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Diffraction of elastic waves by the periodic rigid boundary
of a semi-infinite solidf
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The reflexion of an elastic wave by a rigid boundary of a semi-infinite
solid with periodic profile is investigated theoretically. The problem is
formulated in terms of an integral equation for the traction at a single
spatial period of the boundary surface. Numerical results pertaining to
the reflexion of either an incident P-wave or an incident SV-wave for a
sinusoidal profile are presented. The calculations have been carried out
for three different heights of the periodic profile and for two Poisson
ratios (those of fused quartz and silver).

1. INTRODUCTION

In this paper the reflexion of elastic waves by a rigid boundary with a periodic
profile has been investigated theoretically. Up to now most of the interest per-
taining to rigid periodic boundaries has been focused on the diffraction of acoustic
waves in a fluid (cf. Fortuin 1970). However, the diffraction of elastic waves is more
complicated. A successful tool for the solution of elastodynamic diffraction problems
is furnished by the integral-equation formalism based upon the elastodynamic
representation theorem (see De Hoop 1958; Kupradze 1963; Tan 1975). By applying
this technique to periodic boundaries, Fokkema & Van den Berg (1g977) have
solved the problem of elastodynamic diffraction by a periodic stress-free boundary.
Their results show remarkable variations in the intensity curves for the reflected
wave of zero spectral order at those angles of incidence where a Rayleigh wave
could propagate along a plane stress-free boundary. This phenomenon has motivated
a study as to what would happen with a rigid periodic boundary, since along the
plane rigid boundary no surface waves can travel. In the present paper, application
of the integral-equation technique leads to a vectorial integral equation for the
unknown traction at a single spatial period of the boundary surface. Once the
traction has been determined, the reflexion factors of waves of different reflected
spectral orders can be determined. A collection of numerical results is presented
pertaining to: an incident P-wave and an incident SV-wave; three different heights
of the periodic profile; two Poisson ratios.

t The research reported in this paper has been supported by the Netherlands organization

for the advancement of pure research (Z,W.0.).
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To locate a point in space, we use the Cartesian coordinates z;, @, and zy. It is
assumed that the configuration is independent of ;. The subscript notation for
vectors and tensors will be used. Latin subscripts are to be assigned the values 1, 2
and 8, while Greek subscripts are to be assigned the values 1 and 2; for repeated
lower-case subscripts the summation convention holds. Occasionally, the bold-face
notation will be used to denote a two-dimensional vector; in particular & = (x;, z,)
will denote the two-dimensional position vector.

We assume that all field quantities vary sinusoidally in time with circular
frequency w. The complex time factor exp (—iwt) (i is the imaginary unit, ¢ is time)
is omitted throughout.

period of profile

X, -
| | rigid surface A

/;;‘“/ ///////////%

Xy
Frgure 1. Semi-infinite elastic medium with periodic boundary
and orientation of the incident wave.

2. FORMULATION OF THE PROBLEM AND METHOD OF SOLUTION

A homogeneous isotropic perfectly elastic solid occupies a semi-infinite domain
with a spatially periodic rigid boundary 4 (figure 1). The mechanical properties of
the material are characterized by its mass density p and its stiffness coefficients
{see Achenbach 1973, p. 53)

Cijua = AByy O+ (O, O+ 85y Oy, (2.1)

in which A and x are the Lamé coefficients of the material and d;; is the symmetrical
unit tensor of rank two: &) = &y, = dp3 = 1, 8;; = 0if ¢ 5 j.
In the medium, a two-dimensional elastic wave motion is present, of which the
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particle displacement u, = u,(#) and the stress Tap = Tap(%) satisfy the linearized
equation of motion (see Achenbach 1973, p. 51)

aﬁ Tap+ P, = 0, (2.2)
and the linearized constitutive relation (see Achenbach 1973, p. 52),

Tap = Cupyy Oy, (2.3)
where 0, denotes the partial derivative with respect to z,. It is convenient to
introduce two-dimensional plane waves, which we distinguish as compressional
waves (P-waves) and vertically polarized shear waves (8V-waves). The different
quantities associated with the two types of waves are listed in table 1, In table 1, €ay
denates the anti-symmetrical unit tensor of rank two: €y = €5y = 0, 6,5 = —€gy =1,

TABLE 1. QUANTITIES ASSOCIATED WITH PLANE P- AND SV-wavzs

quantity P.wave SV-wave
wavenumber kp = w/cp : ks = w/eg
wave speed ep = {(A+2p)/p}t ‘ g = (p/p)
wavevector ky = (kyp 4, kp, 5) ks = (I, 1, ks, 5)
particle displacement  up (%, kp) Ug, (%, Rg)
= lp, o opt 0xp (ikp - %) == Gy, Ky, b3 0XD (il )
stress Tp, (%, Kp) Ts, ap( ¥, %a)
= i(/\’CP,"y kl’.'y 8mﬁ + 2,“]61.. o kl‘, ﬁ) Ici‘-l = il"(ks o eﬂ'y kﬂ,y + ]"e,p Ga'y ks.y) k;l
x oxp (iky - &) X oxp (ikg - &)

TABLE 2. QUANTITIES ASSOCIATED WITH THE INCIDENT PLANE WAVE

quantity incident P-wave incident 8V-wave
wavevector kb = (lp 8in 6, — ke cos 09) kY = (kysin 69, —ky cos 6
intensity $wipe, $wtpcy

The particle displacement and the stress of a plane wave propagating in the
(%y, 2,)-plane, incident upon the boundary A of the elastic medium, are written as

Uy = Up,,(#, kb),

T!ﬁﬂ = Tp'aﬂ(x, ki)) (2'4)
for an incident P-wave, or

u:e = 'u’S.a(xﬁ ktS)’

szﬂ = Tg 0p(#; k{) (2.6)

for an incident SV-wave. The corresponding wavevectors and intensities are listed
in table 2.
The elastodynamic quantities of the reflected field are introduced as

Wy = U=y Tog = Top=Tap (2.6)

in which, upon approaching the rigid surface, the total particle displacement has
to satisfy the boundary condition, '

u,=0 on A 2.7
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The periodicity of the boundary surface A (with period D) and the structure of the
incident wave entail a quasi-periodicity in the reflected elastodynamic field, so that
exp(— ik, ;) uf and exp(—ik, z,) ;4 are periodicin z;. In the domain 2 g, <, < 0,
where 2, ma« denotes the maximum value that 2, can attain on the boundary surface
A, the reflected elastodynamic field can be written as a superposition of plane waves
(both P- and SV-waves) that are either propagating or exponentially decaying in
the direction of increasing z,. Let us write the corresponding representation as

W)= 3 B up (%, k") + ) BEVug o(%, k§V)  (3max < %3 < 00),

i e 2.8)
where k&%"{ = kg”{ = k™ = I+ 2nm/D,
MY = (kb — K3, BGY = (R R{M2)h,
with Ro{kf}, k' > 0 and Im {3, A3} > 0

m is the spectral order. For the propagating P- and SV-waves the wavevectors
k™ and k™ are real, They are finite in number and for them angles of reflexion
can be defined, being the angles included between the x,-axis and the direction of
propagation of the wave (see table 3 and figure 2).

TABLE 3. QUANTITIES ASSOCIATED WITH A PROPAGATING
REFLECTED WAVE OF SPECTRAL ORDER

quantity reflected P-wave reflected SV-wave
wavevector B = (Jopsin 6§, &y cos 6) kg = (Jy sin 0™, kg cos 07)
intensity a}mzpcrlR‘""[’ m}wzpcis‘""P

grating formula, sin 6§ = sin 60 + 2nm /ey D sin B = sin 6 4 21:m/ kgD
Snell’s law Fepsin 6 = Igsin 0g’>

Our principal aim is to calculate the reflexion factors R{™ and R{™. They follow
from a suitable integral representation for «%. The latter is obtained from the two-
dimensional form of the elastodynamic representation theorem applied to the
domain 8, (see figure 3) and the reflected field u%, followed by an application to the
domain S, and the incident field %}, (cf. Fokkema & Van den Berg 1977).

By using (2.6), the procedure leads to

f [ (5 84°) 7 () — 0y (87) T &)1 gl ) ()
= {— (%), du () — b (#), (%)} (2.9)
with xe{Sy, L, S},

where 7, denotes the unit vector along the normal to L as shown in figure 3, and
L corresponds with a single period of the boundary surface. If ¥eL the Cauchy
principal value of the relevant integral has to be understood. u}, and 74, are the
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Green tensors for the particle displacement and the stress respectively, as intro-
duced by Fokkema & van den Berg (19777). They are given by

u§, = (1/pw?) [0, 0 (G — Gp) + 8, k§ Gg],

T = Capiy O ug,,,
o (2.10)

with Gp= 3% k‘m) ST O%P {E™ (2~ 27) + kS| 2, — 25 |},
m= —c0

o)

Gs= Z 2kgn>1)

oxp (A (2 — 1) + k0| 2y — wg|},
m=—cw

where 9, denotes the partial derivative with respect to x,. The Green tensor rep-

resents the elastodynamic field generated by a phased array of line forces a period

D apart, whose phases counterbalance the phase shift due to the quasi-periodicity

A A A““," o A circle of radius 1

] [ ive
circle of radius k&, kg
o m=2
—3
By l9é°’ 1
-1 0
%3

Fieure 2. The geometrical construction of the directions of reflexion of the reflected waves
of the different spectral orders from the grating formula and Snell’s law, for an incident

SV.wave, ACVACD — ACAACED = ACDAD — AMAQ = AMAR = 27ﬂ/ksD

of the elastodynamic field in the configuration. Taking weS in (2.9), applying the
boundary condition (2.7), and noting that ug, consists of a superposition of P-
and SV-waves, we obtain the following expressions for the reflexion factors R{ and
R{M

2 The
) = —-——-—————-lkp — ’ ’ o plm) ’
B~ G, T e BB
—ikd .
m) 1 __......:.l._s._—- 4 1 t m) ,
Ré 2,0(1)2]6&12)1) LTaﬂ(x )nﬂ(x )uS’u<x R k& )ds(x ),

where up , and ug , are as given in table 1. The representations (2.11) show that
RE™ and RY™ can be calculated as soon as the traction 7,,n, on L is known. This, as
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yet unknown, vector function is determined from the vectorial integral equation
of the first kind

fLuga(x; &) Top(#') np(#') ds(a') = —ui(x), wel, (2.12)
which follows by taking €L in (2.9) and by using the boundary condition (2.7).

For several reasons it is advantageous to derive a different integral equation. This
is done by operating with cg,, 0; on (2.9) with weS,, multiplying through by

| &S

rigid boundary

x‘Zmax—

elastic medium

QR
% 2
R

y :

X9

Fieure 3. Domains to which the two-dimensional elastodynamic
representation theorems are applied.

n,(%q) with #geL and taking the limit #— #q. With the aid of the relations
U (#; &') = uf,(x; #') and Oy uf,(#; ') = — s ug,(#; "), which can easily be esta.a,b-
lished from (2.10), the result is rearranged. Then, by using the boundary condition
(2.7) we obtain -

Yo (#) 7, (%) + f Tug) ()15 35 ) m () 0s) = () (), we
(2.13)

in which the Cauchy prinecipal value of the integral has to be understood. Equation
(2.18) is a vectorial integral equation of the second kind, from which the traction
T.s7p o0 & single period L of the boundary surface can be computed. The latter
integral equation seems to be new in elastodynamic diffraction theory. We prefer
to base our computations on the integral equation (2.13) but shall also use the
results from the integral equation (2.12) for comparison.
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3. NUMERICAL RESULTS

So far, the method presented in § 2 applies to the elastodynamic diffraction by a
periodic boundary of arbitrary profile. In the present section we present the results
from computations that have been performed for the sinusoidal boundary x, =
%k sin (2ncz, /D) in which £ is the distance from peak to trough (figure 4). For this
type of boundary, a numerical solution of the integral equation based upon the
method of cubic-spline approximation combined with point matching is chosen (see,
for example, van den Berg 1971; Ahlberg, Nilson & Walsh 1967). In this method
the interval of integration is subdivided into & number of subintervals. The unknown
components of the traction are each approximated by a periodic cubic spline (i.e. &
polynomial of the third degree on each subinterval, while the spline is continuous
together with its first- and second-order derivatives across the mesh points of the
integration interval). As a result, the integral equation is replaced by a system of
linear algebraic equations. The integrals in the relevant matrix elements are
computed by using the trapezoidal rule with two integration points between two
successive mesh points of the chosen cubic-spline approximation. The series
representations of the Green tensors uf, and 7%, are truncated, in combination
with a technique for accelerating the convergence.

As a first test of the results we check the degree of accuracy of the power relation

¢p cos 09 for an incident P-wave,
P P

5 op| RV |2 cos O + 3, el BY] cos B =
propagating propagating

¢s cos 8 for an incident SV-wave.
P-waves SV-waves s §

(3.1)

A second test makes use of the reciprocity relation in which we consider two
different elastodynamic states distinguished by the superseripts A and B, namely
{uz, 785} and {3, 72,;}. Each of the two states satisfies the equation of motion (2.1)
and the constitutive relation (2.3). Further w2 and 2 can be written as

ub = ub(#, B 4)+ 3 BEO Aup (%, kg A) + 5 BY Aug («, kE™4),

m=— 0 m=—w

when 2, pmax < Zp < 00,

and
[} «©
uP = uB(n, KB4 D R Pup (w MPP)+ T REYPug (3 BED)
M= —00 M= —on
when @y py < 25 <00, (3.2)
with BB =—frA~2mm/D (m=0,+1,+£2,..).

State B refers to an incident wave with a direction of propagation opposite to one
of the reflected waves of spectral order m of state A. A reciprocity relation is
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furnished by application of the elastodynamic reciprocity theorem to the two
elastodynamic states {u2, 745} and {uZ, 755}, and to the domain 8,. The reciprocity
relations for propagating waves are listed in table 4 and will serve as a second test
of the accuracy of the computations.

The numerical results are presented for two different materials, namely fused
quartz with a Poisson ratio v = 0.19, and silver with a Poisson ratio » = 0.38. For
each of them, three different values of h/D are investigated, namely »/D = 0.1, 0.3
and 0.5, for both an incident P-wave and an incident SV-wave. In the figures 4, 5,
6 and 7 the normalized intensities in the x,-direction of the waves of zero spectral

TABLE 4. RECIPROCITY RELATIONS FOR PROPAGATING WAVES

state A state B reciprocity relation
incident SV-wave incident P-wave cp R4 cog G4 = ¢y RY™® cos 0B
incident P-wave incident P-wave Ry A cos 0‘"" A= R""’ ® cos Bk S
incident SV-wave incident SV-wave R‘"" 4 cos 0""’ A= R""’ Boos 0‘"" B

order IY) and I’ are plotted asa funetion of the angle of incidence. The normalized
intensity in the x,-direction of the wave of spectral order m is obtained by dividing
the intensity of the reflected field of spectral order m in the z,-direction by the
intensity of the incident field in the z,-direction. Hence

cos 6™ \

I = cos 6 |1,
oo for an incident P-wave, (3.3)
¢y CO8
I = cs cos 69 RSV
cos ™
and Y= cos 69 [ BEL,
o for an incident SV-wave. (3.4)
_ Cp COS
g = ¢g 086D 212,

Figures 4 and 6 show the results pertaining tov = 0.19 (kgD = 6 with kp D = 3.71;
and kg D = 9 with kp D = 5.57) for an incident P-wave and an incident SV-wave,
respectively.

Figures 5 and 7 show the results pertaining tov = 0.38 (kg D = 6 with kp D = 2.64;
and kgD = 9 with kp D = 3.96) for an incident P-wave and an incident SV-wave,
respectively.

From the figures we conclude that fluctuations in the intensity curves only appear
when a reflected wave of spectral order m changes its character from propagating
to evanescent or vice versa. This effect is more pronounced the deeper the grooves
are. For reference, the corresponding angles of incidence are listed in tables 5 and
6 (for v = 0.19 and v = 0.38 respectively).

Further, we notice that the intensity curves of I{) in figure 4 and the intensity
curves of I{)! in figure 6 are of the same shape, but on a different scale; and similarly
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for I in figure 5 and I in figure 7. This also directly follows from thefirst reciprocity
relation of table 4 in conjunction with the symmetry of the profile. For complete-
ness, we have also caleulated the intensities of the reflected waves by & plane rigid
boundary for v = 0.19 and v = 0.38 with the aid of the formulas given in Achenbach
(x973, p. 177). The latter curves nearly coincide with the results for /D = 0.1,
so that we did not present these curves in the figures.
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FIGURE 4. The normalized intensities in the z,-direction I and I{’ of the zero spectral order
(zee (3.3)) as a function of the angle of incidence 6 for a sinusoidal profile. (Poisson
ratio v = 0.19, incident P-wave; (a) kg D = 6, (b) kg D = 9.)

The computations have been performed on the IBM 370/158 computer of the
Computing Centre of the Delft University of Technology. The computing time to
calculate the quantities I{Y and I for a single value of the angle of incidence is 8,
14 and 19s for 2/D = 0.1, 0.3 and 0.5, respectively when kgD = 9. In the com-
putations we have used a combination of single (six digits) and double (16 digits)
precision. We have used a fully double-precision program to investigate whether
the round-off errors are significant. It turned out that the error originates from the
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numerical discretization of the integral equation, the numerical evaluation of the
integrals in the matrix elements, and the truncation of the series representation of
the Green tensor. An estimate of these errors has been made by increasing the

number of linear equations that approximate the integral equation, the number
of integration points to evaluate the integrals in the matrix elements, and the
number of terms to represent the Green tensor. We then estimated that our results

presented in the figures 4, 5, 6 and 7 have an absolute error always less than 0.005,

{a) 1.0
0.8t
r ,’ “‘
1I LN l\‘
0.6F I(O)J- kD=6 /,' Re AR
5 s 4 v
£ kpD=264// / Vi
0.4p o ,” / A
/7 i
b o / \||
’ ‘\'\
0.2r // K
b /
4
0 L i 1 a L U VU 1 TR B
(b) 1.0
- k5D=9
| k,D=3.96
{0 ‘ .
Sn I L "/\\ A
M~ ’,' NA
4 \
i / \\ ‘\
AN \
" ~ )
\\ \‘
o \\ \“
N
P \\
_ PR 1 J R R 1 1
0 30° 60° 90° 0 30° 60° 90°

'@(g)
Freurg 5. The normalized intensities in the z,-direction I and I of the zero spectral order

(see (3.8)) as a function of the angle of incidence 8 for a sinusoidal profile. (Poisson ratio
¥ = 0.38, incident P-wave: (a) kg D = 6, (b) ks D = 9.)

In tables 7 and 8 the results obtained by the method based on the integral equation
of the second kind (2.13) are compared with the results by the method based on the
integral equation of the first kind (2.12) for & P-wave, incident upon the boundary
atan angle 9 =45° h/D = 0.1,0.3and 0.5; ks D = 6 withkp D = 8.71 and kg D = 9
with kp D = 5.57, respectively (v = 0.19). In these tables M is the total number
of equations and 2K +1 is the number of terms to represent the Green tensor.
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FrourE 6. The normalized intensities in the z,-direction I® and I of the zero spectral order
(see (3.4)) as a function of the angle of incidence & for a sinusoidal profile. (Poisson ratio

v = 0.19, incident SV.wave: (a) ks D = 6, (b} kg D = 9.)
TABLE 5. THE INTERVALS OF THE ANGLES OF INCIDENCE (IN DEGREES), IN WHICH
THE REFLECTED WAVE OF SPECTRAL ORDER 1 IS PROPAGATING, FOR A POISSON

RATIO V = 0.19
The angle of incidence varies between 0 and 90°.

ks D =6, ksD =9,
ke D = 3.1 kpD = 5.57
r A Al r —A Al
spectral ine. P ine. 8V ine. P ine, SV
A — A e

order ——r—ry e—A e r y ¢
m refl. P refl. SV refl. SV  refl. P refl. P refl. SV refl, SV refl. P
39.8-90 23.3-90 5190

4,6-90
0-38.2

-9 — —_ —_
—1 43.8-90 4.4-90 2.7-90 25.4-90 7.4-90 0- 90 0-90
0 0-90 0-90 0-90 0-38.2 0-90 0-90 0-90
— 0-29,2 0-17.6

1 — — —_ —
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FraUrE 7. The normalized intensities in the z,-direction I and I of the zero spectral order
(soe (3.4)) as a function of the angle of incidence 6 for a sinusoidal profile. (Poisson ratio

v = 0.38, incident 8V-wave: (a) ks D = 6, (b) ks D = 9.)

TABLE 6. THE INTERVALS OF THE ANGLES OF INCIDENCE (IN DEGREES), IN WHICH
THE REFLECTED WAVE OF SPECTRAL ORDER M IS PROPAGATING, FOR A Poisson

RATIO ¥ = 0.38
The angle of incidence varies hetween 0 and 90°,

k‘sD = 6, ksD = 9,
e D = 2.64 ke D = 3.96
I8 —A— R} g A )
spectral ine. P ine. 8V inc. P inc, SV
order — A ~ s A— \ [ A—. \ r A N
m refl. P refl. SV refl. 8V  refl.P refl. P refl. SV refl. SV refl. P
-2 — —_ — — — 64,.2-90 23.3-80 73-90
-1 — 6.2-90 2.7-90 387.4-90 35.9-90 0-90 0-90 15-90
0-90 0-26.1 0-90 0-90 0-90 0-26.1
— 0-43.3 0-17.6

0 0-90 0-90
1 _ —
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TABLE 7. RESULTS FOR AN INCIDENT P-WAVE WITH AN ANGLE OF INCIDENCE
O = 45°, 1/D = 0.1, 0.3 AND 0.5; kgD = 9 witH kp D = 5.57 (v = 0.19)

h/D=0.1, /D =03, h/D = 0.5,
integral equation integral equation integral equation
of the of the of the
. A ANKE A L A |
first kind second kind first kind second kind first kind second kind
M 10 10 13 13 15 15
K 10 10 10 10 10 10
Ign 0.0743 0.0744 0.4729 04753 0.6812 0.6836
P 0.1054 0.1049 0.0444. 0.0419 0.0078 0.0072
-2 0.0001 0.0001 0.0047 0.0050 0.0130 0.0137
Iy 0.0143 0.0142 0.0752 0.0726 0.2214 0.2172
IP 0.8053 0.8063 0.4020 0.4049 0.0763 0.0767
2P+ I =1 0.9994 0.9999 0.9992 0.9997 0.9997 0.9984
n m

T4BLE 8. RESULTS FOR AN INCIDENT P-WAVE WITH AN ANGLE OF INCIDENCE
0 = 45°;h/D = 0.1, 0.3 AND 0.5; ks D = 6 with kp D = 3.71 (» = 0.19)

h/D = 0.1, h/D =03, h/D = 0.5,
integral eguation integral equation integral equation
of the of the of the
" Al . A~ Al e
firgt second firgt second first second
kind kind kind kind kind kind

M 10 10 12 12 14 14

K 10 10 10 10 10 10
el 0.0158 0.0158 0.0980 0.0980 0.1719 0.1731
e 0.1042 0.1040 0.0443 0.0432 0.0198 0.0184
w5y 0.0116 0.0115 0.0874 0.0863 0.1851 0,1849
e 0.8679 0.8684 0.7700 0.7718 0.6231 0.6238
D hPy F I =1 0.9996 0.5997 0.9997 0.9993 0.9999 1.0002

n m
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APPENDIX A

The starting point of the derivation of the integral representation is the two-
dimensional form of the elastodynamic reciprocity relation. In this relation we are
concerned with two elastodynamic states distinguished by the superscripts A and
B, respectively. Both elastodynamic states are present in one and the same medium
and vary sinusoidally in time with the same circular frequency w. The equations
of motion and the constitutive equations pertaining to both states can be written as

OpTa® +putug'® = —f::"B,}
Tap" = Cugyy Oy,

(A1)

in which f2:B denotes the density of the body force. Let C be a simple closed contour
and let S be its interior, then the elastodynamic reciprocity relation is given by

gﬁcms 78— ud 78] n(#) ds(s) = f f [fRud-fru)dsds,  (A2)

where n; denotes the unit vector along the outward normal to €. In order to derive
an integral representation for u}, we associate with the state A {uf, 754}, obeying
the homogeneous differential equation 8,754+, = 0 and the constitutive equation
Tap = Cuppy Og%y. For the state B we take an auxiliary state of disturbance, the
so-called Green solution uf§ = u§(#; &') and 755 = 75,(#; &), being a vector-valued

displacement field and its associated tensor-valued stress field.
The equation of motion and the constitutive equation for the Green solution are

p7Ep+pwhl = —b,8(x—&"), 715 = caﬂg,,agwg, (A 8)

in which 8(x — &’) is the two-dimensional delta function and b, an arbitrary constant
vector.

For our problem we apply the reciprocity relation to a domain §; inside C for
which we choose the closed contour consisting of two straight lines parallel to the
x,-axis, a period D apart, together with the curve L corresponding with a single
period of the boundary profile and finally a straight line parallel to the #,-axis, not
intersecting I (see figure 3). Then, we obtain for a point P inside S,

b [u8w: ) r3ps) (o) Tlos )]y () Qa() = ui(x), weSs (A
C

The Green solution is further chosen in such a way that in the integral representation
(A 4) only the contribution from L remains. This is achieved by requiring that
u§(a; #') consists of waves which travel away from the source point P with co-
ordinates z,, x, in the z;-direction. Then it can be shown that the contribution
from the straight line parallel to the z,-axis vanishes. Further, by requiring that
ug(¥; &) possesses, at a fixed value of z,, & phase variation exactly opposite to the
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one of uy, the contributions from the two straight lines parallel to the z,-axis cancel
each other. An enumeration of these requirements for the Green solution yields

0 TE g+ pwhu§ = ~b,8(x— &),

Tap = Capry O U5,

exp {ik}(x] —2,)}us(#; #') = periodic in (2{ —2,) with period D. p (AB)
and

us(#; &) consists of waves which travel from (z;, 2,) in the x,-direction.

Expansion in a Fourier series with period D in (z] — ;) yields

xp el —))uf(s; ) = 3 US(egai)exn (g m-a)] (A0
or, with K" = & +2nn/D, T
ui(%; ) = 5 UE0(ay;5) exp (2 — )} (A

=~ 00

Substituting (A7) in the equation of motion and using the orthogonality of
exp {ik{™(z, — 1)}, we obtain for all n

{02 — (A +20) B2+ pw?}  —ik{M(A + ) 0 HU@W] [—-bla(mz——x;)/D] A 8)
—IBPA+ )8 {(A+20) 85— pk? 4 poB | Ug®] | —by 8w, — 3)/D]

In order to obtain a solution of (A 8), we take a Fourier transform of U™ with
respect to (w, —x3). The latter is given by

05) = [ U8y ) exp filo =}y ). (a9)
The Fourier inversion theorem then yields
Us®) (x,, 25) = E% fm Uen)(k) exp { — ix(xy — 5)} di. (A 10)
Application of (A 9) to (A 8) yields
(7 1 f1 1
() 8y pmef - = n) [ 2
ogm | g+ (P S) K§ (S P) by /pw*D
= : , (Al
g Kk{™ (1 - l) L: + K (l- _) by/pw?D
s P/ 8 P 8§

with P = k2 — (k% — k™), and § = «?— (k% — &{"2), in which we have used the relations
kb = pw?/(A+2u) and k% = pw?/u. The Green solution is now obtained by the
inverse transformation of the expression (A 11). To this end we make use of the
following integral formulas:

1 (= ik(wy— i .

L J‘ exp{ Zn)z 2)} di = 5, exp {ik| @y — 5|}

mexp{ucx 29)} i ) (et
5 f Zn)z 2 dk = PGl exp {ik{[x, — 23},

(A 12)
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with M= -, KL= G-k,
and Re {k{), k4} > 0, Tm (&%, k) > 0,

so that with this choice we have also satisfied the last requirement of (A 5). Using
(A 12), together with the rule that the factor ix in the x-domain corresponds to
0y in the (z,~—;)-domain and noting that the factor —ik{™ can be replaced by o,
we finally obtain

u§ = (1/pw?) [0, 0)(Gs— Gp) +0,, ¥ Gs]b,, (A 13)
with Go= 3 (i/2K,D)exp [k (@, — o) + kD)o — i),

o]
Gs= % (i/2k" D)exp ik (x; ~ af) + ik wy —ap|}.
n= —co
From (A 4), a representation for the particle displacement is obtained by observing
that b, is arbitrary and that the Green solution depends linearly on the com-
ponents of b,. To express this dependence, we introduce a tensor of rank two,
uy, = uf,(¥; &'), and a tensor of rank three, 75,5 = 75,4(#; #’), which relate «§ and

7§ through uE = b, uf
v e } (A 14)
T8 = by T5ap
so that we can write for u§, and 7§,
w8, = (1/p0?) [0} 0ulGs— Grp) + 8, 12 Gs],} A 15
Thap = Capin O Uiy

Substituting (A 15) in (A 4) and noting that the resulting equation should hold for
any choice of b,, we obtain

f [45a (%5 &) Top(a”) — ue (') 5,,4(#; #")] ng(&') ds(a') = u3(#), ¥ely.
L

(A 16)
Application of the reciprocity relation to the incident field «, and the domain
8,, keeping P fixed in S; we obtain

f [ (#; &) Top(#") —ue(8') 78, 5(%;8 ) Jnp(#) ds(#') = 0, w€S;. (A 17)
L

Combining (A 16) and (A 17), using (2.6) and the boundary condition (2.7), we
obtain

ul‘

2(®) =f ulf, (#; x’)'raﬂ(x')nﬁ(x’)ds(x'), xel,. (A 18)
L

The unknown traction 7,,n, can be determined from the integral equation (2.12)
or (2.13), obtained by choosing P on L. We observe that, for 2, > 5 ay, Za— 25 2 0
for all ;; we then arrive at the expansion (2.8) together with the expressions (2.11)
for the reflexion factors. Generally, the expansion (2.8) is not allowed in the grooves
for z, < @ymax, however in that case (A 18) still gives the exact representation for
the reflected field.



