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Abstract. This paper discusses numerical simulation techniques using a moving mesh
approach together with the multigrid fictitious boundary method (FBM) for liquid-solid
flow configurations. The flow is computed by an ALE formulation with a multigrid finite
element solver (FEATFLOW), and the solid particles are allowed to move freely through
the computational mesh which can be adaptively aligned by the moving mesh method based
on an arbitrary grid. Numerical results show that the presented method can accurately
and efficiently handle prototypical particulate flow situations.

1 INTRODUCTION

Numerical simulation of rigid particulate flows or the motion of small rigid particles in
a viscous liquid is one of the main focuses of engineering research and still a challenging
task in many applications. Depending on the area of application, these types of problems
arise frequently in numerous settings, such as sedimenting and fluidized suspensions, lu-
bricated transport, hydraulic fracturing of reservoirs, slurries, understanding solid-liquid
interaction, etc. Several numerical simulation techniques for particulate flow have been
developed over the past decade. In these methods, the fluid flow is governed by the con-
tinuity and momentum equations, while the particles are governed by the equation of
motion for a rigid body. The flow field around each individual particle is resolved so that
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the hydrodynamic force between the particle and the fluid can be explicitly obtained. Hu,
Joseph and coworkers [1, 2], Galdi [3] and Maury [4] developed a finite element method
based on unstructured grids to simulate the motion of rigid particles in Newtonian and
viscoelastic fluids. This approach is based on an Arbitrary Lagrangian-Eulerian (ALE)
technique. Both the fluid and solid equations of motion are incorporated into a single
coupled variational equation. At each time step, a new mesh is generated when the old
one becomes too distorted, and the flow field is projected onto the new mesh. In this
scheme, the positions of the particles and grid nodes are updated explicitly, while the
velocities of the fluid and the solid particles are determined implicitly.

Glowinski, Joseph, Patankar and coauthors [5, 6, 7, 8] proposed a distributed Lagrange
multiplier (DLM)/fictitious domain method for the direct numerical simulation of large
number of rigid particles in fluids. In the DLM method, the entire fluid-particle domain is
assumed to be a fluid and then the particle domain is constrained to move with a rigid mo-
tion. The fluid-particle coupling is treated implicitly using a combined weak formulation
in which the mutual forces cancel. This formulation permits the use of a fixed structured
grid thus eliminating the need for remeshing the domain. Our group [9, 10, 11, 12] pre-
sented another multigrid fictitious boundary method (FBM) for the detailed simulation
of particulate flows which is based on a fixed unstructured FEM background grid. The
motion of the solid particles is modeled by the Newton-Euler equations. Based on the
boundary conditions applied at the interface between the particles and the fluid which
can be seen as an additional constraint to the governing Navier-Stokes equations, the
fluid domain can be extended into the whole domain which covers both fluid and particle
domains. An advantage of these fictitious domain methods over the generalized standard
Galerkin finite element method is that the fictitious domain methods allow a fixed grid
to be used, eliminating the need for remeshing, and they can be handled independently
from the flow features. Much progress has been made for adopting the fictitious domain
methods to simulate particulate flows, yet the quest for more accurate and efficient meth-
ods remains active. An underlying problem when adopting the fictitious domain methods
is that the boundary approximation is of low accuracy only. Particularly in three space
dimensions, the ability of the fictitious domain methods to deal with the interaction be-
tween fluid and rigid particles accurately is greatly limited. One remedy is to preserve
the mesh topology, for instance as generalized tensorproduct or blockstructured meshes,
while a local alignment with the physical boundary of the solid particles is achieved by
a moving mesh process, such that the boundary approximation error can be significantly
decreased.

The primary objective of this paper is to combine the multigrid fictitious boundary
method (FBM) [9, 11] with the moving mesh method described in [17] for the simulation
of particulate flows and to check the accuracy of the proposed combined method. As we
have shown in [11], the use of the multigrid FBM does not require to change the mesh
during the simulations, although the rigid particles vary their positions. The advantage is
that no expensive remeshing has to be performed while a fixed mesh can be used such that
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in combination with appropriate data structures and fast CFD solvers very high efficiency
rates can be reached. However, the accuracy for capturing the surfaces of solid particles
is only of first order which might lead to accuracy problems. For a better approximation
of the particle surfaces, we adopt a deformed grid, created from an equidistant cartesian
mesh, in which the topology is preserved while only the local grid spacing is changed such
that the grid points are concentrated near the surfaces of the rigid particles. Only the
solution of additional linear Poisson problems in every time step is required for generating
the deformation grid, which means that the additional work is significantly less than the
main fluid-particle part. The paper is organized as follows: In Section 2, the physical
models together with collision and agglomeration models for the rigid particulate flows
are described. The detailed numerical schemes including the multigrid FBM and the
moving mesh method are given in Section 3. Numerical experiments are implemented
and their computational results will be presented in Section 4. The concluding remarks
will be given in Section 5.

2 DESCRIPTIONS OF THE PHYSICAL MODELS

2.1 Governing Equations

In our numerical studies of particle motion in a fluid, we will assume that the fluids
are immiscible and Newtonian. The particles are assumed to be rigid. Let us consider
the unsteady flow of N particles with mass Mi (i = 1, . . . , N) in a fluid with density ρf

and viscosity ν. Denote Ωf (t) as the domain occupied by the fluid at time t, and Ωi(t)
as the domain occupied by the ith particle. So, the motion of an incompressible fluid is
governed by the following Navier-Stokes equations in Ωf (t),

ρf

(

∂ u

∂ t
+ u · ∇u

)

−∇ · σ = 0 , ∇ · u = 0 ∀ t ∈ (0, T ), (1)

where σ is the total stress tensor in the fluid phase defined as

σ = −p I + µf

[

∇u + (∇u)T
]

. (2)

Here, I is the identity tensor, µf = ρf ·ν, p is the pressure and u is the fluid velocity. Let
ΩT = Ωf (t) ∪ {Ωi(t)}

N
i=1 be the entire computational domain which shall be independent

of t. Dirichlet- and Neumann-type boundary conditions can be imposed on the outer
boundary Γ = ∂Ωf (t). Since Ωf = Ωf (t) and Ωi = Ωi(t) are always depending on t, we
drop t in all following notations. The equations that govern the motion of each particle
are the Newton-Euler equations, i.e., the translational velocities Ui and angular velocities
ωi of the ith particle satisfy

Mi

dUi

d t
= (∆Mi)g + Fi + F′

i , Ii

dωi

d t
+ ωi × (Ii ωi) = Ti , (3)
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where Mi is the mass of the ith particle; Ii is the moment of the inertia tensor; ∆Mi

is the mass difference between the mass Mi and the mass of the fluid occupying the
same volume; g is the gravity vector; F′

i are collision forces acting on the ith particle
due to other particles which come close to each other. We assume that the particles are
smooth without tangential forces of collisions acting on them; the details of the collision
model will be discussed in the following subsection. Fi and Ti are the resultants of the
hydrodynamic forces and the torque about the center of mass acting on the ith particle
which are calculated by

Fi = (−1)
∫

∂Ωi

σ · n d Γi , Ti = (−1)
∫

∂Ωi

(X − Xi) × (σ · n) d Γi, (4)

where σ is the total stress tensor in the fluid phase defined by Eq. (2), Xi is the position
of the mass center of the ith particle, ∂Ωi is the boundary of the ith particle, n is the unit
normal vector on the boundary ∂Ωi pointing outward to the flow region. The position Xi

of the ith particle and its angle θi are obtained by integration of the kinematic equations

dXi

d t
= Ui ,

d θi

d t
= ωi. (5)

No-slip boundary conditions are applied at the interface ∂Ωi between the ith particle and
the fluid, i.e., for any X ∈ Ω̄i, the velocity u(X) is defined by

u(X) = Ui + ωi × (X − Xi) . (6)

2.2 Collision and Agglomeration Models

Following existing modeling approaches, we examine a special collision model with a
new definition of short range repulsive forces which can not only prevent the particles
from getting too close, it can also deal with the case of particles overlapping each other
when numerical simulations bring the particles very close due to unavoidable numerical
truncation errors. For the particle-particle collisions, the corresponding repulsive force is
determined as

FP
i,j =



















0, for di,j > Ri + Rj + ρ,

1
ǫ′
P

(Xi − Xj)(Ri + Rj − di,j), for di,j < Ri + Rj,

1
ǫP

(Xi − Xj)(Ri + Rj + ρ − di,j)
2, for Ri + Rj ≤ di,j ≤ Ri + Rj + ρ,

(7)

where Ri and Rj are the radius of the ith and jth particle, Xi and Xj are the coordinates
of their mass centers, di,j = |Xi −Xj| is the distance between their mass centers, ρ is the
range of the repulsive force (usually ρ = 0.5 ∼ 2.5∆h, ∆h is the mesh size), ǫP and ǫ′P are
small positive stiffness parameters for particle-particle collisions. If the fluid is sufficiently
viscous, and ρ ≃ ∆h as well as ρi/ρf are of order 1 (ρi is the density of the ith particle,
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ρf is the fluid density), then we can take ǫP ≃ (∆h)2 and ǫ′P ≃ ∆h in the calculations.
For the particle-wall collisions, the corresponding repulsive force reads

FW
i =



















0, for d′
i > 2Ri + ρ,

1
ǫ′
W

(Xi − X′
i)(2Ri − d′

i), for d′
i < 2Ri,

1
ǫW

(Xi − X′
i)(2Ri + ρ − d′

i)
2, for 2Ri ≤ d′

i ≤ 2Ri + ρ,

(8)

where X′
i is the coordinate vector of the center of the nearest imaginary particle P ′

i located
on the boundary wall Γ w.r.t. the ith particle, d′

i = |Xi − X′
i| is the distance between

the mass centers of the ith particle and the center of the imaginary particle P ′
i , ǫW is

a small positive stiffness parameter for particle-wall collisions, usually it can be taken
as ǫW = ǫP /2 and ǫ′W = ǫ′P /2 in the calculations. Then, the total repulsive forces (i.e.
collision forces) exerted on the ith particle by the other particles and the walls can be
expressed as follows,

F′
i =

N
∑

j=1,j 6=i

FP
i,j + FW

i . (9)

Future plans for this research include also the development of an agglomeration model.
As a first step in this direction, we perform a ‘trick’ to the described collision model such
that we obtain a prototypical agglomeration model: Switching the sign for the forces
defined, that means instead of a positive sign we put a negative, in this manner the
repulsive forces become attractive forces. The result is that the particles will not separate
when they touch each other, but they will stick together. At the end of this paper, we will
provide preliminary results for this simple agglomeration model while the development of
more sophisticated agglomeration models is part of current research.

3 NUMERICAL METHOD

3.1 Multigrid FEM Fictitious Boundary Method

The multigrid FEM fictitious boundary method (FBM) [9, 10, 11] is based on a multi-
grid FEM background grid which covers the whole computational domain ΩT and can
be chosen independently from the particles of arbitrary shape, size and number. It
starts with a coarse mesh which may already contain many of the geometrical details
of Ωi (i = 1, . . . , N), and it employs a fictitious boundary indicator (see [9]) which suffi-
ciently describes all fine-scale structures of the particles with regard to the fluid-particle
matching conditions of Eq. (6). Then, all fine-scale features of the particles are treated as
interior objects such that the corresponding components in all matrices and vectors are
unknown degrees of freedom which are implicitly incorporated into all iterative solution
steps (see [10]). Hence, by making use of Eq. (6), we can perform calculations for the
fluid in the whole domain ΩT . The considerable advantage of the multigrid FBM is that
the total mixture domain ΩT does not have to change in time, and can be meshed only
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once. The domain of definition of the fluid velocity u is extended according to Eq. (6),
which can be seen as an additional constraint to the Navier-Stokes equations (1), i.e.,



















∇ · u = 0 (a) for X ∈ ΩT ,

ρf

(

∂ u

∂ t
+ u · ∇u

)

−∇ · σ = 0 (b) for X ∈ Ωf ,

u(X) = Ui + ωi × (X − Xi) (c) for X ∈ Ω̄i, i = 1, . . . , N.

(10)

For the study of interactions between the fluid and the particles, the calculation of the
hydrodynamic forces acting on the moving particles is very important. From Eq. (4), we
can see that the surface integrals on the wall surfaces of the particles should be conducted
for the calculation of the forces Fi and Ti. However, in the presented multigrid FBM
method, the shapes of the wall surface of the moving particles are implicitly imposed in
the fluid field. If we reconstruct the shapes of the wall surface of the particles, it is not
only a time consuming work, but also the accuracy is only of first order due to a piecewise
constant interpolation from our indicator function. For overcoming this problem, we
perform the hydrodynamic force calculations using a volume based integral formulation.
To replace the surface integral in Eq. (4) we introduce a function αi,

αi(X) =







1 for X ∈ Ωi,

0 for X ∈ ΩT \ Ωi,
(11)

where X denotes the coordinates. The importance of such a definition can be seen from
the fact that the gradient of αi is zero everywhere except at the wall surface of the ith
particle, and equals to the normal vector ni of wall surface of the ith particle defined on
the grid, i.e., ni = ∇αi. Then, the hydrodynamic forces acting on the ith particle can be
computed by

Fi = −
∫

ΩT

σ · ∇αi d Ω, , Ti = −
∫

ΩT

(X − Xi) × (σ · ∇αi) d Ω . (12)

The integral over each element covering the whole domain ΩT can be exactly calculated
with a standard Gaussian quadrature of sufficiently high order. Since the gradient ∇αi

is non-zero only near the wall surface of the ith particle, thus the volume integrals need
to be computed only in one layer of mesh cells around the ith particle, which leads to a
very efficient treatment.

The algorithm of the multigrid FEM fictitious boundary method for solving the coupled
system of fluid and particles can be summarized as follows:

1. Given the positions and velocities of the particles, solve the fluid equations Eqs. (10)
(a) and (b) in the corresponding fluid domain involving the position of the particles
for the fictitious boundary conditions.

2. Calculate the corresponding hydrodynamic forces and the torque acting on the par-
ticles by using Eq. (12), and compute the collision forces by Eq. (9).
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3. Solve Eq. (3) to get the translational and angular velocities of the particles, and
then obtain the new positions and velocities of the particles by Eq. (5).

4. Use Eq. (10) (c) to set the new fluid domain and fictitious boundary conditions,
and then advance to solve for the new velocity and pressure of the fluid phase as
described in step 1.

3.2 Moving Mesh Method

In this subsection, we briefly describe the moving mesh method which will be adopted
and coupled with above multigrid fictitious boundary method (FBM) to solve numerically
the particulate flows. The details of the moving mesh method can be found in Ref. [17].

The moving mesh problem can be equated to constructing a transformation ϕ, x = ϕ(ξ)
from computational space (with coordinate ξ) to physical space (with coordinate x). There
are two basic types of moving mesh methods, generally computing x by minimizing a vari-
ational form or computing the mesh velocity v = xt using a Lagrangian like formulation.
The applied moving mesh method belongs to the velocity based methods, which is based
on Liao’s [13, 14, 15, 16] and Moser’s work [18]. This method has several advantages:
only linear Poisson problems on fixed meshes are needed to be solved, monitor functions
can be obtained directly from error distributions or distance functions, mesh tangling can
be prevented, and the data structure for the mesh nodes is always the same as for the
starting mesh.

Suppose g(x) (area function) to be the area distribution on the undeformed mesh, while
f(x) (monitor function) describes the absolute mesh size distribution of the target grid,
which is independent of the starting grid and chosen according to the need of physical
problems. Then, the transformation ϕ can be computed via the following four steps:

1. Compute the scale factors cf and cg for the given monitor function f(x) > 0 and
the area function g using

cf

∫

Ω

1

f(x)
dx = cg

∫

Ω

1

g(x)
dx = |Ω|, (13)

where Ω is the computational domain, and f(x) ≈ local mesh area. Let f̃ and g̃
denote the reciprocals of the scaled functions f and g, i.e.,

f̃ =
cf

f
, g̃ =

cg

g
. (14)

2. Compute a grid-velocity vector field v : Ω → Rn by satisfying the following linear
Poisson problem

−div(v(x)) = f̃(x) − g̃(x), x ∈ Ω, and v(x) · n = 0, x ∈ ∂Ω, (15)

where n being the outer normal vector of the domain boundary ∂Ω, which may
consist of several boundary components.
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3. For each grid point x, solve the following ODE system

∂ϕ(x, t)

∂t
= η(ϕ(x, t), t), 0 ≤ t ≤ 1, ϕ(x, 0) = x, (16)

with

η(y, s) :=
v(y)

sf̃(y) + (1 − s)g̃(y)
, y ∈ Ω, s ∈ [0, 1]. (17)

4. Get the new grid points via

ϕ(x) := ϕ(x, 1). (18)

3.3 ALE Formulation of the FBM

For a better approximation of the solid surfaces, we adopt the above described moving
mesh method such that we can preserve the mesh topology as generalized tensorproduct
or blockstructured meshes, while a local alignment with the rigid body surface is reached.
The moving mesh method is sometimes referred to as the quasi-Lagrangian method. When
the moving mesh method is applied to the multigrid FBM, a mesh velocity Wm in the
convective term in Eq. (10b) should be introduced, i.e.,

ρf

[

∂ u

∂ t
+ (u − Wm) · ∇u

]

−∇ · σ = 0 for X ∈ Ωf . (19)

In the literature this is also referred to as an Arbitrary Lagrangian-Eulerian (ALE)
formulation. Note that the mesh velocities Wm do not appear in the continuity equation
since a pressure-Poisson equation is solved to satisfy the continuity equation in an outer
loop. Care has to be taken to satisfy the geometric conservation law (GCL), where the
mesh velocity Wm must be equal to the movement of the mesh velocity ∆x during the
time step. Therefore, the mesh velocities Wm should be calculated according to the nodal
movement from the previous time step by

Wm =
1

∆t
(xn+1 − xn) (20)

where ∆t is the time step size and n denotes the time step number. In each time step,
a new deformation mesh is generated based on a starting equidistance mesh, then the
system matrices are updated and the mesh velocity according to the new position of the
deformation mesh nodes should be calculated.
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3.4 Time Discretization by Fractional-Step-θ Scheme

The fractional-step-θ scheme is a strongly A-stable time stepping approach which pos-
sesses the full smoothing property being important in the case of rough initial or bound-
ary data. It also contains only very little numerical dissipation which is crucial in the
computation of non-enforced temporal oscillations. A more detailed discussion of these
aspects can be found in [19, 20]. We first semi-discretize the Eqs. (10) (a) and (19) in
time by the fractional-step-θ scheme. Given un and the time step K = tn+1 − tn, then
solve for u = un+1 and p = pn+1. In the fractional-step-θ-scheme, one macro time step
tn → tn+1 = tn + K is split into three consecutive substeps with θ̃ := αθK = βθ′K,

[I + θ̃N(un+θ)]un+θ + θK∇pn+θ = [I − βθKN(un)]un

∇·un+θ = 0 ,

[I + θ̃N(un+1−θ)]un+1−θ + θ′K∇pn+1−θ = [I − αθ′KN(un+θ)]un+θ

∇·un+1−θ = 0 ,

[I + θ̃N(un+1)]un+1 + θK∇pn+1 = [I − βθKN(un+1−θ)]un+1−θ

∇·un+1 = 0 ,

(21)

where θ = 1 −
√

2
2

, θ′ = 1 − 2θ, and α = 1−2θ
1−θ

, β = 1 − α, N(v)u is a compact form for
the diffusive and convective part,

N(v)u := −ν ∇ ·
[

∇u + (∇u)T
]

+ (v − Wm) · ∇u . (22)

Therefore, from Eq. (21), in each time step we have to solve nonlinear problems of the
following type,

[I + θ1KN(u)]u + θ2K∇p = f , f := [I − θ3KN(un)]un , ∇·u = 0 . (23)

For the Eq. (10) (c), we simply take an explicit expression, that means

un+1 = Un
i + ωn

i × (Xn − Xn
i ) . (24)

3.5 Space Discretization by Finite Element Method

If we define a pair {u, p} ∈ H := H1
0(Ω) × L := L2

0(Ω), and bilinear forms a(u,v) :=
(∇u,∇v) and b(p,v) := −(p,∇·v), a weak formulation of the Eq. (23) reads as follows:

{

(u,v) + θ1K [ a(u,v) + n(u,u,v) ] + θ2K b (p,v) = (f ,v) ∀v ∈ H
b (q,u) = 0 ∀ q ∈ L

(25)

Here, L2
0(Ω) and H1

0(Ω) are the usual Lebesgue and Sobolev spaces, n(u,u,v) is a
trilinear form defined by

n(u,v,w) :=
∫

Ω
[ui − (Wm)i]

(

∂vj

∂xi

+
∂vi

∂xj

)

wj dx . (26)
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To discretize Eq. (25) in space, we introduce a regular finite element mesh Th consisting
of quadrilaterals to cover the whole computational domain, where h is the symbol used
as a parameter characterizing the maximum width of the elements of Th. To obtain
the fine mesh Th from a coarse mesh T2h, we simply connect opposing midpoints. In
the fine grid Th, the old midpoints of the coarse mesh T2h become vertices. We choose
Q̃1/Q0 element pair which uses rotated bilinear shape function for the velocity spanned by
〈x2 − y2, x, y, 1〉 in 2D and piecewise constants for the pressure in cells. The nodal values
are the mean values of the velocity vector over the element edges, and the mean values
of the pressure over the elements. The nonconforming Q̃1/Q0 element pair has several
important features. It satisfies the Babus̆ka–Brezzi condition without any additional
stabilization, and the stability constant is independent of the shape and size of the element.
In particular on meshes containing highly stretched and anisotropic cells, the stability and
the approximation properties are always satisfied [19]. If we choose finite-dimensional
spaces Hh and Lh and define a pair {uh, ph} ∈ Hh × Lh, the discrete problem of Eq. (25)
reads,











(uh,vh) + θ1K [ ah(uh,vh) + ñh(uh,uh,vh) ]
+ θ2K bh(ph,vh) = (f ,vh) , ∀vh ∈ Hh

bh(qh,uh) = 0 , ∀ qh ∈ Lh

(27)

where ah(uh,vh) :=
∑

T∈Th
a(uh,vh)|T and bh(ph,vh) :=

∑

T∈Th
b(ph,vh)|T . Note that

ñh(uh,uh,vh) is a new convective term which includes streamline-diffusion stabilizations
defined by

ñh(uh,vh,wh) :=
∑

T∈Th

n(uh,vh,wh)|T +
∑

T∈Th

δT (uh · ∇vh,uh · ∇wh)|T , (28)

here δT is a local artificial viscosity which is a function of a local Reynolds number ReT ,

δT := δ∗ ·
hT

||u||Ω
·

2ReT

1 + ReT

, ReT =
||u||T · hT

ν
, (29)

where ||u||Ω means the maximum norm of velocity in ΩT , ||u||T is an averaged norm of
velocity over T , hT denotes local mesh size of T , and δ∗ is an additional free parameter
which can be chosen arbitrarily (δ∗ = 0.1 is used in our calculations, also see [19]).
Obviously, for small local Reynolds numbers, with ReT → 0, δT is decreasing such that
we reach in the limit case the standard second order central discretization. Vice versa,
for convection dominated flows with ReT >> 1, we add an anisotropic diffusion term of
size O(h) which is aligned to the streamline direction uh.

4 NUMERICAL RESULTS

First, the case of a single moving particle in the fluid is presented to validate the
improvement of accuracy and efficiency through the presented mesh deformation method.
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(a) t = 0.30 (b) t = 0.48 (c) t = 0.30 (d) t = 0.48

Figure 1: One 2D circular ball falling down in a channel

Moreover, the drafting, kissing and tumbling of two balls in a channel and results for
the agglomeration model applied to two particles are provided to demonstrate that the
presented method can be easily applied to particulate flows with several particles.

4.1 One 2D Circular Ball Falling Down in a Channel

The (non-dimensional) computational domain is a channel of width 2 and height 6. A
circular ball with diameter d = 0.25 and density ρp = 1.5 is located at (1, 4) at time t = 0,
and it is falling down under gravity in an incompressible fluid with density ρf = 1 and
viscosity ν = 0.1, the gravitational constant is g = −980. We suppose that the ball and
the fluid are initially at rest. The simulation is carried out on fixed equidistant meshes
and moving deformation meshes, respectively, each of them having two different level,
i.e., Level = 6 with 12545 nodes and 12288 elements, as well as Level = 7 with 49665
nodes and 49152 elements. Fig. 1 gives two ‘snapshots’ at t = 0.30 and t = 0.48 of the
deformed meshes and vector fields, respectively. Fig. 2 presents the comparison of the
time history of the y-coordinate and the v-component velocity of the center of the ball
by using equidistant meshes and deformation meshes, each of them is calculated on the
two mesh levels LEVEL = 6 and LEVEL = 7, respectively. If we compare these results
with those obtained by Glowinski in Ref. [8], we can find the results of the deformation
meshes are much closer to Glowinski’s results than the ones on the equidistant meshes,
which shows the expected higher accuracy and efficiency.
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Figure 2: The time history of y and v of the center of a 2D ball falling down in a channel

4.2 Drafting, Kissing and Tumbling of Two Disks in a Channel

In the following two numerical experiments, we will analyze the case of several moving
particles in a fluid. When two particles are dropped closely to each other, they interact
by undergoing ”drafting, kissing and tumbling” [21], which is often chosen to examine the
complete computational model of particulate flows, including the prevention of collisions.
Therefore, we also study the sedimentation of two circular particles in a two-dimensional
channel, comparing the results with respect to two different level of grid deformation mesh
sizes and regarding the results in [8]. The computational domain is a channel of width 2
and height 6. Two rigid circular disks with diameter d = 0.25 and density ρp = 1.5 are
located at (1, 5) (No.1 disk) and (1, 4.5) (No.2 disk) at time t = 0, and they are falling
down under gravity in an incompressible fluid with density ρf = 1 and viscosity ν = 0.01.
We suppose that the disks and the fluid are initially at rest. The simulation is carried
out on the time-dependent deformation meshes, having two different level, i.e., Level = 7
with 49665 nodes and 49152 elements, as well as Level = 8 with 197633 nodes and 196608
elements.

Fig. 3 shows the moving deformation meshes employed in the simulation of the two
falling disks. The grid lines are always concentrated around the surfaces of the two disks
and in the region of the gap between the two disks, and move with the two disks during the
computations. From these figures, we can see that the disk in the wake (No.1 particle) falls
more rapidly than the disk No.2 in front since the fluid forces acting on it are smaller. The
gap between them decreases, and they almost touch (”kiss”) each other at time t = 0.15.
After touching, the two disks fall together until they tumble (t = 0.18) and subsequently
they separate from each other (t = 0.30). The tumbling of the disks takes place because
the configuration, when both are parallel to the flow direction, is unstable. The No.1 disk
is touching first the bottom wall at t = 0.42, while the No.2 disk reaches the bottom wall
at t = 0.65. All results compare qualitatively well with those presented in [6, 8, 22, 23].
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(a) t = 0.0 (b) t = 0.15 (c) t = 0.18 (d) t = 0.30 (e) t = 0.42 (f) t = 0.65

Figure 3: Deformation meshes for two circular disks falling down in an (infinite) channel

4.3 Agglomeration results

As we have described earlier, we also provide numerical results regarding the proposed
simple agglomeration model. So, we start with two circular disks, very close one to each
other, in the middle part of a channel with width 2 and height 6 which is assumed to be
part of an infinite channel. Fig. 4 shows how the particles behave: We can observe that
the particles come very close to each other, then they touch and they remain connected.
Future research activities are to develop much more sophisticated agglomeration models.

5 Conclusions

We have presented the combination of the multigrid fictitious boundary method and
a special moving mesh method for the simulation of particulate flow with moving rigid
particles. The new approach directly improves the accuracy upon the previous pure
multigrid FBM for particulate flows on fixed grids. It is also computationally cheap and
simple to implement. Since the size of the problem and the data structure are fixed,
this enables the proposed method to be incorporated into most CFD codes without the
need for changing of data structures and special interpolation procedures. It is suitable
to accurately and efficiently perform the direct numerical simulation of particulate flows,
also for larger numbers of moving particles. Numerical examples of single moving particles
in a fluid as well as the drafting, kissing and tumbling of two balls in a channel have
been presented to show that the described method can significantly improve the accuracy
for dealing with the interaction between the fluid and the particles. Additionally, we
presented preliminary numerical results for two disks in a channel using a simple, but
prototypical agglomeration model which will be extended in future.
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Figure 4: Agglomeration model for two circular disk falling down in a channel
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