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1 
Abstract—In network planning one is architecting the network 

and its routing policies based on a “guesstimate” of the amount of 
traffic that might be routed through the network in  the future. 
Clearly, not being able to foretell the future means that one of the 
biggest challenges in network planning is how to deal with traffic 
uncertainty. If not solved appropriately, the network operator has 
to resort to overprovisioning, which is costly. On a smaller time 
scale, traffic that is being routed through the network is generally 
stochastic in nature, which is also reflected in dynamically varying 
network parameters like available bandwidth and delay of links. 
In this article, we provide an overview of several traffic 
uncertainty models useful for network planning. Our focus is on 
(1) off-line approaches for network planning and (2) on-line 
routing in stochastic networks. We conclude with some possible 
directions for future work. 
 

Index Terms—Network planning, robust optimization, 
stochastic networks, traffic uncertainty.  
 

I. INTRODUCTION 

ITH many new communications applications emerging, 
the growth of content sharing, and the wide-spread use of 

cloud computing, network planning is no sinecure. On the 
contrary, the aforementioned trends are merely a few examples 
to indicate that predicting and planning for future traffic 
scenarios is a daunting task. Consequently, one of the main 
challenges in network planning is how to deal with demand and 
traffic uncertainty. In this article, we consider network planning 
as the collective of  

1. designing and reconfiguring a (virtual) network based on a 
long-term traffic scenario (we refer to this as off-line 
planning), and 

2. the choice of what kind of algorithms are going to be used 
for dynamically allocating paths for incoming connection 
requests (we refer to this as on-line planning). 

In the past, network providers have often resorted to 
overprovisioning (and under-utilization) to cope with traffic 
uncertainty. Needless to say, overprovisioning is costly, and 
any mechanism that can lead to higher utilization without 
sacrificing (too much) the reliability and quality of service will 
result in higher revenues. Currently, one of the approaches 
toward better network utilization is introducing flexibility into 
the network, e.g. by more fine-grained optical spectrum usage, 
or by dynamic software-defined networking (SDN). However, 
regardless of the level of network flexibility, the network and 
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its traffic are still likely to behave in a stochastic manner. For 
example, especially in large networks, it is difficult to obtain an 
accurate view on the link characteristics like bandwidth 
utilization or latency, because their dynamics are usually of the 
same order as the time it would take to distribute information on 
the link state throughout the network. We believe that adopting 
stochastic models can aid in network planning for higher traffic 
utilization. Clearly, if we do not know anything at all about 
future traffic scenarios, then planning is most challenging, 
while if the future would be known, a deterministic tailor-made 
solution would be most profitable. In general, between the 
aforementioned two extremes, we do have some ideas on the 
order of magnitude of future traffic and expect only some 
fluctuation around it, which falls in the category of stochastic 
traffic models. 

We will use the following notation throughout the article. Let 
G(N,L) denote a network, where N represents a set of N nodes 

and L denotes a set of L links. A Traffic Matrix (TM) is 
represented by T, and reflects the traffic demand between each 
possible source-destination pair. For any node pair (a,b) and 
link (i,j)∈L, let fab(i,j) denote the fraction of flow between a 
and b that traverses link (i,j). tab represents the total demand 
from a to b for a certain traffic matrix T, and Cij stands for the 
capacity of link (i,j). 

In the remainder of this article, we provide a brief overview of 
planning for networks subject to traffic uncertainty. We first 
highlight, in Section II, some papers on modeling traffic that 
are used to decide how much capacity should be reserved per 
link. The goal here is to use the least amount of resources to 
accommodate all traffic at an acceptable reliability level. The 
second part (Section III) relates to more dynamic traffic 
requests that should be routed over a network where the link 
weights are reflected in some stochastic model. We will 
conclude in Section IV by pointing out some challenges for 
future work in network planning. Fig. 1 schematically presents 
the traffic uncertainty models discussed in this article. 

 

 
 

Fig. 1 Elements in network planning with traffic uncertainty. 
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II. OFF-LINE APPROACHES TO TRAFFIC UNCERTAINTY 

Contrary to the often used deterministic traffic model, where 
the volume of traffic between each source-destination pair is 
“known,” traffic uncertainty refers to traffic volumes that are 
not or only partially known in advance. The volume of traffic 
could be a random value that falls within a certain range or it 
could follow a known probability distribution. Based on a 
certain traffic model, a corresponding planning algorithm is 
suggested. Table 1 provides an overview of off-line approaches 
to dealing with traffic uncertainty. 

A. Oblivious Routing 

Oblivious routing refers to a routing scheme that does not use 
any information on the current allocated traffic in the network. 
Routing decisions are made solely based on knowledge of the 
source and destination nodes of the arriving requests. In this 
sense, routing traffic along shortest-hop paths could be 
considered to be an oblivious routing scheme. However, in 
routing schemes bearing the name oblivious, usually there is 
guaranteed oblivious ratio ρ that states that the performance in 
some metric (like utilization) of the routing scheme is never 
more than a factor ρ away from a utopian exact algorithm that 
would know the entire traffic matrix in advance. 

Applegate and Cohen [1] base their oblivious ratio on the 
maximum link utilization, where the link utilization of a link for 
a TM and routing f is defined as the total flow of traffic on that 
link divided by its capacity. The oblivious ratio reflects the 
worst-case ratio over all possible traffic matrices between the 
maximum link utilization of the oblivious routing and the 
maximum link utilization of an exact algorithm (for a TM). 
Applegate and Cohen provide a Linear Program (LP) of 
polynomial size that is able to compute a routing f that 
minimizes the oblivious ratio for a given network. More 
specifically, the LP returns fab(i,j) that gives for a node pair 
(a,b) the fraction of flow that should traverse link (i,j). 
Applegate and Cohen also propose an LP for when the traffic 
matrix is restricted to containing values in the range [tab/w, 
tabw], where tab can be interpreted as the mean traffic between 
node pair (a,b) and w≥1 is an error margin. Clearly, the smaller 
w is, the smaller the oblivious ratio will be. 

B. Hose Traffic 

As discussed already for the work of Applegate and Cohen 
[1], the more we know about the range in which traffic matrices 
could appear, the better routing strategies could be devised. We 
will briefly introduce such a constrained traffic matrix model, 
called the hose traffic model. 

Contrary to knowing the complete traffic matrix (“pipe 
model”) where customers – for instance in the context of VPNs 
– specify for each destination the bandwidth to be reserved, in 
the hose model every node (customer) m∈N specifies two 
threshold values um≥0 and vm≥0, for the maximum traffic 
emanating, respectively terminating at it. The bounds 
correspond to bounds on the row and column sums of possible 
TMs, where there is a natural bound based on the link 
capacities. 

Kodialam et al. (e.g., see [2]) have proposed a two-phase 
oblivious routing scheme for traffic obeying the hose model, 
where in the first phase fractions of the traffic from a node are 
sent to intermediate nodes, while in the second phase those 
intermediate nodes forward the traffic to the intended 
destinations. The fractions are predetermined via a 
polynomial-sized LP. 

Fréchette et al. [3] introduce a capped hose model, which is a 
hybrid form of the pipe model where peak demands between 
node pairs are constrained and the hose model where nodal 
ingress/egress traffic is constrained. As such, the capped hose 
model can span the entire range from deterministic 
point-to-point demands to the space of uncapped hose traffic. 
For relatively large hose node constraints, the pipe model is 
dominant and routing can be done based on the traffic matrix 
obtained from the point-to-point bounds. Vice versa, relatively 
large point-to-point bounds, means that a hose approach – like 
the single-hub two-phase approach from Kodialam et al. [2] – 
could be used. Fréchette et al. [3] consider the case when 
neither the pipe model nor the hose model clearly dominates 
and for that case propose a hierarchical multi-hub routing 
approach. 

C. Robust Optimization 

Ben-Ameur and Kerivin [4] assume that traffic matrices are 
confined to a given polytope 

{ }( ( 1)) : ,N Nt At b× −
+= ∈ ≤

r
T R  

Table 1 OFF-LINE TRAFFIC MODELS AND REPRESENTATIVE SOLUTIONS 

Traffic Model Objective Hardness Solution Time Complexity 

Range of [tab/w, tabw] [1] Minimize maximum link utilization Polynomially solvable LP Polynomial time 
Hose Model [2] Maximize the throughput Polynomially solvable LP Polynomial time 
Capped Hose Model [3] Minimize the cost NP-hard Heuristic Polynomial time 
Polytope [4] Minimize the cost Polynomially solvable LP Polynomial time 
Polyhedron [5] Minimize the cost NP-hard ILP Exponential time 

Random Variable [6] Maximize the revenue Polynomially solvable 
Convex 
programming 

Polynomial time 

Truncated Gaussian Distribution 
[7] 

Minimize the maximum link capacity Polynomially solvable 
Convex 
programming 

Polynomial time 

Multivariate Gaussian [8] Minimize the cost NP-hard MILP Exponential time 
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where 
, \{ }( )ij i j it t ∈ ∈=

r

N N
is a vector with the traffic demands 

(instead of a representation via a traffic matrix), A is a 
real-valued matrix and b is a real-valued vector. For instance, 
Fig. 2 plots the traffic polytope corresponding to the two traffic 

demands t1 and t2 with A =  
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Fig. 2 Traffic polytope. 

The authors demonstrate that the polyhedral traffic model 
includes the hose model as a special case. The authors further 
develop a polynomial-size LP for finding a minimum-cost 
multi-path routing for traffic captured by a given polytope.  

The approach taken by Ben-Ameur and Kerivin [4] is 
considered to be part of the field of robust optimization, where 
robust refers to robustness against a certain degree of traffic (or 
any other relevant problem parameter) uncertainty. Koster et al. 
[5] consider robust network design under the condition that the 
traffic matrix is uncertain but confined by a polyhedron. Their 
article also provides many relevant references to the field of 
robust optimization. Koster et al. [5] study a robust network 
design problem in which the objective is to find a 
minimum-cost routing, such that no link capacities are 
exceeded and where the used capacity (i.e., flow) must be 
integral. Even in the absence of traffic uncertainty, such 
problems are known to be NP-hard (i.e., computationally 
difficult to solve). Koster et al. [5] propose an Integer Linear 
Programming (ILP) approach to solve the problem. 

D. Probability Distribution 

Another approach to model uncertainty in traffic demand is 
assuming that the traffic follows a certain probability 
distribution. Mitra and Wang [6] consider the case where traffic 
between different node pairs is reflected in a random variable 
with known probability distribution. The objective function in 
the proposed model is to maximize µ(WT)-δ⋅σ(WT), where 
µ(WT) and σ(WT) represent the mean and the standard deviation 
of the revenue WT  for TM T, and δ is a non-negative control 
parameter reflecting the tolerance to risk due to uncertainty in 

traffic forecasts. This maximization objective leads to a 
concave maximization problem when kv>>δ, where 1/kv is the 
ratio of the maximum variance of the revenue from node pair v 
to the minimum variance of the revenue from all other node 
pairs. Johnston et al. [7] assume traffic demands follow a 
truncated Gaussian distribution and aim to design a logical 
topology to accommodate the demands on top of an existing 
network. They define a non-linear formulation, its linearization 
and an iterative scheme to minimize the maximum link capacity 
needed for that logical topology, subject to the link overflow 
probability not exceeding a given threshold. Aparicio-Pardo et 
al. [8] consider a similar problem as in Johnston et al. [7] where 
they assume a multivariate Gaussian traffic distribution 
together with a correlation (between the demands) matrix. 
Under their multivariate model, the region containing a certain 
desired percentage of all possible matrices is defined by an 
ellipsoidal region. The authors develop a Mixed Integer Linear 
Program (MILP) to minimize the cost in accommodating any 
traffic matrix captured in the ellipsoid region. 

A general optimization framework for dealing with 
uncertainty is that of stochastic programming, e.g. see [9]. This 
branch of optimization theory is similar to robust optimization, 
but instead of having (only) constrained traffic/parameters, it is 
assumed that the probability distributions of the relevant 
parameters are known or can be estimated based on historical 
data.  

E. Discussion of off-line approaches 

The more we can reduce the uncertainty in future traffic 
demands, the better we can tailor our network and algorithms to 
accommodate those demands. The network architect has a 
choice to adopt an agnostic approach that makes decisions 
completely oblivious to the current or predicted traffic demands 
or to use a fixed predicted traffic matrix on which network 
planning is based. Both cases display a level of uncertainty, 
either reflected by the oblivious ratio in oblivious routing 
approaches or in the uncertainty in predicting a future traffic 
matrix. There is insufficient data on which of these approaches 
work better in practice (although there is some work, e.g. by 
Kronberger et al. [9], on the impact of uncertainty on a 
pre-planned result), but we believe that planning based on 
constrained stochastic traffic matrices (possibly via robust 
optimization [5] or stochastic programming [9]) serves as a 
good compromise. 

III.  ON-LINE APPROACHES TO TRAFFIC UNCERTAINTY 

In this section, we focus on on-line routing algorithms for 
stochastic networks. Table 2 provides an overview of the 
stochastic link models, corresponding routing problems and 
associated routing algorithms. 

A. Discrete Markovian Delay 

In the discrete Markov delay model [10], time is divided into 
discrete unit slots and per slot the delay is assumed to be fixed. 
Each link’s delay is modeled by a discrete Markov chain with 
finite states, known transition probability matrix, and 
non-negative delay values. Only upon arriving at a node a, one 
can acquire knowledge of the state and transition probability 
matrix plus corresponding delay values of a’s adjacent links. 
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Waiting, for the duration of a number of time slots, at an 
intermediate node is allowed. For example, in Fig. 3(a) we 
assume that link (1,2) can be in (two) different states, while the 
other links permanently reside in one state (for which the delay 
value is given). For link (1,2), the transition probabilities pij are 
given and the delay values for states 1 and 2 are 10 and 1, 
respectively. Assume we want to find a path from node 1 to 
node 4 that has smallest expected delay. Upon arriving at node 
1 it is disclosed that link (1,2) resides in state 1. By directly 
traversing the link (1,2) the delay will be 10, but by waiting for 
1 time unit the expected delay would be 1(waiting 
time)+0.1·10(travelling time at state 1)+0.9·1(travelling time at 
state 2) =2.9. Since going along link (1,3) will consume 8 time 
units, the optimum choice is to wait for 1 time unit and then 
check the state on link (1,2). When the state on link (1,2) after 1 
time unit is still 1, the same approach is used to decide whether 
to wait or directly traverse link (1,2) or link (1,3). 

Based on the Markovian link delay model, Orda et al. [10] 
consider four problems in which a routing policy is sought that 
minimizes the expected delay. The four variants differ in 
whether knowledge of the (past) states of previous visited 
nodes can be accumulated or not and whether the permitted 
number of hops is bounded or not. These problems are typically 
NP-hard, but ε-approximation solutions are presented. When 
nodal Markovian delays are assumed together with 
deterministic link delays, a polynomial-time algorithm can be 
devised. 

 

 

Fig. 3 Stochastic link delay models. 

B. Time-Dependent Stochastic Delays 

Miller-Hooks [11] considers a variant that bears similarity to 
the Markovian delay model, where the link delay values are 
assumed to be spatially and temporally independent and (this 
time) waiting is not allowed. For example, in Fig. 3(b) link 
(2,4) reflects this model, while other links have fixed delays. If 
the arrival time on link (2,4) is after 15 time units, the 
corresponding traversal time on link (2,4) is 4 time units with 

probability 0.8 and 9 time units with probability 0.2. When the 
arrival time is earlier than 15, the delay is 30 with probability 
1.0. In this example, the least expected time (LET) path from 
node 1 to node 4 would be 1-2-4 and not 1-3-2-4, even though 
subpath 1-3-2 has a delay smaller than subpath 1-2. 
Miller-Hooks [11] presents two exact algorithms of exponential 
running time to solve the LET problem. 

C. Probability Distribution 

Like discussed for off-line approaches to traffic uncertainty, 
there are also on-line approaches that assume that the delay on 
link (i,j) follows a known probability distribution function. Fan 
et al. [12] study the Stochastic On-Time Arrival (SOTA) 
problem, where given a delay constraint D, the goal is to find a 
path from source to destination that has the biggest probability 
to have a delay no more than D. Xiao et al. [13] consider only 
the Gaussian distribution: link delays are non-negative 
Gaussian random variables. Given a delay constraint D, the 
probability πD(p) that the delay of a path is no larger than D is:  

( )
( ) ( )

( )D

D p
p

p

µπ
σ
−≈ Φ  

where Φ(x) is the probability density function of a Gaussian 
distribution, and µ(p) and σ(p) denote the mean and standard 
deviation of the delay in path p. Since Φ(x) is an increasing 

function, to maximize πD(p) is to maximize ( )
( )

D p
p

µ
σ
− . This 

maximization objective is referred to as the Most Probable 
Delay Constrained Path (MPDCP) problem. Xiao et al. [13] 
prove that the MPDCP problem is NP-hard and develop a Fully 
Polynomial Time Approximation Scheme2 (FPTAS) for when 
there exists a path whose mean delay is no more than D and 
they propose an approximation scheme for when no such path 
exists. 

D. Link Delay Probability Function 

Lorenz and Orda [14] assume that each link (i,j) has a function 
πij(Dij) that represents the probability that link (i,j) introduces a 
delay of no more than Dij time units. The Delay-Based Routing 
(DBR) problem is to find a path that has the biggest probability 
of not exceeding D. The DBR problem is proved to be NP-hard, 
but by decomposing the end-to-end delay constraint D into 
local delay constraints, an FPTAS can be obtained. 

 
 

2 An FPTAS has a time complexity that is polynomial in both the problem 

size and 1ε  and produces a solution that is within a factor (1 + ε) of the optimal 

solution (or (1 - ε) for maximization problems). 

Table 2 ON-LINE TRAFFIC MODELS AND ROUTING PROBLEMS  

Link Model Problem Hardness Solution Time Complexity 

Discrete Markov Nodal Delay Model [10] DM Polynomially solvable Exact Polynomial time 
Discrete Markov Link Delay Model [10] QDM NP-hard ε-approximation Polynomial time 

Time-Dependent Stochastic Delays [11] LET NP-hard Exact Exponential time 
Probability Density Function [12] SOTA NP-hard Exact Exponential time 
Probability Density Function [13] MPDCP NP-hard FPTAS and ε-approximation Polynomial time 
Link Delay Probability Function [14] DBR NP-hard FPTAS Polynomial time 
Rate-Based Probability Function [15] RBR NP-hard Exact and ε-approximation (Pseudo-)Polynomial time 
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E.  Rate-Based Probability Function 

Guérin and Orda [15], instead of delay, use πij(r) to represent 
the probability that link (i,j) is able to allocate a rate r. They 
study the Rate-Based Routing (RBR) problem, which is to find 
a path from source to destination that has the biggest 
probability to not exceed a given delay constraint D. The delay 
of an n-hop path P is represented as 

( , )

( ) ij
i j P

cn
d P d

r

σ
∈

+= + ∑  

where σ is the burst size of the requested flow, c is the flow’s 
maximum packet length, dij is a static delay value 
corresponding to the link propagation delay and r is the 
minimal rate that can be guaranteed to the flow at each link 
along the path. Except for r, all the other parameters in this 
model are fixed. Guérin and Orda [15] prove that the RBR 
problem is NP-hard and propose an ε-approximation algorithm. 

F. Discussion of on-line approaches 

    On-line routing of dynamically arriving requests could be 
done by trying to obtain a good view of the state of the network 
and its resources (e.g., via an SDN controller) and based on that 
to compute appropriate paths. Generally, increasing the 
accuracy of link-state update policies comes at the expense of 
more signaling overhead. This overhead could be reduced by 
operating with stochastic link weights, although unfortunately 
most stochastic network routing problems are NP-hard and 
need heuristic algorithms to keep pace with the frequency of 
arriving requests. 

IV.  CONCLUSION 

    The aims of this article are two-fold:  
    On the one hand we have provided an overview of various 
models to deal with traffic uncertainty in network planning, 
both from an off-line as well as an on-line routing perspective. 
Our aim was not to provide an extensive survey, but rather to 
highlight some relevant models and to point to algorithms 
operating within the context of those models. These algorithms 
on their turn may be used as building blocks or inspiration for 
dealing with traffic uncertainty in one’s own network 
environment. 
    On the other hand, there is still much “uncertainty” in how to 
plan for networks with traffic uncertainty, and our aim is 
therefore also to stimulate new work on the topic. Possible 
directions for future work include: 

1) Testing the validity of several traffic uncertainty 
models in practice. Which models are best applicable 
to which cases or do other models that better reflect 
reality need to be developed? Can we do much better 
in predicting future traffic? 

2) Extending the work to also consider issues like quality 
of service and resiliency. For instance, how to deal 
with traffic diversity in off-line approaches or how to 
compute link-disjoint paths in stochastic networks. 

3) Development of on-line routing algorithms that take 
the global network performance perspective into 
account. 

4) Most of the work has been directed to the planning of 
logical topologies or routing schemes. Designing a 

physical network from scratch or adding/removing 
links with respect to uncertain traffic volumes has 
received less attention. 

While uncertainty (either from not knowing traffic, or due to 
other elements like availability or possibly reduced power 
consumption) will remain a feature in network planning, 
technological advances are making the network more flexible 
in responding to unforeseen scenarios. We therefore believe 
that planning for the longer term via off-line approaches should 
go hand-in-hand with on-line routing schemes that react 
quickly to unforeseen or differently classified traffic. 
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