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Summary

We are surrounded by all kinds of sounds at all times. What we hear varies with the physical

environment and our position. Room impulse responses (RIRs) characterize the effect of the

environment on a sound produced by a source. A first goal of this dissertation is to analyze

RIRs and investigate how to extract environmental information from RIRs. Immersive

digital environments, such as virtual reality (VR) and augmented reality (AR), play an

increasingly important role in society. Spatial audio, aiming to give listeners a 3D audio

experience, is vital to immersive digital environments. Omnidirectional RIRs do not provide

explicit spatial information for room acoustics applications. As a result, the description

and reproduction of the sound field is of great importance for spatial audio. Specifically,

we consider higher order ambisonics, which is the prevalent method to represent the

sound field around a listener. The synthesis of ambisonics signals is a second goal of this

dissertation.

Our first study applies deep learning based methods, including convolutional neural

networks (CNNs) and multilayer perceptrons (MLPs), to estimate room acoustic parameters

from omnidirectional RIRs. We estimate the room geometry and reflection coefficients, and

we determine the link of the reflection coefficients to the corresponding walls. Different

from the state-of-art methods, we only require a single omnidirectional RIR. For simulated

environments, the proposed estimation method can achieve an RMSE accuracy of 0.04
m accuracy for each dimension in room geometry estimation and 0.09 accuracy in the

reflection coefficients. For real-world environments, the room geometry estimation method

achieves an RMSE accuracy of 0.07 m for each dimension.

In our second study, we divide the estimation of room acoustic parameters into a two-

step process. The omnidirectional RIRs contain the room acoustic parameters implicitly.

We assume the time of arrivals (TOAs) of specular reflections carry this information. We

use transformer deep neural networks to estimate the TOAs of the direct path and specular

reflections up to the second order. The image source method describes the behavior of

the specular reflections. The TOAs of specular reflections (as determined by the image

source method) generally do not correspond to the peaks of real-world measured RIRs.

Hence we need to estimate the TOAs of specular reflections from omnidirectional RIRs.

We then use analytical methods to estimate room acoustic parameters using these TOAs.

Similarly to the first study, we only require a single omnidirectional RIR. The room acoustic

parameter estimation is based on a symmetry analysis of RIRs. It is robust to erroneous

pulses, non-specular reflections, and an unknown time offset. It can be applied to compute
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the distance between two parallel walls in any room if there exists at least one connecting

wall at 90 degrees. For real-world environments, the proposed method can achieve an

accuracy of an average of 0.06 m, 0.07 m, and 0.08 m on each dimension of room geometry,

source position, and receiver position, respectively, with a failure rate of 18.5%. Failures
can be reduced by repeated measurements.

Our third study focuses on listener perception. We investigate the necessary information

to integrate a new sound source in an existing immersive environment to give listeners a

plausible spatial audio experience. We consider localization and whether the new source is

perceived as part of the existing environment. We assume an auditory-only environment

and use ambisonics to reproduce the sound field. We focus on three attributes: the reflection

order, the ambisonics order, and the reverberation time. We use listening tests to determine

the quantitative relevance of these attributes. We conclude from the listening tests that

at least third order ambisonics signals are required and that a finite order of reflections,

for example ninth order RIRs, can perform as well as a full RIR. In addition, we find that

knowledge of only the correct reverberation time is insufficient.

In our final study, we provide methods to estimate the ambisonics room impulse

responses (ARRs) from omnidirectional RIRs using deep neural networks. The mapping

from omnidirectional RIRs to ARRs is not always feasible due to the symmetry of RIRs.

With a symmetry analysis of RIRs similar to that of the analytical method to estimate room

acoustic parameters, we add a weak assumption to make this mapping possible. We assume

the existence of at least two perpendicular walls in the environment. The ambisonics

representation is then restricted to be one of a finite set, with known transformations

between the set entries. We solve the estimation problem using CNNs and multi-task

variational autoencoders (VAEs). Our method requires only a single room impulse response

and obviates the need for specialized hardware for ambisonics measurement. The proposed

method can achieve a signal to distortion ratio of 17.62 dB on estimated first order ARRs

and 16.15 dB on estimated third order ARRs.
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Samenvatting

We worden voortdurend omringd door allerlei geluiden. Wat we horen varieert met de

fysieke omgeving en onze positie. Room impulse responses (RIRs) karakteriseren het effect

van de omgeving op een geluid geproduceerd door een bron. Een eerste doel van dit

proefschrift is het analyseren van RIR’s en onderzoeken hoe je omgevingsinformatie uit

RIR’s kunt halen. Immersieve digitale omgevingen, zoals virtual reality (VR) en augmented

reality (AR), spelen een steeds belangrijkere rol in de maatschappij. Ruimtelijke audio, met

als doel luisteraars een 3D-audio-ervaring te geven, is van vitaal belang voor immersieve

digitale omgevingen. Omnidirectionele RIR’s bieden geen expliciete ruimtelijke informatie

voor ruimteakoestiektoepassingen. Daarom is de beschrijving en weergave van het ge-

luidsveld van groot belang voor ruimtelijke audio. Specifiek beschouwen we hogere orde

ambisonics, de gangbare methode om het geluidsveld rond een luisteraar weer te geven.

De synthese van ambisonicsignalen is een tweede doel van dit proefschrift.

Onze eerste studie past deep learning-gebaseerde methoden toe, waaronder convoluti-

onele neurale netwerken (CNN’s) en meerlagige perceptrons (MLP’s), om de akoestische

parameters van de ruimte te schatten op basis van omnidirectionele RIR’s. We schatten de

geometrie van de ruimte en de reflectiecoëfficiënten, en we bepalen het verband tussen de

reflectiecoëfficiënten en de corresponderende muren. In tegenstelling tot de allernieuwste

methoden hebben we slechts één omnidirectionele RIR nodig. Voor gesimuleerde omgevin-

gen kan de voorgestelde schattingsmethode een RMSE-nauwkeurigheid bereiken van 0.04
m voor elke dimensie in de schatting van de ruimtegeometrie en 0.09 nauwkeurigheid in

de reflectiecoëfficiënten. Voor echte omgevingen bereikt de methode voor het schatten van

de ruimtegeometrie een RMSE-nauwkeurigheid van 0.07 m voor elke dimensie.

In ons tweede onderzoek verdelen we de schatting van de akoestische parameters van

de ruimte in twee stappen. De omnidirectionele RIR’s bevatten impliciet de akoestische

parameters van de ruimte. We nemen aan dat de aankomsttijden (TOA’s) van speculaire

reflecties deze informatie bevatten. We gebruiken diepe neurale netwerken met trans-

formatoren om de TOA’s van het directe pad en speculaire reflecties tot de tweede orde

te schatten. De beeldbronmethode beschrijft het gedrag van de speculaire reflecties. De

TOA’s van speculaire reflecties (zoals bepaald door de beeldbronmethode) komen over

het algemeen niet overeen met de pieken van in de echte wereld gemeten RIR’s. Daarom

moeten we de TOA’s van speculaire reflecties schatten op basis van omnidirectionele RIRs.

Vervolgens gebruiken we analytische methoden om de akoestische parameters van de

ruimte te schatten met behulp van deze TOA’s. Net als in de eerste studie hebben we
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slechts één omnidirectionele RIR nodig. De schatting van de akoestische parameters voor

de ruimte is gebaseerd op een symmetrieanalyse van de RIR’s. De schatting is robuust

voor foutieve RIR’s. Het is robuust voor foutieve pulsen, niet-speculaire reflecties en een

onbekende tijdafwijking. De methode kan worden toegepast om de afstand tussen twee

parallelle muren in een ruimte te berekenen als er ten minste één verbindende muur op 90

graden bestaat. Voor echte omgevingen kan de voorgestelde methode een nauwkeurigheid

bereiken van gemiddeld 0.06 m, 0.07 m en 0.08 m voor elke dimensie van respectieve-

lijk ruimtegeometrie, bronpositie en ontvangerpositie, met een foutpercentage van 18.5%.
Fouten kunnen worden verminderd door herhaalde metingen.

Onze derde studie richt zich op de perceptie van de luisteraar. We onderzoeken de infor-

matie die nodig is om een nieuwe geluidsbron te integreren in een bestaande immersieve

omgeving om luisteraars een plausibele ruimtelijke audio-ervaring te geven. We kijken

naar lokalisatie en of de nieuwe bron wordt waargenomen als onderdeel van de bestaande

omgeving. We gaan uit van een omgeving met alleen geluid en gebruiken ambisonics om

het geluidsveld te reproduceren. We richten ons op drie attributen: de reflectievolgorde,

de ambisonicsvolgorde en de nagalmtijd. We gebruiken luistertests om de kwantitatieve

relevantie van deze attributen te bepalen. Uit de luistertests concluderen we dat ten minste

derde-orde ambisonicsignalen nodig zijn en dat een eindige orde van reflecties, bijvoorbeeld

negende-orde RIRs, net zo goed kan presteren als een volledige RIR. Daarnaast vinden we

dat kennis van alleen de juiste nagalmtijd onvoldoende is.

In onze laatste studie bieden we methoden om de ambisonics kamerimpulsresponsies

(ARR’s) te schatten uit omnidirectionele RIR’s met behulp van diepe neurale netwerken.

De mapping van omnidirectionele RIR’s naar ARR’s is niet altijd haalbaar vanwege de

symmetrie van RIR’s. Met een symmetrieanalyse van RIR’s die vergelijkbaar is met die van

de analytische methode om akoestische parameters van ruimtes te schatten, voegen we een

zwakke aanname toe om deze mapping mogelijk te maken. We gaan uit van het bestaan

van ten minste twee loodrechte wanden in de omgeving. De ambisonische representatie

is dan beperkt tot een eindige set, met bekende transformaties tussen de items in de set.

We lossen het schattingsprobleem op met behulp van CNN’s en multitask variationele

autoencoders (VAE’s). Onze methode vereist slechts een impulsrespons van één kamer en

maakt gespecialiseerde hardware voor ambisonicsmetingen overbodig. De voorgestelde

methode kan een signaal/vervormingsverhouding bereiken van 17.62 dB voor geschatte

ARR’s van de eerste orde en 16.15 dB voor geschatte ARR’s van de derde orde.
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Introduction

"The important thing in science is not so much to obtain new facts as to discover new ways of
thinking about them."

Sir William Lawrence Bragg
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W
e hear all kinds of sounds from the world every day. Even if the source sound is

identical, we can hear the difference when we are in different environments. In an

outdoor environment, there is usually no reflection, and the sound we hear only depends

on its direction and distance. In a church, we can clearly hear the reverberant sound from

different directions due to the huge space and hard walls. In a small room, it is not easy to

distinguish between the direct sound and the reverberation. This illustrates that the sound

we hear carries environmental information. It is interesting and useful to investigate how

environmental information is represented in the sound and how sound changes with the

environment.

1.1 A brief overview of room acoustics
In this section, we give a brief overview of room acoustics. Specifically, we introduce room

impulse responses and different sound field reproduction techniques. Room impulse re-

sponses characterize the sound propagation in a room. Room impulse responses can benefit

many applications such as speech separation [1] and speech dereverberation [2]. Hence,

we aim to study room impulse responses from different aspects in this dissertation. Sound

field description and reproduction are essential for immersive audio-visual environments.

The description and reproduction of sound field is also a topic in this dissertation. We

discuss these two topics separately in this section.

1.1.1 Room impulse responses
Room acoustics describes sound propagation behavior in an enclosed space. When a sound

hits a boundary, reflection and absorption happen simultaneously. Upon reflection, both

the amplitude and the phase of the sound wave will change. As shown in Figure 1.1, the

reflection can be further divided into specular reflection and diffuse reflection. Specular

reflection follows the law of reflection where the incidence sound, the reflection sound,

and the normal of the surface lie in the same plane, and the incidence angle equals the

reflection angle [3]. The reflection coefficient is defined as the portion of the reflected

energy to the incident energy. Reflection coefficients are angle and frequency dependent.

Diffuse reflection can propagate in any direction from the surface [4], and results from the

roughness of the surface or reflecting on the edge of the surface.

The study of room acoustics is of great importance in a variety of fields. Room acoustics

design helps people build rooms for various purposes. For example, lecture rooms require

clear speech and concert halls may benefit from a long reverberation. Room acoustics is

also important in virtual reality and augmented reality, aiming to give users an immersive

experience. Room acoustic parameters, such as reverberation time, clarity, and late lateral

sound level, can be used to evaluate the nature of the sound field.

Room impulse responses (RIRs) characterize sound propagation from the source to the

receiver in an enclosed space. The pulses that are apparent in a RIR signal correspond
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Figure 1.1: A simplified 2D example of sound propagation and reflection in a 2D rectangular room.

to the direct sound and reflections. The room acoustic attributes lie in the RIRs. Room

impulse response measurement is usually time-consuming and requires specific hardware

and procedures. The basic principle behind a single measurement is that a source emits

an excitation signal and a receiver records the received signal simultaneously. The room

impulse response can then be estimated by various algorithms, such as deconvolution,

cross correlation, or a maximum a posteriori formulation [5]. The commonly used signals

include the maximum length sequence, the inverse repeated sequence, the time stretched

pulses, the sine sweep, and the choice of the emitted signal depends on the properties

of the environment [6]. Real-measured room impulse responses are of limited size and

only cover a limited combination of room acoustic parameters. Hence, simulated room

impulse responses are also of great importance in room acoustics applications. A range of

simulation methods exist [4], including the Finite-Element Method (FEM) [7–9], and the

image source method [10–13] .

1.1.2 Sound field description and reproduction
Immersive digital environments, such as virtual reality and augmented reality, are rapidly

becoming commonplace. The term immersive digital environment refers to an artificial

interactive scenario, allowing users to immerse themselves [14]. This new technology

has many applications, and relevant technologies are under development. Augmented

reality (AR) is a specific immersive audio-visual environment that provides users with
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an interactive and enhanced experience in the real world with added artificial objects

[15]. It can be used in various applications, such as education and entertainment. One

primary attribute of a believable AR system is spatial audio, which aims to create a 3D

audio experience. As a consequence, the description and reproduction of the acoustical

environment are of great importance. Sound field reproduction aims to minimize the

distance between an original sound field and an artificial sound field synthesized with

loudspeakers. A good sound field reproduction system should be able to give listeners the

same listening experience as the original recording environment. The original sound field

is usually represented by the sound pressure in the listening area over time or frequency.

An array of loudspeakers is referred to as a set of secondary sources, which are responsible

for reproducing the sound field. For the sound field reproduction problem, the target sound

field is given over a predefined region, and the signals of the secondary sources need to be

determined. In this subsection, we introduce the representation of sound field and sound

field rendering methods using loudspeakers.

Higher order ambisonics (HOA) is a commonly used representation of the sound field.

HOA is an extension of the original first-order ambisonics system developed by Gerzon [16].

It describes the sound field around the listener by means of a small set of temporal signals.

In other words, ambisonics [16–18] takes the listener central view instead of depending on

the description of specific sound sources. Ambisonics is based on the spherical harmonic

decomposition of the sound field. For a spherical volume, the spherical harmonic expansion

of the sound field and the Kirchhoff–Helmholtz integral are equivalent [18]. The order of

ambisonics refers to the truncation order of the spherical harmonics expansion. Zero-th

order ambisonics representations contain the pressure information, first-order ambisonics

contain the acoustic velocity information, and the higher order ambisonics representations

include higher order derivatives of the sound field. Ambisonics representations can be

recorded by a sound field microphone, for example, a B-format microphone [19]. Recording

of higher order ambisonics representations can also use multipole microphones or circular

microphone arrays [20]. Ambisonics represents the sound field for the so-called interior

case, where all sources lie outside the region of interest. Thus, ambisonics is a particular

representation of the interior-case solution to the acoustic wave equation or, equivalently,

the Helmholtz equation.

Rendering the ambisonics representations often uses the mode matching method, which

aims to match the modes, i.e., spherical wavefunctions [21]. In other words, the driving

signals are solved to make sure the expansion coefficients of the spherical wavefunctions

of the reproduced sound field are equal to that of the ground truth sound field [18, 22]. It

uses a flexible number of secondary sources at a distance. Generally, the secondary sources

are assumed to emit plane waves that synthesize the sound field. Ambisonics can only

accurately reproduce a limited area. The size of the sweet zone is related to the number of

secondary sources, frequency, and ambisonics order. Ambisonics rendering can suffer from

truncation and aliasing errors [18]. Ambisonics can be applied to reproduce the sound
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field within a reverberant environment by considering image sources of loudspeakers as

secondary sources. Still, the implementation requires further research [18]. Near field

higher order ambisonics [23, 24] was developed from higher order ambisonics where the

secondary sources are assumed to be monopoles at a finite distance. Distance-coding filters

are designed in [23] to compensate for the near field effect. An efficient and parametric al-

gorithm to realize a recursive filter is proposed in [24] but only applies to a 2.5-dimensional

sound field, where 3D secondary sources are used to reproduce a 2D sound field. Higher

order loudspeakers, i.e., compact loudspeaker arrays with different radiation patterns, are

employed for the mode-matching method [25]. Higher order loudspeakers can reduce the

number of required loudspeakers. A weighted mode matching method is proposed in [21]

for higher accuracy, where the sound field reproduction is formulated as an optimization

problem, and the driving signal is computed with the spherical wavefunction expansion.

The boundary surface control technique can also be used for immersive sound field repro-

duction [26]. It also requires a large number of loudspeakers and can accurately reproduce

the sound field. Experiments show the algorithm performs well on horizontal localization

but needs improvement on vertical localization and distance recognition [26].

Wave field synthesis (WFS) is one commonly used sound field method. WFS was first

proposed by Berkhout [27, 28] where the sound field generated by a virtual source within

a region is reproduced by a large number of loudspeakers placed on the boundary of

the listening area. The original sound field can be recorded by source-oriented directive

microphones placed on the boundary of the original area [28]. Wave field synthesis is based

on the Huygens–Fresnel principle, the Kirchhoff–Helmholtz integral, and the Rayleigh I

Integral. The Huygens–Fresnel principle states that any wavefront can be represented as a

superposition of elementary spherical waves [29]. The Kirchhoff–Helmholtz integral states

that the sound field of a source-free region is known if the sound pressure and velocity

on and point of its surface are known [30]. The Rayleigh I Integral states that continuous

planar monopole secondary sources can synthesize a source-free sound field driven by any

distribution of original sources [31]. Monopole or dipole secondary sources are densely

and equally placed on the boundary of the region. The secondary source driving signal

depends on the virtual source and the geometry of the sound field reproduction system and

can be calculated by the normal derivative of the sound pressure [30]. The virtual source is

usually placed behind the loudspeaker arrays. In addition to the virtual source, WFS can

also reproduce the sound field generated by the focused source, which refers to the source

that is placed between the physical secondary sources and the receiver [32]. The driving

signals of both types of sources are computed in the same way.

A benefit of the wave field synthesis is that it can reproduce the sound field correctly

over a half space separated by a set of secondary sources [30]. Hence it can be applied

to reproduce a spatially large sound field. Since it is impossible to implement an infinite

continuous distribution of secondary sources, there will be truncation and spatial aliasing

artifacts in practice [30]. The practical disadvantage of wave field synthesis is that it
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requires many secondary sources, resulting in expensive computation costs. In [33] and

[34], a local wave field synthesis method is proposed that results in improved accuracy

in a smaller local region and allows more artifacts outside this region. The accuracy of

the synthesized found field depends on the density of the secondary source distribution,

i.e., increasing the density of the distribution improves the accuracy [33]. For local wave

field synthesis, a limited harmonic order of sound field expansion is used to compute the

driving signal in [34]. Multiactuator panels, as a special type of planar loudspeaker array,

which can be used as an alternative to classical loudspeaker array, were proposed for wave

field synthesis [35]. Multiactuator panels show some advantages, such as being able to

integrate into rooms and diffuse radiation, but face structural and geometric issues [35].

In addition to mode matching methods and wave field synthesis, pressure matching

methods can also be used for sound field reproduction. With pressure based methods,

the signals, positions, and number of the secondary sources are optimized to minimize

the sound pressure difference between the reproduced sound field and the ground truth

measured by microphones at any number of observation points over the target region.

The underlying principle is similar in that it is based on Kirchhoff–Helmholtz Integral

and secondary sources are used to approximate the original sound field under a certain

criterion. A least-squares criterion to measure the sound pressure difference is commonly

adopted. To avoid the unrealizable solutions due to the ill-conditioned matrix of the least

squares criterion, regularisation is often used to improve the sound field reproduction

performance [36–39]. The methods based on the least-squares criterion are appropriate for

low frequencies since in high frequencies, least-squares solutions can result in artifacts due

to power leakage, which refers to more power being allocated to closer loudspeakers [40].

In addition, the least-squares solutions allocate powers to all secondary sources instead of

a few active secondary sources. For better performance at high frequencies and sparser

secondary sources, usage of the least-absolute shrinkage and selection operator (Lasso) was

proposed in [40], where the loudspeaker weights are optimized in the frequency domain for

each frequency. To avoid the inverse Fourier transform of loudspeaker weights using Lasso,

a time-domain iterative mixed-norm constraint optimization algorithm based on group

Lasso was proposed in [41]. The method can accurately reproduce the sound field with a

few loudspeakers and significantly outperforms the least-square criterion. In addition to

the above conventional signal processing based sound field reproduction, deep learning

was proposed to solve this problem recently [42] and shows advantages over Lasso-based

methods in noise sensitivity and computational speed.

The reverberation of the secondary sources in the physical reproducing environment

degrades the sound field reproduction quality. To reduce the interference reverberation,

several methods are proposed. Passive compensation refers to the method where the

materials of the listening room are changed to compensate for reflections. However,

the installation is expensive and impractical for use [43]. In the active compensation

method, the room impulse responses between the secondary sources and the receivers
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are measured and used to design the filters for the loudspeakers, which demands quite

a few processing [43–46]. The active compensation methods require calibration of the

loudspeakers [47]. Spherical arrays of fixed-directivity loudspeakers are used in [47] for

sound field reproduction in a reverberant environment without compensation. The special

setup of the loudspeaker reduces the reverberation within the array compared to the direct

sound. It is simpler than the active compensation methods but with a lower reduction of

reverberation effect [47].

1.2 Motivation and research objectives
As discussed, room acoustics describes how sounds interact with acoustical environments.

We are interested in this interaction. Hence, we need room impulse responses which

only change with the positions of sources and receivers in a room. We would like to

investigate the underlying information contained in a room impulse response in an enclosed

environment. The general goal of this dissertation is the analysis and development of

processing methods of room impulse responses. Specifically, we address the following

research questions in detail in this dissertation.

Question 1. How can we extract room acoustic parameters from a room impulse response?
Can we analyze it using an analytical method or a deep learning based method? What are the
differences between these two kinds of methods?

We refer to the room geometry, reflection coefficients, and source and receiver positions

as room acoustic parameters in the context of this dissertation. When we know these

room acoustic parameters, we can synthesize the corresponding room impulse responses

using simulation methods. However, it is hard to derive these parameters directly from

a room impulse response. Many algorithms [48–62] have been proposed to solve this

problem, most are based on using multiple room impulse responses with prior information.

However, it is impractical to assume the knowledge of prior information, such as the layout

of sources and receivers, or the availability of multiple room impulse responses. Hence, we

want to know whether we can extract these room acoustic parameters from a single room

impulse response without prior information. We aim to solve this question via two different

methods. The first method is to directly apply deep learning method to omnidirectional

RIRs to estimate room geometry and reflection coefficients. For the second method, we

divide it into a two-step process to investigate how these parameters are extracted. We

hypothesize the TOAs are extracted first and the TOAs are used to estimate the room

acoustic parameters. We apply a deep learning based method to estimate TOAs from RIRs.

We then solve the room acoustic parameter estimation problem via an anlytical method,

which helps us to better understand how these room acoustic parameters contain in the

structure of RIRs.

Omnidirectional room impulse responses do not always provide enough spatial infor-

mation explicitly for room acoustics. For a realistic listening experience in room acoustics,
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we choose ambisonics as a representation of the sound field as discussed in Section 1.1. We

choose ambisonics since it does not depend on the layout of secondary sources and facili-

tates storage and transmission. In addition, when ambisonics are used for an immersive

audio-visual environment, the head rotations are easy to model in the spherical harmonics

domain. The combination with ambisonics leads to our second and third research questions

for this dissertation.

Question 2. What attributes are required for a new virtual acoustic source to be consistent
with a pre-defined physical context?

To give listeners a realistic listening experience, a perceptually accurate description of

the acoustic scenario is needed. It is useful to determine what precision is needed for a

perceptually accurate description. A precise description may require significant latency.

However, real-time reproduction also affects the listening experience, especially when

visual cues are included. A mismatch is not pleasant for the user. As a consequence, there

is a trade-off between the precise description and the real-time reproduction. We aim to

determine the balance point, i.e., the necessary attributes to include a new virtual acoustic

source in a predefined acoustical scenario for a realistic listening experience.

Question 3. Is it possible to estimate an ambisonics room impulse response from a single
omnidirectional room impulse response?

Ambisonics room impulse responses contain directional information, which is implicitly

contained in omnidirectional room impulse responses if certain conditions are met. As

indicated by research question 1, the room acoustic parameters can be estimated from a

single omnidirectional room impulse response. This indicates it is also possible to directly

estimate ambisonics room impulse responses from omnidirectional room impulse responses

using a deep learning based method.

1.3 Contributions and outline of the dissertation
In this section, we describe the outline of this dissertation and summarize the contribution

of each chapter.

Chapter 2: Background
This chapter provides essential background information as the basis of this dissertation.

To begin with, some basic theory of the sound field is introduced, which is the mathemat-

ical and physical fundamental knowledge used in this dissertation. Next, room impulse

responses are described in detail since room impulse responses are the focus of the dis-

sertation. Different kinds of room impulse response simulation methods are described.

In addition, the state-of-art estimation of room acoustic parameters from room impulse

responses is reviewed. After the description of room impulse responses, ambisonics is

discussed in detail since ambisonics is another research focus of this dissertation. Higher

order ambisonics and corresponding audio rendering methods are presented. In addition,
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we define the ambisonics room impulse response and review the algorithms to estimate

binaural room impulse responses, providing background information for the following

chapters. At the end of Chapter 2, we provide a general overview of deep learning, which is

an essential tool in this dissertation to solve our research questions. Specifically, we discuss

multilayer perceptrons, convolutional neural networks, and the variational autoencoders.

Chapter 3: Room acoustic parameter estimation from room
impulse responses using deep neural networks
This chapter answers another part of the research question 1, i.e., how to estimate room

acoustic parameters using deep learning from a single room impulse response. The pro-

posed method utilizes convolutional neural networks to estimate the room geometry and

multilayer perceptrons to estimate the reflection coefficients. We do not require knowledge

of the relative positions of sources and receivers in the room. The method can be used with

only a single RIR between one source and one receiver. We show the new room geometry

estimation model performs well with real-world measured RIRs. The deep learning based

method is more robust to additive errors, irregular room shapes, and obstacles. In addition,

it can be generalized to real-world measurements.

Chapter 4: Estimation of TOAs and Room Acoustic Parameters
from an Omnidirectional Room Impulse Response
This chapter partially answers research question 1, i.e., estimating TOAs from a single

room impulse response and using analytical methods to estimate room acoustic parameters.

We utilize the transformer to estimate the time of arrivals of the direct path and specular

reflections up to the second order. The image source method describes the TOAs of specular

reflections, which might not correspond to peaks in real RIRs. As a result, we estimate

TOAs described by the image source method. The estimated TOAs are used as inputs of

the proposed analytical method. The proposed method is based on a symmetry analysis

of the room impulse response. We show its robustness to erroneous pulses, non-specular

reflections, and an unknown offset. The method can be applied to any room with parallel

walls as long as the required arrival times of reflections are available and there exist

adjacent walls at an angle of 90 degrees. In contrast to the state-of-the-art method, we

do not restrict the location of the source and receiver and the number of room impulse

responses. The proposed method achieves about the same accuracy as the method of

Chapter 3 for real-measured data. Once the room acoustic parameters are estimated, we

can also synthesize ambisonics room impulse responses with these parameters based on

the image source method. This chapter also provides an analytical solution to research

question 3.
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Chapter 5: Necessary attributes for integrating a virtual
source in an acoustic scenario
This chapter addresses the answer to research question 2. It investigates how one can

integrate a new source into an existing immersive environment with finite information

about the environment. We study what is required to integrate a new sound source into

an acoustic scene so that people can perceive the new source as a natural component of

the acoustic scene and in the correct direction. In this work, we do not consider the head

rotation since it can be easily modeled using ambisonics. Through listening tests, we found

at least third order ambisonics is required to integrate a new source. In addition, a finite

number of early reflections can perform equally well to an entire room impulse response

when a new source is added to an existing scenario. However, only a correct reverberation

time is not sufficient.

Chapter 6: Ambisonics room impulse response generation from
omnidirectional room impulse response using deep neural
networks
This chapter provides a solution to research question 3, i.e., the ARR estimation from

RIRs using deep neural networks. Generating an ambisonics representation from an

omnidirectional signal is not always feasible. We show this mapping is possible in a

room. The feasibility relies on the degeneracy of RIRs in a room. Our novel method only

requires a single room impulse response without additional information if we only want

to estimate ARR and reproduce the immersive environment. Suppose we want to apply

the estimated ARR in an audiovisual environment, such as AR. In that case, we need

additional information, for example, an image, to determine which mode it belongs to

and the alignment between the coordinates of the image and the ARR. Our method is

based on the image source method [13], which is sufficient for plausible augmented reality

generation.

Chapter 7: Conclusion
In this chapter, we conclude the dissertation and summarise the contributions. In addition,

we propose some open questions and give suggestions on solving these questions.

1.4 List of publications
This section lists all the papers during the PhD project, including submitted and published

papers.
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2
Background

This chapter aims to provide essential background knowledge of this dissertation, which helps
the understanding of the algorithms in the following chapters. This chapter introduces room
impulse responses, ambisonics, and deep learning.
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To start with, this chapter discusses the fundamental theory of the sound field in Section

2.1. The room impulse response (RIR) is the most important signal that we focus on in this

dissertation. We analyze RIRs for estimating room acoustic parameters in Chapter 4, use

deep learning based methods to estimate room geometry and reflection coefficients from

RIRs in Chapter 3, examine the necessary information of RIRs to integrate a new acoustic

source in Chapter 5, and estimate ambisonics room impulse response from RIRs in Chapter

6. Hence, it is of great importance that we describe RIRs as background information and

we focus on omnidirectional RIRs in Section 2.2. Ambisonics is another crucial aspect in

the dissertation since it is used in Chapter 5 as a rendering tool, and ambisonics room

impulse response is our target signal in Chapter 6. We introduce ambisonics in Section 2.3.

The estimation of room acoustic parameters in Chapter 3 and ambisonics room impulse

response in Chapter 6 both use deep learning, which is discussed in Section 2.4.

2.1 Basic theory of Sound fields
A sound field is a composition of many plane waves of different phases, amplitude, and

direction. To describe the sound field physically, let 𝑝(𝒙, 𝑡) denote the sound field where 𝑝
is the pressure of the sound field and 𝒙 and 𝑡 denote the position and the time respectively.

We first need to introduce wave equation [31] in a source free area, which is

Δ𝑝(𝒙, 𝑡)−
1
𝑐2
𝜕2𝑝(𝒙, 𝑡)
𝜕𝑡2

= 0, (2.1)

where Δ is the Laplacian operator, and 𝑐 denotes the speed of sound. (2.1) is a linear, lossless
wave equation that describes the sound propagation in a quiescent, homogeneous, inviscid,

non-heat-conducting, isotropic, perfectly elastic medium [63, 64]. If we apply Fourier

transform to (2.1) in time domain, then we obtain the homogeneous Helmholtz equation

[10, 31], which is

Δ𝑝(𝒙,𝑘)+𝑘2𝑝(𝒙,𝑘) = 0, (2.2)

where 𝑘 = 𝜔
𝑐 denotes the temporal frequency, 𝜔 is frequency in rad/s, and 𝑐 is the speed of

the sound.

For plane waves, the sound pressure is constant on any plane perpendicular to the

propagation direction, where wave fronts refer to the planes with constant sound pressure

and wave normal refers to the perpendicular lines of the wave fronts [10]. The expression

of a plane wave propagating along the 𝑥 direction at time 𝑡 can be written as

𝑝(𝑥, 𝑡,𝜔) = 𝑝̂ exp[𝑖(𝜔𝑡 −𝑘𝑥)], (2.3)

where 𝑝̂ is a constant which denotes the amplitude of the plane wave. In addition to

plane waves, the sound field can also be a composition of spherical waves. In contrast, the

wave fronts of spherical waves are concentric spheres generated from a point source [10].
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Let 𝑟 denotes the distance, 𝑝ℎ𝑖 denotes the direction, and 𝑡ℎ𝑒𝑡𝑎 denotes the elevation, the
expression for a spherical wave is

𝑝(𝑟,𝜙,𝜃, 𝑡,𝜔) =
𝐴
𝑟
Γ(𝜙,𝜃) ⋅ exp[𝑖(𝜔𝑡 −𝑘𝑥)], (2.4)

where Γ(𝜙,𝜃) is a normalized directional factor to make its absolute maximum equal to 1,
and 𝐴 is a constant.

There exist severalmethods to represent the sound field, such as the Kirchhoff–Helmholtz

integral and spherical harmonics. The Kirchhoff–Helmholtz integral represents the sound

field via the sound pressure and velocity on the boundary. It is the basis of the wave field

synthesis [27, 28, 30] and the boundary element method [65, 66], which will be discussed

in Section 2.2. Spherical harmonics form a set of orthogonal and complete basis functions.

It is the basis of ambisonics, which will be discussed in detail in Section 2.3.

2.2 Room impulse response
A room impulse response models the acoustic environment between a sound source and

a receiver in a room. A RIR is composed of a direct signal, early reflections, and late

reverberation. Reflections can be divided into specular reflections, which follow the law of

reflection, and diffuse reflections, which can propagate in any direction from the surface

[4]. RIRs are widely studied in various works, for example, speech dereverberation [67, 68].

In this section, we describe the RIR simulation methods and room acoustical parameter

estimation from RIR.

2.2.1 Simulation methods
There exist many algorithms for RIR simulation. The two main categories of methods to

simulate RIRs are the wave equation (or wave) based methods and the geometrical acoustics

based methods. For each method, we give a brief tutorial to explain how it works and

discuss the advantages and disadvantages in this subsection.

Wave based methods
Wave based methods [10, 69, 70] simulate RIRs numerically and accurately. The acoustic

space needs to be discretized to solve wave equations using wave based methods. They

include the Finite-Element Method (FEM) [7–9], the Boundary-Element Method (BEM) [65,

66], and the Finite-Difference Time Domain (FDTD) [71–74] based methods. Wave based

methods can achieve high accuracy. However, these methods require a high computational

effort, especially for high frequencies.

The Finite-Element Method The Finite-Element Method [7–9] is a numerical method

for room impulse response calculation in an enclosed space [73]. FEM can model RIRs in
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complicated room geometries with complex boundary conditions [75]. However, it requires

that the size of each element must be much smaller than the size of the wavelength at the

solved frequency, which is often set to six to ten elements per wavelength [75, 76]. The

FEM method also faces some challenges, such as computational cost and the pollution

effect [75]. To use FEM, the acoustic space is first divided into grids with non-overlapping

and interconnected elements with nodes. Smaller elements result in smaller errors. We

then have a mesh of finite elements with discrete nodes, and the physical quantities are

described in each element [75]. The sound pressure can be approximated as

𝑝(𝒙) ≈
𝑛
∑
𝑗=1

𝑁𝑗 (𝒙)𝑝𝑗 , (2.5)

where 𝑛 is the number of nodes, 𝑁𝑗 and 𝑝𝑗 are the shape function and sound pressure

of the 𝑗-th node respectively. Many element shapes, such as line, triangular, tetrahedral,

and pyramidal, can be considered depending on the applications. To reduce the order of

equations and include the boundary conditions, a weak variational formulation of the wave

equation (2.1) is introduced as

∫
Ω
[∇𝜔 ⋅∇𝑝+𝜔(

1
𝑐2
𝜕2𝑝
𝜕𝑡2

)]dΩ+∫
Γ𝑧
(𝜔

1
𝑐𝜁
𝜕𝑝
𝜕𝑡

)dΓ𝑧 = −∫
Γ𝑠
(𝜔𝜌

𝜕𝑣𝑛
𝜕𝑡

)dΓ𝑠 , (2.6)

where Ω is the domain, 𝜔 is a continuous and differentiable weighting function referred to

as a test function, Γ𝑠 is the vibrating surface of the boundary, Γ𝑧 is the boundary surface

with an impedance condition, 𝑣𝑛 is the velocity normal to the surface, and 𝜁 is a normalized

acoustic impedance. Then (2.6) can be discretized as

𝐊𝐩+𝐂𝐩̇+𝐌𝐩̈ = 𝐪, (2.7)

where ̇ and ̈ correspond to the first-order and second-order time derivatives, respectively,

𝐪 is a source term, writing the shape function 𝑁𝑗 in vector form as 𝐍, and then 𝐊, 𝐂,𝐌 are

stiffness, damping, and mass matrices over each element and can be computed as

𝐊 = ∫ ∇𝐍𝑇 ⋅ ∇𝐍d𝑉 , (2.8)

𝐂 =
1
𝑐𝜁 ∫

𝐍𝑇 ⋅ 𝐍d𝑆, (2.9)

𝐌=
1
𝑐2 ∫

𝐍𝑇 ⋅ 𝐍d𝑉 . (2.10)

The discretized wave equation can be solved in the modal domain, the frequency domain,

or the time domain.
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The modal domain solutions of the FEM system neglect sources and use eigenvalue

analysis [75]. Assuming the sound pressure pressure is time-harmonic, i.e., 𝑝 ∼ 𝑒𝑖𝜔𝑡 and
applying the Fourier transform in time to (2.7), the quadratic eigenvalue problem can be

formulated as

[𝐊+𝜆𝐂+𝜆2𝐌]𝝓 = 𝟎, (2.11)

where 𝜆 = 𝑖𝜔 is an eigenvalue and 𝝓 is an eigenmode. The methods to solve eigenvalue

problems can be employed to solve (2.11) [75, 77].

The frequency domain solution also assumes time harmonic sound pressure [75, 78].

Combining with (2.7), we obtain

𝐀𝐩𝑓 = 𝐪𝑓 , (2.12)

where 𝐩𝑓 is the sound pressure in the frequency domain, 𝐀 = [𝐊+ 𝑖𝜔𝐂−𝜔2𝐌] denotes the
global stiffness matrix and the source term in the frequency domain can be defined as

𝐪𝑓 = −𝑖𝜔𝜌∫ 𝐍𝑇 𝑢̂(𝜔)d𝑆, (2.13)

with 𝑢̂(𝜔) being the complex valued amplitude of the normal velocity. The frequency

domain solution can be obtained by inverting 𝐀 for each frequency using solvers, for

example, Gaussian elimination [75, 79]. The inversion is computationally expensive at high

frequencies for high accuracy. Taking the inverse Fourier transform to get time domain

RIRs can result in non-causal RIRs [78].

The time-stepping approach, also known as Newmark-beta method, solves (2.7) in the

time domain as [75, 78, 80]

[𝐌+
Δ𝑡
2
𝐂+[𝛽(Δ𝑡)2]𝐊]𝐩̈𝑡+Δ𝑡 = 𝐪𝑡+Δ𝑡 −𝐂𝐫𝑡 −𝐊𝐬𝑡 , (2.14)

where the sound pressure and its first order derivative with respect to time are

𝐩𝑡+Δ𝑡 = 𝐩𝑡 +(Δ𝑡)𝐩̇𝑡 +(Δ𝑡)2(
1
2
−𝛽)𝐩̈𝑡 +[(Δ𝑡)2𝛽]𝐩̈𝑡+Δ𝑡 , (2.15)

𝐩̇𝑡+Δ𝑡 = 𝐩̇𝑡 +(Δ𝑡)(1−𝛾)𝐩̈𝑡 +[(Δ𝑡)𝛾]𝐩̈𝑡+Δ𝑡 , (2.16)

with Δ𝑡 being a time step, 𝛾 and 𝛽 being hyperparameters which control the performance,

and

𝐫𝑡 = 𝐩̇𝑡 +
Δ𝑡
2
𝐩̈𝑡 , (2.17)

𝐬𝑡 = 𝐩𝑡 +(Δ𝑡)𝐩̇𝑡 +(
1
2
−𝛽)(Δ𝑡)2𝐩̈𝑡 . (2.18)

We can then solve (2.14) for 𝐩̈𝑡+Δ𝑡 using a direct or iterative method [75, 80–82]. The time

domain solution is difficult to use for frequency dependent boundary conditions, and the

time step determines the stability [78].
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The Boundary-Element Method The Boundary-Element Method [65, 66] is similar to

the FEM. The difference lies in that the surface of the boundary of the acoustic space is

divided into elements instead of the space, and the elements can either be continuous or

discontinuous [73, 83]. BEM can work for both interior problems and exterior problems.

Calculating on the boundary instead of the acoustic space changes the problem from 3D

to 2D, which results in a smaller boundary element matrix and requires fewer elements

for the same accuracy, but complex asymmetry and non-sparsity are introduced in BEM

[64, 84, 85].

BEM is based on the Kirchhoff–Helmholtz integral equation [64, 86, 87], which is

𝑐(𝒙)𝑝(𝒙) = ∫
𝑆0
[𝑝(𝒙0)

𝜕𝐺(𝒙,𝒙0)
𝜕𝑛

−
𝜕𝑝(𝒙0)
𝜕𝑛

𝐺(𝒙,𝒙0)]d𝑆 +∫
𝑉
𝑓 (𝒙0)𝐺(𝒙,𝒙0)d𝑉 , (2.19)

where 𝒙 is the point in acoustic space 𝑉 , 𝒙0 is the point on the surface 𝑆0, 𝐺(𝒙,𝒙0) =
exp(−𝑗𝑘𝑅)/𝑅 is the Green’s function with 𝑅 = |𝒙 −𝒙0|, and 𝑐(𝒙) is the solid angle defined

as

𝑐(𝒙) =

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

4𝜋 𝒙 ∈ 𝑉 ,𝒙 ∉ 𝑆0
4𝜋 +∫𝑆0

𝜕
𝜕𝑛 (

1
𝑅 )d𝑆 𝒙 ∈ 𝑉 ,𝒙 ∈ 𝑆0

0 𝒙 ∉ 𝑉 ,𝒙 ∉ 𝑆0

. (2.20)

Using the same discretization as (2.5), considering the case where no source is distributed in

the acoustic space and the point of the sound field on the surface, (2.19) can be reformulated

as a linear system as

𝐃𝐬𝐩𝐬 =𝐌𝐬𝐯𝐬, (2.21)

where 𝐩𝐬 and 𝐯𝐬 denote the pressure and normal velocity vectors of the nodes on the

surface, 𝐃𝐬 and 𝐌𝐬 denote the dipole and monopole matrix on the surface [64, 88]. The

solution can be derived by a non-linear eigenvalue problem [84], matrix inversion [64],

and iterative solvers [89, 90] as FEM. BEM also faces a few challenges, such as reliability

issues for exterior problems [84] and the existence of singular integrals [85].

The Finite-Difference Time Domain Method Differently from the FEM and BEM,

which solve the problems in the spatial domain, the Finite-Difference Time Domain [70–

74] based methods solve the locally discretized wave equation in time domain, and the

derivatives in the equations are replaced by the finite difference approximation [73]. The

main disadvantage of the FDTD method is the dispersion error, which results in a lower

traveling speed for high frequency waves [91]. Although a phase error is introduced

through discretization, it is an accurate and realizable method for low frequencies in

small rooms [73]. The FDTD method can handle complex geometry and several different

boundary conditions [92, 93]. The FDTD method is well suited for the parallel computation

of the update equation which allows accelerating computation using GPUs [94–97].
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There exist a few categories of schemes of FDTD. For example, Yee’s staggered scheme

[98] was the first proposed FDTD method. However, it requires oversampling for low

dispersion error, which results in a high computational load [91]. Implicit schemes, which

update the equations of an element by solving a linear equation system at the new time

step, can reduce the computational load by using a lower sampling rate but face problems

of implementation and boundary conditions in irregular rooms [91]. In the context of

this dissertation, we only give a detailed description of one of the most efficient schemes,

i.e., the non-staggered compact explicit scheme on a rectilinear stencil [91]. The stencil

is defined as the number of neighboring nodes used in the update equations [99]. At a

non-staggered grid, variables of an element are colocated at the same place while they are

interleaved at a staggered grid [100]. In the explicit schemes, the equations of an element

are updated by values of adjacent or several non-adjacent values of previous time steps. A

compact scheme refers to the update by only adjacent nodes. Writing the wave equation

(2.1) in a 3-D Cartesian coordinate system gives

𝜕2𝑝
𝜕𝑥2

+
𝜕2𝑝
𝜕𝑦2

+
𝜕2𝑝
𝜕𝑧2

=
1
𝑐2
𝜕2𝑝
𝜕𝑡2

. (2.22)

Let 𝑙,𝑚, 𝑖 denote the spatial indexes in 𝑥 , 𝑦, 𝑧 axis respectively, 𝑛 denotes the time index,

we can define the update variable 𝑝𝑛𝑙,𝑚,𝑖 as

𝑝𝑛𝑙,𝑚,𝑖 ≡ 𝑝(𝑥,𝑦,𝑧, 𝑡)|𝑥=𝑙𝑋,𝑦=𝑚𝑋,𝑧=𝑖𝑋,𝑡=𝑛𝑇 , (2.23)

where 𝑋 is the grid spacing and 𝑇 = 1/𝑓𝑠 is the time step. Then the explicit compact scheme

can be described by [91]

𝛿𝑡2𝑝𝑛𝑙,𝑚,𝑖 = 𝜆
2[(𝛿𝑥2+𝛿𝑦2+𝛿𝑧2)+𝑎(𝛿𝑥2𝛿𝑦2+𝛿𝑦2𝛿𝑧2+𝛿𝑥2𝛿𝑧2)+𝑏(𝛿𝑥2𝛿𝑦2𝛿𝑧2)]𝑝𝑛𝑙,𝑚,𝑖, (2.24)

where 𝑎 and 𝑏 are two free parameters that determine the characters of the scheme, 𝜆= 𝑐𝑇/𝑋
is the Courant number, and the second-order derivative centered finite-difference operators

𝛿𝑡2, 𝛿𝑥2, 𝛿𝑦2, 𝛿𝑧2 are defined by

𝛿𝑡2𝑝𝑛𝑙,𝑚,𝑖 ≡ 𝑝𝑛+1𝑙,𝑚,𝑖−2𝑝𝑛𝑙,𝑚,𝑖+𝑝
𝑛−1
𝑙,𝑚,𝑖, (2.25)

𝛿𝑥2𝑝𝑛𝑙,𝑚,𝑖 ≡ 𝑝𝑛𝑙+1,𝑚,𝑖−2𝑝𝑛𝑙,𝑚,𝑖+𝑝
𝑛
𝑙−1,𝑚,𝑖, (2.26)

𝛿𝑦2𝑝𝑛𝑙,𝑚,𝑖 ≡ 𝑝𝑛𝑙,𝑚+1,𝑖−2𝑝𝑛𝑙,𝑚,𝑖+𝑝
𝑛
𝑙,𝑚−1,𝑖, (2.27)

𝛿𝑧2𝑝𝑛𝑙,𝑚,𝑖 ≡ 𝑝𝑛𝑙,𝑚,𝑖+1−2𝑝𝑛𝑙,𝑚,𝑖+𝑝
𝑛
𝑙,𝑚,𝑖−1. (2.28)

To ensure the numerical stability of the compact explicit scheme, the Courant number and

the free parameters need to satisfy [91]

𝜆2 ≤ min(1,
1

2−4𝑎
,

1
3−12𝑎+16𝑏

), (2.29)
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𝑎 ≤
1
2
, 𝑏 ≥

1
16

(12𝑎−3). (2.30)

For further details of a list of schemes, coefficients, and properties can refer to [91].

Summary Among the wave-based methods mentioned above, FEM can model physical

phenomena, for example, diffraction, but when applied to room acoustics modeling, the

resolution is insufficient. BEM is preferred to model exterior problems but does not perform

well for complex, inhomogeneous acoustic space [9]. Compared to FEM and BEM, FDTD is

more widely applied to room acoustics due to its modeling resolution and computational

efficiency.

Since wave-based methods are generally computationally expensive, they are not

suitable to generate a large scale database that can be used to train a neural network.

In Chapter 3, we use FDTD to generate a small database since it is more accurate than

geometrical acoustics based methods. This small database is a good alternative between

geometrical acoustics simulated RIRs and real RIRs, which can address the problem of

limited available real RIRs. Consequently, we can apply transfer learning with the wave

based simulated RIRs to our trained model.

Geometrical acoustics based methods
Geometrical acoustics based methods [4, 10] assume that the sound propagates in straight

lines. Wave based methods can model accurately for low frequencies but suffer from

high computational load. As a result, geometrical acoustics based methods are of great

importance in modeling. The most commonly used geometrical acoustical methods can be

classified into the image source method (ISM) [4, 10–13], the ray tracing method [101–105]

and the beam tracing method [4, 106–115]. Unlike wave equation based methods, they

are unable to simulate some low frequency effects such as diffraction. They need separate

methods for diffraction simulation.

The Image Source Method Among the above mentioned methods, we highlight the

image source method [10–13] since this is the technique we use most in the context of this

thesis for simulated RIRs. It was first proposed by Allen and Berkley [13] in 1979. The

image source method can model the TOAs of the direct path and specular reflections well.

In addition, it is computationally efficient, making it suitable for generating a large scale

database. However, RIRs simulated by the image source method differ from real measured

RIRs in several aspects. Firstly, the image sourcemethod cannot model frequency dependent

components, for example, frequency dependent reflection coefficients. Secondly, the image

source method can not be used for curved and non-smooth reflective surfaces and can

not model diffraction or scattering. It is only able to model specular reflections accurately.

Lastly, empty rectangular rooms are always assumed, although several improved methods
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exist that can deal with some irregular shapes. These assumptions make the simulated

RIRs far from the real RIRs, indicating that the room acoustics modeling algorithms are

still incomplete.

We explain the image source method now. In the image source method, an empty

rectangular room is assumed, and non-specular reflections are not considered. In addition,

it assumes that sound propagates along straight lines. Each reflection can be modeled

as a pressure wave emitted from an image source in free space. We use 𝐩,𝐦 to label

each reflection where each element of 𝐩 = (𝑞, 𝑗 , 𝑙) can take a value of 0 or 1, indicating
the direction of the reflection, and each element of 𝐦 = (𝑚𝑥 ,𝑚𝑦 ,𝑚𝑧) can take an integer

value, indicating the position of the virtual room where image sources locate. In three-

dimensional (3D) space, we denote the position of the receiver as (𝑥𝑟 , 𝑦𝑟 , 𝑧𝑟 ) and the position
of the source as (𝑥𝑠 , 𝑦𝑠 , 𝑧𝑠). Implementing the image source method [76], the image source

position can be represented as (𝑞𝑥𝑠 +2𝑚𝑥𝐿𝑥 , 𝑗𝑦𝑠 +2𝑚𝑦𝐿𝑦 , 𝑘𝑧𝑠 +2𝑚𝑧𝐿𝑧), where (𝐿𝑥 ,𝐿𝑦 ,𝐿𝑧)
are the length width and the height of the room. Let 𝑑𝐩,𝐦 denote the corresponding path

length, then the time delay can be calculated as 𝜏𝐩,𝐦 = 𝑑𝐩,𝐦/𝑐. The amplitude of each

reflection is determined by the reflection coefficients 𝛽𝑥1 ,𝛽𝑥2 ,𝛽𝑦1 ,𝛽𝑦2 ,𝛽𝑧1 ,𝛽𝑧2 , reflection
order 𝑂𝐩,𝐦, and image source position. The reflection order 𝑂𝐩,𝐦 can be computed as

𝑂𝐩,𝐦 = |2𝑚𝑥 −𝑞|+ |2𝑚𝑦 −𝑗|+ |2𝑚𝑧 − 𝑙|. (2.31)

If we assume the finite and constant reflection coefficients for each wall, then the RIR can

be written as [13]

ℎ(𝑡) =∑
𝐩,𝐦

𝛽|𝑚𝑥−𝑞|𝑥1 𝛽|𝑚𝑥 |𝑥2 𝛽|𝑚𝑦−𝑗|𝑦1 𝛽|𝑚𝑦 |𝑦2 𝛽|𝑚𝑧−𝑙|𝑧1 𝛽|𝑚𝑧 |𝑧2
𝛿(𝑡 − 𝜏𝐩,𝐦)
4𝜋𝑑𝐩,𝐦

, (2.32)

which we will use for ARR computation in Chapter 6.

The Ray Tracing Method The ray tracing method was extended from optical appli-

cations to room acoustics in [105]. The basic procedure uses similar principles as the

image source method. With the ray tracing method [4, 101–104], the source emits the

rays according to a predefined distribution or Monte Carlo simulation, and valid reflected

paths are retained. The ray tracing methods face a detection problem and limited spatial

resolution [116]. The detection problem originates from the fact that it is impossible for a

ray to hit a point receiver. As a result, the ray tracing method assumes a finite-size receiver.

Then it may suffer from misidentification of rays or duplicated registered rays [4]. The

limited spatial resolution results from the limited number of traceable rays. However, it

can handle not only specular reflections but also diffusion reflections.

The Beam Tracing Method There exist two kinds of beam tracing methods, one as an

improvement of the ray tracing method and another as an improvement of the image source
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method [4]. We discuss these two categories separately. As an improvement of the ray

tracing method, the beam tracing method improves the detection problem faced by the ray

tracing method. Instead of assuming a finite-size receiver, it assumes volumetric rays [106–

112]. As an improvement of the image source method, the beam tracing method focuses on

pruning out the invalid image sources in an early stage to minimize the number of beams

[113–115] to reduce the computation complexity and facilitate real-time applications.

Summary Among the geometric acoustics based methods, we choose the image source

method for a large RIR database generation, as mentioned above. The simulated RIRs

might be perceptually acceptable for artificial scenarios in some applications. Still, they are

generally far from the real measured RIRs due to the assumptions and approximations for

these algorithms. Our primary goal in this dissertation is the estimation of room acoustic

parameters and the ambisonics representation from RIRs, where the specular reflections

are far more critical than non-linear effects, for example, diffraction [4, 10]. Consequently,

we use the image source method to generate a large RIR database since it can accurately

model specular reflections and, more importantly, is computationally efficient. We consider

scattering and diffraction as distortions to RIRs, and our algorithms aim to eliminate the

effect of these distortions.

Additional RIR simulation methods
Since wave based methods and geometrical acoustics methods have their advantages and

disadvantages, different methods can also be combined as a hybrid method to simulate RIRs

[117–122]. There also exist simulation methods that do not belong to these two categorises.

A pole-zero model was used to fit RIRs is presented in [123], which can model the early

reflections precisely. Deep learning can also be used for RIR simulation, for example, the

generative adversarial network [124].

Scattering and Diffraction
Real-world surfaces are not always smooth, which results in scattering [125]. The scattering

coefficient equals the energy ratio of the nonspecular reflection and the total reflection,

where a complete diffuse reflection corresponds to scattering coefficient 1 and an ideal

complete specular reflection corresponds to scattering coefficient 0 [4, 126–128]. The

scattering coefficient increases with the order of reflections [129]. Lambert’s cosine law

[10] is used to model the diffusion energy distribution where the diffusion reflection energy

of each angle is proportional to the cosine of the reflection angle. The diffuse rain algorithm

[130] is commonly used to model scattering, where each diffuse reflection emits secondary

radiation to the receiver. The acoustic radiance transfer method [131, 132] can also handle

diffuse reflections. We include diffusion reflection in Chapter 3 to verify the robustness of

our proposed algorithm.
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Diffraction happens when the reflection surfaces are of finite size, and the sound reflects

on the edge. The edge will become the source of the additional reflected sound, and the

sound spreads in all directions [10]. Several methods exist to model diffraction [4]. A

time domain model adds diffraction from the edges to specular reflections [133, 134]. High

frequency asymptotic methods, such as the geometrical theory of diffraction [135, 136],

and uniform theory of diffraction [136–138], were proposed to model diffraction. Another

category of methods [139–141] solve the Kirchhoff-Helmholtz Integral Equation based on

the Kirchhoff approximation [142] for diffraction. These methods are often combined with

geometrical acoustics based methods to model room acoustics.

2.2.2 Room acoustical parameters determination from room
impulse response

In this subsection, we first discuss the estimation of TOAs of specular reflections from RIRs.

We then discuss the existing work on estimating the room geometry vector. After that, we

review a closely related topic, room volume estimation. Next, we review the estimation of

reflection coefficients and reverberation time. Finally, we discuss the methods to estimate

the positions of sources and receivers.

TOAs of specular reflections estimation from RIRs
RIRs are composed of the pulse of direct path and reflective pulses. The direct path refers

to the transfer between the source and the recevier without reflections. The room acoustic

parameters estimation relies on the time of arrival (TOA) information of the pulses. Since

it is difficult to distinguish individual peaks in late reverberation, we focus on the specular

reflections in the early reflection part. Consequently, we review the existing work to

estimate TOAs of specular reflections before the room acoustic parameter estimation.

However, it is difficult to evaluate TOA estimation algorithms on their own since the

ground truth TOAs are usually not available.

The TOAs of specular reflections can be estimated by finding the peaks [143], but with

limited accuracy. Two greedy sparse approximation methods, i.e., matching pursuit (MP)

and orthogonal matching pursuit (OMP), are compared in [144] in terms of estimating the

arrival times and amplitude of reflections. To find reflections throughout RIR ℎ(𝑡) without
the effect of their power, the natural exponential decay of the power of RIR is compensated

as amplitude compensated RIR ℎ̂(𝑡) = 𝑒𝛽𝑡ℎ(𝑡) with 𝛽 ≥ 0. A dictionary  is defined, which

contains all translations of direct pulse, and the amplitude compensated RIR can be written

as a linear combination of 𝑛 elements from. MP and OMP are two greedy iterative descent

approaches to sparse approximation updating the RIRs. The correlation between the direct

pulse and the RIR is calculated to estimate the reflections. The difference is that OMP

guarantees that the 𝑛-th order residual is orthogonal to the 𝑛-th order approximation of

RIRs. Experiments on simulated RIRs show that OMP outperforms MP in terms of detecting
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less spurious and duplicated reflections [144]. A template matching filter technique is

proposed in [55] to estimate the TOAs of reflections. The filter is equalized through

sliding correlation or matched filter, which equalizes the direct pulse to a single peak.

The proposed method can be applied to real measured RIRs and is robust to additive

noise [55]. Dynamic time warping within a matching pursuit inspired algorithm upon

the pulse of direct path is used in [145] to detect early reflections. The proposed method

assumes the room impulse response is composed of a pulse of direct path and a series of

time-shifted, warped, attenuated, and low pass filtered direct pulses. Direct sound is first

extracted by a short Hann window centered around the sample with the highest energy.

An iterative algorithm using dynamic time warping is applied to find reflections. The

proposed algorithm is able to detect reflections of changed shape by bounded dynamic

time warping to refine the location and duration of pulses. It can also detect overlapped

reflections using concatenated direct pulses [145]. It can be applied to real measured RIRs

and detect less spurious reflections than the orthogonal matching pursuit based method

[144] and matched filtering based methods [55]. Continuous cross-wavelet transform

(XWT) [146, 147] can also be applied to detect early reflections. After applying XWT to

the RIRs, a watershed segmentation procedure, an algorithm to segment gray-scale images

[148], is performed to locate the time and frequency of reflections. Finally, the wavelet

transform reconstruction formula is used to reconstruct the time-domain reflections. It

performs well with simulated RIRs but not with measured RIRs [146, 147]. A multifractal

approach [149, 150] can be applied to detect early reflections, which is based on the fact

that the early reflections show some similarity to the direct pulse. The distribution of

Hölder’s exponent is calculated, and the large values correspond to the presence of early

reflections. It can detect early reflections in simulated and real RIRs accurately. However,

the proposed method is computationally expensive [149, 150]. Early reflections can also

be detected by estimating the excess coefficients within RIR short segments [151]. This is

based on the idea that a segment that contains a burst and a segment that does not contain

a burst differ significantly in terms of distribution. The coefficients are compared with the

threshold, which is chosen based on the segment length and a predefined probability of

error detection of the burst. The proposed method can be applied to both simulated and

real RIRs, but the application to real measured RIRs needs further improvement [151].

Room geometry estimation
Room geometry is an important room acoustic parameter, and the knowledge of room

geometry can benefit many room acoustical applications, for example, source separa-

tion. Existing algorithms to estimate room geometry from RIRs all require some prior

information, for example, the locations of the sources and the microphones [48–58].

Room geometry estimation often requires multiple RIRs to avoid high order reflections

and improve accuracy. Several room geometry estimation methods exist based on Euclidean

distance matrices (EDM) formed by the squared distance between the source and receivers
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[48, 50, 51]. The room geometry of a convex polyhedral room can be estimated with a few

RIRs using the EDM-based method proposed in [48]. To avoid the usage of higher order

reflections, it requires a single source and at least four receivers and the knowledge of

their pairwise distances. It assumes the availability of all first order reflections. It solves

the echo labeling problem, which prunes out the spurious pulses and assigns the echoes

to the correct walls. The candidate echo combination is used to augment the matrix, and

the valid combination corresponds to an image source if the rank is at most five. The

positions of image sources can be calculated once the echoes are correctly labeled. Then

the room geometry can be inferred. It can be applied to the real-measured RIRs. Since

augmentation of all possible echo combinations to EDM is computationally expensive, an

efficient method using a graph theoretical approach is proposed in [51], where the echo

combinations are modeled as nodes. The task is to find the maximum independent set in

the graph, which refers to a set of vertices without direct interconnection. It can achieve an

average of 2.4 cm accuracy with at least two sources and five receivers on shoe-box shaped

rooms with image-source method generated RIRs. A greedy subspace method based on

EDMs is proposed to find the feasible echo combinations for room geometry localization

[50]. It requires a single source and multiple receivers with known locations. It is more

computationally efficient compared to [51].

In addition to EDM-based methods, alternative methods exist for room geometry

estimation using multiple RIRs. A two-step geometrical method is proposed in [49] to

estimate room geometry from simulated RIRs between one sound source and five receivers.

It requires knowledge of the locations of the receivers. The time of arrivals (TOAs) of the

detected peaks and the positions of the receivers are used to determine the positions of the

real source and image sources. The walls are estimated by the positions of the real source

and the image sources. It checks whether the reflective point and the source are on the same

side of all confirmedwalls to determine if the wall physically exists. Themethod can achieve

approximately 1 cm accuracy on four simulated rooms, and the accuracy depends on the

positions of the source and receivers. [52] obtains sets of TOAs from RIRs by detecting

and labeling peaks in RIR stacks using an image processing method combined with graph

theory. These TOAs are used to estimate the receiver position and image receiver positions

with knowledge of the array geometry of sources. Finally, the room geometry can be

inferred with estimated positions. It can be applied to the image-source method simulated

RIRs and the real measured RIRs. A greedy iterative algorithm [53] is proposed to estimate

room geometry where the possible wall positions are discretized in grids and iterated to

match with TOAs. The method first only considers first-order reflections, and second order

reflections are taken into account after the first order reflection position is determined.

It assumes multiple sources and receivers. The room geometry and the source/receiver

localization problem can be solved together using a general optimization problem [54].

It assumes multiple sources and multiple receivers. Given the source signal, a matched

filter can be used to extract TOAs of direct path and reflections. An iterative algorithm
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can estimate source/receiver position with estimated TOAs. Then the room geometry

can be inferred using an exhaustive search over the discretized grids as [53]. Assuming

a single source and an array of receivers with known geometry, a template matching

method is used to detect TOAs which are used to compute TDOAs for source localization

in [55]. Then each TOA is transformed into an elliptical constraint of the reflectors, and

multiple constraints are combined to locate room geometry. The Hough transform is used

to improve the robustness to noisy environments.

Room geometry can also be inferred from a single RIR where higher order reflections

are necessary. A simulated single-channel RIR is used to estimate room geometry in a

rectangular room based on the image source method [56]. It uses a set of time of arrival

(TOA) measurements of reflections to estimate 2D room geometry. It assumes that the

TOA measurements are labeled with image sources and that RIRs consist of direct sound

and first and second-order reflections. Using the coordinates of the reflections, the distance

between the source and receiver can be inferred by the TOAs from adjacent directions,

and room geometry can be inferred by the TOAs from opposite directions. Another room

geometry method based on a single RIR is proposed in [57]. Given the first and second

order reflections, the room geometry can be uniquely inferred by matrix analysis. The

method can also estimate the source position, assuming co-located omnidirectional source

and receiver. Assuming the knowledge of receiver position, the room geometry and source

position can be estimated using a single RIR [58]. Using a genetic algorithm, the proposed

method minimizes the distance between the TOAs of echoes in simulated and measured

RIRs.

A relaxation of room geometry estimation is the room volume estimation problem.

Room volume is also important since it affects reverberation time. Room volume estimation

is formulated as a classification problem in [152], where room volume is classified into

six volume class values. It does not require source-to-receiver distance. It trains Gaussian

mixture models, and the classification is based on the maximum likelihood criterion. Seven

room acoustic parameters are first extracted from a given RIR and serve as the input of

the model, for example, reverberation time. With these parameters, a statistical pattern

recognition approach is used for room volume classification. This method can achieve a

0.1% equal error rate (EER) with simulated RIRs and a 19.1% EER with real-measured RIRs.

However, this method does not account for the fact that room volume is continuously

distributed. Room volume estimation can also be formulated as a regression problem

[153]. Room volume is estimated with CNNs from noisy reverberant signal-channel speech

signals that are split into frames with a 25% overlap. After training, the estimated volume

is within approximately a factor of two to the true volume value.

Reflection coefficients estimation
Reflection coefficients characterize room reverberation effects. However, they are difficult

to estimate directly since they are angle and frequency dependent in real acoustical envi-
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ronments. Reflection coefficients are usually estimated using wave equation based methods.

Assuming the knowledge of room geometry, sound source’s information which includes

position, strength, phase, and frequency, and a set of signals measured with microphones,

[154] formulates the estimation of reflection coefficients as an inverse boundary problem

based on the boundary element method. The inverse problem is solved using an iterative

algorithm. Reflection coefficients are estimated by comparing the measured data and the

finite difference time domain simulation in [155]. The estimation is formulated as an

optimization problem, and the adjoint method is used to compute the gradient of the cost

function efficiently. It assumes that the room geometry is known and there exist one source

and multiple receivers.

Since reverberation time and characterizing room reverberation effects are closely

related to reflection coefficients, we briefly discuss work on reverberation time estimation

as a relaxation of the reflection estimation problem. The reverberation time, 𝑅𝑇60, of a
room is defined as the time it takes for sound to decay 60 dB. Sabine-Franklin’s formula

[156] is commonly used to estimate the reverberation time:

𝑅𝑇60 =
24ln10
𝑐20

𝑉
𝑆𝑎

≈ 0.1611sm−1 𝑉
𝑆𝑎
, (2.33)

where 𝑐20 is the speed of the sound in the room for 20 degrees Celsius, 𝑉 is the room

volume, 𝑆 is the total surface area of the room and 𝑎 is the average absorption coefficient

of room surfaces. From (2.33), we can conclude that reverberation time is related to room

geometry and reflection coefficients. Given a RIR, the reverberation time can be directly

estimated from the calculated energy decay curve [157, 158].

Positions of sources and receivers estimation
The RIR can also be used to locate sources and receivers [54, 57, 59–62]. We already

discussed some methods for localizing sources and receivers in the previous paragraphs

[54, 57, 58]. By assuming that both the room geometry and the receiver position are known,

[59] locates the source with a single RIR with Euclidean distance matrices. The principle is

identical to the method in [48]. One source and ten receivers can be localized [60] using

the same principle as [48]. It iterates over the echo combination to find the minimum

error between measured data and the data generated from estimated positions. A source

localization method is proposed using the parameters extracted from RIRs with an ad-hoc

microphone array [61]. The room geometry is assumed to be known, and the positions

of receivers can be estimated with [59, 60]. The extracted features are used to fit a TDOA

surface and an amplitude surface across the room to locate the source. Then the center

of two optimal fitted areas is the estimated source position. Source localization can also

base on the FEM with a single receiver. It assumes the knowledge of room geometry and

no sparsity in the temporal domain. The spatial sparsity of sources is exploited for source

localization. A cross-correlation based iterative sensor position algorithm is proposed in



2

28 2 Background

[62] to estimate the positions of an array of receivers. With the estimated receiver position,

the proposed method estimate TOAs and DOAs from RIRs using dynamic programming

projected phase slope algorithm [159] and multiple signal classification [160], respectively.

The source position can then be estimated via triangulation. With the estimated source and

receiver position, room geometry can be estimated via random sample consensus [161].

2.3 Ambisonics
A single omnidirectional RIR is not always enough for room acoustic applications since the

directional information is only implicitly contained. Ambisonics contain directional infor-

mation explicitly. Hence it is important that we can create and manipulate ambisonics data.

Ambisonics [16–18] has become the de-facto standard representation for AR systems and

is particularly suitable for AR systems as head rotations are easily modeled as the rotation

of sound fields in the spherical harmonics domain. It describes the sound field by means of

a small set of temporal signals. Ambisonics room impulse responses (ARRs) can be used to

generate ambisonics signals by convolving with source signals [162, 163]. Recent work on

ambisonics often uses higher order ambisonics (HOA), which is an extension of the original

first-order ambisonics system developed by Gerzon [16]. HOA is used for spatial audio

encoding, transmission and as a basis for rendering. With an ambisonics representation

of sufficient order, a high quality audio rendering system can give listeners a realistic

spatial audio experience. To start, we introduce the basic information about ambisonics

and the generation of ambisonics data of arbitrary order from a set of mono sound signals.

This is the basis of our ARR generation method in Chapter 6. Since the availability of

higher order ambisonics is not always possible, being able to upscale ambisonics to higher

order ambisonics is important. The proposed method in Chapter 6 can also be viewed

as an upscaling method of ambisonics signals. As a reference, we overview the existing

algorithms that upscale ambisonics to higher order ambisonics. We then briefly discuss

audio rendering systems, which allows us to demonstrate our work in Chapter 5. Next,

we describe ambisonics room impulse response, which is our target signal in Chapter 6.

Finally, we review the existing work on multi-channel room impulse response estimation

from omnidirectional RIR, which is a close topic to Chapter 6.

2.3.1 Introduction to higher order ambisonics
Ambisonics [16–18] describes the 3-D sound field at a receiver’s position instead of depend-

ing on the description of specific sound sources. Ambisonics represents the sound field

for the so-called interior case, where all sources lie outside the region of interest. Thus,

ambisonics is a particular representation of the interior-case solution to the acoustic wave

equation as (2.1), or, equivalently, the Helmholtz equation as (2.2).

Spherical harmonics [164, 165] form a complete set of orthogonal basis functions

defined on the surface of a sphere. We adopt full three dimensional normalization (N3D)
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scheme for the relative amplitudes of channels such that the sum of squares of values in

each degree equals the number of values in that degree. It is widely used in ambisonics

software packages and is characterized in [166] as the most logical normalization scheme

for a natural sound field. The corresponding spherical harmonics formulation is

𝑌 𝑚𝑛 (𝜃,𝜙) = 𝑁 |𝑚|
𝑛 𝑃 |𝑚|𝑛 (sin(𝜃))

{
sin(|𝑚|𝜙), for 𝑚 < 0
cos(|𝑚|𝜙), for 𝑚 ≥ 0

, (2.34)

where 𝑌 𝑚𝑛 (𝜃,𝜙) is the spherical harmonic of order 𝑛 and degree 𝑚 with −𝑛 ≤ 𝑚 ≤ 𝑛, 𝑃 |𝑚|𝑛 is

the associated Legendre function, and 𝑁 |𝑚|
𝑛 is the normalization term. With N3D, we have

𝑁𝑚
𝑛 =

√
2𝑛+1

√
2−𝛿𝑚
4𝜋

(𝑛− |𝑚|)!
(𝑛+ |𝑚|)!

,𝛿𝑚 =

{
1, if 𝑚 = 0
0, if 𝑚 ≠ 0.

(2.35)

We now discuss a complete solution to the Helmholtz equation. Then the sound signal

𝑝 measured at the spherical coordinates 𝐫 = (𝑟,𝜃,𝜙) can be represented as [167]

𝑝(𝐫,𝑘) =
∞
∑
𝑛=0

𝑛
∑
𝑚=−𝑛

𝑖𝑛𝑗𝑛(𝑘𝑟)𝑌 𝑚𝑛 (𝜃,𝜙)𝐵𝑚𝑛 (𝑘), (2.36)

where 𝑗𝑛(𝑘𝑟) is the spherical Bessel function of the first kind and 𝐵𝑚𝑛 (𝑘) are the ambisonics
coefficients.

When (2.36) is truncated to a particular 𝑁 , then the sound field will be accurate within

a spherical region near the origin, which is commonly called sweet zone. If we truncate
equation (2.36) at 𝑛 = 𝑁 , we can represent the sound field in the sweet zone with (𝑁 +1)2
temporal signals. The sweet zone increases in size with 𝑁 . Its size is inversely proportional

to frequency. We denote by 3𝐷
𝑅 the dimensionality of three-dimensional ambisonics

signals after truncation. The dimensionality is related to 𝑁 as3𝐷
𝑅 = (𝑁 +1)2. Furthermore,

let 𝑅 denote the radius of the sweet zone and 𝑓 denote the frequency of the signal. Then

we have [168]:

3𝐷
𝑅 = (⌈

4𝜋𝑅
𝜆

⌉+1)2 ≈ 73𝑅2 𝑓 2

𝑐2
. (2.37)

We consider far-field sound sources and model the sound pressure 𝑆𝑞(𝑘) from sound

source 𝑞 as a plane wave arriving from an incidence angle (𝜃𝑞 ,𝜙𝑞). The spherical harmonic

expansion of the plane wave transfer function is described as [18]

𝐺(𝐫) = 𝑒𝑖<𝐤𝑞 ,𝐫> = 4𝜋
∞
∑
𝑛=0

𝑛
∑
𝑚=−𝑛

𝑖𝑛𝑗𝑛(𝑘𝑟)𝑌 𝑚∗𝑛 (𝜃𝑞 ,𝜙𝑞)𝑌 𝑚𝑛 (𝜃,𝜙). (2.38)
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Using (2.36) and (2.38), we find the ambisonics coefficients from a plane waves

𝐵𝑚𝑛 (𝑘) =∑
𝑞
4𝜋𝑌 𝑚∗𝑛 (𝜃𝑞 ,𝜙𝑞)𝑆𝑞(𝑘). (2.39)

In addition to the plane wave, the 𝑞-th source can be modeled as a point source at

position (𝑟𝑞 , 𝜃𝑞 ,𝜙𝑞) with sound pressure 𝑆𝑞(𝑘). Then the spherical harmonic expansion of

the point source transfer function is [31]

𝐺(𝐫|𝐫𝑞) =
4𝑖𝑘|𝐫−𝐫𝑞 |

4𝜋|𝐫− 𝐫𝑞 |
= (−𝑖)𝑘ℎ(2)𝑛 (𝑘𝑟𝑞)𝑗𝑛(𝑘𝑟)𝑌 𝑚∗𝑛 (𝜃𝑞 ,𝜙𝑞)𝑌 𝑚𝑛 (𝜃,𝜙), for 𝑟𝑞 > 𝑟, (2.40)

where ℎ(2)𝑛 (𝑘𝑟𝑞) is the 𝑛-th spherical Hankel function of the second kind,

ℎ(2)𝑛 (𝑘𝑟𝑞) = 𝑗𝑛(𝑘𝑟𝑞)− 𝑖𝑦𝑛(𝑘𝑟𝑞), (2.41)

with 𝑦𝑛(𝑘𝑟𝑞) the 𝑛-th spherical Bessel function of the second kind. It is noteworthy that

ℎ(1)𝑛 (𝑘𝑟) ∝ 𝑒𝑖𝑘𝑟 represents an outgoing wave and ℎ(2)𝑛 (𝑘𝑟) ∝ 𝑒−𝑖𝑘𝑟 represents an incoming

wave [169]. From the view of the listener, it is an incoming wave, so we should use ℎ(2)𝑛 (𝑘𝑟𝑞)
in the spherical harmonics expansion of the transfer function of the wavefield generated

by a point source. Similarly, using (2.36) and (2.40), the ambisonics coefficients from the

point source can be derived as

𝐵𝑚𝑛 (𝑘) =∑
𝑞
−𝑖𝑘ℎ(2)𝑛 (𝑘𝑟𝑞)𝑌 𝑚∗𝑛 (𝜃𝑞 ,𝜙𝑞)𝑆𝑞(𝑘). (2.42)

When the sources are modeled as point sources, infinite bass boost problems need to be

taken into account, and near field control filters should be applied [17, 24] in the encoding

stage. The near-field compensated higher order ambisonics 𝐵𝑚𝑛 (𝑘)NFC(𝑟𝑞/𝑐) can be written

as

𝐵𝑚𝑛 (𝑘)
NFC(𝑟𝑞/𝑐) =

1

𝐹NFC(𝑟𝑞/𝑐)(𝜔)𝑛
𝐵𝑚𝑛 (𝑘), (2.43)

where

𝐹NFC(𝑟𝑞/𝑐)𝑛 (𝜔) = 𝑖−(𝑛+1)
ℎ(2)𝑛 (𝑘𝑟𝑞)
ℎ(2)0 (𝑘𝑟𝑞)

. (2.44)

Temporal ambisonics signals can be obtained by taking the inverse temporal Fourier

transform of each 𝐵𝑚𝑛 (𝑘) signal. The temporal first-order ambisonics signals are the well-

known B-format signals [16].
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2.3.2 Upscaling to higher order ambisonics
The spatial resolution of the represented sound fields depends on the order of ambison-

ics. Hence, it is of great importance to have higher order ambisonics signals. However,

measuring higher order ambisonics is not always feasible, and it has a high demand on

the specific hardware, for example, the MH Acoustics Eigenmike spherical microphone

array [170] can measure up to third order ambisonics. Upscaling lower order ambisonics to

higher order signals is an alternative solution. As shown in (2.37), higher order ambisonics

also results in a larger sweet zone.

There exist a number of upscaling methods that utilize the sparsity of the source signal

[171–177]. These methods use a sparse plane wave decomposition and an overcomplete

basis matrix. The decomposed low order ambisonics is then used to reproduce the sound

field with high resolution. This can be implemented either in the frequency domain or

time domain. To solve the underdetermined problem in the frequency domain, a short-time

Fourier transform is applied to ambisonics, and an iteratively-reweighted least-square (IRLS)

algorithm is used to solve a multiple-measurement vector (MMV) convex optimization

problem for each frequency bin [171]. The proposed method is robust for multiple sources

in reverberant environments. For the time-domain method, the sub-band filtering is

applied to lower order ambisonics and solves the problem for each sub-band [172–175].

To solve the MMV convex optimization problem, an IRLS algorithm is used in [172, 173],

an order recursive matching pursuit (ORMP) algorithm is used in [174], a sequential

matching pursuit (MP) is used in [175]. Non-uniform spatial dictionaries are applied to

ambisonics in [173] to increase the spatial resolution in the region of interest. Compared

to the frequency domain algorithms [171], the time-domain methods [172, 174, 175] are

more computationally efficient and more robust. Generally, the matching pursuit based

algorithm [174, 175] outperforms the other compressed sensing techniques [171, 172] in

terms of computational efficiency and upscaled ambisonics. To improve the robustness

in the presence of noise or reverberation, pre-processing methods based on eigen-value

decomposition are proposed in [176, 177] to separate the directional and diffuse parts of

the sound field. The diffuse component is extracted by projecting the ambisonics signals

into an orthogonal sub-space with respect to the directional component [176, 177].

In addition to the upscaling to higher order ambisonics based on the sparsity assumption,

the emphasis operator [178] applied to ambisonics can also increase spatial resolution. It

uses Clebsch-Gordan coefficients to emphasize the directionality of the sound field. The

emphasis operator can be applied to both time and frequency domain ambisonics. In

contrast to the sparsity based methods, which aim at adaptive emphasis, the proposed

operator can not only adaptively but also statically emphasize the sound field. In addition,

the emphasis operator is computationally efficient [178]. The spatial decomposition method

(SDM) [179] can also be employed to increase the spatial resolution and the size of the

sweet zone. The proposed method uses the intensity vector to estimate the direction

of every sample in the first order impulse response and re-encode each sample at the
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estimated direction with higher order ambisonics. Since the SDM-based method makes

a simplified assumption on a single direction each time, a dual directional vector and a

2+2 directional signal estimator are adopted in [180] for a better representation of the

transition part between early reflections and late reverberation of RIRs. The directional

signal estimator is adapted from the high angular plane wave expansion algorithm in

a short time Fourier transform domain to make it work in the time domain, and then

four directional signals can be detected each time. The directional signals can then be

encoded into higher order ambisonics as SDM based method. Besides the conventional

signal processing methods mentioned above, a sequential multi-stage deep neural network

is trained to upscale ambisonics [181]. It consists of sequentially stacked DNNs, and each

stacked DNN upscales ambisonics by one order. Experimental results prove its ability for

improved spatial resolution.

2.3.3 Audio rendering system
A high-quality audio rendering system is a fundamental tool for research in ambisonics.

Audio rendering systems aim to give listeners a realistic spatial audio experience and allow

us to evaluate and demonstrate our work on spatial audio. Audio rendering can be divided

into loudspeaker array rendering and binaural rendering. The term binaural indicates that

the rendering system is aimed at headphones.

Audio rendering with loudspeakers aims to reproduce the sound field within a spatial

region. A conventional audio rendering system, referred to as mode matching decoding

(MMAD), takes the pseudo-inverse of the encoding matrix [182, 183]. However, it requires

a regular loudspeaker array covering the full sphere and is suitable for low frequencies.

Decoding a 𝑁 -th order ambisonics, MMAD requires at least (𝑁 +1)2 loudspeakers. For
an irregular loudspeaker array, the MMAD is unstable and faces the problems such as

localization error, energy, altered loudness, and source width fluctuation because of varied

decoding energy [182, 184, 185]. Let 𝑔𝑚 denote the gain of the 𝑚-th loudspeaker with

1 ≤ 𝑚 ≤ 𝑀 and 𝒖̂𝑚 denote the unitary vector representing the incoming wave direction of

the 𝑚-th loudspeaker, the energy vector 𝑟𝐸 [186] can be defined as

𝑟𝐸 ⋅ 𝒖̂𝐸 =

𝑀
∑
𝑚=1

𝑔2𝑚𝒖̂𝑚

𝑀
∑
𝑚=1

𝑔2𝑚

. (2.45)

Max-rE decoders [186, 187] optimize the energy vector of the target sound field, which

aims at a larger sweet zone at high frequency. As MMAD, max-rE works well with regular

loudspeaker arrays and faces some artifacts with irregular loudspeaker arrays. Since a

regular loudspeaker array is not always possible in real applications, a number of decoders
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are proposed for irregular loudspeaker arrays. To overcome the energy problem of the

irregular loudspeaker array, energy preserving decoding [185] has been proposed, which

preserves the decoded energy by removing the singular values of the encodingmatrix. It can

achieve the same localization accuracy as the basic MMAD but removes the uniform layout

constraint of the loudspeaker array with the same number of loudspeakers. All-Round

Ambisonic Decoding (AllRAD) [188] decodes ambisonics to an optimal virtual t-design

loudspeaker array, which is then mapped to real loudspeakers using vector-base amplitude

panning (VBAP). It is more stable, and does not require a uniform loudspeaker array layout

or the minimum number of loudspeakers. However, the ambisonics order and loudspeaker

array do affect the rendering quality [188]. The decoding is divided into three steps for

irregular loudspeaker array in [189]. The regular structure of the array is used to decode

the lower order ambisonics. The remaining part is further divided into a symmetric part

and an asymmetric part where the symmetric layout is used for decoding based on mixed

order ambisonics, and the asymmetric layout is responsible for a larger sweet zone and a

stable reconstruction error which depends on the radius. Subjective experiments show it is

better than the MMAD since it has a larger sweet zone. A matching projection decoder is

proposed for irregular loudspeaker arrays in [190]. This greedy algorithm calculates the

projection value of the ambisonics signal and then assigns the maximum projection value

to the corresponding loudspeaker until all loudspeakers are assigned with a gain. This

method performs better than the MMAD in terms of objective and subjective experiments.

Binaural rendering aims to mimic the listener’s auditory system with two ears. A

number of techniques can be used for binaural rendering of ambisonics. Perhaps the most

common technique is to simulate playback over a given loudspeaker array [191–194],

where each virtual loudspeaker signal is filtered with appropriately adjusted head related

transfer functions (HRTFs) [195]. The head rotations can be realized either through sound

field rotation or continuous-azimuth HRTF format based representation [192]. Diffuse-field

equalization, which removes direction-independent components of RIRs in the frequency

domain, is applied in [194] to improve the high frequency rendering without additional

computational cost. In addition, by transforming HRTFs into the spherical harmonics

domain, ambisonics can also be decoded binaurally, where the sound pressure at each

ear can be calculated as the sum of the product of the HRTFs and plane waves from all

directions in the spherical harmonics domain [196–198]. However, this method requires a

large number of HRTFs, which is impractical in many scenarios [194]. An order-dependent

compensation filter is proposed in [199] in combination with a tapering window to reduce

the coloration due to the truncated order of HRTFs in the spherical harmonics domain.

2.3.4 Ambisonics room impulse response
The ambisonics room impulse response (also referred to as spatial room impulse response)

refers to the transfer function between a source and a receiver in a room, the spatial aspects
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of which can be captured and measured by spherical microphone arrays. It differs from RIR

since it contains directional information. ARRs are essential for sound field analysis and

spatial sound reproduction. ARRs can be convolved with signals to generate ambisonics

signals and be rendered with various approaches as described above, which are commonly

used in immersive audiovisual environments, such as AR.

Definition 1. When the source signal is an excitation signal, i.e., delta function, the set
of 𝐵𝑚𝑛 (𝑘) becomes the ambisonics room response in the frequency domain. Multiplying a
frequency-domain source signal with the 𝐵𝑚𝑛 (𝑘) results in the ambisonics representation of the
sound field around the receiver.

2.3.5 Multi-channel room impulse response estimation
Because we are not aware of existing work of ARR estimation, we review the algorithms

that estimate multi-channel RIRs from an omnidirectional RIR. These algorithms are similar

to the ARR estimation since the underlying spatial information of the input RIR is used

and both problems need knowledge of reflections, i.e., positions of image sources from

omnidirectional RIRs. The multi-channel RIRs contain the spatial information explicitly

and are perceptually important for acoustic environment auralization, although their

measurement is time consuming and not always realistic in practice.

An algorithm to estimate an arbitrary number of RIRs from one or two RIRs is proposed

in [200]. We only introduce the methods for one input RIR case since it is similar to our

problem. It is assumed the direct sound always comes from positive 𝑥 direction. The first

peak is identified as the direct path. The specular reflections and diffuse reflections are

separated and processed by different models. The first step is the estimation of the source-

receiver distance and the room volume using the diffuse field acoustics and reverberation

time using the method in [201]. Then the room geometry is determined using a pre-defined

fixed ratio. As the second step, up to four strong peaks are identified as first order specular

reflections from floor, ceiling and walls. These specular reflections are used to determine

the source and receiver positions using predetermined rules but some values can be set

arbitrarily as long as the direct path distance is correct. The detailed description of the

rules can be found in [200]. The image source method is then applied to calculate the image

source positions and the reflection coefficients. The diffuse reflections are divided into time

sections. In each time section, the RIR is modeled as a few point sources scattered around

the receiver. An arbitrary number of RIRs can then be calculated using the image source

method and the scattered point sources [200]. Experimental results proved the generated

RIRs resemble the desired ones. It performs well in the early specular reflections but less

efficient or accurate for the complete RIRs. Several approximations exist in the proposed

method, such as the ratio of the room edges and the estimation of source receiver position.

As a contrast, binaural room impulse response (BRIR) estimation requires head related

transfer functions (HRTFs) of each reflection direction. BRIRs can be estimated from an
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omnidirectional RIR and a set of HRTFs [202, 203]. Their algorithm assumes knowledge

of geometric information of the room volume, the direction of the direct path, and a pre-

processed binaural noise. The RIR is divided into three segments by pre-assigned time slots,

i.e., direct sound, early reflections, and diffuse reverberation. The direct sound is filtered by

the HRTF of that direction. The early reflections are filtered with HRTFs of the predefined

reflection pattern. Binaural diffuse reverberation is estimated in each frequency bin by

shaping the envelope of binaural noise. This method is mathematically and conceptually

simplified but contains several approximations. For example, the early reflection pattern

is predefined and thus approximated. Although the algorithm can produce plausible

BRIRs, these approximations result in some perceptual differences, for example, timbre

and tone color change [202, 203]. [204, 205] improve the method in [202, 203] to allow

changes in different aspects. Using a parameter based description of RIRs, the listener’s

positions can be changed by modifying the direct path and the early reflections based

on an estimated geometric model [204]. Room modifications can be realized in [205] by

adjusting diffuse reverberation according to the frequency-dependent reverberation time.

Although approximations still exist, these methods can result in plausible BRIRs with low

computational effort.

Spatial room impulse responses can be estimated from one monaural RIR using the

method in [206], which extends and improves the method in [202]. The monaural and

spatial parameters are derived from the input RIR. Firstly, the proposed method detects the

amplitude and the TOA of the direct path and early reflections. Six to ten early reflections

with highest amplitude are selected. The direction of arrivals (DOAs) of early reflections can

be determined by a pseudo-randomized directional distribution or a previously determined

DOA pattern or by using the image source method with approximated room geometry. In

addition, the standard room acoustic parameters are also calculated, such as reverberation

time and clarity. The reflection filters are also derived to adjust the magnitude spectra

of early reflections. Next, the reverberation level, describing the level of diffuse field in

the early reflection part of RIR, is estimated. The reverberation level is used to ensure

the preservation of RIR energy when synthesizing BRIRs with directional and diffuse

reflections. Finally, combining the detected early reflections and the image source method,

the parameters of an arbitrary position in the room can be calculated, which can then be

used to calculate the corresponding SRIR or BRIR. Similarly to the previous mentioned

methods, the proposed methods consist of several approximations, for example, the DOAs

of early reflections.

As mentioned, ARR estimation is not only a similar problem to BRIR estimation; ARRs

can also be used to estimate BRIRs. First-order ARRs (also referred to as B-format RIRs) can

be used to model BRIRs with a set of HRTFs [207, 208]. Since ARRs contain the direction

of arrival (DOA) information, the DOAs can be estimated, and an appropriate HRTF can

be chosen to filter the direct sound. The early reflections are linearly combined to match

the spectral and frequency dependent interaural coherence cues of real BRIRs [207]. Due
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to the limited spatial resolution of B-format RIRs, directional sharpening is applied in

[208] to improve resolution. For directional sharpening, the proposed method estimates

and assigns directions for each sample using the pseudo-intensity vector (PIV), which is

calculated using the zero-th order and first-order ambisonics signals. The direction with

the highest PIV value indicates the source position [209]. A parametric model is proposed

in [210] to estimate BRIRs from spherical microphone array measurements, which can be

considered as an arbitrary order of ARRs. The measured RIRs are divided into a directional

part and a diffuse part. The corresponding descriptive acoustic parameters are stored

separately, for example, the time of arrival and the energy decay curve. This method

estimates BRIRs based on a parametric description only. Directional parameters are used

to describe early reflections, which are modeled by sound field decomposition techniques.

Diffuse parameters are used to characterize diffuse components and interaural coherence

of late reverberation. The main advantage of the parametric model is that the modification

of room acoustic parameters is easy to simulate [210].

2.4 Deep learning
Conventional signal processing uses mathematics and physics to analyze and process the

signals. A number of processing techniques are commonly used to deal with distortions

in signals, such as filtering and Fourier transform. In acoustics, some effects are hard to

be modeled by mathematics or physics, for example, the changed phase of pulses upon

reflections in RIRs. Deep learning solves the task from a different perspective. Deep learning

learns the underlying common patterns from a large amount of input data and applies

the learned pattern to the unlearned data. We have already discussed a few conventional

signal processing based room acoustic algorithms in this chapter. We also want to solve

our problem using deep learning and compare the deep learning based methods with

conventional signal processing methods.

Deep Learning shows good modeling properties for many applications. In general, it

requires high computational capacity and the availability of large databases. Different from

conventional modeling methods, deep learning uses neural networks to learn a function

between the input and output from a large amount of data. Each layer of a neural network

can be viewed as a simple function with unknown parameters. Combining multiple layers

forms a nonlinear modeling function whose parameters are learned by training with the

available dataset.

Before applying deep learning to room acoustic problems, we discuss a few commonly

used neural network models in this section. Understanding these neural networks helps

us choose the proper ones for our tasks. Specifically, we discuss multilayer perceptrons,

convolutional neural networks, variational autoencoders, and transformers, which will be

used in the following chapters.
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2.4.1 Multilayer Perceptron
Multilayer perceptrons (MLPs), also known as feed-forward neural networks, refer to

neural networks that are composed of multiple layers (perceptrons), where each unit in

one layer is connected to all units in the previous layer. The perceptron concept was first

proposed by Rosenblatt in 1958 [211]. With each layer, an intermediate result is computed

as the dot product of the input and the weights and an added bias, which is forwarded to

the non-linear activation function. Each perceptron can be written mathematically as

𝑦 = 𝜑(𝑤𝑇 𝑥 +𝑏), (2.46)

where 𝜑 denotes the non-linear activation function, 𝑤 and 𝑏 are the weights and bias, and

𝑥 and 𝑦 are the input and the output of the perceptron.

Universal approximation theory [212] demonstrates that an MLP with only one hidden

layer and an arbitrary continuous sigmoidal nonlinearity can uniformly approximate

any continuous function. Although an MLP with only one hidden layer can uniformly

approximate any continuous function, the number of neurons has to be exponentially large.

It has been proved that considering the expressiveness of an MLP with ReLU activation,

depth is more important than width [213]. This motivates us to use MLPs with more hidden

layers instead of a wide shallow network. MLPs are relatively straightforward to implement

and widely used in a variety of classification and regression problems, e.g., [214–218].

In this dissertation, we use MLPs to estimate reflection coefficients from RIRs in Chapter

3. Reflection coefficients only exist in the amplitudes of reflective pulses. We hypothesize

MLPs treat these pulse as features and be able to estimate reflection coefficients.

2.4.2 Convolutional Neural Network
CNNs have been used for various applications and show good modeling ability. CNNs

were first proposed by [219] for visual pattern recognition. CNNs are primarily used in

computer vision, such as image classification [220–222], and image recognition [223–225].

In addition to image data, CNNs can also analyze videos [226–228]. Until recently, CNNs

were not widely used in acoustic signal processing. Recent applications confirm that CNNs

have good modeling ability for acoustic problems and can outperform state-of-the-art

algorithms in this context. Such applications include audio classification [229–231], speech

dereverberation [232–234], speech enhancement [235–237].

Many variations of CNN architectures have been developed, such as LeNet, AlexNet,

and VGGNet. LeNet, a classical CNN, was first proposed in the 1990s for handwritten and

machine printed character recognition [238]. In 2012, AlexNet was proposed for image

classification problems and obtained a considerably lower error rate than the previous

state-of-art [239]. This error rate was further reduced with VGGNet by addressing the

importance of depth [240]. From these classical CNN architectures, we can learn how to

build a convolutional neural network. A CNN commonly consists of several convolutional
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layers, each followed by a pooling layer for downsampling, a few dropout layers to prevent

overfitting, and several fully connected layers at the end.

The convolution operation is multiplying a filter (also called a kernel) and part of the

input data, which is of the same size as the filter, element-wise and adding a bias to the

sum of the multiplication result. The filters slide spatially over the entire input data and

perform the convolution operation at each position as the output. Each convolution layer

has a set of independent filters that take the feature maps (or the actual input signal) as

input and produce another set of feature maps as output. Each feature map corresponds

to a channel with the number of output channels set by the network designer. Different

channels view different aspects of the input feature maps [241]. Each neuron in each feature

map only connects to one part of the input feature map and shares the same connection

weights as other neurons in the same feature map. CNNs capture the spatial relationships

within the input by parameter sharing, i.e., sharing the same connection weights, and

sparse connection, i.e., connecting to one part of the input. The feature maps can be

down-sampled using pooling operations. Upsampling is achieved with so-called transposed

convolutions (also called fractionally strided convolutions) [241], which effectively insert

zeros in the feature maps before a convolution operation. The transposed convolution

operation can be viewed as exchanging the forward and backward pass of convolution

operation.

CNNs can capture and preserve the implicit structure of the input signal. As discussed,

the information of room acoustic parameters lies implicitly in the TOA sof reflective pulses

in RIRs. As a result, we choose CNNs to explore how room acoustic parameters, specifically,

room geometry, contain in RIRs in Chapter 3.

2.4.3 Recurrent Neural Networks
Recurrent neural networks (RNNs) [242–247] are mainly applied to sequential data, for

example, numerical time series data of stock. RNNs are widely used in applications such as

text generation [248–250] and language modeling [251–253].

Different from MLPs and CNNs, RNNs have cycles and send feedback information to

itself [246]. This means they can consider both the input of current step and the input of

the previous time step. The process can be formulated mathematically [246, 254]. Let 𝑯 𝑡 ,

𝑿 𝑡 , and 𝑶𝑡 denote the hidden state, the input, and the output at time 𝑡, respectively. The
hidden state and the output can be computed as

𝑯 𝑡 = 𝜙ℎ(𝑿 𝑡𝑾 𝑥ℎ+𝑯 𝑡−1𝑾 ℎℎ+𝒃ℎ), (2.47)

𝑶𝑡 = 𝜙𝑜(𝑯 𝑡𝑾 ℎ𝑜+𝒃𝑜), (2.48)

where 𝑾 𝑥ℎ, 𝑾 ℎℎ, 𝑾 ℎ𝑜 denote the weight matrix between the input and the hidden state,

the hidden-state-to-hidden-state matrix, and the weight matrix between the hidden state

and the output, 𝒃ℎ and 𝒃𝑜 denote the bias vector, and 𝜙ℎ(⋅) and 𝜙𝑜(⋅) denote the activation
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function of the hidden state and the output [246]. RNNs face the problems of vanishing

and exploding gradients [246, 255].

To handle the vanishing gradients problem, the long short term memory units (LSTMs)

are proposed, which allow RNN to learn over much more time steps [246]. LSTM incorpo-

rates non-linear and data dependent controls, i.e., gate cells, into RNN cells that ensure

the gradients do not vanish [255]. For a gate cell in LSTMs, there is an output gate 𝑶𝑡 that

reads the entries of the cell, an input gate 𝑰 𝑡 that reads data into the cell, and a forget gate

𝑭 𝑡 that resets the content of the cell. These gates can be computed as [246]

𝑶𝑡 = 𝜎((𝑿 𝑡𝑾 𝑥𝑜+𝑯 𝑡−1𝑾 ℎ𝑜+𝒃𝑜), (2.49)

𝑰 𝑡 = 𝜎((𝑿 𝑡𝑾 𝑥𝑖+𝑯 𝑡−1𝑾 ℎ𝑖+𝒃𝑖), (2.50)

𝑭 𝑡 = 𝜎((𝑿 𝑡𝑾 𝑥𝑓 +𝑯 𝑡−1𝑾 ℎ𝑓 +𝒃𝑓 ), (2.51)

where 𝑾 denotes the weight matrix, 𝒃 denotes the bias, and 𝜎(⋅) denotes the sigmoid

activation function. In addition, there is a candidate memory cell 𝑪̃𝑡 with a tanh activation

function, which is defined as

𝑪̃𝑡 = tanh((𝑿 𝑡𝑾 𝑥𝑐 +𝑯 𝑡−1𝑾 ℎ𝑐 +𝒃𝑐). (2.52)

The gates together with an old memory content 𝑪𝑡−1 can control the amount of preserved

old memory content for the new memory content 𝑪𝑡 as

𝑪𝑡 = 𝑭 𝑡 ⊙𝑪𝑡−1+𝑰 𝑡 ⊙𝑪̃𝑡 , (2.53)

where ⊙ denotes the element-wise matrix multiplication [246]. We then can compute the

hidden state as

𝑯 𝑡 = 𝑶𝑡 ⊙ tanh(𝑪𝑡). (2.54)

There exist some other varieties of RNN, such as deep recurrent neural networks

[256–258] and bidirectional recurrent neural networks [259–261]. However, since this

dissertation does not deal with sequential data, we do not review them in detail. Further

details can be found in [246, 247, 255].

2.4.4 Residual Network
Residual Networks (ResNets) [262–265] introduce identity mapping layers to solve the

problems faced by the deep neural networks such as vanishing and exploding gradients

and degrading training accuracy. The output of the identity mapping layer is added to

the output of the stacked layers. Let (𝑥) denote the desired mapping function by a few

stacked layers, and 𝑥 denotes the input to this set of stacked layers. Assuming the same size

of input and output layers, instead of training to fit (𝑥), the stacked layers are trained to
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fit the residual function (𝑥) ∶=(𝑥)−𝑥 [262]. The residual function is applied to every

few stacked layers. If the input and output layers are of different sizes, a projection matrix

𝑊𝑠 can be applied to the input 𝑥 to match dimensions. ResNets make it possible to train

a very deep neural network. It is easier to train a residual mapping and gain accuracy

with increased depth [262]. ResNets can benefit many computer vision tasks, for example,

object detection [266–268].

Some variations of ResNet are proposed for improved performance, and we list two of

them here. Stable ResNets [269] is proposed to prevent exploding gradients and ensure the

expressivity with increased depth. It is achieved by multiplying layer/depth depending

scaling factors with the residual function. The scaling factors include uniform scaling

factors with similar magnitudes for all layers and decreasing scaling factors. Experimental

results prove that Stable ResNets outperform ResNets, but the selection of scaling factors

remains an open problem [269]. ResNeXt is proposed in [270] that combines ResNets

and inception models. It follows the split-transform-merge paradigm as the inception

model. The outputs of different paths are added together and different paths share the

same topology. The residual functions are applied to the inception modules. Increasing the

cardinality, i.e., the number of different paths, gains accuracy more efficiently compared to

increasing depth or width [270].

The residual connection is used in the transformers, which will be discussed in Section

2.4.6. Since adding residual connections can at least perform the same as the original neural

network, we plan to add residual connections to our room acoustic parameter estimation

model as future work.

2.4.5 Variational Autoencoder
VAEs [271–274] can be used as generative models or as methods to remove redundancy

from an input representation. VAEs can be used for speech enhancement [275, 276], image

classification [277, 278], and so on. An autoencoder is a neural network that consists of an

encoder that maps the input to a latent representation and a decoder that maps the latent

information to an approximation of the input data. It is assumed that the high dimensional

data can be embedded in a low dimensional manifold. Ideally, the bottleneck layer (latent

space) of an autoencoder describes the data within the manifold and corresponds to an

abstract description of the input data without redundancy. A VAE adds noise in the latent

layer and assumes the latent distribution approximates normal. Then sampling from the

noisy latent distribution can be used to generate new data using the decoder only. Thus,

VAEs can be used either to remove redundancy or to generate new data.

There exist several varieties of VAEs [279–281]. 𝛽-VAEs [279] introduce a hyperparam-

eter 𝛽 to allow users to set the trade-off between generative power and reconstruction

power. 𝛽-VAEs outperform the baseline models in terms of the degree of disentanglement

but with sacrificed reconstruction quality. Here, disentangled representation refers to the
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latent layer where each neuron only changes with one generative factor [279]. Factor VAEs

[282] improve 𝛽-VAEs with a better trade-off between generative power and reconstruc-

tion power. Factor VAEs encourage the latent representation distribution to be factorial

and independent across dimensions. It improves the disentanglement and maintains the

reconstruction quality but requires a low total correlation. Based on factor VAEs, relevant

factor VAEs [283] are proposed without the requirement of total correlation, which adjusts

the weights of disentanglement during training instead of hyperparameter tuning. By

a 𝐿0-regularisation which prunes the dimensionality of the latent layer, pruning VAEs

[284] promotes disentanglement of the latent representation and figures out the intrinsic

dimensionality at the same time. Bounded Information Rate Variational Autoencoders

(BIR-VAEs) [285] treat the latent layer as a communication channel and bound its informa-

tion rate with a pre-defined SNR, which are computationally less expensive and provide

a meaningful latent space. Variance constrained VAEs [286] only constrain the variance

of the latent layer, which allows a more natural representation of the data. Introspective

VAEs (IntroVAEs) [287] differ from the above mentioned VAEs since the encoders are also

trained to distinguish between the generated data and real data like generative adversarial

networks (GANs). It combines the advantages of VAEs and GANs but does not require a

separate discriminator as a hybrid model [288].

We focus on variance constrained autoencoders (VCAEs) [286] to implement our ARR

estimation task in Chapter 6 as they are easy to implement and achieve good performance.

Although sampling from the latent layer is difficult with VCAEs, we aim to analyze RIRs

rather than generate new data from the latent space. We use 𝑋 , an ℝ𝑑-valued random

variable, to represent the signal where 𝑑 denotes the length of each signal and 𝑋 ∼ 𝑃𝐷(𝑥),
whose distribution is determined by the data. A VCAE [286] is composed of an encoder

𝑄𝑍|𝑋;𝜓 and a decoder 𝑃𝑋|𝑍;𝜂 that are implemented by neural networks with parameters 𝜓
and 𝜂 respectively. Let 𝑍 , an ℝ𝑑𝑧 -valued random variable, represent latent space of dimen-

sionality 𝑑𝑧 . The distribution of 𝑍 is unknown. VCAEs do not constrain the distribution of

𝑧 but do constrain the variance of 𝑧. The latent space 𝑧 follows that 𝑧 = 𝜇𝜓(𝑥)+𝜖, where
𝜖 ∼ 𝑃𝜖 is defined by the system designers. The loss function can be written as [286]

max
𝜂,𝜓

𝐸𝑋∼𝑃𝐷𝐸𝑍∼𝑄𝑍|𝑋;𝜓 [log𝑝𝜂(𝑋 |𝑍)]−𝜆|𝐸𝑍∼𝑄𝑍;𝜓 [‖𝑍 −𝐸𝑍∼𝑄𝑍;𝜓 [𝑍]‖
2
2]− 𝑣|, (2.55)

where 𝑣 denotes the target total variance, and 𝜆 controls the trade-off between the recon-

struction performance and the variance of the latent space. A VCAE is similar to a regular

autoencoder but with the ability to control the information rate traveling through each

neuron in the latent layer. A VCAE can be viewed as a communication channel [289] where

the code is given by 𝜇𝜓(𝑥), the channel is defined by 𝑝𝜓(𝜖), and the output is given by

𝑧 = 𝜇𝜓(𝑥)+𝜖. Choosing 𝑝𝜓(𝜖) = (0,𝜎2𝜖 ⋅ 𝐼𝑑𝑧 ), the upper bound of the information rate can

be computed as 𝐼bits = 𝑑𝑧
2 log2(

1
𝜎2𝜖
) [289].
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2.4.6 Transformer
The transformer model is based on a parallel multi-head attention mechanism, dispensing

with recurrence and convolutions [290]. It was first proposed for sequence transduction.

Transformers can be applied to not only sequences but also other applications, such

as image generations [291], image recognition [292–294], and audio classification [295].

The transformer model is good at modeling long input sequences since it models the

dependency between elements of different positions. The transformer model allows for

more parallelization and performs better than other models for transduction tasks [290].

Transformers are relatively computationally expensive to train.

Self-attention, i.e., intra-attention, is an attention mechanism representing sequences

that relate different inputs from a set of inputs [296]. In contrast, the cross attention

mechanism [297] combines different input sets where one set provides query and the other

set provides key and value [298]. To compute the attention vector, a query vector, a key

vector, and a value vector are created. In sequence processing, the computation of the

elements, as well as their embedding vectors, depends on their position. The encoded

position information is added to the input sequence as an input embedding vector in the

transformer [290, 299]. Thus, the attention mechanism can capture the relationship among

different positions in sequences without the restriction of sequential position as recurrence.

Attention [296] is a function that maps from the query and key-value pairs to the

output. An attention vector computed based on key and query describes the importance

of each element of the value to the current output element. One widely used attention

mechanism is referred to as scaled dot product attention. To compute a set of queries

simultaneously, the queries, keys, and values are packed into matrices as 𝑄,𝐾,𝑉 , and the

outputs can be computed as [290]

Attention(𝑄,𝐾,𝑉 ) = softmax(
𝑄𝐾 𝑇
√
𝑑𝑘
𝑉 ), (2.56)

where 𝑑𝑘 denotes the dimensions of queries and keys. The matrix computation makes it

fast and space-efficient [290].

The transformer utilizes multi-head attention, which learns different representations

from different positions in parallel. It outperforms the single attention function and

facilitates the exploitation of different relations between elements. The multi-head attention

mechanism can be computed as [290]

Multihead(𝑄,𝐾,𝑉 ) = Concat(head1, ...,headℎ)𝑊 𝑂 , (2.57)

where head𝑖 is computed using (2.56) as head𝑖 = Attention(𝑄𝑊 𝑄
𝑖 ,𝐾𝑊 𝐾

𝑖 , 𝑉𝑊 𝑉
𝑖 ), 𝑊 denotes

the trainable parameter matrices, and ℎ denotes that we perform the attention mechanism

ℎ times.
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A standard transformer employs the encoder-decoder structure as conventional se-

quence transduction but uses stacked fully-connected layers [290]. Both encoder and

decoder adopt a residual connection and a layer normalization. Each layer of the encoder

is composed of two sublayers. One is the multi-head attention mechanism and the other

is a fully connected layer. The keys, values, and queries of the attention in the encoder

come from the output of the previous encoder layer. The decoder has a similar structure

but has an additional sublayer using cross-attention between the encoder and the decoder.

The keys, values, and queries of the attention in the decoder come from the output of the

previous decoder layer. For the encoder-decoder attention layer, the queries come from the

previous decoder layer, while the keys and values come from the output of the encoder

[290]. An encoder only transformer, a variety of the standard transformer, is bidirectional

encoder representations from transformers (BERT) [300]. Similarly, a multi-layer trans-

former decoder only can also perform natural language processing tasks, for example,

Generative Pre-trained Transformer (GPT) [301]. The transformer model allows for more

parallelization for improved efficiency and outperforms other models for transduction

tasks [290].

Transformers can model the relationships between all points of a signal in spite of

their positions. Different from transformers that treat all points equally, CNNs focus on

the local spatial structures of various degrees [302]. TOAs of specular reflections can

be considered as a complex function of room acoustic parameters in RIRs. The TOAs of

specular reflections are not just local maximal since scattering and phase change can hide

the true specular reflections. We hypothesize this information spreads along the entire

RIRs. Hence transformers are more appropriate than CNNs. As a consequence, we use

transformers to estimate TOAs of specular reflections up to second order in Chapter 4. Since

transformers are relatively new comparing to CNNs, it is also interesting to re-formulate

the problem in Chapter 3 using transformers and compare the results with CNNs as a

future work.
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3
Room Acoustical Parameter

Estimation from Room
Impulse Responses Using Deep

Neural Networks

We describe a new method to estimate the geometry of a room and reflection coefficients
given room impulse responses. The method utilizes convolutional neural networks to estimate
the room geometry and multilayer perceptrons to estimate the reflection coefficients. The
mean square error is used as the loss function. In contrast to existing methods, we do not
require the knowledge of the relative positions of sources and receivers in the room. The
method can be used with only a single RIR between one source and one receiver. For simulated
environments, the proposed estimation method can achieve an average of 0.04 m accuracy for
each dimension in room geometry estimation and 0.09 accuracy in reflection coefficients. For
real-world environments, the room geometry estimation method achieves an accuracy of an
average of 0.065 m for each dimension.

This chapter is published as “Room acoustical parameter estimation from room impulse responses using deep

neural networks,” by W. Yu and W. B. Kleijn, in IEEE/ACM Transactions on Audio, Speech, and Language Processing,
vol. 29, pp. 436–447, 2021.
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3 Room Acoustical Parameter Estimation from Room Impulse Responses Using Deep Neural

Networks

3.1 Introduction
Augmented reality (AR) is an immersive audio-visual environment where artificial objects

are added to a real-world scenario, providing the user with an enhanced and interactive

experience [15]. Augmented reality will play an increasingly important role in numerous

contexts, such as education, manufacturing, and archaeology. An accurate description of

acoustic environments is essential for generating perceptually acceptable sound in an AR

system. Estimating room acoustical parameters forms an important aspect of modeling an

acoustic environment accurately. In this chapter, we consider the estimation of the room

geometry and reflection coefficients from room impulse responses.

The room impulse response (RIR), the transfer function between the sound source and

the listener, characterizes the acoustic environment of a room. It is composed of direct-

direction sound, early reflections, and late reverberation. An RIR is affected by the position

of the sound source and the receiver, the room geometry, and the reflection coefficients. In

the context of this chapter, we consider rectangular rooms and define room geometry to be

a three-dimensional vector, which contains the length, width, and height of a room. The

room geometry and the reflection coefficients can be used to model and analyze acoustic

behavior inside a room via RIRs. We are interested in the estimation of the room acoustical

parameters from RIRs.

In this chapter, we use deep learning to solve this estimation problem. In recent years,

deep learning has seen a rapid increase in usage as a result of the increased computational

power and the availability of large databases. Relevant deep neural networks (DNNs) to our

work are feedforward multilayer perceptrons (MLPs) and convolutional neural networks

(CNNs). MLPs [303] are composed of fully connected layers and can approximate most

mapping functions. This property makes them applicable in various areas, such as ecology

[214], chemistry [215], and climate change [216]. CNNs contain a set of generalized filters

of different levels to extract features from the signals. CNNs have been used for various

applications such as image classification [220–222], and speech recognition [304–306].

We use CNNs for room geometry estimation and MLPs for the estimation of reflection

coefficients. CNNs can analyze data with salient spatial structures [307] and we hypothesize

that the room geometry defines patterns in RIR signals. Reflection coefficients influence

the strength of reflective pulses, which we hypothesize MLPs are able to learn from RIR

signals. Due to the limited amount of real-world measured RIRs, we first train the neural

network with artificial data. After that, we use transfer learning to make the model work

with real-world measured RIRs.

The main contribution of this chapter is the usage of deep neural networks to estimate

room acoustical parameters. In contrast to state-of-the-art methods for estimating room

acoustical parameters, our method only requires a random RIR between a single sound

source and a single receiver in the room without any additional information. The new

room geometry estimation model performs well with real-world measured RIRs.
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This chapter is organized as follows. In section 3.2, we formulate the estimation problem

of the room acoustical parameters. We then describe the solutions of the room geometry

estimation problem and the reflection coefficient estimation problem separately in section

3.3 and section 3.4. The experimental results are discussed and analyzed in detail in section

3.5. Finally, we conclude our paper in section 3.6.

3.2 Problem Formulation
In this section, we formulate our problem, i.e., room acoustical parameter estimation from

RIRs, and discuss the motivation for using deep neural networks to solve it.

We aim to use deep neural networks to estimate room acoustic parameters separately

and blindly from a single RIR. Since the room acoustical parameters are described by

continuous variables, we formulate the room acoustical parameter estimation problem as

a regression problem. We define the input and output pair of the neural network with

a random variable pair (𝑋,𝑌 ). Specifically, in our problem, 𝑋 is an ℝ𝑑𝑋 -valued random

variable that represents RIRs where 𝑑𝑋 denotes the length of each RIR signal vector, and 𝑌
is an ℝ𝑑𝑌 -valued random variable that represents the room acoustical parameters where 𝑑𝑌
denotes the length of each room acoustical parameter vector.

We aim to learn a continuous deterministic function ℎ to predict 𝑦 from 𝑥 , where (𝑥,𝑦)
is a realisation of the random variable pair (𝑋,𝑌 ). Hence, we have 𝑦̂ = ℎ(𝑥) where ⋅̂ labels
an estimate. To measure the generalisation ability of the learned function ℎ, we use a loss
function 𝑙 ∶ 𝑦̂ × 𝑦 → ℝ+. The risk 𝑅 of the predictor can then be defined as:

𝑅 = 𝔼[𝑙(ℎ(𝑥),𝑦)], (3.1)

where the expectation 𝔼 is calculated with respect to the distribution 𝑓𝑋 (𝑥) (recall 𝑦 is a

deterministic function of 𝑥). As the neural network does not know the distribution 𝑓𝑋 (𝑥)
of the input data during learning, we approximate the risk 𝑅 of the predictor with the

empirical risk 𝑅emp on the training set:

𝑅emp =
1
𝑚

𝑚
∑
𝑖=1

𝑙(ℎ(𝑥𝑖),𝑦𝑖), (3.2)

where 𝑚 denotes the size of training dataset and each (𝑥𝑖, 𝑦𝑖) pair is one copy of the

realisation (𝑥,𝑦) ∈ ℝ𝑑𝑋 ×ℝ𝑑𝑌 in the training dataset.

As we have mentioned above, the RIR is affected by both room geometry and reflection

coefficients. For a given room geometry, reflection coefficients, and source and microphone

position, the corresponding RIR can be computed for an empty box-shaped room. However,

given an RIR in the real world, we might be not able to determine a set of parameters

due to the existence of obstacles, a non-regular room shape, changes in temperature,

and measurement noise. As a result, we conclude the relationship between the RIR and
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the room acoustical parameter is probabilistic. It is difficult to use conventional signal

processing techniques to estimate room geometry and the reflection coefficients since the

RIR can not be formulated as an analytical function of the room acoustical parameters. This

motivates us to use deep neural networks as a non-linear mapping function to estimate

room geometry and reflection coefficients from RIRs.

When we consider the effect of room geometry on RIRs, each geometry corresponds

to a characteristic set of arrival times for the pulses. We hypothesize that the kernels of

CNNs can extract the arrival-time patterns, where the room geometry information lies.

Hence we use CNNs to estimate the room geometry from RIRs.

The effect of the reflection coefficients on RIRs is encoded in the strength of each pulse

in the RIRs. It is independent of the time of arrival (TOA) of each pulse. With a multilayer

perceptron, these pulses can be treated as features. This motivates us to use MLPs when

we estimate reflection coefficients since we assume this information is mainly related to

the feature values.

3.3 Room geometry estimation
In this section, we describe room geometry estimation based on convolutional neural

networks. We solve the problem first for simulated data and then use transfer learning to

solve the problem for real-world data.

In convolutional neural networks (CNNs), the receptive field of each neuron is processed

with a set of kernels that do not vary across the input data. For our geometry-estimation

problem, this corresponds to assuming that the RIR contains similar structures with respect

to room geometry across all delays. In this section, we describe how we use convolutional

neural networks to estimate room acoustical parameters. We first describe our base method

and how we evaluate the precision of our model. We then propose two methods to improve

the accuracy of the base method. Finally, we generalize our method to real-world RIRs.

3.3.1 Baseline method
As our base method, we use CNNs to estimate the room geometry vector from RIRs blindly.

We hypothesize room geometry vectors can be estimated from a single random RIR of a

room without any additional information. To solve the problem, our neural network has

three output nodes for the length, width, and height of a room. We use the time-domain

RIR as the input of our regression model without any pre-processing. Since the ordering of

the three lengths of the geometry is arbitrary, we re-order the geometry vector in ascending

order as a pre-processing step.

We adopt a commonly used CNN architecture as a basis. In this architecture, each

convolutional layer is followed by a batch normalization layer [308] and an activation func-

tion. Since our input signal is a time-domain signal, we use one-dimensional convolutional

layers and one-dimensional batch normalization layers. To keep a balance between the
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number of parameters and the modeling ability of neural networks, the neural network

consists of eight one-dimensional convolutional layers and three fully connected layers.

The number of channels (filters) in the convolutional layers increases with depth while the

output dimensionality of the convolutional layers decreases.

In a regression problem, a quadratic loss is commonly used to track the training process

and measure the generalization ability. Using this quadratic loss in (6.6), we define the

mean square error (MSE) as the empirical risk, which is used as the objective function

to train our CNN in order to minimize the squared distance between the estimated room

geometry and the true room geometry. We chose the MSE loss since it is relatively sensitive

to outliers. The loss function is then defined as

𝑙(𝑔, 𝑔̂) =
1
𝑚

𝑚
∑
𝑖=1

∥ 𝑔𝑖− 𝑔̂𝑖 ∥22, (3.3)

where ∥ · ∥22 is the 𝑙2-norm, 𝑚 denotes the size of training dataset, 𝑔 ∈ ℝ𝑚×3 denotes the true
room geometry and 𝑔̂ ∈ ℝ𝑚×3 denotes the corresponding estimated room geometry.

To characterize the estimation performance of our method, we evaluate bias and

variance on the test data. Bias measures the mean deviation of our estimates from the true

value and variance measures how much our estimates vary from the mean estimated value.

Minimizing the MSE results in a balance between bias and variance since the relationship

between MSE, bias and variance can be described as

MSE = Bias
2+Variance. (3.4)

Since bias is also a parameter that a neural network tries to learn during the training

process, our CNN model should in principle result in an unbiased estimator. For an

unbiased estimator, we can increase the precision by averaging over the estimates.

3.3.2 Improved methods
Twomethods can be used to improve the accuracy of our baseline method, i.e., the averaging

method and the semi-blind estimation method. We describe both methods separately in

this subsection.

Multiple RIRs can be used to increase estimation precision by averaging estimates. For

each room, we select 𝑁 random independent RIRs. The method is to average over the 𝑁
estimates to calculate the final estimate for the room. The variance of the estimator will

decrease by averaging over 𝑁 independent estimates. Although the accuracy is limited by

the bias, the estimation precision can be increased.

In addition to the above mentioned averaging method, we can also increase accuracy

by adding restrictions when we generate RIRs. When we estimate room geometry from

RIRs, the source/receiver position, and reflection coefficients can be considered as nuisance



3

50

3 Room Acoustical Parameter Estimation from Room Impulse Responses Using Deep Neural

Networks

factors. We want to reduce the effect of nuisance factors in our problem to increase

estimation accuracy. It requires more effort and more information to assume knowledge of

reflection coefficients or exact source/receiver position. However, we can consider a setup

where the relative position between the source and the receiver is fixed without the system

knowing the distance or absolute position. We then remove one nuisance factor in RIR

generation. By adding such a restriction, we hypothesize the estimation accuracy can be

increased compared to blind room geometry estimation.

3.3.3 Generalization to real-world room impulse responses
Our goal is to generalize our method to real-world RIRs. On the one hand, since the amount

of available real-world data is insufficient for training, we augment our data by processing

our simulated RIRs to make our simulated RIRs close to real-world data. On the other hand,

due to the imbalanced amount of simulated database and real database, transfer learning

can be applied to improve generalization performance. In this subsection, we will first

discuss how we use transfer learning. After that, the data augmentation technique will be

covered. Finally, we describe how we apply our method to real-world RIRs.

Transfer learning [309] was proposed to improve the performance of a new task based

on prior knowledge from a related trained task. Since we are able to generate a simulated

RIR database of sufficient size to cover a wide range of room geometriesfor training, we

can first train a neural network with an RIR database generated with the image source

method. Then this trained neural network can be used as initialization when we train the

neural network with a real RIR database of small size.

Instead of directly using transfer learning for real RIR database from the pre-trained

model, which is trained on the ISM generated RIRs, we augment data as a transition stage.

Compared to real-world measured RIRs, RIRs that are generated by the ISM lack some

distortions, for example, additive environmental noises. Consequently, the neural network,

which is trained by simulated RIRs, may adapt to certain features that are obscured to a

real-world database and may fail to generalize well to a real RIR database. [310] proposed a

simple and computationally cheap method to augment data for speech recognition, where

they warp the features, mask blocks of frequency channels, and blocks of time steps. With

this simple augmentation method, they could outperform prior work and achieve state-of-

art performance. Inspired by this work, we can add some distortions to our simulated RIR

as a data augmentation policy. In the following several paragraphs, we will introduce how

we augment our data.

In the real world, it is almost impossible to obtain clean RIRs. In rooms and concert

halls, a signal to noise ratio (SNR) of an RIR is commonly between 30 and 50 dB [158].

Hence, it is reasonable to include additive noise with an SNR between 30 and 50 dB in the

RIR.

Obstacles are quite common in the real world, but we are not aware of an efficient
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method to simulate the effect of obstacles. Since we want to apply our model to real-

world data, we have to mimic the effect of obstacles in our simulated RIR database. In the

context of this paper, we discuss two artificial distortion types and one analytical method

to simulate RIRs with obstacles in rectangular rooms. We will discuss these three methods

separately.

The first type of artificial distortion to simulate the effect of obstacles is computationally

inexpensive although rudimentary. The existence of obstacles will block some reflection

paths and add some extra reflection paths. As a consequence, the first method is to randomly

add and delete a random number of pulses in each RIR generated by the ISM.

As the second method, we add patterns to the blocked pulses due to the existence of

obstacles. This method is also computationally feasible for simulations. Since each RIR can

be viewed as a composition of a direct path between each image source and the receiver, the

reflective pulse is blocked when the corresponding image source is blocked by the obstacle.

This method is not physically correct since it only considers the blocked reflective pulses

when their last reflection segment is blocked by the obstacle. Our derived pattern covers a

subset of true blocked reflective patterns. To avoid the occlusion effect, we consider 2D

non-reflective obstacles to simplify the problem. The blocked area, which is extended to

infinity, can be then be defined with the receiver as the vertex and the obstacle as the base.

When the shape of the obstacle is a quadrilateral, the blocked area can be considered as a

pyramid that extends to infinity. Our task is to determine whether the image source lies

inside this extended pyramid. To determine the position of the image source, we calculate

the dot product between the normal of each face and the vector between the receiver and

the image source position. If the dot products are negative with respect to each face, then

the image source is inside this pyramid. The method can be generalized to determine

whether the reflective pulse is blocked when the obstacle is any polygon.

As the third method of modeling obstacles, we use a method based on adaptive rectan-

gular decomposition (ARD) to simulate the sound propagation in 3D space with obstacles,

which was proposed to model sound propagation in 3D complex environments [70]. This

method utilizes the analytical solution of the wave equation in a rectangular domains and

an efficient implementation of the discrete cosine transform (DCT) to facilitate computation

on a desktop computer. However, it remains a challenge to generate an RIR database of suf-

ficient size to train a neural network with this ARD-based method. As a result, this method

is only used as a data augmentation method in the context of this paper. The procedure can

be summarised as follows. We approximate each obstacle as a cuboid. Adaptive rectangular

decomposition is then utilized to decompose the scene into rectangular partitions. After

that, sound propagation can be simulated in each partition with the analytical solution

to the wave equation on rectangular domains based on the DCT [10]. For the absorbing

boundary, a perfectly matched layer absorber is employed [311]. A finite-difference approx-

imation is used for sound propagation between two neighboring rectangular partitions.

The RIRs that are generated with this method provide a useful transitional RIR between
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the RIRs generated with the image source method and real measured RIRs.

Our ultimate goal is to make the model work with a real-world RIR database. We first

use transfer learning from the ISM generated RIRs to the transitional RIR database, which

includes RIRs with noise, RIRs with obstacles generated with the three different methods.

We then use transfer learning again from this transitional model with a real RIR database.

To make efficient use of the small number of real world RIRs for our experiments, we use

cross-validation [312] to train and test room geometry estimation. That is, we first divide

the database into distinct parts. Each time, we select one subset as the test dataset and

mix the remaining subsets as the train dataset. Finally, we average the test results over the

folds of the cross-validation method.

3.4 Room reflection coefficients estimation
We now describe room reflection coefficients estimation. Since databases that contain both

RIRs and reflection coefficients are not available, the method will be applied to simulated

data only. RIRs are composed of reflective pulses. The strength of reflective pulses depends

on reflection coefficients and propagation path length. We hypothesize MLPs are able to

learn reflection coefficients from a RIR without any additional information.

We first describe the general estimation procedure and discuss the effect of re-ordered

reflection coefficients on estimation accuracy. After that, we discuss the frequency de-

pendency of the reflection coefficients. Finally, we describe how we link the reflection

coefficients with the room geometry.

3.4.1 General reflection coefficients estimation
The reflection coefficient is a factor determining the RIR and this factor is encoded in the

strength of reflective pulses in an RIR. We hypothesize there exists a continuous mapping

function from the RIR signal to the reflection coefficient. Since MLPs can uniformly

approximate any continuous function, we use MLPs to estimate reflection coefficients from

a random RIR blindly. We use the time-domain RIR as the input of our regression model

without any transformation. Similarly to our reflection coefficient estimation problem

In a real-world room, reflection coefficients are different on different walls and can

even be different in different areas of a single wall. We will not cover different reflection

coefficients on a single wall. Thus, In a rectangular room, we assume there are six reflection

coefficients corresponding to the six walls. We re-order the six reflection coefficients in

ascending order as a pre-processing step.

Similarly to the room geometry estimation problem, we use the MSE as our objective

function to train the model, which is defined as

𝑙(𝑐, 𝑐) =
1
𝑚

𝑚
∑
𝑖=1

∥ 𝑐𝑖−𝑐𝑖 ∥22, (3.5)
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where 𝑐 ∈ ℝ𝑚×6 is the true reflection coefficient matrix and the 𝑐 ∈ ℝ𝑚×6 is the estimated

output.

We then discuss the effect of ordered reflection coefficients. We aim to verify that

our neural network does learn the reflection coefficients from the RIRs and does not just

correspond to an ordering of random outputs unrelated to the reflection coefficients. We

use 𝑋 = [𝑋1, ...,𝑋6] to denote the six reflection coefficients and 𝑌 = [𝑌1, ..., 𝑌6] to denote the

target of our neural network, i.e., the six ordered reflection coefficients. The real output

of our neural network is denoted by 𝑌 = [𝑌1, ..., 𝑌6]. In the following we assume that the

coefficients each have a uniform distribution, which we will impose in our simulation

experiments.

We use 𝑌 = [𝑌1, ..., 𝑌6] to denote a set of ordered but unrelated random variables. Thus,

distancemeasures between 𝑌 and 𝑌 form an upper bound on the expected error of our neural

network output: 𝐸[|𝑌𝑖 − 𝑌𝑖|2] < 𝐸[|𝑌𝑖 − 𝑌𝑖|2]. 𝐸[|𝑌𝑖 − 𝑌𝑖|2] will be computed experimentally

for each 𝑖, which corresponds to the MSE. Our objective here is to compute 𝐸[|𝑌𝑖 −𝑌𝑖|2]
theoretically for each 𝑖.

We first need to compute the probability density function of 𝑌𝑖 and 𝑌𝑖. Since 𝑌𝑖 and 𝑌𝑖 are
the 𝑖-th order statistic of 𝑋1⋯,𝑋6 respectively, they are identically independent distributed

for each 𝑖. We assume 𝑋1,⋯ ,𝑋6 are iid random variables that follow a standard uniform

distribution. We can then compute the probability density function of 𝑌𝑖 and 𝑌𝑖 respectively
according to the order statistic [313]. That is, 𝑌𝑖 ∼ Beta(𝑖, 7− 𝑖) and 𝑌𝑖 ∼ Beta(𝑖, 7− 𝑖), where
Beta(., .) denotes the beta distribution. The Beta distribution is a continuous distribution

defined on the range (0,1) with density

𝑓𝑌 (𝑦) =
1

B(𝑖, 7− 𝑖)
𝑦𝑟−1(1−𝑦)𝑠−1, (3.6)

where B(., .) is the Beta function. The pdf of 𝑌𝑖, 𝑓𝑌 (𝑦), is identical to that of 𝑓𝑌 (𝑦).
With the probability density function of 𝑌𝑖 and 𝑌𝑖, our next step is to compute the

probability density function of 𝑌𝑖−𝑌𝑖, which is denoted as 𝐷𝑖. Following Theorem 2.1 in
[314], if 𝑌𝑖 and 𝑌𝑖 are two independent random variables having support in (0,1), the pdf of
𝐷𝑖 = 𝑌𝑖−𝑌𝑖 is defined as

𝑓𝐷𝑖(𝑑) =

{
∫ 1+𝑑
0 𝑓𝑌 (𝑡)𝑓𝑌 (𝑡 − 𝑑)d𝑡 −1 < 𝑑 < 0
∫ 1−𝑑
0 𝑓𝑌 (𝑑 + 𝑡)𝑓𝑌 (𝑡)d𝑡 0 < 𝑑 < 1

. (3.7)

With this pdf, we can compute the second moment of𝐷𝑖, which corresponds to the expected

value of |𝑌𝑖−𝑌𝑖|2, as

𝐸[𝐷2
𝑖 ] = ∫

1

−1
𝑑2𝑓𝐷𝑖(𝑑)d𝑑. (3.8)

With the above derivation, we are able to calculate the expected value of |𝑌𝑖−𝑌𝑖|2 for
each 𝑖. Taking the square root of the expected values, we can compute the expected upper
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bound of the root mean square error (RMSE),

√
𝐸[|𝑌𝑖−𝑌𝑖|2], which for the six dimensions

is [0.1750,0.2259,0.2474,0.2474,0.2259,0.1750].

3.4.2 Freqency dependent reflection coefficients estima-
tion

In this subsection, we discuss the frequency dependency of the reflection coefficients. To

define an appropriate model for estimating frequency-dependent reflection coefficients, we

must know how reflection coefficients vary with frequency. [315] lists several absorption

coefficients in different frequencies. For example, the absorption coefficients of a painted

concrete block change from 250 Hz (0.05) to 4000 Hz (0.08), the absorption coefficients

of a lightweight drapery change from 125 Hz (0.03) to 250 Hz (0.04), and the absorption

coefficients of plaster on lath change 500 Hz (0.06) to 4000 Hz (0.03). As all these examples

change only moderately over frequency, we assume a simple model with piecewise constant

reflection coefficients.

With the piecewise constant reflection coefficient assumption, we add a preprocessing

step to divide the full-band RIR into several frequency bands with bandpass filters so that

we can estimate reflection coefficients in different frequency bands. Among different kinds

of bandpass filters, Chebyshev filters show a good computational speed although they are

not perfect on stop-band attenuation [316]. Consequently, we choose Chebyshev type

I filters [317] as our lowpass filter, which can be transformed into a bandpass filter or

highpass filter as needed. With this pre-processing process, we will get access to RIRs in

different frequency bands. We can then apply the previously discussed estimation methods

for each frequency band separately.

3.4.3 Linking reflection coefficients with room geometry
Knowledge of six reflection coefficients only is generally insufficient. In this subsection,

we focus on how to link the reflection coefficients with the room geometry. We assume

that we already know the room geometry that can be estimated as described in Section 3.3.

This linking problem can be solved by two methods, a machine learning based method and

a conventional signal processing method.

With the machine learning based method, we build a CNN that takes an RIR signal

conditioned on the room geometry as the input. The choice of CNN architecture is based

on the logic in Section 3.3, where the conditioning is the only difference. The conditioning

is fed into the network twice, at the input layer and at a middle layer. The output is a

combination of the room geometry and the corresponding pairs of reflection coefficients.

Within each pair, since there does not exist an order between two reflection coefficients,

we re-order the two reflection coefficients in ascending order.

With the conventional signal processing method, we use 𝑅𝑇60 as a bridge. On the one

hand, ISO 3382 [318] shows how to measure 𝑅𝑇60 from the reverberation time 𝑇 20 or 𝑇 30.
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We first need to calculate the energy decay curve from the RIR signal. The energy decay

curve 𝐸𝐷𝐶 at time 𝑡 is defined as [157]

𝐸𝐷𝐶(𝑡) = ∫
∞

𝑡
ℎ2(𝜏)d𝜏, (3.9)

where ℎ(𝜏) is the room impulse response. The reverberation time 𝑇 20 (𝑇 30) is defined
as the time that the energy decays from −5 dB to −25 (−35) dB, which can be calculated

from the energy decay curve. With this, 𝑅𝑇60 is three times 𝑇 20 or twice 𝑇 30. On the

other hand, we can compute 𝑅𝑇60 with Sabine-Franklin’s formula as in (2.33). As what we

have mentioned, we can estimate room geometry as in Section 3.3 and estimate reflection

coefficients as in Section 3.4.1. Different combinations of room geometry and reflection

coefficients result in a different 𝑅𝑇60. By performning an exhaustive search, we are able

to find a combination of room geometry and reflection coefficients that is closest to the

correct 𝑅𝑇60.

3.5 Experimental results and analysis
In this section, we present our experiments. In the first subsection, we describe the

setup of our experiments. We describe experiments on room geometry estimation in the

second subsection. Finally, we present our experiments on the estimaton of the reflection

coefficients.

3.5.1 Experimental setup
In the following, we first discuss the database we used to train and test our model. After

that, we describe the configuration of our neural networks and how we train and test them.

Finally, we introduce how we use bandpass filters for sub-band RIRs in the frequency-

dependent reflection coefficient estimation problem.

Database
As is discussed in Section 3.3.3, a large-scale dataset of good quality is needed to train

neural networks. An overview of the database we use is shown in Table 3.1.

Table 3.1: Database description

Dataset # rooms # sources # receivers
Real-world RIRs 9 5 31

Clean RIRs of empty room 400000 1 1
RIRs with noises 200000 1 1

RIRs with the 1st artificial distortion type 200000 1 1
RIRs with the 2nd artificial distortion type 50000 1 1

RIRs generated with the ARD-based analytical method 144 1 1000
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We used [319] as our real-world RIR database because it contains a relatively large

number of real RIRs, several room types are covered, and the room geometry was measured

in each room. This database contains nine distinct rectangular rooms that are not empty.

Since we aimed our work at moderate or small rooms, we did not include three large rooms

of the database, i.e., one conference room (with geometry 28× 11× 3 m) and two lecture

rooms (with geometry 20 × 12 × 5 m and 23 × 17 × 7 m). The selected six rooms include

one hotel room, one meeting room, three office rooms, and one enclosed staircase. The

geometry of these selected rooms varies between 4.4×2.8×2.2 m and 14.2×6.9×3.6 m. The

corresponding RT30, the time that it takes to decay 30 dB, varies between 0.59 s and 1.85 s.
Within each room, an average of 155 RIRs is given between five sources and 31 receivers.

To build an RIR dataset, we used the ISM to simulate RIRs [76]. We refer to this dataset

as a clean RIR dataset of empty rooms. The shape of the rooms is rectangular and the

rooms are empty. The speed of sound was set to 𝑐 = 340 m/s. The sampling frequency

was set to 8000 Hz. The length of each RIR was 4096 because an approximate 0.5 s RIR
contains at least the direct path signal and early reflections in an indoor environment.

Each dimension of the room geometry, i.e., length × width × height, was assumed to be

iid between 6× 5× 4 m and 10× 8× 6 m. The room geometry range covers moderate and

small rooms and is close to the real-world RIR database described above. The reflection

coefficients of the walls were simulated as iid between 0 and 1. We randomly placed one

source and one receiver in each room and generated the corresponding RIR. We labeled

each RIR with room geometry and reflection coefficients. In our experiments, the number

of the image-source method simulated RIRs was 400000, which was divided into a training

dataset, a validation dataset, and a test dataset with the ratio 7 ∶ 2 ∶ 1 for the baseline

method.

The clean RIR training dataset of empty rooms was randomly divided into two equal

parts for RIRs with noise and the first artificial distortion type. With one part, an additive

Gaussian white noise was added to each RIR with an SNR uniformly distributed between

30 dB and 50 dB.
With the first artificial distortion of the RIR as defined in Section 3.3.3, a random

number (this number was set to be uniformly distributed between 10 and 100) of pulses
was added or deleted from the first 0.1 s of the clean RIRs. This choice was motivated by

the hypothesis that the early reflection part of RIR provides more information for room

geometry estimation than late reverberation.

With the second artificial obstacle pattern as defined in Section 3.3.3, we generated an

RIR database of 50000 rooms. For each room, we randomly placed one rectangular obstacle

of an arbitrary size inside the room and generated the corresponding RIR. This process

was repeated nine times, i.e., there were nine distinct distorted RIRs for each room in this

database.

For the RIRs generated with the analytical method based on ARD, due to the restriction

of computational cost, we simulated a scenario with one source and 1000 receivers in each
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of 144 rooms. We randomly placed one to three obstacles of a random size in each room.

We changed the reflection coefficients and geometry of the room. Each combination was

denoted as one configuration.

Neural network description
In this subsection, we describe how we train and test our neural networks. In addition, we

describe the configuration of our neural networks for different objective functions. We

did an ablation study on network architecture and hyperparameter tuning with a grid

search as a preliminary experiment for each neural network. The network architecture

and hyperparameters below were chosen based on this preliminary experiment with our

target database. If some properties of the target database change, we always performed an

ablation study on network architecture and hyperparameter tuning with grid search.

We used a GPU node to train our neural network. The output node is the room

acoustical parameter of the given room. The network was trained with the Adam optimizer

[320], to minimize the training loss. The learning rate of the Adam optimizer was 0.001
and the coefficients used for computing running averages of the gradient and its square

were set to be (0.9,0.999). We iterated for 2000 epochs and recorded the MSE loss for each

epoch. To prevent overfitting, early stopping is used as regularisation in our model [321].

Early stopping is performed when the validation performance degrades in 100 successive
epochs to guarantee the training performance without overfitting and keep a balance on the

computational effort. In each epoch, we set the model on evaluation mode and computed

the validation error for early stopping. In addition, mini-batch based training is used to

increase computational efficiency [322]. The batch size was set to be 50. After training, we
set the model to evaluation mode and computed the RMSE per dimension in the test set.

For geometry estimation, our network architecture and the corresponding parameters

are shown in Table 6.1, where 𝑏 denotes the batch size. First the layer size decreases as

the number of channels (feature maps) increases. The features are finally mapped to the

geometry with fully connected layers. We use a leaky rectified linear unit (Leaky ReLU)

[323] as the activation function. After each convolutional layer, there are always a batch

normalization layer and a Leaky ReLU layer [323], which we do not list in the Table 6.1

since the output size does not change. The network contains 4577763 trainable parameters

in total.

To estimate six frequency-dependent reflection coefficients, we use a multilayer percep-

tron regressor with nine hidden layers. The size of each layer was halved with each layer,

from 2048 to 8. A rectified linear unit (ReLU) [324] was used as an activation function after

each hidden layer.

To link the reflection coefficients to the room geometry, the network is described in

Table 3.3, where 𝑏 denotes the batch size and we omit the batch normalization layer and

the Leaky ReLU layer in the table. The conditioning, i.e., the room geometry vector, is

concatenated to the RIR at the input layer and to the reshaped output vector before the fully
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Table 3.2: Network architecture of room geometry estimation

Operation Kernel Size Stride # Channels Output Size

Input (𝑏,4096)
Reshape (𝑏,1,4096)
Conv1D 4 4 32 (𝑏,32,1024)
Conv1D 2 2 32 (𝑏,32,512)
Conv1D 8 8 128 (𝑏,128,64)
Conv1D 2 2 128 (𝑏,128,32)
Conv1D 2 2 512 (𝑏,512,16)
Conv1D 4 4 512 (𝑏,512,4)
Conv1D 4 4 1024 (𝑏,1024,1)
Conv1D 1 1 1024 (𝑏,1024,1)
Reshape (𝑏,1024)

Fully connected (𝑏,160)
Fully connected (𝑏,64)
Fully connected (𝑏,3)

connect layers. Each output vector is reshaped to a 3× 3 matrix, where the first column

is the room geometry vector, each row of the second and the third columns is a pair of

reflection coefficients corresponding to that edge.

Sub-band RIRs
When we take frequency dependency into account, we assumed the reflection coefficients

are piecewise constant. The order of the Chebyshev type I filter was set to be 10 for a
relatively short transition band. The maximum ripple factor was set to be 1 dB. Each

full-band RIR was transformed into three signals, a lowpass RIR (0−1000 Hz), a bandpass
RIR (1000−2000 Hz), and a highpass RIR (2000−4000 Hz). With this transformation, we

were available to four sets of sub-band RIR data. The training and test process, and the

network configuration are the same as for the full band RIRs.

3.5.2 Experiments on room geometry estimation
In this subsection, we present experiments on room geometry estimation. We first compare

the baseline method and the proposed semi-blind estimation method for simulated data.

After that, we discuss experiments for the proposed averaging method. We then compare

our proposed method with a reference signal processing based method. Finally, we describe

how we generalize our method to real-world RIRs.

As the first experiment of room geometry estimation, we set up the experiments of our

baseline method and the proposed semi-blind estimation method for simulated data. For
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Table 3.3: Network architecture of linking reflection coefficients to room geometry

Operation Kernel Size Stride # filters Output Size

Input (𝑏,4099)
Reshape (𝑏,1,4099)
Conv1D 3 3 32 (𝑏,32,1366)
Conv1D 5 5 32 (𝑏,32,273)
Conv1D 3 3 128 (𝑏,128,91)
Conv1D 5 5 128 (𝑏,128,18)
Conv1D 4 4 512 (𝑏,512,4)
Conv1D 4 4 512 (𝑏,512,1)
Conv1D 1 1 1024 (𝑏,1024,1)
Conv1D 1 1 1024 (𝑏,1024,1)
Reshape (𝑏,1024)

Fully connected (𝑏,160)
Fully connected (𝑏,64)
Fully connected (𝑏,9)

Table 3.4: Comparison of base room geometry estimation method and semi-blind room geometry estimation.

Method Baseline method Semi-blind method

RMSE (m) [0.0497,0.0398,0.0249] [0.0180,0.0181,0.0167]
Bias (m) [0.0048,−0.0032,−0.0013] [0.0012,−0.0003,−0.0014]

Variance (m
2
) [0.0024,0.0016,0.0006] [0.0003,0.0003,0.0003]

the semi-blind room geometry estimation, we pre-set a random source-receiver relative

position relationship and generated the corresponding RIR dataset, whose only difference

with respect to our original RIR dataset was the receiver-source relative position. We

compared the performance of these two cases in terms of RMSE, bias, median, and variance

per dimension in the test set. We used the mean estimation error to approximate bias. In

addition, we plot the error distribution of both methods in Figure 3.1, where the error here

refers to the MSE of each room geometry estimation.

We list the RMSE, bias, variance, and median of the base method and the semi-blind

method in Table 3.4. A positive sign indicates our prediction is larger than the true geometry

value. The RMSE, bias, and variance show different values with respect to length, width,

and height because the range on these three elements is different and they are independent

of each other. We also performed an experiment with our baseline method to compare the

estimation accuracy between rectangular rooms and cube rooms. The RMSE of cube rooms

is [0.0534,0.0374,0.0243] m, which does not show a difference from rectangular rooms.
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Figure 3.1: MSE distribution of room geometry estimation.

This confirms that the estimation of length, width, and height are independent of each

other. As shown in Table 3.4, the small bias vector confirms that our CNN model is not

significantly biased after training and the small variance confirms that most estimation

errors are relatively small and they do not vary much. The error distribution in the test set

of both methods is shown in Figure 3.1. Observing the error distribution in Figure 3.1, the

error follows a long-tailed distribution, which confirms that most estimation errors are

relatively small, which is consistent with the small variance in the test set. Comparing the

experimental results of the baseline method and the semi-blind method, the semi-blind

method outperforms the baseline method in terms of accuracy. To conclude, by the addition

of a restriction on the relative source-receiver position relationship, the estimation accuracy

of room geometry estimation is increased.

The second experiment of room geometry estimation was related to the proposed

averaging method to increase the estimation accuracy. We aim to investigate the effect of

the number of available RIRs in each room. For this experiment only, we generated a dataset

with 16 RIRs per room to do the experiments and the RIRs in this dataset were distinct

from those in the training dataset. In each room, 16 RIRs were generated independently,

i.e., they correspond to 16 different randomly placed sources and 16 different randomly

placed receivers. These RIRs were then use for inference with averaging. We ordered the

estimates by the true room geometry and grouped the estimates to one, four, eight, and

16 estimates per room to perform the averaging method. Finally, we computed the RMSE,

bias, and variance of the average method.
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Table 3.5: Root mean squared error and variance of averaging method.

# RIRs RMSE (m) Variance (m
2
)

1 [0.049,0.039,0.045] [0.0024,0.0015,0.0020]
4 [0.027,0.033,0.042] [0.0007,0.0011,0.0018]
8 [0.022,0.032,0.040] [0.0005,0.0010,0.0016]
16 [0.018,0.031,0.025] [0.0003,0.0009,0.0006]

Table 3.6: Comparison of proposed method and state-of-art method.

Proposed method Method in [51]

Average error (m) 0.0247 0.0235
Average run time (s) 3.22×10−4 2.43

Next we describe the experimental result for the averaging method. The bias of the

estimate is [0.0045,−0.0027,−0.0015] m, which does not change by averaging over 𝑁
estimates. The RMSE, median, and variance under different numbers of RIRs are listed in

Table 3.5. The method with one RIR corresponds to our baseline method. The RMSE, bias,

and variance are slightly different from the results in Table 3.4 because the test database

is not the same. From Table 3.5, we can conclude that, as expected, averaging leads to

improved performance. The variance decreases with averaging but does not decrease by a

factor of 𝑁 since there exist nuisance factors, reflection coefficients, and source/receiver

positions, which imply that the RIRs in each room are not independently conditioned

on room geometry. To conclude, the performance is better when more RIRs are used for

averaging although our estimation is still biased.

As the third experiment, we compared our proposed method with the signal processing

method proposed in [51] in terms of system requirements, estimation error, and average

run time. The experiments are both based on the RIRs generated by the ISM method.

For calculating the run time, the experiments were averaged over 600 experiments. The

result is shown in Table 3.6. The method in [51] uses five sources and five receivers and a

96000 Hz sampling frequency while the proposed method only requires sixteen random

RIRs and an 8000 Hz sampling frequency. From the experimental results, our proposed

method achieves approximately the same accuracy while requiring approximate 104 less
computational effort after training. To conclude, our CNN based room geometry estimation

method is computationally efficient with approximately the same estimation error and,

in contrast to the conventional signal processing based method, does not require prior

knowledge or knowledge of the measurement configuration. Moreover, if lower accuracy

is required, our method allows the usage of fewer measurements.

Our last experiment on room geometry estimation was the generalization to real-world
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Table 3.7: Room geometry estimation with real-world measured RIRs.

Room RMSE (m) RMSE after averaging (m)

Hotel room [0.1516,0.1276,0.2615] [0.1046,0.0505,0.1169]
Meeting room [0.1083,0.0639,0.1508] [0.0916,0.0220,0.0440]

Office 1 [0.0508, 0.0532, 0.1023] [0.0056, 0.0249, 0.0384]

Office 2 [0.0803, 0.0757, 0.2240] [0.0390, 0.0207, 0.0938]

Enclosed staircase [0.1790, 0.0998, 0.0970] [0.1696, 0.0923, 0.0825]

Office 3 [0.1516, 0.0365, 0.1305] [0.1432, 0.0081, 0.0112]

RIRs with transfer learning. Before feeding the real-world RIRs into the neural network, we

first resampled the real-world RIRs to 8000 Hz and then used the first 4096 samples of the

resampled RIR as the input. With transfer learning, the base method model was adopted as

initialization and the learning rate of the optimizer was set to be one-tenth of the original

learning rate. This generalization was split into two steps. We trained 500 epochs for each
step to prevent overfitting. We describe the two steps in detail in the next two paragraphs.

The first step was the transfer learning from the base model with additive noise,

randomly deleted and added pulses, derived approximate distorted RIRs due to obstacles,

and the RIR genereated with the RD-based analytical method for obstacles. These distorted

RIRs were mixed as the training dataset for transfer learning in the first step. The model

after the first step was saved as an initialization for the second step.

In the second step, we used transfer learning with real-world RIRs [319]. Cross-

validation was used for the six selected rooms in the database. In each test set, we computed

the RMSE per dimension to evaluate the generalization performance. Since there were

multiple RIRs per room, the proposed averaging method was performed in each test set to

increase accuracy.

The experimental results for room geometry estimation with real-world measured RIRs

are shown in Table 3.7. Before averaging over multiple estimates from multiple RIRs, the

minimal RMSE on a single dimension is 0.05 m and the maximum error is 0.26 m. The

0.26 m RMSE appears in the hotel room with two beds and other furniture inside, which

is a room with relative many obstacles, but this error reduces to 0.12 m after averaging.

After averaging, the minimal RMSE is 0.01 m and the maximal is 0.17 m. The 0.17 m RMSE

after averaging method appears in the enclosed staircase, which is relatively difficult to

handle because of the stairs. The difference between RMSE with and without averaging

method does not consistently follow the results shown in Table 3.5. This is because the real

measured 151 RIRs in each room are from five sources and 31 receivers, which indicates

the measurements are not independent from each other.

We did an additional experiment to evaluate the importance of these four augmentation

methods, where we left one data augmentation method out each time and repeated the two
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Table 3.8: Evaluation of the importance of four data augmentation methods.

The left out data augmentation method Average RMSE difference (m)

RIRs with noises 0.0310

RIRs with the 1st artificial distortion type 0.0570

RIRs with the 2nd artificial distortion type 0.0648

RIRs generated with the ARD-based analytical method 0.1210

steps in the previous experiment. We computed the RMSE after averaging and compared

it with Table 3.7. We computed the average RMSE difference, where the positive sign

indicates an increase in the RMSE when one data augmentation method is left out.

The average RMSE in Table 3.7 after averaging is 0.0644m. The leave-one-out experi-

mental result is shown in Table 3.8. Observing the result, when one data augmentation

method is left out, the corresponding RMSE increases. This shows all four data augmen-

tation methods are all necessary and make a contribution to the estimation accuracy. In

addition, comparing the increased RMSE (m), we can conclude that RIRs generated with

the ARD-based analytical method is the most important among these four methods. This

is likely because this method simulates the effect of obstacles on real-world RIRs most

accurately.

3.5.3 Experiments ontheestimationofreflection coefficients
In this subsection, we describe our experiments that relate to the reflection coefficients. We

first describe the experiments on estimating only reflection coefficients from RIRs, where

we cover the frequency-independent case and the frequency-dependent case. Next, we

describe the experiment on linking the reflection coefficients to room geometry.

We performed the reflection coefficient estimation experiments under the assumption of

six distinct reflection coefficients, one for each wall. We divide this into two cases according

to their frequency dependency. For the frequency-independent reflection coefficients, we

estimate the reflection coefficients from the corresponding full-band RIR. With respect to

the frequency-dependent reflection coefficients, we estimate the reflection coefficients from

the sub-band RIRs independently. We compared the estimation error of the sub-band RIRs

and the full-band RIRs to explore the effect of frequency bands on reflection coefficient

estimation accuracy.

The experimental results of estimating six distinct reflection coefficients in a rectangular

room are shown in Table 3.9. With the full band RIRs, the average RMSE per dimension is

0.09. With the sub-band RIRs, part of the information of the RIRs is lost. Consequently, the

RMSE of the sub-band RIRs is larger. In addition, the RMSE of the low pass RIR is smaller

than that of the bandpass RIR and the high pass RIR. This is likely because the relation

between the RIR and the coefficients is smoother for low pass signals and it is easier to
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Table 3.9: RMSE of multiple reflection coefficients estimation.

Signals RMSE

Full band RIRs [0.0872,0.0954,0.0984,0.0929,0.0826,0.0837]
Low pass RIRs [0.0904,0.0979,0.1001,0.0971,0.0903,0.0873]
Band pass RIRs [0.1098,0.1213,0.1124,0.0978,0.0906,0.0884]
High pass RIRs [0.1108,0.1241,0.1146,0.0981,0.0927,0.0923]

learn a smoother function by a neural network. In addition, when observing the RMSE

for each reflection coefficient, the RMSE in the middle position is relatively large. This is

consistent with the upper bound in Section 3.4.1 and results from having ordered reflection

coefficients in the interval [0,1].
Comparing the experimental results in Table 3.9 and the upper bound derived in

Section 3.4.1, each RMSE in Table 3.9 are substantially smaller than the upper bound

derived in Section 3.4.1. This indicates our neural network does learn reflection coefficients

from RIRs instead of simply generating a set of ordered random numbers.

In the remainder of this subsection, we describe the experiments on linking the reflection

coefficients to the room geometry as outlined in Section 3.4.3. We start with the machine

learning based method. With the machine learning based method, we computed the RMSE

for the reflection coefficients to evaluate the estimation accuracy. Since the room geometry

serves as conditioning, the RMSE for the room geometry is negligible and not recorded

here. Based the estimated reflection coefficients, which are linked to the room geometry,

we computed the 𝑅𝑇60 with the Sabine-Franklin formula, which is compared with the

𝑅𝑇60 calculated from the energy decay curve to compute the RMSE. After that, we took

the six reflection coefficients from each output, re-ordered them, and computed the RMSE

for each reflection coefficient again to compare the accuracy with the previous reflection

coefficients only estimation experiment.

The experimental result of linking reflection coefficients to room geometry using

machine learning based method is shown in Table 3.10. Each row of the second and

the third columns is the RMSE for the pair of reflection coefficients corresponding to

that edge. The RMSE for the paired reflection coefficients is slightly worse than for

the previous experiment but the model can still link a pair of reflection coefficients to

the room geometry. The corresponding RMSE for the 𝑅𝑇60 based on these estimates

is 0.0220 s. When we reordered the six estimated reflection coefficients, the RMSE is

[0.0795,0.0742,0.0809,0.0854,0.0854,0.0915], which is approximately the same as the result

in Table 3.9. This result proves that the estimation accuracy of the reflection coefficients

does not decrease but the linking operation decreases the accuracy a little.

In addition to the machine learning based method, we can also link the reflection

coefficients to the room geometry using the conventional signal processing method. Since
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Table 3.10: RMSE of linking reflection coefficients to room geometry.

Room geometry Reflection coefficients

Edge 1 0.1017 0.1391
Edge 2 0.1058 0.1435
Edge 3 0.1117 0.1427

we use estimated room geometry and reflection coefficients, we only recorded the RMSE

for 𝑅𝑇60. We computed 𝑅𝑇60 with the estimated room acoustical parameters using Sabine-

Franklin’s formula. We then compared it with the 𝑅𝑇60 calculated from the energy decay

curve, and recorded the RMSE.

Computing the 𝑅𝑇60 using the conventional signal processing method, the corre-

sponding RMSE is 0.0083 s, which is smaller compared to the machine learning based

method. Since the difference in the RMSEs for estimates of the room geometry is negligible,

the difference in the RMSEs for the 𝑅𝑇60 is due to the linking process of the reflection

coefficients.

3.6 Conclusion
We showed that it is possible to estimate the geometry of a shoebox-shaped room and also

the reflection coefficients of its walls from RIRs using deep neural networks. We formulated

the problem as a regression problem with the MSE as a loss function. In contrast to

conventional methods, the proposed methods only requires a single RIR between a source

and a receiver and do not require knowledge of their positions or relative distance. For the

room geometry estimation task, we used convolutional neural networks. We first trained

the neural network with artificial data. Then transfer learning was used to make the method

work for real-world RIRs. We achieved an average of 0.065 m testing accuracy for real-

world data. We used multilayer perceptrons to estimate the wall reflection coefficients from

simulated RIRs. We obtained an RMSE of approximately 0.09 for each reflection coefficient

when the reflection coefficients are different for the six walls. This value increased slightly if

we require pairs of reflection coefficients to be associated with an estimated room geometry.

In addition, we were able to estimate frequency-dependent reflection coefficients and

achieved similar accuracy.
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4
Estimation of TOAs and Room
Acoustic Parameters from an

Omnidirectional Room
Impulse Response

We describe a new method for room acoustic parameter estimation given room impulse
responses (RIRs). The method is composed of two parts. The first part utilizes the transformer
to estimate the time of arrivals (TOAs) of the direct path and specular reflections up to the
second order. The image source method describes the TOAs of specular reflections, which
might not correspond to peaks in real RIRs. For this reason, we estimate TOAs described by
the image source method. The estimated TOAs are used as inputs of the analytical method
to estimate room acoustic parameters, i.e., room geometry and source/receiver positions. The
analytical method is based on a symmetry analysis of room impulse responses. In contrast
to the state-of-the-art methods, the proposed method only requires a single room impulse
response. For real-world environments, the proposed method can achieve an accuracy of an
average of 0.0597 m, 0.0650 m, and 0.0760 m on each dimension of room geometry, source
position, and receiver position, respectively, with a failure rate of 18.5%.
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4.1 Introduction
Accurate acoustic environment modeling forms an important aspect of room acoustics. It

has a variety of applications such as speech enhancement [325–327], speech recognition

[328–330], and sound rendering [331–333]. The room impulse response (RIR) characterizes

the room acoustic environment. It is affected by a set of room acoustic attributes, including

room geometry, the positions of the source and receiver, and the reflection coefficients. In

this chapter, we aim to extract time of arrivals (TOAs) of reflections, and derive the room

geometry and source/receiver positions given a single RIR.

A number of methods exist to model RIRs. They can be categorized into wave based

methods and geometrical acoustics based methods. Wave based methods [10, 69, 70]

simulate RIRs numerically and accurately. The acoustic space needs to be discretized

to solve wave equations. Methods include the Finite-Element Method (FEM) [7–9], the

Boundary-Element Method (BEM) [65, 66], and the Finite-Difference Time Domain (FDTD)

[71–74] based methods. Wave based methods can achieve high accuracy. However, these

methods have a high computational load, especially for high frequencies. Geometrical

acoustics based methods [4, 10] assume that the sound propagates in straight lines. The

most commonly used geometrical acoustic methods can be classified into the image source

method (ISM) [4, 10–12, 334], the ray tracing method [101–105] and the beam tracing

method [4, 106–115]. Unlike wave equation based methods, they are unable to simulate

some low frequency effects such as diffraction.

Among the above mentioned methods, we highlight the image source method [10–

12, 334] and the ray tracing method [101–105] since we use these two methods to simulate

RIRs in this chapter and the image source method is the basis of the proposed room acoustic

parameter estimation method. The ISM was first proposed by Allen and Berkley [334] in

1979. The ISM can model the TOAs of the direct path and specular reflections accurately.

In addition, it is computationally efficient, making it suitable for generating a large scale

database. However, RIRs simulated by the image source method differ from real measured

RIRs in several aspects. Firstly, the image sourcemethod cannot model frequency dependent

components, such as, frequency dependent reflection coefficients. Secondly, the image

source method can not be used for curved and non-smooth reflective surfaces and can

not model diffraction or scattering. Lastly, empty rectangular rooms are always assumed,

although several improved methods exist to deal with irregular shapes. These assumptions

make the simulated RIRs far from real-world RIRs. The ray tracing method was extended

from optical applications to room acoustics in [105]. The basic procedure uses similar

principles as the image source method. With the ray tracing method [4, 101–104], the

source emits the rays according to a predefined distribution or Monte Carlo simulation,

and valid reflected paths are retained. The ray tracing method can handle not only specular

reflections but also diffuse reflections. The ray tracing methods face a detection problem

and limited spatial resolution [116]. The detection problem originates from the fact that
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it is impossible for a ray to hit a point receiver. To prevent this, the ray tracing method

assumes a finite-size receiver. As a result, it may suffer from misidentification of rays

or duplicated registered rays [4]. The limited spatial resolution results from the limited

number of traceable rays.

Identifying early reflections in a room impulse response is of great importance in many

room acoustics applications, such as room geometry estimation and speech dereverberation

[145]. Conventional signal processing methods solved this problem with limited accuracy

because of phase distortion and non-linear effects. Due to the increased computational

power and the availability of the large scale database, deep learning has seen a rapid

increase in usage. Conventional deep learning models include multilayer perceptrons

(MLPs) [211, 213], convolutional neural networks (CNNs) [219, 238, 240], recurrent neural

networks (RNNs) [247, 335, 336], and so on. Transformers [290, 337] recently have become

increasingly popular. They model the relationships between all nodes on each layer

independently of their positions. Transformers do not rely on recurrence or convolution

and show a good modeling ability due to the multi-head attention mechanism. Hence, we

use transformers to estimate the TOAs of early reflections from RIRs.

The main contribution of this chapter is the estimation of TOAs of specular reflections

and room acoustic parameters from a single RIR. In the context of this chapter, we refer to

the reflection as the entire ray from the source to the receiver, which can contain multiple

elementary reflections. Since the phase distortion can blur or bias peaks in the RIR and

the peaks might not result from the specular reflections, we aim to estimate the TOAs of

specular reflections described by the image source method. Given a single omnidirectional

room impulse response, we first use a deep learning based method to estimate the TOAs of

specular reflections up to second order. We then use an analytical method to simultaneously

estimate the room geometry and source/receiver position without prior information based

on estimated TOAs. The resulting room acoustic parameter estimation method applies

to rooms with parallel wall pairs. The experimental results confirm the validity of our

proposed method.

This chapter is organized as follows. Section 4.2 discusses the estimation of TOAs of

specular reflections using transformers. We then describe the degeneracy of room impulse

responses and the room acoustic parameter estimation in Section 4.3. The experimental

results are discussed and analyzed in detail in Section 4.4. Finally, we conclude our chapter

in Section 4.5.

4.2 TOAs of specular reflection estimation
In this section, we describe the estimation of TOAs of the direct path and specular reflections

up to second order using transformers. First, we discuss the motivation to use deep neural

networks to solve the problem. Next, we formulate the estimation problem for the TOAs

of the specular reflections estimation problem. Finally, we describe how we solve this
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problem.

As discussed, TOA estimation is of great importance in room acoustic applications, and

conventional signal processing based methods either find the local maximum or compare

the similarity between a pulse and the direct pulse. However, the pulse shape of the

reflections will change due to phase distortion, and it cannot recognize whether a detected

pulse corresponds to a specular reflection. Our previous work proves that deep learning

based methods can handle real-measured RIRs [338]. This motivates us to use a deep

learning based method to estimate TOAs of specular reflections. Specifically, since our room

acoustic parameter estimation algorithm is based on the image source method, we aim to

find the TOAs of specular reflections described by the image source method, which may not

correspond to the peaks in real measured RIRs. Since room acoustic parameter estimation

requires up to second order specular reflections and detecting specular reflections of higher

order is more difficult, we aim to estimate TOAs of specular reflections up to second order

only.

Transformers show good modeling ability in various applications. The multi-head

attention mechanism allows the transformer to learn different relationships among different

positions in RIRs. TOAs of specular reflections can be considered as a complex function of

room acoustic parameters in RIRs. Consequently, we use transformers to blindly estimate

TOAs of specular reflections described by the image source method from a single RIR. Our

approach has the time-domain RIRs as input and a vector of TOAs as output. We adopt

the transformer architecture of [290]. The TOA estimation problem can be formulated as

a regression problem with omnidirectional RIR as input. A random variable pair (𝑋,𝑌 )
can be used to define the input-output pair of neural networks, where 𝑋 is an ℝ𝑑𝑋 -valued
random variable that represents RIRs with 𝑑𝑋 denoting the length of each RIR signal vector,

and 𝑌 is an ℝ𝑑𝑌 -valued random variable that represents the TOAs of specular reflections

with 𝑑𝑌 denoting the length of each TOA vector. Then the problem can be formulated as

learning a continuous deterministic function ℎ with 𝑦 = ℎ(𝑥) where (𝑥,𝑦) is a realization
of random variable pair (𝑋,𝑌 ). To measure the performance of the regressor ℎ, we define a
loss function as 𝑙. We can then define the risk 𝑅 as

𝑅 = 𝔼[𝑙(ℎ(𝑥),𝑦)], (4.1)

where the expectation 𝔼 is calculated with respect to the distribution 𝑓𝑋 (𝑥). For the deep
learning based problem, the input distribution is unknown. Hence, an empirical risk based

on the training dataset is used to approximate the risk 𝑅 as

𝑅emp =
1
𝑚

𝑚
∑
𝑖=1

𝑙(ℎ(𝑥𝑖),𝑦𝑖), (4.2)

where 𝑚 is the size of training dataset and each (𝑥𝑖, 𝑦𝑖) is a particular realisation of (𝑋,𝑌 ).
In the context of this chapter, we use the mean squared error (MSE) to measure the distance

between the estimated TOAs and the ground truth.
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Due to the limited amount and variety of real world data, we trained our TOA estimation

model using simulated data and then evaluated the model using real-world data. Hence

we required the simulated database to cover a wide range of room acoustic parameters

and be of sufficient size. The geometrical acoustics based methods are more appropriate

for generating simulated databases than wave-based methods due to their computational

efficiency. The image source method can only simulate the specular reflections accurately.

The effect of frequency dependent reflections, scattering, and others can not be simulated

by the image source method. To make our training data close to real-measured RIRs

and facilitate generalisation to real-world data, when we trained the neural network, we

used a hybrid model that combines the image source method [12, 334] and ray tracing

[101, 103, 105] to simulate the specular reflections and scattering, and also considered in

the RIRs the frequency dependency of reflections, air attenuation and additive noise.

4.3 Room acoustic parameters estimation
This section describes our method to estimate room acoustic parameters. To start with, we

formulate the image source method to simulate RIRs, which is the basis of our derivation. In

the second subsection, we propose a method to determine a particular valid configuration

of the room acoustic parameters from a single room impulse response. In Section 6.2.1, we

will show how to map a valid configuration to any other valid configuration. Our methods

apply to rooms with sets of parallel walls with adjacent walls at an angle of 90 degrees. We

assume the pulses of the direct path, first and second order reflections are available in the

observed RIR.

4.3.1 Image source method
In the image source method, an empty rectangular room is assumed, and non-specular

reflections are not considered. In addition, it assumes that sound propagates along straight

lines. Each reflection can be modeled as a pressure wave emitted from an image source

in free space. We use 𝐩,𝐦 to label each reflection where each element of 𝐩 = (𝑞, 𝑗 , 𝑙) can
take a value of 0 or 1, indicating the direction of the reflection, and each element of

𝐦 = (𝑚𝑥 ,𝑚𝑦 ,𝑚𝑧) can take an integer value, indicating the position of the virtual room

where the image source is located. In three-dimensional (3D) space, we denote the position

of the receiver as (𝑥𝑟 , 𝑦𝑟 , 𝑧𝑟 ) and the position of the source as (𝑥𝑠 , 𝑦𝑠 , 𝑧𝑠). Implementing

the image source method [76], the image source position can be represented as (2𝑚𝑥𝐿𝑥 +
(1− 2𝑞)𝑥𝑠 , 2𝑚𝑦𝐿𝑦 + (1− 2𝑗)𝑦𝑠 , 2𝑚𝑧𝐿𝑧 + (1− 2𝑘)𝑧𝑠), where (𝐿𝑥 ,𝐿𝑦 ,𝐿𝑧) are the length width

and the height of the room. Let 𝑑𝐩,𝐦 denote the corresponding path length, then the time

delay can be calculated as 𝜏𝐩,𝐦 = 𝑑𝐩,𝐦/𝑐. The amplitude of each reflection is determined by

the reflection coefficients 𝛽𝑥1 ,𝛽𝑥2 ,𝛽𝑦1 ,𝛽𝑦2 ,𝛽𝑧1 ,𝛽𝑧2 , reflection order 𝑂𝐩,𝐦, and image source

position. The reflection order 𝑂𝐩,𝐦 is the number of reflections in a path and can be
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computed as

𝑂𝐩,𝐦 = |2𝑚𝑥 −𝑞|+ |2𝑚𝑦 −𝑗|+ |2𝑚𝑧 − 𝑙|. (4.3)

If we assume the finite and constant reflection coefficients for each wall, then the RIR can

be written as [334]

ℎ(𝑡) =∑
𝐩,𝐦

𝛽|𝑚𝑥−𝑞|𝑥1 𝛽|𝑚𝑥 |𝑥2 𝛽|𝑚𝑦−𝑗|𝑦1 𝛽|𝑚𝑦 |𝑦2 𝛽|𝑚𝑧−𝑙|𝑧1 𝛽|𝑚𝑧 |𝑧2
𝛿(𝑡 − 𝜏𝐩,𝐦)
4𝜋𝑑𝐩,𝐦

. (4.4)

4.3.2 Room acoustic parameters estimation
In this subsection, we describe how to estimate the room acoustic parameter from RIRs.

Based on the image source method in Section 4.3.1, the path length of a reflection is

calculated as the product of the TOA and the speed of sound. If a sound reflects on one

wall, we define the direction of this reflection as belonging to this parallel wall pair. The

coordinates originate at one corner of the room, and the three axes are assumed to be

parallel to the walls. The proposed method identifies the reflections for each direction and

then computes the wall-pair distance with the path lengths of reflections in this direction.

We first describe our theorem to identify the directions of reflections. We then propose an

algorithm to identify reflections. Finally, we show how to compute room geometry and

source/receiver positions.

Identifying directions of reflections
We introduce a theorem to identify the directions of reflections given a set of unlabelled

path lengths of the reflections. This theorem is used to classify higher order reflections

into two sets: a multi-direction set and a single-direction set.

Theorem 1. Let 𝑑𝑖𝑗 , 𝑑𝑖, 𝑑𝑗 , and 𝑑0 denote the path lengths of the (𝑂𝑖+𝑂𝑗 )-th order reflection
that reflects on two directions 𝑖 and 𝑗 , with 𝑂𝑖 denoting the number of relection in drection 𝑖 and
𝑂𝑗 denoting the number of relection in drection 𝑗 , and the direct path. Then 𝑑2𝑖𝑗 +𝑑20 = 𝑑2𝑖 +𝑑2𝑗
holds. Vice versa, if there exists a path length of (𝑂𝑖+𝑂𝑗 )-th order reflection 𝑑𝑖𝑗 that satisfies the
equation, the reflections corresponding to path lengths 𝑑𝑖 and 𝑑𝑗 belong to different directions.

Proof. We assume the image source of path length 𝑑𝑖 to be in the 𝑥 direction and 𝑑𝑗 to be

in the 𝑦 direction. The coordinates of the corresponding image sources are (2𝑚𝑥𝐿𝑥 +(1−
2𝑞)𝑥𝑠 , 𝑦𝑠 , 𝑧𝑠), and (𝑥𝑠 , 2𝑚𝑦𝐿𝑦 +(1−2𝑗)𝑦𝑠 , 𝑧𝑠) respectively. The coordinates of the (𝑂𝑖+𝑂𝑗 )-th
order image source are (2𝑚𝑥𝐿𝑥 +(1−2𝑞)𝑥𝑠 , 2𝑚𝑦𝐿𝑦 +(1−2𝑗)𝑦𝑠 , 𝑧𝑠). We can then compute

the path length 𝑑𝑖 between the image source and the receiver as

𝑑2𝑖 = (2𝑚𝑥𝐿𝑥 +(1−2𝑞)𝑥𝑠 −𝑥𝑟 )2+(𝑦𝑠 −𝑦𝑟 )2+(𝑧𝑠 −𝑧𝑟 )2.

The same formulation holds for the other cases. Formulating 𝑑𝑖, 𝑑𝑗 , 𝑑𝑖𝑗 and 𝑑0 in the same

form, it is seen that 𝑑2𝑖𝑗 +𝑑20 = 𝑑2𝑖 +𝑑2𝑗 always holds when 𝑑𝑖 and 𝑑𝑗 belong to path lengths of
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reflections in different directions. When they belong to the same direction, the equation is

not valid.

Theorem 1 can also be proved with the parallelogram law as Fig. 4.1a. Fig. 4.1 shows

the 2D case for better understanding but is also valid for the 3D case. From Fig. 4.1a,

we know the distance between the source and the second order image source equals the

distance between two first order image sources, and these two parallelograms share one

diagonal. Following the parallelogram law, the sum of the squared side lengths of these two

parallelograms are equal, i.e., 𝑑2𝑖𝑗 +𝑑20 = 𝑑2𝑖 +𝑑2𝑗 . Fig. 4.1b is an example where the higher

order path length cannot be written as a function of lower order reflections.

Wall i

Source

Receiver

First order
image source i

First order
image source jSecond order

image source

di

dj

dij

d0

Wall j

(a) More than one direction

Second order
image source

First order image
source j

First order image
source i

Source

Receiver

dj

d0

dij

di

Wall j

Wall i

(b) One direction

Figure 4.1: Second order reflections for the 2D case.

The multi-direction set of second (or higher) reflections refers to those that reflect in

more than one direction. The multi-direction set does not provide independent equations

since the squared path length can be written as a combination of lower order reflections.

The reflections in this set are useless for our purpose and can be pruned out using lower

order reflections since they are sure to arrive after the lower order reflections. An example

of this is the second order reflection from the image source (−𝑥𝑠 ,−𝑦𝑠 , 𝑧𝑠), which reflects on

both 𝑥 and 𝑦 directions; the squared path length can be written as a combination of the

direct path (𝑥𝑠 , 𝑦𝑠 , 𝑧𝑠) and two first order reflections from (−𝑥𝑠 , 𝑦𝑠 , 𝑧𝑠) and (𝑥𝑠 ,−𝑦𝑠 , 𝑧𝑠).
The single-direction set of second (or higher) order reflections refers to those that reflect

along one direction. They can be used to determine the room acoustic parameters. The
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𝑁 -th order reflections that reflect along one direction arrive later than the last arrived

(𝑁 −1)-th order reflection in that direction. For example, the second order reflections from

(𝑥𝑠 ±2𝐿𝑥 , 𝑦𝑠 , 𝑧𝑠) arrive after the first order reflection from (2𝐿𝑥 −𝑥𝑠 , 𝑦𝑠 , 𝑧𝑠). Since the source
and receiver are exchangeable, which we will assume below without loss of generality,

we assume 𝑥𝑟 < 𝑥𝑠 , 𝑦𝑟 < 𝑦𝑠 , and 𝑧𝑟 < 𝑧𝑠 to analyze the sequence of these reflections. As an

example, the reflection from (𝑥𝑠 −2𝐿𝑥 , 𝑦𝑠 , 𝑧𝑠) arrives earlier than that from (𝑥𝑠 +2𝐿𝑥 , 𝑦𝑠 , 𝑧𝑠).

Algorithm of classification of reflections
We describe our algorithm to classify reflections in detail. We assume we have a set of

unlabelled path lengths of reflections in a RIR signal which contain the direct path, the

first and second order reflections. We assume the first order reflections are distinguishable.

The input set is sorted in ascending order and denoted as 𝑑𝑘 , 𝑘 ∈ ℕ. We aim to classify the

path lengths of reflections into five sets, i.e., the first order reflections in the 𝑥 direction 𝑆1𝑥 ,
the first order reflections in the 𝑦 direction 𝑆1𝑦 , the first order reflections in the 𝑧 direction
𝑆1𝑧 , the second order reflections in a single-direction 𝑆2single, and the multi-direction second

order reflections 𝑆2multi. We have |𝑆1𝑥 | = 2, |𝑆1𝑦 | = 2, |𝑆1𝑧 | = 2, |𝑆2single| = 6, and |𝑆2multi| = 12. We

introduce a hyperparameter 𝛿 as an error threshold in the path length equation since a

difference might exist between the detected peak position and the theoretical path length.

The error threshold depends on the data property and path length.

The first arrived pulse 𝑑0 always corresponds to the path length of the direct path.

Without loss of generality, we assume the path length of the second arrived pulse (first

arrived first order reflection) 𝑑1 corresponds to (−𝑥𝑠 , 𝑦𝑠 , 𝑧𝑠). Let us label 𝑑1 as 𝑑𝑥 . The

correctness of this assumption will be explained in Section 6.2.1. We iterate over the input

set, and once a path length of reflection is classified into one set, it will be deleted from the

input set. We first find all 𝑑𝑖 and 𝑑𝑗 that satisfy 𝑑𝑗 ∈ [
√
𝑑2𝑖 +𝑑2𝑥 −𝑑20 −𝛿,

√
𝑑2𝑖 +𝑑2𝑥 −𝑑20 +𝛿]

where 1 < 𝑖 < 𝑗 . These 𝑑𝑗 belong to 𝑆2multi, and without loss of generality, we assume

the smallest 𝑑𝑖 belongs to 𝑆1𝑦 . Let us label this path length as 𝑑𝑦 . We iterate over the

remaining found 𝑑𝑖 and the remaining path lengths 𝑑𝑘 in the input set. For all 𝑑𝑖 and 𝑑𝑘
that satisfy 𝑑𝑘 ∈ [

√
𝑑2𝑖 +𝑑2𝑦 −𝑑20 −𝛿,

√
𝑑2𝑖 +𝑑2𝑦 −𝑑20 +𝛿], we have 𝑑𝑘 ∈ 𝑆2multi and 𝑑𝑖 ∈ 𝑆

1
𝑧 . Then

the remaining 𝑑𝑖 belongs to 𝑆1𝑦 . Till now, we have already found all possible path lengths of

reflections in 𝑆1𝑦 and 𝑆1𝑧 . If |𝑆1𝑦 | > 2 or |𝑆1𝑧 | > 2, we cross validate these two sets, i.e., we iterate
over a combination of two elements 𝑑𝑦𝑖 from 𝑆1𝑦 and a combination of two elements 𝑑𝑧𝑗 from

𝑆1𝑧 to find the combination that satisfies ∃𝑑𝑘 , 𝑑𝑘 ∈ [
√
𝑑2𝑧𝑗 +𝑑2𝑦𝑖−𝑑20 −𝛿,

√
𝑑2𝑧𝑗 +𝑑2𝑦𝑖−𝑑20 +𝛿].

Next, we iterate over the input set again with 𝑑𝑦 (this can also be replaced by one of the

path lengths in 𝑆1𝑧 ) to find 𝑑𝑗 and 𝑑𝑖 that satisfy 𝑑𝑗 ∈ [
√
𝑑2𝑖 +𝑑2𝑦 −𝑑20 −𝛿,

√
𝑑2𝑖 +𝑑2𝑦 −𝑑20 +𝛿].

We then have 𝑑𝑖 ∈ 𝑆1𝑥 and 𝑑𝑗 ∈ 𝑆2multi. Lastly, the remaining path lengths of reflections in the

input set are allocated to 𝑆2single.
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The algorithm is robust to mislabelled first or second pulses. If the first two arrived

pulses do not correspond to the direct path and the first order reflection in 𝑥 direction,

Theorem 1 does not work for second order reflections, and the cardinality of the sets does

not match. In that case we can conclude there exist erroneous pulses in the first two arrived

pulses. We can then use the path length of the next arrived pulse and select two from these

pulses and repeat the process until the cardinality is correct.

Estimation of room geometry and source/receiver positions
After classifying the reflections, we describe how to compute a valid configuration for the

room geometry and source and receiver positions. As discussed, 𝑆2multi is not useful for this

computation. Thus, we only use 𝑆1𝑥 , 𝑆1𝑦 , 𝑆1𝑧 , and 𝑆2single. The arrival sequence of reflections
will be explained in section 6.2.1.

Our method is based on an iteration of 𝑆2single. This set has six second order reflections

in this set, and the coordinates of the image sources are (𝑥𝑠 ±2𝐿𝑥 , 𝑦𝑠 , 𝑧𝑠), (𝑥𝑠 , 𝑦𝑠 ±2𝐿𝑦 , 𝑧𝑠),
(𝑥𝑠 , 𝑦𝑠 , 𝑧𝑠±2𝐿𝑧). For each of these six elements, we perform the following computation. The

reflection with the smallest path length in 𝑆2single has three possible directions. We use each

second order reflection candidate, together with the first order reflections in this direction

and the direct path, to compute the room geometry and the source and receiver position

in this direction. For each second order reflection candidate, we derive the coordinate of

another second order reflection in this direction and calculate the corresponding path length,

which should be an element of 𝑆2single for the correct second order reflection candidate. This

combination can also be verified with the reflection coefficients in the next subsection.

Let us determine if the hypothesis is correct that a particular distance in 𝑆2single cor-
responds to the 𝑥 direction, i.e., the image source is (𝑥𝑠 −2𝐿𝑥 , 𝑦𝑠 , 𝑧𝑠). Together with the

path lengths of two first order directions in this direction, with image sources (−𝑥𝑠 , 𝑦𝑠 , 𝑧𝑠)
and (2𝐿𝑥 −𝑥𝑠 , 𝑦𝑠 , 𝑧𝑠), and the path length of direct path from (𝑥𝑠 , 𝑦𝑠 , 𝑧𝑠), we can compute

the three unknowns, i.e., 𝐿𝑥 , 𝑥𝑠 , and 𝑥𝑟 , from three linear independent equations. We can

then compute the path length of the second order reflection from (𝑥𝑠 +2𝐿𝑥 , 𝑦𝑠 , 𝑧𝑠) in this

set, and if this is consistent with the initial hypothesis, then we have verified it. If so, we

also computed the second second order reflection in this direction. This procedure allows

us to find the second-order pulses in each direction.

The proposed method is relatively robust in four aspects. Firstly, generalizing this

algorithm to include additional higher order reflections can improve the algorithm’s ro-

bustness. Theorem 1 can also be applied to higher order reflections to classify directions.

We can apply the proposed method to the higher order reflections that reflect along one

direction if the corresponding TOA informaiton is available. As a result, the higher order

reflections can be used to verify the solution of room acoustic parameters to improve

robustness. Secondly, the proposed method is robust to additional peaks that do not belong

to any reflection. With the proposed algorithm, these pulses will be misclassified into

the set containing higher-order reflections that reflect along the same direction. Since
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another second order reflection that also reflects along this direction does not exist, we

know this peak is erroneous. Thirdly, the proposed method is robust to missing peaks

to some extent. If the direct path is missing, it does not work. Hence, we assume the

direct path is always available. If a first order reflection is missing, two cases can happen.

One case is that the proposed algorithm can not find enough first order reflections. The

second case is that another pulse is mislabelled as a first order reflection. However, as

discussed in Section 4.3.2, the algorithm is robust to mislabelled first or second pulses. As a

consequence, for both cases, the room acoustic parameters in the corresponding direction

can not be derived. Still, it does not affect the room acoustic parameter estimation in the

remaining directions. Finally, the proposed method is robust to the offset of RIR. Since the

room acoustic parameter calculation uses the difference between TOAs of reflections and

direct path, the offset is eliminated in this process.

The independent calculation in each direction is an advantage of our proposed method.

Since the calculation for each direction is separable, the method can also be applied to some

special cases. We can estimate the distance between parallel walls and the source/receiver

position along this pair of parallel walls, whether the walls in other directions are very

distant (such as in a hallway) or affected by furniture. The independent calculation for each

direction makes our method work for non-shoebox shaped rooms with sets of parallel wall

pairs as long as the required reflections are available. An example is a room with a sloped

ceiling. Such a room has two pairs of parallel walls and a pair of non-parallel walls. For

the second order reflections between the vertical wall and the floor, since they form a right

angle, the second order reflections will be pruned out by the first order reflections. For the

second order reflections between the ceiling and the remaining walls, since they do not

follow Theorem 1, they will not be pruned out and will be classified into 𝑆single2 . However,

they will be recognized as erroneous pulses since no valid solution exists for room acoustic

parameters.

4.3.3 Room impulse response degeneracy analysis
In Section 4.3.2, we discussed how to compute room acoustic parameters from a room

impulse response. However, the room configuration, including room geometry, positions

of source and receiver, reflection coefficients, and the coordinate system, is not unique for

a particular RIR. Fig. 4.2 is a 2D example where eight different configurations result in an

identical RIR. In addition, if we exchange the source and receiver positions, the RIR will

also not change. Hence, for a 2D room, 16 configurations can result in an identical RIR.

Except for this degeneracy, the TOA of reflections of a RIR is unique with respect to a room

configuration.

Next, we analyze the degeneracy of a 3D room and determine the coordinate system

based on the first order reflections. Let (𝐿,𝑊 ,𝐻) denote the room geometry, and (𝑥𝑠 , 𝑦𝑠 , 𝑧𝑠)
and (𝑥𝑟 , 𝑦𝑟 , 𝑧𝑟 ) denote the coordinates of source and receiver. Let us assume the first
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Figure 4.2: Different 2D configurations resulting in an identical RIR where 𝑠 and 𝑟 denote source and receiver,

respectively.

reflection is the pulse that reflects on the wall 𝑥 = 0. Since the first pulse can reflect on any

wall, this gives us six-fold degeneracy. This is equivalent to the pulse that reflects on 𝑥 = 0
has the shortest path length, which is

⎧⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎩

‖−𝑥𝑠 −𝑥𝑟 ‖ < ‖2𝐿−𝑥𝑠 −𝑥𝑟 ‖
(−𝑥𝑠 −𝑥𝑟 )2 +(𝑦𝑠 −𝑦𝑟 )2 < (𝑥𝑠 −𝑥𝑟 )2 +(−𝑦𝑠 −𝑦𝑟 )2

(−𝑥𝑠 −𝑥𝑟 )2 +(𝑦𝑠 −𝑦𝑟 )2 < (𝑥𝑠 −𝑥𝑟 )2 +(2𝑊 −𝑦𝑠 −𝑦𝑟 )2

(−𝑥𝑠 −𝑥𝑟 )2 +(𝑧𝑠 −𝑧𝑟 )2 < (𝑥𝑠 −𝑥𝑟 )2 +(−𝑧𝑠 −𝑧𝑟 )2

(−𝑥𝑠 −𝑥𝑟 )2 +(𝑧𝑠 −𝑧𝑟 )2 < (𝑥𝑠 −𝑥𝑟 )2 +(2𝐻 −𝑧𝑠 −𝑧𝑟 )2

. (4.5)

Similarly, the next arriving first order reflection not in the 𝑥 direction introduces a four-fold

degeneracy by assuming it reflects on the wall 𝑦 = 0, which implies

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

‖−𝑦𝑠 −𝑦𝑟 ‖ < ‖2𝑊 −𝑦𝑠 −𝑦𝑟 ‖
(−𝑦𝑠 −𝑦𝑟 )2 +(𝑧𝑠 −𝑧𝑟 )2 < (𝑦𝑠 −𝑦𝑟 )2 +(−𝑧𝑠 −𝑧𝑟 )2

(−𝑦𝑠 −𝑦𝑟 )2 +(𝑧𝑠 −𝑧𝑟 )2 < (𝑦𝑠 −𝑦𝑟 )2 +(2𝐻 −𝑧𝑠 −𝑧𝑟 )2
. (4.6)

Finally, the third arriving first-order reflection not in the 𝑥 and 𝑦 directions has two-fold

degeneracy by assuming it reflects on the wall 𝑧 = 0, which is

‖− 𝑧𝑠 −𝑧𝑟 ‖ < ‖2𝐻 −𝑧𝑠 −𝑧𝑟 ‖. (4.7)

This results in an overall 48-fold degeneracy. In addition, the coordinates of the source and

receiver are exchangeable, which results in a total of 96-fold degeneracy. The conditions
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for this example mode can be summarised as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 < 𝑥𝑟 < 𝑥𝑠
0 < 𝑦𝑟 < 𝑦𝑠
0 < 𝑧𝑟 < 𝑧𝑠
𝑥𝑟 +𝑥𝑠 < 𝐿
𝑦𝑟 +𝑦𝑠 < 𝑊
𝑧𝑟 +𝑧𝑠 < 𝐻
𝑥𝑠𝑥𝑟 < 𝑦𝑠𝑦𝑟 < 𝑧𝑠𝑧𝑟
𝑥𝑠𝑥𝑟 < (𝑊 −𝑦𝑠)(𝑊 −𝑦𝑟 )
𝑦𝑠𝑦𝑟 < (𝐻 −𝑧𝑠)(𝐻 −𝑧𝑟 )

, (4.8)

where the first three lines correspond to the exchangeable source and receiver coordinates,

and the remaining lines are simplified versions of (4.5), (4.6), and (4.7), for example, the

sixth line corresponds to (4.7).
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Figure 4.3: The sequence of first order reflections for the 3D case.

We discuss one case as an example of how the degeneracies appear in a practical setup

since other cases are similar. The case corresponds to one particular branching pathway in

Fig. 4.3, which shows the possible orderings of first-order reflections. As discussed, the

first arrived first order reflection reflects on 𝑥 = 0, which introduces six-fold degeneracy.

We note that the second arrived first order reflection can reflect on 𝑥 = 𝐿𝑥 or in the 𝑦 or

𝑧 direction. We consider the case where the second arrived first order reflection reflects

on 𝑥 = 𝐿𝑥 . We then define the third arrived first order reflection to reflect on 𝑦 = 0, which
introduces four-fold degeneracy. Then the fourth arrived first order reflection will reflect

on 𝑦 = 𝐿𝑦 or in the 𝑧 direction. We consider that the fourth arrived first order reflection

reflects on 𝑦 = 𝐿𝑦 . We then define the fifth arrived first order reflection to reflect on 𝑧 = 0,
and the sixth arrived first order reflection to reflect on 𝑧 = 𝐿𝑧 . Assuming the fifth reflection

to reflect on 𝑧 = 0 introduces two-fold degeneracy. The exchange of the coordinates of

source and receiver results in an overall 96-fold degeneracy for this branching pathway.

For other pathways, we find the same result.



4.4 Experiments

4

79

Mapping from one of the degenerate solutions to another is straightforward. The

methods consist of coordinates exchange of source and receiver, exchange of 𝑥 , 𝑦, and 𝑧
coordinates, and symmetry with respect to 𝑥 = 𝐿𝑥

2 , 𝑦 = 𝐿𝑦
2 , or 𝑧 =

𝐿𝑧
2 . For an audio-only

environment, it does not matter which case to choose. However, for an audio-visual

environment, it is necessary to match one of the degeneracies with the visual scene for an

acceptable experience. We need to use the available visual cues to determine which case

and what combination of methods to use, which is out of the scope of this chapter.

4.4 Experiments
In this section, we present our experiments. We describe the setup of our experiments in

the first subsection. In the second subsection, we describe the experiments on the TOA

estimation and the room acoustic parameter estimation. The performance on room acoustic

parameter estimation is compared with the CNN-based method proposed in [338].

4.4.1 Experimental Setup
In the following, we first describe the database we used to train and test our TOA estimation

model. After that, we describe the configuration of our neural networks.

Database
A large-scale dataset of good quality is necessary to train neural networks. Simulated

data was used to train and monitor the training process of our TOA estimation model.

We used Pyroomacoustics [339] to generate our simulated database. We used a hybrid

simulation method, which combined the image source method and the ray tracing method,

to simulate RIRs in shoebox-shaped rooms. The speed of sound was set to be 𝑐 = 340 m/s.
The sampling frequency was set to 8000 Hz. The length of each RIR was 1024, which
includes the specular reflections up to the second order. We assumed the rooms were

rectangular and empty. Each dimension of the room geometry, i.e., length × width × height,

was assumed to be iid between 15×11×4 and 7×5×2, which can cover a variety of rooms.

One source and one receiver were randomly placed in the room, and they were assumed to

be omnidirectional. To facilitate our room acoustic parameter estimation method, the room

geometry and source/receiver position were assumed to follow one default mode as (6.3).

The reflection coefficients on each wall were assumed to be frequency-dependent and were

set uniformly distributed between 0 and 1 in each octave band of each wall. The signal to

noise ratio (SNR) was set to be between 30 dB and 50 dB following [158]. To mimic the

real measured RIRs, the air attenuation was also included. For the ray tracing method, the

radius of the sphere of the receiver was set to be 0.5 m. The maximum TOA of rays was set

to be 10 s, and the time granularity of bins in the energy histogram was set to be 4 ms. The

total number of simulated RIRs was 400000, which was divided into a training dataset and

a validation dataset with a ratio of 8 ∶ 2.
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We used [319] as our real-world RIR database because it contains a relatively large

number of real RIRs, and the room acoustic parameters were measured in each room. This

database contains nine distinct rectangular rooms that are not empty. It covers several

types of rooms, such as a meeting room, a lecture room, and an enclosed staircase. Within

each room, an average of 155 RIRs are given between five sources and 31 receivers. Among

these RIRs, we select the RIRs where the microphones can receive the direct path from the

sources since our room acoustic parameter estimation method requires the availability of

the direct path.

Neural Network description
We describe the neural network structure and how we train our neural network below. We

performed a preliminary experiment with our target database to tune the hyperparameters

using a grid search. The architecture of the transformer followed [290]. We set the number

of heads in the multi attention mechanism to be 8. The number of layers in the encoder

and decoder was set to be 6.
We used a GPU node to train the transformer. We trained the transformer using

the Adam optimizer [320] to minimize the training loss. The learning rate of the Adam

optimizer was 0.001, and the coefficients used for computing running averages of the

gradient and its square were set to be (0.9,0.999). We adopted early stopping [321] as

regularisation. Early stopping was performed when the validation performance degrades

in 100 successive epochs to guarantee the training performance without overfitting and

limit the computational effort. In addition, we set the maximum iteration epochs to be

5000. For computational efficiency, mini-batch training [322] was used with a batch size of

50. We evaluated the trained transformer using the real database of [319].

4.4.2 Experiments on TOA estimation and room acoustic param-
eter estimation

Since we trained the transformer to estimate TOAs matching the image source method,

the TOAs may not correspond to peaks in the RIRs. In addition, the ground truth TOAs of

specular reflections are not available in real-measured RIRs. Hence, we do not evaluate the

TOA estimation directly. The estimated TOAs were used as inputs of the room acoustic

parameter estimation algorithm, and we evaluated the room acoustic parameter estimation

algorithm.

For the room acoustic parameter estimation algorithm, we assume the bandwidth of

the RIR equals the Nyquist bandwidth. The error threshold was set to 𝛿 = 5/fs, which is a

balance between the accuracy and successful rate. We recorded the RMSE of the estimated

room geometry and source/receiver position. We also recorded the failed cases when the

method outputs an empty set with the detected reflections. The failed cases were excluded

from the RMSE calculation. It should be noted that when we calculated the RMSE and
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counted the failed cases, we treated three coordinates separately since the estimation

on three edges is independent. We recorded the average running time to evaluate the

computational efficiency.

The RMSE of room acoustic parameter estimation on each edge and the failure rate is

shown in Table 4.1. When the analytical method failed on one edge, the estimation of the

Table 4.1: Experimental results of room acoustic parameter estimation

RMSE of room geometry # RMSE of source position # RMSE of receiver position # Failure rate
0.0597 m 0.0650 m 0.0760 18.5%

other edges is not affected, which shows that the estimation on three edges is independent.

In addition, we compare the proposed method with the CNN based method in [338] in

terms of the room geometry estimation accuracy, the failure rate and the computational

efficiency, which is shown in Table 4.2. The proposed method use the same real measured

Table 4.2: Comparison of two room acoustic parameter estimation methods

Methods # The proposed method # The method in [338]

RMSE of room geometry 0.060 m 0.065 m
Failure rate 18.5% 0

Average wall clock time 13.47 s 3.22×10−4 s

RIRs as the method in [338]. Both methods run on a MacBook Pro, Mid 2014, 2.6 GHz

Dual-Core Intel Core i5. From Table 4.2, we observe that these two methods show similar

estimation accuracy. The RMSE of the CNN based method in [338] is slightly larger, but the

failure rate is 0. We hypothesize that a larger RMSE of the CNN based method is because

the CNN based method also finds it difficult to estimate the room geometry of some RIRs.

For the RIRs that are difficult for estimation, the analytical method fails to give a valid

solution, while the CNN based method can assign a random but reasonable value, which

results in a slightly large RMSE. The proposed method is less efficient than the CNN based

method in [338] because iteration is performed for the analytical method to estimate room

acoustic parameters.

4.5 Conclusion
In this chapter, we proposed a method to derive the room geometry, the positions of

source and receiver, and reflection coefficients simultaneously. The proposed method was

divided into a transformer part and an analytical part. To start with, given a RIR, we

used the transformer to estimate the TOAs of the direct path and the specular reflections

up to the second order. The transformer only requires a single RIR without additional
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prior information. The analytical method takes the estimated TOAs as input for room

acoustic parameter estimation. It is based on the symmetry analysis of RIRs. The proposed

analytical method is robust to erroneous pulses, non-specular reflections, and an unknown

offset. The estimation on different dimensions is independent. For room geometry, source

position, and receiver position, we achieved the RMSE of 0.0597 m, 0.0650 m, and 0.0760
m, respectively, with a failed portion of 18.5% of a real-world measured RIR database.



5

83

5
Necessary attributes for

integrating a virtual source
in an acoustic scenario

We investigate what information about a room is necessary to integrate a new source into
an existing scenario. In particular, we consider the effects of the reflection order, the order of
ambisonics signals and reverberation time. We conducted a series of listening tests and used
the control variates method to determine the quantitative relevance of the selected attributes.
In terms of integration and accurate localisation, at least third order ambisonics description
of a source, is required for integration of that source. In addition, a finite number of early
reflections can perform equally well to a full room impulse response when a new source is
integrated into an existing scenario. However, the room impulse response with only the correct
reverberation time is not sufficient.

This chapter is published as “Necessary attributes for integrating a virtual source in an acoustic scenario,” by

W. Yu and W. B. Kleijn, in 2018 16th International Workshop on Acoustic Signal Enhancement (IWAENC), Tokyo,
Japan, 2018, pp. 21-25.
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5.1 Introduction
Head-set based virtual reality (VR) is a specific immersive audio-visual environment that

simulates a user’s physical presence in an artificial scenario with corresponding VR headsets.

Virtual reality will play an increasingly important role in numerous aspects of daily life,

such as entertainment, education and health care. Spatial audio aims to create a 3D audio

experience, which is an important component for a believable VR system.

Our goal is to examine what information about a room is necessary to integrate a

new source into an existing acoustic scene. This knowledge will allow us to synthesize a

realistic, convincing audio component. We are not aware of existing work on the problem.

To understand the integration problem better, we first review the composition of a head-set

based VR system.

An accurate environment simulation is essential for perceptually acceptable sound in

a VR system. To model the acoustics environment, we need to consider several physical

attributes of sounds in a room, such as reflections and reverberation time. The image-source

method is used to model reflections in a room [10, 13]. However, the computational load

increases with an increasing number of reflection walls and it can only handle convex

room shapes [340]. The high complexity of modelling reflections in acoustics environments

makes efficient methods important [129, 341, 342]. Reverberation time, 𝑅𝑇60, is the time

that the sound drops 60 dB below the original level [10]. Reverberation time is considered to

be an important attribute in acoustic environment simulation. Several methods [343–345]

exist to estimate the reverberation time.

Besides accurate environment simulation, a high quality soundfield reproduction system

is of great importance. Ambisonics [16–18] has become the de-facto standard representation

for VR systems. Ambisonics is particularly suitable for VR systems as head rotations are

easily modelled as the rotation of sound fields in the spherical harmonics domain. With an

ambisonics representation of sufficient order, a high quality binaural audio rendering system

can give listeners a realistic spatial audio experience. Hence it allows us to demonstrate

our work on spatial audio. A number of techniques can be used for binaural rendering of

ambisonics [171, 346].

The main contribution of this chapter is that we investigate how one can integrate a new

source into an existing immersive environment with finite information of the environment.

We study what is required to make a new sound source integrate into an acoustic scene so

that people can perceive the new source as a natural component of the acoustic scene and

in the correct direction. In this chapter we assume the head is in a fixed location. Through

listening tests, we found at least third order ambisonics is required to integrate a new

source. In addition, a finite number of early reflections can perform equally well to a full

room impulse response when a new source is added to an existing scenario. However, only

correct reverberation time is not sufficient.

The chapter is organised as follows. In section 5.2 we describe our hypothesis of the
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integration of virtual objects in an acoustic scene. In section 5.3, we discuss our experiments

in detail and analyse the results. Finally, we conclude this chapter in section 5.4.

5.2 Integrating a virtual source
When we describe a soundfield, what is the necessary information of a room to make the

sound natural and believable? We focus on the acoustics-only scenario, which implies that

we omit the visual part of VR systems. The specific problem that we study here is the

integration of a new sound source into an existing acoustic scenario. In a VR system, we

already have an immersive environment. When we want to add a new source, like a virtual

cat, we want to know what is required to make the new source perceptually plausible.

We study what aspects we can hear when we make specific modifications to a given

acoustic scene. There exists a set of possibly relevant perceived attributes of a sound

source in a room, such as room geometry and direct path direction to the source. In this

chapter, we focus on the order of ambisonics signals, reflection order, and reverberation

time. When we consider the reverberation time, we also take the direct path distance,

direct path direction and room size into account. We discuss these selected attributes for

integration separately below.

An important question is what order of ambisonics signals is necessary to make the

integration of a new sound object believable. The most commonly used ambisonics signals

are first-order ambisonics signals and third-order ambisonics signals. For head related

transfer functions, [347] shows that an ambisonics order as low as four is sufficient, which

indicates people do not perceive fine details during listening. Does this suggest that

we do not need ambisonics signals of high order, such as order seven, to reproduce the

soundfield? However, it is reasonable to explore the accuracy of the commonly used first

order ambisonics and third order ambisonics. As discussed, when (2.36) is truncated to

a particular 𝑁 , the sound field will be accurate within a spherical region near the origin,

which is commonly called the sweet zone, the size of which relates to the diameter, frequency

and speed of sound.

Consequently, for third order ambisonics signals, if we assume the diameter of our

head is 0.1m, the sound is correctly rendered at our ears up to 1600 Hz, which is too small

comparing with the human hearing range. In addition, lower order ambisonics signals

results in low angular resolution of soundfield reproduction. Is first-order or third-order

enough for a believable VR system? Our hypothesis is that ambisonics signals of lower

than order three are not sufficient for a believable VR system.

An important question with respect to reflections is whether we can use direct sound

and a finite number of early reflections to replace the room impulse response to make a

new sound source integrate into an existing acoustic scene. With an increasing number

of reflections, the computational load of room impulse response increases [340]. Since

real-time soundfield reproduction is required for a VR system, the computational load is a
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significant problem although efficient algorithms exist [129, 341, 342]. The room impulse

response is composed of direct-direction sound, early reflections, and late reverberation.

Early reflections are relatively sparse first echoes and influence the spatial impression

[348, 349]. Late reverberation is a dense decayed succession of echoes [350] and can degrade

automatic speech recognition [351]. It is unclear if the late reverberation makes a difference

when we integrate a new sound source into an existing scenario. Our hypothesis is that

we can use direct sound and a finite number of reflections to replace the room impulse

response and still obtain perceptually acceptable integration.

Reverberation time is considered to be one of the important attributes in acoustic

environment simulation. We study the question if this measure is sufficient for the inte-

gration. It is commonly quantified in the form of Sabine’s formula as (2.33). From (2.33),

reverberation time is related to the room volume, surface area, and surface absorption.

However, it does not vary with the positions of the sources and listeners.

If we only have correct reverberation time when we integrate a new source, is it

sufficient? We divide the problem into two categories to examine the room volume, surface

area, and direct path length. Firstly, for a fixed reverberation time and fixed room geometry,

we want to know if different positions affect the integration. We assume we have one room

impulse response of a room, which is generated with a fixed reverberation time. If we use

this room impulse response, we only replace the direct path with the true direct path and

keep other pathways fixed, is it perceptually acceptable for a VR system? Moreover, is

the distance or the direction of the direct path important? Our hypothesis is that a room

impulse response with a correct reverberation time and a correct direct path is sufficient to

integrate a new sound source. Secondly, for a fixed reverberation time, we are interested if

listenerscan hear the effect of different room sizes. We hypothesise that listeners can hear

the difference in the different room sizes.

5.3 Experiments
We conducted listening tests to answer the questions asked in section 5.2. We used the

control variates method to determine the quantitative relevance of the above selected

attributes and used statistical analysis to analyse the experimental results. We first describe

our experimental setup in the first subsection. We then present our experimental results

and finally discuss these results.

5.3.1 Experimental setup
In this subsection, we give a general description of our experiments. Each artificial scenario

lasts for ten seconds. In each scenario, there was one woman speaking in an empty

rectangular room for four seconds. Then we added another woman as a new source to

speak in this scenario, which lasts for six seconds and whose location is chosen randomly.

We choose the room size to be 6×4×3m and the acoustic environment was modelled
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by the image-source method [13]. We used the room impulse generator of [76] for our

experiment. The speed of sound was set to 𝑐 = 342 m/s. The reverberation time 𝑅𝑇60 was
set to be 0.4 s. We used HRTFs from MIT Media Lab [352]. The headphone used for the

listening test was Beyerdynamic
TM

DT 990 pro.

Ambisonics signals of order nine were used to reproduce the soundfield as a reference.

We first resampled the input wav file with 16 kHz. After resampling, we constructed a

four times oversampled Gabor frame and applied square-root Hann windows to satisfy the

condition of perfect reconstruction. Based on the stationarity of the source signal and the

length of room impulse, we chose a window support of 32 ms, which corresponds to 512
samples.

We used the commonly used audio rendering technique. We simulated playback over a

given physical loudspeaker array, where each virtual loudspeaker signal is filtered with

appropriately adjusted head related transfer functions (HRTFs) [195]. In our experiments,

598 secondary sources were used, the layout of which was same as that used for the HRTF

database . We assumed the radius of a human head is 0.1 m and the center of the listener’s

head was located at (3,2,1.7).
There were twelve participants for the experiments, which included two women and

ten men. The subjects were not experts in spatial audio. Test subjects were allowed to

listen to each scenario multiple times and change the volume in between. The experiments

lasted approximately 30 minutes overall. The subjects answered questions for 16 scenarios.
For each scenario they were required to answer if the new source is in the same scenario

in the reference scenario and point out the azimuth and elevation of the new source with

our user interface (the angular resolution is 10 degrees).

5.3.2 Description of Experiments
We conducted three sets of experiments to examine the three selected attributes, i.e.,

reflection order, the order of ambisonics signals, and reverberation time. We describe these

three sets of experiments in detail below.

Our first experiment aimed to examine the relationship between the integration quality

and the order of ambisonics signals. The reference scenario was reproduced with ninth-

order ambisonics signals. The new source to be added to the scenario was reproduced with

ambisonics signals of order one, three, five, seven, and nine respectively.

Our second experiment examined the influence of reflection order. In the reference

scenario, the length of the room impulse response was set to be 340 ms, which included

the early reflections and the late reverberation. To simplify the notation, we refer to the

340 ms room impulse response as full response. To examine the necessary reflection order,

we changed the reflection order of the new sound source as zero, one, five, and nine. In

addition, the full response was added as a contrast.

Our third experiment aimed at studying reverberation time. We first computed one
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room impulse response with the predefined reverberation time and a random position in

the room, which is referred as the measurement point later. We assumed the measurement

point is 1 m distant from the listener.

We only changed the direct path signal in room impulse responses according to the

source positions. Four modified room impulse responses were used to convolve with the

new source at four different positions. Two of the positions (position 1 and 2) are at the

same direct path distance as the measurement point (1 m) but with two different direct

path directions. One (position 3) is nearer to the listener than the measurement point (0.7
m) and one (position 4) is farther (1.4 m).

In addition, we investigated if room impulse response with correct reverberation time

and incorrect room size can integrate a new sound source into an existing scenario. Hence,

we changed the size of the room to 4m×2m×3m and to 8m×6m×3m and computed the

corresponding room impulse responses.

5.3.3 Statistical analysis
We used the chi-square test to investigate if each test object is sufficient for integration. The

full response case is our reference for integration. Since eight out of 12 people answered
“yes” to this full response case, our null hypothesis is the source is considered to be integrated

into the existing scenario where we expect eight out of 12 people answered “yes”. The

critical value is 2.706 with level of significance 𝛼 = 0.10 of a 1 degree of freedom test.

When the computed value exceed the critical value, we can reject the null hypothesis.

Consequently, if there are less than six out of 12 test subjects who answered “yes”, we can

claim that the corresponding information is not sufficient in terms of integration.

5.3.4 Experimental result and discussion
In this subsection, we present our experimental results. The experimental results of

integration problem is shown in Figure 5.1, where we show the number of “yes” responses

for each case and the error bar represents the Wilson scored interval for a 95% confidence

interval. In addition to the integration, we are also interested in the localisation accuracy

when a new source is integrated into an existing scenario. The mean absolute error is

shown in Figure 5.2 and the error bar represents the standard deviation.

When we observe the experimental results of the order of ambisonics, in terms of

integration, ambisonics signals of order three to nine are sufficient to reproduce the sound

field. We can conclude that an ambisonics order as low as three is sufficient for integration.

Ambisonics of order nine shows lower elevation localisation accuracy than ambisonics

of order five and seven, which may result from that late reverberation is clearer with

ninth-order ambisonics signals and it can reduce the localisation accuracy.

As for the reflection order, we conclude that if a new source is integrated into an

existing scenario, reflection order nine or full response is sufficient. In addition, reflection
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Figure 5.1: Integration experimental result.

order nine shows approximately equal localisation accuracy as full response. We found

that localisation accuracy depends on source location. While we not consider this effect

in the present paper, this explains the differences in the ambisonics and reflection order

experiments. To conclude, a finite number of reflections can replace the full room impulse

response in terms of integration.

When we observe the experimental result of reverberation time, we conclude that a

room impulse response with only correct reverberation time is not sufficient to guarantee

good integration. Only with the same direct path distance, the source is perceived to be in

the same scenario. Similar to the reflection order experiments, we claim that listeners can

approximately point out the correct direction of the integrated new source. Combining

this result with the results of a preliminary suggests that when the room size is larger than

the reference room but smaller than twice reference room size, listeners perceive the new

sound source as integrated into the existing scenario and the localisation is also relatively

accurate.
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Figure 5.2: Localisation accuracy.

5.4 Conclusion
In this chapter, we used ambisonics signals to reproduce soundfield. We conducted a series

of listening tests to examine the necessary information to integrate a new sound source

into an existing acoustic scene and analysed the accuracy of localisation. We arrive at

three conclusions. Firstly, with ambisonics signals of order three or higher, a new source

can be integrated into an existing scenario. Secondly, a finite number of early reflections,

for example ninth order reflection, can perform equally well in terms of integration and

localisation as full room impulse responses. Finally, only using correct reverberation time to

generate room impulse responses is not sufficient for integration and accurate localisation.

To add a new source into an existing scenario, more information is required, such as direct

path distance.
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6
Ambisonics Room Impulse

Response Generation from
Omnidirectional Room

Impulse Response Using Deep
Neural Networks

Mapping a room impulse response to its ambisonics representation is not always feasible.
However, by adding a weak assumption, i.e., the existence of at least two perpendicular
walls in the environment, the ambisonics representation is restricted to be one of a finite
set, with known transformations between the set entries. This makes the mapping of the
omnidirectional response to the ambisonics response possible. We solve the mapping problem
with a convolutional neural network and a multi-task variational autoencoder. Our method
requires only a single room impulse response and obviates the need for specialised hardware
for ambisonics measurement. The proposed method can achieve 17.62 dB on estimated first
order ARRs and 16.15 dB on estimated third order ARRs.
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6.1 Introduction
Augmented reality (AR) is a specific immersive audio-visual environment that provides

users an interactive and enhanced experience in the real world with added artificial objects

[15]. It can be used in various applications, such as education and entertainment. Spatial

audio, aiming to create a 3D audio experience, is a major attribute of a believable AR system.

As a consequence, the description and reproduction of the acoustical environment are of

great importance. Omnidirectional room impulse responses (RIRs) are commonly used to

describe the room acoustical environment. Ambisonics room impulse responses (ARRs)

can provide spatial information that relates to room geometry, the positions of the sound

source and the receiver, and the reflection coefficients, which are not explicitly described

by RIRs. Hence AR commonly makes use of the ARR. Measurement of ARRs requires

specialised equipment. The most commonly used equipment is a B-format microphone

[19], which is only capable of first order ambisonics signals.

Estimation of the ambisonics representation from an impulse response is generally

infeasible. For example, in a free space without floor, with the ARR coordinates centered at

the receiver, the RIR is invariant with movement of the source on a sphere (surface of a ball).

Hence the RIR provides no directional information that can be used to map it to an ARR.

Perhaps surprisingly, with very weak prior information about the environment, i.e., the

existence of at least two perpendicular walls, the problem becomes solvable. Our method

requires the understanding of degeneracy. We select one particular mode to perform the

estimation of the ARR directly from the omnidirectional RIR and then transform among

different modes based on the available side information such as an image or the known

location of a particular wall.

A RIR signal contains information about the configuration of the room acoustical

environment implicitly [353]. Hence we hypothesise that it is possible to estimate the

ambisonics room impulse response from an omnidirectional RIR. Since there exists a

significant difference between real measured RIRs and simulated RIRs due to the scattering

and diffraction [128], the analytical method based on the simulated RIRs [353] does not

perform well for real world measurements. However, neural networks perform well for

room measurement estimation in real-world conditions [338] and it is reasonable that

this will also be the case for computing the ARR from the RIR. In addition, the commonly

used B-format microphone can only capture first order signals and the spatial resolution

of first order ambisonics is low. As a result, there exists work [171, 178] that upscales

the ambisonics representation from first order to improve the sound quality. RIRs can be

considered to be zeroth order ARRs and can be measured with a normal microphone, which

has a low cost compared to a B-format microphone. The estimation of ARRs from RIRs can

be interpreted as an ambisonics upscaling from zeroth order, which requires simpler input

signals than [171, 178]. In this paper we show that machine learning allows us to estimate

the ARR of any order directly from the omnidrectional RIR, thus obviating the need for
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specialised hardware.

Ambisonics [16–18] is a soundfield reproduction technique that is suitable for AR

systems as head rotations are easily modelled as the rotation of sound fields in the spherical

harmonics domain. It describes the sound field by means of a small set of temporal

signals. ARRs can be used to generate ambisonics signals by convolving with source signals

[162, 163]. Recent work on ambisonics often uses higher order ambisonics (HOA), which

is an extension of the original first-order ambisonics system developed by Gerzon [16].

Ambisonics is used for spatial audio encoding, transmission and as a basis for rendering.

With an ambisonics representation of sufficient order, a high quality audio rendering system

can give listeners a realistic spatial audio experience. A number of techniques can be used

for binaural rendering of ambisonics [171, 178, 346].

The main contribution of this paper is the ARR estimation from RIRs using deep neural

networks. As mentioned, generating an ambisonics representation from an omnidirectional

signal is not always feasible. We show this mapping is possible in a room. The feasibility

relies on the degeneracy of RIRs in a room. Our novel method only requires a single

room impulse response without additional information if we only want to estimate ARR

and reproduce the immersive environment. If we want to apply the estimated ARR in an

audiovisual environment, such as AR, we need additional information, for example an

image, to determine which mode it belongs to and the alignment between the coordinates

of the image and the ARR. Our method is based on the image source method [13], which is

sufficient for plausible augmented reality generation.

The paper is organised as follows. We review the relevant background in section II.

In section III, we formulate the ambisonics room impulse response estimation problem.

We then describe the ambisonics RIR estimation with convolutional neural networks in

section IV. In section V, we use VAEs to generate the ambisonics RIR. The experimental

results are discussed and analyzed in detail in section VI. Finally, we conclude our paper in

section VII.

6.2 Problem Definition
In this section, we formulate the problem we aim to solve, i.e., ambisonics room impulse

response estimation from an omnidirectional room impulse response. As noted in section II,

an Ambisonics Room Impulse Response (ARR) is defined as an ambisonics representation

of the corresponding room impulse response. The outcome of our work is a plausible

auralization of a room with a simple measurement. We analyse the degeneracy of a RIR in

the first subsection. In the second subsection, we discuss our motivation for using deep

learning to solve the problem, describe how we compute the ambisonics room impulse

responses, and discuss how to estimate the signals.
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6.2.1 Degeneracy
Computing an ambisonics representation of an omnidirectional signal only is not always

feasible. We have to add constraints to make the computation possible. We first define

degeneracy.

Definition 2. A RIR is M-fold degenerate if, given a set of coordinates, there exist M distinct
ARRs that correspond to the RIR.

The degeneracy often is finite, and the degeneracy can be removed by information from

other modalities such as cameras or radar. We assume that the walls are either parallel

or perpendicular; one side of a single wall defines the considered space and parallel walls

enclose the considered space. Without loss of generality, the axes are assumed to be parallel

to existing walls and the receiver is assumed to be located at the point of origin.

We start with discussing the degeneracy of impulse responses under different acoustic

scenarios:

1. Free space without walls, ceilings, or floors: The impulse response is composed of a

single delta pulse of the direct path. As long as the distance between the source and

the receiver is the same, the RIR is the same. So there exists an uncountably infinite

degeneracy for ARRs in this case.

2. One wall, i.e., free space with a floor, or a pair of parallel walls: A rotation of the source

with respect to the receiver along the axis orthogonal to the wall or walls does not

affect the RIR and hence corresponds to an infinite-fold degeneracy. Mirroring of the

room introduces another two-fold degeneracy. In addition, if we exchange source

and receiver, the RIR does not change, which introduces another two-fold degeneracy.

For clarity, there exist infinite×4-fold degeneracy for ARRs in this case. If the direct

path is parallel to the wall, the corresponding two-fold degeneracy collapses.

3. Two perpendicular walls or two pairs of parallel walls, i.e., 2D room case: Mirroring of

the room gives a four-fold degeneracy. We can additionally exchange the dimensions

of the room, which introduces another two-fold degeneracy. The exchange of source

and receiver gives another two-fold degeneracy. There is a 16-fold degeneracy for

RIRs in total in this case. If the direct path is parallel to a wall, the corresponding

degeneracy collapses. Similarly, if the room is square, the degeneracy of the 𝑥-𝑦
axis choice collapses. If the room is symmetric around the source, the degeneracy is

identical to the one wall case.

4. Three perpendicular walls or three pairs of parallel walls, i.e., 3D room case: Mirroring

of the room gives an eight-fold degeneracy. The permutation of room dimensions

introduces another six-fold degeneracy. Considering the exchange of source and

receiver gives another two-fold degeneracy. There is 96-fold degeneracy for RIRs in
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total in this case. A different level collapse of degeneracy happens when the direct

path is parallel to a wall or the length of two perpendicular walls is identical.

From the analysis of the degeneracy of RIRs, we can conclude that by adding at least

two perpendicular walls in the acoustic space, the problem is suddenly solvable at a cost

of degeneracy. In the context of this paper, we assume a rectangular empty room, three

edges of the room are of different length and the direct path is not parallel to any wall.

Although there exists a 96-fold degeneracy for an empty rectangular 3D room, we can still

make the ambisonics representation feasible by choosing one default mode out of a 96-fold
degeneracy to solve the problem and subsequently mapping from that mode to another.

We assume the direct path is always from straight ahead since head rotations are easily

modelled as the rotation of sound fields in the spherical harmonics domain. We assume

we have no knowledge about the direction of arrival of reflections or the environment

information, such as room geometry and reflection coefficients.

The degeneracy can also be determined by the first order reflections as described in

[353] with consistent results. We derive the condition of one mode as an example and refer

for further details to [353]. We first chose three plane coordinates. Let (𝐿,𝑊 ,𝐻) denote the
room geometry, (𝑥𝑠 , 𝑦𝑠 , 𝑧𝑠) and (𝑥𝑟 , 𝑦𝑟 , 𝑧𝑟 ) denote the coordinates of source and receiver. Let

us assume the first reflection is the pulse that reflects on 𝑥 = 0, which gives us a six-fold

degeneracy. This is equivalent to

⎧⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎩

‖−𝑥𝑠 −𝑥𝑟 ‖ < ‖2𝐿−𝑥𝑠 −𝑥𝑟 ‖
(−𝑥𝑠 −𝑥𝑟 )2 +(𝑦𝑠 −𝑦𝑟 )2 < (𝑥𝑠 −𝑥𝑟 )2 +(−𝑦𝑠 −𝑦𝑟 )2

(−𝑥𝑠 −𝑥𝑟 )2 +(𝑦𝑠 −𝑦𝑟 )2 < (𝑥𝑠 −𝑥𝑟 )2 +(2𝑊 −𝑦𝑠 −𝑦𝑟 )2

(−𝑥𝑠 −𝑥𝑟 )2 +(𝑧𝑠 −𝑧𝑟 )2 < (𝑥𝑠 −𝑥𝑟 )2 +(−𝑧𝑠 −𝑧𝑟 )2

(−𝑥𝑠 −𝑥𝑟 )2 +(𝑧𝑠 −𝑧𝑟 )2 < (𝑥𝑠 −𝑥𝑟 )2 +(2𝐻 −𝑧𝑠 −𝑧𝑟 )2

. (6.1)

Similarly, assuming the next non-𝑥 direction first order reflection reflects on 𝑦 = 0 gives us
a four-fold degeneracy, which is

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

‖−𝑦𝑠 −𝑦𝑟 ‖ < ‖2𝑊 −𝑦𝑠 −𝑦𝑟 ‖
(−𝑦𝑠 −𝑦𝑟 )2 +(𝑧𝑠 −𝑧𝑟 )2 < (𝑦𝑠 −𝑦𝑟 )2 +(−𝑧𝑠 −𝑧𝑟 )2

(−𝑦𝑠 −𝑦𝑟 )2 +(𝑧𝑠 −𝑧𝑟 )2 < (𝑦𝑠 −𝑦𝑟 )2 +(2𝐻 −𝑧𝑠 −𝑧𝑟 )2
. (6.2)

Then assuming the next non-𝑥 and non-𝑦 direction first order reflection reflects on 𝑧 = 0
gives us a two-fold degeneracy, which is ‖− 𝑧𝑠 −𝑧𝑟 ‖ < ‖2𝐻 −𝑧𝑠 −𝑧𝑟 ‖. The exchange of the
source and receiver gives us another two-fold degeneracy, where we can assume 0 < 𝑥𝑟 < 𝑥𝑠 ,
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0 < 𝑦𝑟 < 𝑦𝑠 and 0 < 𝑧𝑟 < 𝑧𝑠 . The conditions for this mode can be summarised as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 < 𝑥𝑟 < 𝑥𝑠
0 < 𝑦𝑟 < 𝑦𝑠
0 < 𝑧𝑟 < 𝑧𝑠
𝑥𝑟 +𝑥𝑠 < 𝐿
𝑦𝑟 +𝑦𝑠 < 𝑊
𝑧𝑟 +𝑧𝑠 < 𝐻
𝑥𝑠𝑥𝑟 < 𝑦𝑠𝑦𝑟 < 𝑧𝑠𝑧𝑟
𝑥𝑠𝑥𝑟 < (𝑊 −𝑦𝑠)(𝑊 −𝑦𝑟 )
𝑦𝑠𝑦𝑟 < (𝐻 −𝑧𝑠)(𝐻 −𝑧𝑟 )

. (6.3)

6.2.2 ARR estimation with deep learning
The state-of-art method to acquire ambisonics signals is to use special and expensive

equipment, which makes the measurement difficult. Due to limitations on the equipment,

we can only acquire relative low order ambisonics, which results in a low spatial resolution.

Another possible method to compute ambisonics signals is to first estimate the room

acoustical parameters from given signals and then base the ambisonics computation on that.

However, estimating room acoustical parameters from a single RIR is difficult especially

for real-world measurements since correct reflections are hard to detect. This motivates

us to design a method to compute an ambisonics representation of the RIR from only

an omnidirectional RIR using deep learning since it does not require special equipment

or the estimation of room acoustical parameters. Since the first channel of ARR signal

corresponds to zero-th order ambisonics, it is a scaled version of the omnidirectional RIR

which contains no directional information explicitly. Hence our problem can also be viewed

as an ambisonics upscaling problemwhich upscales ARRs from zero-th order to an arbitrary

order.

For our ARR estimation problem, as discussed in Section 6.2.1, the degeneracy of RIR

makes it hard to learn with a deep neural network. As a result, we first choose one default

mode, i.e., define a one-to-one relationship between ARRs and RIRs. The coordinate system

of our default mode is determined based on the first order reflections as in our previous

paper [353]. We discuss how to map from one mode to another in Section 6.3.3.

Our computation of ARRs is based on the image source method [11–13] since we can

compute the directions of reflections with the image source method. Using the image

source method, an ARR can be viewed as a composition of real sound source and image

sources. Each image source can be viewed as a separate source. An ARR signal 𝐵𝑚𝑛 (𝑡) can
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be computed with (4.4) and (2.42):

𝐵𝑚𝑛 (𝑡) =∑
𝑞
𝑌 𝑚𝑛 (𝜃𝑞 ,𝜙𝑞)×

∑
𝐩,𝐦

𝛽|𝑚𝑥−𝑞|𝑥1 𝛽|𝑚𝑥 |𝑥2 𝛽|𝑚𝑦−𝑗|𝑦1 𝛽|𝑚𝑦 |𝑦2 𝛽|𝑚𝑧−𝑙|𝑧1 𝛽|𝑚𝑧 |𝑧2
𝛿(𝑡 − 𝜏𝐩,𝐦)

𝑑𝐩,𝐦
. (6.4)

This allows us to generate a large scale database of arbitrary order with RIR-ARR pairs for

deep learning.

6.3 Ambisonics Room Impulse Response Estimation
Using Deep Learning

In this section, we describe deep learning based ambisonics room impulse response estima-

tion. We first compute an ARR from an omnidirectional RIR under the default mode out

of 96-fold degeneracy with CNN and VAE respectively in the first two subsections. After

that, we discuss the transformation matrix of ARRs among different modes of RIRs. At the

end of this subsection, we describe how we can apply our ARR estimation methods for

real-world applications.

6.3.1 ARR estimation with convolutional neural network
The ARR estimation problem can be viewed as a regression problem. Let the pair of random

vectors (𝑋,𝑌 ) denote the input and output signals of a neural network. These two signals

are of the same length. Specifically, in this paper, 𝑋 is an ℝ𝑑-valued random variable that

represents a RIR where 𝑑 denotes the length of each RIR signal vector, and 𝑌 is an ℝ𝑑-valued
random variable that represents the corresponding ARR of one channel under default mode.

The learned continuous deterministic function ℎ is defined as 𝑦̂ = ℎ(𝑥) where ⋅̂ labels an
estimate and (𝑥,𝑦) ∈ ℝ𝑑 ×ℝ𝑑 is a realisation of the random variable pair (𝑋,𝑌 ). The loss
function 𝑙 ∶ ℝ𝑑 ×ℝ𝑑 →ℝ+ measures the mapping error of ℎ. We can then define the risk 𝑅
of the model as

𝑅 = 𝔼[𝑙(ℎ(𝑋),𝑌 )], (6.5)

where the expectation 𝔼 is calculated with respect to the joint distribution 𝑓𝑋𝑌 (𝑋,𝑌 ). Since
the joint distribution 𝑓𝑋𝑌 (𝑋,𝑌 ) is unknown, we approximate the risk 𝑅 of the model with

the empirical risk 𝑅emp on the training set:

𝑅emp =
1
𝑚

𝑚
∑
𝑖=1

𝑙(ℎ(𝑥𝑖),𝑦𝑖), (6.6)

where 𝑚 denotes the size of training dataset and each (𝑥𝑖, 𝑦𝑖) pair is one realisation of

(𝑥,𝑦) ∈ ℝ𝑑 ×ℝ𝑑 in the training dataset. In the context of our problem, we use the mean
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square error (MSE) as the empirical risk since MSE is differentiable and measures the

squared Euclidean distance between the estimated outputs and corresponding ground truth.

The objective function to train our neural network is then defined as

𝑙(𝑦, 𝑦̂) =
1
𝑚

𝑚
∑
𝑖=1

∥ 𝑦𝑖− 𝑦̂𝑖 ∥22, (6.7)

where ∥ · ∥22 is the squared 𝑙2-norm, 𝑚 denotes the size of training dataset, 𝑦 ∈ ℝ𝑚×𝑑 denotes
the true ARR and 𝑦̂ ∈ ℝ𝑚×𝑑 denotes the corresponding estimated ARR of one channel.

A straightforward solution to the ARR estimation problem uses a feedforward neural

network. We hypothesise the ARR can be estimated from an omnidirectional RIR without

any additional information. We make this hypothesis because a RIR signal contains the

room acoustical parameters [353], which are sufficient to estimate corresponding ARRs.

Here we use a CNN with omnidirectional RIRs as input and the estimated ARR as output.

Since our signals are in the time domain, all layers are one-dimensional. Our CNN is

composed of convolutional layers and transposed convolutional layers, each followed by a

batch normalisation layer and an activation function, except the last layer. The number

of channels increases with depth in the convolutional layers and decreases with depth in

the transposed convolutional layers. Instead of learning all channels with a single neural

network, we learn one ARR channel each time.

6.3.2 ARR Estimation with a Variational Autoencoder
An implicit assumption for ARR estimation we made is that we are able to extract useful

information from RIRs to estimate ARRs. Based on the image source method [13], as

discussed in Section II and III, the RIR and ARR signal can be represented by a 15-dim
feature vector that contains four features, i.e., 3-dim room geometry, 3-dim source position,

3-dim receiver position and 6-dim reflection coefficients. We expect the autoencoder can

implicitly perform the image source method to estimate RIR and ARR and the inverse

process to extract room acoustical parameters. However, this turns out to be a difficult task

for a neural network, which will be shown in Section V. In our preliminary test, we found

if we use a normal CVAE with a single decoder, it only focuses on part of the features and

loses some important information required for estimating ARRs. A multi-task autoencoder

can help the latent layer form a good representation [354, 355] and result in a more robust

representation of the estimated ARRs. This motivates us to use a multi-task VCAE to

analyse RIRs, estimate ARRs and extract these features. In addition, we are interested to

see if the dimensionality of the latent layer corresponds to the known dimensionality.

An important question is how the dimensionality of the latent layer affects the perfor-

mance of a VAE. In the state-of-art VAEs, there is no agreement on the optimal dimensional-

ity of the latent space. The intrinsic dimensionality [356] of a signal refers to the minimum

number of parameters necessary for generating the signal. Intrinsic dimensionality can
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help with the redundancy estimation in the embedded space [357]. In our case, the intrinsic

dimensionality of the RIR is 15 by definition. We will use experiments to analyse how the

dimensionality of the latent layer affects the performance of different decoders under fixed

information rate. U-net [358] can outperform the earlier models with connected bypass

information. Similarly, a latent layer of our VAE, which is wider than 15 dimensions, can

also provide some bypass information. Inspired by U-net, we hypothesise a VAE with wider

latent layer improves the performance.

We use one encoder which takes RIRs as input. We use multiple decoders to perform

different tasks. We have four decoders for estimating the four room acoustical parameters

respectively. As discussed, the dimensionality of these four features is 15 in total. These four
decoders are connected with the first 15 neurons of 𝜇𝜓(𝑥) to ensure that all the information

is available. Empirically we found that it is difficult to extract RIRs and ARRs with high

accuracy from the first 15 latent neurons alone. Hence the decoders for the RIRs and

the ARRs use additional latent neurons that encode information that the RIR and ARR

decoders find difficult to extract from the first 15 latent neurons alone. This is consistent

with the notion that the decoders find it difficult to mimic the image source method and

need additional redundancy in the latent layer to perform well.

6.3.3 Transformations among modes of RIRs
The degeneracy of RIRs implies that a different mode results in a different ARR. Hence it is

of great importance that we are able to transform ARRs from one mode to another. The

transformations between the modes are linear transforms. From a transformation point of

view, as discussed in Section 6.2.1, the relationship among different modes can be classified

into mirroring, rotation (i.e., the permutation of room dimensions), and exchange of source

and receiver. We deal with each case separately.

The mirroring refers to mirroring with respect to 𝑥 = 0, 𝑦 = 0, and 𝑧 = 0. To facilitate

the mirroring transformation, we first write the spherical harmonics as direction cosines

[359]

𝑌𝑙 = 𝑘𝑙 ⋅ 𝑓𝑙(𝑢𝑥 , 𝑢𝑦 , 𝑢𝑧) ⋅ 𝑔𝑙(𝑢2𝑥 , 𝑢
2
𝑦 , 𝑢

2
𝑧), (6.8)

where 𝑙 is the ambisonics channel number (ACN) of spherical harmonics and can link to

(𝑛,𝑚) in (2.34) as 𝑙 = 𝑛(𝑛+1)+𝑚,

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

𝑢𝑥 = cos(𝜃)cos(𝜙)
𝑢𝑦 = sin(𝜃)cos(𝜙)
𝑢𝑧 = sin(𝜙)

,

𝑘𝑙 is numerical, 𝑓𝑙 takes the form of 𝑢𝑎𝑥 ⋅ 𝑢𝑏𝑦 ⋅ 𝑢𝑐𝑧 where 𝑎,𝑏, 𝑐 is either 0 or 1, 𝑔𝑙 is a polynomial

of 𝑢2𝑥 , 𝑢2𝑦 , 𝑢2𝑧 . The mirroring can be realised as below [359]. If we mirror the soundfield with

respect to 𝑥 = 0, then all terms with 𝑢𝑥 are negated. Similarly, If we mirror the soundfield
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with respect to 𝑦 = 0, then all terms with 𝑢𝑦 are negated and if we mirror the soundfield

with respect to 𝑧 = 0, then all terms with 𝑢𝑧 are negated.
Rotation is implemented by multiplying the ARRs of all channels with a rotation matrix

𝑸. For simplicity, here we show only the rotation matrix for a first order ARR rotation

around 𝑧 xis. Rotation matrices for higher-order ambisonics and for rotation around the x

and y axis can be found in [360]. Each element of the matrix 𝑸 is denoted as 𝑄𝑚′ ,𝑚
𝑛′ ,𝑛 and the

first order rotation matrix takes on the form [360]

𝑸 =

⎡
⎢
⎢
⎢
⎢
⎣

𝑄0,0
0,0 𝑄0,−1

0,1 𝑄0,0
0,1 𝑄0,1

0,1
𝑄−1,0
1,0 𝑄−1,−1

1,1 𝑄−1,0
1,1 𝑄−1,1

1,1
𝑄0,0
1,0 𝑄0,−1

1,1 𝑄0,0
1,1 𝑄0,1

1,1
𝑄1,0
1,0 𝑄1,−1

1,1 𝑄1,0
1,1 𝑄1,1

1,1

⎤
⎥
⎥
⎥
⎥
⎦

. (6.9)

Rotating around 𝑧 axis by an angle 𝛼 corresponds to rotation matrix 𝑸𝑌 (𝛼) and the element

can be calculated as [360]

𝑄𝑚′ ,𝑚
𝑛′ ,𝑛 (𝛼) =

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

cos(𝑚𝛼) if 𝑛 = 𝑛′ and 𝑚 = 𝑚′,
sin(𝑚𝛼) if 𝑛 = 𝑛′ and 𝑚 = −𝑚′,
0 otherwise.

(6.10)

Exchange of the source and receiver positions can not be achieved by a transformation.

Consequently, given no prior information, we train two separate neural networks with

different source-receiver position layout. That is, given an arbitrary input, we compute

each ARR channel with two neural networks. We can then apply the above transformations

to both ARRs to get all ambisonics under different modes of RIRs. If there exists prior

information, we can use additional information to decide on which mode is the target one.

6.3.4 Practical Application
Augmented reality is one of the important applications of the ARR estimation problem. Due

to the existence of degeneracy of the RIR in a rectangular empty room, in an audio-only

environment, one RIR corresponds to the multiple ARRs given alignment of all coordinates

with a wall orientation. In an augmented reality environment, if we want to add a virtual

object at a position whose RIR is given, it is important to determine the one correct ARR

that gives the user an immersive experience. Different methods can be used to determine

the correct ARR and we will discuss them below. Different methods can combine together

to increase the accuracy.

One method is to use sensors to estimate distances. We can choose from different kinds

of sensors based on the resolution requirement and cost, such as radar sensors, LiDAR

(light detection and ranging) sensors, ultrasonic sensors, and Bluetooth sensors. The basic

underlying principle is similar, i.e., estimating the distance between the user to each wall
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using return time. Knowing the distance to each wall or one wall from each pair of walls,

and the relative position of the source, we can choose the correct mode easily and compute

the correct ARR.

We can also use image analysis to determine the degeneracy. Image analysis can be

used to determine the relative positions of the walls, the source, and the image. Visual

Simultaneous Localisation and Mapping (vSLAM) [361] is one set of methods to locate

the user with images only. It includes feature-based, direct, and RGB-D camera-based

approaches. [362] proposed a pseudo-LiDAR representation that mimics the LiDAR signal

but is converted from image based depth maps. This method avoids the usage of expensive

LiDAR sensors and improved the state-of-art image based method significantly. [363]

trained a machine learning model which takes the captured images as input and outputs

the distance between the objects and the vehicle. After localisation from the images, we

can determine one mode with the method with sensors.

6.4 Experiments
We present our experiments in this section. In the first subsection, we describe the setup

of our experiments. We then discuss the experiments on ARR estimation from RIRs with

CNNs and CVAEs in the second and third subsection. Finally, we discuss and compare

different methods to estimate ARRs from RIRs.

6.4.1 Experimental Setup
In the following, we first discuss the database we used to train and test our model. After

that, we describe the configuration of our neural networks and how we trained and tested

them.

Database
To build the dataset, we used the ISM to simulate RIRs [76] and the methods described in

section III to compute the corresponding ARRs. We refer to this dataset as a clean RIR-ARR

dataset of empty rooms. The shape of the rooms is rectangular and the rooms are empty.

The speed of sound was set to 𝑐 = 340 m/s. The sampling frequency was set to 8000 Hz.
The length of each RIR was truncated at 1024 because we expect an approximate 0.25 s RIR
contains the direct path signal and early reflections in an indoor environment and some

of the late reverberation. Each dimension of the room geometry, i.e., length 𝐿× width 𝑊×
height 𝐻 , was assumed to be iid between 6×4×2 m and 8×6×4 m, which covers moderate

and small rooms. The reflection coefficient of each wall was simulated as iid between 0 and
1. We randomly placed one source and one receiver in each room under the constraint (6.3)

that guarantees that there exist a one-to-one mapping function between RIRs and a default

ARR. This prevents the possibility of a one-to-multi relationship that can not be learned

by a neural network. In our experiments, the number of image-source method simulated
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RIR-ARR pairs was 400000, which was divided into a training dataset, a validation dataset,

and a test dataset with the ratio 7 ∶ 2 ∶ 1.

Neural network description
In this part, we focus on the configuration of our neural networks for different objectives

and the training and testing of our neural networks. We did an ablation study on network

architecture, optimisation method, and hyperparameter tuning with a grid search as a

preliminary experiment to choose suitable network architectures and hyperparameters.

When some properties of the database changed, an ablation study was performed again on

network architecture and hyperparameters with a grid search.

We used a GPU to train our neural network to estimate ARRs from RIRs. We chose

the Adam optimizer [320]. Its learning rate was set to 0.001 and the coefficients used for

computing running averages of the gradient and its square were set to (0.9,0.999). We

set the maximum iteration epochs to 5000 and applied early stopping as regularisation

in our model [321] to prevent overfitting and and to limit the computational effort. The

MSE loss is recorded per epoch on the training set under training mode and the validation

set under evaluation mode and early stopping was performed when the validation error

increased in 100 successive epochs. In addition, mini-batch based training was used to

increase computational efficiency [322]. The batch size was set to 100. After training, we
set the model to evaluation mode and computed the MSE in the test set.

Network architecture of CNN Table 6.1 shows our CNN architecture and the corre-

sponding parameters for the ARR estimation from RIRs, where 𝑏 denotes the batch size.

After each (transposed) convolutional layer, there are always a batch normalisation layer

and a Leaky ReLU layer [323] as the activation function, which we do not list in the Table

6.1 since the output size is not affected.

Network architecture of CVAE For the multi-task learning with CVAE, we used the

architecture of the encoder and the decoder and the hyperparameters that are presented

in Table 6.2, Table 6.3, Table 6.4, where 𝑏 denotes the batch size and 𝑣 equals to the

dimensionality of latent layer,𝑤 denotes the length of room acoustical parameters. Similarly,

after each (transposed) convolutional layer, there are always a batch normalisation layer

and a Leaky ReLU layer [323] as the activation function. For the multi-task learning with

CVAE, 𝜆 and 𝑣 in (2.55) were set to be 0.1 and the latent dimensionality respectively.

6.4.2 Experiments on ARR estimation from RIRs with CNN
In this subsection, we present experiments on first-order and third-order ARR estimation

from RIRs based on a feedforward neural network.
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Table 6.1: CNN architecture of ARR estimation from RIRs

Operation Kernel Size Stride # Channels Output Size

Input (𝑏,1024)
Reshape (𝑏,1,1024)
Conv1D 16 2 32 (𝑏,32,503)
Conv1D 4 1 128 (𝑏,128,500)
Conv1D 6 2 512 (𝑏,512,248)
Conv1D 8 3 512 (𝑏,512,81)
Conv1D 6 1 1024 (𝑏,1024,76)
Conv1D 6 2 4096 (𝑏,4096,36)
Conv1D 1 1 4096 (𝑏,4096,36)

ConvTranspose1d 5 2 1024 (𝑏,1024,75)
ConvTranspose1d 4 1 512 (𝑏,512,78)
ConvTranspose1d 6 2 128 (𝑏,128,160)
ConvTranspose1d 7 1 64 (𝑏,64,166)
ConvTranspose1d 3 3 16 (𝑏,16,498)
ConvTranspose1d 16 2 4 (𝑏,4,1010)
ConvTranspose1d 15 1 1 (𝑏,1,1024)

Reshape (𝑏,1024)

As the first experiment, we predicted first-order and third-order ARRs from RIRs. We

evaluated the estimation performance with SNR and AMBIQUAL [364]. The SNR was

measured on the ARRs directly. AMBIQUAL is an objective quality metric (range between

0 and 1 where 1 means a perfect match) proposed for ambisonic spatial audio, which

estimates listening quality and localization quality from ambisonics. AMBIQUAL metric

was shown by experiments to be strongly correlated to the subjective listening tests [364].

In the context of this paper, since 𝐵00 is only a scaled version of the omnidirectional room

impulse response, we are only interested in the localization quality. To obtain AMBIQUAL

scores, the ARRs were convolved with ten anechoic recordings, which include six speech

utterances from the TSP speech database [365] sound and four audio sound signals from

the Audio/Video Anechoic Database [366]. We set the Intensity Binary Mask threshold of

AMBIQUAL equal to −50 dB.
Following the convention of AMBIQUAL, we divide the ARRs into vertical channel,

including 𝐵01 , 𝐵02 , and 𝐵03 , and horizontal channels. We average over vertical and horizontal

channels respectively as the result for the vertical and horizontal channel. The experimental

results are shown in Table 6.5, where the first-order ARRs outperform the third-order ARRs

and horizontal channels outperform vertical channels. In addition, in Figure 6.1 and Figure

6.2, we show a channel of estimated first-order ARR with average SNR (17.3 dB) and a
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Table 6.2: Network architecture of Encoder part of CVAE

Operation Kernel Size Stride # Channels Output Size

Input (𝑏,1024)
Reshape (𝑏,1,1024)
Conv1D 16 2 32 (𝑏,32,503)
Conv1D 4 1 128 (𝑏,128,500)
Conv1D 6 2 512 (𝑏,512,248)
Conv1D 8 3 512 (𝑏,512,81)
Conv1D 6 1 1024 (𝑏,1024,76)
Conv1D 6 2 4096 (𝑏,4096,36)
Conv1D 1 1 4096 (𝑏,4096,36)
Conv1D 1 1 128 (𝑏,128,36)
Reshape (𝑏,128 ∗ 36)

Fully connected (𝑏, 𝑣)

channel of estimated third-order ARR with average SNR (13.6 dB) as a representative

example for a visual impression of the signal quality, which is consistent with the SNR

results in Table 6.5. The SNR and the figure show that the estimated ARR are reasonable.

The AMBIQUAL score confirms the estimated ARR performs well in terms of localisation

accuracy for an indoor environment with reverberation.

0 200 400 600 800 1000

−0.5

0.0

0.5

1.0 Reference ARR
Synthesised ARR

(a) Full signal.

0 50 100 150 200

−0.5

0.0

0.5

1.0 Reference ARR
Synthesised ARR

(b) The first 200 samples.

Figure 6.1: An estimated first order ARR example with feedforward mapping.

6.4.3 Experiments on multitask-CVAE based ARR estimation
In this subsection, we present our experiments on CVAE based ARR estimation as de-

scribed in section IV. We show the performance of the different decoders under different
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Table 6.3: Network architecture of decoder part of CVAE (RIR reconstruction and ARR estimation)

Operation Kernel Size Stride # Channels Output Size

Input (𝑏, 𝑣)
Fully connected (𝑏,128 ∗ 36)

Reshape (𝑏,128,36)
ConvTranspose1d 1 1 4096 (𝑏,4096,36)
ConvTranspose1d 5 2 1024 (𝑏,1024,75)
ConvTranspose1d 4 1 512 (𝑏,512,78)
ConvTranspose1d 6 2 128 (𝑏,128,160)
ConvTranspose1d 7 1 64 (𝑏,64,166)
ConvTranspose1d 3 3 16 (𝑏,16,498)
ConvTranspose1d 16 2 4 (𝑏,4,1010)
ConvTranspose1d 15 1 1 (𝑏,1,1024)

Reshape (𝑏,1024)

Table 6.4: Network architecture of decoder part of CVAE (room acoustical parameters)

Operation Output Size

Input (𝑏, 𝑣)
Fully connected (𝑏,40)
Fully connected (𝑏,𝑤)

dimensionality of the latent space. In addition, we compare the performance of CVAE with

feedforward mapping.

We performed the experiments on different dimensionality under the same information

rate. The reference dimensionality was set to be 15 since we pre-assumed the features

of a RIR can be described by a 15-dim vector as described in section IV. We also set the

dimensionality of the latent space to 10, 30, 60, 80, 100, 200, and 400 for comparison. Our

experiments indicate that, as long as each neuron of the latent layer can be allocated with

more than one bit information rate on average, a higher information rate does not improve

the experimental results. As a result, we set the information rate to 600 bits for training to

make sure our multitask CVAE of different dimensionality have enough information rate.

Although we use a multi-task autoencoder, we aim at synthesizing the ARRs. Consequently,

we compared the different models based on the performance for the ARRs. Since the

different ARR channels have similar performance, we used only channel 𝐵01 to compare the

different latent dimensionalities.

The relationship between latent dimensionality and the performance for the estimated

ARR is shown in Figure 6.3. It shows that the model with latent dimensionality 200
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Table 6.5: Experimental results of ARR estimation with CNN.

Signal Channel Test SNR (dB) AMBIQUAL

First-order ARR Horizontal 18.48 0.86
First-order ARR Vertical 14.95 0.80
Third-order ARR Horizontal 14.25 0.76
Third-order ARR Vertical 10.79 0.69
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(a) Full signal.
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Synthesised ARR

(b) The first 200 samples.

Figure 6.2: An estimated third order ARR example with feedforward mapping.

performed best on estimated ARR. It proved that a wider latent layer (before reaching the

plateau) improved the results although the signal can be described by a 15-dimensional

latent layer. This is consistent with the experiment in [367] where complex-valued and

the magnitude and Instantaneous Frequency of the Short Time Fourier Transform result

in a better performance than the time-domain waveform. Both our experiments and the

results of [367] show that neural networks have difficulty learning some classes of complex

relations.

The previous experiment show the model with latent dimensionality 200 is the best
model. We presented experimental results of horizontal and vertical ARR channels with

SNR and also performed the AMBIQUAL. Since we reconstructed RIR and estimated room

acoustical parameters when we estimate each channel of ARR, we average over these

estimates and compare with the ground truth in terms of SNR.

The experimental results on estimated ARRs are shown in Table 6.6. The method

performs better on first-order ARR estimation than on the more difficult third-order ARR

estimation. Horizontal channels outperform vertical channels, which like is related to

the vertical room dimension being smaller. We also present the experimental results on

reconstructed RIRs and estimated room acoustical parameters in Table 6.7. The multitask

autoencoder structure also shows reasonable performance on these bypass tasks. In addi-



6.4 Experiments

6

107

Figure 6.3: SNR of estimated ARR under different dimensionality.

Table 6.6: Experimental results of ARR estimation with CVAE.

Signal Channel Test SNR (dB) AMBIQUAL

First-order ARR Horizontal 18.40 0.87
First-order ARR Vertical 16.05 0.84
Third-order ARR Horizontal 16.67 0.83
Third-order ARR Vertical 14.11 0.80

tion, we plotted an example channel of estimated first order ARR with average SNR (17.62
dB) and third order ARR with average SNR (16.15 dB) as examples in Figure 6.4 and Figure

6.5 for a visual impression on the signal quality. From the SNR, the AMBIQUAL score and

the figures, we can conclude that the performance of CVAE-based estimated ARRs is good.

At the end of this section, we compare the performance with the CNN in Table 6.5 and

CVAE in Table 6.6. The SNR and AMBIQUAL both confirm that the CVAE-based method

outperforms the CNN-based method, especially for the third order ARRs. As discussed

in section 6.3.2, with our multi-task CVAE, we force it to focus on different features of

RIRs and ARRs, then all important features are passed to the main decoder for the ARR

estimation task. This helps to formulate a good representation of the latent layer and

results in a more robust estimation of ARRs. Consequently, the CVAE-based method shows

a better performance of ARR estimation than the CNN-based method.
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Table 6.7: Experimental results of RIR reconstruction and the estimation of room acoustical parameters with

CVAE.

Test SNR (dB)

RIR 22.5773
Receiver position 37.40
Source position 39.10
Room geometry 43.40

Reflection coefficients 21.36
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(a) Full signal.
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(b) The first 200 samples.

Figure 6.4: An estimated first order ARR example with CVAE.
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(b) The first 200 samples.

Figure 6.5: An estimated third order ARR example with CVAE.
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6.5 Discussion and Conclusion
We introduced a method to estimate ARRs that performs well. We first note that the method

can be made more robust if additional sensors are available.

If additional sensors can provide wall distances and relative source and receiver posi-

tions, we can compute the room geometry and the source and receiver positions. We can

then use the image source method to generate a RIR and compare with the groundtruth

RIR to determine the reflection coefficients. Finally, we can compute the ARR with these

estimated features. The approach can be combined with the method presented in this paper

to improve robustness if additional sensors are available.

In this paper, we showed it is possible to estimate ARRs from omnidirectional RIRs

under the assumption that there exist at least two perpendicular walls within a finite

set of degeneracy. The proposed method only requires a single RIR between a source

and a receiver as input, which obviates the need of special measurement equipment. We

used two methods to achieve this mapping, a feedforward mapping with CNN and a

multi-task variance constrained autoencoder. We showed with experiments that the multi-

task variance constrained autoencoder performs better than the feedforward mapping,

especially for higher order ARRs, since the structure is more suitable for the estimation of

ARRs. Future work focuses on the generalisation to the real-world measurements.
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7
Conclusions and Future

Work

This chapter concludes this dissertation. In addition, we address future research directions
based on this dissertation.
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7.1 Conclusions
Room impulse responses characterize sound propagation in an enclosed space. The room

acoustic attributes lie in room impulse responses implicitly. One focus of this dissertation

is the analysis of room impulse responses and the estimation of these room acoustic

parameters from room impulse responses. Omnidirectional room impulse responses are

insufficient to provide explicit spatial information for room acoustic applications, which is

important for a realistic listening experience. Higher order ambisonics describes the sound

field around the listener by a small set of temporal signals. It shows several advantages,

such as, easy modeling of the head rotation and 360 degree capturing of sound field. Hence,
ambisonics is also one focus of this dissertation. We conclude this dissertation by answering

the research questions raised in Chapter 1.

Question 1. How can we extract room acoustic parameters from a room impulse response?
Can we analyze it using an analytical method or a deep learning based method? What are the
differences between these two kinds of methods?

Although an omnidirectional room impulse response can not always provide enough

explicit spatial information, we found that it is possible to estimate room acoustic parame-

ters from a single room impulse response without additional information. We used a deep

learning based method and an analytical method to estimate room acoustic parameters

from a room impulse response, respectively. In contrast to existing methods, we do not

require knowledge of the relative positions of sources and receivers in the room. The

proposed methods can be used with only a single RIR between one source and one receiver.

Our proposed deep learning based method can estimate room geometry and reflection

coefficients from an omnidirectional room impulse response. Specifically, we used con-

volutional neural networks to estimate the room geometry and multilayer perceptrons

to estimate the reflection coefficients. In addition, a convolutional neural network was

used to link the reflection coefficients to the room geometry. The baseline method of room

geometry estimation used a convolutional neural network, which takes a RIR as input and

the room geometry as output. Two methods were proposed to improve the estimation

accuracy. One improved method averaged over estimates from multiple RIRs. Another

improved method restricted the relative position between the source and the receiver. In

addition, the room geometry estimation method can be generalized to real-world measured

RIRs. Due to the limited amount of real-measured data, we started with training the neural

network with the RIRs simulated by the image source method. Since the image source

method is an idealized model, we then augmented the simulated data by adding distortions

to make the simulated data close to the real-world data. We applied transfer learning twice

in total. We first apply transfer learning from the image source method simulated data to

the distorted data. Next, we used transfer learning from the distorted data to the real-world

measured data. The baseline method can achieve 0.038 m accuracy for each dimension on

simulated data. For simulated data, the averaging method can achieve 0.025 m accuracy for
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each dimension with 16 RIRs, and the semi-blind method can achieve 0.018 m accuracy for

each dimension. For the real-world environments, the room geometry estimation achieved

an average of 0.065 m accuracy for each dimension. We applied multiplayer perceptrons to

estimate frequency dependent reflection coefficients on simulated RIRs and achieved an

average of 0.09 accuracy. In addition, a convolutional neural network was used to link the

reflection coefficients to the room geometry.

We proposed a two-step method to investigate how room acoustic parameters are

estimated from an omnidirectional room impulse response. The first part is to train a

transformer to estimate TOAs. The phase distortion can blur or bias the real TOAs of the

peaks. In addition, when a peak is detected, it is difficult to determine whether it belongs to

a specular reflection or other non-linear effects such as scattering. Consequently, we aim to

estimate TOAs that work best for the room acoustic parameter estimation algorithm. Since

the analytical method is based on the image source method and requires TOAs up to the

second order, we estimated the TOAs of the direct path and specular reflections up to the

second order that match the image source method. The proposed analytical method is based

on the symmetry analysis of RIRs. The proposed analytical method is robust to erroneous

pulses, non-specular reflections, and an unknown offset. The estimation on different

dimensions is independent. For room geometry, source position, and receiver position, we

achieved the RMSE of 0.0524 m, 0.0516 m, and 0.0641 m, respectively, with a failed portion

of 25.9% of a real measured RIR database. The failed cases can be recognized by empty

output or obvious bias of estimation, which can be reduced by repeated measurments.

We compare the two proposed methods based on the room geometry estimation since

both methods estimate room geometry. The CNN based method estimates the room

geometry directly from the room impulse responses. In contrast, the analytical method

uses the estimated TOAs as inputs to estimate the room geometry. For the same real

measured RIR database, the CNN based method achieved an RMSE of 0.065 m while the

analytical method achieved an RMSE of 0.0524 m but with a failed portion of 25.9%. They
shared similar accuracy on the real-world database. We hypothesize the small difference

might result from the CNN based method randomly assigning reasonable estimates to the

failed cases. The two methods prove that the room acoustic parameters lie implicitly in a

single RIR.

Question 2. What attributes are required for a new virtual acoustic source to be consistent
with a pre-defined physical context?

We investigated how one can integrate a new source into an existing immersive envi-

ronment with finite information about the environment, aiming to let listeners perceive

the new source as a natural component of the acoustic scene and in the correct direction.

We used higher order ambisonics as our sound reproduction system to demonstrate our

work. We assume the head is at a fixed location and focus on the acoustics-only scenario.

There exists a set of possibly relevant perceived attributes of a sound source in a room. In

particular, we considered the effect of the reflection order, the order of ambisonics, and the
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reverberation time. A series of listening tests was conducted, and the chi-square test was

used to determine whether each test object was sufficient for integration into the acoustic

scene. We drew three conclusions from the listening tests. Firstly, ambisonics of order

three or higher are required to integrate a new source into an existing scenario. Secondly,

a finite order of early reflections can perform as well as full RIRs regarding integration and

localization. Finally, it is insufficient to integrate a new source with correct reverberation

time only.

Question 3. Is it possible to estimate an ambisonics room impulse response from a single
omnidirectional room impulse response?

Although omnidirectional room impulse responses are insufficient for providing explicit

spatial information for room acoustic applications, we show this spatial information is

contained in RIRs. As indicated by research question 1, we can estimate room acoustic

parameters from RIRs, and we should be able to estimate an ambisonics RIR from omni-

directional RIRs. Mapping from omnidirectional RIRs to ambisonics RIRs is not always

feasible. The feasibility depends on the degeneracy of RIRs in an enclosed space. By

adding a weak assumption, we restrict the ambisonics representations corresponding to

a particular omnidrectional RIR to be a finite set with known transformations between

the set entries. This allows us to map from omnidirectional RIRs to ambisonics RIRs. Two

methods exist to estimate ambisonics RIRs, which will be summarized below.

The first method to estimate room acoustic parameters is analytical. It can be used to

estimate an ambisonics room impulse response. Given an omnidirectional room impulse

response, we first estimate the room geometry, source, and receiver position analytically.

We can then use these parameters and the image source method to calculate the ambisonics

RIRs. Similarly, if we can utilize additional sensors to measure the room geometry and

source/receiver position, similar methods can be applied to estimate the ambisonics RIRs.

The second method is based on deep learning for room acoustic parameter estimation.

We apply two kinds of deep learning model, i.e., convolutional neural networks and multi-

task variational autoencoder. The CNN based method is the baseline method, which

takes omnidirectional RIRs as input and estimated ARRs as output. Instead of learning

all ARR channels together, each channel is learned by a separate CNN. We are interested

in the intrinsic dimensionality of RIRs and ARRs. Since RIRs implicitly contain room

acoustic parameters and can be determined by these parameters, we assume the RIR and

ARR signal can be represented by a finite dimensional vector corresponding to the room

acoustic parameters. We used a multi-task variational autoencoder to help the latent

layer form a good representation instead of only focusing on the part of the features. The

omnidirectional RIRs were taken as input of the encoder. We had six decoders in total,

four of which connected only to the first 15 neurons of the latent layer to estimate room

acoustic parameters and two of which connected to all latent neurons to reconstruct RIRs

and estimate ARRs. This is because the dimensionality of room acoustic features is 15. Still,
it is insufficient to output RIRs and ARRs of high accuracy with only these 15 neurons,
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which implies it is difficult for decoders to mimic the image source method, and additional

redundancy is required for good performance. We used experiments to investigate the

optimal latent dimensionality, and experimental results showed latent dimensionality 200
performed best on estimated ARRs. In addition, the multi-task variational autoencoder

based method performs better than the CNN based method, which can achieve a signal to

distortion ratio of 17.62 dB on first order ARRs and 16.15 dB on third order ARRs.

7.2 Future Work
We have already answered the three research questions in this dissertation. This section

suggests a few potential research directions based on this dissertation from different

perspectives.

Modeling of Room Impulse Responses The room impulse response characterizes the

sound propagation from a source to a receiver in an enclosed space, which is im-

portant in many room acoustic applications. Measuring real-world room impulse

responses is time-consuming and requires specific hardware and procedures. As a

result, a limited amount of real-measured room impulse responses exist, which can

only cover a limited variability. The rapid progress of deep learning based research

requires a large scale database, but the real-world measured data is insufficient. Sev-

eral RIR simulation methods exist, which can be roughly categorized into wave-based

methods and geometrical acoustic based methods. Wave based methods can model

RIRs with high accuracy but face computational problems, especially for high fre-

quencies. Hence the wave-based methods are not appropriate for generating a large

scale database. Geometrical acoustic based methods are relatively computationally

efficient, but many approximations are made, for example, the sound propagates

as rays which neglects the wave properties. We use the image source method as

an example to illustrate the limitation of the geometric based method. The image

source method is most widely used for RIR simulation. However, it cannot simu-

late frequency dependent components, scattering, and diffraction. In addition, it

cannot handle non-smooth surfaces and assumes empty rectangular rooms. Conse-

quently, one potential research direction is to propose a new room impulse response

simulation method that can accurately and efficiently simulate RIRs.

Modeling of Ambisonics Room Impulse Responses As discussed above, several RIR

simulation methods exist, although each method has drawbacks. When we worked

on the estimation of ARR, we were unaware of the existing method to simulate

ARRs. On the one hand, ambisonics is essential to describe a 3D sound field. With

the development of AR and VR, ambisonics plays an increasingly important role

in spatial audio. On the other hand, measuring ambisonics signals is more difficult

than omnidirectional signals. Spatial microphones, such as B-format microphones
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and Eigenmike, are more expensive than normal microphones. In addition, spatial

microphones face some problems, for example, the hard sphere affects the actual

sound field. There exist very few ARR databases available online. Consequently,

one potential research direction is a new method for ARR modeling. The ARR

modeling method may, for example, be adapted from existing RIR modeling methods

by including additional directional information.

Improvement on Room Acoustic Parameter Estimation In this dissertation, we used

an analytical method and a deep learning based method to estimate room acoustic

parameters, respectively. In addition, when we used a multi-task variational autoen-

coder to estimate ARRs, we also estimated room acoustic parameters as a byproduct.

The room acoustics parameter estimation can be improved in different aspects. The

deep learning based method can be improved by training on a database generated by

a hybrid method instead of the image source method only. In addition, more recent

deep learning models, for example, transformers and ResNets, can be used to replace

the CNNs and improve the estimation accuracy of room acoustic parameters. It can

also be improved to estimate room acoustic parameters in non-rectangular rooms,

for example, an L-shape room. The analytical method was relatively sensitive to the

time of arrival errors. This can be improved in different aspects. Including higher

order reflections can improve the estimation accuracy if the TOAs of higher order

reflections can be estimated. It is possible to integrate the room acoustic parameter

estimation algorithm into the TOA estimation method and optimize the transformer

using the estimated room acoustic parameters. Formulating the analytical method as

an optimisation algorithm by including the multi-directional second order reflections

may also benefit the room acoustic parameter estimation.

Ambisonics Room Impulse Response Estimation We estimated ARRs from omnidi-

rectional RIRs using convolutional neural networks and multi-task variational au-

toencoders. We demonstrated our work in a rectangular room and did not consider

many factors, such as scattering and frequency dependent reflective surfaces. A

possible research direction is to investigate how imperfect room affects the ARR

signals and how the scattering effect behaves in ARRs. These can provide a training

database closer to real-world data and generalize our experiments. In addition, lis-

tening experiments can be conducted to verify the quality of estimated ARRs using

the image source method only in a rectangular room.
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