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1
Introduction

Imagine wearing a camera on your head that captures everything you see from your own point of view. This
type of video, called egocentric or first-person video, offers a unique way of understanding how people expe-
rience and interact with the world around them. It has many potential applications, especially in fields such
as augmented reality (AR) [15], assistive technology [55], and robotics [18], where understanding a person’s
direct experience is crucial.

However, working with egocentric video is not without its challenges. For one, the camera is attached to
the person’s head, moving unpredictably [32, 40]. Additionally, the scenes in egocentric video can be dynamic,
with fast-moving actions like hand gestures and interactions with objects [40, 54]. To address these complex-
ities, large-scale datasets like Epic-Kitchens [4, 5], Ego4D [11], and HOI4D [25] have supported progress in
tasks such as action recognition [38] and action prediction [31]. However, egocentric videos are not often
used to explore 3D scene reconstruction, which is the process of creating a 3D model of the environment
from the video footage. This is notable given the growing range of applications that rely on accurate 3D re-
construction [2, 16, 26, 41].

A recent approach that has shown promise for 3D reconstruction is 3D Gaussian Splatting (3DGS) [17],
which allows for creating high-quality 3D models. However, 3DGS was originally designed for scenes that are
static and recorded from multiple viewpoints. More recent versions of this approach have tried to adapt it
for dynamic scenes captured from a single camera (monocular) [23, 47, 50, 51], such as those in egocentric
video [54]. However, most of these methods have been tested on third-person (exocentric) videos [9, 30,
33, 48], not egocentric. Although the only egocentric approach, EgoGaussian [54], showed improvement
over baselines [47, 50], it is unclear whether the difference stems from the difficulty of egocentric recordings
or improvements to the model architecture. As such, it is currently unknown how well existing monocular
and dynamic 3DGS methods perform on egocentric videos and whether methods explicitly focused on the
egocentric perspective could be useful.

In this work, we explore how well existing dynamic 3DGS methods perform when applied to egocen-
tric video. We use the EgoExo4D dataset [12] that pairs egocentric and exocentric videos of the same scene,
allowing us to compare how well models perform in both settings. By analyzing the results, we aim to un-
derstand how these models handle the unique challenges of egocentric video. Additionally, we examine how
the models perform on static versus dynamic regions, since these areas may present distinct challenges for
reconstruction. Finally, as camera motion is a known difficulty in egocentric settings [32, 40], we study its
correlation with reconstruction quality. Through this investigation, we seek to highlight the areas where im-
provements are needed to make these models more effective in real-world applications.

The rest of this document is structured as follows. Chapter 2 introduces the background and concepts
required for the understanding of this thesis. Chapter 3 is the main document outlining our approach and
findings, structured in the format of a leading computer vision conference.
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2
Background

In this chapter, we familiarize the reader with the concepts required for the understanding of Chapter 3.
We begin this chapter by discussing the basics: gradient descent, artificial neural networks, and the pinhole
camera model.

Understanding these basics will allow us to discuss the problem, and existing approaches, of 3D recon-
struction and novel view synthesis (NVS). Here, we cover the concepts of structure from motion (SfM) [29],
novel view synthesis, and 3D Gaussian Splatting (3DGS) [17].

As we shall discuss, original 3DGS only works when modeling static scenes. As such, in Section 2.3 we will
discuss the approaches for dynamic 3DGS, with a special focus on monocular methods [47, 50, 51].

Finally, in Section 2.4 we will discuss the definition of egocentric video and potential differences from
other types of videos. In this section, we will also discuss EgoGaussian [54], which is currently the only
publicly-available method focused on egocentric video for the task of dynamic 3D Gaussian Splatting from
monocular video.

2.1. Basics
2.1.1. Gradient Descent
The deep learning problems described in this thesis are all fully supervised. The word supervised means in this
case that we are given data X , based on which we attempt to predict given targets y . To this end, we construct
a model F , with parameters θ, which outputs predicted targets ŷ = F (X ;θ). We then aim to minimize the
error between the predicted targets ŷ and the ground-truth targets y . This error is often referred to as the loss
and is represented with a loss function L (y, ŷ). An example of a loss function is the squared error computed

as L (y, ŷ) = 1
2

(
y − ŷ

)2.

Naturally, the definitions of the model F and the loss function L can vary and are task-dependent. How-
ever, ideally we would like a single algorithm to optimize the model parameters with respect to the loss func-
tion. Although various methods for this task exist [6, 24, 53], gradient descent has established itself as the
de-facto standard [34], due to generalizability and efficiency on modern hardware such as GPUs [1].

In gradient descent, the loss function L must be differentiable [45]. The algorithm then makes use of the
local gradient ∂L

∂θ of the loss function with respect to the parameters θ. The algorithm is iterative and the
parameters θt at an iteration t are updated according to the formula [34]:

θt ′ = θt −α ∂L

∂θ

∣∣∣∣
θt

(2.1)

Whereα is a hyperparameter called the learning rate. The algorithm then typically proceeds until a prede-
fined number of iterations is reached or a desired performance is achieved. While standard gradient descent
remains in use, several extensions, such as RMSProp [10] and Adam [19], have been developed to enhance its
performance. These methods incorporate additional techniques like momentum [19], which can accelerate
convergence or help escape poor local minima, at the cost of increased memory usage [34].
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4 2. Background

2.1.2. Artificial Neural Networks (ANNs)
Artificial neural networks (ANNs) are example deep learning models F inspired by the workings of natural
neurons. The neurons are divided into layers, where all neurons from the current layer are connected to all
neurons in the previous layer. An example neural network is visualized in Figure 2.1.

Figure 2.1: An example neural network with an input layer, hidden layers, and the output layer. The network takes samples from X on
input and outputs predicted targets ŷ .

Mathematically, let z(i−1) ∈Rn be the output of the previous layer i−1 with n neurons. The output z(i ) ∈Rm

of the current layer i with m neurons is then computed according to the equations:

a(i ) = W(i )z(i−1) +b(i ) (2.2)

z(i ) = f
(
a(i )

)
(2.3)

Where W(i ) ∈Rm×n is a matrix containing the weights of the connections between neurons from the previ-
ous and current layer, b(i ) ∈Rm is called the bias, and f is called the activation function and is applied to each
item of the input separately. The role of the activation function is to introduce non-linearity to the model and
common examples of such functions are sigmoid, ReLU, and tanh [44]. The input to the first layer are the
data samples from X and the targets ŷ predicted by the network are given by the output of the last layer.

ANNs are currently at the backbone of many modern architectures [3, 7, 27, 42] and multiple versions of
these networks exist, such as convolutional neural networks [21], designed for image-based data, and recur-
rent networks [36], designed for modeling time sequences. The models of interest for this work also often use
ANNs directly [47, 50] or rely on models where ANNs are used [54].

2.1.3. The Pinhole Camera Model
The pinhole camera model has been visualized in Figure 2.2. The camera can be described with the following
parameters:

• Width W and height H of the camera refer to the dimensions of the image plane.

• Focal length f is the distance between the camera and the image plane. Additionally, the focal lengths
in the x and y dimensions ( fx and fy ) might be different to account for non-square pixels.

• Principal point offset (cx ,cy ) specifies the offset of the principal point from the origin point of the image.

The focal lengths fx and fy alongside the principal point offsets cx and cy are often called the intrinsics of
the pinhole camera. These parameters are often placed into the following intrinsic matrix K [14]:
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Figure 2.2: A visualization of a simple pinhole camera model. Image inspired by [52].

K =
 fx 0 cx 0

0 fy cy 0
0 0 1 0

 (2.4)

The matrix K can then be used to easily project a point p = [
x y z

]T
represented in homogenous

coordinates p̃ onto the image plane. This can be done with matrix-vector multiplication as shown in Equa-
tion (2.5).

Kp̃ =
 fx 0 cx 0

0 fy cy 0
0 0 1 0




x
y
z
1

=
 fx x + zcx

fy y + zcy

z

≡

 fx
x
z + cx

fy
y
z + cy

1

 (2.5)

The point p will thus be projected to the image coordinates (u, v) = (
fx

x
z + cx , fy

y
z + cy

)
. However, for this

projection to work, the position of the point p must be specified in the camera coordinate system. The camera
coordinate system will be different from the world coordinate system if the camera has been translated or
rotated. To this end, apart from the intrinsic matrix K, we also define the extrinsic matrix T [14] specifying the
rotation and translation of the camera with respect to the world coordinate system. The matrix T is composed
of rotation and translation components as shown in Equation (2.6).

T =
[

R t
0 1

]
=


R00 R01 R02 tx

R10 R11 R12 ty

R20 R21 R22 tz

0 0 0 1

 (2.6)

The matrix T can either represent the camera-to-world or the world-to-camera transformations. To project
the point p onto the image plane, the matrix T must represent the world-to-camera transformation. The pro-
jection can then be calculated with matrix(-vector) multiplication as KTp̃.

2.2. 3D Reconstruction
2.2.1. Structure from Motion (SfM)
Structure from Motion (SfM) aims to derive the 3D structure of a scene given the 2D images of the scene, taken
from various viewpoints [29]. The output of such an algorithm are the pinhole camera intrinsics and extrin-
sics of each viewpoint, alongside selected 3D points representing the scene, derived from the input images.
An example, well-established algorithm is COLMAP [35], whose example output can be seen in Figure 2.3.
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Figure 2.3: Example COLMAP output obtained using COLMAP GUI [35]. Visualized in red are the predicted camera positions. The
predicted 3D points correspond to the reconstruction of a well and contain vertex color information.

2.2.2. Novel View Synthesis (NVS)
In novel view synthesis (NVS), the objective is to generate images of a scene as viewed from new, unseen cam-
era positions, given a set of images captured from known viewpoints. Models are typically trained on a set of
input images X = {I0,I1, . . . ,In}, learning to reconstruct the scene from these views. Their performance is then
evaluated against a separate set of images X̄ = {I0,I1, . . . ,Ik }, which depict the scene from novel viewpoints not
included in the training set. The quality of the model is measured by its ability to accurately predict these new
views, typically via reconstruction error on X̄ . The reconstruction error is commonly evaluated using percep-
tual and pixel-level metrics such as peak signal-to-noise ratio (PSNR) [46], structural similarity index measure
(SSIM) [43], and learned perceptual image patch similarity (LPIPS) [57], as used in prior work [47, 50, 51, 54].
Below we provide an overview of these three metrics.

Let I ∈ [0,1]3×H×W be an image from X̄ and Î ∈ [0,1]3×H×W the corresponding rendering, predicted by a
model. Also, let || · ||2 indicate the L2 norm. PSNR can then be calculated according to Equation (2.7) [46].

PSNR
(
I, Î

)=−10log10

(
1

3W H

∣∣∣∣Î− I
∣∣∣∣2

2

)
(2.7)

Unlike PSNR, SSIM [43] takes into account luminance, contrast, and structure. The metric splits the input
images into sliding windows A and B. The windows are typically obtained by sliding an 11× 11 Gaussian
filter across the input images [28]. The SSIM metric for each pair of windows is then computed as shown in
Equation (2.8) and Equation (2.9) [28].

SSIM(A,B) = l (A,B)α · c(A,B)β · s(A,B)γ (2.8)

l (A,B) = 2µAµB +C1

µ2
A +µ2

B +C1
c(A,B) = 2σAσB +C2

σ2
A +σ2

B +C2
s(A,B) = σAB +C3

σAσB +C3
(2.9)

Here,µA andµB are the mean values of the windows A and B,σA andσB are their standard deviations, and
σAB is the covariance between them. The constants C1, C2, and C3 are small stabilizing constants introduced
to avoid division by zero; typically, C3 = C2/2 [28]. The constants α, β, and γ control the importance of
individual components and are often set to α=β= γ= 1 [28]. The SSIM over the entire image is obtained by
averaging over all windows.

LPIPS [57] compares images by passing them through a pre-trained deep neural network (such as AlexNet
[20] or VGG [37]), extracting features from multiple layers. Let A and B be patches extracted from the in-
put images I and Î. The features at layer l are denoted fl (A) and fl (B). These features are normalized and
compared using a weighted L2 norm. The LPIPS score is computed as shown in Equation (2.10) [57]:
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LPIPS(A,B) =
L−1∑
l=0

wl ·
∣∣∣∣f̂l (A)− f̂l (B)

∣∣∣∣2
2 (2.10)

Where f̂l (·) denotes normalized features, wl are learned weights reflecting the perceptual importance of
each layer, and L is the number of extracted layers. A lower LPIPS score indicates greater perceptual similarity
between images. In contrast, a higher PSNR or SSIM indicates a higher similarity between images.

Common approaches for novel view synthesis include Neural Radiance Fields (NeRFs) [27], and 3D Gaus-
sian Splatting [17]. In this work, we focus on 3D Gaussian Splatting, which offers similar (or better) rendering
quality to NeRF, while providing a significantly faster rendering speed [17]. 3D Gaussian Splatting has been
used in practical contexts such as robotics [26], showing its relevance.

2.2.3. 3D Gaussian Splatting (3DGS)
Proposed by Kerbl et al. [17], 3D Gaussian Splatting is a recent method for novel view synthesis. The algorithm
begins by running a structure from motion algorithm, such as COLMAP [35], on the images from the sets X
and X̄ . The result of this step are the camera intrinsics K j and camera extrinsics T j for each image, as well as
a 3D point cloud defining the 3D structure of the scene.

The 3D point cloud is then used to initialize a set of 3D Gaussian distributions Gi = (µi ,Σi ,σi ,ci ) with
means µi , covariances Σi , opacities σi , and view-dependent colors ci . The covariance matrix Σi needs to
remain positive semi-definite throughout optimization [17], hence, in practice, it is instead represented with
scaling and rotation matrices Si and Ri as Σi = Ri Si ST

i RT
i . The scaling matrix Si is then represented with a

3D vector si and the rotation matrix Ri is represented with a 4D quaternion vector qi . These steps ensure that
the representation can be optimized through gradient descent.

For each training viewpoint, the 3D Gaussians are then projected according to the camera parameters
using a custom, differentiable renderer [17]. The resulting render Î j is then compared to the ground truth
training image I j according to the loss function L as shown in Equation (2.11).

L
(
I j , Î j

)= (1−λ)L1
(
I j , Î j

)+λLD-SSIM
(
I j , Î j

)
(2.11)

Where λ is a hyperparameter, L1 is the mean absolute difference between I j and Î j , and LD-SSIM is the
SSIM loss between I j and Î j [28, 43].

Because different areas of a scene may require varying levels of detail, 3D Gaussian Splatting incorporates
adaptive density control [17]. This process dynamically adjusts the number of Gaussians by either introduc-
ing new ones or removing those that do not contribute to the rendering. New Gaussians are generated by ei-
ther splitting high-variance Gaussians or duplicating smaller ones. A Gaussian qualifies for splitting or copy-
ing if its spatial gradient exceeds a predefined threshold, indicating its significant contribution to the final
image. Conversely, Gaussians that are nearly invisible are discarded, as they are deemed non-contributory.

2.3. Monocular Dynamic 3D Gaussian Splatting
Although original 3DGS performs well for static scenes, it is not designed for dynamic scenes, and hence
might produce artifacts such as floaters in the presence of motion [13, 54]. In this section, we present ap-
proaches for 3D Gaussian Splatting from dynamic, monocular videos. Monocular videos are special types
of videos, where only a single viewpoint is available at each timestep, limiting the amount of multi-view in-
formation available [9, 50]. Additionally, the recordings contain dynamic objects, potentially increasing the
difficulty of the task [9, 47].

Liang et al. [22] provide a comprehensive overview and a comparison of models for monocular, dynamic
recordings. Below, we provide brief overviews of three methods we selected for evaluation: Deformable-
3DGS [50], 4DGS [47], and RTGS [51].

2.3.1. Deformable-3DGS
In Deformable-3DGS [50], similarly to standard 3DGS [17], the Gaussians are first initialized using the 3D
point cloud obtained from SfM. The motion is modeled with an artificial neural network, acting as a global
deformation field. To predict the Gaussians at a given timestep t , the network accepts the timestep t and
the position µi of each Gaussian Gi as input. The network then predicts the location, scale, and rotation
offsets, δµi , δsi , and δqi . The predicted Gaussian G t

i at timestep t is then given by G t
i = (µi +δµi ,si +δsi ,ri +
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δri ,σi ,ci ). All Gaussians are passed through the network, rendered, and the loss function is computed as
in Equation (2.11).

During the first 3000 iterations of training, only the Gaussians are optimized, while the deformation field
remains fixed. This helps the Gaussians establish stable positions, despite being theoretically incorrect since
it cannot model dynamics. Meanwhile, adaptive density control continues as usual throughout training. Ad-
ditional techniques, such as positional encoding [39, 50] and annealing smooth training [50], are employed
to enhance reconstruction quality.

Finally, it should be noted that to obtain final renderings, both the Gaussians and the deformation field
are needed. Since the Gaussians are offset by the field at each timestep, the positions, rotations, and scales
of the Gaussians are said to be in a canonical space. Since, after training, the canonical space can be very
different from the real space, rendering the Gaussians on their own usually leads to poor renderings.

2.3.2. 4DGS
4DGS [47] is similar to Deformable-3DGS [50] in that it also predicts the deformation of Gaussians with a sin-
gle, global deformation field. However, in the case of 4DGS, the global field is modeled with a HexPlane H .
A HexPlane is a set of six, multi-resolution planes, where each plane attempts to model the relationship be-
tween each pair (u, v) of spatio-temporal coordinates (u, v) ∈ {(x, y), (x, z), (x, t ), (y, z), (y, t ), (z, t )}. Each plane
Rl (u, v) ∈H is a learnable tensor of shape h×l Nu ×l Nv with h the hidden dimension, N the basic resolution
of the plane, and l the upsampling scale allowing multi-resolution.

The offsets δµi , δsi , and δqi of each Gaussian G t
i are predicted by quering the HexPlane using the Gaus-

sian location µi = (xi , yi , zi ) and the current time t . Querying each plane is done by bilinearly interpolating
four grid vertices closest to the (u, v) pair. The feature vectors returned by each plane are multiplied and the
results from different levels of the planes are concatenated, as shown in Equation (2.12) [47].

fh =⋃
l

∏
interp(Rl (u, v))

(u, v) ∈ {(xi , yi ), (xi , zi ), (xi , t ), (yi , zi ), (yi , t ), (zi , t )}
(2.12)

Where fh ∈ Rlh is the output feature of the HexPlane. Dimensionality reduction is then performed by a
small neural network N to produce a feature vector fd =N (fh). Based on the vector fd , three separate neural
networks Nµ, Ns , and Nr then predict the offsets δµi , δsi , and δqi . Similarly to Deformable-3DGS, the
predicted Gaussian location is then G t

i = (µi +δµi ,si +δsi ,ri +δri ,σi ,ci ).
Also similarly to Deformable-3DGS, for the first 3000 iterations the Gaussians are optimized without the

HexPlane. The loss function does not contain the D-SSIM loss component, but it contains a total-variational
loss [8] component Ltv applied on the HexPlane grids. The total loss is therefore given by Equation (2.13).

L
(
I j , Î j ,H

)=L1
(
I j , Î j

)+Ltv(H ) (2.13)

2.3.3. RTGS
RTGS [51], compared to 4DGS [47] and Deformable-3DGS [50], does not model the motion with a global
field. Instead, the 3D Gaussians are expanded with an additional temporal dimension. Hence, the mean µi

becomes a 4D vector while the covariance matrix Σi becomes a 4x4 matrix. Although RTGS was shown to
perform worse than field-based methods [22], we evaluate it to increase the variety of tested models.

2.4. Exocentric vs. Egocentric 3D Gaussian Splatting
Exocentric videos are those where the scene is recorded from a third-person perspective. This is opposed to
egocentric, where the scene is recorded from a first-person perspective, typically via a head-mounted cam-
era [5, 12, 25]. Existing works focusing on egocentric data, often cite issues such as camera motion [32, 40]
and complexity of human actions [13, 54] as difficulties when it comes to understanding egocentric record-
ings. However, for the task of monocular and dynamic 3DGS specifically, there exist no evaluations that
would compare model performance on the same scenes from exocentric and egocentric views. As such, it
is unknown how well existing models perform on egocentric data and whether egocentric data indeed poses
unique challenges for this task.

Existing methods, such as those outlined above, are tested almost exclusively on non-egocentric data [22,
47, 50, 51]. Currently, EgoGaussian [54], is the only model focused on 3D Gaussian Splatting from egocentric,
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monocular, and dynamic videos. However, although the baseline evaluation in EgoGaussian [54] contains
Deformable-3DGS [50] and 4DGS [47], it does not compare reconstruction quality between egocentric and
exocentric views. As such, it remains unknown whether reconstruction from egocentric recordings is indeed
more difficult and whether specialized models are required for this task.

Below, we familiarize the reader with EgoGaussian, which we evaluate alongside other baselines.

2.4.1. EgoGaussian
Proposed by Zhang et al., EgoGaussian [54] is a novel method for 3D Gaussian Splatting from dynamic and
monocular videos, focused on the egocentric perspective. As with other existing models, the model requires
estimated camera poses and a 3D point cloud, obtained with COLMAP [35, 40]. Additionally, however, the
model also requires segmentation masks indicating the actor body parts and the manipulated object, which
are obtained using EgoHOS [56] and Track Anything [49].

EgoGaussian requires the clips to be manually split into static segments, where no object interaction hap-
pens, and dynamic where the object is being manipulated [54]. We will refer to these segments as passive and
active throughout this work to avoid confusing these terms with static and dynamic defined as the specific
regions of the scene that are (not) moving.

The training procedure then begins by training on the passive clips only. The scene is initialized using
traditional 3DGS with the hand and body parts masked out, such that they will not be reconstruted. Using
binary object masks obtained previously, the model also selects Gaussians that represent the object that will
be interacted with in the active segments.

Next, the active segments are processed. Here, the method attempts to learn the trajectory of the moving
object. Importantly, the method explicitly assumes the movement of the object to be rigid, i.e. the trajectory of
all Gaussians representing the object can be represented with a single translation vector and a single rotation
matrix. Finally, the object Gaussians and the static scene Gaussians are optimized together to produce the
final, full scene reconstruction.

Especially important for this work are the constraints imposed by EgoGaussian on the input video. The
active segments must be located in-between passive segments. Additionally, only a single object may be in-
teracted with and the transformation of the object must be rigid. Finally, the model does not reconstruct body
parts of the actor. As a result of these constraints, EgoGaussian cannot be applied to all scenes, which impacts
the evaluation performed in our work.
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Bringing a Personal Point of View: Evaluating Dynamic 3D Gaussian Splatting
for Egocentric Scene Reconstruction

Jan Warchocki
Delft University of Technology

Abstract

Egocentric video provides a unique view into human per-
ception and interaction, with growing relevance for aug-
mented reality, robotics, and assistive technologies. How-
ever, rapid camera motion and complex scene dynamics
pose major challenges for 3D reconstruction from this per-
spective. While 3D Gaussian Splatting (3DGS) has become
a state-of-the-art method for efficient, high-quality novel
view synthesis, variants, that focus on reconstructing dy-
namic scenes from monocular video are rarely evaluated on
egocentric video. It remains unclear whether existing mod-
els generalize to this setting or if egocentric-specific solu-
tions are needed. In this work, we evaluate dynamic monoc-
ular 3DGS models on egocentric and exocentric video using
paired ego-exo recordings from the EgoExo4D dataset. We
find that reconstruction quality is consistently lower in ego-
centric views. Analysis reveals that the difference in recon-
struction quality, measured in peak signal-to-noise ratio,
stems from the reconstruction of static, not dynamic, con-
tent. Our findings underscore current limitations and mo-
tivate the development of egocentric-specific approaches,
while also highlighting the value of separately evaluating
static and dynamic regions of a video.

1. Introduction

Egocentric, or first-person, video captures the visual input
received by an agent acting in the world, such as a human
wearing a head-mounted camera. This type of data pro-
vides a natural window into how humans perceive and in-
teract with their surroundings, making it especially valuable
for applications in augmented reality [15], assistive technol-
ogy [55], and robotics [18]. Unlike third-person recordings,
egocentric video closely reflects the visual input an agent re-
ceives while acting in the world. Using egocentric data, we
can improve an agent’s ability to understand the world from
a first-person perspective, leading to more intuitive and ef-
ficient interactions in real-world scenarios [55].

Egocentric data presents unique challenges. The cam-
era is subject to rapid, often unpredictable motion driven by
head or body movement [34, 44, 45]. At the same time, the
scenes themselves are highly dynamic, frequently involv-
ing complex hand-object interactions [12, 45, 54]. To ad-
dress these challenges, large-scale egocentric datasets such
as EPIC-Kitchens [2, 3], HOI4D [26], and Ego4D [10] have
driven advances in tasks like action recognition [43], action
prediction [33], and hand-object segmentation [56]. Yet,
one important direction remains largely underexplored: 3D
reconstruction and novel view synthesis in egocentric set-
tings. Tackling this gap is key to enabling more compre-
hensive spatial understanding and unlocking immersive ap-
plications such as augmented and virtual reality [12].

3D Gaussian Splatting (3DGS) [17] has recently
emerged as a state-of-the-art approach for high-quality and
efficient 3D reconstruction and novel view synthesis with
use cases in fields such as robotics [27]. Extensions have
been proposed to the 3DGS framework to allow the han-
dling of dynamic scenes viewed from a single camera
(monocular) [6, 7, 23, 49, 51, 52, 54]. These methods, how-
ever, are commonly only evaluated on scenes filmed from a
third-person, exocentric perspective, rather than from the
egocentric perspective [8, 22, 31, 35, 50]. Hence, it re-
mains unclear how well these models perform when applied
to egocentric video, and whether models specialized on the
egocentric perspective, are needed.

To our knowledge, EgoGaussian [54] is the only ex-
isting dynamic monocular 3DGS model specifically tar-
geting egocentric vision. While EgoGaussian has demon-
strated improved rendering quality over monocular base-
lines [49, 51] on egocentric data, the evaluation is limited
to egocentric recordings alone. It remains unclear whether
the observed improvements stem from the model design, the
data itself, or from other factors.

In this work, we aim to address this research gap and
answer the question of how well existing monocular dy-
namic 3D Gaussian Splatting models perform when applied
to egocentric data. To this end, we compare the existing
models on paired ego and exo perspective recordings of the
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same scene from the EgoExo4D dataset [11]. Because dy-
namic regions may be crucial in practical applications [14],
we compare the performance of the models on the static and
dynamic regions separately. Since rapid camera motion is
often cited as a challenge of egocentric vision [34, 45], we
investigate if it correlates with reconstruction quality. Over-
all, our main contributions can be summarized as follows:

1. We compare the performance of four existing dy-
namic 3DGS models on paired ego-exo scenes from the
EgoExo4D dataset.

2. We propose an evaluation protocol that compares the
performance of existing models on static and dynamic
regions of the scene.

3. We propose methods to study the correlation between
camera motion and 3D reconstruction quality in egocen-
tric settings.

4. Our results suggest the need for egocentric-specific ap-
proaches, while also showing that future evaluations of
methods could benefit from evaluating the static and dy-
namic regions of the scenes separately.

Our code and data have been made available at
https://github.com/Jaswar/evaluation-thesis.

2. Related work

Egocentric vision. Egocentric, or first-person vision, fo-
cuses on capturing visual data from the viewpoint of a
wearable or head-mounted camera. This special type of
vision has recently garnered attention due to its impor-
tance for applications such as augmented reality [15] and
robotics [18, 55]. Although egocentric video is considered
difficult due to issues such as the complexity of human ac-
tions [12, 53] and varied camera motion [34, 45], egocentric
datasets such as Epic-Kitchens [2, 3] have helped advance-
ments in fields such as video understanding and human-
object interaction [4, 33]. In this work, we compare egocen-
tric recordings to other types of recordings to verify whether
the challenges posed by egocentric vision impact the perfor-
mance of monocular 3D Gaussian Splatting methods.

3D Gaussian Splatting for dynamic scenes. 3D Gaus-
sian Splatting (3DGS) [17] has recently emerged as a
promising method for novel view synthesis of static scenes,
outperforming existing NeRF-based approaches [1, 29] in
both rendering quality and speed [17]. 3DGS assumes the
scene to be static, leading to artefacts, such as floaters, in
the reconstruction of dynamic scenes [12, 54]. As such,
special methods have been proposed to handle scene mo-
tion [6, 9, 28]. Of these, monocular methods [7, 23, 25, 30,
49, 51, 52], which require only a single camera, are espe-
cially interesting [22]. In this work, we focus on evaluating
monocular models in egocentric dynamic scenes.

Evaluation of existing monocular models. Various
datasets are used for the evaluation of models for 3D

Gaussian Splatting from monocular videos with dynam-
ics [8, 22, 31, 32, 35, 50]. D-Nerf [35] contains synthetic
scenes captured with a rapidly moving camera without mo-
tion blur. Nerfies [31], HyperNerf [32], and DyCheck [8]
all contain real-world recordings of kitchen activities, ani-
mals, and other moving objects. However, even the scenes
involving human actors are not recorded from an egocentric
perspective, but rather from an exocentric, third-person per-
spective. As such, it is currently unknown how well exist-
ing monocular 3DGS models perform when the recording
is captured from an egocentric point of view and whether
these models perform better or worse than with other types
of recordings. In this work, we provide such an evaluation.

EgoGaussian. To the best of our knowledge, EgoGaus-
sian [54] is the only publicly-available model for monocular
3DGS reconstruction of dynamic scenes from an egocentric
perspective. The model requires each clip to be manually
split into passive (no interaction) and active (object manip-
ulation) segments1. Using provided object masks, passive
segments are then used to initialize the background and ob-
ject shape, while active segments are used to refine both and
estimate the object’s pose. The method assumes fully rigid
object motion and does not model the actor. We compare
its reconstruction quality to monocular models not tailored
to egocentric settings.

Concurrent to our work, DeGauss [47] has emerged as an
alternative model for dynamic 3DGS focused on the ego-
centric perspective. Rather than relying on provided ob-
ject masks, the method attempts to segment dynamics via a
learned mask. The method also does not rely on the split
between passive and active segments and is not constrained
to rigid motion. Although promising, the model does not
currently have a publicly-available implementation and is
hence excluded from evaluation.

Static and dynamic modeling. Modeling dynamic ob-
jects is crucial for practical applications [14]. Although the
majority of dynamic and monocular 3DGS methods model
static and dynamic regions of the video together [6, 7, 49,
51, 52], methods exist where the static and dynamic are be-
ing modeled separately [23, 54]. In [22] the authors show,
however, that existing methods reconstruct the static and
dynamic regions similarly. Since the evaluation in [22] fo-
cuses on non-egocentric data, we perform a similar analysis
in egocentric settings. In this way, we aim to show whether
future models could benefit from modeling the static and
dynamic regions separately.

Simultaneous Localization and Mapping (SLAM).
SLAM methods estimate an agent’s trajectory (localization)
while building a map of the environment (mapping) [16].
Unlike 3DGS, which typically assumes known camera
poses obtained offline, SLAM estimates poses online and

1Referred to as static and dynamic in the original paper; we adopt dif-
ferent terms to avoid confusion.
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Figure 1. First frame of selected scenes from the exo (left, first exo camera) and ego (right) views. First 4 scenes are random; last 2 are
selected EgoGaussian-style scenes. Frames shown after undistortion. As we can see, the scenes are varied. Best viewed zoomed in.

often runs in real-time. Extensions have been proposed
to handle dynamic environments [19, 46, 58] while Ego-
SLAM [34] showed the need for egocentric-specific ap-
proaches. While this work focuses on 3DGS, recent re-
search integrates 3DGS into SLAM pipelines [19, 58], sug-
gesting our findings could also inform SLAM. Separately,
fast view synthesis methods like FaDIV-Syn [38] offer an
alternative by generating novel views without full 3D re-
construction, differing from the approaches studied here.

3. Experiments

3.1. Ego vs. exo

In this experimental section, we aim to answer whether re-
construction from egocentric data is indeed different from
other types of data. To this end, we compare the perfor-
mance of existing models on egocentric data against the
performance on exocentric, third-person data. We choose to
compare against exocentric recordings as they form a natu-
ral opposite of egocentric recordings.

Dataset. EgoExo4D [11], contains 1,286 hours of paired
egocentric and exocentric recordings of skilled human ac-
tivities. We choose it over other ego-exo datasets [13, 20,
21, 36, 39, 41, 42] due to its scene diversity and avail-
ability of ground truth camera intrinsics, extrinsics, and
a semi-dense 3D point cloud for initializing Gaussians.
These ground truth parameters are crucial for isolating base-
line performance from errors introduced by structure-from-
motion methods such as COLMAP [40, 54].

We select 8 random clips, each exactly 300 frames (10
seconds) long, which approximately corresponds to the
length of existing dynamic clips for the task of monocu-
lar 3DGS of dynamic scenes [54]. To evaluate EgoGaus-
sian [54], we manually select 2 additional clips that contain
rigid motion and are split into passive and active segments,
matching the requirements of EgoGaussian. First frames
from both exo and ego views of selected scenes are pre-
sented in Figure 1. As we can see, the clips contain diverse

scenarios. The exo cameras tend to capture more depth in-
formation about the scene and the exo cameras are static.
These differences may cause the scene to be reconstructed
with a different quality from the ego and exo perspectives.
All 10 scenes are visualized in Appendix C.

Models. Apart from EgoGaussian, we select three
other baseline methods for monocular 3D Gaussian Splat-
ting of dynamics scenes. The baselines are: Deformable-
3DGS [51], 4DGS [49], and RTGS [52]. We select
Deformable-3DGS and 4DGS due to their strong perfor-
mance on dynamic scenes as shown by [22]. Since both
Deformable-3DGS and 4DGS define the motion with a
global field [22, 49, 51], we include RTGS for model va-
riety, as it does not rely on an explicit motion field [22, 52].

Data preprocessing. The ego and exo cameras in Ego-
Exo4D are fisheye and incompatible with the standard 3D
Gaussian Splatting framework [11, 17, 24]. We address this
by undistorting frames using known intrinsics, following
the official guidelines [48]. This process introduces arti-
facts, producing black regions at the top and bottom of exo
images [48], as shown in Figure 1. To filter invalid pixels,
we undistort a binary mask alongside the images and use it
within the 3D Gaussian Splatting pipeline.

We manually provide the split into passive and active
segments for EgoGaussian. Furthermore, we obtain the ob-
ject and actor masks by annotating frames using Segment
Anything 2 [37].

Evaluation protocol. We compare model performance
on time-synchronized ego and exo recordings of the same
scene. For ego views, the training set uses even-indexed
frames, validation uses frames where index i ≡ 1 (mod 4),
and test where i ≡ 3 (mod 4). This mirrors EgoGaus-
sian [54], but with a validation split added for per-scene hy-
perparameter tuning.

Since exo cameras are static, a single-view recording
lacks sufficient multi-view information for training 3DGS
models [59]. Instead, we generate the sequence by ran-
domly selecting a viewpoint at each index i. This ensures
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Figure 2. Ground truths and model renderings on 2 random and 1 EgoGaussian scene. Top row shows ground truth with dynamic masks
overlaid in green. Models consistently reconstruct dynamic regions with lower visual fidelity. Best viewed zoomed in.

Random scenes EgoGaussian scenes

Model View mPSNR ↑ mSSIM ↑ mLPIPS ↓ mPSNR ↑ mSSIM ↑ mLPIPS ↓

EgoGaussian Ego - - - 27.46 ± 0.27 0.78 ± 0.002 0.31 ± 0.003

Def3DGS Ego 30.42 ± 0.06 0.82 ± 0.004 0.27 ± 0.006 29.95 ± 0.03 0.82 ± 0.000 0.25 ± 0.000
Exo 36.06 ± 0.04 0.97 ± 0.000 0.11 ± 0.000 31.85 ± 0.11 0.93 ± 0.000 0.17 ± 0.000

4DGS Ego 29.75 ± 0.03 0.80 ± 0.001 0.32 ± 0.001 29.61 ± 0.05 0.80 ± 0.001 0.30 ± 0.002
Exo 33.23 ± 0.18 0.92 ± 0.002 0.21 ± 0.003 30.47 ± 0.09 0.90 ± 0.004 0.22 ± 0.006

RTGS Ego 30.03 ± 0.02 0.81 ± 0.001 0.30 ± 0.000 29.50 ± 0.01 0.81 ± 0.000 0.28 ± 0.002
Exo 32.64 ± 0.25 0.93 ± 0.006 0.17 ± 0.008 29.03 ± 0.54 0.89 ± 0.008 0.22 ± 0.015

Table 1. Performance of selected models on paired ego/exo views
from 8 random scenes and 2 EgoGaussian-style scenes [54]. Re-
sults are averaged over 3 runs (± std). Grey indicates whether ego
or exo scored higher. As we can observe, models perform notice-
ably better on exo views.

monocular input while preserving 3D cues, and is similar
to existing setups [31, 32, 35]. We apply the same train,
validation, and test split as in the egocentric case.

Evaluation metrics. Following [22], we report masked
peak signal-to-noise ratio (mPSNR), masked structural sim-
ilarity index measure (mSSIM), and masked learned per-
ceptual image patch similarity (mLPIPS). For the eight ran-
dom scenes, the mask corresponds to the undistorted binary
mask defined earlier. For the EgoGaussian scenes, the mask

further excludes the actor, as it is not within the reconstruc-
tion scope of EgoGaussian [54]. All metrics are computed
on the test set. Each model is re-trained 3 times per scene
using the same hyperparameters.

Hyperparameters. We perform a random search to
select per-scene hyperparameters for Deformable-3DGS,
4DGS, and RTGS. For 4DGS and RTGS, the search space
includes parameter values from existing configurations. As
Deformable-3DGS lacks such configurations, we instead
search over the width and depth of the deformation network,
as well as the total number of iterations. The exact search
parameters for all models are provided in Appendix A.

The search runs for a fixed duration of 4 hours per scene
and per model. Each configuration is evaluated on the val-
idation set, and the one with the highest masked PSNR
is selected. All searches are performed on an NVIDIA
A40 GPU located on the Delft AI Cluster [5]. Training
EgoGaussian on each scene exceeded 4 hours, hence no hy-
perparameter search was conducted for that model.

Results. The results of this experiment are presented in
Table 1, where the metrics are averaged over the 8 random
and 2 EgoGaussian scenes separately. As we can observe,
the models almost always perform better on the exocentric
recordings with very low variance in results. The only ex-
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ception is the mPSNR score measured for the RTGS model
on the EgoGaussian scenes. However, other metrics in this
setting are still better for exocentric recordings. This differ-
ence in reconstruction quality between ego and exo suggests
that the reconstruction from egocentric perspective is more
difficult for existing models on average.

The gap in mPSNR performance between ego and exo
appears larger in the random scenes than the EgoGaussian
scenes. However, EgoGaussian clips consist of passive seg-
ments where no object interaction happens. Additionally,
the hands are excluded from egocentric metric calculation
and the object movement is fully rigid. These differences
may cause the scene dynamics to be easier to reconstruct
from the egocentric perspective, which could explain the
mPSNR difference between ego and exo being smaller than
in random scenes. This observation suggests that EgoGaus-
sian clips may not be fully representative of models’ perfor-
mance on egocentric video.

Comparing EgoGaussian to other models, we observe
that it obtains worse reconstruction quality across all met-
rics. This is a surprising result, as in the original paper,
EgoGaussian was shown to outperform both Deformable-
3DGS and 4DGS on egocentric data [54].

Example renderings are presented in Figure 2. As we can
see from the first two, random sequences, the overall recon-
struction from the ego perspective is visibly worse than the
exo view. In the basketball sequence, the difference is most
visible due to the poor reconstruction of the basketball and
the hands of the actor. Although the qualitative results re-
inforce the conclusion that the reconstruction from the ego-
centric perspective is more difficult, it is yet unclear whether
this difference comes from the reconstruction of dynamic or
static objects.

3.2. Dynamic vs. static

Accurate dynamic modeling is essential for practical appli-
cations involving dynamic 3DGS [14]. Additionally, dy-
namic objects pose different challenges than static objects
and some methods model them separately [23, 54]. In this
section, we thus aim to answer whether current methods
model static and dynamic regions with the same accuracy.

Dynamic masks. We use Segment Anything 2 [37] to
manually annotate each dynamic object in selected clips.
The mask for a given object at a given frame i is only con-
sidered dynamic if the object visibly moved between frames
i and i − 1. Example resulting dynamic masks have been
overlaid in green in Figure 2.

Evaluation metrics. Similarly to the previous section,
we use mPSNR, mSSIM, and mLPIPS to evaluate the mod-
els. The dynamic mask corresponds to the combined masks
of all dynamic objects at the given frame. The static mask
contains only the background, i.e. all objects that are not
currently moving. The static and dynamic masks are com-

bined with the undistortion masks obtained previously to
ensure only valid pixels are evaluated.

Results. The results for the dynamic and static masks
are presented in Table 2. Firstly, as we can see, the model
variance remains low on both dynamic and static parts of
the scene. Secondly, we observe that it is unclear whether
the reconstruction of dynamics is easier from the ego or ex-
ocentric views. In random scenes, the dynamic mPSNR for
Deformable-3DGS and 4DGS is higher for the egocentric
view. The egocentric mPSNR for RTGS is also much closer
to the exo perspective than in Table 1. At the same time, the
static reconstruction is again of higher quality in terms of
mPSNR in exocentric views. Both mSSIM and mLPIPS are
better in the exocentric view on static and dynamic regions.
Hence, these results suggest that the gap in reconstruction
quality between ego and exo in terms of mPSNR comes
from the reconstruction of static regions, not dynamic.

In the EgoGaussian scenes, we observe that the dynamic
reconstruction is almost always better in the egocentric
case. This reinforces the previous hypothesis that the dy-
namics in EgoGaussian videos are easier to reconstruct in
the egocentric view. Additionally, this further suggests that
the EgoGaussian clips may not form a representative sam-
ple of real videos.

Furthermore, the difference in performance between
static and dynamic reconstruction is clearly visible both
from Table 2 as well as Figure 2. Across both egocentric
and exocentric recordings, the models perform better when
reconstructing the static regions of the scene. This high-
lights a key limitation of current methods in handling mo-
tion and suggests that future work should focus on explicitly
improving dynamic scene understanding.

As with the previous results, EgoGaussian again per-
forms worse than other baselines. The performance is worse
in both the static and dynamic regions. This is again unex-
pected considering the original results [54].

3.3. EgoGaussian vs. others

As shown in Tables 1 and 2, our results for EgoGaus-
sian differ from the original paper, where it outperformed
4DGS and Deformable-3DGS both quantitatively and qual-
itatively [54]. To validate our pipeline, we re-evaluate
EgoGaussian and the baselines on the original EgoGaussian
data from Epic-Kitchens [2, 3] and HOI4D [26].

Evaluation protocol. We maintain the evaluation proto-
col from EgoGaussian and hence only split the data into a
train and a test set. It is unknown which hyperparameters
were used for the baselines in the EgoGaussian paper [54],
hence we use default configurations. Both for the base-
lines and EgoGaussian we do not measure the reconstruc-
tion quality of body parts. Therefore, we measure masked
PSNR, SSIM, and LPIPS.

Furthermore, it should be noted that in the official
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Dynamic masks Static masks
Random scenes EgoGaussian scenes Random scenes EgoGaussian scenes

Model View mPSNR ↑ mSSIM ↑ mLPIPS ↓ mPSNR ↑ mSSIM ↑ mLPIPS ↓ mPSNR ↑ mSSIM ↑ mLPIPS ↓ mPSNR ↑ mSSIM ↑ mLPIPS ↓

EgoGaussian Ego - - - 21.65 ± 1.03 0.59 ± 0.050 0.41 ± 0.047 - - - 27.94 ± 0.10 0.79 ± 0.001 0.30 ± 0.002

Def3DGS Ego 25.47 ± 0.05 0.65 ± 0.003 0.38 ± 0.004 24.58 ± 0.28 0.63 ± 0.010 0.36 ± 0.010 31.17 ± 0.06 0.83 ± 0.004 0.27 ± 0.007 30.23 ± 0.04 0.82 ± 0.000 0.25 ± 0.000
Exo 24.21 ± 0.10 0.70 ± 0.004 0.27 ± 0.002 22.70 ± 0.22 0.66 ± 0.004 0.37 ± 0.006 38.85 ± 0.01 0.97 ± 0.000 0.11 ± 0.000 34.85 ± 0.08 0.96 ± 0.000 0.14 ± 0.000

4DGS Ego 24.56 ± 0.14 0.62 ± 0.004 0.42 ± 0.004 25.41 ± 0.26 0.66 ± 0.006 0.35 ± 0.008 30.60 ± 0.05 0.80 ± 0.001 0.31 ± 0.001 29.88 ± 0.05 0.81 ± 0.001 0.30 ± 0.002
Exo 24.05 ± 0.13 0.71 ± 0.005 0.28 ± 0.004 22.72 ± 0.39 0.64 ± 0.011 0.40 ± 0.010 34.56 ± 0.20 0.92 ± 0.002 0.21 ± 0.003 32.45 ± 0.30 0.92 ± 0.005 0.20 ± 0.007

RTGS Ego 25.33 ± 0.05 0.65 ± 0.001 0.38 ± 0.002 26.29 ± 0.15 0.67 ± 0.010 0.32 ± 0.006 30.82 ± 0.02 0.82 ± 0.001 0.30 ± 0.000 29.67 ± 0.01 0.82 ± 0.000 0.28 ± 0.002
Exo 25.60 ± 0.43 0.75 ± 0.009 0.21 ± 0.008 23.42 ± 0.12 0.66 ± 0.003 0.34 ± 0.010 33.58 ± 0.24 0.93 ± 0.006 0.17 ± 0.008 30.45 ± 0.70 0.91 ± 0.010 0.20 ± 0.017

Table 2. Performance of selected models on dynamic and static masks for paired ego/exo views from 8 random scenes and 2 EgoGaussian-
style scenes [54]. Results are averaged over 3 runs (± std). Grey indicates whether ego or exo view performs better. mPSNR is similar
between ego/exo for dynamic masks; exo remains easier for static.

Epic-Kitchens HOI4D
Passive segments Active segments Passive segments Active segments

Model mPSNR ↑ mSSIM ↑ mLPIPS ↓ mPSNR ↑ mSSIM ↑ mLPIPS ↓ mPSNR ↑ mSSIM ↑ mLPIPS ↓ mPSNR ↑ mSSIM ↑ mLPIPS ↓

EgoGaussian (original) 28.33 0.85 0.19 28.34 0.88 0.17 30.99 0.96 0.08 30.33 0.95 0.09
EgoGaussian (ours∗ ) 28.76 0.86 0.18 30.55 0.89 0.15 30.52 0.96 0.09 31.12 0.96 0.09
EgoGaussian (ours† ) 28.61 0.85 0.25 30.35 0.88 0.22 30.43 0.95 0.13 30.97 0.95 0.13

Def3DGS (original) 27.63 0.86 0.17 23.27 0.82 0.21 28.09 0.94 0.08 26.92 0.94 0.10
Def3DGS (ours† ) 37.54 0.96 0.12 32.94 0.94 0.16 34.38 0.97 0.08 33.06 0.96 0.10

4DGS (original) 28.90 0.87 0.16 23.13 0.80 0.23 28.69 0.94 0.08 27.33 0.94 0.10
4DGS (ours† ) 34.40 0.93 0.18 29.61 0.89 0.23 36.73 0.97 0.09 35.13 0.97 0.11

Table 3. The performance of EgoGaussian and baselines on the original EgoGaussian Epic-Kitchens and HOI4D data [3, 26, 54]. Ours∗

uses original metrics; ours† uses corrected ones. Grey indicates the best score across ours† runs. While ours∗ matches the original,
baselines perform better than EgoGaussian, contrary to prior findings.

EgoGaussian evaluation, the masked out areas are zeroed,
rather than ignored [54], which will lead to biased met-
ric values. Additionally, EgoGaussian does not normalize
input images to the [−1, 1] range, which is necessary for
LPIPS [57]. We report EgoGaussian results with (ours†)
and without (ours∗) correction in metrics.

Results. The results are presented in Table 3. As we
can observe, EgoGaussian without metric changes (ours∗)
closely matches the original paper. However, the base-
lines perform much better than originally reported. Indeed,
when comparing with updated metric calculations (ours†),
the baselines tend to outperform EgoGaussian itself. These
results therefore reinforce the findings from the previous
sections and show that the sudden difference in performance
does not come from the data or the lack of hyperparameter
tuning for EgoGaussian.

3.4. Effects of camera motion

Rapid and often unpredictable camera motion, caused by
head or body movement, is an inherent property of egocen-
tric data [45]. Thus, understanding the impact or correlation
of camera motion on reconstruction quality is essential. In
this section, we aim to answer whether egocentric camera
motion correlates with the reconstruction quality.

Definition of camera motion. We measure camera mo-
tion in two aspects: camera velocity, defined as the speed of
the camera between frames, and camera baseline, defined as

the distance traveled by the camera. An increase in camera
velocity causes the egocentric test camera poses to be fur-
ther away from training poses, which may influence recon-
struction quality. An increase in the camera baseline might
provide more multi-view information, which could increase
the quality [8, 22]. We note that although metrics have been
proposed to measure the amount of multi-view information
in a monocular setting [8], these metrics are either difficult
to compute in practice [8, 22], or were shown not to corre-
spond well to actual reconstruction quality [22].

3.4.1 Camera velocity

Evaluation protocol. Let vt ∈ R3 be the camera linear
velocity between time steps t and t − 1 stemming from
camera translation. The maximal components of the ve-
locity at a given time step t are then computed as v̂t =
max1≤i≤3 |vti|. Since the range of velocities varies in each
scene, we normalize them to the [0, 1] range per scene. The
velocities are plotted on a logarithmic scale for readability.
Hence, the final linear velocities v̄t used for analysis are
computed according to the equation:

v̄t = ln

(
v̂t −mint (v̂t)

maxt (v̂t)−mint (v̂t)

)
(1)

We then plot the linear velocities at time step t against
mLPIPS achieved by the model on the static part of the
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scene at the same time step. We choose to evaluate against
LPIPS as it was shown to correspond with human percep-
tion better than PSNR and SSIM [57]. Since mLPIPS also
varies per scene, we normalize it to the [0, 1] range, simi-
larly to the velocity. Only test frames are evaluated.
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Figure 3. Camera linear velocity v̄t plotted against mLPIPS. Addi-
tional trend lines are plotted. As we can observe, as linear velocity
increases, mLPIPS increases, which corresponds to worse recon-
struction quality.

Results. The resulting scatter plot for linear velocity is
presented in Figure 3. Additionally, we plot trend lines by
averaging the mLPIPS over buckets of size 0.05. As we
can observe from both the scatter plot and the trend lines,
as camera velocity increases, the average masked mLPIPS
increases, which indicates worse reconstruction. This sug-
gests that, contrary to some prior expectations [8], increased
camera movement in egocentric video does not always yield
better reconstructions, and may in fact hinder performance.
Further analysis in Appendix D shows that the same corre-
lation holds for increased camera rotation and when mea-
suring mPSNR and mSSIM instead of mLPIPS.

Due to the high variance observed in the scatter plot, one
might question whether the observed positive correlation is
statistically significant. To this end, we measure the Pearson
and Spearman coefficients. Both indicate a positive correla-
tion of around 0.5 at a p-value, with the null hypothesis that
the correlation is 0, far below 0.05. Appendix D contains
detailed results of the significance tests.

3.4.2 Camera baseline

Evaluation protocol. Liang et al. [22] build a synthetic
monocular dataset where the camera moves along an arch.
The camera baseline is then defined as the distance between

the start and end points of the camera. Since the trajec-
tory in egocentric videos is more complex, we instead de-
fine the camera linear baseline as the maximal distance be-
tween any two points alongside the camera trajectory. We
compute the camera linear baseline per scene and report the
mean mLPIPS over the test frames of the given sequence.
EgoGaussian is not evaluated due to it only being tested on
two scenes.
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Figure 4. Camera linear baseline plotted against mLPIPS. Ad-
ditional linear regression models fitted are shown. As we can ob-
serve, as camera baseline increases, mLPIPS increases, which cor-
responds to worse reconstruction quality.

Results. The results are shown in Figure 4 where addi-
tional best-fit linear regression models are shown. As we
can observe, as camera baseline increases, the reconstruc-
tion quality worsens. As with the previous results, both
Pearson and Spearman coefficients show a positive corre-
lation with a p-value of below 0.05. Together with the ve-
locity analysis, these findings reinforce that increased ego-
centric camera motion, whether rapid or spatially exten-
sive, tends to degrade reconstruction quality, challenging
assumptions from prior work [8, 22].

Similarly to camera velocity, we can define a baseline
based on angular motion, which we refer to as the angu-
lar baseline. Appendix D presents this additional analysis,
showing that the same negative correlation holds, and in-
cludes detailed significance test results.

4. Discussion
Limitations. One might question the fairness of comparing
egocentric and exocentric recordings due to inherent differ-
ences in aspects such as camera motion and multi-view cov-
erage. Egocentric video is recorded from a moving, first-
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person perspective, while exocentric footage relies on mul-
tiple static cameras positioned around the scene. However,
these differences are not artifacts of the evaluation setup but
fundamental properties of each modality. Fixed-camera,
multi-view exocentric recordings are standard in ego-exo
datasets [11, 13, 20, 21, 36, 39, 41], and reflect how such
data is typically collected in practice. Therefore, while the
two modalities differ substantially, comparing them still of-
fers meaningful insights into model performance under re-
alistic and representative conditions.

Due to the static exo cameras, a limitation of our current
setup is that the exocentric camera poses used for testing are
also seen during training, but at different timesteps. This
allows the models to potentially memorize specific view-
points, rather than generalize to novel views, effectively re-
ducing the difficulty of the exo task. In contrast, the ego-
centric setting naturally enforces both temporal and spatial
generalization due to the moving camera. While this in-
troduces an asymmetry in the evaluation, it reflects a prac-
tical constraint of working with existing ego-exo datasets,
where only a limited number of static cameras is avail-
able [11, 13, 20, 21, 36, 39, 41, 42]. Future datasets could
address this issue through denser exo coverage or the use of
moving exocentric cameras.

Our evaluation is limited to 10 scenes due to the com-
putational cost of training dynamic 3D Gaussian Splatting
models, which often requires several hours of optimization
per scene per method. This evaluation scale is in line with
common practice in dynamic scene reconstruction, where
prior datasets such as D-NeRF (8 scenes) [35], Nerfies (4
scenes) [31], HyperNeRF (17 scenes) [32], NeRF-DS (7
scenes) [50], and DyCheck (14 scenes) [8] have been used
for benchmarking. While a limited number of scenes might
make the reported numbers sensitive to outliers, we address
this in Appendix B by including per-scene comparisons be-
tween egocentric and exocentric views, showing that our
main conclusions hold consistently across scenes.

Egocentric difficulty. Results from Table 1 suggest that
reconstruction from the egocentric perspective is more chal-
lenging for existing models than from the corresponding ex-
ocentric views. Interestingly, as shown in Table 2, the dif-
ficulty of reconstructing from the ego perspective appears
to stem from the static regions of the scene, with dynamic
regions reconstructed at comparable mean mPSNR across
both modalities. While these findings should be interpreted
in light of the evaluation asymmetry, where exocentric test
views coincide with training camera poses, this trend is fur-
ther reinforced by the camera motion results.

The camera motion results showed a negative correla-
tion between camera motion in egocentric videos and re-
construction quality. This contrasts with prior claims in
non-egocentric settings [8, 22]. Hence, these observations
reinforce the finding that reconstruction from an egocentric

perspective presents distinct challenges compared to other
types of data. Importantly, camera motion is unlikely to
be the sole factor affecting quality. Its correlation with re-
construction performance may also reflect underlying influ-
ences such as body movement.

Dynamic difficulty. The results from Table 2 show that
the reconstruction of dynamics is worse than the reconstruc-
tion of the static background. Existing methods reconstruct
the static background with a higher visual fidelity than the
dynamic objects. These results may appear surprising, as
in [22], the authors found that the performance of dynamic
Gaussian methods ‘does not change much‘ after masking
out the static components. Our results thus show that it is
still worthwhile to evaluate static and dynamic regions sep-
arately when developing future models. Likewise, it might
be beneficial to model static and dynamic regions sepa-
rately, such as in [23] or [54].

Future work. Our results suggest that egocentric re-
construction is more challenging than exocentric, but due
to limited static exo cameras, spatial generalization in exo-
centric evaluation is restricted. This asymmetry means the
ego-exo comparison should be interpreted cautiously. Still,
reinforced by the negative correlation of egocentric camera
motion to reconstruction quality, the findings highlight the
need for egocentric-specific models. Future models should
also not neglect the reconstruction of static regions, as they
may contribute to the difference between ego and exo re-
construction. Contrary to prior work [22], we find that dy-
namic regions are reconstructed less accurately than static
ones, revealing a key blind spot in current models. Future
benchmarks should therefore separate static and dynamic
evaluation. Finally, future datasets with denser or mov-
ing exocentric cameras are needed to enable fairer ego-exo
comparisons and drive improved methods.

5. Conclusion

In this work, we answered the question of how well existing,
monocular dynamic 3D Gaussian Splatting models perform
in egocentric settings. To this end, we compared the perfor-
mance of existing models on paired ego-exo views from the
EgoExo4D dataset. We found that models tend to achieve
better reconstruction quality of scenes captured from the
exocentric perspective. Additionally, our results suggest
that this difference, measured in masked peak signal-to-
noise ratio (PSNR), comes from the reconstruction of
static parts of the scene, as the dynamic regions tend to be
reconstructed with similar PSNR quality between ego and
exo views. Overall, our results show the need for models
specialized in egocentric reconstruction, as current models
struggle with the challenges posed by egocentric video.
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Bringing a Personal Point of View: Evaluating Dynamic 3D Gaussian Splatting
for Egocentric Scene Reconstruction

Supplementary Material

A. Hyperparameter search space
The search spaces of hyperparameters for Deformable-
3DGS, RTGS, and 4DGS are shown in Tables 4, 5, and
6 respectively. For 4DGS and RTGS these search spaces
were obtained by combining all existing configurations. For
Deformable-3DGS, we search over the shape of the defor-
mation field as well as the total number of iterations.

Parameter name Values
iterations 1.5 · 104, 2.5 · 104, 4.0 · 104
deform depth 6, 8, 10
deform width 128, 256, 512

Table 4. The hyperparameter search space for Deformable-3DGS.

Parameter name Values
env map res 0, 500

env optimize until 1.0 · 109, 5.0 · 103
iterations 2.0 · 104, 3.0 · 104

position lr max steps 1.5 · 104, 3.0 · 104
densification interval 200, 100

densify until iter 1.0 · 104, 1.5 · 104

Table 5. The hyperparameter search space for RTGS.

B. Per-scene results
The results in the main paper represent the metrics aver-
aged over scenes and over 3 runs. Since the scenes can vary
greatly in difficulty, outliers may skew the metrics. To this
end, in this section, we evaluate the models per-scene. For
each model and metric, we count in how many runs the exo
performance was better than ego and we report the ratio of
this number to the total number of runs. The total number of
runs is 24 for random scenes and 6 for EgoGaussian scenes.

Full results. The results without the static-dynamic sep-
aration are presented in Table 7. As we can see for the ran-
dom scenes, all ratios are above 0.5, indicating that most
scenes were reconstructed better from the exo view, which
reinforces previous findings. In the EgoGaussian scenes,
mSSIM and mLPIPS are always better on the exo views
while mPSNR is better in half the runs. This corresponds to
the previous results, where we observed the mPSNR to be
closer between ego and exo on the EgoGaussian scenes.

Dynamic and static results. The comparison on the dy-
namic masks is shown in Table 8. As we can see, the mP-

SNR ratio has visibly dropped to either below 0.5 or close
to 0.5, which is in line with the previous findings, where the
mean mPSNR was either higher in the ego view or similar.
In the static reconstruction from Table 9 we again observe
that the static mPSNR is higher in more scenes on the exo
view than the ego. Therefore, these results also suggest that
the mPSNR-performance between ego and exo views stems
primarily from the reconstruction of static objects. Since
for mSSIM and mLPIPS the exo reconstruction is also eas-
ier on the dynamic masks, no such conclusion can be made
for these metrics.

C. Dataset

All 10 scenes included in our dataset have been shown in
Figure 5.

D. Extra results for camera motion

D.1. Camera velocity

Results for angular velocity. Let ω̄t be the angular velocity
of the camera, normalized identically to v̄t. Figure 8 then
shows the relationship between ω̄t and the reconstruction
quality measured in terms of mLPIPS. As we can observe,
as angular camera motion increases, reconstruction wors-
ens. This is in line with the results for linear velocity.

Results for other metrics. Figure 6 presents the results
for linear and angular velocities when measuring mPSNR
and mSSIM. As we can observe, both metrics tend to de-
crease. This again shows worsening reconstruction quality
and hence reinforces previous results.

Significance test results. Table 10 presents the Pearson
and Spearman coefficient results for linear velocity on all 3
metrics. As we can observe, all coefficients coincide with
a negative correlation between camera velocity and recon-
struction quality. Additionally, all p-values are far below
0.05, indicating statistical significance of results. Similar
results can be seen for angular velocity in Table 11.

D.2. Camera baseline

Results for angular baseline. Similarly to the linear base-
line from Section 3.4.2, we can define the angular baseline
to be the highest angular difference between any two cam-
era poses. Figure 9 presents the camera angular baseline
plotted against mLPIPS. As we can observe, an increase in
camera baseline correlates with worse reconstruction qual-
ity, similarly to the linear baseline.
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Parameter name Values
grid dimensions 2

input coordinate dim 4
output coordinate dim 16, 32

resolution[-1] 250, 150, 100, 80, 75, 50, 25
multires [1, 2, 4], [1, 2]

defor depth 1, 0
net width 128, 64

plane tv weight 2.0 · 10−4, 1.0 · 10−4

time smoothness weight 1.0 · 10−3, 1.0 · 10−2

l1 time planes 1.0 · 10−4

no do True, False
no dshs True, False
no ds True, False

iterations 1.4 · 104, 1.5 · 104, 2.0 · 104
batch size 1, 2

coarse iterations 3.0 · 103
densify until iter 1.0 · 104, 1.5 · 104

opacity reset interval 3.0 · 103, 3.0 · 106
grid lr init 1.6 · 10−3

grid lr final 1.6 · 10−4, 1.6 · 10−5

opacity threshold coarse 5.0 · 10−3

opacity threshold fine init 5.0 · 10−3

opacity threshold fine after 5.0 · 10−3

pruning interval 100, 8.0 · 103
deformation lr init 1.6 · 10−4

deformation lr final 1.6 · 10−5, 1.6 · 10−6

deformation lr delay mult 1.0 · 10−2

Table 6. The hyperparameter search space for 4DGS.

Random scenes EgoGaussian scenes

Model mPSNR mSSIM mLPIPS mPSNR mSSIM mLPIPS

Deformable-3DGS 1.00 1.00 1.00 0.50 1.00 1.00
4DGS 0.88 0.88 0.75 0.50 1.00 1.00
RTGS 0.79 0.79 0.83 0.50 1.00 1.00

Table 7. Per-scene results of the baselines on 8 random and 2 EgoGaussian scenes with 3 runs per scene. Each entry represents the ratio of
runs where the performance on the exo view was higher than the corresponding ego view to the total number of runs.

Results for other metrics. Figure 7 presents the results
for linear and angular baselines when measuring mPSNR
and mSSIM. As we can observe, both metrics tend to de-
crease. This again shows worsening reconstruction quality
and hence reinforces previous results.

Significance test results. Table 12 presents the Pearson
and Spearman coefficient results for linear baseline on all 3
metrics. As we can observe, all coefficients coincide with
a negative correlation between camera baseline and recon-
struction quality. Additionally, all p-values are far below
0.05, indicating statistical significance of results. Similar

results can be seen for angular baseline in Table 13.
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Random scenes EgoGaussian scenes

Model mPSNR mSSIM mLPIPS mPSNR mSSIM mLPIPS

Deformable-3DGS 0.33 0.75 0.96 0.50 0.50 0.50
4DGS 0.54 0.96 1.00 0.50 0.50 0.00
RTGS 0.58 0.88 1.00 0.50 0.50 0.33

Table 8. Per-scene results of the baselines on 8 random and 2 EgoGaussian scenes with 3 runs per scene. Dynamic mask considered only.
Each entry represents the ratio of runs where the performance on the exo view was higher than the corresponding ego view to the total
number of runs.

Random scenes EgoGaussian scenes

Model mPSNR mSSIM mLPIPS mPSNR mSSIM mLPIPS

Deformable-3DGS 1.00 1.00 1.00 1.00 1.00 1.00
4DGS 0.88 0.88 0.75 1.00 1.00 1.00
RTGS 0.79 0.79 0.79 0.50 1.00 1.00

Table 9. Per-scene results of the baselines on 8 random and 2 EgoGaussian scenes with 3 runs per scene. Static mask considered only.
Each entry represents the ratio of runs where the performance on the exo view was higher than the corresponding ego view to the total
number of runs.

Figure 5. First frame of each scene from the exo (left, first exo camera) and ego (right) views. First 8 scenes are random; last 2 (bottom)
are selected EgoGaussian-style scenes. Frames shown after undistortion. As we can see, the scenes are varied. Best viewed zoomed in.
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Figure 6. Camera linear and angular velocity results for mPSNR and mSSIM. As we can see, increasing either velocity correlates with a
decrease in metrics, indicating worse reconstruction performance.

mPSNR ↑ mSSIM ↑ mLPIPS ↓
Model Coefficient Value p-value Value p-value Value p-value

EgoGaussian Pearson −0.57 2.0 · 10−31 −0.60 9.8 · 10−36 0.59 1.0 · 10−33

Spearman −0.59 5.3 · 10−34 −0.60 1.9 · 10−35 0.55 5.4 · 10−30

Def3DGS Pearson −0.60 3.4 · 10−211 −0.57 4.4 · 10−184 0.48 5.5 · 10−126

Spearman −0.66 3.2 · 10−264 −0.64 2.5 · 10−249 0.48 6.1 · 10−125

4DGS Pearson −0.50 2.6 · 10−139 −0.47 4.8 · 10−118 0.52 4.7 · 10−151

Spearman −0.53 3.9 · 10−158 −0.51 5.7 · 10−144 0.53 4.2 · 10−158

RTGS Pearson −0.49 1.1 · 10−132 −0.52 1.5 · 10−152 0.51 7.9 · 10−141

Spearman −0.57 6.6 · 10−183 −0.51 2.0 · 10−144 0.51 7.1 · 10−145

Table 10. Significance test results for the linear velocity experiments. The p-value approximately indicates the probability that the correla-
tion coefficient is 0. As we can observe, as linear velocity increases, the reconstruction quality decreases with p-values of far below 0.05.
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mPSNR ↑ mSSIM ↑ mLPIPS ↓
Model Coefficient Value p-value Value p-value Value p-value

EgoGaussian Pearson −0.64 1.8 · 10−42 −0.67 1.6 · 10−46 0.66 3.8 · 10−46

Spearman −0.64 4.1 · 10−41 −0.69 1.2 · 10−50 0.58 2.2 · 10−33

Def3DGS Pearson −0.52 6.8 · 10−147 −0.47 3.4 · 10−121 0.46 3.6 · 10−112

Spearman −0.53 8.5 · 10−156 −0.47 1.5 · 10−119 0.43 1.0 · 10−98

4DGS Pearson −0.44 2.0 · 10−100 −0.44 4.1 · 10−104 0.49 1.0 · 10−132

Spearman −0.43 3.9 · 10−98 −0.43 9.6 · 10−99 0.47 8.8 · 10−117

RTGS Pearson −0.43 1.6 · 10−99 −0.44 4.1 · 10−103 0.51 1.2 · 10−143

Spearman −0.48 5.0 · 10−126 −0.39 3.2 · 10−79 0.49 2.4 · 10−128

Table 11. Significance test results for the angular velocity experiments. The p-value approximately indicates the probability that the
correlation coefficient is 0. As we can see, as angular velocity increases, the reconstruction quality decreases with low p-values.
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Figure 7. Camera linear and angular baseline results for mPSNR and mSSIM. As we can see, increasing any baseline is correlated with a
decrease in metrics, indicating worse reconstruction performance.
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mPSNR ↑ mSSIM ↑ mLPIPS ↓
Model Coefficient Value p-value Value p-value Value p-value

Def3DGS Pearson −0.82 2.3 · 10−8 −0.73 4.5 · 10−6 0.74 3.6 · 10−6

Spearman −0.82 2.7 · 10−8 −0.68 3.3 · 10−5 0.63 1.7 · 10−4

4DGS Pearson −0.81 4.5 · 10−8 −0.74 3.6 · 10−6 0.79 1.7 · 10−7

Spearman −0.82 3.9 · 10−8 −0.61 3.8 · 10−4 0.75 2.1 · 10−6

RTGS Pearson −0.80 1.0 · 10−7 −0.69 2.7 · 10−5 0.67 4.5 · 10−5

Spearman −0.81 6.8 · 10−8 −0.61 3.5 · 10−4 0.61 3.9 · 10−4

Table 12. Significance test results for the linear baseline experiments. The p-value approximately indicates the probability that the correla-
tion coefficient is 0. As we can observe, as linear baseline increases, the reconstruction quality decreases with p-values of far below 0.05.

mPSNR ↑ mSSIM ↑ mLPIPS ↓
Model Coefficient Value p-value Value p-value Value p-value

Def3DGS Pearson −0.72 8.4 · 10−6 −0.50 4.5 · 10−3 0.44 1.6 · 10−2

Spearman −0.73 5.6 · 10−6 −0.54 2.2 · 10−3 0.47 9.0 · 10−3

4DGS Pearson −0.70 1.5 · 10−5 −0.43 1.7 · 10−2 0.40 2.8 · 10−2

Spearman −0.71 1.1 · 10−5 −0.49 6.0 · 10−3 0.59 5.3 · 10−4

RTGS Pearson −0.75 1.5 · 10−6 −0.49 5.8 · 10−3 0.44 1.4 · 10−2

Spearman −0.76 9.8 · 10−7 −0.48 7.7 · 10−3 0.45 1.2 · 10−2

Table 13. Significance test results for the angular baseline experiments. The p-value approximately indicates the probability that the
correlation coefficient is 0. As we can see, as angular baseline increases, the reconstruction quality decreases with low p-values.
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Figure 8. Camera angular velocity ω̄t plotted against mLPIPS.
Additional trend lines are plotted. As we can observe, as angular
velocity increases, mLPIPS increases, which corresponds to worse
reconstruction quality.
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Figure 9. Camera angular baseline plotted against mLPIPS. Ad-
ditional linear regression models fitted are shown. As we can ob-
serve, as camera baseline increases, mLPIPS increases, which cor-
responds to worse reconstruction quality.
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