], we added some cosmetic changes to the presentation. For
example, the class table CT is an implicit global definition in FJ. Our presentation explicitly

ECOOP 2017



18:4 A Co-contextual Type Checker for Featherweight Java

L ::= class C extends D {C f ; K M} class declaration
K ::= C(C f){super(f); this.f = f} constructor
M ::= C m(C x){ return e; } method declaration
e ::= x | this | e.f | e.m(e) | new C(e) | (C)e expression

Γ ::= ∅ | Γ;x : C | Γ; this : C typing contexts

Figure 2 Featherweight Java syntax and typing context.

propagates CT top-down along with the typing context. Another difference to Igarashi et
al. is in the rule T-New: Looking up all fields of a class returns a constructor signature, i.e.,
fields(C,CT ) = C.init(D) instead of returning a list of fields with their corresponding types.
We made this subtle change because it clearer communicates the intention of checking the
constructor arguments against the declared parameter types. Later on, these changes pay off,
because they enable a systematic translation of typing rules to co-contextual FJ (Sections 3
and 4) and give a strong and rigorous equivalence result for the two type systems (Section 5).

Furthermore, we explicitly include a typing rule T-Program for programs, which is implicit
in Igarashi et al.’s presentation. The typing judgment for programs has the form L OK:
A program is well-typed if all class declarations are well-typed. The auxiliary functions
addExt, addCtor, addFs, and addMs extract the supertype, constructor, field and method
declarations from a class declaration into entries for the class table. Initially, the class table
is empty, then it is gradually extended with information from every class declaration by using
the above-mentioned auxiliary functions. This is to emphasize that we view the class table as
an additional form of typing context, having its own set of extension operations. We describe
the class table extension operations and their co-contextual duals formally in Section 3.

2.2 Contextual and Co-Contextual Featherweight Java by Example

class List extends Object {
Int size() {. . .}
List add(Int a){. . .}

}
class LinkedList extends List { }

We revisit the example from the introduction to illus-
trate that, in absence of context information, maintaining
requirements on class members is non-trivial:

new List().add(1).size() + new LinkedList().add(2).size().

Here we assume the class declarations on the right-hand
side: List with methods add() and size() and LinkedList inheriting from List. As before, we
assume there are typing rules for numeric Int literals and the + operator over Int values. We
use LList instead of LinkedList in Figure 4 for space reasons.

Figure 4 (a) depicts standard type checking with typing contexts in FJ. The type checker in
FJ visits the syntax tree “down-up”, starting at the root. Its inputs (propagated downwards)
are the context Γ, class table CT , and the current subexpression e. Its output (propagated
upwards) is the type C of the current subexpression. The output is computed according
to the currently applicable typing rule, which is determined by the shape of the current
subexpression. The class table used by the standard type checker contains classes List and
LinkedList shown above. The type checker retrieves the signatures for the method invocations
of add and size from the class table CT .

To recap, while type checking constructor calls, method invocations, and field accesses
the context and the class table flow top-down; types of fields/methods are looked up in the
class table.
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T-Var
Γ(x) = C

Γ;CT ` x : C T-Field
Γ;CT ` e : Ce field(fi, Ce, CT ) = Ci

Γ;CT ` e.fi : Ci

T-Invk
Γ;CT ` e : Ce Γ;CT ` e : C mtype(m,Ce, CT ) = D → C C <: D

Γ;CT ` e.m(e) : C

T-New
Γ;CT ` e : C fields(C,CT ) = C.init(D) C <: D

Γ;CT ` new C(e) : C

T-UCast
Γ;CT ` e : D D <: C

Γ;CT ` (C)e : C
T-DCast

Γ;CT ` e : D C <: D C 6= D

Γ;CT ` (C)e : C

T-SCast
Γ;CT ` e : D C ≮: D D ≮: C

Γ;CT ` (C)e : C

T-Method

x : C; this : C;CT ` e : E0 E0 <: C0
extends(C,CT ) = D

if mtype(m,D,CT ) = D → D0, then C = D; C0 = D0

C;CT ` C m(C x){return e} OK

T-Class

K = C(D′
g, C

′
f){super(g); this.f = f} fields(D,CT ) = D.init(D′)

C;CT `M OK
CT ` class C extends D {C f ;K M} OK

T-Program

CT =
⋃

L
′∈L(addExt(L′) ∪ addCtor(L′) ∪ addFs(L′) ∪ addMs(L′))

(CT ` L′ OK)L
′∈L

L OK

Figure 3 Typing rules of Featherweight Java.

Figure 4 (b) depicts type checking of the same expression in co-contextual FJ. Here, the
type checker starts at the leaves of the tree with no information about the context or the
class table. The expression type T , the context requirements R, and class table requirements
CR all are outputs and only the current expression e is input to the type checker, making
the type checker context-independent. At the leaves, we do not know the signature of the
constructors of List and LinkedList. Therefore, we generate requirements for the constructor
calls List.init() and LinkedList.init() and propagate them as class table requirements. For
each method invocation of add and size in the tree, we generate requirements on the receiver
type and propagate them together with the requirements of the subexpressions.

In addition to generating requirements and propagating them upwards as shown in
Figure 4 (b), a co-contextual type checker also merges requirements when they have com-
patible receiver types. In our example, we have two requirements for method add and
two requirements for method size. The requirements for method add have incompatible
ground receiver types and therefore cannot be merged. The requirements for method size
both have placeholder receivers and therefore cannot be merged just yet. However, for the
size requirements, we can already extract a conditional constraint that must hold if the
requirements become mergeable, namely (U2 = U4 if U1 = U3). This constraint ensures the

ECOOP 2017



18:6 A Co-contextual Type Checker for Featherweight Java

new List().add(1).size() + new LList().add(2).size()

.size() .size()

.add() .add()

new List() 1 new LList() 2

Γ; CT ` : Int

Γ; CT ` : Int Γ; CT ` : Int

Γ; CT ` : List Γ; CT ` : List

Γ; CT ` : List Γ; CT ` : LListΓ; CT ` : Int Γ; CT ` : Int

contexts,
class table flow

top-down
types flow
bottom-up

(a) Contextual type checking propagates contexts and class tables top-down.

new List().add(1).size() + new LList().add(2).size()

.size() .size()

.add() .add()

new List() 1 new LList() 2

: Int | ∅ |List.init(), LList.init(),
List.add : Int → U1,
LList.add : Int → U3,
U1.size :() → U2,
U3.size :() → U4

: U2 | ∅ | U1.size :() → U2 : U4 | ∅ | U3.size :() → U4

: U1 List | ∅ |List.init(),
List.add : Int → U1

: U3 LList | ∅ | LList.init(),
LList.add : Int → U3

: List | ∅ | List.init() : LList | ∅ | LList.init(): Int | ∅ | ∅ : Int | ∅ | ∅

types,
context reqs.,

class table reqs.,
flow bottom-up

(b) Co-contextual type checking propagates context and class table requirements bottom-up.

Figure 4 Contextual and co-contextual type checking.

signatures of both size invocations are equal in case their receiver types U1 and U3 are equal.
This way, we enable early error detection and incremental solving of constraints. Constraints
can be solved continuously as soon as they have been generated in order to not wait for the
whole program to be type checked. We discuss incremental type checking in more detail in
Section 6.

After type checking the + operator, the type checker encounters the class declarations of
List and LinkedList. When type checking the class header LinkedList extends List, we have
to record the inheritance relation between the two classes because methods can be invoked
by LinkedList, but declared in List. For example, if List is not known to be a superclass of
LinkedList and given the declaration List.add, then we cannot just yet satisfy the requirement
LinkedList.add : Num→ U3. Therefore, we duplicate the requirement regarding add having
as receiver List, i.e., List.add : Num→ U3. By doing so, we can deduce the actual type of
U3 for the given declaration of add in List. Also, requirements regarding size are duplicated.

In the next step, the method declaration of size in List is type checked. Hence, we consider
all requirements regarding size, i.e, U1.size : ()→ U2 and U3.size : ()→ U4. The receivers of
mathitsize in both requirements are unknown. We cannot yet satisfy these requirements
because we do not know whether U1 and U3 are equal to List, or not. To solve this, we
introduce conditions as part of the requirements, to keep track of the relations between the
unknown required classes and the declared ones. By doing so, we can deduce the actual types
of U2 and U4, and satisfy the requirements later, when we have more information about U1
and U3.

Next, we encounter the method declaration add and satisfy the corresponding requirements.
After satisfying the requirements regarding add, the type checker can infer the actual types
of U1 and U3. Therefore, we can also satisfy the requirements regarding size.
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To summarize, during the co-contextual type checking of constructor calls, method
invocations, and field accesses, the requirements flow bottom-up. Instead of looking up
types of fields/methods in the class table, we introduce new class table requirements. These
requirements are satisfied when the actual types of fields/methods become available.

3 Co-Contextual Structures for Featherweight Java

In this section, we present the dual structures and operations for the co-contextual formulation
of FJ’s type system. Specifically, we introduce bottom-up propagated context and class table
requirements, replacing top-down propagated typing contexts and class tables.

3.1 Class Variables and Constraints

For co-contextual FJ, we reuse the syntax of FJ in Figure 2, but extend the type language
to class types:
U, V, . . . Class Variable
T ::= C | U Class Type

We use constraints for refining class types, i.e., co-contextual FJ is a constraint-based type
system. That is, next to class names, the type system may assign class variables, designating
unknowns in constraints. We further assume that there are countably many class variables,
equality of class variables is decidable and that class variables and class names are disjoint.

During bottom-up checking, we propagate sets S of constraints:
s ::= T = T | T 6= T | T <: T | T ≮ T | T = T if cond constraint
S ::= ∅ | S; s constraint set

A constraint s either states that two class types must be equal, non-equal, in a subtype
relation, non-subtype, or equal if some condition holds, which we leave underspecified for the
moment.

3.2 Context Requirements

A typing context is a set of bindings from variables to types, while a context requirement is a
set of bindings from variables to class variables U . Below we show the operations on typing
contexts and their co-contextual correspondences, reproduced from [6]. Operations on typing
context are lookup, extension, and duplication; their respective requirement context duals
are: generating, removing, and merging. Co-contextual FJ adopts context requirements and
operations for method parameters and this unchanged.

Contextual Co-contextual

Context syntax Γ ::= ∅ | Γ; x : T Requirements R ⊂ x× T map variables to their types
Context lookup Γ(x) = T Requirement introduction R = {x : U} with

fresh unification variable U

Context extension Γ; x : T Requirement satisfaction R− x if (R(x) = T ) holds
Context duplication Γ→ (Γ, Γ) Requirement merging mergeR(R1, R2) = R|S

if all constraints (T1 = T2) ∈ S hold
Context is empty Γ = ∅ No unsatisfied requirements R

!= ∅

ECOOP 2017



18:8 A Co-contextual Type Checker for Featherweight Java

Contextual

CT ::= ∅ class table
| CTcls ∪ CT

CTcls ::= def. clause
| C extends D extends clause
| C.init(C) ctor clause
| C.f : C ′ field clause
| C.m : C → C ′ method clause

Co-Contextual

CR ::= ∅ class table req.
| (CReq, cond) ∪ CR

CReq ::= class req.
| T .extends: T ′ inheritance req.
| T.init(T ) ctor req.
| T.f : T ′ field req.
| T.m : T → T ′ method req.
| (T.m : T → T ′)opt optional method req.

cond ::= ∅ | T = T ′; cond condition
| T 6= T ′; cond

Figure 5 Class Table and Class Table Requirements Syntax.

3.3 Structure of Class Tables and Class Table Requirements
In the following, we describe the dual notion of a class table, called class table requirements
and their operations. We first recapitulate the structure of FJ class tables [8], then stipulate
the structure of class table requirements. Figure 5 shows the syntax of both. A class table
is a collection of class definition clauses CTcls defining the available classes.1 A clause is a
class name C followed by either the superclass, the signature of the constructor, a field type,
or a method signature of C’s definition.

As Figure 5 suggests, class tables and definition clauses in FJ have a counterpart in
co-contextual FJ. Class tables become class table requirements CR, which are collections of
pairs (CReq, cond), where CReq is a class requirement and cond is its condition. Each class
definition clause has a corresponding class requirement CReq, which is one of the following:

A inheritance requirement T .extends: T ′, i.e., class type T must inherit from T ′.
A constructor requirement T.init(T ′), i.e., class type T ’s constructor signature must
match T ′.
A field requirement T.f : T ′, i.e., class T (or one of its supertypes) must declare field f
with class type T ′.
A method requirement T.m : T ′→T ′′, i.e., class T (or one of its supertypes) must declare
method m matching signature T ′→T ′′.
An optional method requirement (T.m : T ′ → T ′′)opt, i.e., if the class type T declares
the method m, then its signature must match T ′ → T ′′. While type checking method
declarations, this requirement is used to ensure that method overrides in subclasses
are well-defined. An optional method requirement is used as a counterpart of the
conditional method lookup in rule T-Method of standard FJ, i.e., if mtype(m,D,CT ) =
D̄ → D0, then C̄ = D̄; C0 = D0, where D is the superclass of the class C, in which the
method declaration m under scrutiny is type checked, and C̄, C0 are the parameter and
returned types of m as part of C.

A condition cond is a conjunction of equality and nonequality constraints on class types.
Intuitively, (CReq, cond) states that if the condition cond is satisfied, then the requirement

1 To make the correspondence to class table requirements more obvious, we show a decomposed form of
class tables. The original FJ formulation [8] groups clauses by the containing class declaration.
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Contextual Co-contextual

Field name lookup field(fi, C, CT ) = Ci Class requirement for field
(C.fi : U, ∅)

Fields lookup fields(C, CT ) = C.init(C) Class requirement for constructor
(C.init(U), ∅)

Method lookup mtype(m, C, CT ) = C → C Class requirement for method
(C.m : U → U, ∅)

Conditional method override Optional class requirement for method
if mtype(m, C, CT ) = C → C (C.m : U → U, ∅)opt

Super class lookup extends(C, CT ) = D Class requirement for super class
(C .extends: U, ∅)

Class table duplication CT → (CT, CT ) Class requirement merging
mergeCR(CR1, CR2) = CR|S
if all constraints in S hold

Figure 6 Operations on class table and their co-contextual correspondence.

CReq must be satisfied, too. Otherwise, we have unsolvable constraints, indicating a typing
error. With conditional requirements and constraints, we address the feature of nominal
typing and inheritance for co-contextual FJ. In the following, we will describe their usage.

3.4 Operations on Class Tables and Requirements

In this section, we describe the co-contextual dual to FJ’s class table operations as outlined in
Figure 6. We first consider FJ’s lookup operations on class tables, which appear in premises
of typing rules shown in Figure 3 to look up (1) fields, (2) field lists, (3) methods and (4)
superclass lookup. The dual operation is to introduce a corresponding class requirement for
the field, list of fields, method, or superclass.

Let us consider closely field lookup, i.e., field(fi, C, CT ) = Ci, meaning that class C in
the class table CT has as member a field fi of type Ci. We translate it to the dual operation
of introducing a new class requirement (C.fi : U, ∅). Since we do not have any information
about the type of the field, we choose a fresh class variable U as type of field fi. At the time
of introducing a new requirement, its condition is empty.

Consider the next operation fields(C,CT ), which looks up all field members of a class.
This lookup is used in the constructor call rule T-New; the intention is to retrieve the
constructor signature in order to type check the subtyping relation between this signature
and the types of expressions as parameters of the constructor call, i.e., C̄ <: D̄ (rule T-New).
As we can observe, the field names are not needed in this rule, only their types. Hence, in
contrast to the original FJ rule [8], we deduce the constructor signature from fields lookup,
rather than field names and their corresponding types, i.e., fields(C,CT ) = C.init(D̄). The
dual operation on class requirements is to add a new class requirement for the constructor,
i.e., (C.init(Ū), ∅). Analogously, the class table operations for method signature lookup and
super class lookup map to corresponding class table requirements.

Finally, standard FJ uses class table duplication to forward the class table to all parts
of an FJ program, thus ensuring all parts are checked against the same context. The dual
co-contextual operation, mergeCR, merges class table requirements originating from different
parts of the program. Importantly, requirements merging needs to assure all parts of the
program require compatible inheritance, constructors, fields, and methods for any given
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CRm = {(T1.m : T1 → T ′
1, cond1 ∪ (T1 6= T2))

∪ (T2.m : T2 → T ′
2, cond2 ∪ (T1 6= T2))

∪ (T1.m : T1 → T ′
1, cond1 ∪ cond2 ∪ (T1 = T2))

| (T1.m : T1 → T ′
1, cond1) ∈ CR1 ∧ (T2.m : T2 → T ′

2, cond2) ∈ CR2}

Sm = {(T ′
1 = T ′

2 if T1 = T2) ∪ (T1 = T2 if T1 = T2)
| (T1.m : T1 → T ′

1, cond1) ∈ CR1 ∧ (T2.m : T2 → T ′
2, cond2) ∈ CR2}

Figure 7 Merge operation of method requirements CR1 and CR2.

class. To merge two sets of requirements, we first identify the field and method names
used in both sets and then compare the classes they belong to. The result of merging
two sets of class requirements CR1 and CR2 is a new set CR of class requirements and a
set of constraints, which ensure compatibility between the two original sets of overlapping
requirements. Non-overlapping requirements get propagated unchanged to CR whereas
potentially overlapping requirements receive special treatment depending on the requirement
kind.

The full merge definition appears in our technical report [10]. Figure 7 shows the merge
operation for overlapping method requirements, which results in a new set of requirements
CRm and constraints Sm. To compute CRm, we identify method requirements on the
equally-named methods m in both sets and distinguish two cases. First, if the receivers are
different T1 6= T2, then the requirements are not actually overlapping. We retain the two
requirements unchanged, except that we remember the failed condition for future reference.
Second, if the receivers are equal T1 = T2, then the requirements are actually overlapping.
We merge them into a single requirement and produce corresponding constraints in Sm.
One of the key benefits of keeping track of conditions in class table requirements is that
often these conditions allow us to discharge requirements early on when their conditions are
unsatisfiable. In particular, in Section 6 we describe a compact representation of conditional
requirements that facilitates early pruning and is paramount for good performance. However,
the main reason for conditional class table requirements is their removal, which we discuss
subsequently.

3.5 Class Table Construction and Requirements Removal

Our formulation of the contextual FJ type system differs in the presentation of the class
table compared to the original paper [8]. Whereas Igarashi et al. assume that the class table
is a pre-defined static structure, we explicitly consider its formation through a sequence of
operations. The class table is initially empty and gradually extended with class table clauses
CTcls for each class declaration L of a program. Dual to that, class table requirements are
initially unsatisfied and gradually removed. We define an operation for adding clauses to the
class table and a corresponding co-contextual dual operation on class table requirements for
removing requirements. Figure 8 shows a collection of adding and removing operations for
every possible kind of class table clause CTcls.

In general, clauses are added to the class table starting from superclass to subclass
declarations. For a given class, the class header with extends is added before the other
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Contextual Co-contextual

Class table empty CT = ∅ Unsatisfied class requirements CR

Adding extend addExt(L, CT ) Remove extend removeExt(L, CR)
Adding constructor addCtor(L, CT ) Remove constructor removeCtor(L, CR)
Adding fields addFs(L, CT ) Remove fields removeFs(L, CR)
Adding methods addMs(L, CT ) Remove methods removeMs(L, CR)

Figure 8 Constructing class table and their co-contextual correspondence.

clauses. Dually, we start removing requirements that correspond to clauses of a subclass,
followed by those corresponding to clauses of superclass declarations. For a given class, we
first remove requirements corresponding to method, fields, or constructor clauses, then those
corresponding to the class header extends clause. Note that our sequencing still allows for
mutual class dependencies. For example, the following is a valid sequence of clauses where A
depends on B and vice versa:

class A extends Object; class B extends Object; A.m: ()→ B; B.m: ()→ A.

The full definition of the addition and removal operations for all cases of clause definition
appears in our technical report [10]; Figure 9 presents the definitions of adding and removing
method and extends clauses.

Remove operations for method clauses. The function removeMs removes a list of methods
by applying the function removeM to each of them. removeM removes a single method
declaration defined in class C. To this end, removeM identifies requirements on the same
method name m and refines their receiver to be different from the removed declaration’s
defining class. That is, the refined requirement (T.m : . . . , cond ∪ (T 6= C)) only requires
method m if the receiver T is different from the defining class C. If the receiver T is, in
fact, equal to C, then the condition of the refined requirement is unsatisfiable and can
be discharged. To ensure the required type also matches the declared type, removeM also
generates conditional constraints in case T = C. Note that whether T = C can often not be
determined immediately because T may be a placeholder type U .

We illustrate the removal of methods using the class declaration of List shown in Section 2.2.
Consider the class requirement set CR = (U1.size()→ U2, ∅). Encountering the declaration
of method add has no effect on this set because there is no requirement on add. However,
when encountering the declaration of method size, we refine the set as follows:

removeM(List, Int size() {. . .}, CR) = {(U1.size : ()→ U2,U1 6= List)}|S

with a new constraint S = {U2 = Int if U1 = List}. Thus, we have satisfied the requirement
in CR for U1 = List, only leaving the requirement in case U1 represents another type. In
particular, if we learn at some point that U1 indeed represents List, we can discharge the
requirement because its condition is unsatisfiable. This is important because a program is
only closed and well-typed if its requirement set is empty.

Remove operations for extends clauses. The function removeExt removes the class header
clauses (C. extends D). This function, in addition to identifying the requirements regarding
extends and following the same steps as above for removeM, duplicates all requirements for
fields and methods. The duplicate introduces a requirement the same as the existing one, but
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addMs(C,M,CT ) = C.m : C → C ′ ∪ CT
removeM(C,C ′ m(C x) {return e}, CR) = CR′|S
where CR′ = {(T.m : T → T ′, cond ∪ (T 6= C)) | (T.m : T → T ′, cond) ∈ CR}

∪ (CR \ (T.m : T → T ′, cond))
S = {(T ′ = C ′ if T = C) ∪ (T = C if T = C) | (T.m : T → T ′, cond) ∈ CR}

removeMs(C,M,CR) = CR′|S
where CR′ = {CRm | (C

′ m(C x) {return e}) ∈M
∧ removeM(C,C ′ m(C e) {return e}, CR) = CRm|Sm

}
S = {Sm | (C

′ m(C x) {return e}) ∈M
∧ removeM(C,C ′ m(C x) {return e}, CR) = CRm|Sm

}

addExt(class C extends D,CT ) = (C extends D) ∪ CT
removeExt(class C extends D,CR) = CR′|S
where CR′ = {(T.extends : T ′, cond ∪ (T 6= C)) | (T.extends : T ′, cond) ∈ CR}

∪ {(T.m : T → T ′, cond ∪ (T 6= C))
∪ (D.m : T → T ′, cond ∪ (T = C)) | (T.m : T → T ′, cond) ∈ CR}
∪ {(T.m : T → T ′, cond ∪ (T 6= C))opt

∪ (D.m : T → T ′, cond ∪ (T = C))opt

| (T.m : T → T ′, cond)opt ∈ CR}
∪ {(T.f : T ′, cond ∪ (T 6= C)) ∪ (D.f : T ′, cond ∪ (T = C))
| (T.f : T ′, cond) ∈ CR}

S = {(T ′ = D if T = C) | (T.extends : T ′, cond) ∈ CR}

Figure 9 Add and remove operations of method and extends clauses.

with a different receiver, which is the superclass D that potentially declares the required fields
and methods. The conditions also change. We add to the existing requirements an inequality
condition (T 6= C), to encounter the case when the receiver T is actually replaced by C, but
it is required to have a certain field or method, which is declared in D, the superclass of T .
This requirement should be discharged because we know the actual type of the required field
or method, which is inherited from the given declaration in D. Also, we add an equality
condition to the duplicate requirement T = C, because this requirement will be discharged
when we encounter the actual declarations of fields or methods in the superclass.

We illustrate the removal of extends using the class declaration LinkedList extends List.
Consider the requirement set CR = (U3.size : ()→ U4, ∅). We encounter the declaration for
LinkedList and the requirement set changes as follows:

removeExt(class LinkedList extends List, CR) =
{(U3.size : ()→ U4, U3 6= LinkedList), (List.size : ()→ U4, U3 = LinkedList)}|S ,

where S = ∅. S is empty, because there are no requirements on extends. If we learn at
some point that U3 = LinkedList, then the requirement (U3.size : ()→ U4, U3 6= LinkedList)
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is discharged because its condition is unsatisfiable. Also, if we learn that size is declared in
List, then (List.size : () → U4, U3 = LinkedList) is discharged applying removeM, as shown
above, and U4 can be replaced by its actual type.

Usage and necessity of conditions. As shown throughout this section, conditions play an
important role to enable merging and removal of requirements over nominal receiver types
and to support inheritance. Because of nominal typing, field and method lookup depends on
the name of the defining context and we do not know the actual type of the receiver class
when encountering a field or method reference. Thus, it is impossible to deduce their types
until more information is known. Moreover, if a class is required to have fields/methods,
which are actually declared in a superclass of the required class, then we need to deduce
their actual type/signature and meanwhile fulfill the respective requirements. For example,
considering the requirement U3.size : () → U4, if U3 = LinkedList, LinkedList extends List,
and size is declared in List, then we have to deduce the actual type of U4 and satisfy this
requirement. To overcome these obstacles we need additional structure to maintain the
relations between the required classes and the declared ones, and also to reason about the
partial fulfillment of requirements. Conditions come to place as the needed structure to
maintain these relations and indicate the fulfillment of requirements.

4 Co-Contextual Featherweight Java Typing Rules

In this section we derive co-contextual FJ’s typing rules systematically from FJ’s typing rules.
The main idea is to transform the rules into a form that eliminates any context dependencies
that require top-down propagation of information.

Concretely, context and class table requirements (Section 3) in output positions to the
right replace typing contexts and class tables in input positions to the left. Additionally,
co-contextual FJ propagates constraint sets S in output positions. Note that the program
typing judgment does not change, because programs are closed, requiring neither typing
context nor class table inputs. Correspondingly, neither context nor class table requirements
need to be propagated as outputs.

Figure 10 shows the co-contextual FJ typing rules (the reader may want to compare
against contextual FJ in Figure 3). In what follows, we will discuss the rules for each kind of
judgment.

4.1 Expression Typing
Typing rule TC-Var is dual to the standard variable lookup rule T-Var. It marks a distinct
occurrence of x (or the self reference this) by assigning a fresh class variable U . Furthermore,
it introduces a new context requirement {x : U}, as the dual operation of context lookup
for variables x (Γ(x) = C) in T-Var. Since the latter does not access the class table, dually,
TC-Var outputs empty class table requirements.

Typing rule TC-Field is dual to T-Field for field accesses. The latter requires a field name
lookup (field), which, dually, translates to a new class requirement for the field fi, i.e.,
(Te.fi : U, ∅) (cf. Section 3). Here, Te is the class type of the receiver e. U is a fresh
class variable, marking a distinct occurrence of field name fi, which is the class type of the
entire expression. Furthermore, we merge the new field requirement with the class table
requirements CRe propagated from e. The result of merging is a new set of requirements
CR and a new set of constraints Scr. Just as the context Γ is passed into the subexpression
e in T-Field, we propagate the context requirements for e for the entire expression. Finally,
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TC-Var U is fresh
x : U | ∅ | x : U | ∅

TC-Field

e : Te | Se | Re | CRe CR|Sf
= mergeCR(CRe, (Te.fi : U, ∅))

U is fresh
e.fi : U | Se ∪ Sf | Re | CR

TC-Invk

e : Te | Se | Re | CRe e : T | S | R | CR
CRm = (Te.m : U → U ′, ∅) Ss = {T <: U} U ′, U are fresh
R′|Sr

= mergeR(Re, R) CR′|Scr
= mergeCR(CRe, CRm, CR)

e.m(e) : U ′ | S ∪ Se ∪ Ss ∪ Sr ∪ Scr | R
′ | CR′

TC-New

e : T | S | R | CR CRf = (C.init(U), ∅) Ss = {T <: U}
U is fresh R′|Sr

= mergeR(R) CR′|Scr
= mergeCR(CRf , CR)

new C(e) : C | S ∪ Ss ∪ Sr ∪ Scr | R
′ | CR′

TC-UCast
e : Te | Se | Re | CRe Ss = {Te <: C}

(C)e : C | Se ∪ Ss | Re | CRe

TC-DCast
e : Te | Se | Re | CRe Ss = {C <: Te} Sn = {C 6= Te}

(C)e : C | Se ∪ Ss ∪ Sn | Re | CRe

TC-SCast
e : Te | Se | Re | CRe Ss = {C ≮: Te} S′

s = {Te ≮: C}
(C)e : C | Se ∪ Ss ∪ S

′
s | Re | CRe

TC-Method

e : Te | Se | Re | CRe Sx = {C = Re(x) | x ∈ dom(Re)}
Sc = {Uc = Re(this) | this ∈ dom(Re)} Ss = {Te <: C0}

Re − this− x = ∅ Uc, Ud are fresh
CR|Scr

= mergeCR(CRe, (Uc .extends: Ud, ∅), (Ud.m : C → C0, ∅)opt)
C0 m(C x) {return e} OK | Se ∪ Ss ∪ Sc ∪ Scr ∪ Sx | Uc | CR

TC-Class

K = C(D′
g, C

′
f){super(g); this.f = f} M OK | S | U | CR

CR′|Scr
= mergeCR((D.init(D′), ∅), CR) Seq = {U = C}

class C extends D{C f ; K M} OK | S ∪ Seq ∪ Scr | CR
′

TC-Program

L OK | S | CR mergeCR(CR) = CR′|S′⊎
L

′∈L(removeMs(CR′, L′) ] removeFs(CR′, L′) ] removeCtor(CR′, L′)
] removeExt(CR′, L′)) = ∅|S

L OK | S ∪ S′ ∪ S

Figure 10 A co-contextual formulation of the type system of Featherweight Java.

we propagate both the constraints Se for e and the merge constraints Sf as the resulting
output constraints.

Typing rule TC-Invk is dual to T-Invk for method invocations. Similarly to field access,
the dual of method lookup is introducing a requirement for the method m and merge it
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with the requirements from the premises. Again, we choose fresh class variables for the
method signature U → U ′, marking a distinct occurrence of m. We type check the list e
of parameters, adding a subtype constraint T <: U , corresponding to the subtype check
in T-Invk. Finally, we merge all context and class table requirements propagated from the
receiver e and the parameters e, and all the constraints.

Typing rule TC-New is dual to T-New for object creation. We add a new class requirement
C.init(U) for the constructor of class C, corresponding to the fields operation in FJ. We
cannot look up the fields of C in the class table, therefore we assign fresh class variables U
for the constructor signature. We add the subtyping constraint T <: U for the parameters,
analogous to the subtype check in T-New. As in the other rules, we propagate a collective
merge of the propagated requirement structures/constraints from the subexpressions with
the newly created requirements/constraints.

Typing rules for casts, i.e., TC-UCast, TC-DCast and TC-SCast are straightforward adaptions
of their contextual counterparts following the same principles. These three type rules do
overlap. We do not distinguish them in the formalization, but to have an algorithmic
formulation, we implement different node names for each of them. That is, typing rules for
casts are syntactically distinguished.

4.2 Method Typing

The typing rule TC-Method is dual to T-Method for checking method declarations. For checking
the method body, the contextual version extends the empty typing context with entries for
the method parameters x and the self-reference this, which is implicitly in scope. Dually,
we remove the requirements on the parameters and self-reference in Re propagated from
the method body. Corresponding to extending an empty context, the removal should leave
no remaining requirements on the method body. Furthermore, the equality constraints Sx

ensure that the annotated class types for the parameters agree with the class types in Re.
2

This corresponds to binding the parameters to the annotated classes in a typing context.
Analogously, the constraints Sc deal with the self-reference. For the latter, we need to know
the associated class type, which in the absence of the class table is at this point unknown.
Hence, we assign a fresh class variable Uc for the yet to be determined class containing the
method declaration. The contextual rule T-Method further checks if the method declaration
correctly overrides another method declaration in the superclass, that is, if it exists in the
superclass must have the same type. We choose another fresh class variable Ud for the yet to
be determined superclass of Uc and add appropriate supertype and optional method override
requirements. We assign to the optional method requirement Ud.m the type of m declared
in Uc. If later is known that there exists a declaration for m in the actual type of Ud, the
optional requirement is considered and equality constraints are generated. These constraints
ensure that the required type of m in the optional requirement is the same as the provided
type of m in the actual superclass of Uc. Otherwise this optional method requirement is
invalidated and not considered. By doing so, we enable the feature of subtype polymorphism
for co-contextual FJ. Finally, we add the subtype constraint ensuring that the method body’s
type is conforming to the annotated return type.

2 Note that a parameter x occurs in the method body if and only if there is a requirement for x in Re (i.e.,
x ∈ dom(Re)), which is due to the bottom-up propagation. The same holds for the self-reference this.
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4.3 Class Typing
Typing rule TC-Class is used for checking class declarations. A declaration of a given class
C provides definite information on the identity of its superclass D, constructor, fields,
and methods signatures. Dual to the fields lookup for superclass D in T-Class, we add
the constructor requirement D.init(D′). We merge this requirement with all requirements
generated from type checking C’s method declarations M . Recall that typing of method m
yields a distinct class variable U for the enclosing class type, because we type check each
method declaration independently. Therefore, we add the constraints {U = C}, effectively
completing the method declarations with their enclosing class C.

4.4 Program Typing
Type rule TC-Program checks a list of class declarations L. Class declarations of all classes
provide a definite information on the identity of their super classes, constructor, fields,
methods signatures. Dual to adding clauses in the class table by constructing it, we remove
requirements with respect to the provided information from the declarations. Hence, dually
to class table being fully extended with clauses from all class declarations, requirements
are empty. The result of removing different clauses is a new set of requirement and a
set of constraints. Hence, we use notation ] to express the union of the returned tuples
(requirements and constraints), i.e., CR|S ]CR

′|S′ = CR ∪CR′|S∪S
′ After applying remove

to the set of requirements, the set should be empty at this point. A class requirement is
discharged from the set, either when performing remove operation (Section 3), or when it is
satisfied (all conditions hold).

As shown, we can systematically derive co-contextual typing rules for Featherweight Java
through duality.

5 Typing Equivalence

In this section, we prove the typing equivalence of expressions, methods, classes, and programs
between FJ and co-contextual FJ. That is, (1) we want to convey that an expression, method,
class and program is type checked in FJ if and only if it is type checked in co-contextual FJ,
and (2) that there is a correspondence relation between typing constructs for each typing
judgment.

We use σ to represent substitution, which is a set of bindings from class variables to class
types ({U 7→C}). projExt(CT) is a function that given a class table CT returns the immediate
subclass relation Σ of classes in CT . That is, Σ := {(C1,C2) | (C1 extends C2) ∈ CT}.
Given a set of constraints S and a relation between class types Σ, where projExt(CT ) = Σ,
then the solution to that set of constraints is a substitution, i.e., solve(S,Σ) = σ. Also
we assume that every element of the class table, i.e., super types, constructors, fields and
methods types are class type, namely ground types. Ground types are types that cannot be
substituted.

Initially, we prove equivalence for expressions. Let us first delineate the correspondence
relation. Correspondence states that a) the types of expressions are the same in both
formulations, b) provided variables in context are more than required ones in context
requirements and c) provided class members are more than required ones. Intuitively, an
expression to be well-typed in co-contextual FJ should have all requirements satisfied. Context
requirements are satisfied when for all required variables, we find the corresponding bindings
in context. Class table requirements are satisfied, when for all valid requirements, i.e., all
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conditions of a requirement hold, we can find a corresponding declaration in a class of the
same type as the required one, or in its superclasses. The relation between the class table
and class requirements is formally defined in our technical report [10].

I Definition 1 (Correspondence relation for expressions). Given judgments Γ;CT ` e : C,
e : T | S | R | CR, and solve(Σ, S) = σ, where projExt(CT ) = Σ. The correspondence
relation between Γ and R, CT and CR, written (C,Γ, CT ) B σ(T,R,CR), is defined as:
(a) C = σ(T )
(b) Γ ⊇ σ(R)
(c) CT satisfies σ(CR)

We stipulate two different theorems to state both directions of equivalence for expressions.

I Theorem 2 (Equivalence of expressions: ⇒). Given e, C, Γ, CT, if Γ;CT ` e : C, then
there exists T, S, R, CR, Σ, σ, where projExt(CT ) = Σ and solve(Σ, S) = σ, such that
e : T | S | R | CR holds, σ is a ground solution and (C,Γ, CT ) B σ(T,R,CR) holds.

I Theorem 3 (Equivalence of expressions: ⇐). Given e, T, S, R, CR, Σ, if e : T | S | R |
CR, solve(Σ, S) = σ, and σ is a ground solution, then there exists C, Γ, CT , such that
Γ;CT ` e : C, (C,Γ, CT ) B σ(T,R,CR) and projExt(CT ) = Σ.

Theorems 2 and 3 are proved by induction on the typing judgment of expressions. The
most challenging aspect consists in proving the relation between the class table and class
table requirements. In Theorem 2, the class table is given and the requirements are a
collective merge of the propagated requirement from the subexpressions with the newly
created requirements. In Theorem 3, the class table is not given,therefore we construct it
through the information retrieved from ground class requirements. We ensure class table
correctness and completeness with respect to the given requirements. First, we ensure that
the class table we construct is correct, i.e., types of extends, fields, and methods clauses we
add in the class table are equal to the types of the same extends, fields, and methods if
they already exist in the class table. Second, we ensure that the class table we construct is
complete, i.e., the constructed class table satisfies all given requirements.

Next, we present the theorem of equivalence for methods. The difference from expressions
is that there is no context, therefore no relation between context and context requirements is
required. Instead, the fresh class variable introduced in co-contextual FJ as a placeholder
for the actual class, where the method under scrutiny is type checked in, after substitution
should be the same as the class where the method is type checked in FJ.

I Theorem 4 (Equivalence of methods: ⇒).
Given m, C, CT, if C;CT ` C0 m(C x){return e}
OK, then there exists S, T, CR, Σ, σ, where projExt(CT ) = Σ and solve(Σ, S) = σ, such
that
C0 m(C x) {return e0} OK | S | T | CR holds, σ is a ground solution and
(C,CT ) Bm σ(T,CR) holds.

I Theorem 5 (Equivalence of methods: ⇐).
Given m, T, S, CR, Σ, if C0 m(C x) {return e0}
OK | S | T | CR, solve(Σ, S) = σ, and σ is a ground solution, then there exists C, CT , such
that C;CT ` C0 m(C x){return e} OK holds, (C,CT ) Bm σ(T,CR) and projExt(CT ) = Σ.

Theorems 5 and 6 are proved by induction on the typing judgment. The difficulty increases
in proving equivalence for methods because we have to consider the optional requirement,
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as introduced in the previous sections. It requires a different strategy to prove the relation
between the class table and optional requirements; we accomplish the proof by using case
distinction. We have a detailed proof for method declaration, and also how this affects class
table construction, and we prove a correct and complete construction of it.

Lastly, we present the theorem of equivalence for classes and programs.

I Theorem 6 (Equivalence of classes: ⇒). Given C, CT, if CT ` class C extends D {C f ;K
M} OK, then there exists S, CR, Σ, σ, where projExt(CT ) = Σ and solve(Σ, S) = σ,
such that class C extends D{C f ; K M} OK | S | CR holds, σ is a ground solution and
(CT ) Bc σ(CR) holds.

I Theorem 7 (Equivalence of classes: ⇐). Given C, CR, Σ, if class C extends D{C f ; K M}
OK | S | CR, solve(Σ, S) = σ, and σ is a ground solution, then there exists CT , such that
CT ` class C extends D {C f ;K M} OK holds, (CT ) Bc σ(CR) holds and projExt(CT ) =
Σ.

Theorems 8 and 9 are proved by induction on the typing judgment. Class declaration requires
to prove only the relation between the class table and class table requirements since there is
no context.

Typing rule for programs does not have as inputs context and class table, therefore
there is no relation between context, class table and requirements. The equivalence theorem
describes that a program in FJ and co-contextual FJ is well-typed.

I Theorem 8 (Equivalence for programs: ⇒). Given L, if L OK, then there exists S, Σ, σ,
where projExt(L) = Σ and solve(Σ, S) = σ, such that L OK | S holds and σ ground solution.

I Theorem 9 (Equivalence for programs: ⇐). Given L, if L OK | S, solve(Σ, S) = σ, where
projExt(L) = Σ, and σ is a ground solution, then L OK holds.

Theorems 10 and 11 are proved by induction on the typing judgment. In here, we prove
that a class table containing all clauses provided from the given class declarations is dual to
empty class table requirements in the inductive step.
We refer to our technical report [10] for omitted definitions, lemmas, and proofs.

6 Efficient Incremental FJ Type Checking

The co-contextual FJ model from Section 3 and 4 was designed such that it closely resembles
the formulation of the original FJ type system, where all differences are motivated by dually
replacing contextual operations with co-contextual ones. As such, this model served as a
good basis for the equivalence proof from the previous section. However, to obtain a type
checker implementation for co-contextual FJ that is amenable to efficient incrementalization,
we have to employ a number of behavior-preserving optimizations. In the present section,
we describe these optimization and the resulting incremental type checker implementation
for co-contextual FJ. The source code is available online at https://github.com/seba--/
incremental.

Condition normalization. In our formal model from Section 3 and 4, we represent context
requirements as a set of conditional class requirements CR ⊂ Creq × cond. Throughout type
checking, we add new class requirements using function merge, but we only discharge class
requirements in rule TC-Program at the very end of type checking. Since merge generates

https://github.com/seba--/incremental
https://github.com/seba--/incremental
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3 ∗ m ∗ n conditional requirements for inputs with m and n requirements respectively,
requirements quickly become intractable even for small programs.

The first optimization we conduct is to eagerly normalize conditions of class requirements.
Instead of representing conditions as a list of type equations and inequations, we map receiver
types to the following condition representation (shown as Scala code):

case class Condition(notGround: Set[CName], notVar: Set[UCName],
sameVar: Set[UCName], sameGroundAlternatives: Set[CName]).

A condition is true if the receiver type is different from all ground types (CName) and
unification variables (UCName) in notGround and notVar, if the receiver type is equal to all
unification variables in sameVar, and if sameGroundAlternatives is either empty or the receiver
type occurs in it. That is, if sameGroundAlternatives is non-empty, then it stores a set of
alternative ground types, one of which the receiver type must be equal to.

When adding an equation or inequation to the condition over a receiver type, we check
whether the condition becomes unsatisfiable. For example, when equating the receiver
type to the ground type C and notGround.contains(C), we mark the resulting condition to be
unsatisfiable. Recognizing unsatisfiable conditions has the immediate benefit of allowing us
to discard the corresponding class requirements right away. Unsatisfiable conditions occur
quite frequently because merge generates both equations and inequations for all receiver
types that occur in the two merged requirement sets.

If a condition is not unsatisfiable, we normalize it such that the following assertions are sat-
isfied: (i) the receiver type does not occur in any of the sets, (ii) sameGroundAlternatives.isEmpty
|| notGround.isEmpty, and (iii) notVar.intersect(sameVar).isEmpty. Since normalized conditions
are more compact, this optimization saves memory and time required for memory man-
agement. Moreover, it makes it easy to identify irrefutable conditions, which is the case
exactly when all four sets are empty, meaning that there are no further requisites on the
receiver type. Such knowledge is useful when merge generates conditional constraints, because
irrefutable conditions can be ignored. Finally, condition normalization is a prerequisite for
the subsequent optimization.

In-depth merging of conditional class requirements. In the work on co-contextual PCF [6],
the number of requirements of an expression was bound by the number of free variables
that occur in that expression. To this end, the merge operation used for co-contextual PCF
identifies subexpression requirements on the same free variable and merges them into a single
requirement. For example, the expression x+ x has only one requirement {x : U1}|{U1=U2},
even though the two subexpressions propagate two requirements {x : U1} and {x : U2},
respectively.

Unfortunately, the merge operation of co-contextual FJ given in Section 3.2 does not
enjoy this property. Instead of merging requirements, it merely collects them and updates
their conditions. A more in-depth merge of requirements is possible whenever two code
fragments require the same member from the same receiver type. For example, the expression
this.x + this.x needs only one requirement {U1.x() : U2}|{U1=U3,U2=U4}, even though the
two subexpressions propagate two requirements {U1.x() : U2} and {U3.x() : U4}, respectively.
Note that U1 = U3 because of the use of this in both subexpressions, but U2 = U4 because
of the in-depth merge.

However, conditions complicate the in-depth merging of class requirements: We may only
merge two requirements if we can also merge their conditions. That is, for conditional require-
ments (creq1, cond1) and (creq2, cond2) with the same receiver type, the merged requirement
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must have the condition cond1∨cond2. In general, we cannot express cond1∨cond2 using our
Condition representation from above because all fields except sameGroundAlternatives represent
conjunctive prerequisites, whereas sameGroundAlternatives represents disjunctive prerequi-
sites. Therefore, we only support in-depth merging when the conditions are identical up to
sameGroundAlternatives and we use the union operator to combine their sameGroundAlternatives
fields.

This optimization may seem a bit overly specific to certain use cases, but it turns out it is
generally applicable. The reason is that function removeExt creates requirements of the form
(D.f : T ′, cond ∪ (T = Ci)) transitively for all subclasses Ci of D where no class between
Ci and D defines field f . Our optimization combines these requirements into a single one,
roughly of the form (D.f : T ′, cond ∪ (T =

∨
i Ci)). Basically, this requirement concisely

states that D must provide a field f of type T ′ if the original receiver type T corresponds to
any of the subclasses Ci of D.

Incrementalization and continuous constraint solving. We adopt the general incremental-
ization strategy from co-contextual PCF [6]: Initially, type check the full program bottom-up
and memoize the typing output for each node (including class requirements and constraint
system). Then, upon a change to the program, recheck each node from the change to the
root of the program, reusing the memoized results from unchanged subtrees. This way,
incremental type checking asymptotically requires only logn steps for a program with n

nodes.
In our formal model of co-contextual FJ, we collect constraints during type checking and

solve them at the end to yield a substitution for the unification variables. As was discussed
by Erdweg et al. for co-contextual PCF [6], this strategy is inadequate for incremental
type checking, because we would memoize unsolved constraints and thus only obtain an
incremental constraint generator, but even a small change would entail that all constraints
had to be solved from scratch. In our implementation, we follow Erdweg et al.’s strategy of
continuously solving constraints as soon as they are generated, memoizing the resulting partial
constraint solutions. In particular, equality constraints that result from merge and remove
operations can be solved immediately to yield a substitution, while subtype constraints often
have to be deferred until more information about the inheritance hierarchy is available. In
the context of FJ with its nominal types, continuous constraint solving has the added benefit
of enabling additional requirement merging, for example, because two method requirements
share the same receiver type after substitution.

Tree balancing. Even with continuous constraint solving, co-contextual FJ as defined in
Section 4 still does not yield satisfactory incremental performance. The reason is that the
syntax tree is deformed due to the root node, which consists of a sequence of all class
declarations in the program. Thus, the root node has a branching factor only bound by the
number of classes in the program, whereas the rest of the tree has a relative small branching
factor bound by the number of arguments to a method. Since incremental type checking
recomputes each step from the changed node to the root node, the type checker would have
to repeat discharging class requirements at the root node after every code change, which
would seriously impair incremental performance.

To counter this effect, we apply tree balancing as our final optimization. Specifically,
instead of storing the class declarations as a sequence in the root node, we allow sequences
of class declarations to occur as inner nodes of the syntax tree:

L ::= L | class C extends D {C f ; K M}
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This allows us to layout a program’s class declarations structurally as in
((((C1 C2) C3) (C4 C5)) (C6 C7)), thus reducing the costs for rechecking any path from
a changed node to the root node. As part of this optimization, to satisfy requirements of
classes that occur in different tree nodes such as C1 and C6, we also neeed to propagate class
facts such as actual method signatures upwards. As consequence, we can now link classes in
any order without changing the type checking result.

We have implemented an incremental co-contextual FJ type checker in Scala using the
optimizations described here. In the following section, we present our run-time performance
evaluation.

7 Performance Evaluation

We have benchmarked the initial and incremental run-time performance of co-contextual
FJ implementation. However, this evaluation makes no claim to be complete, but rather is
intended to confirm the feasibility and potential of co-contextual FJ for incremental type
checking.

7.1 Evaluation on synthesized FJ programs

Input data. We synthesized FJ programs with 40 root classes that inherit from Object.
Each root class starts a binary tree in the inheritance hierarchy of height 5. Thus, each
root-class hierarchy contains 31 FJ class declarations. In total, our synthesized programs
have 31∗ 40 + 3 = 1243 class declarations, since we always require classes for natural numbers
Nat, Zero, and Succ.

Each class has at least a field of type Nat and each class has a single method that takes
no arguments and returns a Nat. We generated the method body according to one of three
schemes:

AccumSuper : The method adds the field’s value of this class to the result of calling the
method of the super class.
AccumPrev: Each class in root hierarchy k > 1 has an additional field that has the type
of the class at the same position in the previous root hierarchy k − 1. The method adds
the field’s value of this class to the result of calling the method of the class at the same
position in the previous root hierarchy k − 1, using the additional field as receiver object.
AccumPrevSuper : Combines the other two schemes; the method adds all three numbers.

We also varied the names used for the generated fields and methods:
Unique: Every name is unique.
Mirrored: Root hierarchies use the same names in the same classes, but names within a
single root hierarchy are unique.
Override: Root hierarchies use different names, but all classes within a single root
hierarchy use the same names for the same members.
Mir+Over : Combines the previous two schemes, that is, all classes in all root hierarchies
use the same names for the same members.

For evaluating the incremental performance, we invalidate the memoized results for the
three Nat classes. This is a critical case because all other classes depend on the Nat classes
and a change is traditionally hard to incrementalize.
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Table 1 Performance measurement results with k = 40 root classes in Milliseconds. Numbers
in parentheses indicate speedup relative to (javac/contextual) base lines.

Super javac / contextual co-contextual init co-contextual inc
unique 70.00 / 93.99 3117.73 (0.02x / 0.03x) 23.44 (2.9x / 4x)
mirrored 68.03 / 88.73 1860.18 (0.04x / 0.05x) 15.17 (4.5x / 6x)
override 73.18 / 107.83 513.44 (0.14x / 0.21x) 16.92 (4.3x / 6x)
mir+over 72.64 / 132.09 481.07 (0.15x / 0.27x) 16.60 (4.4x / 8x)

Prev javac / contextual co-contextual init co-contextual inc
unique 82.16 / 87.66 3402.28 (0.02x / 0.02x) 23.43 (3.5x / 4x)
mirrored 81.19 / 84.94 2136.42 (0.04x / 0.04x) 15.46 (5.3x / 5x)
override 81.51 / 120.60 840.14 (0.09x / 0.14x) 17.37 (4.7x / 7x)
mir+over 79.71 / 120.46 816.16 (0.09x / 0.15x) 16.61 (4.8x / 7x)

PrevSuper javac / contextual co-contextual init co-contextual inc
unique 93.12 / 104.03 6318.69 (0.01x / 0.02x) 26.26 (3.5x / 4x)
mirrored 95.41 / 100.00 5014.12 (0.02x / 0.02x) 15.71 (6.1x / 6x)
override 92.88 / 130.01 3601.44 (0.03x / 0.04x) 17.35 (5.4x / 7x)
mir+over 93.37 / 126.57 3579.90 (0.03x / 0.04x) 16.61 (5.6x / 8x)

Experimental setup. First, we measured the wall-clock time for the initial check of each
program using our co-contextual FJ implementation. Second, we measured the wall-clock
time for the incremental reanalysis after invalidating the memoized results of the three Nat
classes. Third, we measured the wall-clock time of checking the synthesized programs on
javac and on a straightforward implementation of contextual FJ for comparison. Contextual
FJ is the standard FJ described in Section 2, that uses contexts and class tables during type
checking. Our implementation of contextual FJ is up to 2-times slower than javac, because
it is not production quality. We used ScalaMeter3 to take care of JIT warm-up, garbage-
collection noise, etc. All measurements were conducted on a 3.1GHz duo-core MacBook Pro
with 16GB memory running the Java HotSpot 64-Bit Server VM build 25.111-b14 with 4GB
maximum heap space. We confirmed that confidence intervals were small.

Results. We show the measurement results in table 1. All numbers are in milliseconds. We
also show the speedups of initial and incremental run of co-contextual type checking relative
to both javac and contextual type checking.

As this data shows, the initial performance of co-contextual FJ is subpar: The initial type
check takes up to 68-times and 61-times longer than using javac and a standard contextual
checker respectively.

However, co-contextual FJ consistently yields high speedups for incremental checks. In
fact, it only takes between 3 and 21 code changes until co-contextual type checking is faster
overall. In an interactive code editing session where every keystroke or word could be
considered a code change, incremental co-contextual type checking will quickly break even
and outperform a contextual type checker or javac.

The reason that the initial run of co-contextual FJ induces such high slowdowns is
because the occurrence of class requirements is far removed from the occurrence of the

3 https://scalameter.github.io/

https://scalameter.github.io/
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corresponding class facts. This is true for the Nat classes that we merge with the synthesized
code at the top-most node as well as for dependencies from one root hierarchy to another
one. Therefore, the type checker has to propagate and merge class requirements for a long
time until finally discovering class facts that discharge them. We conducted an informal
exploratory experiment that revealed that the performance of the initial run can be greatly
reduced by bringing requirements and corresponding class facts closer together. On the other
hand, incremental performance is best when the changed code occurs as close to the root
node as possible, such that a change entails fewer rechecks. In future work, when scaling our
approach to full Java, we will explore different layouts for class declarations (e.g., following
the inheritance hierarchy or the package structure) and for reshuffling the layout of class
declarations during incremental type checking in order to keep frequently changing classes as
close to the root as possible.

7.2 Evaluation on real Java program
Input data. We conduct an evaluation for our co-contextual type checking on realistic
FJ programs. We wrote about 500 SLOCs in Java, implementing purely functional data
structures for binary search trees and red black trees. In the Java code, we only used
features supported by FJ and mechanically translated the Java code to FJ. For evaluating
the incremental performance, we invalidate the memoized results for the three Nat classes as
in the experiment above.

Experimental setup. Same as above.

Results. We show the measurements in milliseconds for the 500 lines of Java code.

javac / contextual co-contextual init co-contextual inc
14.88 / 3.74 48.07 (0.31x / 0.08x) 9.41 (1.6x / 0.39x)

Our own non-incremental contextual type checker is surprisingly fast compared to javac,
and not even our incremental co-contextual checker gets close to that performance. When
comparing javac and the co-contextual type checker, we observe that the initial performance
of the co-contextual type checker improved compared to the previous experiment, whereas
the incremental performance degraded. While the exact cause of this effect is unclear,
one explanation might be that the small input size in this experiment reduces the relative
performance loss of the initial co-contextual check, but also reduces the relative performance
gain of the incremental co-contextual check.

8 Related work

The work presented in this paper on co-contextual type checking for OO programming
languages, specifically for Featherweight Java, is inspired by the work on co-contextual type
checking for PCF [6]. OO languages and FJ impose features like nominal typing, subtype
polymorphism, and inheritance that are not covered in the work for co-contextual PCF [6]. In
particular, here we developed a solution for merging and removing requirements in presence
of nominal typing.

Introducing type variables as placeholders for the actual types of variables, classes, fields,
methods is a known technique in type inference [11, 12]. The difference is that we introduce
a fresh class variable for each occurrence of a method m or fields in different branches of the
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typing derivation. Since fresh class variables are generated independently, no coordination is
required while moving up the derivation tree, ensuring context and class table independence.
Type inference uses the context to coordinate type checking of m in different branches,
by using the same type variable. In contrast to type inference where context and class
table are available, we remove them (no actual context and class table). Hence, in type
inference inheritance relation between classes and members of the classes are given, whereas
in co-contextual FJ we establish these relations through requirements. That is, classes are
required to have certain members with unknown types and unknown inheritance relation,
dictated from the surrounding program.
Also, in contrast to bidirectional type checking [4, 5] that uses two sets of typing rules one for
inference and one for checking, we use one set of co-contextual type rules, and the direction of
type checking is all oriented bottom-up; types and requirements flow up. As in type inference,
bidirectional type checking uses context to look up variables. Whereas co-contextual FJ
has no context or class table, it uses requirements as a structure to record the required
information on fields, methods, such that it enables resolving class variables of the required
fields, methods to their actual types.

Co-contextual formulation of type rules for FJ is related to the work on principal
typing [9, 17], and especially to principal typing for Java-like languages [2]. A principal
typing [2] of each fragment (e.g., modules, packages, or classes) is associated with a set of
type constraints on classes, which represents all other possible typings and can be used to
check compatibility in all possible contexts. That is, principle typing finds the strongest
type of a source fragment in the weakest context. This is used for type inference and
separate compilation in FJ. They can deduce exact type constraints using a type inference
algorithm. We generalize this and do not only infer requirements on classes but also on method
parameters and the current class. Moreover, we developed a duality relation between the
class table and class requirements that enables the systematic development of co-contextual
type systems for OO languages beyond FJ.

Related to our co-contextual FJ is the formulations used in the context of compositional
compilation [1] (continuation of the work on principal typing [2]) and the compositional
explanation of type errors [3]. This type system [1] partially eliminate the class table,
namely only inside a fragment, and does not eliminate the context. Hence, type checking of
parameters and this is coordinated and subexpressions are coupled through dependencies on
the usage of context. In our work, we eliminate both class table (not only partially) and
context, therefore all dependencies are removed. By doing so we can enable compositional
compilation for individual methods. To resolve the type constraints on classes, compositional
compilation [2] needs a linker in addition to an inference algorithm (to deduce exact type
constraints), whereas, we use a constraint system and requirements. We use duality to derive
a co-contextual type system for FJ and we also ensure that both formulations are equivalent
(5). That is, we ensure that an expression, method, class, or program is well-typed in FJ if
and only if it is well-typed in co-contextual FJ, and that all requirements are fulfilled. In
contrast, compositional compilation rules do not check whether the inferred collection of
constraints on classes is satisfiable; they actually allow to derive judgments for any fragment,
even for those that are not statically correct.

Refactoring for generalization using type constraints [16, 15] is a technique Tip et al. used
to manipulate types and class hierarchies to enable refactoring. That work uses variable
type constraints as placeholders for changeable declarations. They use the constraints to
restrict when a refactoring can be performed. Tip et al. are interested to find a way to
represent the actual class hierarchy and to use constraints to have a safe refactoring and a
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well-typed program after refactoring. The constraint system used by Tip et al. is specialized
to refactoring, because different variable constraints and solving techniques are needed In
contrast, in our work, we use class variables as placeholders for the actual type of required
extends, constructors, fields, and methods of a class, in the lack of the class table. We want
to gradually learn the information about the class hierarchy. We are interested in the type
checking technique and how to co-contextualize it and use constraints for type refinement.

Adapton [7] is a programming language where the runtime system traces memory reads
and writes and selectively replays dependent computations when a memory change occurs.
In principle, this can be used to define an “incremental” contextual type checker. However,
due to the top-down threading of the context, most of the computation will be sensitive
to context changes and will have to be replayed, thus yielding unsatisfactory incremental
performance. Given a co-contextual formulation as developed in our paper, it might be
possible to define an efficient implementation in Adapton.

The works on smart/est recompilation [13, 14] have a different purpose from ours, namely
to achieve separate compilation they need algorithms for the inference and also the linking
phase specific to SML. In contrast, we use duality as a guiding principle to enable the
translation from FJ to co-contextual FJ. This technique allows us to do perform a systematic
(but yet not mechanical) translation from a given type system to the co-contextual one. Our
type system facilitates incremental type checking because we decouple the dependencies
between subexpressions and the smallest unit of compilation is any node in the syntax tree.
Moreover, we have investigated optimizations for facilitating the early solving of requirements
and constraints.

9 Conclusion and Future Work

In this paper, we presented a co-contextual type system for FJ by transforming the typing
rules in the traditional formulation into a form that replaces top-down propagated contexts
and class tables with bottom-up propagated context and class table requirements. We used
duality as a technique to derive co-contextual FJ’s typing rules from FJ’s typing rules. To
make the correspondence between class table and requirements, we presented class tables
that are gradually extended with information from the class declarations, and how to map
operations on contexts and class tables to their dual operations on context and class table
requirements. To cover the OO features of nominal typing, subtype polymorphism, and
implementation inheritance, co-contextual FJ uses conditional requirements, inequality
conditions, and conditional constraints. Also, it changes the set of requirements by adding
requirements with the different receiver from the ones defined by the surrounding program,
in the process of merging and removing requirements as the type checker moves upwards
and discovers class declarations. We proved the typing equivalence of expressions, methods,
classes, and programs between FJ and co-contextual FJ.

The co-contextual formulation of FJ typing rules enables incremental type checking
because it removes dependencies between subexpressions. We implemented an incremental
co-contextual FJ type checker. Also, we evaluated its performance on synthesized programs
up to 1243 FJ classes and 500 SLOCs of java programs.

There are several interesting directions for future work. In short term, we want to explore
parallel co-contextual type checking for FJ. A next step would be to develop a co-contextual
type system for full Java. Another interesting direction is to investigate co-contextual
formulation for gradual type systems.
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