3D-Printed Glass Assemblies

A novel Workflow for Circular Assembly using 3D-printed Glass Masonry Units with a Kirigami-inspired interlayer

Mentors: Dr. Faidra Oikonomopoulou | Dr. Charalampos Andriotis

MSc. Building Technology Graduation | P5 23 June 2025

Swornava Guha 5961815

Disclaimer:

This presentation has videos and gifs which have ben embedded as images in this pdf.

Reference images which might have copyright have been removed

Massimino et al., 2024

Casting

-Oikonomopoulou et al., 2018

Glass Masonry in the Construction Industry- Examples

3DP Glass Assemblies | Swornava Guha | P5 23 06 2025

Interlocking Masonry Structures

Design approach/ method

Tools and Workflow

Parameter Sensitivity

Finite Element Analysis of Vaul

Parameter Optimization

Stiffness Range for Interlayer

Engineering a kirigami-inspired interlayer

Final Design Validation

Assembly

Reflection, Conclusion

Ancient Jericho, 8000BC

Image source

Bonded masonry

Interlayer

- ✓ Fabrication tolerances of masonry units
- ✓ Construction tolerances
- ✓ Creep

Permanent Structures Reduced Recyclability of materials

Tessellating dry masonry systems

Oval et al., 2017

Tessellating Glass Dry assemblies

Wall

Block geometry (3DP glass constraints)

Tessellation

Compression-only shell

Span- 2.2m Height- 1.9m

Unique angular blocks on each row

Glass

Compressive strength: 420 – 1000 MPa

Brittle

Susceptible to defects

Very Stiff Interlayer

- ✓ Creep
- ✓ Minimum total deformation
- No construction tolerances unbuildable

Very Soft Interlayer

- ✓ Surface tolerances
- ✓ Construction tolerances
- o Creep
- o Failure due to stress in glass
- o Local peak stresses mightodas Assemblies | Swornava Guha | P5 23 06 2025

Required Interlayer

- ✓ Construction tolerances
- ✓ Surface levelling
- ✓ Resist vertical and lateral loads
- ✓ Creep
- ✓ Manufacturable and Scalable
- ✓ Flexible- into interlocking geometry
- ✓ DRY assembly

Glass Vault, Princeton University

WHAT INTERLAYER TO USE?

-Aurik et al., 2018

-Oikonomopoulou et al., 2018

Proposed Math 3DP Glass Assemblies | Swornava Guha | P5 23 06 2025

3DP Glass Assemblies | Swornava Guha | P5 23 06 2025

GEOMETRY PARAMETERS

FINITE ELEMENT ANALYSIS (FEA)

CREATING THE DESIGN SPACE

GEOMETRY

PARAMETERS

Length of Masonry unit

Height of Masonry unit

Width of Masonry unit (thickness of vault/arch)

Amplitude of Masonry unit

Wall Thickness of 3DP

Thickness of the interlayer (t)

Area of the interlayer (A)

Material property of the interlayer (E)

Stiffness of interlayer

$$k = \frac{EA}{t}$$

k = Stiffness of Interlayer (N/mm)

E = Young's modulus of Interlayer (MPa)

 $A = \text{Area of the interlayer (mm}^2)(\text{at one course})$

t = Thickness of the Interlayer (mm)

GEOMETRY

FEA ON 100 DESIGNS FOR PARAMETER SENSITIVITY STUDY

PARAMETERS

Length of Masonry unit

Height of Masonry unit

Width of Masonry unit (thickness of vault/arch)

Amplitude of Masonry unit

Wall Thickness of 3DP

Thickness of the interlayer (t)

Area of the interlayer (A)

Material property of the interlayer (E)

Stiffness of interlayer

$$k = \frac{EA}{t}$$

k = Stiffness of Interlayer (N/mm)

E = Young's modulus of Interlayer (MPa)

 $A = \text{Area of the interlayer (mm}^2)(\text{at one course})$

t = Thickness of the Interlayer (mm)

GEOMETRY

FEA ON 100 DESIGNS FOR PARAMETER SENSITIVITY STUDY THE DESIGN SPACE:

PARAMETERS

Length of Masonry unit

Height of Masonry unit

Width of Masonry unit (thickness of — vault/arch)

Amplitude of Masonry unit

Wall Thickness of 3DP

Thickness of the interlayer (t)

Area of the interlayer (A)

Material property of the interlayer (*E*)

Stiffness of interlayer

$$k = \frac{EA}{t}$$

k = Stiffness of Interlayer (N/mm)

E = Young's modulus of Interlayer (MPa)

 $A = \text{Area of the interlayer (mm}^2)(\text{at one course})$

t = Thickness of the Interlayer (mm)

GEOMETRY	INPUT				OUTPUT	
	Variables/ Constants	Boun	ds	Design samples	Response	
2D Arch	Arch thickness (T) in mm	150	250	100	Max Tensile Stess in glass	
	Interlayer thickness (I) in mm	6	25		gtass	
	Interlayer Young's Modulus (E)				Total deformation	
	in Mpa	20	5000			

Results- 2D Arch (SOLID)

Results- 2D Arch

Finite Element Analysis ON DISCRETE MODEL of the Simplified Catenary Vault

2450kg/cu.m

1403kg/cu.m

PARAMETERS

Width of Masonry unit (thickness of — vault/arch)

Thickness of the interlayer (t)

Area of the interlayer (A)

Material property of the interlayer (E)

THE DESIGN SPACE:

GEOMETRY INPUT					OUTPUT		OPTIMIZATION	
	Variables/ Constants	Bound	ls	Design samples	Response	Objective	Constraints	Limit State
Catenary Vault				100	Max Tensile Stess in glass	minimize	none	Max Tensile Stress in glass<30MPa
	Arch thickness (T) in mm	100	200		Total deformation	minimize		
	Interlayer thickness (I) in mm		10		Max Tensile Stress in Interlayer			
	Interlayer Young's Modulus (E) in Mpa	20	2000		Max Compressive Stresses			

Load cases

	Design Points		Optimization	Surrogate Model		
Geometry	Load condition	Design samples	Objectives	Coefficient of Prognosis	Remarks	
Catenary Vault	A. Self Weight	100	1. Minimize Tensile stress in glass	97%-99%	Clear relationship between input/output parameters	
	B. Self Weight + Uniform maintenance load of 1kN/sqm	100	2. Minimize Total	0-29%	Relationship between the inputs and outputs not clear to be represented by a surrogate model.	
	C. Self Weight + Pressure load due to wind of 1kN/sqm on one side	100	deformation	0-62%		
	D. Self Weight + Pressure load due to wind of 1kN/sqm on one side + Uniform Maintenance load of 0.4kN/sqm + Maintenance Point load of 1kN over 100mm x 100mm area at the center of vault	200		3-11%		

Boundary conditions

Contacts

Frictional

Frictionless

Shear Modulus

Materials

2,5e+07 Pa

Response Surface Approximation of output- Total Deformation (in mm) inputs- Young's Modulus of Interlayer Thickness of Vault

Prediction errors			Fitting errors		
	Max Error:	: 0.0243489		Max Error:	0.0184468
	Mean Error:	0.00180544		Mean Error:	0.00158605
Root Mean Square Error: 0.0		0.00394895		Root Mean Square Error:	0.00317854
	CoP:			CoD:	0.979513
				adjusted CoD:	0.979513

Response Surface Approximation of output- Max. Principle Tensile stress in Glass (Pa) inputs- Young's Modulus of Interlayer Thickness of Vault

adjusted CoD: 0.997634

Properties

Inputs- Young's Modulus of Interlayer Thickness of Vault

Responses- Max. Principle Tensile stress in Glass Max. total deformation

Optimization objectives:

- Minimize Total Deformation maximum
- Minimize Maximum Tensile stress in glass

Evolutionary Algorithm:

Population size: 10 Start population size: 10

Maximum number of generations: 1000 Number of stagnation generations: 20

Mutation rate: 50%

Fitness method: Pareto dominance

Objective Pareto Plot

Archive designs

Designs

Pareto front

3119 designs evaluated <1min

Objective Pareto Plot

Design 2392: E = 183.333MPa; t = 109.06mm

Design 2920: E = 250.493MPa; t = 111.086mm

Validation:

Table 8: Predicted and Actual results

Total Deformation (mm):

Prediction errors				
Max Error:	0.0243489			
Mean Error:	0.00180544			
Root Mean Square Error:	0.00394895			
CoP:	0.968378			

Max Tensile stress in glass (in Pa):

Prediction errors				
Max Error:	11669.3			
Mean Error:	860.071			
Root Mean Square Error:	1706.15			
CoP:	0.9897			

Thickness of the vault: 109 to 111 mm

Required interlayer: 183 to 250 MPa

Required interlayer: 183 to 250 MPa

Create a material to achieve the target properties

KIRIGAMI

Kirigami - applications

Tension Activated Kirigami (TAK)

Tension Activated Kirigami (TAK) for the interlayer

Stiffness Range for the kirigami interlayer: 315 to 431 N/mm

Solid interlayer range for selected catenary vault best designs					
Youngs Modulus	Density	Thicknes	s Stiffness		
[Mpa]	[kg/cu.m]	[mm]	[N/mm]		
E		t			
18	33	1100	10	315	
25	50	1100	10	431	

Table 9: Target stiffness range for the interlayer

Dropoed Math 3DP Glass Assemblies | Swornava Guha | P5 23 06 2025

Activation and compression tests @ Fabrication-Integrated Design Lab MIT

Reference dimensions: L = 5.8 mm, H = 5.8 mm, W = 1.2 mm

Variable parameters: H=L and thickness of sheet

Activated Kirigami Parametric model

ANSYS WORKBENCH

Boundary conditions

$$k=F_z/\delta_z$$

Materials

Stiffness Range Target: 315 to 431 N/mm

REVERSE CALCULATING THE KIRIGAMI GEOMETRY

Constraint:

Target Stiffness: 315 to 431 N/mm

H: 8.7mm (for a 10mm interlayer)

Optimization objectives:

Minimize equivalent stress maximum

Results:

Optimum sheet thickness: 0.5mm

Validation:

Equivalent stress - uniformity

Design Inputs			Responses				ponses
Sheet Thickness (in mm)	H (in mm)	W (in mm)		L (in mm)		Stiffness (N/mm)	Equivalent Stress Maximum (Mpa)
45						Respons	e Predicted
0.501627	8.7	7	1.2		8.7	430.989	7.76051
						Actu	al (FEA)
0.5	8.7	7	1.2		8.7	415	8.294

Figure 102: Predicted results vs FEA results on best design

Stiffness Range for the kirigami interlayer: 315 to 431 N/mm

Reflection:

Suggestion:

- The activated kirigami structure is complex depending on many factors. It cannot be simply parametrized in a model
- Surrogate model does not predict real-world conditions.
- The kirigami's **response on a 3DP osteomorphic surface is still unknown** due to lack of a strategy for simulation.

- Simulate the kirigami activation in Ansys to fine tune the Surrogate
- The Parametric model needs to be fine tuned OR Surrogate model needs to be created with experimental data
- **Experimentally evaluate** the response of kirigami on a 3DP surface and on an osteomorphic surface.

Inspiration

Barrel Vault Techniques (Source: Heymann, 1995)

Glass Vault, Princeton University (Beghini et al., 2020)

Boundary conditions

Loads

- Self weight
- Pressures on vaulted roofs due to wind as per Eurocode 1991-1-0

Results

Stepped free edges are not completely interlocked

Yault weight is less for interlock

Design Strategy		Maximum Total Deformation (mm)	Maximum tensile stress in glass (MPa)
	Units added at the free edge- made from	0.09	7.8
	cast glass and restrained in x, y, and z directions		
		0.15	5.6
	Units added at the free edge- made from		
	cast glass and restrained in x, y, and z directions		
	+		
	three rows at the top including the keystones		
	considered as cast glass units		
08800	2 rows of free edge units made from cast	-	-
	glass and restrained in x, y, and z directions and		
	three rows of units at the top considered as cast		
	glass units for added mass		

A heavier structure leads to a better interlocking behavior

Free edges Need to be restrained for interlocking vault assemblies under eccentric loading

3DP Glass Assemblies | Swornava Guha | P5 23 06 2025

What is achieved so far:

- Developed strategies to tessellate different geometry forms for dry assembly
- Developed a Methodology for design and optimization of the interlayer based on the geometry of assembly
- Developed an automation workflow for grasshopper, and Ansys which allows parametric Finite element analysis (FEA) https://github.com/Nova7397/3DPGlassAssemblies
- Developed a strategy to convert the interlayer properties into stiffness an calculate the kirigami geometry for target property

Further Work:

- Assembly Detailing and tolerances
- Formwork design, Support detailing
- Optimize the thickness of the vault based on interlocking performance
- **Explore more options for the kirigami** interlayer- and assess their performance in contact with glass
- Further optimize the interlayer stiffness based on courses of bricks in the structure
- Design for adverse loading conditions and derive a safety factor to consider for dry assembly of glass

