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Traffic Uncertainty Models in Network Planning

Song Yan¢ Sudent Member, IEEE and Fernando A. KuiperSenior Member, |IEEE

Abstract—In network planning one is architecting the netwok
and its routing policies based on a “guesstimate”fdhe amount of
traffic that might be routed through the network in the future.
Clearly, not being able to foretell the future meas that one of the
biggest challenges in network planning is how to @ with traffic
uncertainty. If not solved appropriately, the netwak operator has
to resort to overprovisioning, which is costly. Ona smaller time
scale, traffic that is being routed through the nework is generally
stochastic in nature, which is also reflected in dyamically varying
network parameters like available bandwidth and dedy of links.
In this article, we provide an overview of severaltraffic
uncertainty models useful for network planning. Ourfocus is on
(1) off-line approaches for network planning and (2 on-line
routing in stochastic networks. We conclude with sme possible
directions for future work.

Index Terms—Network planning, robust

stochastic networks, traffic uncertainty.

optimization,

|I. INTRODUCTION

WITH many new communications applications emergin

the growth of content sharing, and the wide-spressdof
cloud computing, network planning is no sinecure the
contrary, the aforementioned trends are merelyeefeamples
to indicate that predicting and planning for futumraffic
scenarios is a daunting task. Consequently, ontheofmain
challenges in network planning is how to deal wig¢imand and
traffic uncertainty. In this article, we considetwork planning
as the collective of

1. designing and reconfiguring a (virtual) networkdsn a

long-term traffic scenario (we refer to this as-lafe
planning), and

2. the choice of what kind of algorithms are goindpéoused

for dynamically allocating paths for incoming couotien
requests (we refer to this as on-line planning).

In the past, network providers have often resorted
overprovisioning (and under-utilization) to copethwiraffic
uncertainty. Needless to say, overprovisioningdstlg, and
any mechanism that can lead to higher utilizaticithout
sacrificing (too much) the reliability and quali§ service will
result in higher revenues. Currently, one of therapches
toward better network utilization is introducingibility into
the network, e.g. by more fine-grained optical spsa usage,
or by dynamic software-defined networking (SDN).wéwer,
regardless of the level of network flexibility, tmetwork and
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its traffic are still likely to behave in a stoctiasnanner. For
example, especially in large networks, it is diffi¢o obtain an
accurate view on the link characteristics like haidth

utilization or latency, because their dynamicsumeally of the
same order as the time it would take to distrilnfiermation on
the link state throughout the network. We belieheg adopting
stochastic models can aid in network planning fghér traffic

utilization. Clearly, if we do not know anything all about
future traffic scenarios, then planning is most ligmging,

while if the future would be known, a determinigédor-made
solution would be most profitable. In general, etw the
aforementioned two extremes, we do have some idedke
order of magnitude of future traffic and expectyosbme
fluctuation around it, which falls in the categarfystochastic
traffic models.

We will use the following notation throughout thticle. Let
G(N. L) denote a network, whetN represents a set Nfnodes
and £ denotes a set df links. A Traffic Matrix (TM) is
represented by, and reflects the traffic demand between each

%oossible source-destination pair. For any node (zel) and

ink (i,))0L, let fy(i,j) denote the fraction of flow between
andb that traverses linki{). ty represents the total demand
fromato b for a certain traffic matriX, andC;; stands for the
capacity of link {;j).

In the remainder of this article, we provide a boeerview of
planning for networks subject to traffic uncertgintVe first
highlight, in Section Il, some papers on modelirgffic that
are used to decide how much capacity should bevexsg@er
link. The goal here is to use the least amountesburces to
accommodate all traffic at an acceptable reliabikvel. The
second part (Section 1) relates to more dynangffit
requests that should be routed over a network wterdink
weights are reflected in some stochastic model. Wilé
conclude in Section IV by pointing out some chajies for
future work in network planning. Fig. 1 schematig@resents
the traffic uncertainty models discussed in thieche.
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Fig. 1 Elements in network planning with traffic uncertainty.
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Table 1 OFF-LINE TRAFFIC MODELS AND REPRESENTATIVE SOLUTIONS

Contrary to the often used deterministic trafficdal) where
the volume of traffic between each source-destmagair is
“known,” traffic uncertainty refers to traffic votoes that are
not or only partially known in advance. The voluoferaffic
could be a random value that falls within a certainge or it
could follow a known probability distribution. Bakeon a
certain traffic model, a corresponding planningoaltpm is
suggested. Table 1 provides an overview of off-ipproaches
to dealing with traffic uncertainty.

OFFLINE APPROACHES TOI RAFFIC UNCERTAINTY

A. Oblivious Routing

Oblivious routing refers to a routing scheme tragsinot use
any information on the current allocated traffidfe network.
Routing decisions are made solely based on knowledghe
source and destination nodes of the arriving reaguds this
sense, routing traffic along shortest-hop pathsIdcooe
considered to be an oblivious routing scheme. Hamnein
routing schemes bearing the name oblivious, usub#ye is

guaranteed oblivious ratpthat states that the performance irflestinations.

some metric (like utilization) of the routing scherns never

more than a factqp away from a utopian exact algorithm that

would know the entire traffic matrix in advance.

Applegate and Cohen [1] base their oblivious ratiothe
maximum link utilization, where the link utilizaticof a link for
a TM and routing is defined as the total flow of traffic on that
link divided by its capacity. The oblivious ratieflects the
worst-case ratio over all possible traffic matritetween the
maximum link utilization of the oblivious routingnd the
maximum link utilization of an exact algorithm (far TM).

Traffic Model Objective Hardness Solution Time Cdexity
Range of [t/w, taw] [1] Minimize maximum link utilization Polynomig} solvable LP Polynomial time
Hose Model [2] Maximize the throughput Polynomiadlylvable LP Polynomial time
Capped Hose Model [3] Minimize the cost NP-hard e Polynomial time
Polytope [4] Minimize the cos Polynomially solvabl LP Polynomial tim¢
Polyhedror[5] Minimize the cos NP-harc ILP Exponential tim
Random Variable [6] Maximize the revenue Polynoipiablvable Convex . Polynomial time
programming
Truncated Gaussian Distributio Minimize the maximum link capacity Polynomially sable Convex . Polynomial time
[7] programming
Multivariate Gaussian [8] Minimize the cost NP-hard MILP Exponential time
B. Hose Traffic

As discussed already for the work of Applegate @otien
[1], the more we know about the range in whichfitahatrices
could appear, the better routing strategies coelddvised. We
will briefly introduce such a constrained traffiatrix model,
called the hose traffic model.

Contrary to knowing the complete traffic matrix ifjp
model”) where customers — for instance in the cdrdéVPNs
— specify for each destination the bandwidth todserved, in
the hose model every node (customef)N specifies two
threshold valuesu,»>0 and v,>0, for the maximum traffic
emanating, respectively terminating at it. The Hisun
correspond to bounds on the row and column sumpessible
TMs, where there is a natural bound based on thke i
capacities.

Kodialam et al. (e.g., see [2]) have proposed a two-phase
oblivious routing scheme for traffic obeying theskomodel,
where in the first phase fractions of the traffiorh a node are
sent to intermediate nodes, while in the seconds@hhose
intermediate nodes forward the traffic to the imketh
The fractions are predetermined via
polynomial-sized LP.

Fréchettest al. [3] introduce a capped hose model, which is a
hybrid form of the pipe model where peak demandsvéen
node pairs are constrained and the hose model wicatal
ingress/egress traffic is constrained. As suchctpped hose
model can span the entire range from deterministic
point-to-point demands to the space of uncappeé trasfic.

For relatively large hose node constraints, thee pipdel is
dominant and routing can be done based on théctragitrix
obtained from the point-to-point bounds. Vice versdatively

a

Applegate and Cohen provide a Linear Program (LP) éarge point-to-point bounds, means that a hoseoaopr— like

polynomial size that is able to compute a routinghat
minimizes the oblivious ratio for a given networklore
specifically, the LP return§y(i,j) that gives for a node pair
(a,b) the fraction of flow that should traverse link;j)
Applegate and Cohen also propose an LP for wheitralfifec
matrix is restricted to containing values in thaga [./w,

taoW], wheret,, can be interpreted as the mean traffic between
the smaller

node pair §,b) andw=1 is an error margin. Clearly,
w is, the smaller the oblivious ratio will be.

the single-hub two-phase approach from Kodiath@. [2] —
could be used. Fréchetat al. [3] consider the case when
neither the pipe model nor the hose model cleanlyidates
and for that case propose a hierarchical multi-holting
approach.

C. Robust Optimization

Ben-Ameur and Kerivin [4] assume that traffic megs are
confined to a given polytope

T ={tORM™D: A<},
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ooy 1S @ vector with the traffic demands

wheret = (t,)
(instead of a representation via a traffic matriR),is a
real-valued matrix anb is a real-valued vector. For instance

Fig. 2 plots the traffic polytope correspondindhe two traffic
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Fig. 2 Traffic polytope.

The authors demonstrate that the polyhedral trafficdel
includes the hose model as a special case. Theralftirther
develop a polynomial-size LP for finding a minimwmost
multi-path routing for traffic captured by a givpolytope.

traffic forecasts. This maximization objective Isado a
concave maximization problem wh&p >3, where 1, is the
ratio of the maximum variance of the revenue fradepairv
to the minimum variance of the revenue from alleothode
pairs. Johnstoret al. [7] assume traffic demands follow a
truncated Gaussian distribution and aim to desigongical
topology to accommodate the demands on top of &tirex
network. They define a non-linear formulation litearization
and an iterative scheme to minimize the maximukdipacity
needed for that logical topology, subject to thek loverflow
probability not exceeding a given threshold. Aparieardoet
al. [8] consider a similar problem as in Johnstbal. [7] where
they assume a multivariate Gaussian traffic digtidn
together with a correlation (between the demandajrirm
Under their multivariate model, the region contagna certain
desired percentage of all possible matrices isnddfiby an
ellipsoidal region. The authors develop a Mixeagdr Linear
Program (MILP) to minimize the cost in accommodgtany
traffic matrix captured in the ellipsoid region.

A general optimization framework for dealing with
uncertainty is that of stochastic programming, seg [9]. This
branch of optimization theory is similar to robogtimization,
but instead of having (only) constrained trafficqraeters, it is
assumed that the probability distributions of thalevant
parameters are known or can be estimated basedstonidal
data.

E. Discussion of off-line approaches

The more we can reduce the uncertainty in futuadficr
demands, the better we can tailor our network é&atighms to
accommodate those demands. The network architextaha
choice to adopt an agnostic approach that makesioles
completely oblivious to the current or predicteaffic demands

The approach taken by Ben-Ameur and Kerivin [4] i€ to use a fixed predicted traffic matrix on whinbtwork

considered to be part of the field of robust optition, where
robust refers to robustness against a certain dexreaffic (or
any other relevant problem parameter) uncertaiigteret al.
[5] consider robust network design under the céowlithat the
traffic matrix is uncertain but confined by a patghion. Their
article also provides many relevant referenceshéofield of
robust optimization. Kosteet al. [5] study a robust network

planning is based. Both cases display a level akdainty,
either reflected by the oblivious ratio in obliveououting
approaches or in the uncertainty in predicting tarti traffic
matrix. There is insufficient data on which of taegpproaches
work better in practice (although there is somekyerg. by
Kronbergeret al. [9], on the impact of uncertainty on a
pre-planned result), but we believe that plannirgedd on
constrained stochastic traffic matrices (possibig wobust

design problem in which the objective is to find &ptimization [5] or stochastic programming [9]) &es as a

minimum-cost routing, such that no link capacitiese
exceeded and where the used capacity (i.e., flowstbe
integral. Even in the absence of traffic uncertginguch
problems are known to be NP-hard (i.e., computatign
difficult to solve). Kosteret al. [5] propose an Integer Linear
Programming (ILP) approach to solve the problem.

D. Probability Distribution

Another approach to model uncertainty in traffierded is
assuming that the traffic follows a certain protigbi
distribution. Mitra and Wang [6] consider the caseere traffic
between different node pairs is reflected in a camdrariable
with known probability distribution. The objectifanction in
the proposed model is to maximizgWs)-0d(Wr), where
H(Wr) anda(W) represent the mean and the standard deviati
of the revenué\V; for TM T, andd is a non-negative control
parameter reflecting the tolerance to risk duertoentainty in

good compromise.

I1l.  ON-LINE APPROACHES TOI RAFFIC UNCERTAINTY

In this section, we focus on on-line routing altfumis for
stochastic networks. Table 2 provides an overvidwthe
stochastic link models, corresponding routing peoid and
associated routing algorithms.

A. Discrete Markovian Delay

In the discrete Markov delay model [10], time igidéed into
discrete unit slots and per slot the delay is agslim be fixed.
Each link’s delay is modeled by a discrete Markbgin with
finite states, known transition probability matrixand
glqn-negative delay values. Only upon arriving abdea, one
can acquire knowledge of the state and transitiaiability
matrix plus corresponding delay valuesai¥ adjacent links.
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Table 2 ON-LINE TRAFFIC MODELS AND ROUTING PROBLEMS

Link Model Problem Hardness Solution Time Complexit
Discrete Markov Nodal Delay Model [10] DM Polynorifyesolvable | Exact Polynomial time

Discrete Markov Link Delay Model [10] QDM NP-hard g-approximation Polynomial time
Time-Dependent Stochastic Delg[11] LET NP-harc Exac Exponential tim

Probability Density Functio[12] SOTA NP-harc Exac Exponentiatime

Probability Density Function [13] MPDCP NP-hard A ands-approximation Polynomial time

Link Delay Probability Function [14] DBR NP-hard FRS Polynomial time
Rate-Based Probability Function [15] RBR NP-hard a@and:-approximation (Pseudo-)Polynomial time

Waiting, for the duration of a number of time sjo& an
intermediate node is allowed. For example, in BEta) we
assume that link (1,2) can be in (two) differeates, while the
other links permanently reside in one state (foictvithe delay
value is given). For link (1,2), the transition pabilitiesp; are
given and the delay values for states 1 and 2 @rant 1,
respectively. Assume we want to find a path frondend to
node 4 that has smallest expected delay. Uponirgrat node
1 it is disclosed that link (1,2) resides in stateBy directly
traversing the link (1,2) the delay will be 10, bytwaiting for

1 time unit the expected delay would be 1(waitin

time)+0.110(travelling time at state 1)+014travelling time at
state 2) =2.9. Since going along link (1,3) wilhsome 8 time
units, the optimum choice is to wait for 1 time tuand then
check the state on link (1,2). When the statern(ll,2) after 1

time unit is still 1, the same approach is usedeicide whether

to wait or directly traverse link (1,2) or link @),

Based on the Markovian link delay model, Ortlal. [10]
consider four problems in which a routing policys@ught that
minimizes the expected delay. The four variantdedifn
whether knowledge of the (past) states of previvisied
nodes can be accumulated or not and whether thaitpent
number of hops is bounded or not. These problemtypically

probability 0.8 and 9 time units with probability20 When the
arrival time is earlier than 15, the delay is 3@hwprobability
1.0. In this example, the least expected time (LEath from
node 1 to node 4 would be 1-2-4 and not 1-3-2-éndtiough

subpath 1-3-2 has a delay smaller than subpath 1-2.

Miller-Hooks [11] presents two exact algorithmseaponential
running time to solve the LET problem.

C. Probability Distribution
Like discussed for off-line approaches to trafficartainty,

E%here are also on-line approaches that assuméhndelay on

ink (i,j) follows a known probability distribution functiofran
et al. [12] study the Stochastic On-Time Arrival (SOTA)
problem, where given a delay constrdintthe goal is to find a
path from source to destination that has the biggexbability
to have a delay no more thBn Xiao et al. [13] consider only
the Gaussian distribution: link delays are non-tigga
Gaussian random variables. Given a delay constijrthe
probabilitymp(p) that the delay of a path is no larger titars:
D - u(p)
T, =P (———=
o (P) ( 7(p) )

where ®(x) is the probability density function of a Gaussian
distribution, andu(p) ando(p) denote the mean and standard

NP-hard, bute-approximation solutions are presented. Whedeviation of the delay in path. Since®(x) is an increasing

nodal Markovian delays are assumed together
deterministic link delays, a polynomial-time alghm can be
devised.

2

—@—@
P11=0.1 p1;=0.9 20 108 ~
p21=0.5 p22=0.5 T 4)_“9 02 when arrival time > 15

30 otherwise

(a) Discrete Markov delay model (b) Time-dependent stochastic delay model

Fig. 3 Stochastic link delay models.

B. Time-Dependent Sochastic Delays

Miller-Hooks [11] considers a variant that bearsifarity to
the Markovian delay model, where the link delayuesl are
assumed to be spatially and temporally independedt(this
time) waiting is not allowed. For example, in FR(b) link
(2,4) reflects this model, while other links haieetl delays. If
the arrival time on link (2,4) is after 15 time tmithe
corresponding traversal time on link (2,4) is 4dinmits with

W'mnction, to maximizeTp(p) is to maximize——=

D-4(p) ;
o) This

maximization objective is referred to as the MosbtRable
Delay Constrained Path (MPDCP) problem. Xeaal. [13]

prove that the MPDCP problem is NP-hard and devalBplly
Polynomial Time Approximation Schem@PTAS) for when
there exists a path whose mean delay is ho moreRhand
they propose an approximation scheme for when nb path
exists.

D. Link Delay Probability Function

Lorenz and Orda [14] assume that each lifjk lfas a function
;(D;;) that represents the probability that limf)(introduces a
delay of no more thab; time units. The Delay-Based Routing
(DBR) problem is to find a path that has the biggesbability

of not exceedin@®. The DBR problem is proved to be NP-hard,
but by decomposing the end-to-end delay constinihto
local delay constraints, an FPTAS can be obtained.

2 An FPTAS has a time complexity that is polynoniraboth the problem
size and% and produces a solution that is within a factor €)1 of the optimal
solution (or (1 ) for maximization problems).
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E. Rate-Based Probability Function

Guérin and Orda [15], instead of delay, ugé) to represent
the probability that linki(j) is able to allocate a rate They
study the Rate-Based Routing (RBR) problem, whécto ifind
a path from source to destination that has the dsigg
probability to not exceed a given delay constrBinThe delay

of ann-hop pathP is represented as
o +cn
—_— d

(i,jHop

d(P) = s
whereo is the burst size of the requested flaws the flow’s
maximum packet length,d; is a static delay value
corresponding to the link propagation delay ands the
minimal rate that can be guaranteed to the flowath link
along the path. Except for, all the other parameters in this
model are fixed. Guérin and Orda [15] prove tha BRBR
problem is NP-hard and proposesaapproximation algorithm.

F. Discussion of on-line approaches

On-line routing of dynamically arriving requestould be
done by trying to obtain a good view of the stdtthe network
and its resources (e.g., via an SDN controller)zaskd on that
to compute appropriate paths. Generally, increasing
accuracy of link-state update policies comes atettpense of
more signaling overhead. This overhead could baced by
operating with stochastic link weights, althougHamunately
most stochastic network routing problems are NRHend
need heuristic algorithms to keep pace with thgueacy of
arriving requests.

IV. CONCLUSION

The aims of this article are two-fold:

On the one hand we have provided an overviewadbus
models to deal with traffic uncertainty in netwgplkanning,
both from an off-line as well as an on-line routpeyspective.
Our aim was not to provide an extensive survey,ratiter to
highlight some relevant models and to point to athms
operating within the context of those models. Thagerithms
on their turn may be used as building blocks opiiagion for
dealing with traffic uncertainty in one’'s own netiko
environment.

On the other hand, there is still much “undatid in how to
plan for networks with traffic uncertainty, and oaim is
therefore also to stimulate new work on the toptossible
directions for future work include:

1) Testing the validity of several traffic uncertainty
models in practice. Which models are best appleab
to which cases or do other models that better gefle

reality need to be developed? Can we do much bet{é?]

in predicting future traffic?

2) Extending the work to also consider issues likdigua

physical network from scratch or adding/removing
links with respect to uncertain traffic volumes has
received less attention.

While uncertainty (either from not knowing traffia; due to
other elements like availability or possibly reddiceower
consumption) will remain a feature in network plag,
technological advances are making the network rflexéble
in responding to unforeseen scenarios. We therdfelieve
that planning for the longer term via off-line apaches should
go hand-in-hand with on-line routing schemes theact
quickly to unforeseen or differently classifiedffia
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