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Enabling a Head-Mounted-Display in an Enclosed
Cabin on a Moving Base Simulator: Multiple

Implementations with an Unscented Kalman Filter

Abstract—When placing a Head-Mounted Display
(HMD) of a Virtual Reality (VR) or Augmented Real-
ity (AR) system in the cabin of a moving base simulator
to provide a larger field-of-regard, the HMD’s inertial
sensors will interpret the motion of the moving base
simulator as if provided by the user, thus distorting
the HMD’s cabin-fixed pose estimation. In order to
estimate a proper cabin-fixed HMD pose, this thesis
proposes an Unscented Kalman Filter (UKF) that fuses
the information from the simulator sensors, as well as
the sensors of the VR/AR system, including its visual
position sensor and IMU. For this, three sensor con-
figurations are proposed and tested offline determin-
istically based on real data. Although an unexpected
latency in the HMD’s visual pose sensor prevented a
full validation of the algorithms, both the configuration
with an IMU attached to the motion base, and the
configuration without an IMU but with second-order
additive noise variables added to the UKF, resulted in
a proper, tight innovation sequence, indicating accurate
system state estimation. The third configuration, one
using the novel approach of using setpoints, provided
a tight, but out-of-bounds, innovation sequence in-
dicative of high accuracy, but also diminished tuning
efficacy. It is also sensitive to stability issues when
estimating the motion system’s dynamics when no
movement is present on the moving base. The unaltered
setpoint method is not recommended as a solution.
However, a hybrid solution of the setpoint and second-
order additive noise variables methods should be inves-
tigated in a follow-up study to combine stability with
high accuracy. Another recommendation is to test all
configurations interactively, i.e. online.

I. Introduction

A Virtual Reality (VR)/Augmented Reality (AR) sys-
tem provides an immersive experience as the user’s gaze
of the virtual world is rendered onto the Head-Mounted
Display (HMD). If a VR/AR system is placed in a moving
base simulator, it could provide a larger Field-Of-Regard
(FOR) than a conventional out-of-window visual system
currently in use. In particular, a larger FOR would im-
prove the fidelity of rotorcraft and fighter jet simulators.

Nowadays, head tracking in VR/AR systems are com-
monly performed by a combination of inertial and vision-
based sensors. Inertial sensors present on a HMD, namely
Micro Electro Mechanical Systems (MEMS) based Inertial
Measurement Units (IMU), provide high-frequency low-
latency position and attitude, hereafter referred to as
pose, updates. However, IMU’s inherent implementation

Fig. 1. Highlighting the problem by the red dashed arrow of placing
a traditional VR system within an enclosed cabin on a moving base
simulator.

for pose estimation causes drift over time [1]. This drift
is eliminated by vision-based sensors that measure the
pose of the HMD, commonly present in the form of light-
point or image tracking, albeit at a lower frequency than
the MEMS based IMU. In turn, the low frequency pose
updates of the vision-based sensor are resolved by the IMU
high-frequency updates.

The integration of a VR/AR system with the HMD’s
IMU active has already been done in open cabins on top
of motion simulators using off-the-shelf components with
open-source software packages, such as as [2], by placing
the visual pose tracking onto the walls or ceiling [3], [4],
i.e., rigid to the inertial reference frame, and ‘simply’
deducting the motion simulator’s pose from the HMD’s
pose.

However, when placing such a system within an enclosed
cabin on a motion simulator, where the visual pose track-
ing has to be done within the cabin, i.e., relative to the
motion simulator, the HMD cabin-fixed pose, i.e., relative
to the cabin, is incorrectly estimated by traditional off-
the-shelf VR/AR system. This is due to the fact that
the VR/AR system expects all of its sensors to measure
relative to the same reference frame, in most cases the
inertial reference frame. More specifically, the IMU sensor
interprets the combined motion of both the moving base
as well as head movements solely as the latter, which
inevitably distort the estimated head-pose, as indicated by
the red dashed line in Fig. 1. Consequently, the distorted
head-pose rendered visual causes a mismatch between the
user’s visual perception and their expected pose within



the cabin [4]–[6], which would have a significant negative
impact on the user experience, thus practically rendering
the visual system unusable.

The aim of this research is to present a solution on
the implementation of a HMD with both an IMU and
visual pose tracking inside an enclosed cabin on a mov-
ing base simulator. This will be done by developing a
sensor fusion algorithm that generates a proper cabin-
fixed pose estimate. Previous attempts to find solutions to
the aforementioned distorted head-pose issue include using
purely visual pose tracking [7]; integrating the cabin-fixed
differential (between motion simulator and HMD) IMU
measurements [8], [9]; and using the vehicle state fixed
HMD’s IMU measurements solely for the HMD’s attitude,
while using the visual pose tracking for attitude drift cor-
rection and position estimation [10]. Lessons learned from
previous approaches will be taken into account by includ-
ing the HMD’s IMU; using it to estimate the cabin-fixed
position alongside its attitude; and estimating the state
of the motion simulator concurrent to the HMD’s, while
keeping both states fully observable. Furthermore, this
paper will present multiple configurations to estimate the
HMD’s cabin-fixed pose, whereby the motion simulator’s
sensory layout is altered in order to allow for versatility
of the implementation of the solution. To this end, the
necessary characteristics of the state estimation algorithm
are discussed, and the influence of the motion simulator’s
sensory layout on the HMD’s cabin-fixed estimated pose is
explored. In particular, the impact of a motion simulator’s
IMU or its control setpoints is investigated. In addition,
the multiple configurations will be compared to solely
visual pose tracking.

To attain the goal of this research, first, the systems and
their sensors are introduced in Section II. Second, the state
estimation algorithm is discussed and briefly presented
in Section III. In Section IV, three configurations are
presented based on the available sensors and their stochas-
tic system models are presented for use in the proposed
algorithm. Next, in Section V, brief descriptions of the
data gathering process and the performance metrics are
given, followed by a short section on the noise parameters
and initial values to be used in the algorithm. Lastly, given
the results shown and discussed in Sections VIII and IX
respectively, this paper concludes in Section X.

II. Sensors and Systems
Understanding the sensors and their limitations will

help with the overall understanding of the design of the
stochastic models in subsequent sections. Therefore, this
section will identify the sensors used in order to ease the
replication or modification of this research in other set-
tings. The noise parameters will be detailed in Section VI.

A. Virtual Reality System
1) HMD: The HMD used in this study, the Pimax 8k-

x, shown in Fig. 2, was chosen based on its availability

and design coherency with other SteamVR devices. The
compatibility with SteamVR devices makes it possible to
read out the raw IMU data by making use of the open-
source software tools like libsurvive [11]. The HMD’s IMU
is a MPU-6500 running at 1000 Hz [12], [13] and consist of
one accelerometer and one gyroscope per orthogonal axis,
thus three of each in total.

The HMD has its own right-handed reference frame 𝔼𝐻 ,
shown in Fig. 2, which is located at the center between the
user’s retinas [14] and fixed to the HMD.

Fig. 2. Pimax 8k-x [15]

Fig. 3. TrackIR 5 [16] Fig. 4. TrackIR 5 clip [16]

2) Visual Tracking: The visual pose tracking nominally
employed by a SteamVR device, Base Stations version 1.0
and 2.0, are not designed to be used in a moving environ-
ment [10]. Therefore, the TrackIR 5 visual pose tracking
system was chosen for its capability of withstanding the
movement of the moving base, availability, and ease of
installation due to its small size, as shown in Fig. 3. The
TrackIR 5 is an infrared (IR) transceiver, receiving the
IR refracted by a passive TrackClip attached to the user’s
head, shown in Fig. 4. It is assumed that the known shape
allows the TrackIR 5 proprietary algorithm to identify the
pose of the TrackClip at an update frequency of approx-
imately 65 Hz. However, the proprietary software layer
hinders the access to the raw unfiltered measurements.
This further prevents the development of a customized
observation and noise model for the TrackIR 5.

B. SIMONA Research Simulator (SRS)
While a range of different moving base systems are avail-

able, the system often chosen, and available for integration
and testing, is a Stewart platform. One such Stewart
platform is the flight simulator at TU Delft, namely the
SIMONA Research Simulator (SRS).

A Stewart platform inherently has six degrees of free-
dom and is formed by two connected rigid frames [17],
[18], the upper moving and the bottom fixed frames, as
depicted in Fig. 5. These two frames are connected by six
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Fig. 5. Simplified geometric representation of a Stewart platform.

cylindrical actuators with Hooke joints at each end, shown
as the six dotted lines in Fig. 5. Hooke joints provide 2
degrees of freedom.

The bottom fixed frame, or the base frame, is fixed to
the ground and has three pair of Hooke joints, six in total.
These Hooke joints are placed at a constant radius 𝑟𝐵 from
the center point of the frame, namely Lower Gimbal Point
(LGP), also depicted in Fig. 5. Each Hooke joint pairs are
spaced 120° on the lower fixed frame. The spacing between
the two joints in a pair is symbolized by 𝑑𝐵. In addition,
the LGP is here the origin of the inertial reference frame
𝔼𝐼 assuming a flat and non-rotating Earth.

The upper moving frame has a similar geometry, with
all six joints placed at a constant radius 𝑟𝑃 and spacing
between the two joints of a pair is given by 𝑑𝑃 . Also,
note the subscript 𝑃 meaning ‘Platform’, demarking both
symbols to the upper platform, i.e., upper moving frame.
The upper moving reference frame 𝔼𝑃 is attached to the
upper moving frame and its origin is at the center of all
upper joints, the Upper Gimbal Point (UGP).

Moreover, 𝒃𝐼
𝑖 and 𝒑𝑃

𝑖 represent these joint coordinates
of the bottom and upper frame respectively, where the
superscript 𝐼 and 𝑃 indicates that their components are
expressed in the inertial 𝔼𝐼 and upper moving refer-
ence frame 𝔼𝑃 . By expressing the joint coordinates in
their respective frames the values can be found by basic
trigonometry.

Moreover, the data of its sensors are published onto
the Delft University Environment for Communication and
Activation (DUECA). This middleware enables real-time
simulations by using both inter-module communication as

well as communication between different modules on a
distributed network of computers [19]. Moreover, DUECA
uses a publish and subscribe design that enables modules,
a self-contained possible real-time computational element,
to activate when receiving or sending data. The publishing
of the sensor data happens at a specified rate of 100 Hz.

1) Linear Encoders: The SRS’s pose is not measured
directly but is computed indirectly from the length of the
six hydraulic actuators [20]. The length of each hydraulic
actuator is measured by one Heidenhain LC 415 linear
encoder [21], depicted in Fig. 7. Once measured, the data
is published onto DUECA at a chosen rate of 100 Hz.

Fig. 6. SIMONA Research Simulator (SRS) using a Stewart platform
as moving base simulator. [22]

Fig. 7. Heidenhain LC 415 [21],
an absolute linear encoder used
for measuring hydraulic actuator
length on the SRS.

Fig. 8. SRS IMU

The measured length 𝑙𝑖𝑚
by these six linear encoders of

each hydraulic actuators can be described as a function
of the Stewart platform’s joint coordinates 𝒃𝐼

𝑖 and 𝒑𝑃
𝑖 ,

position 𝒄𝐼
𝑃 , attitude 𝒆𝐼

𝑃 , and a Gaussian white noise value
𝑛𝑙𝑖

:

𝑙𝑖𝑚
= ∥𝒄𝐼

𝑃 + 𝑻 𝑇
𝑃𝐼𝒑𝑃

𝑖 − 𝒃𝐼
𝑖 ∥ + 𝑛𝑙𝑖

∀𝑖 = 1, … , 6 (1)

Here, 𝒄𝐼
𝑃 is the position of the UGP from the LGP and

is expressed in Cartesian coordinates w.r.t. 𝔼𝐼 :

𝒄𝐼
𝑃 = (𝑥𝑃 𝑦𝑃 𝑧𝑃 ) {𝔼𝐼} (2)

{𝔼𝐼} is the symbolic notation for the column of the unity
vectors of the inertial reference frame 𝔼𝐼 .

In Eq. (1), the transposed transformation matrix 𝑻 𝑇
𝑃𝐼

transforms the Cartesian coordinates from the Inertial 𝔼𝐼



to the upper moving reference frame 𝔼𝑃 . Such a matrix
is dependent on the attitude of the upper moving frame
𝒆𝐼

𝑃 w.r.t. 𝔼𝐼 . This attitude 𝒆𝐼
𝑃 is represented by the Euler-

Rodrigues quaternion formulation in order to have com-
putationally superior transformation matrices when com-
pared to the more intuitive Euler angle formulation [23]:

𝒆𝐼
𝑃 = (𝑒0𝑃

𝑒𝑥𝑃
𝑒𝑦𝑃

𝑒𝑧𝑃 ) { 1
𝔼𝐼

} (3)

And with the norm equal to one to represent an attitude:

∥𝒆𝐼
𝑃 ∥ = 𝑒2

0𝑃
+ 𝑒2

𝑥𝑃
+ 𝑒2

𝑦𝑃
+ 𝑒2

𝑧𝑃
= 1 (4)

Having defined the quaternion attitude 𝒆𝐼
𝑃 , the trans-

formation matrix 𝑻𝑃𝐼 can be written in terms of the
quaternion:

𝑻𝑃𝐼 =2⎡⎢
⎣

0.5 − 𝑒2
𝑦𝑃

− 𝑒2
𝑧𝑃

𝑒𝑥𝑃
𝑒𝑦𝑃

+ 𝑒0𝑃
𝑒𝑧𝑃

𝑒𝑥𝑃
𝑒𝑧𝑃

− 𝑒0𝑃
𝑒𝑦𝑃

𝑒𝑥𝑃
𝑒𝑦𝑃

− 𝑒0𝑃
𝑒𝑧𝑃

0.5 − 𝑒2
𝑥𝑃

− 𝑒2
𝑧𝑃

𝑒𝑦𝑃
𝑒𝑧𝑃

+ 𝑒0𝑃
𝑒𝑥𝑃

𝑒𝑥𝑃
𝑒𝑧𝑃

+ 𝑒0𝑃
𝑒𝑦𝑃

𝑒𝑦𝑃
𝑒𝑧𝑃

− 𝑒0𝑃
𝑒𝑥𝑃

0.5 − 𝑒2
𝑥𝑃

− 𝑒2
𝑦𝑃

⎤⎥
⎦

(5)
2) Inertial Measurement Unit (IMU): The SRS’s IMU

is an ISIS-IMU Rev. C model, a MEMS based IMU,
depicted in Fig. 8. The specific force 𝒇𝑃𝑚

and angular rate
𝝎𝑃𝑚

measured by the IMU is subsequently published onto
DUECA at a chosen rate of 100 Hz. This IMU is attached
to the upper moving frame of the SRS but not in the
center, i.e., UGP, of said frame. Moreover, the distance
𝒄IMU from the UGP to the IMU expressed in the upper
moving reference frame 𝔼𝑃 was measured to be [24]:

𝒄𝑃
IMU = (0.305 0 0.0105) {𝔼𝑃 } (6)

3) Setpoints: The setpoints are the output of the mo-
tion cueing system. They consist of position, velocity,
acceleration, and attitude expressed in the inertial refer-
ence frame 𝔼𝐼 , as well as the angular rate and angular
acceleration given in the upper moving reference frame 𝔼𝑃 .
In parallel, these setpoints are limited by the physical as-
pects of the Stewart platform, given the current estimated
position, velocity, acceleration, attitude, angular rate and
angular acceleration of the Stewart platform in this case.
Some prominent characteristics of the SRS related to the
setpoints are that it has a fast, low lag/latency response
between setpoints and actual motion. Moreover, the set-
points are given not only as the zeroth order state, e.g.,
position, but up to second order, e.g., the acceleration.

A motion system with “an inner loop feedback and
feedback linearising control result in first order response of
the system, from desired to actual accelerations.” [25] Thus,
if this assumption holds where an inner loop feedback and
feedback linearising control systems are used to control
the Stewart platform, a simplified model can be construed
to predict the state of the Stewart platform. Given the
desired acceleration, i.e., setpoints, the actual acceleration
can be approximated by the response of a first order
system.

No literature was found on the implementation of set-
points into a Kalman Filter (KF). However, it can be
assumed that these setpoints do provide a window to the
future state of the system. Moreover, it is highly likely
that the noise models on these setpoints are non-Gaussian,
so an algorithm that is at least lenient to non-Gaussian
variables needs to be selected.

III. Algorithm
In order to fuse the sensors’ measurements together

and estimate the HMD’s cabin-fixed pose, the Unscented
Kalman Filter (UKF) was used. In the past, the UKF was
used successfully to estimate the pose of both HMD [26]–
[29] and Stewart platform [30] separately.

The UKF was chosen due to the fact that it handles
nonlinear, continuous, multivariate problems, with noise
that can be modestly non-Gaussian [31]. However, it does
not handle occlusions, which would improve robustness
and allow for entities to be hidden. In practice, the UKF
was found to have similar computational cost to the
EKF [30], [32]–[34], but improved estimation performance.

A. KF Framework
The UKF is a minimum mean-square-error sequential

estimator [31] based on the KF framework [35].
The KF framework estimates the state 𝒙̂ based on direct

or indirect measurements of the actual state 𝒙. The KF
framework estimates the state 𝒙̂ of a system by combining
measurements of the system, including the knowledge of
the measurement’s probability distribution, with the pre-
vious state and its covariance in a Gaussian approximate
optimal manner [31]. The KF framework works in two
phases, the prediction phase and the correction or update
phase.

1) Prediction Phase: The previous estimated state 𝒙̂𝑘−1
and previous state covariance 𝑷𝑥̂𝑘−1

are projected to the
next time step (𝑘 − 1 → 𝑘) to the predicted state 𝒙̂−

𝑘 and
predicted state covariance 𝑷 −

𝑥̂𝑘
. The predicted state 𝒙̂−

𝑘
is the projection in time of the previous estimated state
𝒙̂𝑘−1 itself and an optional external input 𝒖𝑘−1 using the
process model F, usually based on a physical model of the
system:

𝒙−
𝑘 = F (𝒙𝑘−1, 𝒖𝑘−1) (7)

Meanwhile, the uncertainty of the process, i.e., process
noise 𝝂, is appended to the previous state covariance 𝑷𝑥̂𝑘−1
resulting in the predicted state covariance 𝒙̂−

𝑘 .
2) Correction Phase: The predicted state 𝒙̂−

𝑘 is cor-
rected to the posterior state 𝒙̂𝑘 using an observation 𝒚𝑘
of the system. This is achieved by adding the Kalman
Gain K scaled difference between the estimated ̂𝒚𝑘 and
the actual observation 𝒚𝑘, i.e., the innovation 𝝐𝑘, to the
predicted state 𝒙̂−

𝑘 . Here, the estimated observation ̂𝒚𝑘 is
the result of observing the predicted state 𝒙̂−

𝑘 through the
observation model H,

̂𝒚𝑘 = H (𝒙̂−
𝑘 ) (8)



The Kalman Gain 𝑲 mentioned above minimizes the
difference between the estimated ̂𝒚𝑘 and actual observa-
tion 𝒚𝑘 by adjusting the estimated state 𝒙̂𝑘 while taking
into account the predicted state covariance 𝑷 −

𝑥̂𝑘
and the

observation noise 𝒐.
B. Unscented Kalman Filter (UKF)

Using the outlined KF framework, the UKF manages
to solve discrete-time nonlinear systems with sequential
probabilistic inference [31] that can be described by the
combination of the process F and observation H models:

𝒙𝑘 = F (𝒙𝑘−1, 𝒖𝑘−1, 𝝂𝑘−1) (9)
𝒚𝑘 = H (𝒙𝑘, 𝒐𝑘) (10)

The expected value 𝐸 |…| of both the process 𝝂 and
observation noise random variables 𝒐 are modelled as zero-
mean Gaussian noises. Their respective autocovariance are
equal to 𝑸 and 𝑹 by definition:

𝐸 |𝝂(𝑡)| = 0, 𝐸 ∣𝝂(𝑡)𝝂𝑇 (𝜏)∣= 𝑸 → 𝝂(𝑡) ≈ ℵ (0, 𝑸) (11)
𝐸 |𝒐(𝑡)| = 0, 𝐸 ∣𝒐(𝑡)𝒐𝑇 (𝜏)∣= 𝑹 → 𝒐(𝑡) ≈ ℵ (0, 𝑹) (12)
The UKF uses the true nonlinear process F and ob-

servation models H, rather than approximating them.
However, the UKF approximates the assumed Gaussian
distribution of the state, and represents this distribution
with a minimal set of deterministically sampled points
around the state itself named sigma-points. The sigma-
points’ ‘weights’ and ‘width’ around the state are based
on three parameters 𝛼, 𝛽, and 𝜅. The propagation of this
set of sampled points through the true nonlinear process,
and subsequent true observation model will result in an
expression of the posterior mean and its covariance. Also,
by including the process 𝝂 and observation noise 𝒐 into
the state their distributions are represented directly in the
sigma-point samples and propagated through the process
F and observation model H accordingly.

IV. Configurations and their Stochastic
Systems

In general, the sensors shape the state 𝒙, input 𝒖 and
observation 𝒚, and in combination with the algorithm,
they shape the stochastic process F and observation H
models. Given the available sensors presented in Section II,
it is possible to create multiple sensor combinations that
are capable of estimating the HMD’s cabin-fixed pose
while using the HMD’s IMU in order to enable fast pose
updates or, in the nomenclature of KF, fast predictions.
Therefore, three different configurations were chosen for
the following reasons:

• Configuration 1 retains the HMD’s fast pose up-
dates with the minimal amount of physical sensors
systems by only using the linear encoders of the SRS
alongside the in-cabin visual pose tracking and the
aforementioned HMD’s IMU. Therefore, this configu-
ration removes the motion base’s IMU that was nec-
essary in previous work [8], [9] while maintaining full

pose estimation of both the HMD and SRS alongside
other states and HMD’s IMU bias observability.

• Configuration 2 adds fast pose updates to the SRS
subsystem by attaching an additional IMU to the SRS
platform alongside the linear encoders, in-cabin visual
pose tracking and the aforementioned HMD’s IMU.
However, this configuration does not use differential
IMU [8], [9], but uses both IMU’s measurements
to help predict each system’s state in the inertial
frame, thereby reducing process model complexity
while maintaining full state observability and full pose
estimation of both the HMD and SRS alongside other
states.

• Configuration 3 uses the SRS’s control system set-
points in a novel manner to help predict the state
alongside the linear encoders, in-cabin visual pose
tracking and the aforementioned HMD’s IMU. This
configuration was designed to ascertain if improve-
ments could be made to the state estimation when
no IMU is available on the Stewart platform, as not
all Stewart platform are equipped with an IMU.

The HMD’s cabin-fixed pose, i.e., the pose that should
be used for the graphical application, is the HMD’s pose
from the UGP expressed in 𝔼𝑃 :

𝒄𝑃
𝐻𝑃 = (𝑥𝐻𝑃 𝑦𝐻𝑃 𝑧𝐻𝑃 ) {𝔼𝑃 } (13)

𝒆𝑃
𝐻 = (𝑒0𝐻

𝑒𝑥𝐻
𝑒𝑦𝐻

𝑒𝑧𝐻) { 1
{𝔼𝑃 }} (14)

A. Configuration 0 — Baseline
The visual pose tracking attached to the cabin already

measures the HMD’s proper pose, i.e., the cabin-fixed
pose, with the position indicated by 𝒄𝑃

𝐻𝑃𝑚
and attitude

as 𝒆𝑃
𝐻𝑚

. By disabling the HMD’s IMU the problem high-
lighted in Fig. 1 by the red dashing line is removed.
However, this also removes the fast pose updates provided
by the HMD’s IMU. This configuration is the minimal
sensor configuration to achieve a cabin-fixed pose estima-
tion of a VR/AR system within an enclosed cabin on any
moving base simulator and will serve as a baseline used
for comparison.

This configuration is further detailed in Fig. 9. Here, the
cabin-fixed HMD pose 𝒄𝑃

𝐻𝑃𝑚
, 𝒆𝑃

𝐻𝑚
is observed by the vi-

sual pose tracking. The visual pose tracking used, TrackIR
5, has a proprietary abstraction layer that prevents the
reading of the underlying raw measurements, as stated in
Section II-A2, and are thus taken as is.
B. Configuration 1 — IMU on HMD

Configuration 1 enables the use of the HMD’s IMU in
order to enable the fast pose updates with the minimal
amount of physical sensors. As the HMD’s IMU measures
to the inertial frame and not to the upper motion reference
frame 𝔼𝑃 , the state of the UGP should be included as well.

This configuration, as shown in Fig. 10, has the linear
encoders indirectly observing the UGP’s position 𝒄𝑃 and
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Fig. 9. Configuration 0: A VR/AR system in an enclosed cabin on a
Stewart platform, with only visual pose tracking measuring the pose
of the HMD.
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Fig. 10. Configuration 1: A VR/AR system with an IMU in an
enclosed cabin on a Stewart platform. The kinematics are adapted
by also estimating the Stewart platform’s pose.

attitude 𝒆𝑃 trough the inverse kinematics, as per Eq. (1).
In order for the UKF to be able to estimate the UGP’s po-
sition 𝒄𝑃 and attitude 𝒆𝑃 , the UGP’s acceleration ̈𝒄𝑃 and
the angular acceleration 𝝎̇𝑃 are seen as white, Gaussian
noise sources 𝝂 ̈𝑐𝑃

and 𝝂𝜔̇𝑃
respectively. These are part of

the process noise 𝝂𝑃 :

𝝂𝑃 = {𝝂𝐼
̈𝑐𝑃

𝝂𝑃
𝜔̇𝑃

} = {(𝜈𝑥̈𝑃
𝜈 ̈𝑦𝑃

𝜈 ̈𝑧𝑃
) {𝔼𝐼}

(𝜈𝑝̇𝑃
𝜈 ̇𝑞𝑃

𝜈 ̇𝑟𝑃
) {𝔼𝑃 }} (15)

In turn, these noise sources increase the covariance on the
estimated velocity ̇𝒄𝑃 and angular rate ̇𝒆𝑃 respectively.
Consequently, the aforementioned increase in covariance
propagates through the integration scheme to the es-
timated position 𝒄𝑃 and attitude 𝒆𝑃 covariances. This
finally allows the UKF to estimate the UGP’s position ̂𝒄𝑃 ,
attitude 𝒆𝑃 , velocity ̇𝒄𝑃 , and angular rate ̇𝒆𝑃 [36].

Based on the process noise vector 𝝂𝑃 and the lack of
input vector 𝒖𝑃 , the Stewart platform’s part 𝒙𝑃 of the
whole stochastic state 𝒙 is defined as:

𝒙𝑃 = (𝒄𝐼𝑇
𝑃 ̇𝒄𝐼𝑇

𝑃 𝒆𝐼𝑇
𝑃 𝝎𝑃 𝑇

𝑃 )𝑇
(16)

Here, the inertial position 𝒄𝐼
𝑃 and attitude 𝒆𝐼

𝑃 w.r.t. 𝔼𝐼
were already defined in Eq. (2) and (3) respectively. The
inertial velocity ̇𝒄𝐼

𝑃 of the UGP is expressed in the inertial
reference frame 𝔼𝐼 :

̇𝒄𝐼
𝑃 = ( ̇𝑥𝑃 ̇𝑦𝑃 ̇𝑧𝑃 ) {𝔼𝐼} (17)

Finally, the angular rates 𝝎𝑃
𝑃 are expressed in the upper

motion reference frame 𝔼𝑃 :

𝝎𝑃
𝑃 = (𝑝𝑃 𝑞𝑃 𝑞𝑃 ) {𝔼𝑃 } (18)

In this equation, {𝔼𝑃 } is the symbolic notation for the col-
umn of the unity vectors of the inertial reference frame 𝔼𝑃 .

The HMD subsystem state vector 𝒙𝐻 , process noise
vector 𝝂𝐻 , and input vector 𝒖𝐻 are different due to
the HMD’s IMU. The HMD’s IMU feeds the prediction
model F𝐻 of the HMD’s subsystem and thus its measure-
ments will serve as the only input 𝒖:

𝒖={𝒖𝑃
𝒖𝐻

}=
⎧{
⎨{⎩

0
𝒇𝐻

𝐻𝑚
𝝎𝐻

𝐻𝑚

⎫}
⎬}⎭

=
⎧{
⎨{⎩

0
(𝑓𝑥𝐻𝑚

𝑓𝑦𝐻𝑚
𝑓𝑧𝐻𝑚

) {𝔼𝐻}
(𝑝𝐻𝑚

𝑞𝐻𝑚
𝑟𝐻𝑚) {𝔼𝐻}

⎫}
⎬}⎭

(19)
By including the IMU bias 𝝀 to the state 𝒙, said bias 𝝀
can be estimated online during the correction phase as it is
observable. The IMU measurements can be further broken
down by also including the random walk in velocity 𝒏𝑓
and angle 𝒏𝜔 [1], [37]–[39], a Gaussian white noise source,
resulting in:

𝒇𝐻𝑚
= 𝒇𝐻 + 𝒏𝑓𝐻

+ 𝝀𝑓𝐻
(20)

𝝎𝐻𝑚
= 𝝎𝐻 + 𝒏𝜔𝐻

+ 𝝀𝜔𝐻
(21)

In addition to the velocity/angle random walk as a Gaus-
sian white source on the IMU, the change over time of the
bias 𝝀̇, i.e., acceleration and rate random walk, are defined
as 𝝁𝑓 and 𝝁𝜔 [1], [37]–[39].

In addition to the Stewart platform’s process noise
vector 𝝂𝑃 , defined in Eq. (15), the process noise vector 𝝂
can be defined as:

𝝂 ={𝝂𝑃
𝝂𝐻

}=

⎧{{{
⎨{{{⎩

𝝂𝑃
𝒏𝐻

𝑓𝐻
𝝁𝐻

𝑓𝐻
𝒏𝐻

𝜔𝐻
𝝁𝐻

𝜔𝐻

⎫}}}
⎬}}}⎭

=

⎧{{{
⎨{{{⎩

𝝂𝑃
(𝑛𝑓𝑥𝐻

𝑛𝑓𝑦𝐻
𝑛𝑓𝑧𝐻

) {𝔼𝐻}
(𝜇𝑓𝑥𝐻

𝜇𝑓𝑦𝐻
𝜇𝑓𝑧𝐻

) {𝔼𝐻}
(𝑛𝑝𝐻

𝑛𝑞𝐻
𝑛𝑟𝐻) {𝔼𝐻}

(𝜇𝑝𝐻
𝜇𝑞𝐻

𝜇𝑟𝐻) {𝔼𝐻}

⎫}}}
⎬}}}⎭
(22)

Besides the Stewart platform’s state 𝒙𝑃 established in
Eq. (16), the HMD part 𝒙𝐻 of the whole stochastic state 𝒙
is defined, based on the input vector 𝒖𝐻 , as:

𝒙={𝒙𝑃
𝒙𝐻

}=

⎧{{{{
⎨{{{{⎩

𝒙𝑃
𝒄𝐼

𝐻
̇𝒄𝐼
𝐻

𝒆𝐼
𝐻

𝝀𝑃
𝑓𝐻

𝝀𝑃
𝜔𝐻

⎫}}}}
⎬}}}}⎭

=

⎧{{{{
⎨{{{{⎩

𝒙𝑃
(𝑥𝐻 𝑦𝐻 𝑧𝐻) {𝔼𝐼}
( ̇𝑥𝐻 ̇𝑦𝐻 ̇𝑧𝐻) {𝔼𝐼}

(𝑒0𝐻
𝑒𝑥𝐻

𝑒𝑦𝐻
𝑒𝑧𝐻) { 1

𝔼𝐼
}

(𝜆𝑥𝐻
𝜆𝑦𝐻

𝜆𝑧𝐻) {𝔼𝐻}
(𝜆𝑝𝐻

𝜆𝑞𝐻
𝜆𝑟𝐻) {𝔼𝐻}

⎫}}}}
⎬}}}}⎭

(23)
As shown, the last rows of the state 𝒙𝐻 introduce the bias
of both the accelerometer 𝝀𝑓𝐻

and the gyroscope 𝝀𝜔𝐻
so

the UKF can estimate them online in addition to the rest
of the state.



Given the definitions of the state 𝒙, the input 𝒖, and
the process noise 𝝂, a continuous version of the process
model f, in preparation of the discrete process model F,
can be constructed:

𝒙̇(𝑡)=f(𝒙(𝑡), 𝒖(𝑡), 𝝂)

{𝒙̇𝑃
𝒙̇𝐻

}={ f𝑃 (𝒙𝑃(𝑡), 𝝂𝑃 )
f𝐻(𝒙𝐻(𝑡), 𝒖𝐻(𝑡), 𝝂𝐻)}

⎧{{{{{{
⎨{{{{{{⎩

̇𝒄𝐼
𝑃
̈𝒄𝐼
𝑃
̇𝒆𝐼
𝑃

𝝎̇𝑃
𝑃
̇𝒄𝐼
𝐻
̈𝒄𝐼
𝐻
̇𝒆𝐼
𝐻

𝝀̇𝐻
𝑓𝐻

𝝀̇𝐻
𝜔𝐻

⎫}}}}}}
⎬}}}}}}⎭

=

⎧{{{{{{
⎨{{{{{{⎩

̇𝒄𝐼
𝑃

𝝂𝐼
̈𝑐𝑃

𝜴𝑒𝑃
𝝎𝑃

𝑃
𝝂𝑃

𝜔̇𝑃
̇𝒄𝐼
𝐻

𝑇 𝑇
𝐻𝐼{𝒇𝐻

𝐻𝑚
− 𝝀𝐻

𝑓𝐻
− 𝒏𝐻

𝑓𝐻
} + 𝒈

𝜴𝑒𝐻
{𝝎𝐻

𝐻𝑚
− 𝝀𝐻

𝜔𝐻
− 𝒏𝐻

𝜔𝐻
}

𝝁𝐻
𝑓𝐻

𝝁𝐻
𝜔𝐻

⎫}}}}}}
⎬}}}}}}⎭

(24)

Here, 𝑇 𝑇
𝐻𝐼 is based on the attitude 𝒆𝐼

𝐻 in a similar fashion
as in Eq. (5). This results in the transformation matrix
changing the coordinates from 𝔼𝐻 to 𝔼𝐼 . Moreover, 𝜴𝑒□
is a quaternion based matrix facilitating its own rotation
based on a rotation rate 𝝎□

□ w.r.t. 𝔼□. Thus, depending
on which subsystem is the focus of the equation, the SRS
or HMD, the □ subscript can be replaced with 𝑃 or 𝐻
respectively.

𝜴𝑒□ = 1
2

⎡
⎢⎢
⎣

−𝑒𝑥□ −𝑒𝑦□ −𝑒𝑧□
𝑒0□ −𝑒𝑧□ 𝑒𝑦□
𝑒𝑧□ 𝑒0□ −𝑒𝑥□

−𝑒𝑦□ 𝑒𝑥□ 𝑒0□

⎤
⎥⎥
⎦

(25)

The aforementioned inverse kinematics of the Stewart
platform, namely Eq. (1), is used to express the continuous
observation model h𝑃 :

𝒚𝑃(𝑡)=h𝑃 (𝒙𝑃(𝑡), 𝒐𝑃 )
{𝑙𝑖𝑚

}=∥𝒄𝐼
𝑃 + 𝑻 𝑇

𝑃𝐼 [𝒆𝑃 ] 𝒑𝑃
𝑖 − 𝒃𝐼

𝑖 ∥ + 𝑛𝑙𝑖
∀𝑖 = 1, … , 6 (26)

The Stewart platform’s observation noise vector 𝒐𝑃 con-
sists of the superimposed Gaussian white noise 𝑛𝑙𝑖

∀𝑖 =
1, … , 6.

As stated in Section IV-A, the visual pose tracking
measures the HMD’s cabin-fixed pose 𝒄𝑃

𝐻𝑃𝑚
, 𝒆𝑃

𝐻𝑚
, i.e.,

the pose of the HMD w.r.t. 𝔼𝑃 and also expressed in 𝔼𝑃 .
In essence, the HMD’s cabin-fixed pose is the result from
subtracting the UGP’s pose from the HMD’s pose. This
is due to the fact that both SRS and HMD state’s poses
are defined in the inertial reference frame 𝔼𝐼 , symbolically
represented by the 𝐼 superscript. In turn, this allows for
the continuous observation model h𝐻 to be expressed as:

𝒚𝑃(𝑡)={𝒄𝑃
𝐻𝑃𝑚
𝒆𝑃

𝐻𝑚

}=h𝐻 (𝒙(𝑡), 𝒐𝐻)

{𝒄𝑃
𝐻𝑃 + 𝒏𝑐𝐻𝑃
𝒆𝑃

𝐻 + 𝒏𝑒𝑃
𝐻

}={𝑇𝑃𝐼{𝒄𝐼
𝐻 − 𝒄𝐼

𝑃 }
𝒆𝐼

𝐻 ⊗ {∼𝒆𝐼
𝑃 } } + {𝒏𝑐𝐻𝑃

𝒏𝑒𝑃
𝐻

} (27)

In this equation, the white Gaussian noise vectors, 𝒏𝑐𝐻𝑃
and 𝒏𝑒𝑃

𝐻
, part of 𝒐𝐻 corrupt the observations. Also,

the transformation matrix 𝑇𝑃𝐼[𝒆𝐼
𝑃 ] transposes the in-

ertial based coordinates to the upper moving reference
frame 𝔼𝑃 . Moreover, a deduction between quaternions
is an ‘added’ counter rotation. The counter quaternion
rotation is achieved by first taking the conjugate ∼ of the
quaternion, i.e., switching the signs of the vector part, and
subsequently ‘adding’ the conjugated quaternion ∼𝒆𝐼

𝑃 via
quaternion multiplication ⊗ [23] to the other quaternion:

𝒄𝑃
𝐻𝑃 = 𝒆𝐼

𝐻 ⊗ {∼𝒆𝐼
𝑃 }

=
⎡
⎢⎢
⎣

𝑒0𝐻
−𝑒𝑥𝐻

−𝑒𝑦𝐻
−𝑒𝑧𝐻

𝑒𝑥𝐻
𝑒0𝐻

−𝑒𝑧𝐻
𝑒𝑦𝐻

𝑒𝑦𝐻
𝑒𝑧𝐻

𝑒0𝐻
−𝑒𝑥𝐻

𝑒𝑧𝐻
−𝑒𝑦𝐻

𝑒𝑥𝐻
𝑒0𝐻

⎤
⎥⎥
⎦

⎧{{
⎨{{⎩

𝑒0𝑃
−𝑒𝑥𝑃
−𝑒𝑦𝑃
−𝑒𝑧𝑃

⎫}}
⎬}}⎭

(28)

Lastly, having defined both observation models, h𝑃
and h𝐻 , the observation noise vector 𝒐 is defined as:

𝒐 = (𝒐𝑇
𝑃 𝒐𝑇

𝐻)𝑇 = (𝒏𝑇
𝑙 𝒏𝑇

𝑐𝐻𝑃
𝒏𝑇

𝑒𝑃
𝐻

)𝑇
(29)

C. Configuration 2 — IMU on both HMD and SRS

Configuration 2 is similar to Configuration 1, but has
an IMU attached to the SRS’s upper moving frame, as
depicted in Fig. 11. This is done in order to improve
the prediction accuracy and potentially provide fast pose
updates.

Stewart Platform
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HMD
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Visual
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Sensor Fusion
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Movement

Head
Movement

Fig. 11. Configuration 2: Similar to Configuration 1 with an IMU
attached to the upper moving frame of the SRS.

Due to the fact that the IMU is attached to the moving
upper reference frame 𝔼𝑃 , as is the case for the HMD, a
similar input 𝒖𝑃 , state 𝒙𝑃 , and process noise vector 𝝂𝑃
can be defined as follows:

𝒖={𝒖𝑃
𝒖𝐻

}=
⎧{
⎨{⎩

𝒇𝑃
𝑃𝑚

𝝎𝑃
𝑃𝑚

𝒖𝐻

⎫}
⎬}⎭

=
⎧{
⎨{⎩

(𝑓𝑥𝑃𝑚
𝑓𝑦𝑃𝑚

𝑓𝑧𝑃𝑚
) {𝔼𝑃 }

(𝑝𝑃𝑚
𝑞𝑃𝑚

𝑟𝑃𝑚) {𝔼𝑃 }
𝒖𝐻

⎫}
⎬}⎭

(30)



Here, the input 𝒖𝐻 related to the HMD was left unaltered
from Eq. (19).

𝒙={𝒙𝑃
𝒙𝐻

}=

⎧{{{{
⎨{{{{⎩

𝒄𝐼
𝑃
̇𝒄𝐼
𝑃

𝒆𝐼
𝑃

𝝀𝑃
𝑓𝑃

𝝀𝑃
𝜔𝑃

𝒙𝐻

⎫}}}}
⎬}}}}⎭

=

⎧{{{{
⎨{{{{⎩

(𝑥𝑃 𝑦𝑃 𝑧𝑃 ) {𝔼𝐼}
( ̇𝑥𝑃 ̇𝑦𝑃 ̇𝑧𝑃 ) {𝔼𝐼}

(𝑒0𝑃
𝑒𝑥𝑃

𝑒𝑦𝑃
𝑒𝑧𝑃 ) { 1

𝔼𝐼
}

(𝜆𝑥̈𝑃
𝜆 ̈𝑦𝑃

𝜆 ̈𝑧𝑃 ) {𝔼𝑃 }
(𝜆𝑝𝑃

𝜆𝑞𝑃
𝜆𝑟𝑃 ) {𝔼𝑃 }

𝒙𝐻

⎫}}}}
⎬}}}}⎭

(31)

In this equation, the HMD part of the state 𝒙𝐻 was defined
in Eq. (23).

𝝂 ={𝝂𝑃
𝝂𝐻

}=

⎧{{{
⎨{{{⎩

𝒏𝑃
𝑓𝑃

𝝁𝑃
𝑓𝑃

𝒏𝑃
𝜔𝑃

𝝁𝑃
𝜔𝑃

𝝂𝐻

⎫}}}
⎬}}}⎭

=

⎧{{{
⎨{{{⎩

(𝑛𝑓𝑥𝑃
𝑛𝑓𝑦𝑃

𝑛𝑓𝑧𝑃
) {𝔼𝑃 }

(𝜇𝑓𝑥𝑃
𝜇𝑓𝑦𝑃

𝜇𝑓𝑧𝑃
) {𝔼𝑃 }

(𝑛𝑝𝑃
𝑛𝑞𝑃

𝑛𝑟𝑃 ) {𝔼𝑃 }
(𝜇𝑝𝑃

𝜇𝑞𝑃
𝜇𝑟𝑃 ) {𝔼𝑃 }

𝝂𝐻

⎫}}}
⎬}}}⎭
(32)

Also, the process noise vector 𝝂𝐻 related to the HMD is
unmodified from Eq. (22).

The Stewart platform’s continuous process model
part f𝑃 is very similar to its HMD counterpart:

𝒙̇(𝑡)=f(𝒙(𝑡), 𝒖(𝑡), 𝝂)

{𝒙̇𝑃
𝒙̇𝐻

}={ f𝑃 (𝒙𝑃(𝑡), 𝒖𝑃(𝑡), 𝝂𝑃 )
f𝐻(𝒙𝐻(𝑡), 𝒖𝐻(𝑡), 𝝂𝐻)}

⎧{{{
⎨{{{⎩

̇𝒄𝐼
𝑃
̈𝒄𝐼
𝑃
̇𝒆𝐼
𝑃

𝝀̇𝑃
𝑓𝑃

𝝀̇𝑃
𝜔𝑃

𝒙̇𝐻

⎫}}}
⎬}}}⎭

=

⎧{{{{
⎨{{{{⎩

̇𝒄𝐼
𝑃

𝑇 𝑇
𝑃𝐼{𝒇𝑃

𝑃𝑚
− 𝝀𝑃

𝑓𝑃
− 𝒏𝑃

𝑓𝑃
+ 𝒂𝑃

𝜔𝑃
} + 𝒈

𝜴𝑒𝑃
{𝝎𝑃

𝑃𝑚
− 𝝀𝑃

𝜔𝑃
− 𝒏𝑃

𝜔𝑃
}

𝝁𝑃
𝑓𝑃

𝝁𝑃
𝜔𝑃

f𝐻(𝒙𝐻(𝑡), 𝒖𝐻(𝑡), 𝝂𝐻)

⎫}}}}
⎬}}}}⎭

(33)

The only difference to Eq. (24) is the rotation-moment-
linear-acceleration coupling component 𝒂𝑃

𝜔𝑃
resulting from

the SRS’s IMU not being located at the UGP [30], [31],
and is defined as:

𝒂𝑃
𝜔𝑃

= ̇𝝎̄𝑃
𝑃 × 𝒄𝑃

IMU + 𝝎𝑃
𝑃 × (𝝎𝑃

𝑃 × 𝒄𝑃
IMU) (34)

Here, × indicates the vector-cross-product, 𝒄𝑃
IMU is the

SRS’s IMU location coordinates w.r.t. the UGP expressed
in 𝔼𝑃 , and 𝝎̇𝑃

𝑃 is the angular acceleration of 𝔼𝑃 computed
by differentiating the angular rate 𝝎𝑃

𝑃 and taking the mean
of all sigma-points. In turn, the angular rate 𝝎𝑃

𝑃 of 𝔼𝑃 in
this configuration is defined as:

𝝎𝑃
𝑃 = 𝝎𝑃

𝑃𝑚
− 𝝀𝑃

𝜔𝑃
− 𝒏𝑃

𝜔𝑃
(35)

No change is necessary to either observation model h𝑃
or h𝐻 as defined in Eq. (27) and (26).
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Fig. 12. Configuration 3: similar to Configuration 2 with setpoints,
rather than an IMU, used to help predict the Stewart platform’s pose.

D. Configuration 3 — IMU on HMD and Setpoints on SRS

Contrary to the configuration with both sub-systems
having an IMU (Configuration 2), Configuration 3 uses
the setpoints 𝒔 of the SRS to predict the future pose of
the UGP itself, indicated in Figure 12.

Also depicted in Fig. 12 is the full set of setpoints
provided by the SRS, namely the position 𝒔𝑐, velocity 𝒔 ̇𝑐,
acceleration 𝒔 ̈𝑐, attitude 𝒔𝑒, angular rate 𝒔𝜔, and angular
acceleration 𝒔𝜔̇ [24]. However, only the acceleration 𝒔 ̈𝑐 and
the angular acceleration 𝒔𝜔̇ are used due to their higher
order relationship to the observed pose.

This configuration investigates if software based set-
points of the SRS can be used to replace the IMU as
a sensor and the possible impact it would have on the
HMD’s cabin-fixed pose. The added information from
the setpoints should improve the UGP’s pose estimation
when compared to the configuration with only the HMD
IMU (Configuration 1). Moreover, when compared to the
configuration with both sub-systems having an IMU (Con-
figuration 2), the question is how Gaussian and accurate
the setpoints based process model is when compared to its
IMU based counterpart.

In his article about the development of the SRS’s control
system, Koekebakker [25] states that a motion system with
“an inner loop feedback and feedback linearising control
results in first order response of the system, from desired to
actual accelerations.” Thus, the SRS’s actual acceleration
and angular acceleration can be approximated by the
transfer function G(𝑠) as:

G(𝑠) = Y(𝑠)
U(𝑠) = 1

𝜏𝑠 + 1 = 1/𝜏
𝑠 + 1/𝜏 (36)

Here, the input U(𝑠) comprises of the setpoints describing
the desired second derivative of the system’s pose, the
output Y(𝑠) expresses the actual second derivative of
the system’s pose, both are dependent on the complex
variable 𝑠, and a time lag 𝜏 that indicates the time for
the system to reach 63 % of the final step input.



When Eq. 36 is applied in state-space form, it results
in the following inertial acceleration ̈𝒄𝐼

𝑃 and body angular
acceleration 𝝎̇𝑃

𝑃 :

⃛𝒄𝐼
𝑃 = 1/𝝉 𝐼

̈𝑐 ⋅ (𝒔𝐼
̈𝑐 − ̈𝒄𝐼

𝑃 ) (37)
𝝎̈𝑃

𝑃 = 1/𝝉𝑃
𝜔̇ ⋅ (𝒔𝑃

𝜔̇ − 𝝎̇𝑃
𝑃 ) (38)

Here, ⋅ symbolizes a coefficient-wise operation.
Also, Eq. (37) and (38) show that the Stewart platform’s

state 𝒙𝑃 needs to include up to the second derivative of
its pose:

𝒙={𝒙𝑃
𝒙𝐻

}=

⎧{{{{{{
⎨{{{{{{⎩

𝒄𝐼
𝑃
̇𝒄𝐼
𝑃
̈𝒄𝐼
𝑃

𝒆𝐼
𝑃

𝝎𝑃
𝑃

𝝎̇𝑃
𝑃

𝝉 𝐼
̈𝑐𝑃

𝝉𝑃
𝜔̇𝑃

𝒙𝐻

⎫}}}}}}
⎬}}}}}}⎭

=

⎧{{{{{{
⎨{{{{{{⎩

(𝑥𝑃 𝑦𝑃 𝑧𝑃 ) {𝔼𝐼}
( ̇𝑥𝑃 ̇𝑦𝑃 ̇𝑧𝑃 ) {𝔼𝐼}
( ̈𝑥𝑃 ̈𝑦𝑃 ̈𝑧𝑃 ) {𝔼𝐼}

(𝑒0𝑃
𝑒𝑥𝑃

𝑒𝑦𝑃
𝑒𝑧𝑃 ) { 1

𝔼𝐼
}

(𝑝𝑃 𝑞𝑃 𝑟𝑃 ) {𝔼𝑃 }
( ̇𝑝𝑃 ̇𝑞𝑃 ̇𝑟𝑃 ) {𝔼𝑃 }
(𝜏𝑥̈ 𝜏 ̈𝑦 𝜏 ̈𝑧) {𝔼𝐼}
(𝜏𝑝̇ 𝜏 ̇𝑞 𝜏 ̇𝑟) {𝔼𝑃 }

𝒙𝐻

⎫}}}}}}
⎬}}}}}}⎭

(39)

Here, the HMD’s state 𝒙𝐻 is defined as in Eq. (23).
Moreover, the Stewart platform’s input 𝒖𝑃 should include
the setpoints 𝒔𝐼

̈𝑐 and 𝒔𝑃
𝜔̇ :

𝒖={𝒖𝑃
𝒖𝐻

}=
⎧{
⎨{⎩

𝒔𝐼
̈𝑐

𝒔𝑃
𝜔̇

𝒖𝐻

⎫}
⎬}⎭

=
⎧{
⎨{⎩

(𝑠𝑥̈ 𝑠 ̈𝑦 𝑠 ̈𝑧) {𝔼𝐼}
(𝑠𝑝̇ 𝑠 ̇𝑞 𝑠 ̇𝑟) {𝔼𝑃 }

𝒖𝐻

⎫}
⎬}⎭

(40)

In order for the UKF to estimate the time-lag 𝝉 𝐼
̈𝑐 and

𝝉𝑃
𝜔̇ , influencing the setpoints 𝒔 ̈𝑐 and 𝒔𝜔̇ respectively, a

variance needs to be imposed on said lag. This is achieved
by defining 𝜼𝐼

𝜏 ̈𝑐
, 𝜼𝑃

𝜏𝜔̇
as the change of the lag over time

̇𝝉 𝐼
̈𝑐 , ̇𝝉𝑃

𝜔̇ and is assumed to be Gaussian. 𝜼𝐼
𝜏 ̈𝑐

and 𝜼𝑃
𝜏𝜔̇

fullfil
a similar function as the noise variables 𝝁 to the bias 𝝀
of an IMU, whereby the lag’s variance allows the UKF to
change the lag 𝜼 based on the measurements of the rest
of the system.

In principle the Stewart platform’s noise vector 𝝂 is
complete. However, if the resulting process model would
have been applied to the UKF, the behavior would not
have been optimal because the lag’s deviation has to
be small, i.e., approximately 10−3, so as not to let the
UKF sample sub-zero lags causing unstable mathemat-
ical behavior of the UKF. To account for this error in
the process model, additional variance is injected into
the UKF by introducing two additional Gaussian noise
sources, one influencing the inertial acceleration 𝝂𝐼

̈𝑐𝑃
of

the Stewart platform, and the other influencing the body

angular acceleration 𝝂𝑃
𝜔̇𝑃

. This results in the definition of
the process noise vector 𝝂 as:

𝝂 ={𝝂𝑃
𝝂𝐻

}=

⎧{{{
⎨{{{⎩

𝜼𝐼
𝜏 ̈𝑐

𝝂𝐼
̈𝑐𝑃

𝜼𝑃
𝜏𝜔̇

𝝂𝑃
𝜔̇𝑃

𝝂𝐻

⎫}}}
⎬}}}⎭

=

⎧{{{
⎨{{{⎩

(𝜂𝜏𝑥̈
𝜂𝜏𝑦̈

𝜂𝜏 ̈𝑧) {𝔼𝐼}
(𝜈𝑥̈𝑃

𝜈 ̈𝑦𝑃
𝜈 ̈𝑧𝑃 ) {𝔼𝐼}

(𝜂𝜏𝑝̇
𝜂𝜏 ̇𝑞

𝜂𝜏𝑟̇) {𝔼𝑃 }
(𝜈𝑝̇𝑃

𝜈 ̇𝑞𝑃
𝜈 ̇𝑟𝑃 ) {𝔼𝑃 }

𝝂𝐻

⎫}}}
⎬}}}⎭

(41)

Having defined the input vector 𝒖, the state vector
𝒙, the process noise vector 𝒙, and having presented the
setpoints influence on the state in Eq. (37) and (38), the
continuous process model f is defined as follows:

𝒙̇(𝑡)=f(𝒙(𝑡), 𝒖(𝑡), 𝝂)

{𝒙̇𝑃
𝒙̇𝐻

}={ f𝑃 (𝒙𝑃(𝑡), 𝒖𝑃(𝑡), 𝝂𝑃 )
f𝐻(𝒙𝐻(𝑡), 𝒖𝐻(𝑡), 𝝂𝐻)}

⎧{{{{{{
⎨{{{{{{⎩

̇𝒄𝐼
𝑃
̈𝒄𝐼
𝑃
⃛𝒄𝐼
𝑃
̇𝒆𝐼
𝑃

𝝎̇𝑃
𝑃

𝝎̈𝑃
𝑃
̇𝝉 𝐼
̈𝑐

̇𝝉𝑃
𝜔̇𝑃

𝒙̇𝐻

⎫}}}}}}
⎬}}}}}}⎭

=

⎧{{{{{{
⎨{{{{{{⎩

̇𝒄𝐼
𝑃

̈𝒄𝐼
𝑃 + 𝜼𝐼

𝜏 ̈𝑐
1/𝝉 𝐼

̈𝑐 ⋅ (𝒔𝐼
̈𝑐 − ̈𝒄𝐼

𝑃 )
𝜴𝑒𝑃

𝝎𝑃
𝑃

𝝎̇𝑃
𝑃 + 𝜼𝑃

𝜏𝜔̇
1/𝝉𝑃

𝜔̇ ⋅ (𝒔𝑃
𝜔̇ − 𝝎̇𝑃

𝑃 )
𝝂𝐼

̈𝑐𝑃
𝝂𝑃

𝜔̇𝑃
f𝐻(𝒙𝐻(𝑡), 𝒖𝐻(𝑡), 𝝂𝐻)

⎫}}}}}}
⎬}}}}}}⎭

(42)

Again, no change is necessary to the observation mod-
els h𝑃 and h𝐻 as defined in Eq. (27) and (26).

E. Discretization
The UKF as presented in Section III, works with dis-

crete process F and observation models H. The discretiza-
tion of the continuous models introduced in this section is
performed in a number of ways, depending on the type of
model.

1) Forward Euler Method: In order to discretize the pre-
viously presented continuous process models f the forward
Euler method, a first order numerical integration method,
was used [30], [31]:

𝒙̇(𝑡)=f(𝒙(𝑡), 𝒖(𝑡), 𝝂)
↓↓↓↓↓↓↓↓
Discrete Integration Method (43)

𝒙𝑘+1 =F(𝒙𝑘, 𝒖𝑘, 𝝂) Forward−−−−−→
Method

𝒙𝑘 + 𝒙̇𝑘Δ𝑡 + 𝑂 (Δ𝑡2)

The forward Euler method truncates the Taylor series
after the first order [40], leading to the error 𝑂 (Δ𝑡2) in
Eq. (43). This error is known as the local truncation error,
but will here be referred to as the integration error. Since
the system’s motion is discretized by the sensors and sub-
sequently propagated through the imperfect integration
method, this error is non-Gaussian, i.e., colored by the
motion itself.

Furthermore, this integration error is present in the
discrete prediction model F and should not be disregarded,



as such a system would trust the predicted state of the
process model F too much. This effect can be mitigated
by increasing the appropriate noise values, as described in
Section VI.

2) Quaternion Integration: The quaternion attitudes
are integrated following the analytical method discussed
in [31], [41] to increase attitude prediction. This is due to
the fact that increasing the attitude prediction accuracy
not only benefits the final estimated attitude, but also
propagates through the various IMU measurements and
positions by transforming them into other reference frames
and thus was deemed worth the additional computational
workload.

3) Discrete Observation Models: The discretization of
the continuous observation models h does not require any
method and these models are used as is in a discrete
fashion:

𝒚(𝑡)=h (𝒙(𝑡), 𝒐) −→ 𝒚𝑘 =H (𝒙𝑘, 𝒐) (44)

V. Method
A. Data Gathering

In the enclosed cabin of the SRS, depicted in Fig. 6, the
TrackIR 5 sensor was installed along with the Pimax 8k-x.
The Pimax 8k-x was strapped to the left seat’s headrest, as
can be seen in Fig. 13. Next, the SRS would move along a

Fig. 13. The Pimax 8k-x strapped the the left seat’s headrest.

preprogrammed set of setpoints. The real sensor data was
saved via eCAL [42], version 5.11, a middleware enabling
interprocess communication.

The resulting recordings were loaded by a Python (ver-
sion 3.11) [43] script, using Numpy (version 1.26) [44]
for its efficient array computing abilities. Subsequently,
these recordings were stepped through time-wise, taking
into account the data’s recorded timestamps, and supplied
to the presented algorithm. This approach resulted in
a deterministic implementation, meaning that given the
same parameters, algorithm, and data, the exact same

results were attained. This also meant that the innovations
of the different configurations are comparable for the same
motion profile due to the fact that the input into the
observation model is also deterministic.
B. Performance Metrics

The accuracy of the estimated state 𝒙̂, and in this case
particular the estimated cabin-fixed pose ( ̂𝒄𝐻𝑃 , 𝒆̂𝐻𝑃 ) as
defined in Eq. (13) and Eq. (14), are the true performance
indicators. However, the accuracy of the estimated state
is not observable as the true state is not known. For
this reason, the performance and quality of the algorithm
is ascertained with the innovation 𝝐 and its covariance
𝑷 ̂𝑦 [45].

1) Innovation 𝝐: is the difference between the actual
observation 𝒚 and the estimated observation 𝒚̂, and as such
is used as a variable in a KF. Normally, the innovation
𝝐, without comparing it to its covariance 𝑷 ̂𝑦, is mostly
meaningless. However, due to the fact that this Python
implementation is deterministic, the resulting innovation
of each configuration can be compared to one another to
an extent. The extent being that a part of the innovation
𝝐 is due to the observation sensor itself.

2) Estimated Observation Covariance 𝑷 ̂𝑦: an UKF vari-
able, the diagonal of said matrix 𝑷 ̂𝑦 corresponds to the
expected auto-variance 𝝈2

𝜖 of the innovation vector 𝝐.
Thus, in theory, 95 % of the innovation should lay between
2 ⋅√𝝈2

𝜖 [46], i.e., sigma-bounds 2𝜎. This means that the
level of appropriate tuning of the UKF’s noise parameters
can be ascertained, to an extent, by plotting the innovation
alongside its sigma-bounds 2𝜎.

Reversely, given a properly tuned UKF and no bias in
the sensors responsible for the UKF’s update, the sigma-
bounds give a theoretical performance indicator.

3) State Prediction Rate: the graphics pipeline of a
typical VR/AR system requests the estimated state of the
HMD at a high and asynchronous rate [47]. A performance
analysis solely based on the innovation 𝝐 and its covariance
𝑷 ̂𝑦 fails to capture the potential benefits of a higher
state prediction rate for such a high and asynchronous
polling rate system. For this reason, it is beneficial for the
algorithm to have a high prediction rate, especially if the
update rate is relatively low.

For example, when comparing two systems where one
has a ‘tighter’ estimated observation covariance 𝑷 ̂𝑦, and
the other has a higher state prediction rate, the latter
could, in certain conditions, be more accurate from a state
estimation perspective. If the user’s system would poll the
estimated state at a high enough rate, the former system
would likely have to give the same state multiple times,
while the latter would be able to provide a new state
estimation based on the latest input data albeit with larger
estimation errors per estimate.

VI. Parameters
In order for the real measurements to be applied to

the UKF, certain parameters need to be established first.



The UKF needs its scaling parameters (𝛼, 𝛽, 𝜅), an initial
estimated stochastic state 𝒙̂0, and corresponding covari-
ance 𝑷𝑥̂0

. Moreover, the process 𝑸 and observation noise
matrices 𝑹 need to be established as well.

Starting with the process noise matrix 𝑸, the values
for the HMD are presented in Tab. I. Here, the veloc-
ity 𝝈𝑓𝐻

and angle random walk 𝝈𝜔𝐻
are based on static

measurements results, which were subsequently scaled up
by 10 % as a safety margin. For the HMD’s velocity 𝝈𝑓𝐻and angle random walk 𝝈𝜔𝐻

, no additional noise is needed
to reduce the impact of the integration error because the
IMU’s measurements are published and used at 600 Hz;
and the HMD’s IMU statically noise parameters are large
when compared to the resulting integration error.

The acceleration 𝝈𝜇𝑓𝐻
and rate random walk 𝝈𝜇𝜔𝐻

were
initially computed via Overlapping Allan Deviation [1],
[38], [39], [48], but were found too large to be effective
at estimating the bias 𝝀 of the respective sensors. Rather
than solely estimating the bias 𝝀, the algorithm was using
said bias to try to partially solve the aforementioned
integration error. In order to improve this behavior, the
found values were roughly scaled down by a factor of ten.

TABLE I
HMD’s IMU noise parameters

Description Var. Value Unit
𝒏𝑓𝐻

≈ ℵ(0, 𝝈𝑓𝐻
)

Accelerometer’s
Velocity Random Walk

𝜎𝑓𝑥𝐻
8.26

}×10−2 m/s2𝜎𝑓𝑦𝐻
5.85

𝜎𝑓𝑧𝐻
5.60

𝝁𝑓𝐻
≈ ℵ(0, 𝝈𝜇𝑓𝐻

)
Accelerometer’s

Acceleration Random Walk
𝜎𝜇𝑓□𝐻

1.00 ×10−4 m/s3 ∀□ = 𝑥, 𝑦, 𝑧

𝒏𝜔𝐻
≈ ℵ(0, 𝝈𝜔𝐻

)
Gyroscope’s

Angle Random Walk

𝜎𝑝𝐻 4.64
}×10−3 rad/s𝜎𝑞𝐻 3.96

𝜎𝑟𝐻 3.30
𝝁𝜔𝐻

≈ ℵ(0, 𝝈𝜇𝜔𝐻
)

Gyroscope’s
Rate Random Walk

𝜎𝜇□𝐻
1.00 ×10−5 rad/s2 ∀□ = 𝑝, 𝑞, 𝑟

The process noise values related to the SRS are shown
in Tab. II. The values for Configuration 1, where only the
HMD has an IMU, are based on the expectation on the
upper bounds of the acceleration and angular acceleration
to be encountered in the motion of the SRS. If these
estimated values are set too high, the estimation accuracy
of the UKF decreases due to the UKF’s increased state’s
covariance 𝑷𝑥̂ elements, causing the sampled sigma-points
to potentially miss local non-linearities and trust the
observation sensors potentially too much. Conversely, es-
timating these noise parameters too low causes the predic-
tion to lag behind due to the small state’s covariance 𝑷𝑥̂,
causing the system to seem reluctant to change its state
based upon observations.

Static measurements were slightly lower than the man-
ufacturer’s manual [49], with the SRS’s accelerometer

and gyroscope to have a deviation of ≈1×10−2 m/s2 and
≈1.7×10−4 rad/s respectively. In this case, the aforemen-
tioned integration error, partly due to the relatively low
publishing frequency of 100 Hz, causes both the SRS’s
velocity 𝝈𝑓𝑃

and angle random walk 𝝈𝜔𝑃
to be scaled up

by a factor of four. This behavior was also evident in the
work done by Miletović, where the whole process noise
covariance matrix 𝑸 was ultimately scaled up by a factor
of 1000 [30]. The reason for this high factor was probably
due to the combination of a different motion profile and
that the accelerometer used in his work was ten times more
accurate (in terms of standard deviation) than the one
presented here.

The noise values for the SRS’s acceleration 𝝈𝜇𝑓𝑃
and

rate random walk 𝝈𝜇𝜔𝑃
follow a similar trend to the HMD

one, where they were scaled down to reduce the IMU’s bias
fluctuating due to the integration error.

Finally, the setpoint lag deviation values are solely based
on trial and error. If they are set too small, the UKF
has problems converging on the lag, too large and the
UKF could potentially estimate a negative lag, causing
instability. Moreover, the acceleration 𝝈 ̈𝑐𝑃

and angular
acceleration deviation 𝝈𝜔̇𝑃

have different values from the
configuration in which only the HMD has an IMU (Con-
figuration 1) as the system can relay on the lag for the
prediction model.

The observation deviation values are presented in
Tab. III. The values for the linear encoders are taken from
the manufacturer’s manual [21] and verified with static
measurements.

The TrackIR 5 was found to have a positional and
attitudinal deviation of ≈3×10−5 m and ≈2×10−4 rad re-
spectively during static tests. However, this sensor was
found to also present a time-lag of approximately one
second. This was confirmed by integrating the angular
rate of the headset and comparing this to the attitude
provided by the TrackIR 5 sensor measurements. Even
though the data gathered through the TrackIR was with
the HMD strapped to the headrest and thus mostly static
w.r.t. to the TrackIR sensor, the free play in the headrest
was enough to introduce errors into the observation due
to the firm SRS motion profile. To reduce these errors in
pose, the TrackIR deviations were scaled up by a factor of
50 and 25 to reduce the impact on the state estimation.

The estimated initial stochastic state 𝒙̂0 of Configura-
tion 1, where only the HMD has an IMU, is set in Eq. (45).
The initial position of the SRS was set to its neutral
position and the HMD’s position was set to that of the
left seat’s headrest. Both quaternion attitudes were set to



TABLE II
SRS Process noise parameters

Description Var. Value Unit
Configuration 1:

𝝂 ̈𝑐𝑃
≈ ℵ(0, 𝝈 ̈𝑐𝑃

)
Acceleration Deviation

𝜎□𝑃 1.5 m/s2 ∀□ = 𝑥̈, ̈𝑦, ̈𝑧

𝝂𝜔̇𝑃
≈ ℵ(0, 𝝈𝜔̇𝑃

)
Angular Acceleration

Deviation
𝜎□𝑃 1.5 rad/s2 ∀□ = 𝑝̇, ̇𝑞, ̇𝑟

Configuration 2:
𝒏𝑓𝑃

≈ ℵ(0, 𝝈𝑓𝑃
)

Accelerometer’s
Velocity Random Walk

𝜎𝑓□𝑃
4.0×10−2 m/s2

∀□ = 𝑥, 𝑦, 𝑧
𝝁𝑓𝑃

≈ ℵ(0, 𝝈𝜇𝑓𝑃
)

Accelerometer’s
Acceleration Random Walk

𝜎𝜇𝑓□𝑃
1.0×10−4 m/s3

𝒏𝜔𝑃
≈ ℵ(0, 𝝈𝜔𝑃

)
Gyroscope’s

Angle Random Walk
𝜎□𝑃 8.0×10−3 rad/s

∀□ = 𝑝, 𝑞, 𝑟
𝝁𝜔𝑃

≈ ℵ(0, 𝝈𝜇𝜔𝑃
)

Gyroscope’s
Rate Random Walk

𝜎𝜇□𝑃
1.0×10−5 rad/s2

Configuration 3:
𝜼𝜏 ̈𝑐

≈ ℵ(0, 𝝈𝜏 ̈𝑐𝑃
)

Translational Lag
Deviation

𝜎𝜏□ 1.0×10−3 s

∀□ = 𝑥̈, ̈𝑦, ̈𝑧
𝝂 ̈𝑐𝑃

≈ ℵ(0, 𝝈 ̈𝑐𝑃
)

Acceleration Deviation
𝜎□𝑃 5.0×10−1 m/s2

𝜼𝜏𝜔̇
≈ ℵ(0, 𝝈𝜏𝜔̇𝑃

)
Rotational Lag

Deviation
𝜎𝜏□ 1.0×10−3 s

∀□ = 𝑝̇, ̇𝑞, ̇𝑟
𝝂𝜔̇𝑃

≈ ℵ(0, 𝝈𝜔̇𝑃
)

Angular Acceleration
Deviation

𝜎□𝑃 5.0×10−1 rad/s2

TABLE III
Observation sensors noise parameters

Description Var. Value Unit
𝑛𝑙𝑖 ≈ ℵ(0, 𝜎𝑙𝑖 ) , 𝜎𝑙𝑖 ∈ 𝝈𝑙

Absolute Linear
Encoders Deviation

𝜎𝑙𝑖 5.0×10−6 m ∀𝑖 = 1, … , 6

TrackIR 5 Deviation:
Positional:

𝒏𝑐𝐻𝑃
≈ ℵ(0, 𝝈𝑐𝐻𝑃

) 𝜎□𝐻𝑃 1.5×10−3 m ∀□ = 𝑥, 𝑦, 𝑧

Attitudinal:
𝒏𝑒𝑃

𝐻
≈ ℵ(0, 𝝈𝑒𝑃

𝐻
) 𝜎□𝐻𝑃 5.0×10−3 rad ∀□ = 𝜙, 𝜃, 𝜓

an identity rotation, and all other values were set to zero.

𝒙̂0 =𝐸 ∣𝒙0∣=𝐸 ∣(𝒙𝑇
𝑃0

𝒙𝑇
𝐻0

)𝑇 ∣ (45)

{𝒙̂𝑃0
𝒙̂𝐻0

}={ (02× −2.39 03× 1 06×)𝑇

(0 −0.55 −3.5975 03× 1 09×)𝑇}

(46)
The covariance of the estimated initial stochastic state

𝑷𝑥̂0
of Configuration 1 is shown in Eq. (47). The deviation

in the expected initial stochastic state are all set indepen-
dent to one another.

𝑷𝑥̂0
=𝐸 ∣{𝒙0 − 𝒙̂0} {𝒙0 − 𝒙̂0}𝑇 ∣ (47)

[
𝑷𝑥̂𝑃0

0
0 𝑷𝑥̂𝐻0

]=[ diag(16× 0.443× 13×)2 012×15

015×12 diag(16× 0.523× 0.13× 0.053×)2]

(48)
Taking the deviation values presented in Tab. I, II,

and III into account, the process 𝑸 and observation noise
matrices 𝑹 can be constructed as follows:

𝑸 = diag(𝝈𝑃 𝝈𝐻)2 (49)

= diag(𝝈 ̈𝑐𝑃
𝝈𝜔̇𝑃

𝝈𝑓𝐻
𝝈𝜇𝑓𝐻

𝝈𝜔𝐻
𝝈𝜇𝜔𝐻

)
2

𝑹 = diag(𝝈𝑙 𝝈𝑐𝐻𝑃
𝝈𝑒𝑃

𝐻
)2

(50)

For Configuration 2, where both the SRS and HMD have
an IMU, only the SRS’s sub-system changes, thus resulting
in:

𝒙̂𝑃0
= (02× −2.39 03× 1 09×)𝑇 (51)

𝑷𝑥̂𝑃0
= diag(16× 0.443× 0.13× 0.053×)2 (52)

𝑸 = diag(𝝈𝑓𝑃
𝝈𝜇𝑓𝑃

𝝈𝜔𝑃
𝝈𝜇𝜔𝑃

𝝈𝐻)
2

(53)

For Configuration 3, where setpoints are used rather than
an IMU for the SRS, the setpoint related values are
printed. Here, attention should be paid when selecting
a lag starting value and its corresponding covariance.
Choosing an initial lag value close to zero with a large
covariance could cause a sigma-point to be sampled be-
low zero causing unstable behavior. Here, it was opted
to choose the initial lag variance too small to increase
robustness at the cost of convergence duration of said lag.

𝒙̂𝑃0
= (02× −2.39 06× 1 09× 0.036×)𝑇 (54)

𝑷𝑥̂𝑃0
= diag(19× 0.443× 16× 10−5

6×)2 (55)

𝑸 = diag(𝝈𝜏 ̈𝑐𝑃
𝝈 ̈𝑐𝑃

𝝈𝜏𝜔̇𝑃
𝝈𝜔̇𝑃

𝝈𝐻)
2

(56)
Finally, the sigma parameters (𝛼, 𝛽, 𝜅) were chosen as

follows:
𝛼 = 0.01, 𝛽 = 2, 𝜅 = 100 (57)

𝜅 is chosen larger than the recommended value [50] to
increase mathematical stability in case of Configuration 3
with the small initial lag variance. These values were kept
constant for all configurations.



VII. Motion Profile
The motion of the SRS, as pointed out in [30], should be

large enough to make sure to explore the nonlinearity of
the SRS’s stewart platform [51]. The level of nonlinearity
impacts the UKF Gaussian approximation in both the
prediction as well in the correction phase.

The motion profile consists of the summation of si-
nusoids, with a hyperbolic tangent based fade-in of ten
seconds. The frequency and amplitude of each sinusoid
per axis w.r.t. the inertial reference frame 𝔼𝐼 is given in
Tab. IV. All initial states are set to zero, except for the
z-axis of the position of the UGP which is set to −2.39 m,
the neutral position of the SRS. During the online data
gathering the SRS was made to follow the resulting motion
profile.

TABLE IV
Amplitudes and Frequencies of the sinusoidal motion

profile of the SRS w.r.t. the inertial reference frame 𝔼𝐼 .

Translation Rotation
SRS: Amplitude Frequency Amplitude Frequency

x: −0.1 m 0.1 Hz −4.01 ° 0.1 Hz
0.1 m 0.25 Hz 4.01 ° 0.25Hz
0.0123 m 0.65 Hz 0.705 ° 0.65 Hz
0.016 m 0.85 Hz 0.917 ° 0.85 Hz
0.002 m 2 Hz 0.115 ° 2 Hz

y: 0.1 m −0.1 Hz 4.01 ° 0.1 Hz
0.1 m −0.25 Hz 4.01 ° 0.25Hz
0.0123 m 0.65 Hz 0.705 ° 0.65 Hz
0.016 m 0.85 Hz 0.917 ° 0.85 Hz
0.002 m 2 Hz 0.115 ° 2 Hz

z: 0.03 m 0.5 Hz 2.865 ° 0.5 Hz
0.002 m 2 Hz 0.115 ° 2 Hz

VIII. Results
The three proposed configurations are implemented and

validated by feeding each configuration’s UKF the data
gathered from running the motion profile on the SRS.

Due to their representativeness, as well as for brevity,
only the innovations of the x-axis 𝜖𝑥𝐻𝑃

and roll 𝜖𝜙𝐻𝑃
are depicted in Fig. 14, alongside their sigma-bounds,
represented by ±2 ⋅√𝑷 ̂𝑦𝑥𝐻𝑃

. Fig. 14 depicts how the
mismatched sensor information between the HMD’s IMU
and the lagged visual pose tracking leads to the resulting
innovation being heavily colored by the motion profile.

The mean of the second half of these sigma-bounds are
also printed in Tab. V. The left side of said table shows the
results with the noise parameters presented as per Tab. III.
The right side of said table shows the results of the original
statically measured noise parameters for the TrackIR, i.e.,
≈3×10−5 m and ≈2×10−4 rad for the position and attitude
respectively. Thus, it shows the results for a potential non-
lagged visual tracker scenario.

In Fig. 15, innovations of selected linear encoders are
plotted against their 95 % sigma-bounds corresponding to
the elements on the diagonal of the estimated observation
covariance 𝑷 ̂𝑦.

TABLE V
The TrackIR 5 estimated sigma-bounds based on the average
estimated observation covariance 𝑷̃ ̂𝑦 of the x-axis and roll

attitude 𝜙𝐻𝑃 per configuration.

Corrected Noise
Parameters

Original Noise
Parameters

Config 2 ⋅√𝑷 ̂𝑦𝑥𝐻𝑃
2 ⋅√𝑷 ̂𝑦𝜙𝐻𝑃

2 ⋅√𝑷 ̂𝑦𝑥𝐻𝑃
2 ⋅√𝑷 ̂𝑦𝜙𝐻𝑃

0 3.00×10−3 m 5.73×10−1 ° 5.50×10−5 m 2.59×10−2 °
1 3.15×10−3 m 5.74×10−1 ° 1.30×10−4 m 2.75×10−2 °
2 3.15×10−3 m 5.74×10−1 ° 1.06×10−4 m 2.74×10−2 °
3 3.15×10−3 m 5.74×10−1 ° 7.84×10−5 m 2.73×10−2 °

When observing this figure as a whole, it can be deduced
that the plotted innovations go out of bounds at the same
time-steps. This behavior is most likely due to a timing
issue on the recording side1. Looking at the timestamps
of the recorded messages regarding the SRS, it was found
that the average and most delta times Δ𝑡 of the messages
were equal to 10 ms, i.e., 100 Hz. However, the timing in
certain instances would vary between 0 ms to 24 ms as
shown in Fig. 16.

To summarize Fig. 15, the absolute mean of the second
half of the innovation is printed in Tab. VI, and the mean
of the seconds half of its covariance is printed in Tab. VII.

TABLE VI
Average absolute innovation ̃abs (𝝐) for select linear

encoder for each configuration.

Config 𝜖𝑙1 𝜖𝑙3 𝜖𝑙5
1 9.21×10−5 9.74×10−5 7.31×10−5

2 1.55×10−4 1.15×10−4 8.61×10−5

3 5.36×10−5 4.23×10−5 3.16×10−5
TABLE VII

The sigma-bounds based on the average estimated
observation covariance 𝑷̃ ̂𝑦 for select linear encoder for

each configuration.

Config 2 ⋅√𝑃 ̂𝑦𝑙1
2 ⋅√𝑃 ̂𝑦𝑙3

2 ⋅√𝑃 ̂𝑦𝑙5

1 1.86×10−4 1.86×10−4 1.86×10−4

2 1.04×10−4 1.04×10−4 1.04×10−4

3 1.53×10−5 1.53×10−5 1.53×10−5

Fig. 17 and 18 show the estimated lags of Configuration
3, the configuration with setpoints, converge. The impact
of the timestamp issue on the lag estimation is clearly
visible around the 43 s mark in Fig. 17 and 18, where the
lag comes close to zero. This jump in lag estimation of
both the translational as well as the rotational lags aligns
with especially large innovations 𝝐 on the linear encoders
caused by the timing issue. Here, the system computed
that the reduction in lag was the likely solution, however
the system estimated state was wrongly aligned in time
with the observation.

1This behavior is likely due to the packet coalescing setting of the
recording PC’s network card [52], hindering the timely arrival of the
various messages to the eCAL recording software.
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IX. Discussion

The overall discussion is hindered by the unexpected
delay on the TrackIR, which in turn restricts from making
final claims on the accuracy of the HMD pose estimation.

The timing issue depicted in Fig. 16 would result in
the UKF either over or under estimating certain states of
the SRS in particular, due to an incorrect delta-time Δ𝑡
variable used in the process models. However, as the algo-
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Fig. 18. SRS’s rotational lag plotted against its covariance.

rithm in this case is performed in a deterministic manner,
the results are still comparable, as each configuration has
to deal with the same data at each time-step.

Despite the timing issue, each configuration is still
capable of converging and estimating the state, leading
to conclude that the presented solutions are robust. This
is especially evident from the results of Configuration 3
(setpoints) in Fig. 17 and 18, where time related variables
are a major part of its state.

The minimal contributions the configurations seem to
have to the sigma-bound, as printed on the left side of
Tab. V, is due to the fact that the corrected, i.e., scaled up,
noise model of the TrackIR is inaccurate in comparison to
the Stewart platform’s estimation performance of any con-
figuration presented. Thus, any potential difference in in-
novation covariance is hindered by the scaled up TrackIR’s
noise model. Conversely, the original noise parameters, on
the right side of Tab. V, cause Configurations 2 (both
systems have an IMU) and 3 (setpoints) to theoretically
improve compared to Configuration 1 (only the HMD
has an IMU). This is expected due to the reduction in
process noise. Therefore, it can be concluded that from
the perspective of the HMD’s pose estimation, the need
for improved simulator base’s pose estimation is highly
dependent on the accuracy of the visual sensor.

Furthermore, in Tab V Configuration 0, the one only us-
ing visual pose tracking, is seemingly theoretically superior
to the other configurations, due to the reduced innovation
deviation. However, Configuration 0 lacks the ability to
have accurate interim predictions when compared to Con-
figurations 1, 2, and 3 all of which include the HMD’s
IMU for fast pose updates. Meaning that the state of
all three configurations is updated at 600 Hz, while the
state of Configuration 0 only updates at ≈60 Hz. Thus, an
argument can be made to opt for a visual only approach
given that HMD’s visual sensor would have a high enough
update rate [7]. However, such an approach would likely
yield higher costs due to the superior visual pose tracking
sensor employed.

When analyzing Configuration 1, i.e., HMD with IMU
but SRS without an IMU, on the presented motion profile,
it can be concluded that the noise parameters of the SRS’s
acceleration 𝝈 ̈𝑐𝑃

and angular acceleration 𝝈𝜔̇𝑃
are tuned

slightly too large. This is evident from the innovations in
Fig. 15 when timestamps of the SRS’s messages are not a
problem, e.g., from 20 s to 40 s.

Next, Configuration 2 in Fig. 15, i.e., where both the
HMD and SRS have an IMU as input, results in inno-
vations that are coloured by the motion profile. This is
likely due to the integration scheme used in the process
model, assuming the measurements to be true, and thus
constant, in combination with a relatively low SRS’s IMU
message update rate of 100 Hz. However, when the SRS’s
timestamps are not an issue, i.e., between 20 s to 40 s,
Configuration 2 is within 95 % sigma-bounds. Considering
the motion profile and the integration scheme used in



combination with the update rate of the SRS’S IMU,
the noise parameters of Configuration 2 are well tuned.
Increasing the SRS’s message rate of the IMU would cause
this configuration’s process noise parameters to be lowered
substantially, in turn increasing the accuracy of the SRS’s
pose estimation.

In Fig. 15 the innovations of Configuration 3, i.e., HMD
with an IMU and SRS with setpoints, are not within
sigma-bound even when the SRS’s timestamps are as
expected. Additional tuning was not found to yield any
further improvements. In particular, both lag deviations,
𝝈𝜏 ̈𝑐𝑃

and 𝝈𝜏𝜔̇𝑃
, could not be increased further without

compromising the algorithmic stability. This means that
there potentially was more variation on the setpoint’s lags
noise model. A different setpoint model or way of inte-
grating them into the KF would allow for more accuracy
gains.

Also, increasing the SRS’s deviations on acceleration
𝝈 ̈𝑐𝑃

and angular acceleration 𝝈𝜔̇𝑃
yielded mixed results.

Increasing the deviations (𝝈 ̈𝑐𝑃
, 𝝈𝜔̇𝑃

) would lead to the
innovation being mostly within sigma-bounds, but at the
cost of an increased absolute innovation values, due to
said deviations actually hindering the estimation of the
setpoint’s lags.

When comparing the innovation of all three configu-
rations in Tab. VI, it can be concluded that in terms
of average absolute innovation of the Stewart platform
that Configuration 3 is superior despite its stability issues.
The inherent algorithmic stability issues of Configuration
3 could be solved by using a multiple model approach [53].
In this scenario, the system would switch between Config-
uration 1 and 3 based upon the desired motion, i.e., SRS’s
setpoints. So, unless the SRS is moving along all 6-DOF,
the system will use Configuration 1 rather than 3.

Even though the SRS has an IMU in Configuration 2,
Configuration 1, the one without an IMU on the SRS,
has slightly better performance for this motion profile as
can be seen in Fig 15 and printed in Tab. VI, probably
due to a couple of factors. First, the linear encoders are
precise relative to the SRS’s IMU when it comes to their
contribution to the estimated pose. Second, to deal with
the extra process noise at 100 Hz, the performance of the
SRS’s IMU is restricted as there are no additional accurate
interim state predictions. Thus, it can be concluded that
from the perspective of the SRS’s pose estimation the
addition of an IMU is an improvement only if the update
rate is sufficiently high, and/or in combination with a
more accurate integration scheme at the cost of a higher
computational budget. From the perspective of the HMD’s
pose estimation, the added benefit of an additional IMU is
potentially even smaller due to the estimation performance
propagating through the visual pose tracking.

X. Conclusion
To conclude, by having an IMU on a HMD rather than

solely basing the pose estimation on visual pose tracking

will have an added benefit of having more accurate and
numerous predictions between the observations by said
visual pose tracking.

The impact of additional sensors or information via
setpoints to the moving base on the HMD pose estimation
depends on the accuracy of the visual pose tracking sensor,
because the moving base pose estimation accuracy prop-
agates through the visual pose tracking sensor. However,
a different sensor than the TrackIR 5 to track the HMD
within the cabin is recommended for this use case, due to
TrackIR 5 large delay and closed proprietary software.

In principle, given accurate observation sensors of the
moving base, measuring the absolute pose directly or
indirectly, in this case indirectly via linear encoders, a
configuration without an IMU and solely relaying on
additive noise variables to the higher-order terms of the
moving base, i.e., Configuration 1, is a sufficient minimal
solution to properly estimate the HMD’s cabin-fixed pose.

If an accurate IMU is available on the moving base,
it should only be included if the IMU’s update rate is
high enough, i.e., larger than 100 Hz. This would allow
for more accurate predictions between observations of the
moving base, and therefore improve the HMD’s cabin-fixed
pose estimation. Currently, for the motion base’s IMU,
a frequency of 100 Hz in combination with the chosen
integration methods, the integration error is too large
relative to the IMU’s measurement error, resulting in
questionable pose estimation improvements at the cost of
system complexity.

Conversely, if no IMU is available on the moving base,
but superior pose estimation accuracy is required for the
moving base, a setpoint based configuration could be used.
However, due to stability issues concerning the lag esti-
mation, a multiple model approach to the UKF algorithm
based on two configurations presented in this paper could
be a solution, and is therefore recommended for further
research. This approach would switch between two models,
where one model uses setpoints (Configuration 3), while
the other one keeps the additive noise variables to the
higher-order terms, but ignores the setpoint related states
and variables (Configuration 1). This approach would
combine the most accurate configuration while retaining
algorithmic robustness.

When replicating this research, care should be taken
to solve the ethernet related timing issue to improve the
state estimation. Also, an effort should be made to test
the configurations interactively, i.e. online.
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1
Introduction

In 1965, Ivan Sutherland was one of the first researchers to describe modern Virtual Reality (VR)
systems in his paper ‘The Ultimate Display’ [66]. In this work, a system was described using a Head-
Mounted Display (HMD) to present a visual representation of the virtual world relative to the user. Three
years later Sutherland built and presented his first version of ‘The Ultimate Display’ [65], a VR system
showing rudimentary shapes in a virtual room on a HMD. Sutherland made the following observation
regarding head tracking [65]:

“Although stereo presentation is important to the three-dimensional illusion, it is less
important than the change that takes place in the image when the observer moves his
head.”

The VR/Augmented Reality (AR) technology has since developed, and is now a sophisticated tool which
can be used for various purposes in various fields, such as engineering, architecture and video game
design. A VR/AR system provides an immersive experience as the user’s gaze of the virtual world is
rendered onto the HMD. If placed in a motion platform simulator, a VR/AR system could provide a larger
Field-of-Regard (FoR) than conventional out-of-window visual system currently in use. These would
mostly improve rotor-craft and fighter jet simulators, which would then be able to simulate the reality
in a more immersive way and thus provide a more realistic exercise. Moreover, if one is to design a
motion platform with a VR system from the outset, significant weight reductions are possible, due to the
removal of the conventional display technology. This would allow an increase in the responsiveness of
the motion based simulator, as the force to weight ratio would be improved, as well as possibly reduce
the cost of production.

Nowadays, head tracking in VR and AR systems are commonly performed by a combination of inertial
and visual-based sensors. Inertial sensors present on a HMD, namely Micro-Electro-Mechanical
Systems (MEMS) based Inertial Measurement Unit (IMU), provide high-frequency low-latency pose,
meaning position and attitude, updates. IMU’s inherent implementation for pose estimation causes
drift over time [73]. On the other hand, visual-based sensors, commonly in the form of light-point or
image tracking, track the relative head-pose, eliminating the drift due to the IMU implementation, albeit
at a lower frequency than the MEMS based IMU. Two types of VR/AR systems can be distinguished
based on the Degree-of-Freedom (DoF). Three-DoF VR/AR systems typically only use a MEMS-based
IMU. More advanced systems, which are the focal point of this project, in addition to an IMU also
typically include a form of visual tracking to enable reliable six-DoF VR/AR systems. In principle, using
the visual-based sensors would suffice for the head tracking, but most VR/AR systems also include
MEMS based IMU, resulting in an increase in accuracy and update rate.

However, placing such an advanced six-DoF VR/AR system inside an enclosed motion platform
simulator would result in the movement of the motion platform being picked up by the IMU. The sensor
would interpret such movement from the motion platform as head movement in a traditional VR/AR
system, which will inevitably distort the estimated head-pose. Consequently, the distorted head-pose
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causes a sensory mismatch between the user’s visual and vestibular systems [39, 25, 55], which would
have a significant negative impact on the user experience and render the system unusable.

The following sections of the this introduction will provide more detailed description of the research
framework, as well as the report itself.

Research Objective and Questions
The aim of this Thesis is to enable the usage of IMUs contained in advanced VR/AR systems within an
enclosed motion-based simulator. This will allow for the full potential of such systems to be available
for use in such an environment. Thus, the objective of the research is stipulated as follows:

Present a solution on the implementation of a Head-Mounted Display with both an
Inertial Measurement Unit and visual tracking inside an enclosed motion platform by
developing a sensor fusion algorithm that generates a proper relative pose estimate.

In order to attain the set out objective, the following primary research Research Question is identified:

What is an effective sensor fusion algorithm that generates a proper relative pose of
a Head-Mounted Display located within an enclosed motion platform.

The main Research Question is further fractionated in sub-questions which will simplify the process of
reaching a solution to the problem, namely:

• What are the characteristics of an effective state estimation algorithm that implements a head
mounted display on a motion platform?

• What is the impact of incorporating the motion cues for the motion platform to improve the relative
pose estimate?

• What is the impact of having an inertial measurement unit on the motion platform when estimating
the pose of the head mounted display?

In order to answer the proposed Research Questions, the general head tracking of a VR/AR
system should be understood, including the algorithms used for this purpose. In addition, the pose
estimation algorithms of the motion platforms themselves should be investigated. Moreover, a further
understanding of the motion cues of the motion platforms and their relation to the movement of the
motion platform themselves are required. Also, for finding the necessary characteristics of the algorithm,
the sensor noise models should be understood. These elements will be tackled in the upcoming
literature review.

Report outline
In the subsequent Chapter 2, a literature review is performed on the topics of related literature, HMD
head-tracking, motion platforms and state estimation algorithms followed by a conclusion on the literary
section. Next, in Chapter 3, the chosen state estimation algorithm is explained in detail, where after
the algorithm is expanded on to deal with the potential latency on one of the observation sensors.
Following, in Chapter 4, the individual continuous kinematic models of both the VR/AR system aswell as
the Stewart platform are created and explained. Using the established individual continuous kinematic
models, three configurations are created where the VR/AR systems and Stewart platform are combined
in Chapter 5. Specific sensors which will be used in the experiments are described in detail and their
noise models parametrized in Chapter 6. Furthermore, in Chapter 7 the continuous kinematic models
are discretized, the senor data is generated based on the defined motion, and parts of the algorithm
are redefined to implement the quaternion attitude. Moreover, the algorithm, detailed in Chapter 3,
the three configurations kinematic models, defined in Chapter 5, and the sensor parameters, found in
Chapter 6, are combined and simulated in Chapter 7. Following the conclusion on the analysis of the
simulation, an experiment plan is generated in Chapter 8 to validate the initial findings of this Thesis
on the SIMONA Research Simulator at TU Delft. Finally, in Chapter 9 this Thesis is concluded and the
Research Questions are answered accordingly.



2
Literature Review

In this chapter, the relevant work in the field is presented to gain an insight into the current
understandings of the topics of research. Due to the scope of this research this literature study will
not only focus on theories regarding this field, but also look into the practical aspects of the equipment
to be used to validate the proposed theoretical approach.

First, research related to Virtual Reality (VR)/Augmented Reality (AR) system implementations on
motion platforms are presented in Section 2.1. Due to the lack of previous research attempts to
build onto, each system individually, VR/AR system and Stewart platform, is further analyzed. For
this reason, VR/AR systems are discussed in Section 2.2 and elements, such as the sensors and the
algorithm, contributing to the pose estimation are investigated. A similar approach is taken for the
motion platforms in Section 2.3, first a general overview is given before diving into the elements that
are relevant for the pose estimation. Finally, the literature review is concluded in Section 2.4.

2.1. Previous Research
VR/AR implementations were only found in simulators on motion platform based on an open design [68,
58, 25]. This meant that the visual tracking for the VR/AR system could be fixed to the room the
simulator was in, i.e. the inertial reference frame. The pose relative to the cockpit, i.e. the vehicle-fixed
pose, was computed by deducting the motion platform’s pose from the estimated head-pose.

However, none of the research papers listed above detailed the head-tracking. The expected
justification for this is that a solution for the open simulators exists, which is an open-source software
package in combination with off-the-shelf components [38]. This solution only works if the absolute
position tracking is not mounted on the motion platform but rather on the ceiling or walls instead, thus
fixed to the inertial frame of reference. In combination with mounting a trackable object, such as the vive
tracker, compatible with the visual system to the chair of the user and deducting the pose of the chair
from the pose of the Head-Mounted Display (HMD) in software [58, 25]. This is, however, not possible
in fully enclosed simulators such as SIMONA Research Simulator (SRS), where visual tracking can
only be done with respect to (w.r.t.) to the moving platform reference frame, from now on called vehicle-
fixed. No research was found on the implementation of a VR/AR system in a fully enclosed existing
simulators. More details on SRS can be found in Section 2.3.1

2.2. Artificial and Virtual Reality Systems
A six-Degree-of-Freedom (DoF) VR/AR system consist out of a HMD, Inertial Measurement Unit (IMU)
fixed to the HMD, and visual tracking [17, 3]. Due to the scope of this Thesis the focus is on the IMU in
the HMD and the visual tracking of the VR/AR system rather than the graphics pipeline or the display
technology.
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Figure 2.1: General working of a VR/AR system consisting of an IMU and visual tracking.

In Figure 2.1, the general working of a VR/AR system is given. The steps listed in the figure are listed
and expanded on if necessary:

1. Sensor data is published onto the data bus.
2. A new pose is estimated based on the sensor data and the previous pose.
3. Virtual world is simulated based on inputs and Image is rendered.
4. Image is send to headset and displayed.

Here, step 1 and 2 are the main consideration in this Thesis. For this reason, Section 2.2.1 and 2.2.2
delve deeper into the IMU and visual tracking sensors. In order to facilitate the modeling and simulation
of said sensors.

In Section 2.2.3 various algorithms used to estimate the pose of a HMD within a VR/AR system are
listed and discussed.

The user’s pose is estimated by combining the measurements of various sensors on the HMD, also
called sensor fusion. In this section, however, the focus will be on the various sensors the HMD uses
to estimate its own pose.

Figure 2.2: A Head-Mounted Display, the Pimax 8k-x, compatible with SteamVR systems [52].

2.2.1. Inertial Measurement Unit
In the case of a six-DoF VR/AR system, Micro-Electro-Mechanical Systems (MEMS) based IMU are
installed in the HMD. These IMU’s consist out of an accelerometer, gyroscope, and in certain cases a
magnetometer is also present [17, 3].
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An accelerometer measures the specific force applied to it and the gyroscope measures the angular
rate. To yield position and attitude, a certain set of operations, shown in Figure 2.3, are applied to
the specific force and angular rate measured by the IMU. In this figure the attitude is ascertained by
integrate the angular rate over time. In turn, the attitude is used to remove the gravity’s influence from
the specific force, resulting in the accelerations in a reference frame. These accelerations are twice
integrated over time while taking the initial velocity and position into account.
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Figure 2.3: Strapdown inertial navigation algorithm example [73].

Both the MEMS accelerometer and gyroscope have errors in their measurement. These inaccuracies
are caused by a number of sources, namely [73, 21]:

• The Constant Bias of an IMU sensor is the sensors average offset from the true value. The
constant bias can be found in both the accelerometer and gyroscope by performing a static
measurement, i.e. the sensor is held still. In the case of the accelerometer, the exact attitude
should be known to take gravity into account.

• The Angle/Velocity Random Walk are the white noise perturbations on the measurements.
Called angle random walk in case of the gyroscope and velocity random walk in case of the
accelerometer. These perturbations are caused by thermo-mechanical fluctuations, at a higher
rate than the sample rate.

• The Bias Stability of an IMU is the low frequency wandering of said sensor’s measurements
around the established constant bias.

• The Rate/Acceleration Random Walk are bias changes over a long period of time. The origin
of these changes are not always known, but one of the sources are changes in temperature.

• Calibration Errors is the collective term for errors related to alignment, scale factors, and
linearities. Theses errors can only be found while the IMU is undergoing a known motion.

By analyzing the noise signal of an IMU in a stationary position the Constant Bias, Angle/Velocity
Random Walk, Bias Stability, and Rate/Acceleration Random Walk can be found. Angle/Velocity
Random Walk, Bias Stability, and Rate/Acceleration Random Walk can be extracted by computing
the Allan Variation (AV) [21, 73, 27, 15]. The AV is a time-domain analysis method to estimate the
frequency stability of oscillators. AV, has been used successfully to estimate the stochastic errors of
an IMU.

Using an IMU solely for pose estimation as a system such as shown in Figure 2.3 causes the estimated
pose, i.e. the estimated attitude and position, to drift over time. The estimated pose drifts due to
integrating the errors present in both the gyroscope and accelerometer. The position drifts even faster,
relatively speaking, in a system such as presented in Figure 2.3, as the attitude is used to remove
the influence of the gravity on the specific force. The resulting acceleration is integrated double. Not
only scale the errors faster over time when comparing the attitudinal and the positional errors (linear
vs quadratically), an error in the attitude estimation causes a seemingly increase in the bias of the
accelerometer due to the aforementioned coupling of attitude and positional estimation.

2.2.2. Visual Tracking
Visual tracking is used in six-DoF VR/AR systems [3] as it provides absolute tracking of the position
and attitude. The fact that the pose can be deduced directly from the measurements without integration
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makes visual tracking a good combination with an IMU, capable of removing the drift that plagues an
IMU based system. The disadvantage of most visual tracking systems is their slow update rate, relative
to the IMU. Two main methods are identified for visual tracking, namely inside-out and outside-in based
visual tracking, and can be found in Sections 2.2.2.1 and 2.2.2.2 respectively.

Inside-out
With inside-out tracking, also called ‘ego-motion tracking’ [17], the HMD uses sensors on the HMD
to track its own pose within the environment. The act of the HMD tracking its own pose by sensing
the environment can be performed in multiple ways, but most commonly by using a stereo camera on
the HMD and an algorithm such as Simultanious Localization And Mapping (SLAM) [28]. In theory the
trackable workspace of the HMD has the potential to be infinite and requires no setup. In practice inside-
out tracking is computational intensive. Moreover, the tracking performance is strongly influenced by
lighting conditions and the requirement that the environment should remain largely static [12]. Two
conditions that are not easily guaranteed in an enclosed flight simulator.

The inside of an enclosed moving base simulator is a known environment. For this reason specific
markers, called landmarks, can be placed [46, 17]. The addition of such known landmarks reduce
the computational cost and lighting requirements when compared to algorithms such as SLAM . Also,
unambiguity due to the tracking of the motion on the displays in the cockpit is removed. However, this
solution removes the main advantage of inside-out tracking, namely the potential infinite workspace
and the fact that no setup is required.

These landmarks can be very advanced, in the case of the HTC vive [46], a popular VR system, the
landmarks emit Infrared (IR) light in a specific patter at a specific frequency in multiple locations order
to avoid unambiguity. These IR lights are subsequently recognized by the multiple IR-sensor on the
headset. Due to the specificity of the signal of the landmarks combined with the upfront known location
of these landmarks the pose can be estimated with relatively small computational cost [46, 7].

A current example of inside-out tracking is the current family of SteamVR compatible devices [46, 7].
The system employs at least two landmarks, in this case called Base Stations, emitting a specific IR
light pattern using a spinning IR emitter. Inside the Base Stations is an IMU to estimate the pose of the
Base Station. Furthermore, the Base Stations relative pose to one another is computed by receiving
another’s IR light pattern. The IMU inside the Base Station also register any motion. If any motion is
registered the Base Stations are shut down and upon restarting their relative pose to the other Base
Stations is recomputed. This last feature also protects the spinning IR emitters. This is due to the
fact that the Base Stations based HMD-tracking is functional due to the tight time-syncing between
the receivers on the headset and the IR emitters. Forces and rotations acting on these Base Stations
would speed up or down the emitters rotational speed, potentially causing a time-sync issue. Making
these Base Stations unsuitable for use inside a moving simulator.

Outside-in
Outside-in tracking, contrary to inside-out tracking, sensors in the environment track the HMD pose. In
most cases the HMD is broadcasting a specific pattern, actively or passively.

For the active case, IR emitters are most often fixed to the HMD. One or multiple IR sensors are placed
in the environment to pick up the distinguish pattern indicating the HMD pose. An current example of
active outside-in tracking is the Oculus Rift [34]. Whereby, two IR sensors detect the specific pattern
broadcasted by the IR transmitters on the HMD. In these kind of systems synchronization is often a
requirement between the IR emitters and the sensors.

A passive pattern consist mostly out of a known 3D shape attached to the HMD and tracked by a mono
or stereo camera system setup in the environment. In certain tracking systems, such as TrackIR [69]
and ART [4] systems, the known 3D shape is reflective and reflects back the IR light send by the camera.
Hereby forgoing the need for synchronization.

The advantages and disadvantages are the same as the outside-in tracking with landmarks as the
pattern emitter and sensor locations are swapped from HMD to environment and vice versa.



2.2. Artificial and Virtual Reality Systems 27

2.2.3. Head-Mounted Display Tracking Algorithm
Head-Mounted Display tracking is a key element in any VR/AR system, in this section the various HMD
tracking algorithms found are summarized in relation to this Thesis. The aim of any tracking algorithm
is is to provide the most accurate estimate on the current or future state. Errors such as noise, apparent
latency and jitter diminish the experience and can cause virtual sickness [56, 39, 74, 67].

For the HMD tracking for the Oculus Rift, LaValle et al. presented a Complementary Filter (CF) based
head tracking solution for a low-cost MEMS sensors VR implementation [34]. Here, certain IMU related
problems were addressed. The designed CF, a computationally inexpensive sensor fusion technique
consisting of a low-pass and a high-pass filter [45], assumed the average specific force over a short
period of time approximates the gravity vector and deal with the drifting attitude tilt, the growing tilt a
result of integrating the gyroscope errors. By calibrating and centering the magnetometer, part of their
IMU package, the yaw drift was also successfully eliminated. However, the positional drift was only
limited by using the kinematics of the upper body and assuming the lower body to remain stationary.
Hence, it was concluded that the CF in combination with only the MEMS based IMU were insufficient for
six-DoF and it was recommended that a visual tracking system should be added for improved accuracy.

In many cases of HMD tracking using an attached IMU and a form of visual tracking a Kalman Filter
(KF)-type of sensor fusion algorithm was used [26, 24, 14, 56]. A KF obtains an optimal estimate of
a stochastic system given the process model and sensor measurements. The standard KF works on
linear process models and observation models [23]. Extension to the standard KF algorithm, such as
Extended Kalman Filter (EKF), Iterative Extended Kalman Filter (IEKF), and Unscented Kalman Filter
(UKF) [41], have been developed to better deal with the nonlinear process, observation and noise
models.
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2.3. Stewart Platform Based Flight Simulator
In this section, a short study is compiled on Stewart platform flight simulators, in particular their motion
platforms. A Stewart platform has six degrees of freedom and is formed by two connected rigid
frames [63]. The two rigid frames are connected by six cylindrical actuators with Hooke joints, a joint
with only 2 degrees of freedom, at each end. A simplified geometric representation of a Stewart platform
is shown in Figure 2.4.

x

y

z

Bottom Fixed Frame
Upper Moving Frame
Linear Actuators

Figure 2.4: Simplified geometric representation of a Stewart platform.

While a range of different motion platform systems are available, the motion platform often chosen,
and available for integration and testing, is a Stewart platform [63]. Of the motion platforms, the motion
system, motion cues, and the algorithms that estimate the pose of the simulator are of interest. These
aspects of the motion platforms need to be understood in order to integrate a VR/AR system into a
motion platform simulator.

First, a high-level overview of a ground-based flight simulator is provided. Second, the Flight Simulator
provided, SRS, is further explored in terms of the previous discussed topics. Next, algorithms used to
estimate the upper moving frame pose of a Stewart platform are analyzed in Section 2.3.2. Final, the
motion cues are looked into.

Ground-based flight simulators provide a cost-effective method to asses pilot-vehicle behavior [1].
Moreover, ground-based flight simulators grant the added benefit that there is total control of the
situation and environment within the simulation. Motion platform simulators in particular, capable of
synthesizing the motion stimuli for the pilots, improve fidelity [1].

A high-level overview of the workings of a motion platform simulator is shown in Figure 2.5 based on
work done by Advani in [1].
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Figure 2.5: A high-level overview of the workings of a motion platform simulator.

In this figure, 1. the pilot manipulates the controls. 2. The controls are sampled, and serve as the input
to the mathematical model of the simulated vehicle. 3. The model generates the specific force and
angular acceleration, and passed through a Motion Limiter and Filter Algorithm. 4. Resulting in the
Motion Command Signals, or setpoints. 5. The Motion Control Computer interpret the setpoints to
generate the Motion Instructions specific for the Motion-Base at hand. 6. The generated Motion Cues
are felt by the pilot. 7. In order to compute the setpoints the estimated position, velocity, acceleration,
attitude, angular rate, and angular acceleration of the motion platform are required. 8. Based upon the
state of the virtual model a response is computed for the Controls and Instruments. 9. At the same
time, the virtual pose, position and attitude, of the simulated vehicle initiate the generation of the visual
image. 10. The projected image is refracted through a lense and reflected onto a mirror to the pilot.
11. Meanwhile, audio fragments are synthesized and combined based on the state of the simulated
vehicle. 12. Audio is played over the Sound System to the pilot.
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2.3.1. SIMONA Research Simulator

Figure 2.6: SIMONA Research Simulator [62]

Presented in Figure 2.6 is SIMONA Research Simulator (SRS), a high fidelity moving base simulator
used for research purposes at TU Delft. The moving base has a Stewart platform based design [1],
granting it six-DoF. This specific Stewart platform has six hydraulic actuators, with a stroke length of
1.25m. A absolute linear encoder is attached to each of the six hydraulic actuators, measuring the
length of each actuator. Moreover, an IMU is attached to the moving platform, capable of measuring
the specific force and angular rate.

2.3.2. Pose Estimation Algorithms
In this section the pose estimation algorithms used in case of a Stewart Platform are investigated. It
was found that the pose, position and attitude, of a Stewart platforms can be estimated in one of two
generalized methods.

The first kind of method uses the forward kinematic, by computing the pose from the measured lengths
of the connecting linear actuators. Due to the possibility of multiple poses corresponding to a measured
set of the connecting linear actuators a closed algebraic form is not possible and iterative schemes such
as Newton-Raphson (NR) or Gauss-Newton (GN) method [29, 13] are most commonly applied.

The second type of method uses the reverse kinematics of the first method, known as the inverse
kinematics. The inverse kinematics compute the lengths of the connecting linear actuators from the
pose of the Stewart platform. These computations are trivial. In practice, the inverse kinematics are
often used in combination with a type of KF [54, 43].

Also, using a sensor fusion algorithm, such as IEKF or UKF, in combination with the inverse kinematics
has the added benefit that other, higher order states can be estimated online [41, 23]. These higher
order states are beneficial for control purposes as mentioned in [54]. Moreover, KF methods take into
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account the Gaussian error spread of sensors, improving the estimated pose. Moreover, the integration
of extra sensors to reduce estimation error further and increase estimation robustness is trivial [43].

When comparing the EKF, and by extension IEKF, to the UKF, the latter was found to capture up until
the second order when propagating the estimated state and its covariance using the Scaled Unscented
Transformation (SUT) when compared to the Taylor expansion [41]. The EKF only managing to capture
the first order fully as it only linearizes around the current estimated state. Meaning that the UKF should
be more capable in estimating non-linear models.

In practice, the UKF was found to have similar computational cost to the EKF [59, 43, 30, 20] but
improved estimation performance.

2.3.3. Setpoints
In most cases, setpoints, or the Motion Command Signals, can be seen as the requested state or
the future state of the Stewart platform. These setpoints are the result of the filtered specific force
and angular acceleration of the mathematical model, and can consist of position, velocity, acceleration,
attitude, angular rate and angular acceleration. In parallel, these setpoints are limited by the physical
aspects of the Stewart platform, given the current estimated position, velocity, acceleration, attitude,
angular rate and angular acceleration of the Stewart platform.

Koekebakker states in [29] that a motion system with ‘An inner loop feedback and feedback linearising
control result in first order response of the system, from desired to actual accelerations.’ Meaning that if
the assumption holds where an inner loop feedback and feedback linearising control systems are used
to control the Stewart platform, a simplified model can be construed to predict the state of the Stewart
platform. Given the desired acceleration, i.e. setpoints, the actual acceleration can be approximated
by the response of a first order system.

No literature was found on the implementation of setpoints into a KF. In a way this makes sense as
to compute the setpoints the state should already have been estimated by the system beforehand.
However, it can be assumed that these setpoints do provide a window to the future state of the system.
Moreover, it is highly likely that a setpoint are not Gaussian, so an algorithm needs to be selected that
is at least lenient to non-Gaussian variables.

2.4. Literary Summary
As above mentioned, open design motion platform simulators are already capable of hosting a VR/AR
system. Hence, due to the lack of research, particularly encompassing the implementation of a
VR/AR system in an enclosed motion platform, this Thesis is set out to offer enhanced performance of
advanced six-DoF VR/AR systems.

One thing to consider when working with an IMU are the various noise sources and their impact on the
pose estimation. A pose estimated purely by measuring specific force and angular rate can only stay
correct for short periods of time. Moreover, the AV method can be used to compute the noise sources
on an IMU.

Visual tracking complements the IMU well as the pose can be deduced directly from the measurements,
negating the drift caused by the IMU. Irrespectively of inside-out or outside-in tracking the use of
landmarks or known 3D patterns is beneficial as the environment, meaning the cockpit in the flight
simulator, is a known entity. A notable majority of the found literature was successfully utilizing a type
of KF to estimate the pose of the HMD.

Motion Command Signals, or setpoints, could be employed to improve the estimation performance
but literature here is limited. Recently sensor fusion algorithms, such as the UKF, have been used to
estimate the Stewart platform’s state. Since types of KF have been used to estimate both systems
individually, i.e. VR/AR system and Stewart platform, it stands to reason that a KF is a proven choice to
be used when combining both into one system. Hence, the algorithm should be capable of estimating
a stochastic multivariate non-linear system and the UKF seems like a preferred choice.
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Unscented Kalman Filter

The Unscented Kalman Filter (UKF) is a Minimum Mean-Square-Error (MMSE) sequential
estimator [41] based on the Kalman Filter (KF) framework [23].

The KF framework, the UKF is based on, estimates the state 𝒙̂ based on direct or indirect
measurements of the actual state 𝒙. The KF framework estimates the state 𝒙̂ of a system by combining
measurements of the system, including the knowledge of the measurement’s probability distribution,
with the previous state and its covariance in a Gaussian approximate optimal manner [41]. The KF
framework works in two phases, the prediction and the correction phase, the latter also called the
update phase.

In the prediction phase, the previous estimated state 𝒙̂𝑘−1 and previous state covariance 𝑷𝑥̂𝑘−1
are

projected to the next time step (𝑘 − 1 → 𝑘) to the predicted state 𝒙̂−
𝑘 and predicted state covariance

𝑷 −
𝑥̂ 𝑘

. The predicted state 𝒙̂−
𝑘 is the projection in time of the previous estimated state 𝒙̂𝑘−1 itself and an

external input 𝒖𝑘−1 using the process model F, usually based on a physical model of the system, i.e.,

𝒙−
𝑘 = F (𝒙𝑘−1, 𝒖𝑘−1) (3.1)

While at the same time, the uncertainty of the process, i.e. process noise 𝝂, is appended to the previous
state covariance 𝑷𝑥̂𝑘−1

resulting in the predicted state covariance 𝒙̂−
𝑘 .

In the correction phase, the predicted state 𝒙̂−
𝑘 is corrected to the posterior state 𝒙̂𝑘 using an observation

𝒚𝑘 of the system. This is achieved by adding the Kalman Gain 𝑲 scaled difference between the
estimated ̂𝒚𝑘 and the actual observation 𝒚𝑘 to the predicted state 𝒙̂−

𝑘 . Here, the estimated observation
̂𝒚𝑘 is the result of observing the predicted state 𝒙̂−

𝑘 through the observation model H, i.e.

̂𝒚𝑘 = H (𝒙̂−
𝑘 ) (3.2)

The Kalman Gain 𝑲 mentioned above minimizes the difference between the estimated ̂𝒚𝑘 and actual
observation 𝒚𝑘 by adjusting the estimated state 𝒙̂𝑘 while taking into account the predicted state
covariance 𝑷 −

𝑥̂ 𝑘
and the observation noise 𝒐.

Using the outlined KF framework, the UKF manages to solve discrete-time nonlinear systems with
sequential probabilistic inference [41] that can be described by the combination of the process F and
observation H models, i.e.,

𝒙𝑘 = F (𝒙𝑘−1, 𝒖𝑘−1, 𝝂𝑘−1) (3.3)
𝒚𝑘 = H (𝒙𝑘, 𝒐𝑘) (3.4)

In comparison to its peers, the UKF uses the true nonlinear process F and observation modelsH, rather
than approximating them. However, the UKF approximates the assumed Gaussian distribution of the
state and represents this distribution with a minimal set of deterministically sampled points around the
state itself. The propagation of this set of sampled points, called sigma-point samples, through the
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true nonlinear process and subsequent true observation model and following the KF framework will
result in an expression of the posterior mean and its covariance. Also, by including the process 𝝂 and
observation noise 𝒐 into the state their distributions are represented in the sigma-point samples and
propagated through the process F and observation model H accordingly.

The deterministically sampling used in the UKF is called Scaled Unscented Transformation (SUT) and
is elaborated on in Section 3.1. Following the section on the SUT, and which a central part of the UKF,
the algorithm itself will be explained in Section 3.2. In Section 2.3.1 a latency in the observation sensors
was mentioned, due to this an extension to the UKF is introduced in Section 3.3 to deal with latency of
observation sensors in the system.

3.1. Scaled Unscented Transformation
The SUT is a method for propagating a variable’s probability distribution through a nonlinear function.
This is achieved by propagating weighted samples, sampled based on the variable’s probability
distribution, through said function. Hereafter, the variable’s propagated probability distribution can be
extracted by means of weighted mean and covariance of the propagated weighted samples.

The SUT in particular selects the state 𝒙 itself and two weighted samples 𝓧 per dimension 𝐿 of the
state 𝒙. These samples are sampled following the probabilistic spread around the state 𝒙 as indicated
by the covariance 𝑷𝑥̂ of said state. The collection of weights 𝒘 and samples 𝓧 are called sigma-points
𝕊 = {𝒘, 𝓧}. Moreover, the overall dimension of the sigma-point sample matrix equals to (2𝐿 + 1, 𝐿).
In order to compute weights 𝒘 and control the probabilistic spread of the samples 𝓧 around the state
𝒙 three new parameters are introduced:

𝛼: Controls the ‘distance’ between the sigma-points and the state best estimate 𝒙̂,
Should be 0 ≤ 𝛼 ≤ 1.

𝛽: Controls the influence of the higher order moments of the probability distribution,
Should be 𝛽 ≥ 0.

𝜅: Should be 𝜅 ≥ 0 to guarantee positive semi-definiteness of the state covariance matrix 𝑷𝑥̂ and
provide computational robustness. However, exact value of 𝜅 is not critical for the performance
of the algorithm.

Two sets of weights are needed to deduce the probability distribution from the sigma-point samples 𝓧,
𝒘(𝑚) for computing the weighted mean and 𝒘(𝑐) for deducing the weighted covariance. The weights
𝒘(𝑚) and 𝒘(𝑐) are derived in Equations 3.6, 3.7 and 3.8. An interim constant 𝜁, in Equation 3.5, is
computed to simplify Equations 3.6 to 3.8.

𝜁 = 𝛼2 (𝐿 + 𝜅) − 𝐿 (3.5)

𝒘(𝑚)
0 = 𝜁

𝐿 + 𝜁 (3.6)

𝒘(𝑐)
0 = 𝜁

𝐿 + 𝜁 + (1 − 𝛼2 + 𝛽) (3.7)

𝒘(𝑚)
𝑖 = 𝒘(𝑐)

𝑖 = 1
2(𝐿 + 𝜁) 𝑖 = 1, … , 2𝐿 (3.8)

Here, the zeroth weight has the largest influence. The zeroth sigma-point sample represent the current
state of the system and thus the best estimate at that point in time. Furthermore, the weights 𝒘(𝑚) and
𝒘(𝑐) are constant throughout the algorithm as long as the dimension of the state 𝐿 does not change.

Concurrent to creating both sets of the sigma-point weights, 𝒘(𝑚) and 𝒘(𝑐), the sigma-point samples
are computed from the estimated state 𝒙̂. The zeroth sigma-point sample is the estimated state 𝒙̂ itself.
The other sigma-point samples are computed by adding or subtracting the estimated state 𝒙̂ with the
𝑖th column of the square root of the weighted state covariance (√(𝐿 + 𝜁) 𝑷𝑥̂)

𝑖
, as per Equation 3.9.

Furthermore, the Cholesky method [10] is an efficient way to solve for the square root of the weighted
covariance matrix (√(𝐿 + 𝜁) 𝑷𝑥̂).

𝓧 = [𝒙̂ 𝒙̂ + (√(𝐿 + 𝜁) 𝑷𝑥̂)
𝑖

𝒙̂ − (√(𝐿 + 𝜁) 𝑷𝑥̂)
𝑖] 𝑖 = 0 … 𝐿 − 1 (3.9)
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Here, Equation 3.9 results in a (𝐿, 2𝐿 + 1) sized matrix. The non-zeroth sigma-point samples, columns
(1, … , 2𝐿), are spread around the estimated state 𝒙̂, approximating the probability distribution 𝑷𝑥̂ with
a minimal set of sigma-point samples.

3.2. Unscented Kalman Filter Algorithm
In this section the complete UKF will be explained, with the SUT, explained in Section 3.1, at its core.
First, the augmentation of the state and its covariance with the noise random variables will be discussed
in Section 3.2.1. Second, the initialization of the algorithm will be expanded on in Section 3.2.2. After,
the two different phases of the algorithm will be discussed. Starting with the prediction phase, in which
the process model F and a possible input 𝒖 are used to predict the next state 𝒙, as further discussed
in Section 3.2.3. While, the correction phase employs the observation model H and an observation 𝒚
to correct the state estimate, as per Section 3.2.4.

3.2.1. Augmentation of State and Covariance
One of the advantages of the UKF is the ability to deal with the influence of Gaussian noise on
the sensors according to the true process and observation system models. The UKF does so by
augmenting the state 𝒙 with the process 𝝂 and observation noise 𝒐 resulting in the augmented state
𝒙𝑎, i.e.,

𝒙𝑎 = [𝒙𝑇 𝝂𝑇 𝒐𝑇 ]𝑇 (3.10)

It must be noted that the augmentation of the state increases the dimension of the state to 𝐿 =
𝐿𝑥 + 𝐿𝑣 + 𝐿𝑜, with 𝐿𝑥 the dimension of the state, 𝐿𝑣 the dimension of the process noise, and 𝐿𝑜

the dimension of the observation noise. The addition of the noise random variables, 𝝂 and 𝒐, leads to
an increase in computational cost at the gain of the precision of introducing the noise random variables
according to their true respective model.

Likewise, the state covariance is also augmented with the covariances of the process and observation
noise random variables, 𝑸 and 𝑹 respectively, resulting in the augmented state covariance 𝑷 𝑎

𝑥̂ , i.e.,

𝑷 𝑎
𝑥̂ = ⎡⎢

⎣

𝑷𝑥̂ 0 0
0 𝑸 0
0 0 𝑹

⎤⎥
⎦

(3.11)

The uncertainty of both process and observation noise, by augmenting them to the state and covariance,
are captured in the sigma-points 𝕊 and can thus also be propagated in the true process and observation
models in the same manner as the uncertainty on the state.

The expected value, indicated by 𝐸 |…|, of both the process and observation noise random variables,
𝝂 and 𝒐 respectively, are equal to zero over time 𝑡, and characterized as they are both modelled as
zero-mean Gaussian noise. Their respective autocovariance are equal to 𝑸 and 𝑹 respectively by
definition, i.e.,

𝐸 |𝝂(𝑡)| = 0 𝐸 ∣𝝂(𝑡)𝝂𝑇 (𝜏)∣= 𝑸 → 𝝂(𝑡) ≈ ℵ (0, 𝑸) (3.12)
𝐸 |𝒐(𝑡)| = 0 𝐸 ∣𝒐(𝑡)𝒐𝑇 (𝜏)∣= 𝑹 → 𝒐(𝑡) ≈ ℵ (0, 𝑹) (3.13)

3.2.2. Initialization
At initialization, the zeroth time step indicated by subscript 0, the expected state and its expected
covariance are used for the initial state estimate 𝒙̂0 and its covariance 𝑷𝑥̂0

, i.e.,

𝒙̂0 = 𝐸 |𝒙0| (3.14)

𝑷𝑥̂0
= 𝐸 ∣[𝒙0 − 𝒙̂0][𝒙0 − 𝒙̂0]𝑇 ∣ (3.15)

Combining the information from Equations 3.10 to 3.15, the initial expected augmented state 𝒙̂𝑎
0 and
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its covariance 𝑷 𝑎
𝑥̂ 0

can be written as,

𝒙̂𝑎
0 =𝐸 |𝒙𝑎

0 | = 𝐸 ∣[𝒙𝑇
0 𝝂𝑇 𝒐𝑇 ]𝑇 ∣= [𝒙̂𝑇

0 0 0]𝑇

𝑷 𝑎
𝑥̂ 0

=𝐸 ∣[𝒙𝑎
0 − 𝒙̂𝑎

0 ][𝒙𝑎
0 − 𝒙̂𝑎

0 ]𝑇 ∣ = ⎡⎢
⎣

𝑷𝑥̂0
0 0

0 𝑸 0
0 0 𝑹

⎤⎥
⎦

(3.16)

In parallel, the sigma-point weights, 𝒘(𝑚) and 𝒘(𝑐), can be computed, using Equations 3.6 to 3.8, with
the augmented state’s dimension 𝐿 known.

3.2.3. Prediction
In the prediction phase, the process model F in combination with a possible input 𝒖 are used to project
the previous best state estimate 𝒙̂𝑘−1 and its covariance 𝑷𝑥̂𝑘−1

over one time step to the predicted state
𝒙̂−

𝑘 and its covariance 𝑷 −
𝑥̂ 𝑘

at time step 𝑘, the − superscript indicating the predicted status. In order to
do so, new sigma-point samples 𝓧𝑎

𝑘−1 are drawn around and including the augmented previous best
state 𝒙̂𝑎

𝑘−1 using its covariance 𝑷 𝑎
𝑥̂ 𝑘−1

in the SUT, as described in Section 3.1 in Equation 3.9 resulting
in,

𝓧𝑎
𝑘−1 = [𝒙̂𝑎

𝑘−1 𝒙̂𝑎
𝑘−1 + (√(𝐿 + 𝜁) 𝑷 𝑎

𝑥̂ 𝑘−1
)

𝑖
𝒙̂𝑎

𝑘−1 − (√(𝐿 + 𝜁) 𝑷 𝑎
𝑥̂ 𝑘−1

)
𝑖
] 𝑖 = 0 … 𝐿 − 1 (3.17)

As in Equation 3.9, the subscript 𝑖 indicates the column.
The rows of the sigma-points that represent the state will be indicated as 𝓧𝑥, the process noise 𝓧𝑣,
and the observation noise 𝓧𝑜, i.e.,

𝓧𝑎
𝑘−1 = ⎡⎢

⎣

𝓧𝑥
𝑘−1

𝓧𝑣
𝑘−1

𝓧𝑜
𝑘−1

⎤⎥
⎦

(3.18)

This results in the matrix size of the state part of (𝐿𝑥, 2𝐿 + 1), the process noise part of (𝐿𝑣, 2𝐿 + 1),
and the observation noise part of (𝐿𝑜, 2𝐿 + 1). The process model F in combination with a possible
input 𝒖 and the influence of the noise, in the form of the process noise sigma-point samples 𝓧𝑣

𝑘−1, are
then utilized to project the state part of the previous sigma-points samples 𝓧𝑥

𝑘−1 to the next time step,
i.e. the predicted state sigma-point samples 𝓧𝑥,−

𝑘 , i.e.,

𝓧𝑥,−
𝑘 = F (𝓧𝑥

𝑘−1, 𝓧𝑣
𝑘−1, 𝒖𝑘−1) (3.19)

From the predicted state sigma-point samples 𝓧𝑥,−
𝑘 the predicted state 𝒙̂−

𝑘 and its covariance 𝑷𝑥̂
−
𝑘
are

computed by means of weighted means and weighted variance using the sigma-point weights 𝒘(𝑚)

and 𝒘(𝑐) respectively, i.e.,

𝒙̂−
𝑘 =

2𝐿
∑
𝑖=0

𝒘(𝑚)
𝑖 𝓧𝑥,−

𝑘,𝑖 (3.20)

𝑷 −
𝑥̂ 𝑘

=
2𝐿
∑
𝑖=0

𝒘(𝑐)
𝑖 [𝓧𝑥,−

𝑘,𝑖 − 𝒙̂−
𝑘 ][𝓧𝑥,−

𝑘,𝑖 − 𝒙̂−
𝑘 ]𝑇

(3.21)

Here, the subscript 𝑖 indicates the column.

3.2.4. Correction
In the correction phase, the predicted state 𝒙̂−

𝑘 and its covariance 𝑷 −
𝑥̂ 𝑘

are corrected to the posterior
state 𝒙̂𝑘 and its covariance 𝑷𝑥̂𝑘

. This is achieved by, at the arrival of a measurement 𝒚𝑘, projecting the
predicted state sigma-points samples 𝓧𝑥,−

𝑘 through the observation model alongside the observation
noise sigma-point samples 𝓧𝑜 into the estimated observation points 𝓨𝑘, i.e.,

𝓨𝑘 = H(𝓧𝑥,−
𝑘 , 𝓧𝑜

𝑘) (3.22)
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Similar to the prediction phase, the estimated observation ̂𝒚𝑘 and its covariance 𝑷 ̂𝑦𝑘
are determined by

taking the weighted means and weighted variance of the propagated observation points 𝓨𝑘 using the
sigma-point weights 𝒘(𝑚) and 𝒘(𝑐) respectively, i.e.,

̂𝒚𝑘 =
2𝐿
∑
𝑖=0

𝒘(𝑚)
𝑖 𝓨𝑘 (3.23)

𝑷 ̂𝑦𝑘
=

2𝐿
∑
𝑖=0

𝒘(𝑐)
𝑖 [𝓨𝑘,𝑖 − ̂𝒚𝑘][𝓨𝑘,𝑖 − ̂𝒚𝑘]𝑇 (3.24)

Also, the weighted cross-covariance 𝑷𝑥̂𝑘 ̂𝑦𝑘
between the predicted state 𝒙̂𝑘 and the estimated

observation points ̂𝒚𝑘 can be computed as:

𝑷𝑥̂𝑘 ̂𝑦𝑘
=

2𝐿
∑
𝑖=0

𝒘(𝑐)
𝑖 [𝓧𝑥,−

𝑘,𝑖 − 𝒙̂−
𝑘 ][𝓨𝑘 − ̂𝒚𝑘]𝑇 (3.25)

Here, the subscript 𝑖 indicates the column. Both the estimated observation ̂𝒚𝑘 and its covariance 𝑷 ̂𝑦𝑘
are required to correct the predicted state 𝒙̂−

𝑘 and its covariance 𝑷 −
𝑥̂𝑘
.

The Kalman gain is defined to minimize the error optimally between the predicted state propagated
through the observationmodel by changing the predicted state based on the ratio between the predicted
estimated state’s covariance and the observation covariance. The Kalman gain can be computed by
dividing the cross-covariance 𝑷𝑥̂𝑘 ̂𝑦𝑘

, found in Equation 3.25 by the observation covariance 𝑷 ̂𝑦𝑘
, shown

in Equation 3.24, i.e.,
𝑲𝑘 = 𝑷𝑥̂𝑘 ̂𝑦𝑘

𝑷 −1
̂𝑦𝑘

(3.26)

Finally, scaling the the innovation 𝝐𝑘, meaning the difference between the actual observation 𝒚𝑘 and
the estimated observation ̂𝒚𝑘, with the Kalman gain 𝑲𝑘 and adding the result to the predicted state 𝒙̂−

𝑘
results in the posterior state 𝒙̂𝑘, i.e.,

𝒙̂𝑘 = 𝒙̂−
𝑘 + 𝑲𝑘 [𝒚𝑘 − ̂𝒚𝑘]

= 𝒙̂−
𝑘 + 𝑲𝑘𝝐𝑘 (3.27)

The posterior covariance 𝑷𝑥̂𝑘
on the other hand, is computed by subtracting the predicted state

covariance𝑷 −
𝑥̂ 𝑘

the observation covariance𝑷 ̂𝑦𝑘
scaled with the Kalman gain𝑲, found in Equation 3.26,

i.e.,

𝑷𝑥̂𝑘
= 𝑷 −

𝑥̂ 𝑘
− 𝑲𝑘𝑷 ̂𝑦𝑘

𝑲𝑇
𝑘 (3.28)

From examining Equations 3.27 and 3.28, in which it was shown how to compute the posterior state
𝒙̂𝑘 and its covariance 𝑷𝑥̂𝑘

, the role of the Kalman gain 𝑲 becomes more apparent. As a relative large
Kalman gain 𝑲 will favor the observation model, or in other words the correction phase, while a relative
small Kalman gain 𝑲 will favor the process model or, in other words, the prediction phase. The Kalman
gain 𝑲 itself scales with the cross-covariance 𝑷𝑥̂𝑘 ̂𝑦𝑘

and inversely with the observation covariance
𝑷 ̂𝑦𝑘

. These two terms themselves both positively scale with the process 𝑸 and observation 𝑹 noise
distributions respectively after being propagated through the process F and observation Hmodels. The
takeaway for following chapters is that the process 𝑸 and observation 𝑹 noise distributions could be
employed to tune the UKF.

3.3. Latency Compensation
In this section a method to optimally integrate the delayed sensor into the KF-framework will be
explained. In the next section, proof will be given why this method is optimal in the KF-framework
and implemented into the UKF.

A sensor’s latency is defined when the current sensor output actually corresponds to the state of the
system at some point in the past, as depicted in Figure 3.1. The latency of an observation sensor, the
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measurement of the sensor used in the correction phase, is defined as the measurement 𝒚𝑙→𝑘 taken
at time-step 𝑙 but only presented to the system at time-step 𝑘, hence the subscript 𝑙→𝑘.
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State

Filter

State

















Figure 3.1: Latency on the observation 𝒚𝑙→𝑘.

The latency of an observation sensor could be an issue when designing state estimators, such as
the UKF. When not accounting for the latency of an observation sensor the KF-framework will relate
and correct the current predicted state 𝒙̂−

𝑘 with the delayed observation 𝒚𝑙→𝑘. Correcting the current
predicted state 𝒙̂−

𝑘 towards the measured state 𝒙𝑙 at time 𝑙. The error of not taking the latency into
consideration scales with the change in the state 𝒙 over the latency time period in relation to the process
𝑸 noise or in other words the precision of the delayed sensor.

Multiple methods for dealing with observational latency have been proposed [2, 5, 33, 41]. By far
the easiest method would be to simply ignore the latency of the sensor. This method could work if
it is the case that the latency on the sensor was relative small to the motion of the system and the
precision of that sensor was already lacking. More precisely, in this case the system would not move
much during the span of the latency when compared to the precision, the impact of the latency could be
ignored. This case could simply be solved by increasing the observation noise distribution 𝑹. However,
the observation noise distribution 𝑹 would no longer be zero-mean, but the error incurred would be
probably rather small to the precision of the rest of the system. If this is not the case, crucial information
would be lost with this method.

3.3.1. Smoothed Delayed Sensor Fusion
The approach used in this Thesis is the UKF implementation of the Smoothed Delayed Sensor Fusion
(SDSF) as found in [41] and builds upon Larsen’s method [33]. The core idea of the algorithm extension
will be explained in this section. In the next section, Section 3.3.2, the SDSF will be implemented on
the UKF algorithm itself.

The SDSF corrects the state optimally based on delayed observation given the knowledge on the
latency of the observation. However, the SDSF does not estimate the delay on the observation. The
core idea of this algorithm is to extend the estimated state and its covariance with a copy of the itself
corresponding to the expected time-step of the delayed measurement, i.e. time-step 𝑙, also depicted
in Figure 3.2. The copy of the state and its covariance is made at the end of the time-step and is
highlighted in green in Figure 3.2. Moreover, the copy of the state, i.e. the past estimated state 𝒙̂𝑙, is
left unaltered by the prediction phase, see time-steps 𝑙 + 1 and 𝑘 − 1 in Figure 3.2. By extension of the
state being unaltered its covariance 𝑷𝑥̂𝑙

will also be unchanged by the prediction phase. Meanwhile,
the cross-covariance terms between the current and past estimated state 𝑷𝑥̂𝑘𝑥̂𝑙

, 𝑷𝑥̂𝑙𝑥̂𝑘
are maintained

alongside the current estimated state 𝒙̂𝑘 and its covariance 𝑷𝑥̂𝑘
.

At the time of arrival of the delayed observation 𝒚𝑙→𝑘 at time-step 𝑘, both the past 𝒙̂𝑙 and current
estimated state 𝒙̂𝑘, alongside all their covariances, are corrected. The past estimated state 𝒙̂𝑙 is
corrected in the expected KF-framework manner, the only difference being that all elements involved,
i.e. state, observation, covariance, are of the same time-step. Every correction of a past estimated
state is indicated by a superscript +.
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The current estimated state 𝒙̂𝑘 is corrected by utilizing the maintained cross-covariance between the
current and past estimated state to transfer the correction from the past estimated state 𝒙̂𝑙 to the
current estimated state 𝒙̂𝑘. If the corrected past estimated state is no longer required, i.e. no delayed
sensor’s observation is still inbound that was measured at the past estimated state’s time-step, said
past estimated state and respective covariances can be removed. In Figure 3.2, the to-be removed
state is highlighted in red and crossed out at the respective time-step.
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Figure 3.2: The estimated state 𝒙̂𝑙 and its covariance 𝑷𝑥̂𝑙 are copied at time-step 𝑙. At the arrival of the delayed observation
𝒚𝑙→𝑘, the copied estimated state 𝒙̂𝑙 and its covariance 𝑷𝑥̂𝑙 are used to correct both the past and current estimated state.

Green to signal the copy of the state at the end of the time-step.
Red and 𝑥̸ to signal the removal of the past estimated state before the end of the time-step.

Moreover, at the arrival of a non-delayed observation, similar to arrival of a delayed observation, both
the current and the past estimated state are corrected. Meaning, the current estimated state is used
to improve past estimated state(s) based on subsequent future observation. This causes the past
estimated state to be smoothed during the latency period by non-delayed observations [18]. In this
case, the current estimated state is corrected in the standard KF-framework manner, all elements, i.e.
state, covariance, and observation, are of the same time-step 𝑘. However, the past estimated state is
corrected by using the maintained cross-covariance between the current and past estimated state to
transfer the correction from the current estimated state 𝒙̂𝑘 to the current estimated state 𝒙̂𝑙.

This event, the arrival of a non-delayed observation, is also portrait in Figure 3.3. Here a non-delayed
observation 𝒚𝑛 at time-step 𝑛 corrects both the current as well as the past estimated state. The now
improved past estimated state is indicated by the superscript +.
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Figure 3.3: The current and past estimated state are corrected by a future non-delayed observation 𝒚𝑙+𝑛. The correction on
the past estimated state 𝒙̂𝑙 is indicated by the superscript +.

Green to signal the copy of the state at the end of the time-step.
Red and 𝑥̸ to signal the removal of the past estimated state before the end of the time-step.

To clarify, there can only be one current state, but it is possible to hold more than one past estimated
state. This is the case if the latency of the sensor is larger than its time step duration or there exist
multiple sensors with a delay. The maximum amount of past estimated states 𝑀 required per delayed
sensor at a time after the first latency period depends on the sensor’s frequency and its latency. Here
the sensor’s frequency and latency are expressed as the amount of discrete time-steps between
measurements, Δ𝑡 and 𝑑 respectively, i.e.,

𝑀 = 𝑑
Δ𝑡 (3.29)

The amount of past estimated states 𝑀 per sensor is reduced if the physical measurements happen
to overlap time-step wise.

For example, depicted in Figure 3.4 is a sensor with a latency of two time-steps measuring every time-
step. The system needs two past estimated states after the first latency period. In this figure at certain
time-steps three past estimated states are depicted, but it must be noted that the red crossed out state
is removed at the same time the current state is copied (highlighted in green). This ensures that the
maximum number of past estimated states in this example is two.



3.3. Latency Compensation 40







System

Observations

System

State

Filter

State


 

























Figure 3.4: An example of a sensor with a latency of two time-steps measuring every time-step needing two past estimated
states and their covariances after the first latency period.

Green to signal the copy of the state at the end of the time-step.
Red and 𝑥̸ to signal the removal of the past estimated state before the end of the time-step.

Due to space restrictions the state and respective covariances are placed staggered. The vertical dotted line connects the state
to the correct time-step.
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Also interesting in this example is that each delayed observation corrects the next past estimated state,
i.e. delayed observation ̂𝒚0→2 corrects the past estimated state 𝒙̂1 at time-step 2, and so on.

The opposite can also happen, where the delay period 𝑑 is shorter than the time betweenmeasurements
Δ𝑡, depicted in Figure 3.5. In this figure a sensor has a latency of one time-step and measures every
three time-steps. This configuration results in needing a past estimated state every three time-steps
for the duration of one time-step.
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Figure 3.5: An example of a sensor with a latency of one time-step measuring every three time-steps. Here, the system needs
one past state every three time-steps.

Green to signal the copy of the state at the end of the time-step.
Red and 𝑥̸ to signal the removal of the past estimated state before the end of the time-step.

To end this section the rules of SDSF can be summed up as follows:

• Prediction Phase

– Only predict the next current state, no alteration of past estimated state(s).
• Correction Phase

– Correct all states, including past estimated state(s).
– At the end of this phase:
If a past estimated state is no longer required it can be removed.

• Every Iteration:

– If any delayed sensor is expected to make a physical observation, copy current estimated
state before starting the next iteration.

In the correction phase some optimizations can be applied. If the correction is based on a delayed
observation and the past estimated state relevant to the delayed observation would be no longer
required after this correction phase for an even longer delayed sensor, the update of the relevant past
estimated state can be skipped. However, the skipped corrected past estimated state 𝒙̂+

𝑙 is the best
estimate of the system at time-step 𝑙, having fused all the measurements and could be of note for
logging purposes for example.

3.3.2. Smoothed Delayed Unscented Kalman Filter
In the previous section the rules were explained for copying, removing and altering the past estimated
state and its covariance. In this section, the rule-set is implemented into the UKF resulting in the
Smoothed Delayed Unscented Kalman Filter (SDUKF). First, the reason is given for copying the past
estimated state from an optimal Kalman gain perspective. Next, the equation of the UKF in Section 3.2
are re-examined in order to to deal with the multiple states in different time-steps.
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Optimal Kalman Gain
The reason for copying the estimated state and maintaining cross-covariance between the current and
past estimated states can be traced back to the Kalman gain𝑲 required to correct the current predicted
state 𝒙̂−

𝑘 with a delayed observation 𝒚𝑙→𝑘, i.e.,

𝒙̂𝑘 = 𝒙̂−
𝑘 + 𝑲𝑙→𝑘 [𝒚𝑙→𝑘 − ̂𝒚𝑙→𝑘] (3.30)

In this case, the Kalman gain 𝑲𝑙→𝑘 represents the optimal correction of the current predicted state 𝒙̂−
𝑘

based on the delayed estimated observation ̂𝒚𝑙→𝑘. Where, this Kalman gain 𝑲𝑙→𝑘 can be computed
as,

𝑲𝑙→𝑘 = 𝑷𝑥̂𝑘 ̂𝑦𝑙→𝑘
𝑷 −1

̂𝑦𝑙→𝑘
(3.31)

Here, the delayed estimated observation’s covariance 𝑷 ̂𝑦𝑙→𝑘
relates the certainty of the observation.

So when multiplied with the delayed estimated innovation [𝒚𝑙→𝑘 − ̂𝒚𝑙→𝑘] scales the error appropriately.
The cross-covariance 𝑷𝑥̂𝑘 ̂𝑦𝑙→𝑘

holds the relation between the current estimated state 𝒙̂𝑘 and the past
estimated observation ̂𝒚𝑙→𝑘. Moreover, the cross-covariance 𝑷𝑥̂𝑘 ̂𝑦𝑙→𝑘

translates the scaled error to the
current predicted state 𝒙̂−

𝑘 in Equation 3.30.

Extended State
In order to compute the delayed estimated observation ̂𝒚𝑙→𝑘, its covariance 𝑷 ̂𝑦𝑙→𝑘

and the cross-
covariance 𝑷𝑥̂𝑘 ̂𝑦𝑙→𝑘

the extended estimated state 𝒙̂𝑒
𝑘 and its covariance 𝑷𝑥̂𝑒

𝑘
are defined as:

𝒙̂𝑎
𝑘 = ⎡⎢

⎣

𝒙̂𝑒
𝑘

0
0

⎤⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

𝒙̂𝑘
𝒙̂𝑙
⋮

𝒙̂𝑙+𝑀𝑑
0
0

⎤
⎥
⎥
⎥
⎥
⎦

(3.32)

𝑷 𝑎
𝑥̂𝑘

= ⎡⎢
⎣

𝑷𝑥̂𝑒
𝑘

0 0
0 𝑸 0
0 0 𝑹

⎤⎥
⎦

=

⎡
⎢⎢⎢⎢⎢
⎣

𝑷 𝑥̂𝑘
𝑷 𝑥̂𝑘𝑥̂𝑙

⋯ 𝑷 𝑥̂𝑘𝑥̂𝑙+𝑀𝑑
0 0

𝑷 𝑥̂𝑙𝑥̂𝑘
𝑷𝑥̂𝑙

𝑷 𝑥̂𝑙𝑥̂𝑙+𝑀𝑑
0 0

⋮ ⋱
𝑷 𝑥̂𝑙+𝑀𝑑𝑥̂𝑘

𝑷 𝑥̂𝑙+𝑀𝑑𝑥̂𝑙
𝑷 𝑥̂𝑙+𝑀𝑑

0 0
0 0 0 𝑸 0
0 0 0 0 𝑹

⎤
⎥⎥⎥⎥⎥
⎦

(3.33)

The extended estimated state 𝒙̂𝑒
𝑘 and its covariance 𝑷𝑥̂𝑒

𝑘
extend the current estimated state 𝒙̂𝑘 and its

covariance 𝑷𝑥̂𝑘
with the past ones. Here the 𝑀 and 𝑑 in the subscript are the same as the ones defined

for Equation 3.29, i.e. the maximum amount of states and delay period in time-steps respectively. This
also means that the explanation in this section limits itself to one delayed sensor. However, upgrading
the equations in this section to deal with multiple delayed sensors is trivial. The difficult part in dealing
with multiple delayed sensors is keeping track of the multiple past states in relation to the delayed
observations, i.e. the removing and copying of the estimated state and its covariance as explained in
the previous section.

Sigma-Points
While, expanding and shrinking the extended state 𝒙̂𝑒

𝑘 and its covariance 𝑷𝑥̂𝑒
𝑘
it is important to keep

track of the changing state dimension 𝐿, i.e.,

𝐿 = 𝑚𝐿𝑥 + 𝐿𝑣 + 𝐿𝑜 (3.34)

Where, 𝑚 is the current amount of states in the extended state 𝒙̂𝑒
𝑘. If the maximum past states 𝑀 are

in use for the observation sensor would simply equate to 𝑚 = 𝑀 + 1. A consequence of the changing
state dimension 𝐿 are the sigma-point weights, computed in Equations 3.5 to 3.8, who depend on the
state dimension 𝐿.
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Prediction Phase
At the start of the prediction phase the sigma-point samples are drawn based on Equation 3.17 which
is restated below for convenience.

𝓧𝑎
𝑘−1 = [𝒙̂𝑎

𝑘−1 𝒙̂𝑎
𝑘−1 + (√(𝐿 + 𝜁) 𝑷 𝑎

𝑥̂𝑘−1
)

𝑖
𝒙̂𝑎

𝑘−1 − (√(𝐿 + 𝜁) 𝑷 𝑎
𝑥̂𝑘−1

)
𝑖
] 𝑖 = 0 … 𝐿 − 1

Here, the subscript 𝑖 indicates the column.

=

⎡
⎢
⎢
⎢
⎢
⎣

𝓧𝑥
𝑘−1

𝓧𝑥
𝑙

⋮
𝓧𝑥

𝑙+𝑀𝑑
𝓧𝑣

𝓧𝑜

⎤
⎥
⎥
⎥
⎥
⎦

(3.35)

In this step, the cross-covariances between past and current states are expressed in the sigma-point
samples. An important aspect of the SDUKF, as each column holds a variation on the past and current
estimated states expressing the augmented state’s covariance 𝑷 𝑎

𝑥̂𝑘−1
, which includes the expanded

state’s covariance 𝑷 𝑒
𝑥̂𝑘−1

.

For example, the sigma-point samples 𝓧𝑥
𝑙 , which are sampled around the oldest estimated state 𝒙̂𝑙,

are of size (𝐿𝑥, 2𝐿 + 1). Its first 2𝐿𝑥 columns, represents the cross-covariance 𝑷𝑥̂𝑙𝑥̂𝑘
with the current

previous estimated state 𝒙̂𝑘−1. The next 2𝐿𝑥 columns, represents its own covariances 𝑷𝑥̂𝑙
, and so on.

After sampling the sigma-point samples 𝓧𝑎
𝑘−1, only the ones based on the current previous estimated

state 𝒙̂𝑘−1, meaning 𝓧𝑥,−
𝑘 , are propagated to the next time-step using the process model F in similar

manner to Equation 3.19, i.e.,

𝓧𝑥,𝑒,−
𝑘 = 𝑓(𝓧𝑥,𝑒

𝑘−1, 𝓧𝑣
𝑘−1, 𝒖𝑘−1)

⎡
⎢
⎢
⎢
⎣

𝓧𝑥,−
𝑘

𝓧𝑥
𝑙

𝓧𝑥
𝑙+𝑑
⋮

𝓧𝑥
𝑙+𝑀𝑑

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

𝑓(𝓧𝑥
𝑘−1, 𝓧𝑣

𝑘−1, 𝒖𝑘−1)
𝓧𝑥

𝑙
𝓧𝑥

𝑙+𝑑
⋮

𝓧𝑥
𝑙+𝑀𝑑

⎤
⎥
⎥
⎥
⎦

(3.36)

Resulting in the predicted extended state sigma-point samples 𝓧𝑥,𝑒,−
𝑘 .

Consistent with the original UKF algorithm in Equation 3.20, the predicted extended state 𝒙̂𝑒,−
𝑘 is

computed by taking the weighted mean of the predicted extended state sigma-point samples 𝓧𝑥,𝑒,−
𝑘 ,

i.e.,

𝒙̂𝑒−
𝑘 =

2𝐿
∑
𝑖=0

𝒘(𝑚)
𝑖 𝓧𝑥,𝑒,−

𝑘,𝑖 (3.37)

Here, the subscript 𝑖 indicates the column. Only the sigma-points samples 𝓧𝑥,−
𝑘 were projected over

one time-step, the other sigma-point samples were left unaltered. This allows the computation of the
predicted extended state 𝒙̂𝑒,−

𝑘 to be simplified to,

⎡
⎢⎢
⎣

𝒙̂−
𝑘

𝒙̂𝑙
⋮

𝒙̂𝑙+𝑀𝑑

⎤
⎥⎥
⎦

=
⎡
⎢⎢
⎣

∑2𝐿
𝑖=0 𝒘(𝑚)

𝑖 𝓧𝑥,−
𝑘,𝑖

𝒙̂𝑙
⋮

𝒙̂𝑙+𝑀𝑑

⎤
⎥⎥
⎦

(3.38)

Following the definition of the predicted extended state 𝒙̂𝑒,−
𝑘 in Equation 3.38, its covariance 𝑷 −

𝑥̂𝑒
𝑘
can

be computed. Following the same principle as with the definition of the predicted state’s covariance in
Equation 3.21, i.e.,

𝑷 −
𝑥̂𝑒

𝑘
=

2𝐿
∑
𝑖=0

𝒘(𝑐)
𝑖 (𝓧𝑥,𝑒,−

𝑘,𝑖 − 𝒙̂𝑒−
𝑘 ) (𝓧𝑥,𝑒,−

𝑘,𝑖 − 𝒙̂𝑒−
𝑘 )𝑇
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can be further expanded into,

⎡
⎢
⎢
⎣

𝑷 −
𝑥̂𝑘

𝑷 −
𝑥̂𝑘𝑥̂𝑙

⋯ 𝑷 −
𝑥̂𝑘𝑥̂𝑙+𝑀𝑑

𝑷 −
𝑥̂𝑙𝑥̂𝑘

𝑷𝑥̂𝑙
𝑷 𝑥̂𝑙𝑥̂𝑙+𝑀𝑑

⋮ ⋱
𝑷 −

𝑥̂𝑙+𝑀𝑑𝑥̂𝑘
𝑷 𝑥̂𝑙+𝑀𝑑𝑥̂𝑙

𝑷 𝑥̂𝑙+𝑀𝑑

⎤
⎥
⎥
⎦

=
2𝐿
∑
𝑖=0

𝒘(𝑐)
𝑖

⎡
⎢⎢
⎣

𝓧𝑥,−
𝑘,𝑖 − 𝒙̂−

𝑘
𝓧𝑥

𝑙,𝑖 − 𝒙̂𝑙
⋮

𝓧𝑥
𝑙+𝑀𝑑,𝑖 − 𝒙̂𝑙+𝑀𝑑

⎤
⎥⎥
⎦

⋅
⎡
⎢⎢
⎣

𝓧𝑥,−
𝑘,𝑖 − 𝒙̂−

𝑘
𝓧𝑥

𝑙,𝑖 − 𝒙̂𝑙
⋮

𝓧𝑥
𝑙+𝑀𝑑,𝑖 − 𝒙̂𝑙+𝑀𝑑

⎤
⎥⎥
⎦

𝑇

(3.39)

Within the predicted extended state’s covariance only the ones related to the predicted state 𝒙̂−
𝑘 are

updated and is indicated by the superscript −. This fact could be used to minimize the computational
load.

Correction Phase
The execution of the correction phase depends if the incoming observation is from a sensor with latency
or not. However, the difference in execution is small.

The general rule is the following, when an observation 𝒚 arrives, the rows of sigma-point samples
corresponding to the system’s state at which the physical measurement took place are used to correct
the predicted 𝒙̂−

𝑘 and the past states.

This means that when a delayed observation 𝒚𝑙→𝑘 arrives at time step 𝑘 the sigma-point samples 𝓧𝑥
𝑙 ,

corresponding to the past estimated state 𝒙̂𝑙, are used. And, when a non-delayed measurement 𝒚𝑘
arrives the predicted sigma-point samples 𝓧𝑥,−

𝑘 , corresponding to the current predicted state 𝒙̂−
𝑘 , are

used.

Following the structure of the nominal UKF correction phase in Section 3.2.4, the first step is the
propagation of the relevant sigma-point samples through the observation model H resulting in the
estimated observation points 𝓨. Even though the sigma-point samples are drawn around the estimated
state of the corresponding time step, only 2𝐿𝑥 columns of the matrix are based on their own covariance.
The rest, 2(𝑚 − 1) are sampled based their cross-covariance with the other estimated states’s
covariances within the extended state 𝒙̂𝑒

𝑘. And together, as the past sigma-points 𝓧𝑥
𝑙 corresponding

to time-step 𝑙 are propagated in case of the delayed observation 𝒚𝑙→𝑘, i.e.,

𝓨𝑙→𝑘 = H(𝓧𝑥
𝑙 , 𝓧𝑜) (3.40)

Resulting in the delayed estimated observation points 𝓨𝑙→𝑘. The the predicted sigma-points 𝓧𝑥,−
𝑘 are

used in case of the non-delayed observation 𝒚𝑘, i.e.,

𝓨𝑘 = H(𝓧𝑥,−
𝑘 , 𝓧𝑜) (3.41)

Resulting in the (current) estimated observation points 𝓨𝑘.

The computation of the estimated observation ̂𝒚 and its covariance 𝑷 ̂𝑦 in both the delayed and non-
delayed case are very similar and almost identical to the original UKF Equations 3.23 and 3.22. In
both cases they are found by taking the weighted mean and weighted covariance. The delayed case
is defined as,

̂𝒚𝑙→𝑘 =
2𝐿
∑
𝑖=0

𝒘(𝑚)
𝑖 𝓨𝑙→𝑘 (3.42)

𝑷 ̂𝑦𝑙→𝑘
=

2𝐿
∑
𝑖=0

𝒘(𝑐)
𝑖 (𝓨𝑙→𝑘 − ̂𝒚𝑙→𝑘) (𝓨𝑙→𝑘 − ̂𝒚𝑙→𝑘)𝑇 (3.43)

And the non-delayed case can be expressed as,

̂𝒚𝑘 =
2𝐿
∑
𝑖=0

𝒘(𝑚)
𝑖 𝓨𝑘 (3.44)

𝑷 ̂𝑦𝑘
=

2𝐿
∑
𝑖=0

𝒘(𝑐)
𝑖 (𝓨𝑘 − ̂𝒚𝑘) (𝓨𝑘 − ̂𝒚𝑘)𝑇 (3.45)



3.3. Latency Compensation 45

The non-delayed case looks identical to the original UKF Equations 3.23 and 3.22. However, these
estimated observation points 𝓨 also include the propagated cross-covariance terms as discussed
above.

The weighted cross-covariances, 𝑷 𝑥̂𝑒
𝑘 ̂𝑦𝑙→𝑘

and 𝑷 𝑥̂𝑒
𝑘 ̂𝑦𝑘

, between the predicted extended state 𝒙̂𝑒−
𝑘 and

the delayed ̂𝒚𝑙→𝑘 or non-delayed estimated observation ̂𝒚𝑘 respectively are calculated similar to
Equation 3.25, i.e.,

𝑷 𝑥̂𝑒
𝑘 ̂𝑦𝑙→𝑘

=
2𝐿
∑
𝑖=0

𝒘(𝑐)
𝑖 (𝓧𝑥,𝑒,−

𝑘,𝑖 − 𝒙̂𝑒−
𝑘 ) (𝓨𝑙→𝑘 − ̂𝒚𝑙→𝑘)𝑇

Unfolding 𝓧𝑥,𝑒,−
𝑘 and 𝒙̂𝑒−

𝑘 using Equations 3.36 and 3.38, i.e.,

⎡
⎢⎢
⎣

𝑷 𝑥̂𝑘 ̂𝑦𝑙→𝑘
𝑷 𝑥̂𝑙 ̂𝑦𝑙→𝑘

⋮
𝑷 𝑥̂𝑙+𝑀𝑑 ̂𝑦𝑙→𝑘

⎤
⎥⎥
⎦

=
2𝐿
∑
𝑖=0

𝒘(𝑐)
𝑖

⎡
⎢⎢
⎣

𝓧𝑥,−
𝑘,𝑖 − 𝒙̂−

𝑘
𝓧𝑥

𝑙,𝑖 − 𝒙̂𝑙
⋮

𝓧𝑥
𝑙+𝑀𝑑,𝑖 − 𝒙̂𝑙+𝑀𝑑

⎤
⎥⎥
⎦

⋅ [𝓨𝑙→𝑘 − ̂𝒚𝑙→𝑘]𝑇
(3.46)

The non-delayed cross-covariance 𝑷 𝑥̂𝑒
𝑘 ̂𝑦𝑘

is expressed as,

𝑷 𝑥̂𝑒
𝑘 ̂𝑦𝑘

=
2𝐿
∑
𝑖=0

𝒘(𝑐)
𝑖 (𝓧𝑥,𝑒,−

𝑘,𝑖 − 𝒙̂𝑒−
𝑘 ) (𝓨𝑘 − ̂𝒚𝑘)𝑇

Unfolding 𝓧𝑥,𝑒,−
𝑘 and 𝒙̂𝑒−

𝑘 using Equations 3.36 and 3.38, i.e.,

⎡
⎢⎢
⎣

𝑷 𝑥̂𝑘 ̂𝑦𝑘
𝑷 𝑥̂𝑙 ̂𝑦𝑘

⋮
𝑷 𝑥̂𝑙+𝑀𝑑 ̂𝑦𝑘

⎤
⎥⎥
⎦

=
2𝐿
∑
𝑖=0

𝒘(𝑐)
𝑖

⎡
⎢⎢
⎣

𝓧𝑥,−
𝑘,𝑖 − 𝒙̂−

𝑘
𝓧𝑥

𝑙,𝑖 − 𝒙̂𝑙
⋮

𝓧𝑥
𝑙+𝑀𝑑,𝑖 − 𝒙̂𝑙+𝑀𝑑

⎤
⎥⎥
⎦

⋅ [𝓨𝑙 − ̂𝒚𝑘]𝑇
(3.47)

With the delayed estimated observation’s covariance 𝑷 ̂𝑦𝑙→𝑘
and delayed cross-covariance 𝑷 𝑥̂𝑒

𝑘 ̂𝑦𝑙→𝑘
defined in Equations 3.43 and 3.46 the definition of the Kalman gain 𝑲 for the delayed case in
Equation 3.31 at the start of this section comes back in view. Following the definition of the KF-
framework, the extended Kalman gain 𝑲𝑒, meaning the set of Kalman gains for every estimated state
of the system for the given observation, is defined in the delayed case as,

𝑲𝑒
𝑙→ = 𝑷 𝑥̂𝑒

𝑘 ̂𝑦𝑙→𝑘
⋅ 𝑷 −1

̂𝑦𝑙→𝑘

Here, the subscript 𝑙→ on the extended Kalman gain 𝑲𝑒
𝑙→ indicating the time-step from which the

correction is based on. Using Equation 3.46 to expand 𝑷 𝑥̂𝑒
𝑘 ̂𝑦𝑙→𝑘

, i.e.,

⎡
⎢⎢
⎣

𝑲𝑙→𝑘
𝑲𝑙→𝑙

⋮
𝑲𝑙→𝑙+𝑀𝑑

⎤
⎥⎥
⎦

=
⎡
⎢⎢
⎣

𝑷 𝑥̂𝑘 ̂𝑦𝑙→𝑘
𝑷 𝑥̂𝑙 ̂𝑦𝑙→𝑘

⋮
𝑷 𝑥̂𝑙+𝑀𝑑 ̂𝑦𝑙→𝑘

⎤
⎥⎥
⎦

⋅ 𝑷 −1
̂𝑦𝑙→𝑘

(3.48)

It is now clear that the Kalman gain 𝑲𝑙→𝑘 Equation 3.31 is actually a part of the extended Kalman gain
𝑲𝑒

𝑙→.
Employing similar tactics, the extended Kalman gain𝑲𝑒

𝑘→, meant for correcting the extended estimated
state 𝒙̂𝑒

𝑘 based on the non-delayed observation 𝒚𝑘, is defined as,

𝑲𝑒
𝑘→ = 𝑷 𝑥̂𝑒

𝑘 ̂𝑦𝑘
⋅ 𝑷 −1

̂𝑦𝑘

Using Equation 3.47 to expand 𝑷 𝑥̂𝑒
𝑘 ̂𝑦𝑘

, i.e.,

⎡
⎢⎢
⎣

𝑲𝑘→𝑘
𝑲𝑘→𝑙

⋮
𝑲𝑘→𝑙+𝑀𝑑

⎤
⎥⎥
⎦

=
⎡
⎢⎢
⎣

𝑷 𝑥̂𝑘 ̂𝑦𝑘
𝑷 𝑥̂𝑙 ̂𝑦𝑘

⋮
𝑷 𝑥̂𝑙+𝑀𝑑 ̂𝑦𝑘

⎤
⎥⎥
⎦

⋅ 𝑷 −1
̂𝑦𝑘

(3.49)
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Once the extended Kalman gain 𝑲𝑒 is computed, the predicted extended state 𝒙̂𝑒,−
𝑘 and its covariance

𝑷 −
𝑥̂𝑒

𝑘
are corrected using the same principles as in the original UKF Equations 3.27 and 3.28. In the

delayed case the correction of the predicted extended state 𝒙̂𝑒,−
𝑘 is defined as,

𝒙̂𝑒
𝑘 = 𝒙̂𝑒,−

𝑘 + 𝑲𝑒
𝑙→ (𝒚𝑙→𝑘 − ̂𝒚𝑙→𝑘)

Expanding 𝒙̂𝑒,−
𝑘 and 𝑲𝑒

𝑙→ using Equations 3.38 and 3.48 respectively, i.e.,

⎡
⎢⎢
⎣

𝒙̂𝑘
𝒙̂+

𝑙
⋮

𝒙̂+
𝑙+𝑀𝑑

⎤
⎥⎥
⎦

=
⎡
⎢⎢
⎣

𝒙̂−
𝑘

𝒙̂𝑙
⋮

𝒙̂𝑙+𝑀𝑑

⎤
⎥⎥
⎦

+
⎡
⎢⎢
⎣

𝑲𝑙→𝑘
𝑲𝑙→𝑙

⋮
𝑲𝑙→𝑙+𝑀𝑑

⎤
⎥⎥
⎦

⋅ [𝒚𝑙→𝑘 − ̂𝒚𝑙→𝑘] (3.50)

Likewise, the non-delayed correction of the predicted extended state 𝒙̂𝑒,−
𝑘 is defined as,

𝒙̂𝑒
𝑘 = 𝒙̂𝑒,−

𝑘 + 𝑲𝑒
𝑘→ (𝒚𝑘 − ̂𝒚𝑘)

Expanding 𝒙̂𝑒,−
𝑘 and 𝑲𝑒

𝑘→ using Equations 3.38 and 3.49 respectively, i.e.,

⎡
⎢⎢
⎣

𝒙̂𝑘
𝒙̂+

𝑙
⋮

𝒙̂+
𝑙+𝑀𝑑

⎤
⎥⎥
⎦

=
⎡
⎢⎢
⎣

𝒙̂−
𝑘

𝒙̂𝑙
⋮

𝒙̂𝑙+𝑀𝑑

⎤
⎥⎥
⎦

+
⎡
⎢⎢
⎣

𝑲𝑘→𝑘
𝑲𝑘→𝑙

⋮
𝑲𝑘→𝑙+𝑀𝑑

⎤
⎥⎥
⎦

⋅ [𝒚𝑘 − ̂𝒚𝑘] (3.51)

Last, the extended estimated state’s covariance 𝑷𝑥̂𝑒
𝑘
is corrected using the appropriate Kalman gain.

In similar fashion to Equation 3.28, the delayed can be expressed as,

𝑷𝑥̂𝑒
𝑘

= 𝑷 −
𝑥̂𝑒

𝑘
− 𝑲𝑒

𝑙→𝑷 ̂𝑦𝑙→𝑘
𝑲𝑒𝑇

𝑙→

Expanding 𝑷 −
𝑥̂𝑒

𝑘
and 𝑲𝑒

𝑙→ using Equations 3.36 and 3.48 respectively, i.e.,

=
⎡
⎢
⎢
⎣

𝑷 −
𝑥̂𝑘

𝑷 −
𝑥̂𝑘𝑥̂𝑙

⋯ 𝑷 −
𝑥̂𝑘𝑥̂𝑙+𝑀𝑑

𝑷 −
𝑥̂𝑙𝑥̂𝑘

𝑷𝑥̂𝑙
𝑷 𝑥̂𝑙𝑥̂𝑙+𝑀𝑑

⋮ ⋱
𝑷 −

𝑥̂𝑙+𝑀𝑑𝑥̂𝑘
𝑷 𝑥̂𝑙+𝑀𝑑𝑥̂𝑙

𝑷 𝑥̂𝑙+𝑀𝑑

⎤
⎥
⎥
⎦

−
⎡
⎢⎢
⎣

𝑲𝑙→𝑘
𝑲𝑙→𝑙

⋮
𝑲𝑙→𝑙+𝑀𝑑

⎤
⎥⎥
⎦

𝑷 ̂𝑦𝑙→𝑘
[𝑲𝑇

𝑙→𝑘 𝑲𝑇
𝑙→𝑙 ⋯ 𝑲𝑇

𝑙→𝑙+𝑀𝑑] (3.52)

=
⎡
⎢
⎢
⎣

𝑷 𝑥̂𝑘
𝑷 𝑥̂𝑘𝑥̂+

𝑙
⋯ 𝑷 𝑥̂𝑘𝑥̂+

𝑙+𝑀𝑑
𝑷 𝑥̂+

𝑙 𝑥̂𝑘
𝑷𝑥̂+

𝑙
𝑷 𝑥̂+

𝑙 𝑥̂+
𝑙+𝑀𝑑

⋮ ⋱
𝑷 𝑥̂𝑙+𝑀𝑑+ 𝑥̂𝑘

𝑷 𝑥̂+
𝑙+𝑀𝑑𝑥̂+

𝑙
𝑷 𝑥̂+

𝑙+𝑀𝑑

⎤
⎥
⎥
⎦

(3.53)

Likewise, for the non-delayed correction of the extended estimated state’s covariance 𝑷𝑥̂𝑒
𝑘
, i.e.,

𝑷𝑥̂𝑒
𝑘

= 𝑷 −
𝑥̂𝑒

𝑘
− 𝑲𝑒

𝑘→𝑷 ̂𝑦𝑙→𝑘
𝑲𝑒𝑇

𝑘→

Expanding 𝑷 −
𝑥̂𝑒

𝑘
and 𝑲𝑒

𝑙→ using Equations 3.36 and 3.49 respectively, i.e.,

=
⎡
⎢
⎢
⎣

𝑷 −
𝑥̂𝑘

𝑷 −
𝑥̂𝑘𝑥̂𝑙

⋯ 𝑷 −
𝑥̂𝑘𝑥̂𝑙+𝑀𝑑

𝑷 −
𝑥̂𝑙𝑥̂𝑘

𝑷𝑥̂𝑙
𝑷 𝑥̂𝑙𝑥̂𝑙+𝑀𝑑

⋮ ⋱
𝑷 −

𝑥̂𝑙+𝑀𝑑𝑥̂𝑘
𝑷 𝑥̂𝑙+𝑀𝑑𝑥̂𝑙

𝑷 𝑥̂𝑙+𝑀𝑑

⎤
⎥
⎥
⎦

−
⎡
⎢⎢
⎣

𝑲𝑘→𝑘
𝑲𝑘→𝑙

⋮
𝑲𝑘→𝑙+𝑀𝑑

⎤
⎥⎥
⎦

𝑷 ̂𝑦𝑙→𝑘
[𝑲𝑇

𝑘→𝑘 𝑲𝑇
𝑘→𝑙 ⋯ 𝑲𝑇

𝑘→𝑙+𝑀𝑑] (3.54)

=
⎡
⎢
⎢
⎣

𝑷 𝑥̂𝑘
𝑷 𝑥̂𝑘𝑥̂+

𝑙
⋯ 𝑷 𝑥̂𝑘𝑥̂+

𝑙+𝑀𝑑
𝑷 𝑥̂+

𝑙 𝑥̂𝑘
𝑷𝑥̂+

𝑙
𝑷 𝑥̂+

𝑙 𝑥̂+
𝑙+𝑀𝑑

⋮ ⋱
𝑷 𝑥̂𝑙+𝑀𝑑+ 𝑥̂𝑘

𝑷 𝑥̂+
𝑙+𝑀𝑑𝑥̂+

𝑙
𝑷 𝑥̂+

𝑙+𝑀𝑑

⎤
⎥
⎥
⎦

(3.55)

This concludes the correction phase and the UKF implementation of the SDSF. One of the foreseeable
downsides of this algorithm extension is the increased computational cost, as the matrices grow in size
due to the copying of the estimated state.



4
HMD & Stewart Platform Kinematics

In preparation of the discrete-time system required by the Unscented Kalman Filter (UKF), presented in
Chapter 3, the continuous-time system equations are first established in this chapter. The kinematics
of the Virtual Reality (VR)/Augmented Reality (AR) system and a Stewart platform are presented
individually first. Following, both these individual kinematics, the VR/AR system and Stewart platform
kinematics, are joined in the next chapter, Chapter 5, into various configurations.

However before the individual kinematics are established, some general assumptions are listed
in Section 4.1, simplifying the kinematics. Next, a short section about the quaternion attitude
representation, used throughout this Thesis, is presented in Section 4.2. Initially, the individual
kinematics of both systems are presented in their configuration with Inertial Measurement Unit (IMU).
Due to the fact that in both systems the IMU measurements serve as input and the observations are
based on comparable states the process model and state of both individual kinematic models are alike.
The general input 𝒖, state 𝒙, and process model f of both systems are presented in Section 4.3 and
purposefully expressed in certain reference frames to aid joining and extending both kinematic models
in the next chapter, Chapter 5. After presenting the general process model f, the observation model
of the Stewart platform itself is constructed in Section 4.4. Last, an explanation of the VR/AR system
is given and the VR/AR system observation is deduced, both are found in Section 4.5. Hereby, both
VR/AR system and Stewart platform initial individual system equations are completed.

4.1. Assumptions
The following assumptions will simplify the mathematical models used throughout this Thesis while only
having a small effect on the accuracy of the kinematic models:

• Rigid body of constant mass
It is assumed that the geometry and the mass of the systems under consideration do not change
during standard use-cases.

• Flat Earth
Due to the fact that the systems under consideration can only travel a short distance from their
fixed origin, the Earth’s curvature influence is negligible.

• Non-rotating Earth
The systems under consideration can travel only a short distance from their fixed origin and
have low velocities. Neglecting the rotation of the Earth ignores two accelerations, i.e. coriolis
acceleration and centripetal acceleration. The coriolis acceleration is small as the velocity relative
to the Earth of the systems under consideration is small. The centripetal acceleration is small
and can be more importantly be assumed constant as the systems under considerations can only
move small distances around a fixed origin.

• Constant gravity As the systems under consideration only travel a short distance from their fixed
origin, this assumption is valid.

47
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4.2. Attitude
In this section, a brief introduction will be given to the attitude representation used throughout this
Thesis. The attitude will be represented by the Euler-Rodrigues quaternion formulation. The Euler-
Rodrigues quaternions, from now on just called quaternions, are a computationally superior method
when compared to the more intuitive Euler angle formulation [51].

The quaternion attitude representation of a rotation of one reference frame to another will be described
mathematically in Equation 4.6 [71, 61, 51]. In this appendix, the mathematical relation between the
quaternion and Euler angle attitude representation is also presented.

A quaternion attitude 𝒆 with respect to (w.r.t.) to the inertial reference frame 𝔼𝐼 can be noted as:

𝒆 = (𝑒0 𝑒𝑥 𝑒𝑦 𝑒𝑧) { 1
𝔼𝐼

} (4.1)

With,

‖𝒆‖ = √𝑒2
0 + 𝑒2𝑥 + 𝑒2𝑦 + 𝑒2𝑧 = 1 (4.2)

Where 𝑒0 is the quaternion scalar term and 𝑒𝑥, 𝑒𝑦, and 𝑒𝑧 form the vector components of the quaternion
in the inertial reference frame 𝔼𝐼 and in order to represent an attitude with a quaternion it is important
that the norm of the quaternion is equal to one [71, 51].

The relationship between two reference frames, an example reference frame 𝔼𝑍 and the initial reference
frame 𝔼𝐼 , is defined as the transformation 𝑻𝑍𝐼 , i.e.,

{𝔼𝑍} = 𝑻𝑍𝐼 {𝔼𝐼} (4.3)

Where the transformation 𝑻𝑍𝐼 is capable of transforming points and vectors from the inertial 𝔼𝐼 to
the example reference frame 𝔼𝑍. The transformation 𝑻𝑍𝐼 can be expressed as an orthogonal matrix,
meaning that the inverse is equal to the transposed. In the case of the current example this means
mathematically that,

𝑻𝑍𝐼𝑻 −1
𝑍𝐼 = 𝑻𝑍𝐼𝑻 𝑇

𝑍𝐼 = 𝐼 → {𝔼𝐼} = 𝑻 𝑇
𝑍𝐼 {𝔼𝑍} (4.4)

Moreover, if in this example the quaternion 𝒆 is defined as the rotation from the inertial 𝔼𝐼 to the example
reference frame 𝔼𝑍, the transformation matrix 𝑻𝑍𝐼 can be written with in terms of the quaternion 𝒆 as,

𝑻𝑍𝐼 = ⎡⎢
⎣

𝑒2
0 + 𝑒2

𝑥 − 𝑒2
𝑦 − 𝑒2

𝑧 2 (𝑒𝑥𝑒𝑦 + 𝑒0𝑒𝑧) 2 (𝑒𝑥𝑒𝑧 − 𝑒0𝑒𝑦)
2 (𝑒𝑥𝑒𝑦 − 𝑒0𝑒𝑧) 𝑒2

0 − 𝑒2
𝑥 + 𝑒2

𝑦 − 𝑒2
𝑧 2 (𝑒𝑦𝑒𝑧 + 𝑒0𝑒𝑥)

2 (𝑒𝑥𝑒𝑧 + 𝑒0𝑒𝑦) 2 (𝑒𝑦𝑒𝑧 − 𝑒0𝑒𝑥) 𝑒2
0 − 𝑒2

𝑥 − 𝑒2
𝑦 + 𝑒2

𝑧

⎤⎥
⎦

(4.5)

And can be further simplified using Equation 4.2 into,

= 2 ⎡⎢
⎣

0.5 − 𝑒2
𝑦 − 𝑒2

𝑧 𝑒𝑥𝑒𝑦 + 𝑒0𝑒𝑧 𝑒𝑥𝑒𝑧 − 𝑒0𝑒𝑦
𝑒𝑥𝑒𝑦 − 𝑒0𝑒𝑧 0.5 − 𝑒2

𝑥 − 𝑒2
𝑧 𝑒𝑦𝑒𝑧 + 𝑒0𝑒𝑥

𝑒𝑥𝑒𝑧 + 𝑒0𝑒𝑦 𝑒𝑦𝑒𝑧 − 𝑒0𝑒𝑥 0.5 − 𝑒2
𝑥 − 𝑒2

𝑦

⎤⎥
⎦

(4.6)

4.3. General Kinematics
The VR/AR system state 𝒙𝐻 and input 𝒖𝐻 and the Stewart platform state 𝒙𝑃 and input 𝒖𝑃 are similar in
design in this configuration. The reason for this resemblance is because both the Stewart platform and
the VR/AR system under consideration have an IMU attached to their moving, non-inertial, reference
frame 𝔼□ measuring specific force 𝒇□𝑚

and the angular rate 𝝎□𝑚
. In addition, both systems other

sensor observes the position 𝒄□ and attitude 𝒆□ of the moving, non-inertial, reference frame 𝔼□. Based
on these two statements, an overview is depicted of the general system in Figure 4.1.
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IMU

Observation

System

Sensor Fusion
Algorithm

Figure 4.1: The general system’s sensor layout and variable overview.

Moreover, by purposefully defining both, VR/AR system and Stewart platform, states’ position 𝒄□,
velocity ̇𝒄□, acceleration ̈𝒄□, attitude 𝒆□, and angular rate 𝝎□ w.r.t. the inertial reference frame 𝔼𝐼 ,
i.e. independent of one another, the joining and extensibility of the achieved models in the next chapter
is eased.

The reference frame 𝔼□ will serve as a placeholder for the non-inertial reference frames of the systems
themselves, 𝔼𝐻 for the VR/AR system and 𝔼𝑃 for the Stewart platform. A more in depth look into
the respective systems and proof for these previous statements can be found in Sections 4.4 and 4.5.
Moreover, any other variable in this section with a □ subscript is a placeholder for their respective
system. With 𝑃 as subscript to indicate Stewart platform and 𝐻 to indicate the VR/AR system.

In Section 4.3.1, the input is further discussed and designed. Followed by a definition of the general
state, in Section 4.3.2 based on the input and the general observation of the system. Next, the general
process model is achieved in Section 4.3.3.

4.3.1. Input
Stated in Section 2.2.1 and shown in Figure 4.1, the Micro-Electro-Mechanical Systems (MEMS) based
IMU under consideration measures the specific force 𝒇□𝑚

and the angular rate 𝝎□𝑚
of a system,

where 𝑚 indicates it is a measured quantity. The input vector 𝒖□ will be defined according to those
measurements of the IMU, ie

𝒖□ = {𝒇□𝑚
𝝎□𝑚

} (4.7)

However, IMU measurements are not perfect, any IMU raw measurement is corrupted by various
factors, as described in Section 2.2.1. The factors with the largest influence on the IMU measurements
are the bias 𝝀 and Gaussian white noise 𝒏 [73, 21], resulting in a decomposition of both measured
inputs, 𝒇□𝑚

and 𝝎□𝑚
, as:

𝒇□𝑚
= 𝒇□ + 𝒏𝒇□ + 𝝀𝒇□ (4.8)

𝝎□𝑚
= 𝝎□ + 𝒏𝝎□ + 𝝀𝝎□ (4.9)

Where 𝒇□ and 𝝎□ indicate the specific force and rotation rate respectively of their system. Later in this
chapter, these decompositions, in Equations 4.8 and 4.9, will help to express the change of the state
over time 𝒙̇□ in terms of the input 𝒖□ and indicate the necessary vectors in the state 𝒙□.

Specific force 𝒇□ is defined as the accumulation of all the non-field forces per unit mass. After the
assumption of a Flat Earth and a Non-rotating Earth, explained in Section 4.1, specific force 𝒇□ can
be defined as the accumulation of all the non-gravitational forces and expressed in terms of gravity
force 𝒈 and the acceleration ̈𝒄 of the system in the inertial reference frame 𝔼𝐼 . The specific force can
thus be described in vector notation as:

𝒇 = ̈𝒄 − 𝒈 (4.10)

The measured specific force 𝒇□𝑚
, part of the input 𝒖□ in Equation 4.7, is defined in the moving

reference frame 𝔼□. This is due to the fact that the IMU is assumed fixed to the center of the moving,
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non-inertial, reference frame 𝔼□ and can, for all intents and purposes, be assumed aligned. Mitigations
for failing either assumptions can be found in Chapter 8. Expressing the specific force 𝒇□𝑚

of the input
𝒖□ in the three orthogonal 𝑥, 𝑦, and 𝑧 components of the moving reference frame 𝔼□ results in:

𝒇□𝑚
= (𝑓𝑥̈□𝑚

𝑓 ̈𝑦□𝑚
𝑓 ̈𝑧□𝑚

) {𝔼□} (4.11)

Furthermore, using the decomposition of Equation 4.8 the previous equation can be expanded in terms
of moving reference frame 𝔼□:

⎧{
⎨{⎩

𝑓𝑥̈□𝑚
𝑓 ̈𝑦□𝑚
𝑓 ̈𝑧□𝑚

⎫}
⎬}⎭

=
⎧{
⎨{⎩

𝑓𝑥̈□ + 𝑛𝑥̈□ + 𝜆𝑥̈□
𝑓 ̈𝑦□ + 𝑛 ̈𝑦□ + 𝜆 ̈𝑦□
𝑓 ̈𝑧□ + 𝑛 ̈𝑧□ + 𝜆 ̈𝑧□

⎫}
⎬}⎭

(4.12)

Likewise, the measured angular rate 𝝎□𝑚
, part of the input 𝒖□ in Equation 4.7, when expressed in

the moving reference frame 𝔼□:

𝝎□𝑚
= (𝑝□𝑚

𝑞□𝑚
𝑟□𝑚) {𝔼□} (4.13)

The previous equation can be worded, using the decomposition in Equation 4.9, in terms of moving
reference frame 𝔼□:

⎧{
⎨{⎩

𝑝□𝑚
𝑞□𝑚
𝑟□𝑚

⎫}
⎬}⎭

=
⎧{
⎨{⎩

𝑝□ + 𝑛𝑝□ + 𝜆𝑝□
𝑞□ + 𝑛𝑞□ + 𝜆𝑞□
𝑟□ + 𝑛𝑟□ + 𝜆𝑟□

⎫}
⎬}⎭

(4.14)

Process Noise
The process noise random variables 𝝂□ are defined as the collection of Gaussian noises present in the
IMU. Apart from the Gaussian white noise 𝒏 vector, in case of an IMU called the angle/velocity random
walk, a second Gaussian noise vector is present. This vector is called rate/acceleration random walk 𝝁
and indicates the wandering of the bias 𝝀 over time [73, 21]. Thus, the process noise random variables
𝝂□ can be written, using information explained here and from Equations 4.12 and 4.14, in terms of the
moving reference frame 𝔼□ as:

𝝂□ =
⎧{{
⎨{{⎩

𝒏𝒇□
𝝁

𝒇□
𝒏𝝎□
𝝁

𝝎□

⎫}}
⎬}}⎭

=
⎛⎜⎜⎜⎜
⎝

𝑛𝑥̈□ 𝑛 ̈𝑦□ 𝑛 ̈𝑧□
𝜇𝑥̈□ 𝜇 ̈𝑦□ 𝜇 ̈𝑧□
𝑛𝑝□ 𝑛𝑞□ 𝑛𝑟□
𝜇𝑝□ 𝜇𝑞□ 𝜇𝑟□

⎞⎟⎟⎟⎟
⎠

{𝔼□} (4.15)

4.3.2. State
As stated in the introduction of Section 4.3 and shown in Figure 4.1, the non-IMU sensors of the systems
measure the position 𝒄□ and attitude 𝒆□ directly or indirectly. This will be further explained in the
sections of their respective systems, Section 4.4 for the Stewart platform and Section 4.5 for the VR/AR
system.

In order to connect the input 𝒖□, consisting of the specific force 𝒇□ and the angular rate 𝝎□, with the
observation 𝒚 of the position and the attitude the state 𝒙 includes the position 𝒄□, velocity ̇𝒄□, attitude
𝒆□, and the IMU biases 𝝀□, i.e.,

𝒙□ =
⎧{
⎨{⎩

𝒄□
̇𝒄□

𝒆□
𝝀□

⎫}
⎬}⎭

(4.16)

The position coordinate vector 𝒄□ of the center point of the moving, non-inertial, frame 𝔼□ is expressed
as the vector from the center point of inertial reference frame 𝔼𝐼 to itself expressed in terms of the inertial
reference frame 𝔼𝐼 as:

𝒄□ = (𝑥□ 𝑦□ 𝑧□) {𝔼𝐼} (4.17)
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The velocity vector ̇𝒄□ of the center point of the moving, non-inertial, frame 𝔼□, in Equation 4.16, is
defined as the change in position ̇𝒄□ over time and expressed in the 𝔼𝐼 reference frame, the same
reference frame the position was defined in, i.e.,

̇𝒄□ = ( ̇𝑥□ ̇𝑦□ ̇𝑧□) {𝔼𝐼} + (𝑥□ 𝑦□ 𝑧□) {𝔼̇𝐼} (4.18)

The inertial reference frame 𝔼𝐼 does not change over time by definition, i.e., {𝔼̇𝐼} = 0 and thus
Equation 4.18 can be reduced to,

= ( ̇𝑥□ ̇𝑦□ ̇𝑧□) {𝔼𝐼} (4.19)

Where ̇𝑥□, ̇𝑦□, and ̇𝑧□ are the variables defined as the changes over time of the position 𝒄□ individual
components, 𝑥□, 𝑦□, and 𝑧□ respectively.

The quaternion attitude 𝒆□, in Equation 4.16, is defined as the rotation from the inertial reference frame
𝔼𝐼 to the moving, non-inertial, frame 𝔼□ and, through the use of Equation 4.1, can be written as:

𝒆□ = (𝑒0□ 𝑒𝑥□ 𝑒𝑦□ 𝑒𝑧□) { 1
𝔼𝐼

} (4.20)

Where 𝑒0□ is the scalar term and 𝑒𝑥□ , 𝑒𝑦□ , and 𝑒𝑧□ are the rotational vector components expressed in
the inertial frame 𝔼𝐼 . The transformation matrix 𝑻□𝐼 can be constructed using the quaternion attitude
𝒆□, and using Equation 4.6 and can be used to transform vectors from the inertial frame 𝔼𝐼 to the
moving frame 𝔼□, i.e.,

{𝔼□} = 𝑻□𝐼 {𝔼𝐼} (4.21)

Last, the biases 𝝀□ present in both inputs, namely measured specific force 𝒇□𝑚
andmeasured rotation

rate 𝝎□𝑚
, can be expanded in terms of the moving reference frame 𝔼□, as previously done separately

in Equations 4.12 and 4.14, i.e.,

𝝀□ = {𝝀𝒇□
𝝀𝝎□

} = (𝜆𝑥̈□ 𝜆 ̈𝑦□ 𝜆 ̈𝑧□
𝜆𝑝□ 𝜆𝑞□ 𝜆𝑟□

) {𝔼□} (4.22)

4.3.3. Process Model
In this section, the continuous-time process model f□ will be inferred from the state 𝒙□ and input 𝒖□.
In order to achieve this, the time derivate of the state 𝒙̇□ is first computed in terms of the state 𝒙□, input
𝒖□, and process noise 𝝂□. i.e.,

𝒙̇□(𝑡) = f□ (𝒙□(𝑡), 𝒖□(𝑡), 𝝂□(𝑡)) (4.23)
𝒚□(𝑡) = h□ (𝒙□(𝑡), 𝒐□(𝑡)) (4.24)

By writing the process model f□ as such, allows for the propagation of the process noise random
variables 𝝂□ in said model. The inclusion of the process noise 𝝂□ in the continuous-time process
model f□ is not a coincidence and is in preparation for the process model’s discrete-time counterpart
F. The UKF algorithm, as presented in Chapter 3, was capable of propagating the expected process
noise random variables 𝝂 through the process model F, as per Equation 3.3.
The same line of reasoning can be followed for the inclusion of the observation noise 𝒐 as an input to the
continuous-time observation model h□ and is presented in Equation 4.24 for the sake of completeness.
However, the individual observation models h□ will be explained in Sections 4.4.2 and 4.5.2 of the
Stewart platform and Head-Mounted Display (HMD) respectively.

State Time Derivatives
Taking the time derivative of the state, defined in Section 4.3.2 in Equation 4.16, can be written as

𝒙̇□ =
⎧{
⎨{⎩

̇𝒄□
̈𝒄□

𝒆̇□
𝝀̇□

⎫}
⎬}⎭

(4.25)
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First, the time derivate of the position ̇𝒄□ of the system is equal to the systems velocity ̇𝒄□. Both
position 𝒄□ and velocity ̇𝒄□ were already defined in the inertial reference frame 𝔼𝐼 , see Equations 4.17
and 4.19. This makes expressing the time derivate of the position ̇𝒄□ in terms of the systems’s state
𝒙□, more precisely the system’s velocity ̇𝒄□, trivial, i.e.,

̇𝒄□ = ̇𝒄□ = ( ̇𝑥□ ̇𝑦□ ̇𝑧□) {𝔼𝐼} (4.26)

Second, the time derivate of the velocity ̇ ̇𝒄□ of the system is equal to the acceleration ̈𝒄□ of said system.
Given that the velocity was also defined in the inertial frame 𝔼𝐼 , in Equation 4.19, the acceleration ̈𝒄□
of the system can be expressed as,

̈𝒄□ = ( ̈𝑥□ ̈𝑦□ ̈𝑧□) {𝔼𝐼} + ( ̇𝑥□ ̇𝑦□ ̇𝑧□) {𝔼̇𝐼} (4.27)

Again, the inertial reference frame 𝔼𝐼 does not change over time by definition, i.e., {𝔼̇𝐼} = 0 and thus
Equation 4.27 can be reduced to,

= ( ̈𝑥□ ̈𝑦□ ̈𝑧□) {𝔼𝐼} (4.28)

Here, the selection of the inertial reference frame 𝔼𝐼 over the moving reference frame 𝔼□ to express the
velocity ̇𝒄□ in results in a slight reduction in computational cost. This is due to the influence a rotating
reference frame has on any positional time derivative.

When discussing the design of the input in Section 4.3.1 it was concluded that due to the assumptions
Flat Earth and a Non-rotating Earth, from Section 4.1, the specific force 𝒇□ was expressed in
Equation 4.10 in terms of gravity 𝒈 and the system’s acceleration ̈𝒄□ in the inertial reference frame,
i.e.,

̈𝒄□ = 𝒇□ + 𝒈
Expanding the specific force 𝒇□ using Equation 4.8,

= 𝒇□𝑚
− 𝝀□ − 𝒏□ + 𝒈

Expressing the vectors in their previously defined reference frames using Equations 4.11 and 4.28, i.e.,

( ̈𝑥□ ̈𝑦□ ̈𝑧□) {𝔼𝐼} = (𝑓𝑥̈□ 𝑓 ̈𝑦□ 𝑓 ̈𝑧□) {𝔼□} + (0 0 𝑔) {𝔼𝐼} (4.29)

Using Equation 4.21 to state all components in terms of the inertial reference frame 𝔼𝐼 results in:

( ̈𝑥□ ̈𝑦□ ̈𝑧□) = (𝑓𝑥̈□ 𝑓 ̈𝑦□ 𝑓 ̈𝑧□) 𝑻□𝐼 + (0 0 𝑔)
Finally, taking the transpose of the previous equation to achieve a column notation to aid clarity,

⎧{
⎨{⎩

̈𝑥□
̈𝑦□
̈𝑧□

⎫}
⎬}⎭

= 𝑻 𝑇
□𝐼

⎧{
⎨{⎩

𝑓𝑥̈□𝑚
− 𝜆𝑥̈□ − 𝑛𝑥̈□

𝑓 ̈𝑦□𝑚
− 𝜆 ̈𝑦□ − 𝑛 ̈𝑦□

𝑓 ̈𝑧□𝑚
− 𝜆 ̈𝑧□ − 𝑛 ̈𝑧□

⎫}
⎬}⎭

+
⎧{
⎨{⎩

0
0
𝑔

⎫}
⎬}⎭

(4.30)

Concluding that the time derivative of the velocity ̈𝒄□ can be written in terms of the state 𝒙□, input 𝒖□,
and process noise 𝝂□.

Third, the time derivate of the quaternion attitude 𝒆̇□ of a system is based on the angular rate 𝝎□ of
said system. It was found in [51], that the change of the quaternion attitude over time with the rotation
rate 𝝎□ aligned with the moving reference frame 𝔼□ could be expressed as:

𝒆̇□ = 1
2𝒆□⊗

𝐿
𝝎□ (4.31)

Where ⊗
𝐿
represents the quaternion product which respects the left-to-right rotation sequence [71, 51,

61]. Equation 4.31 can be expanded into its scalar and vector components:

⎧{{
⎨{{⎩

̇𝑒0□
̇𝑒𝑥□
̇𝑒𝑦□
̇𝑒𝑧□

⎫}}
⎬}}⎭

= 1
2

⎡
⎢⎢
⎣

𝑒0□ −𝑒𝑥□ −𝑒𝑦□ −𝑒𝑧□
𝑒𝑥□ 𝑒0□ −𝑒𝑧□ 𝑒𝑦□
𝑒𝑦□ 𝑒𝑧□ 𝑒0□ −𝑒𝑥□
𝑒𝑧□ −𝑒𝑦□ 𝑒𝑥□ 𝑒0□

⎤
⎥⎥
⎦

⎧{
⎨{⎩

0
𝑝□
𝑞□
𝑟□

⎫}
⎬}⎭

(4.32)
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The quaternion representation of the rotation rate 𝝎□ defined in the previous equation has a zero scalar
value. The zero scalar value of the rotational rate 𝝎□ allows the removal of the first column of the
quaternion rotation matrix. Furthermore, expanding the measured angular rate 𝝎□𝑚

in Equation 4.14,
enables the previous equation, Equation 4.32, to be expressed fully in terms of the state 𝒙□, input 𝒙□,
and process noise 𝝂□ as:

⎧{{
⎨{{⎩

̇𝑒0□
̇𝑒𝑥□
̇𝑒𝑦□
̇𝑒𝑧□

⎫}}
⎬}}⎭

= 1
2

⎡
⎢⎢
⎣

−𝑒𝑥□ −𝑒𝑦□ −𝑒𝑧□
𝑒0□ −𝑒𝑧□ 𝑒𝑦□
𝑒𝑧□ 𝑒0□ −𝑒𝑥□

−𝑒𝑦□ 𝑒𝑥□ 𝑒0□

⎤
⎥⎥
⎦

⎧{
⎨{⎩

𝑝□𝑚
− 𝜆𝑝□ − 𝑛𝑝□

𝑞□𝑚
− 𝜆𝑞□ − 𝑛𝑞□

𝑟□𝑚
− 𝜆𝑟□ − 𝑛𝑟□

⎫}
⎬}⎭

(4.33)

Next, the time derivative of the biases 𝝀̇□, of both the specific force 𝒇□𝑚
and angular rate 𝝎□𝑚

as
measured by the IMU, equates to the rate/acceleration random walk 𝝁 as mentioned in Sections 4.3.1
and 2.2.1, i.e.,

𝝀̇□ = {𝝀̇𝒇□
𝝀̇𝝎□

} = (𝜆̇𝑥̈□ 𝜆̇ ̈𝑦□ 𝜆̇ ̈𝑧□
𝜆̇𝑝□ 𝜆̇𝑞□ 𝜆̇𝑟□

) {𝔼□} = (𝜇𝑥̈□ 𝜇 ̈𝑦□ 𝜇 ̈𝑧□
𝜇𝑝□ 𝜇𝑞□ 𝜇𝑟□

) {𝔼□} = {𝝁𝒇□
𝝁𝝎□

} = 𝝁□ (4.34)

Last, expanding the state time derivate and the process model, of Equation 4.23, with Equa-
tions 4.26, 4.28, 4.33, and 4.34 results in the overview:

𝒙̇□(𝑡) = f□ (𝒙□(𝑡), 𝒖□(𝑡), 𝝂□(𝑡))
⎧{{{{{{{{{{{{
⎨{{{{{{{{{{{{⎩

̇𝑥□
̇𝑦□
̇𝑧□
̈𝑥□
̈𝑦□
̈𝑧□
̇𝑒0□
̇𝑒𝑥□
̇𝑒𝑦□
̇𝑒𝑧□

𝜆̇𝑥̈□
𝜆̇ ̈𝑦□
𝜆̇ ̈𝑧□
𝜆̇𝑝□
𝜆̇𝑞□
𝜆̇𝑟□

⎫}}}}}}}}}}}}
⎬}}}}}}}}}}}}⎭

=

⎧{{{{{{{{{{{{
⎨{{{{{{{{{{{{⎩

̇𝑥□
̇𝑦□
̇𝑧□

𝑻 𝑇
□𝐼

⎧{
⎨{⎩

𝑓𝑥̈□𝑚
− 𝜆𝑥̈□ − 𝑛𝑥̈□

𝑓 ̈𝑦□𝑚
− 𝜆 ̈𝑦□ − 𝑛 ̈𝑦□

𝑓 ̈𝑧□𝑚
− 𝜆 ̈𝑧□ − 𝑛 ̈𝑧□

⎫}
⎬}⎭

+
⎧{
⎨{⎩

0
0
𝑔

⎫}
⎬}⎭

1
2

⎡
⎢⎢
⎣

−𝑒𝑥□ −𝑒𝑦□ −𝑒𝑧□
𝑒0□ −𝑒𝑧□ 𝑒𝑦□
𝑒𝑧□ 𝑒0□ −𝑒𝑥□

−𝑒𝑦□ 𝑒𝑥□ 𝑒0□

⎤
⎥⎥
⎦

⎧{
⎨{⎩

𝑝□𝑚
− 𝜆𝑝□ − 𝑛𝑝□

𝑞□𝑚
− 𝜆𝑞□ − 𝑛𝑞□

𝑟□𝑚
− 𝜆𝑟□ − 𝑛𝑟□

⎫}
⎬}⎭

𝜇𝑥̈□
𝜇 ̈𝑦□
𝜇 ̈𝑧□
𝜇𝑝□
𝜇𝑞□
𝜇𝑟□

⎫}}}}}}}}}}}}
⎬}}}}}}}}}}}}⎭

(4.35)
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4.4. Stewart Platform Kinematics
A Stewart platform has six degrees of freedom and is formed by two connected rigid frames [1], as in
Figure 4.2. These two frames are connected by six cylindrical actuators with Hooke joints at each end,
the six dotted lines in Figure 4.2. Hooke joints provide 2 degrees of freedom.
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Figure 4.2: Geometric representation of a Stewart platform.

The lower frame, also called the base frame and blue in Figure 4.2, is fixed to the ground and has three
pair of Hooke joints, six in total, a constant radius 𝑟𝐵 from the center point of the frame. Each pair is
spaced 120° on the frame. The upper frame is connected to the lower frame with also three pair of
Hooke joints placed on a circular path a radius 𝑟𝑃 , connecting six cylindrical actuators to the Hooke
joints. The upper frame connection points are also spaced 120° from each other. Each Hooke joint
connected to the closest Hooke joint on the other frame via a cylindrical actuator. Each Hooke joint of
a pair on a frame is connected to a different pair on the other frame, thus creating a 60° offset in resting
position from one frame to the next. The spacing between each Hooke joint within a pair is described
by 𝑑𝐵 and 𝑑𝑃 for the base frame and upper frame respectively.

Each frame of the Stewart platform also defines a reference frame. 𝔼𝐵 is attached to the lower fixed
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frame with the origin the center of the circle on which the pairs of Hooke joints where placed. Moreover,
the origin is referred to as Lower Gimbal Point (LGP). Following assumptions Flat Earth and Non-
rotating Earth, reference frame 𝔼𝐵 is assumed to be the same as the inertial reference frame 𝔼𝐼 .

The reference frame attached to the upper moving frame is denoted as 𝔼𝑃 . Its origin is also placed
in the center of the circle described by the placement of the Hooke joint pairs on the upper frame.
Moreover, the origin is referred to as Upper Gimbal Point (UGP).

For the Stewart platform individual kinematics, the sensor layout will be the same as mentioned in [43]
and discussed in Sections 2.3.1. The general sensor layout and variable data flow presented in
Figure 4.1 can be specialized into Figure 4.3. The general kinematics are compatible due to the fact
that the IMU, attached in the UGP and aligned to the upper moving reference frame 𝔼𝑃 , measures
the specific force 𝒇𝑃 𝑚

and the angular rate 𝝎𝑃 𝑚
, while also having linear encoders on each cylindrical

actuator of the Stewart platform, measuring the length of said actuators 𝒍𝑚. In turn the length of the
actuators is expressed in terms of the position 𝒄𝑃 and attitude 𝒆𝑃 in the upcoming Section 4.4.2. The
compatibility with the general kinematics is also highlighted in the similarity of Figure 4.3 to Figure 4.1.

Stewart Platform

Sensor Fusion
Algorithm

IMU

Linear
Encoder

Stewart
Platform

Movement

Figure 4.3: The SRS system’s sensor layout and variable overview.

4.4.1. Process Model
Following the definitions of the reference frames and the sensors of the Stewart platform, the state
𝒙𝑃 , the input 𝒖𝑃 , the process noise 𝝂𝑃 , and process model f𝑃 can be extracted from Section 4.3 by
replacing the placeholder □ by the Stewart platform indicator 𝑃 . The observation 𝒚𝑃 and compatible
observation model h𝑃 are to be determined in the next section. The time-continuous observation model
h𝑃 will be based on the work done by Miletović et al. [43].

First, the input vector 𝒖𝑃 of the Stewart platform process model are the measurements of the IMU
attached to the upper moving frame 𝔼𝑃 and assumed at the center of the UGP. This is in line with
Section 4.3.1, and thus defines not only the input 𝒖𝑃 but also the process noise 𝝂𝑃 via Equations 4.7
and 4.15.

Second, the state vector 𝒙𝑃 of the Stewart platform is defined in the same manner as in Equation 4.16
and resembles the state of the upper moving platform. Whereby, the position 𝒄𝑃 tracks the center
of the upper moving platform, i.e. UGP, in reference to the LGP and defined in the inertial reference
frame 𝔼𝐼 , alike to Equation 4.17. Following, the velocity ̇𝒄𝑃 of the UGP is defined as the change in
said position 𝒄𝑃 over time, again comparable to Equation 4.19. Moreover, the quaternion attitude 𝒆𝑃
is defined as the rotation from the lower fixed frame 𝔼𝐵, equal to the inertial reference frame 𝔼𝐼 , to the
upper moving frame 𝔼𝑃 and can be written in the same way as Equation 4.20. Ensuing the definitions
of the input 𝒖𝑃 and the process noise 𝝂𝑃 , the biases 𝝀𝑃 can similarly be defined as in Equation 4.22.

Last, having defined the relevant vectors, the process model f𝑃 is constructed in the same manner as
performed in Section 4.3.3 in Equation 4.35.

4.4.2. Observation Model
In this section, the continuous-time observation model h𝑃 of the Stewart platform and subsequent
observation vector 𝒚𝑃 are defined and discussed. The general design of the continuous-time
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observationmodel h𝑃 was already setup in Section 4.3.3 in Equation 4.24. Analogous to the continuous-
time process model case, the observation noise random variables 𝒐𝑃 are included in the continuous-
time observation model h𝑃 for the same reasons. Namely, the propagation of said noises through the
observation model as the UKF algorithm presented in Chapter 3 can take advantage of this fact.

Let the observation vector 𝒚𝑃 of the Stewart platform be defined by the six lengths 𝑙𝑖𝑚
measured by

the linear encoders of hydraulic actuators, i.e.,

𝒚𝑃 = 𝒍𝑚 = {𝑙𝑖𝑚
} ∀𝑖 = 1, … , 6 (4.36)

As discussed in Section 6.2.1, each linear encoder measurement 𝑙𝑖𝑚
is corrupted additively by a noise

value 𝑛𝑙𝑖
, i.e.,

𝑙𝑖𝑚
= 𝑙𝑖 + 𝑛𝑙𝑖

(4.37)

Allowing Equation 4.36 to be rewritten in terms of hydraulic actuator lengths 𝑙𝑖 and related noise terms
𝑛𝑙𝑖

as:

𝒚𝑃 = 𝒍𝑚 = {𝑙𝑖 + 𝑛𝑙𝑖
} ∀𝑖 = 1, … , 6 (4.38)

Following the definition of the observation vector 𝒚𝑃 in Equation 4.38 the observation noise random
variables can be defined as:

𝒐𝑃 = {𝑛𝑙𝑖
} ∀𝑖 = 1, … , 6 (4.39)

Given the definitions of the position 𝒄𝑃 and attitude 𝒆𝑃 of the upper moving frame, explained in
Section 4.4.1, it is possible now to define the output of the six linear encoders 𝑙. In order to express
the length of each of the hydraulic actuators, a coordinate vector 𝒍𝑖 expressing the hydraulic actuators
in space is first created. The norm of said vector ∥𝒍𝑖∥ will result in the length of respective hydraulic
actuator 𝑙𝑖.
Each of the hydraulic actuator position 𝒍𝑖 can be described as the difference between the vectors 𝒃𝑖 and
𝒑𝑖, defined in turn from the LGP and UGP respectively to each of their frame six joint in the lower fixed
frame 𝔼𝐵 and upper moving frame 𝔼𝑃 respectively [43, 1], while adding the UGP coordinate vector 𝒄𝑃 ,
i.e.,

𝒍𝑖 = 𝒄𝑃 + 𝒑𝑖 − 𝒃𝑖 ∀𝑖 = 1, … , 6 (4.40)

With the joint coordinates for the lower 𝒃𝑖 and upper frame 𝒃𝑖 defined as,

𝒃𝑖 = (𝑏𝑥𝑖
𝑏𝑦𝑖

𝑏𝑧𝑖) {𝔼𝐵}
𝒑𝑖 = (𝑝𝑥𝑖

𝑝𝑦𝑖
𝑝𝑧𝑖) {𝔼𝑃 } } ∀𝑖 = 1, … , 6

In the case of the SIMONA Research Simulator (SRS), the z-component in the respective local frame
of both the upper and lower joint coordinates are equal to zero, reducing the previous equation to:

𝒃𝑖 = (𝑏𝑥𝑖
𝑏𝑦𝑖

0) {𝔼𝐵}
𝒑𝑖 = (𝑝𝑥𝑖

𝑝𝑦𝑖
0) {𝔼𝑃 } } ∀𝑖 = 1, … , 6 (4.41)

The local joint coordinates are further detailed in Section 4.4.2.1 in terms of geometric variables from
Figure 4.2.

The resulting vectors 𝒍𝑖 written in the inertial frame 𝔼𝐼 , equal to the lower fixed frame 𝔼𝐵, with the help
of Equation 4.6,

𝒍𝑖 = (𝑥𝑃 𝑦𝑃 𝑧𝑃 ) {𝔼𝐵} + (𝑝𝑥𝑖
𝑝𝑦𝑖

0) {𝔼𝑃 } − (𝑏𝑥𝑖
𝑏𝑦𝑖

0) {𝔼𝐵} ∀𝑖 = 1, … , 6

Expressing all components in terms of the inertial reference frame 𝔼𝐼 using Equation 4.21,

= ((𝑥𝑃 𝑦𝑃 𝑧𝑃 ) + (𝑝𝑥𝑖
𝑝𝑦𝑖

0) 𝑻𝑃𝐼 − (𝑏𝑥𝑖
𝑏𝑦𝑖

0)) {𝔼𝐼} ∀𝑖 = 1, … , 6 (4.42)
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Next, the norm can be taken of each of the six vector statements describing the position of the six
hydraulic actuator 𝒍𝑖 (for all 𝑖 = 1, … , 6) in order to achieve the length of each 𝑙𝑖, i.e.,

𝑙𝑖 =∥𝒍𝑖∥=∥(𝑥𝑃 𝑦𝑃 𝑧𝑃 ) + (𝑝𝑥𝑖
𝑝𝑦𝑖

0) 𝑻𝑃𝐼 − (𝑏𝑥𝑖
𝑏𝑦𝑖

0)∥ ∀𝑖 = 1, … , 6
Taking the transpose to achieve the column notation, i.e.,

=∥
⎧{
⎨{⎩

𝑥𝑃
𝑦𝑃
𝑧𝑃

⎫}
⎬}⎭

+ 𝑻 𝑇
𝑃𝐼

⎧{
⎨{⎩

𝑝𝑥𝑖
𝑝𝑦𝑖
0

⎫}
⎬}⎭

−
⎧{
⎨{⎩

𝑏𝑥𝑖
𝑏𝑦𝑖
0

⎫}
⎬}⎭

∥ ∀𝑖 = 1, … , 6

Expanding the transformationmatrix 𝑻 𝑇
𝑃𝐼 using Equation 4.6 and solving thematrix multiplication results

in,

=
∥
∥∥
∥

𝑥𝑃 + 2 (𝑝𝑥𝑖
(0.5 − 𝑒2

𝑦𝑃
− 𝑒2

𝑧𝑃
) + 𝑝𝑦𝑖

(𝑒𝑥𝑃
𝑒𝑦𝑃

− 𝑒0𝑃
𝑒𝑧𝑃

)) − 𝑏𝑥𝑖

𝑦𝑃 + 2 (𝑝𝑥𝑖
(𝑒𝑥𝑃

𝑒𝑦𝑃
+ 𝑒0𝑃

𝑒𝑧𝑃
) + 𝑝𝑦𝑖

(0.5 − 𝑒2
𝑥𝑃

− 𝑒2
𝑧𝑃

)) − 𝑏𝑦𝑖

𝑧𝑃 + 2 (𝑝𝑥𝑖
(𝑒𝑥𝑃

𝑒𝑧𝑃
− 𝑒0𝑃

𝑒𝑦𝑃
) + 𝑝𝑦𝑖

(𝑒𝑦𝑃
𝑒𝑧𝑃

+ 𝑒0𝑃
𝑒𝑥𝑃

))

∥
∥∥
∥

∀𝑖 = 1, … , 6 (4.43)

Last, the time-continuous observation model of the Stewart platform, a general version presented in
Equation 4.24, can be expanded by the use of Equations 4.38 and 4.43 into:

𝒚𝑃 (𝑡)=h𝑃 (𝒙𝑃 (𝑡), 𝒐𝑃 (𝑡))
=𝑙𝑖 + 𝑛𝑙𝑖

=∥(𝑥𝑃 𝑦𝑃 𝑧𝑃 ) + (𝑝𝑥𝑖
𝑝𝑦𝑖

0) 𝑻𝑃𝐼 − (𝑏𝑥𝑖
𝑏𝑦𝑖

0)∥ + 𝑛𝑙𝑖

=
∥
∥∥
∥

𝑥𝑃 +2(𝑝𝑥𝑖
(0.5 − 𝑒2

𝑦𝑃
− 𝑒2

𝑧𝑃
)+𝑝𝑦𝑖

(𝑒𝑥𝑃
𝑒𝑦𝑃

− 𝑒0𝑃
𝑒𝑧𝑃

)) − 𝑏𝑥𝑖

𝑦𝑃 +2(𝑝𝑥𝑖
(𝑒𝑥𝑃

𝑒𝑦𝑃
+ 𝑒0𝑃

𝑒𝑧𝑃
)+𝑝𝑦𝑖

(0.5 − 𝑒2
𝑥𝑃

− 𝑒2
𝑧𝑃

)) − 𝑏𝑦𝑖

𝑧𝑃 +2(𝑝𝑥𝑖
(𝑒𝑥𝑃

𝑒𝑧𝑃
− 𝑒0𝑃

𝑒𝑦𝑃
)+𝑝𝑦𝑖

(𝑒𝑦𝑃
𝑒𝑧𝑃

+ 𝑒0𝑃
𝑒𝑥𝑃

))

∥
∥∥
∥

+ 𝑛𝑙𝑖

⎫}}}}}
⎬}}}}}⎭

∀𝑖=1, … , 6 (4.44)

Joint Coordinates
In order to express the length of the actuator in terms of the state 𝒙𝑃 , the joint coordinates are required.
Pointed out in [43] and from the information in Figure 4.2 the radii, 𝑟𝐵 and 𝑟𝑃 , and the distance between
two consecutive joints, 𝑑𝐵 and 𝑑𝑃 , completely define their respective frame’s geometry.

In order to write the position coordinates 𝑏𝑥𝑖
, 𝑏𝑦𝑖

, 𝑝𝑥𝑖
, and 𝑝𝑦𝑖

in terms of the geometric distances 𝑟𝐵,
𝑟𝑃 , 𝑟𝐵, and 𝑟𝑃 , first the angles 𝜃𝐵 and 𝜃𝑃 are defined as the angle between two joints of a joint pair of
the lower and upper frame respectively, i.e.,

𝜃𝐵 = 2 arcsin( 𝑑𝐵
2𝑟𝐵

)

𝜃𝑃 = 2 arcsin( 𝑑𝑃
2𝑟𝑃

)
(4.45)

Followed by the angles 𝜉𝐵 and 𝜉𝑃 , which are defined as the angle between two consecutive joints not
part of the same pair of the lower and upper frame respectively, i.e.,

𝜉𝐵 = 2𝜋 − 3𝜃𝐵
3 = 2

3𝜋 − 𝜃𝐵

𝜉𝑃 = 2𝜋 − 3𝜃𝑃
3 = 2

3𝜋 − 𝜃𝑃

(4.46)

Using the definitions of 𝜃𝐵, 𝜃𝑃 , 𝜉𝐵, and 𝜉𝑃 it is possible to write the coordinates for the lower static base
as:

𝑏𝑥𝑖
= {𝑟𝐵 cos ( 𝑖

2 𝜉𝐵 + 𝑖−1
2 𝜃𝐵)

𝑟𝐵 cos ( 𝑖−1
2 𝜉𝐵 + 𝑖

2 𝜃𝐵) 𝑏𝑦𝑖
= {𝑟𝐵 sin ( 𝑖

2 𝜉𝐵 + 𝑖−1
2 𝜃𝐵)

𝑟𝐵 sin ( 𝑖−1
2 𝜉𝐵 + 𝑖

2 𝜃𝐵) ∀𝑖 = {1, 3, 5
2, 4, 6 (4.47)

And for the upper moving base as:

𝑝𝑥𝑖
= {𝑟𝑃 cos ( 𝑖−1

2 𝜉𝑃 + 𝑖
2 𝜃𝑃 )

𝑟𝑃 cos ( 𝑖
2 𝜉𝑃 + 𝑖−1

2 𝜃𝑃 ) 𝑝𝑦𝑖
= {𝑟𝑃 sin ( 𝑖−1

2 𝜉𝑃 + 𝑖
2 𝜃𝑃 )

𝑟𝑃 sin ( 𝑖
2 𝜉𝑃 + 𝑖−1

2 𝜃𝑃 ) ∀𝑖 = {1, 3, 5
2, 4, 6 (4.48)
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4.5. General VR/AR System Kinematics
Mentioned in Section 2.2, the VR/AR systems under consideration are systems with a HMD that
contains its own IMU and employs a form of visual outside-in tracking. If inside-out visual tracking
is required the observation model h, at least, should be modified.
The HMD has its own right-handed reference frame 𝔼𝐻 , shown in Figure 4.4, which is located at the
center between the retinas [34] and fixed to the HMD. From Figure 4.4 it is clear that the x-axis points
along the display view, the y-axis points from the right side of the HMD and the z-axis points down.

Figure 4.4: Reference frame 𝔼𝐻 attached to the HMD.

Including assumptions Flat Earth and Non-rotating Earth, it is assumed the visual tracking reference
frame is fixed w.r.t. to the environment it is attached to. The center point of the visual tracking reference
frame is initialized at the starting position in space of the HMD. The visual tracking reference frame is
assumed aligned to the reference frame it is attached to.

Following from the literature review in Section 2.2, the information flow of an individual VR/AR system
is schematized in Figure 4.5 by relaying on Figure 4.1 of the general kinematics. Here, the state 𝒙𝐻
is observed by two types of sensors, an IMU and visual tracking. The IMU that is attached to the
HMD between the retinas of the user, i.e. the center of the HMD reference frame 𝔼𝐻 , measures the
specific force 𝒇𝐻𝑚

and angular rate 𝝎𝐻𝑚
in the 𝔼𝐻 reference frame from the HMD’s acceleration ̈𝒄𝐻

and angular rate 𝝎𝐻 w.r.t. the inertial reference frame 𝔼𝐼 . Also, the visual tracking results in the relative
measured position 𝒄𝐻𝑚

and attitude 𝒆𝐻𝑚
of the HMD while observing the HMD’s pose. Based on the

measurements, the pose, ̂𝒄𝐻 and ̂𝒆𝐻 , can be estimated by the sensor fusion algorithm, in this case the
UKF.

HMD

Graphical
Application

IMU

Visual
Tracking

Sensor Fusion
Algorithm

Head
Movement

Figure 4.5: The information flow in an individual VR/AR system.
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Most often the visual tracking results in an indirect measurement of the pose. In this case however, the
visual tracking sensors under consideration measures the pose, 𝒄𝐻𝑚

and 𝒆𝐻𝑚
, directly, the impact of

this is further discussed in Section 4.5.2.

The IMU attached to the moving non-inertial frame 𝔼𝐻 , and a sensor observing the position 𝒄𝐻 and
attitude 𝒆𝐻 of the moving, non-inertial, reference frame 𝔼𝐻 validates both requirements. This allows
the adaption of the shared state 𝒙□, the input 𝒖□, process noise 𝝂□, and compatible process model
f□ from Section 4.3.

The kinematics presented here will change slightly when the system is placed in the enclosed motion
platform. Due to the independent design of the state 𝒙𝐻 , nor the process model f nor the state 𝒙𝐻
will have to be changed in the next chapter. Only the observation model will need to be altered due to
the user’s and the visual tracking system’s reference frame changing from the inertial 𝔼𝐼 to the upper
moving reference frame 𝔼𝑃 . However, the concept of the observation model, explained in this section,
will stay the same.

4.5.1. Process Model
The adaption of the state 𝒙𝐻 , the input 𝒖𝐻 , the process noise 𝝂𝐻 , and process model f𝐻 is performed
by replacing the placeholder □ by the HMD indicator 𝐻 throughout Section 4.3.

First, the input vector 𝒖𝐻 of the HMD process model are the measurements of the IMU attached to the
HMD reference frame 𝔼𝐻 and the center located between the retinas of the user.

Second, the state vector 𝒙𝐻 of the HMD is defined similarly as Equation 4.16. Whereby, the position
𝒄𝐻 of the HMD center point is expressed as the vector from the initialization position to the HMD center
point itself, similar to Equation 4.17. Following, the velocity ̇𝒄𝐻 of the point between the retinas is
defined as the change in said position 𝒄𝐻 over time and also expressed in the inertial reference frame
𝔼𝐼 , again comparable to Equation 4.19. Moreover, the quaternion attitude 𝒆𝐻 is defined as the rotation
from the inertial reference frame 𝔼𝐼 to the moving reference frame 𝔼𝐻 attached to the HMD, comparable
to Equation 4.20. The biases 𝝀𝐻 can be defined using Equation 4.22.

Last, having defined the relevant vectors the process model f𝐻 is constructed in the same manner as
performed in Section 4.3.3 in Equation 4.35.

4.5.2. Observation Model
The visual tracking sensor under consideration is modeled as simply measuring the position 𝒄𝐻𝑚

and
attitude 𝒆𝐻𝑚

of the HMD directly. The observation vector 𝒚𝐻 can be noted as:

𝒚𝐻 = {𝒄𝐻𝑚
𝒆𝐻𝑚

} (4.49)

As a side note for this section, the reason for this simplistic observation model is due to the fact that
the visual tracking system under consideration has a proprietary abstraction layer that prevents the
reading of the raw values. The abstraction layer, rather, computes the measured position 𝒄𝐻𝑚

and
attitude 𝒆𝐻𝑚

of the HMD. This also causes for the noise model to be no longer Gaussian. More about
the abstraction layer and the validity of the assumptions in this section can be found when the actual
sensor is presented in Section 6.1.2 and in the experiment proposal in Chapter 8.

Measurements are never perfect, the corruption of the observation of the actual state by noise 𝒏
assumed Gaussian is used to model the imperfections. Even though it is expected that the abstraction
layer of the visual tracking at hand already runs an estimation algorithm, noise variables need to be
added. The addition of said noise variables is necessary for the integration of said measurements in any
Kalman Filter (KF). A discussion about the validity of the Gaussian noise model and the consequences
surrounding these assumption can be found in the presentation of the actual sensor in Section 6.1.2
and in the experiment proposal in Chapter 8. In this model, the Gaussian noise 𝒏 is added linearly to
both the position 𝒄𝐻 and the attitude 𝒆𝐻 , i.e.,

{𝒄𝐻𝑚
𝒆𝐻𝑚

} = {𝒄𝐻 + 𝒏𝒄𝐻
𝒆𝐻 + 𝒏𝒆𝐻

} (4.50)
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The equation allows the observation noise collection 𝒐𝐻 to be expressed as:

𝒐𝐻 = {𝒏𝒄𝐻
𝒏𝒆𝐻

} (4.51)

In this individual case, the visual tracking measures the state 𝒙𝐻 of the HMD in the inertial reference
frame 𝔼𝐼 as it is attached to the room. Moreover, the software of the visual tracking sensor under
consideration presents the attitude in Euler angles, in three sequential orthogonal rotations around
the z-axis, y-axis, and x-axis, also called the yaw 𝜓𝐻 , pitch 𝜃𝐻 , and roll 𝜙𝐻 formulation. Since
both the position 𝒄𝐻 and the attitude 𝒆𝐻 were already defined in the inertial reference frame 𝔼𝐼 , see
Equations 4.17 and 4.20; using the decomposition of the measurement terms in Equation 4.51; and the
quaternion to Euler angle transformation found in [51], the observation model h𝐻 of the VR/AR system
can be written as:

𝒚𝐻(𝑡) = h𝐻 (𝒙𝐻(𝑡), 𝒐𝐻(𝑡))

= {𝒄𝐻 + 𝒏𝒄𝐻
𝒆𝐻 + 𝒏𝒆𝐻

}

=

⎧{{{
⎨{{{⎩

𝑥𝐻 + 𝑛𝑥𝐻
𝑦𝐻 + 𝑛𝑦𝐻
𝑧𝐻 + 𝑛𝑧𝐻
𝜓𝐻 + 𝑛𝜓𝐻
𝜃𝐻 + 𝑛𝜃𝐻
𝜙𝐻 + 𝑛𝜙𝐻

⎫}}}
⎬}}}⎭

=

⎧{{{{
⎨{{{{⎩

𝑥𝐻 + 𝑛𝑥𝐻
𝑦𝐻 + 𝑛𝑦𝐻
𝑧𝐻 + 𝑛𝑧𝐻

arctan ((𝑒0𝐻
𝑒𝑥𝐻

+ 𝑒𝑦𝐻
+ 𝑒𝑧𝐻

) , (0.5 − 𝑒𝑥𝐻
− 𝑒𝑦𝐻

)) + 𝑛𝜓𝐻
arcsin (2 (𝑒0𝐻

𝑒𝑦𝐻
− 𝑒𝑥𝐻

𝑒𝑧𝐻
)) + 𝑛𝜃𝐻

arctan ((𝑒0𝐻
𝑒𝑧𝐻

+ 𝑒𝑥𝐻
+ 𝑒𝑦𝐻

) , (0.5 − 𝑒𝑦𝐻
− 𝑒𝑧𝐻

)) + 𝑛𝜙𝐻

⎫}}}}
⎬}}}}⎭

(4.52)

Where arctan in the previous equation should be performed with the two-argument four-quadrant
inverse tangent.



5
Configurations and their Joined

Kinematics

In the previous chapter, Chapter 4, the individual kinematic models of both the Virtual Reality
(VR)/Augmented Reality (AR) system and the Stewart platform were presented and discussed. In
this chapter the individual kinematic models are combined to resemble a VR/AR system in an enclosed
Stewart platform. The Unscented Kalman Filter (UKF), explained in Chapter 3, will be used to estimate
the proper pose, position and attitude, of the Head-Mounted Display (HMD) with respect to (w.r.t.) the
Stewart platform, in the next chapter, Chapter 7, in a model based simulation.

Integrating a VR/AR system in an enclosed Stewart platform is in essence a change in reference frame
for the VR/AR system from the inertial 𝔼𝐼 to the upper moving reference frame 𝔼𝑃 . Meaning that the
pose from which to render the image for the user should be the pose of the HMDw.r.t. the Upper Gimbal
Point (UGP) as seen from the upper moving frame 𝔼𝑃 of the Stewart platform, i.e. the vehicle-fixed
pose. This new vehicle-fixed pose is denoted as 𝒄𝐻𝑃 and 𝒆𝐻𝑃 for the position and attitude respectively.

However, the Inertial Measurement Unit (IMU) of the HMD will pick up both acceleration ̈𝒄𝑃 and angular
rate 𝝎𝑃 , of the Stewart platform alongside the vehicle-fixed acceleration ̈𝒄𝐻𝑃 and angular rate 𝝎̇𝐻𝑃 of
the user’s HMD, indicated by the red dashed arrow in Figure 5.1. Even though the visual tracking, now
attached to the upper moving reference frame 𝔼𝑃 , already measures the vehicle-fixed pose, 𝒄𝐻𝑃 𝑚

and
𝒆𝐻𝑃 𝑚

, a standard sensor fusion algorithm deployed for the pose estimation of a nominal HMD has no
notion of the influence of the Stewart platform on the HMD’s IMU, resulting in a distorted pose. In turn,
distorting the image shown to the user, rendering this VR/AR system setup unusable.
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Figure 5.1: The result of placing a VR/AR system in an enclosed Stewart platform. The red dashed and dotted arrows
indicating the IMU of the HMD picking up the motion of the Stewart platform

In order to fix the distorted pose three configurations alongside a baseline will be presented and the
kinematics discussed that are capable in combination with the UKF to estimate the vehicle-fixed pose,

̂𝒄𝐻𝑃 and ̂𝒆𝐻𝑃 , of the HMD w.r.t. the UGP of a Stewart platform. A baseline configuration, Configuration
0, is presented in Section 5.1 and uses only the visual tracking to which the other three configurations
can be compared to. Followed by Configuration 2, in Section 5.2, which enables the IMU on the HMD for
more precise and lower latency pose estimation compared to the baseline, Configuration 0. Moreover,
Configuration 1 also estimates the pose, position ̂𝒄𝑃 and attitude ̂𝒆𝑃 , of the Stewart platform using
only the measured lengths of its hydraulic actuators. Next, Configuration 2, explained in Section 5.3,
extends Configuration 1 by enabling the use of the IMU attached to the Stewart platform. The aim of
Configuration 2 is to investigate the influence of an improved accuracy pose estimation of the Stewart
platform on the pose estimation of the HMD. Last, Configuration 3, will try something novel, namely the
use of software based setpoints of the Stewart platform to predict the pose of the Stewart platform
as a replacement of the IMU in Configuration 2. The software based setpoints were explained in
Section 2.3.3.

5.1. Configuration 0 --- Baseline
The visual tracking, when attached to the moving Stewart platform, already measures the proper
pose of the HMD as stated in the introduction of this chapter. By disabling the IMU of the HMD the
problem highlighted in Figure 5.1 is removed. However, this also removes the fast pose updates the
IMU can provide. This configuration is the minimal sensor configuration to achieve vehicle-fixed pose
estimations of a VR/AR system within an enclosed motion platform and will serve as the baseline to
which the other configurations in this chapter can be compared to.
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Figure 5.2: Configuration 1: A VR/AR system in an enclosed Stewart platform, with only measuring the pose of the HMD.

5.1.1. Kinematics
The visual tracking, under considerations, has a proprietary abstraction layer that prevents the reading
of the raw underlying measurement values, as stated in Section 4.5.2. The abstraction layer already
measures and estimates the vehicle-fixed position 𝒄𝐻𝑃 𝑚

and attitude 𝒆𝐻𝑃 𝑚
directly, i.e.,

𝒚𝐻𝑃 = [𝒄𝐻𝑃 𝑚
𝒆𝐻𝑃 𝑚

] (5.1)

Note again the new subscript𝐻𝑃 that indicates a variable of the HMDw.r.t. the upper moving reference
frame 𝔼𝑃 .

No process model is used in this case, as it is expected that the abstraction layer already runs a pose
estimation algorithm on the raw measurements of the sensor. Applying a Kalman Filter (KF) on top of
another pose estimation algorithm without the addition of other sensors information will not improve the
outcome [31]. Thus, the measurements are taken as is.
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5.2. Configuration 1 --- IMU on HMD
Configuration 1, depicted in Figure 5.3, enables the use of the IMU on the HMD in order to enable
improved accuracy pose estimation by including the Stewart platform in the kinematics of the sensor
fusion algorithm. Due to the design of the state, only the observation model of the VR/AR system
presented in Section 4.5 is altered in Section 5.2.2 to resemble the aforementioned change in reference
frame of the VR/AR system. The change of the Stewart platform process model f𝑃 , presented in
Section 4.4.1, is due to the removal of the IMU attached to the Stewart platform, invalidating the
previously used general kinematics and is altered in Section 5.2.1.
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Figure 5.3: Configuration 1: A VR/AR system with an IMU in an enclosed Stewart platform. The kinematics are adapted by
also estimating the Stewart platform pose.

5.2.1. Stewart Platform Process Model Alteration
The change in the state 𝒙̇𝑃 of the Stewart platform can be seen as Gaussian noise on said system and
can be included as part of the process noise 𝝂𝑃 [31], especially when no other measurements exist
to express the change in the state 𝒙̇𝑃 . The acceleration ̈𝒄𝑃 and the angular acceleration 𝝎̇𝑃 of the
Stewart platform are modeled as Gaussian noise, leading to a second-order system [31]. Expressing
the acceleration 𝝂 ̈𝒄𝑃

and angular acceleration noise 𝝂𝝎̇𝑃
in the inertial 𝔼𝐼 and upper moving frame 𝔼𝑃

respectively, the process noise 𝝂𝑃 is redefined as:

𝝂𝑃 = [𝝂 ̈𝒄𝑃
𝝂𝝎̇𝑃

] = [(𝜈𝑥̈𝑃
𝜈 ̈𝑦𝑃

𝜈 ̈𝑧𝑃 ) {𝔼𝐼}
(𝜈𝑝̇𝑃

𝜈 ̇𝑞𝑃
𝜈 ̇𝑟𝑃 ) {𝔼𝑃 }] (5.2)

The proportionality of the acceleration 𝝂 ̈𝒄𝑃
and the angular acceleration noise 𝝂𝝎̇𝑃

is investigated further
in Section 7.5.

In this case, the redefined process noise 𝝂𝑃 can be seen as a replacement for the removed IMU.
One that measures angular acceleration 𝝎̇𝑃 𝑚

instead of rate 𝝎𝑃 𝑚
and acceleration ̈𝒄𝑃 𝑚

in the inertial
reference frame 𝔼𝐼 instead of specific force 𝒇𝑃 𝑚

in the upper moving reference frame 𝔼𝑃 . Moreover,
the redefined process noise 𝝂𝑃 can be seen as a replacement of the removed IMU that measures zero
constantly and thus has large noise values for 𝝂 ̈𝒄𝑃

and 𝝂𝝎̇𝑃
to make up for it.

The modified input causes the state 𝒙𝑃 , previously presented in Equation 4.16, to change in order to
incorporate the angular acceleration 𝝎̇𝑃 later in the process model f𝑃 by adding the angular rate 𝝎𝑃 .
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However, the bias terms 𝝀𝑃 found in Equation 4.16, all belonging to the IMU can be removed, resulting
in the redefined state 𝒙𝑃 of the Stewart platform, i.e.,

𝒙𝑃 =
⎡
⎢⎢
⎣

𝒄𝑃
̇𝒄𝑃

𝒆𝑃
𝝎𝑃

⎤
⎥⎥
⎦

(5.3)

The angular rate 𝝎𝑃 part of the state 𝒙𝑃 in Equation 5.3 is defined similar to the measurements of the
IMU, i.e. defined in the upper moving frame 𝔼𝑃 , i.e.,

𝝎𝑃 = (𝑝𝑃 𝑞𝑃 𝑟𝑃 ) {𝔼𝑃 } (5.4)

To create this configuration’s process model f𝑃 the derivative of the state 𝒙̇𝑃 is taken. With the
redefinition of the angular rate 𝝎𝑃 in Equation 5.4, the derivative of the quaternion attitude 𝒆̇𝑃 can
be simplified, by removing the IMU related variables, from Equation 4.33 to:

𝒆̇𝑃 =
⎧{{
⎨{{⎩

̇𝑒0𝑃
̇𝑒𝑥𝑃
̇𝑒𝑦𝑃
̇𝑒𝑧𝑃

⎫}}
⎬}}⎭

= 1
2

⎡
⎢⎢
⎣

−𝑒𝑥𝑃
−𝑒𝑦𝑃

−𝑒𝑧𝑃
𝑒0𝑃

−𝑒𝑧𝑃
𝑒𝑦𝑃

𝑒𝑧𝑃
𝑒0𝑃

−𝑒𝑥𝑃
−𝑒𝑦𝑃

𝑒𝑥𝑃
𝑒0𝑃

⎤
⎥⎥
⎦

⎧{
⎨{⎩

𝑝𝑃
𝑞𝑃
𝑟𝑃

⎫}
⎬}⎭

(5.5)

The change of the angular rate 𝝎̇𝑃 over time, also called the angular acceleration, is expressed by the
time derivative of Equation 5.4, i.e.,

𝝎̇𝑃 = ( ̇𝑝𝑃 ̇𝑞𝑃 ̇𝑟𝑃 ) {𝔼𝑃 } + (𝑝𝑃 𝑞𝑃 𝑟𝑃 ) {𝔼̇𝑃 } (5.6)

Here, the {𝔼̇𝑃 } is a column notation of the time derivative of the unit vectors of the upper moving
reference frame 𝔼𝑃 . The direction change of the upper moving reference frame 𝔼𝑃 is due to the angular
rate of the object in question and can be expressed as:

= ( ̇𝑝𝑃 ̇𝑞𝑃 ̇𝑟𝑃 ) {𝔼𝑃 } + (𝑝𝑃 𝑞𝑃 𝑟𝑃 ) [𝜴𝑃 ] {𝔼𝑃 }
The [𝜴𝑃 ] is called the angular operator and is a skew-symmetrical matrix composed of the angular rate
𝝎𝑃 . A matrix composition to express the vector in a rotating reference frame by taking the cross-product
of a vector and the rotation itself, i.e.,

= ( ̇𝑝𝑃 ̇𝑞𝑃 ̇𝑟𝑃 ) {𝔼𝑃 } + (𝑝𝑃 𝑞𝑃 𝑟𝑃 ) ⎡⎢
⎣

0 𝑟𝑃 −𝑞𝑃
−𝑟𝑃 0 𝑝𝑃
𝑞𝑃 −𝑝𝑃 0

⎤⎥
⎦

{𝔼𝑃 }

The vector, expressed in the 𝔼𝑃 frame, of the cross product also being the rotation on said moving
non-inertial frame is equal to zero, i.e.,

= ( ̇𝑝𝑃 ̇𝑞𝑃 ̇𝑟𝑃 ) {𝔼𝑃 } (5.7)

The process model f𝑃 can be written by taking the process model f□ in Equation 4.35 and applying the
changes presented above in Equations 5.2 to 5.7. This results in:

𝒙̇𝑃 (𝑡) = f𝑃 (𝒙𝑃 (𝑡), 𝝂𝑃 (𝑡))
⎧{{{{{{{{{
⎨{{{{{{{{{⎩

̇𝑥𝑃
̇𝑦𝑃
̇𝑧𝑃
̈𝑥𝑃
̈𝑦𝑃
̈𝑧𝑃
̇𝑒0𝑃
̇𝑒𝑥𝑃
̇𝑒𝑦𝑃
̇𝑒𝑧𝑃
̇𝑝𝑃
̇𝑞𝑃
̇𝑟𝑃

⎫}}}}}}}}}
⎬}}}}}}}}}⎭

=

⎧{{{{{{{{{
⎨{{{{{{{{{⎩

̇𝑥𝑃
̇𝑦𝑃
̇𝑧𝑃

𝜈𝑥̈𝑃
𝜈 ̈𝑦𝑃
𝜈 ̈𝑧𝑃

1
2

⎡
⎢⎢
⎣

−𝑒𝑥𝑃
−𝑒𝑦𝑃

−𝑒𝑧𝑃
𝑒0𝑃

−𝑒𝑧𝑃
𝑒𝑦𝑃

𝑒𝑧𝑃
𝑒0𝑃

−𝑒𝑥𝑃
−𝑒𝑦𝑃

𝑒𝑥𝑃
𝑒0𝑃

⎤
⎥⎥
⎦

⎧{
⎨{⎩

𝑝𝑃
𝑞𝑃
𝑟𝑃

⎫}
⎬}⎭

𝜈𝑝̇𝑃
𝜈 ̇𝑞𝑃
𝜈 ̇𝑟𝑃

⎫}}}}}}}}}
⎬}}}}}}}}}⎭

(5.8)
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Note that there is no external input to this equation, here, only process noise 𝝂𝑃 is assumed accountable
for the systems movement.

The Stewart platform observation model h𝑃 , defined in Section 4.4.2 in Equation 4.44 is left unaltered
as nor the position 𝒄𝑃 nor the attitude 𝒆𝑃 was redefined.

5.2.2. VR/AR Observation Model Alteration
The HMD process model f𝐻 as found in Section 4.5 is also left unaltered. This is true as the HMD’s IMU
still measures the specific force 𝒇𝐻 and angular rate 𝝎𝐻 of the HMD frame 𝔼𝐻 w.r.t. the inertial frame
𝔼𝐼 . However, the observation h𝐻 needs alteration as the visual tracking is no longer attached to the
inertial frame but to the upper moving frame 𝔼𝑃 of the Stewart platform. The position 𝒄𝐻𝑃 𝑚

and attitude
𝒆𝐻𝑃 𝑚

measured by the visual tracking of the HMD are in this case w.r.t. to the upper moving frame 𝔼𝑃
of the Stewart platform. Both HMD and Stewart platform state’s position and attitude are expressed
w.r.t. the inertial frame 𝔼𝐼 . Thus, both HMD and Stewart platform poses need to be deducted to express
the position 𝒄𝐻𝑃 𝑚

and attitude 𝒆𝐻𝑃 𝑚
measured by the visual tracking. This leads to a definition of the

observation model h𝐻𝑃 of the VR/AR system as:

𝒚𝐻𝑃 = h𝐻𝑃 (𝒙𝐻(𝑡), 𝒙𝑃 (𝑡), 𝒐𝐻(𝑡)) (5.9)

[𝒄𝐻𝑃 𝑚
𝒆𝐻𝑃 𝑚

] = [𝒄𝐻𝑃 + 𝒏𝒄𝐻
𝒆𝐻𝑃 + 𝒏𝒆𝐻

] (5.10)

Here, in Equation 5.10, the observation noise 𝒐𝐻 existing out of the positional 𝒏𝒄𝐻
and attitude 𝒏𝒆𝐻

Gaussian noise vectors, are left unaltered since their inception in Section 4.5.2. As of note, this
observation h𝐻𝑃 is the only time the relative motion is relevant and both systems actively interact
in the kinematic models.

First, the position is defined from the center of the upper moving frame 𝔼𝑃 of the Stewart platform,
the UGP, to between the users retinas, the center of the HMD frame of reference 𝔼𝐻 . This can be
expressed as the difference between the position of the HMD 𝒄𝐻 and the Stewart platform 𝒄𝑃 , i.e.,

𝒄𝐻𝑃 = 𝒄𝐻 − 𝒄𝑃 (5.11)

Expressing 𝒄𝐻𝑃 in the upper moving frame 𝔼𝑃 , while using Equation 4.17 to express both positions,
𝒄𝐻 and 𝒄𝑃 , in the inertial frame 𝔼𝐼 Equation 5.11 can be expanded to:

(𝑥𝐻𝑃 𝑦𝐻𝑃 𝑧𝐻𝑃 ) {𝔼𝑃 } = (𝑥𝐻 − 𝑥𝑃 𝑦𝐻 − 𝑦𝑃 𝑧𝐻 − 𝑧𝑃 ) {𝔼𝐼}

Continuing, the right side of the previous equation is transformed, using Equation 4.21, to the upper
moving frame 𝔼𝑃 to concur with the measurement, i.e.,

= (𝑥𝐻 − 𝑥𝑃 𝑦𝐻 − 𝑦𝑃 𝑧𝐻 − 𝑧𝑃 ) 𝑻 𝑇
𝑃𝐼 {𝔼𝑃 } (5.12)

The attitude 𝒆𝐻𝑃 follows a similar method as in Section 4.5.2. The Euler-angles, 𝜓𝐻𝑃 , 𝜃𝐻𝑃 , and 𝜙𝐻𝑃 ,
in which the visual tracking under considerations expresses itself are defined as the attitude from the
upper moving frame 𝔼𝑃 to the reference frame 𝔼𝐻 attached to the HMD. Using the same quaternion to
Euler-angle transformation as in Equation 4.52 and found in [51], the Euler-angles can be written as:

⎧{
⎨{⎩

𝜓𝐻𝑃
𝜃𝐻𝑃
𝜙𝐻𝑃

⎫}
⎬}⎭

=
⎧{
⎨{⎩

arctan ((𝑒0𝐻𝑃
𝑒𝑥𝐻𝑃

+ 𝑒𝑦𝐻𝑃
+ 𝑒𝑧𝐻𝑃

) , (0.5 − 𝑒𝑥𝐻𝑃
− 𝑒𝑦𝐻𝑃

))
arcsin (2 (𝑒0𝐻𝑃

𝑒𝑦𝐻𝑃
− 𝑒𝑥𝐻𝑃

𝑒𝑧𝐻𝑃
))

arctan ((𝑒0𝐻𝑃
𝑒𝑧𝐻𝑃

+ 𝑒𝑥𝐻𝑃
+ 𝑒𝑦𝐻𝑃

) , (0.5 − 𝑒𝑦𝐻𝑃
− 𝑒𝑧𝐻𝑃

))

⎫}
⎬}⎭

(5.13)

Where the arctan function of the previous equation, Equation 5.13, should be performed with the two-
argument four-quadrant inverse tangent.

The quaternion representation of the attitude 𝒆𝐻𝑃 used in Equation 5.13 is defined as the attitude of
the HMD attached frame 𝔼𝐻 from the upper moving frame 𝔼𝑃 , i.e.,

𝒆𝐻𝑃 = (𝑒0𝐻𝑃
𝑒𝑥𝐻𝑃

𝑒𝑦𝐻𝑃
𝑒𝑧𝐻𝑃 ) { 1

𝔼𝑃
} (5.14)
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The computation of said quaternion 𝒆𝐻𝑃 is actually quite similar to its positional counterpart 𝒄𝐻𝑃 .
Meaning, the Stewart platform attitude 𝒆𝑃 is subtracted from the HMD attitude 𝒆𝐻 . Only, the quaternion
counterpart of a subtraction is a counter rotation. The counter rotation of a quaternion is indicated by
∼ and is performed by switching the signs of only the vector part of the quaternion, i.e.,

∼𝒆𝐻𝑃 = (𝑒0𝐻𝑃
𝑒𝑥𝐻𝑃

𝑒𝑦𝐻𝑃
𝑒𝑧𝐻𝑃 ) { 1

−𝔼𝑃
}

= (𝑒0𝐻𝑃
−𝑒𝑥𝐻𝑃

−𝑒𝑦𝐻𝑃
−𝑒𝑧𝐻𝑃 ) { 1

𝔼𝑃
} (5.15)

The counter rotation of the Stewart platform ∼𝒆𝑃 is ‘added’ to the HMD attitude 𝒆𝐻 via quaternion
multiplication ⊗

𝐿
, previously used in Equation 4.31, i.e.,

𝒆𝐻𝑃 = 𝒆𝐻⊗
𝐿

(∼𝒆𝑃 ) (5.16)

⎧{{
⎨{{⎩

𝑒0𝐻𝑃
𝑒𝑥𝐻𝑃
𝑒𝑦𝐻𝑃
𝑒𝑧𝐻𝑃

⎫}}
⎬}}⎭

=
⎡
⎢⎢
⎣

𝑒0𝐻
−𝑒𝑥𝐻

−𝑒𝑦𝐻
−𝑒𝑧𝐻

𝑒𝑥𝐻
𝑒0𝐻

−𝑒𝑧𝐻
𝑒𝑦𝐻

𝑒𝑦𝐻
𝑒𝑧𝐻

𝑒0𝐻
−𝑒𝑥𝐻

𝑒𝑧𝐻
−𝑒𝑦𝐻

𝑒𝑥𝐻
𝑒0𝐻

⎤
⎥⎥
⎦

⎧{{
⎨{{⎩

𝑒0𝑃
−𝑒𝑥𝑃
−𝑒𝑦𝑃
−𝑒𝑧𝑃

⎫}}
⎬}}⎭

(5.17)

=
⎧{{
⎨{{⎩

𝑒0𝐻
𝑒0𝑃

+ 𝑒𝑥𝐻
𝑒𝑥𝑃

+ 𝑒𝑦𝐻
𝑒𝑦𝑃

+ 𝑒𝑧𝐻
𝑒𝑧𝑃

𝑒𝑥𝐻
𝑒0𝑃

− 𝑒0𝐻
𝑒𝑥𝑃

+ 𝑒𝑧𝐻
𝑒𝑦𝑃

− 𝑒𝑦𝐻
𝑒𝑧𝑃

𝑒𝑦𝐻
𝑒0𝑃

− 𝑒𝑧𝐻
𝑒𝑥𝑃

− 𝑒0𝐻
𝑒𝑦𝑃

+ 𝑒𝑥𝐻
𝑒𝑧𝑃

𝑒𝑧𝐻
𝑒0𝑃

+ 𝑒𝑦𝐻
𝑒𝑥𝑃

− 𝑒𝑥𝐻
𝑒𝑦𝑃

− 𝑒0𝐻
𝑒𝑧𝑃

⎫}}
⎬}}⎭

The observation model h𝐻𝑃 of the enclosed HMD in a Stewart platform can be constructed by
combining: the assumed influence of the noise variables, 𝒏𝒄𝐻

and 𝒏𝒆𝐻
, found in Equation 4.52; the

expression for the position 𝒄𝐻𝑃 of the HMD to the UGP, stated in Equation 5.12; and the transformation
of the quaternion representation to the Euler-angles representation of the attitude 𝒆𝐻𝑃 in Equation 5.13:

𝒚𝐻𝑃 (𝑡) = h𝐻𝑃 (𝒙𝐻(𝑡), 𝒙𝑃 (𝑡), 𝒐𝐻(𝑡))

{𝒄𝐻𝑃 + 𝒏𝒄𝐻
𝒆𝐻𝑃 + 𝒏𝒆𝐻

} =

⎧{{{
⎨{{{⎩

𝑥𝐻𝑃
𝑦𝐻𝑃
𝑧𝐻𝑃
𝜓𝐻𝑃
𝜃𝐻𝑃
𝜙𝐻𝑃

⎫}}}
⎬}}}⎭

+

⎧{{{
⎨{{{⎩

𝑛𝑥𝐻
𝑛𝑦𝐻
𝑛𝑧𝐻
𝑛𝜓𝐻
𝑛𝜃𝐻
𝑛𝜙𝐻

⎫}}}
⎬}}}⎭

=

⎧{{{{
⎨{{{{⎩

𝑻𝑃𝐼
⎧{
⎨{⎩

𝑥𝐻 − 𝑥𝑃
𝑦𝐻 − 𝑦𝑃
𝑧𝐻 − 𝑧𝑃

⎫}
⎬}⎭

arctan ((𝑒0𝐻𝑃
𝑒𝑥𝐻𝑃

+ 𝑒𝑦𝐻𝑃
+ 𝑒𝑧𝐻𝑃

) , (0.5 − 𝑒𝑥𝐻𝑃
− 𝑒𝑦𝐻𝑃

))
arcsin (2 (𝑒0𝐻𝑃

𝑒𝑦𝐻𝑃
− 𝑒𝑥𝐻𝑃

𝑒𝑧𝐻𝑃
))

arctan ((𝑒0𝐻𝑃
𝑒𝑧𝐻𝑃

+ 𝑒𝑥𝐻𝑃
+ 𝑒𝑦𝐻𝑃

) , (0.5 − 𝑒𝑦𝐻𝑃
− 𝑒𝑧𝐻𝑃

))

⎫}}}}
⎬}}}}⎭

+

⎧{{{
⎨{{{⎩

𝑛𝑥𝐻
𝑛𝑦𝐻
𝑛𝑧𝐻
𝑛𝜓𝐻
𝑛𝜃𝐻
𝑛𝜙𝐻

⎫}}}
⎬}}}⎭

(5.18)
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5.3. Configuration 2 --- IMU Attached to Stewart platform
The influence of the precision of the estimated pose of the Stewart platform on the moving frame-
fixed pose estimation of the HMD is looked into by Configuration 2. This configuration is similar to
Configuration 1 but has an IMU attached to the upper moving frame of the Stewart platform as depicted
in Figure 5.4.
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Figure 5.4: Configuration 2: Configuration 1, depicted in Figure 5.3, with an IMU attached to the upper moving frame of the
Stewart platform.

The fact that the Stewart platform again has an IMU attached to its non-inertial reference frame 𝔼□
means that it can use the general kinematics in this configuration. Following, the state 𝒙𝑃 and the
process model f𝑃 was defined in Section 4.3.3. Moreover, the observation model h𝑃 of the Stewart
platform is the same as in Equation 4.44.

Nothing changes to the VR/AR system so nothing changes to the kinematic model. The state 𝒙𝐻 , the
process model f𝐻 are as developed in Section 4.3.3 The observation model h𝐻𝑃 of the HMD in the
enclosed Stewart platform was discussed in Section 5.2.2 and detailed in Equation 5.18.

The resulting kinematic model has again two seemingly independent states, the Stewart platform 𝒙𝑃
and HMD 𝒙𝐻 states. However, in the VR/AR system observation h𝐻𝑃 the systems interact direct
mathematically and the relative motion between both systems becomes relevant.
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5.4. Configuration 3 --- SRS with Setpoints
Contrary to Configuration 2, Configuration 3 uses the setpoints 𝒔 of the Stewart platform motion system
to predict the future pose of the Stewart platform itself, indicated in Figure 5.5.
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Figure 5.5: Configuration 3: similar to Configuration 1, shown in Figure 5.3, with the setpoints used to help predict the pose of
the Stewart platform.

Also depicted in Figure 5.5, are the full set of setpoints available, namely the position 𝒔𝒄, velocity 𝒔 ̇𝒄,
acceleration 𝒔 ̈𝒄, attitude 𝒔𝒆, angular rate 𝒔𝝎, and angular acceleration 𝒔𝝎̇. Of which only the acceleration
positional 𝒔 ̈𝒄 and the angular acceleration positional 𝒔𝝎̇ are only used due to their higher order relation
to elements of the state.

This configuration investigates if software based setpoints of the Stewart platform can be used to
replace the IMU as a sensor and the possible impact it would have on the proper pose of the HMD
enclosed in said Stewart platform. The added information should improve the pose estimation of the
Stewart platform when compared to Configuration 1. When compared to Configuration 2, it is the
question how Gaussian and accurate the setpoints based process model and the added variables are
when compared to the IMU process model and variables.

5.4.1. Joined Kinematics
Similar to Configurations 1 and 2, the HMD process model f𝐻 , the HMD observation model h𝐻𝑃 , and
the Stewart platform observation model h𝑃 can be found in Equations 4.35, 5.18, and 4.44 respectively.

Koekebakker states in [29] that a motion system with ‘an inner loop feedback and feedback linearising
control result in first order response of the system, from desired to actual accelerations.’ Following, a
motion system actual acceleration and angular acceleration can be described by the transfer function
G(𝑠) as:

G(𝑠) = Y(𝑠)
U(𝑠) = 1

𝜏𝑠 + 1 = 1/𝜏
𝑠 + 1/𝜏 (5.19)

Where, the inputU(𝑠) comprises of the setpoints describing the desired second derivative of the system
pose, the output Y(𝑠) expresses the actual acceleration of the system, both are based on the complex
variable 𝑠, and a time lag 𝜏 that indicates the time the system takes to reach 63% of the final step input.
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When applied to the second derivative setpoints 𝒔, namely the desired acceleration 𝒔 ̈𝒄 and desired
angular acceleration 𝒔𝝎̇, should result in the actual second derivatives, the acceleration ̈𝒄𝑃 and
angular acceleration 𝝎̇𝑃 of the Stewart platform. To integrate the actual acceleration ̈𝒄𝑃 and angular
acceleration 𝝎̇𝑃 into the process model f𝑃 , the transfer function G(𝑠), in Equation 5.19, is expressed
in a state-space form, i.e.,

⃛𝒄𝑃 = 1
𝝉 ̈𝒄

(𝒔 ̈𝒄 − ̈𝒄𝑃 ) (5.20)

𝝎̈𝑃 = 1
𝝉 𝝎̇

(𝒔𝝎̇ − 𝝎̇𝑃 ) (5.21)

These two equations, Equations 5.20 and 5.21, indicate that the base state 𝒙□, presented in
Equation 4.16, should be extended with the acceleration 𝝎𝑃 , angular rate 𝝎𝑃 , angular acceleration
𝝎̇𝑃 , acceleration lag 𝝉 ̈𝒄, and angular acceleration lag 𝝉 𝝎̇, while removing the IMU related variables,
i.e.,

𝒙𝑃 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝒄𝑃
̇𝒄𝑃
̈𝒄𝑃

𝒆𝑃
𝝎𝑃
𝝎̇𝑃
𝝉 ̈𝒄
𝝉 𝝎̇

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(5.22)

Also, the input 𝒖𝑃 is defined as the setpoints 𝒔, both the desired acceleration 𝒔 ̈𝒄 and desired angular
acceleration 𝒔𝝎̇ to replace the IMU related parts, as was the case in Equation 4.7, i.e.,

𝒖𝑃 = [𝒔 ̈𝒄
𝒔𝝎̇

] (5.23)

No changes are made to the reference frames in which the position 𝒄𝑃 , velocity ̇𝒄𝑃 , and attitude 𝒆𝑃
were defined for the base state 𝒙□ in Section 4.3.2 in Equations 4.17, 4.19, and 4.20 respectively. Also,
the angular rate 𝝎𝑃 is defined in the same manner as in Equation 5.4.

The same trend continuous for the derivatives of the previously named variables. The change in
position ̇𝒄𝑃 , velocity ̈𝒄𝑃 , attitude 𝒆̇𝑃 , and angular rate 𝝎̇𝑃 were defined in Equations 4.26, 4.28, 5.5,
and 5.7 respectively.

Following, the acceleration lag 𝝉 ̈𝒄 and acceleration lag 𝝉 𝝎̇, can be expressed in the inertial 𝔼𝐼 and
upper moving frame 𝔼𝑃 respectively. Assuming also that the acceleration setpoint 𝒔 ̈𝒄 and angular
acceleration setpoint 𝒔𝝎̇ are defined in the same frame of reference respectively results in:

[𝝉 ̈𝒄
𝒔 ̈𝒄

] = (𝜏𝑥̈ 𝜏 ̈𝑦 𝜏 ̈𝑧
𝑠𝑥̈ 𝑠 ̈𝑦 𝑠 ̈𝑧

) {𝔼𝐼} (5.24)

[𝝉 𝝎̇
𝒔𝝎̇

] = (𝜏𝑝̇ 𝜏 ̇𝑞 𝜏 ̇𝑟
𝑠𝑝̇ 𝑠 ̇𝑞 𝑠 ̇𝑟

) {𝔼𝑃 } (5.25)

Given these last two equations, Equations 5.24 and 5.25, Equations 5.20 and 5.21 can be fully
expressed in the inertial 𝔼𝐼 and upper moving frame 𝔼𝑃 and no transformation matrices are necessary,
i.e.,

⎧{{{
⎨{{{⎩

⃛𝑥𝑃
⃛𝑦𝑃
⃛𝑧𝑃
̈𝑝𝑃
̈𝑞𝑃
̈𝑟𝑃

⎫}}}
⎬}}}⎭

=

⎧{{{
⎨{{{⎩

− ̈𝑥𝑃 /𝜏𝑥̈ + 𝑠𝑥̈/𝜏𝑥̈
− ̈𝑦𝑃 /𝜏 ̈𝑦 + 𝑠 ̈𝑦/𝜏 ̈𝑦
− ̈𝑧𝑃 /𝜏 ̈𝑧 + 𝑠 ̈𝑧/𝜏 ̈𝑧
− ̇𝑝𝑃 /𝜏𝑝̇ + 𝑠𝑝̇/𝜏𝑝̇
− ̇𝑞𝑃 /𝜏 ̇𝑞 + 𝑠 ̇𝑞/𝜏 ̇𝑞
− ̇𝑟𝑃 /𝜏 ̇𝑟 + 𝑠 ̇𝑟/𝜏 ̇𝑟

⎫}}}
⎬}}}⎭

(5.26)
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Next, the process noise vector 𝝂𝑃 is created. In order for the UKF to estimate the lag 𝝉 influencing the
setpoints in Equation 5.26, a variance needs to be created on the lag 𝝉 . This is achieved by defining a
change of the lag ̇𝝉 of the system over time as the noise parameter 𝝂𝝉 . This noise parameter 𝝂𝝉 fulfills
a similar function as the noise variable 𝝁 to the 𝝀 of an IMU in Equation 4.34. Whereby the variance
on the lag 𝝉 allows the UKF to change the lag 𝝉 based on the measurements of the rest of the system.

𝝂𝑃 = [𝝂
̈𝒄

𝝂
𝝎̇

] = [(𝜈 ̇𝜏𝑥̈
𝜈 ̇𝜏𝑦̈

𝜈 ̇𝜏 ̈𝑧) {𝔼𝐼}
(𝜈 ̇𝜏𝑝̇

𝜈 ̇𝜏 ̇𝑞
𝜈 ̇𝜏𝑟̇) {𝔼𝑃 }] (5.27)

In principle the noise vector 𝝂𝑃 is complete. However, when this processmodel is applied to the UKF the
behavior of would not be optimal. As the only introduction of uncertainty to the state would be present
on the lag 𝝉 , which has to be small, i.e. ×10−3, relative to the lag itself as to not let the UKF make
large changes to the expected lag values. This would results in an almost zero state covariance 𝑷𝑥̂ of
the UKF in a couple of iterations when in the presents of an accurate observation sensors, such as the
actuator length measurement devices present on the SIMONA Research Simulator (SRS). Moreover,
to account for the integration errors, discussed in Section 7.2.4, extra variance on the states needs to be
created. The variance is introduced by two additional Gaussian noise sources, an acceleration variance
𝝂 ̈𝒄 and an angular acceleration 𝝂𝝎̇, akin to the Stewart platform in Configuration 1 in Section 5.2.1. The
acceleration 𝝂 ̈𝒄 and angular acceleration 𝝂𝝎̇ noises are added to the noise vector 𝝂𝑃 , i.e.,

𝝂𝑃 =
⎡
⎢⎢
⎣

𝝂
̈𝒄

𝝂
𝝎̇

𝝂 ̈𝒄
𝝂𝝎̇

⎤
⎥⎥
⎦

=
⎡
⎢
⎢
⎣

(𝜈 ̇𝜏𝑥̈
𝜈 ̇𝜏𝑦̈

𝜈 ̇𝜏 ̈𝑧) {𝔼𝐼}
(𝜈 ̇𝜏𝑝̇

𝜈 ̇𝜏 ̇𝑞
𝜈 ̇𝜏𝑟̇) {𝔼𝑃 }

(𝜈𝑥̈𝑃
𝜈 ̈𝑦𝑃

𝜈 ̈𝑧𝑃 ) {𝔼𝐼}
(𝜈𝑝̇𝑃

𝜈 ̇𝑞𝑃
𝜈 ̇𝑟𝑃 ) {𝔼𝑃 }

⎤
⎥
⎥
⎦

(5.28)

The continuous-time process model f𝑃 of the Stewart platform can now be constructed. The
combination of Equations 4.35, 4.28, 5.26, 5.5, 5.7, and 5.28 accumulates in:

𝒙̇𝑃 (𝑡) = f𝑃 (𝒙𝑃 (𝑡), 𝝂𝑃 (𝑡))

⎧{{{{{{{{{{{{{{{{{{{
⎨{{{{{{{{{{{{{{{{{{{⎩

̇𝑥𝑃
̇𝑦𝑃
̇𝑧𝑃
̈𝑥𝑃
̈𝑦𝑃
̈𝑧𝑃
⃛𝑥𝑃
⃛𝑦𝑃
⃛𝑧𝑃
̇𝑒0𝑃
̇𝑒𝑥𝑃
̇𝑒𝑦𝑃
̇𝑒𝑧𝑃
̇𝑝𝑃
̇𝑞𝑃
̇𝑟𝑃
̈𝑝𝑃
̈𝑞𝑃
̈𝑟𝑃
̇𝜏𝑥̈
̇𝜏 ̈𝑦
̇𝜏 ̈𝑧
̇𝜏𝑝̇
̇𝜏 ̇𝑞
̇𝜏 ̇𝑟

⎫}}}}}}}}}}}}}}}}}}}
⎬}}}}}}}}}}}}}}}}}}}⎭

=

⎧{{{{{{{{{{{{{{{{{{{{
⎨{{{{{{{{{{{{{{{{{{{{⎩

̇𝑥𝑃
̇𝑦𝑃
̇𝑧𝑃

̈𝑥𝑃 + 𝜈𝑥̈𝑃
̈𝑦𝑃 + 𝜈 ̈𝑦𝑃
̈𝑧𝑃 + 𝜈 ̈𝑧𝑃

− ̈𝑥𝑃 /𝜏𝑥̈ + 𝑠𝑥̈/𝜏𝑥̈
− ̈𝑦𝑃 /𝜏 ̈𝑦 + 𝑠 ̈𝑦/𝜏 ̈𝑦
− ̈𝑧𝑃 /𝜏 ̈𝑧 + 𝑠 ̈𝑧/𝜏 ̈𝑧

1
2

⎡
⎢⎢
⎣

−𝑒𝑥𝑃
−𝑒𝑦𝑃

−𝑒𝑧𝑃
𝑒0𝑃

−𝑒𝑧𝑃
𝑒𝑦𝑃

𝑒𝑧𝑃
𝑒0𝑃

−𝑒𝑥𝑃
−𝑒𝑦𝑃

𝑒𝑥𝑃
𝑒0𝑃

⎤
⎥⎥
⎦

⎧{
⎨{⎩

𝑝𝑃
𝑞𝑃
𝑟𝑃

⎫}
⎬}⎭

̇𝑝𝑃 + 𝜈𝑝̇𝑃
̇𝑞𝑃 + 𝜈 ̇𝑞𝑃
̇𝑟𝑃 + 𝜈 ̇𝑟𝑃

− ̇𝑝𝑃 /𝜏𝑝̇ + 𝑠𝑝̇/𝜏𝑝̇
− ̇𝑞𝑃 /𝜏 ̇𝑞 + 𝑠 ̇𝑞/𝜏 ̇𝑞
− ̇𝑟𝑃 /𝜏 ̇𝑟 + 𝑠 ̇𝑟/𝜏 ̇𝑟

𝜈 ̇𝜏𝑥̈
𝜈 ̇𝜏𝑦̈
𝜈 ̇𝜏 ̈𝑧
𝜈 ̇𝜏𝑝̇
𝜈 ̇𝜏 ̇𝑞
𝜈 ̇𝜏𝑟̇

⎫}}}}}}}}}}}}}}}}}}}}
⎬}}}}}}}}}}}}}}}}}}}}⎭

(5.29)



6
Sensor Selection and Parametrization

In the previous chapter, Chapter 5, joined process and observation models were created, linking input
to state and state to observation of an enclosed Virtual Reality (VR)/Augmented Reality (AR) system on
a moving Stewart platform. These models contain the 𝝂 and observation noise 𝒐 vectors representing
the zero-meanGaussian, i.e. ℵ (0, …), influence on their respectivemodels in the form of their variances
as 𝑸 and 𝑹 matrices through Equation 3.16 in the Unscented Kalman Filter (UKF).

In this chapter, the variances of the various noise sources are gathered and estimated with
measurement data where possible. Also, the time-lags 𝝉 , used for the integration of the setpoints
for the Stewart platform pose as per Section 5.4.1, are estimated in this chapter. The values found in
this chapter are the starting point for the analysis in the next chapter, Chapter 7.

First, Section 6.1 describes the selected VR system in short. Followed by noise profiles for the Inertial
Measurement Unit (IMU) of the Head-Mounted Display (HMD) as well as the visual tracking sensor
in Sections 6.1.1 and 6.1.2 respectively. Next, the SIMONA Research Simulator (SRS), the Stewart
platform to be modelled, will be presented in short in Section 6.2. The focus of the following sections,
Sections 6.2.1 and 6.2.2, will be on its sensors, namely the absolute linear encoders measuring the
hydraulic actuator lengths and the IMU attached to the upper moving platform of the SRS. The time-
lag 𝝉 on the highest order software-based setpoints 𝒔 to pose, consisting of position and attitude, is
measured and discussed in Section 6.2.3.

6.1. Virtual Reality system
The VR system to be simulated and analyzed is presented in this section. As stated in Section 2.2, a
six-Degree-of-Freedom (DoF) VR system comprises out of a HMD, with an IMU attached, and absolute
tracking, mostly in the form of visual tracking. In Section 6.1.1, the Pimax 8k-x [52], shown in Figure 6.1,
is proposed and initial noise parameters of its IMU are presented. Followed by Section 6.1.2, where the
TrackIR 5 [69], depicted in Figure 6.2, is proposed mainly due to its capability of working in a moving
environment. Moreover, due to a lack of in-depth information on the TrackIR 5 noise profile, one is
constructed in this section based on stationary measurements.
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Figure 6.1: Pimax 8k-x [52] Figure 6.2: TrackIR 5 [69]

6.1.1. Head-Mounted Display
The Pimax 8k-x, shown in Figure 6.1, was chosen based on its availability and design coherency with
other SteamVR devices. The compatibility with SteamVR devices makes it possible to read out the raw
IMU data by making use of the open-source software tools like libsurvive [35].

In the rest of this section, the velocity/angle random walk and the acceleration/rate random walk of the
IMU onboard the Pimax 8k-x are estimated based on stationary measurements and compared to the
manufacturer data sheet. The variance on these two IMU noise sources, the velocity/angle random
walk and the acceleration/rate random walk, are required as they are part of the kinematics. Thanks
to Equations 3.16 and 3.19 the influence of the IMU noise is propagated through the process model in
Equation 4.35 to the next predicted state 𝒙̂−

𝑘 and its covariance 𝑷𝑥̂
−
𝑘
following Equations 3.20 and 3.21.

The Pimax 8k-x’s IMU is positioned between the displays and at the same height as retinas of the user.
This IMU is a MPU-6500 as depicted in the breakdown in [53]. The IMU, a Micro-Electro-Mechanical
Systems (MEMS), includes an accelerometer and a gyroscope and runs up to 1000Hz. The data-sheet
of the MPU-6500 [44] states that the accelerometer has a velocity random walk 𝑁𝒇𝐻

of 3×102 µg/
√
Hz,

or ∼ 3 × 10−3 m/s2/
√
Hz, on all three axis. Meanwhile, the gyroscope has an angle random walk

coefficient 𝑁𝝎𝐻
on all three axis of 1 × 10−2 °/s/

√
Hz, or ∼2 × 10−4 rad/s/

√
Hz. Transforming both

numbers to discrete standard deviations found in actual measurements both the angle and velocity
random walk are to be multiplied by

√
1000

√
Hz in this case. This results in a standard deviation for

the accelerometer of 9 × 10−2 m/s2 and 6 × 10−3 rad/s for the gyroscope. Both accelerometer 𝐾𝒇𝐻
and rate random walk coefficients 𝐾𝝎𝐻

, Power Spectral Density (PSD) values, representing the rate
at which the biases change over time, are not present on the data-sheet of MPU-6500 [44].

By applying a Overlapping Allan Deviation (OAD), a standard procedure for creating noise profiles for
IMU [15, 60, 73, 27], on stationarymeasurements of theMPU-6500with a duration of 20min, the velocity
𝑁𝒇𝐻

and angle random walk 𝑁𝝎𝐻
presented on the data-sheet can be verified. The OAD, explained

in Appendix A, is a time-domain-analysis technique capable of determining both the deviation as well
as the source of the noise. The OAD is a superior adaptation of the Allan Deviation (AD) by exploring
the available data in different sized ‘overlapping’ bins [32].

In Figure 6.3, the AD of the stationary measurements of the accelerometer of all three axis are plotted
on a log-log scale. The white noise coefficient 𝑁𝒇𝐻

can be found at the green dot, found graphically at
the intersection of a fitting sloped line, with a slope of −1/2, and an averaging time 𝑚𝜏0 of one. Here,
the white noise coefficients 𝑁𝒇𝐻

found were between a third and a half of the values found on the data-
sheet. These values discrete counterpart, extracted by multiplying by

√
1000

√
Hz, and representing

the standard deviation on the measurements are given in Table 6.1.
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Figure 6.3: Overlapping Allan Deviation method applied to stationary measurement of the MPU-6500 accelerometer found in
the Pimax 8k-x.

Moreover, the accelerometer random walk coefficients 𝐾𝒇𝐻
are also found using this method. This

coefficient 𝐾𝒇𝐻
indicated as the purple dot in Figure 6.3, is found graphically at the intersection of a

straight line, fitted to the AD with a slope of 1/2, and at an averaging time 𝑚𝜏0 of three. The standard
deviation on the change of the bias of the IMU is retrieved by multiplying the acceleration random walk
coefficients 𝐾𝒇𝐻

by the square-root of the IMU operational frequency, i.e. 𝐾𝒇𝐻
⋅
√

1000, in this case.
The final values are also presented in Table 6.1.

In Figure 6.4, the AD of the stationary measurements of the gyroscope of all three axis are plotted on
a log-log scale. The white noise coefficient 𝑁𝝎𝐻

is found in the same manner as before, by graphically
finding the intersection of a line, with a slope of −1/2 and fitted to the AD, and an averaging time 𝑚𝜏0 of
one. Here, the white noise coefficients 𝑁𝒇𝐻

found are around half of the values presented in the data-
sheet of the IMU. However, the rate random walk coefficients 𝐾𝝎𝐻

are not found as the measurement
duration was not long enough. In Figure 6.4, the averaging time is not long enough for the OAD to
show a clear upward trent with a slope of a half, indicating the measurement duration was too short.
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Figure 6.4: Overlapping Allan Deviation method applied to stationary measurement of MPU-6500 gyroscope found in Pimax
8k-x.

In [47], the gyroscope of a MPU-6500 IMU was found to have an angle random walk of 1.42 × 10−4,
1.08 × 10−4, and 1.12 × 10−4 rad/s/

√
Hz around the x, y, and z-axis respectively. Close to the values

found in Figure 6.4. However, in this paper the measurement was long enough to get the gyroscope’s
rate randomwalk coefficient𝝁𝝎𝐻

of 5.66×10−6, 1.09×10−5, and 1.42×10−5 rad/s2/
√
Hzweremeasured

around the x, y, and z-axis respectively in the aforementioned paper. Until a longer measurement is
performed, the values mention in this paper for rate randomwalk are used in the simulation in Chapter 7.

Table 6.1: Sensor noise profile overview on the Pimax 8k-x HMD, the MPU-6500

Velocity/Angle
Random Walk

Acceleration/Rate
Random WalkFrequency Sensor

1000Hz
Accelerometer

𝜎𝑓𝑥̈𝐻
: 3.0 × 10−2 m/s2 𝜎𝑓𝜇𝑥̈𝐻

: 1.5 × 10−2 m/s3

𝜎𝑓𝑦̈𝐻
: 2.9 × 10−2 m/s2 𝜎𝑓𝜇𝑦̈𝐻

: 6.4 × 10−2 m/s3

𝜎𝑓 ̈𝑧𝐻
: 4.7 × 10−2 m/s2 𝜎𝑓𝜇 ̈𝑧𝐻

: 4.8 × 10−2 m/s3

Gyroscope
𝜎𝜔𝑝𝐻

: 3.3 × 10−3 rad/s 𝜎𝜔𝜇𝑝𝐻
: 1.8 × 10−4 rad/s2

𝜎𝜔𝑝𝐻
: 3.6 × 10−3 rad/s 𝜎𝜔𝜇𝑞𝐻

: 3.4 × 10−4 rad/s2

𝜎𝜔𝑝𝐻
: 3.8 × 10−3 rad/s 𝜎𝜔𝜇𝑟𝐻

: 4.5 × 10−4 rad/s2

The impact of the accuracy of the IMU of the HMD on the proper pose will be investigated in the
initial analysis in Section 7.4. Also, the impact of assuming the wrong value, with a factor of ten, will
be investigated in Section 7.4. Moreover, both the IMU noise values will be further validated in the
experiment proposed in Chapter 8.

6.1.2. Visual Tracking
The visual tracking nominally employed by SteamVR devices, both Base Station version 1.0 and 2.0,
are not designed to be used in a moving environment. The spinning Infrared (IR) emitter, inside
these Base Stations, are sensitive to sudden movement and designed to stop working if any motion
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is detected by their build-in accelerometer. More on the working of the Base Stations is found in
Section 2.2.2.1. Therefore, the TrackIR 5 visual tracking system was chosen, the sensor itself depicted
in Figure 6.2. This device is capable of withstanding the movement of the SRS, was available, and its
small size and single sensor makes it easy to integrate into the cramped interior of the SRS. For details
on the SRS itself see Section 2.3.1.

The TrackIR 5 is a IR transceiver, emitting and receiving the IR light in the same sensor. The IR light is
refracted by a passive TrackClip, presented in Figure 6.5. The light is refracted on the three reflectors
seen in the figure below and attached to the user’s head. It is assumed that the known shape lets
the TrackIR 5 proprietary algorithm workout the position and attitude of the TrackClip at an update
frequency of 120Hz.

Figure 6.5: TrackIR 5

No accuracy information was found on the TrackIR 5 sensor and proprietary software combination.
However, in order to model the TrackIR 5 as a sensor in a Kalman-Filter framework a Gaussian noise
profiles is necessary. For this reason, stationary measurements were made with the IR light emitter
clamped in place facing TrackIR 5 sensor 50 cm away for approximately five minutes. The result of
these measurements are shown in Figure 6.6 where some drift on all measurements are present. This
is likely a result of the proprietary software running the TrackIR 5, but more experiments are needed to
understand the accuracy of this sensor properly, see Chapter 8.
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Figure 6.6: Stationary measurements with TrackIR 5.

In order to model noise parameters on the stationary measurement the slow drift is removed from the
data. A high-pass filter was applied in the form of a Butterworth filter [8]. After analyzing the stationary
measurement in the frequency domain using the Fast Fourier Transform, the cut-off frequency was set
to 0.1Hz in the Butterworth filter. The resulting data is presented in Figure 6.7
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Figure 6.7: Stationary measurements with TrackIR 5 high-pass filtered with cut-off frequency 0.1Hz.
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The resulting filtered standard deviation compiled in Table 6.2 are small. This makes sense as the
the original measurements performed stationary and filtered to remove the drift present. Meaning that
the standard deviation values should be taken with caution. The proprietary algorithm of the TrackIR
5 could be optimized for stationary measurements, as this would be a recurring scenario in its use
case. However, it is unlikely that in a real use case the error would be this small. For this reason it is
proposed to increase the computed standard deviation in Table 6.2 by a factor of 1000, still resulting in an
accurate sensor model when compared to the sensor results of purpose build HTC Vive for example [7].
Moreover, the factor 1000 is probably on the small side as it is suspected that the dynamic accuracy is
less than its static accuracy.

Table 6.2: TrackIR 5 sensor overview and the estimated standard deviation on filter stationary measurement of the TrackIR 5.

Device Sensor Frequency Axis Deviation Deviation ×1000

TrackIR 5 Infrared 100Hz

𝜎𝑥𝐻
: 9.19 × 10−8 m 9.19 × 10−5 m

𝜎𝑦𝐻
: 3.04 × 10−7 m 3.04 × 10−4 m

𝜎𝑧𝐻
: 4.94 × 10−7 m 4.94 × 10−4 m

𝜎𝜓𝐻
: 1.94 × 10−6 rad 1.94 × 10−3 rad

𝜎𝜃𝐻
: 1.30 × 10−6 rad 1.30 × 10−3 rad

𝜎𝜙𝐻
: 2.47 × 10−6 rad 2.47 × 10−3 rad

The consequences of using the wrong accuracy data is looked into in Chapter 7. There, the problem
is faced from both sides, the accuracy being smaller/bigger and/or the expected accuracy being
smaller/bigger than proposed on the right side of Table 6.2.

6.2. SIMONA Research Simulator
The SIMONA Research Simulator (SRS) is a high fidelity flight simulator on a moving platform. The
moving platform is implemented as a Stewart platform giving the SRS six-DoF [64]. As mentioned in
Section 2.3.1, the position of the length of each of the six hydraulic actuators are measured via six
Heidenhain LC 415 linear encoders [19], depicted in Figure 6.8, one per actuator. The modelling of the
noise present on a HeidenHain LC 415 absolute linear encoder will be detailed in Section 6.2.1.

Figure 6.8: Heidenhain LC 415, an absolute linear encoder used for measuring hydraulic actuator length on the SRS.

Also, the IMU attached to upper moving frame of the SRS is presented in Section 6.2.2. Both
measurements are published onto Delft University Environment for Communication and Activation
(DUECA).

DUECA, a middleware, enabling real-time simulations by using both inter-module communication as
well as communication between different modules on a distributed network of computers [50]. Moreover,
DUECA uses a publish and subscribe design that enables modules, a self-contained possible real-time
computational element, to activate when receiving or sending data. In design and use, it is similar to
other middlewares like enhanced Communication Abstraction Layer (eCAL) [11], Message Queuing
Telemetry Transport (MQTT) [48] and Robot Operating System (ROS) [49].

Due to the distributed nature of DUECA and the sensors themselves, the time between actual
measurement of sensors and other modules receiving said measurements can be up to 50ms. The
success of resolving this delay and accompanying error by applying the Smoothed Delayed Unscented
Kalman Filter (SDUKF), outlined in Section 3.3.2, will be analyzed in Section 7.5.4.
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6.2.1. Absolute Linear Encoders
The absolute linear encoders used on the SRS, HeidenHain LC 415 [19], are modelled using the
information present on their relevant data-sheet. Here, it is stated that the standard deviation on a
measurement is 5 × 10−6 m. This noise profile is assumed true for all six absolute linear encoders
and is shown in Table 6.3. The impact between the actual and expected noise on the absolute linear
encoders will be investigated in Section 7.4.

Table 6.3: Absolute linear encoders sensor overview.

Device Frequency Deviation
HeidenHain LC 415 100Hz 𝜎𝑙𝑖

: 5 × 10−6 m

6.2.2. Inertial Measurement Unit
For the initial analysis the IMU is assumed to be of similar quality akin to the one used in [43] and are
presented in Table 6.4. These values need to be verified experimentally, more on this in Chapter 8.
Also, the need for an IMU attached to the SRS will be analyzed initially in Section 7.4. Here, the impact
of the accuracy of an IMU, when available will also be analyzed.

Table 6.4: Sensor noise profile overview of the IMU attached to the SRS.

Velocity/Angle
Random Walk

Acceleration/Rate
Random WalkFrequency Sensor

100Hz
Accelerometer

𝜎𝑓𝑥̈𝑃
: 1.9 × 10−3 m/s2 𝜎𝑓𝜇𝑥̈𝑃

: 1 × 10−3 m/s3

𝜎𝑓𝑦̈𝑃
: 2.1 × 10−3 m/s2 𝜎𝑓𝜇𝑦̈𝑃

: 1 × 10−3 m/s3

𝜎𝑓 ̈𝑧𝑃
: 1.8 × 10−3 m/s2 𝜎𝑓𝜇 ̈𝑧𝑃

: 1 × 10−3 m/s3

Gyroscope
𝜎𝜔𝑝𝑃

: 2.4 × 10−3 rad/s 𝜎𝜔𝜇𝑝𝑃
: 1 × 10−4 rad/s2

𝜎𝜔𝑝𝑃
: 4.1 × 10−3 rad/s 𝜎𝜔𝜇𝑞𝑃

: 1 × 10−4 rad/s2

𝜎𝜔𝑝𝑃
: 3.3 × 10−3 rad/s 𝜎𝜔𝜇𝑟𝑃

: 1 × 10−4 rad/s2

6.2.3. Setpoints
In this section the time lags 𝝉 , meaning the duration from sending the ‘Motion Command Signals’
(setpoints) to the resulting motion, is approximated per DoF based on measurements. As stated in
Sections 2.3.3 and 5.4, the resulting motion of the Stewart platform’s setpoints can be approximated by
a first order response. However, the exact time lags are not crucial but rather a rough approximation of
the time lags are required, due to the fact that the kinematics model in combination with the UKF and
appropriate selected time lag variance should approximate the first order time lag online.

Following, the time lag 𝝉 in the first order response between the position 𝒔𝒄 and attitude setpoints 𝒔𝒆
and actual position 𝒄𝑃 and attitude 𝒆𝑃 should be the same as the time lag for the acceleration and
angular acceleration cases. This is due to the fact that in the Laplace domain time integration and
applying the time lag can be done in any sequence. The time lag 𝝉 per axis is estimated by applying a
range of time lags 𝝉 per axis in a first order system, i.e.,

G(𝑠) = Y(𝑠)
U(𝑠) = 1

𝜏𝑠 + 1 (6.1)

In Equation 6.1, the position 𝒔𝒄 and attitude setpoints 𝒔𝒆 are the input U(𝑠), the predicted position ̂𝒄𝑃
and attitude ̂𝒆𝑃 are subsequently the output Y(𝑠). In turn, the output are compared to the measured
position 𝒄𝑃 𝑚

and attitude 𝒆𝑃 𝑚
of the SRS to compute a Mean Squared Error (MSE). Final, the time lag

𝝉 with the lowest MSE is considered optimal for the respective axis.

Both the setpoints and the pose were measured on the SRS while relatively large maneuvers were
performed as can be ascertained from the measured position and attitude in Figures 6.9 and 6.10.

The time lags 𝝉 for the translation and rotation are presented in Figures 6.9 and 6.10 respectively. In
both figures, the measured pose is compared against the most accurate first order response of the
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pose based setpoints, with the best approximate lag per component given in the label of each figure.
Also, the approximate lag per axis and the respective MSE are compiled in Table 6.5.
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Figure 6.9: The measured position per axis plotted against the most accurate first order response of the position based
setpoints.

Both the measured attitude as well as the attitude based setpoints were recorded as Euler angles
(𝜙, 𝜃, 𝜓). The zoomed in section for Figure 6.10 show a relative bigger difference than in Figure 6.9.
However, this section accomplished to establish a reasonable time lag estimate, due to the fact that
the UKF in combination with the Stewart platform kinematics in Section 5.4 allow for online time lag
estimation.
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Figure 6.10: Plotted the measured attitude versus the best fitting time lag applied to the attitude setpoints.

Table 6.5: Time lag and MSE observed when comparing the highest order setpoints integrated twice to measured position and
attitude of the SRS.

Setpoint Frequency Time Lag MSE

Acceleration 𝒔 ̈𝒄

100Hz

𝜏𝑥̈: 5.87 × 10−2 s 1.62 × 10−6 m
𝜏 ̈𝑦: 6.01 × 10−2 s 1.44 × 10−6 m
𝜏 ̈𝑧: 6.44 × 10−2 s 1.04 × 10−7 m

Angular
Acceleration 𝒔𝝎̇

𝜏𝑝̇: 6.01 × 10−2 s 9.44 × 10−8 rad
𝜏 ̇𝑞: 5.61 × 10−2 s 2.13 × 10−7 rad
𝜏 ̇𝑟: 6.75 × 10−2 s 2.40 × 10−7 rad



7
Model Based Simulation

In this chapter, an initial analysis is performed of the combined Unscented Kalman Filter (UKF)
algorithm, kinematic model and sensors within a simulation. Both the Head-Mounted Display (HMD)
and the SIMONA Research Simulator (SRS) are simulated to move according to a realistic motion
pattern, presented in Section 7.2. In turn, the motion is picked up by the various sensors presented in
Chapter 6, depending on the configuration.

Following, these sensor readings are the input to their respective system models that are operated
by the UKF, presented in Chapter 3, estimating the proper vehicle-fixed pose of the HMD. In order
to integrate the discrete sensor readings into the UKF, a discrete algorithm, the kinematic models of
each configuration presented in Chapter 5 are discretized in Section 7.1. Further UKF quaternion
implementation is presented in Section 7.3. Here, the methods for dealing with quaternion weighted
averages, quaternion covariances, and pseudo quaternion observation are explained.

All previous information presented up until the last section of this chapter was in service of the initial
analysis. The initial analysis is presented in Section 7.4. Here, the performancemetrics are first defined
and subsequently applied to the results of the different configurations. The performance metrics,
alongside the plotted data will give an overview of their total performance given the sensors present.

A sensitivity analysis is performed by modifying a predefined set of parameters in Section 7.5. Followed
by an analysis on the introduction andmitigation of latency on the linear encoders in Section 7.5.4. Final,
this chapter is concluded in Section 7.6.

The initial analysis will form the basis of the experiments. These will be presented in the next chapter,
Chapter 8.

7.1. Discretization
In this section the discretization of the continuous integration in the process models f□, presented
in Chapter 5, are shown. The discretization of the continuous process models f□ are necessary to
implement the discrete sampled sensors. Moreover, the UKF algorithm, presented in Chapter 3, works
with discretized process models, i.e.,.

𝒙̇□(𝑡) = f□ (𝒙□(𝑡), 𝒖□𝑘
, 𝝂□(𝑡))

Discrete Integration
−−−−−−−−−−−→

Method
𝒙□𝑘+1

= F□ (𝒙□𝑘
, 𝒖□𝑘

, 𝝂□𝑘
) (7.1)

The discretization of the continuous observation models does not require any method and these models
are used as is in a discrete fashion, i.e.,

𝒚□(𝑡) = h□ (𝒙□(𝑡), 𝒐□(𝑡)) −−−−−−−−−−−→ 𝒚□𝑘
= H□ (𝒙□𝑘

, 𝒐□𝑘
) (7.2)

In principle, the forward Euler method, a first order numerical integration method, is often used to
integrate models as a whole [41, 43], i.e.,

𝒙𝑘+1 = 𝒙̇𝑘Δ𝑡 + 𝒙𝑘 (7.3)

82
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The forward Euler method ignores any higher order terms and assumes the change per time step is
constant. These assumptions introduce errors into the prediction step. The error caused by this method
can be reduced by shortening the time-step Δ𝑡. The advantage of the forward Euler method is the low
computational cost and ease of implementation. Moreover, an analysis on the error introduced by the
forward Euler method can be found in Section 7.2.4.

The accurate representation of the pose of a HMD to the user in a timely manner is the most important
contributor to the user experience [40, 34, 26]. Due to the coupling of the system, an improvement in
attitude accuracy of both systems would also improve the translational accuracy. The lateral states of
both system depend on the attitude to translate the specific force reading to the inertial frame 𝔼𝐼 , shown
in Equations 4.30. Moreover, the attitude of the motion platform is used to translate the difference in
position between the HMD and Upper Gimbal Point (UGP) to the upper moving platform 𝔼𝑃 . Therefore,
it is opted to use an analytical based discrete integration method to improve the quaternion attitude
propagation in time [41]. The method is explained and discussed in Section 7.1.1.

Moreover, Configuration 3, the setpoint implementation, was found to be sensitive to initial starting
values and integration errors. To mitigate the latter, a method is proposed to reduce the discretization
error when integrating the setpoints 𝒔 in Section 7.1.2.

7.1.1. Quaternion Integration
The continuous change in quaternion state 𝑒 was described in Equations 4.33, and 5.5 by the angular
rate 𝝎□ in the respective non-inertial frame, both the HMD frame 𝔼𝐻 and the upper moving frame 𝔼𝑃 .
The analytical discretization of the quaternion propagation through time is described by Merwe and
Wan [41].

The first order derivation of the quaternion attitude 𝑒 was expressed in short in Equation 4.31, and
repeated here again but using a reversed right-to-left quaternion multiplication ⊗

𝑅
to ease explanation,

i.e.,

𝒆̇□ = 1
2𝝎□⊗

𝑅
𝒆□ (7.4)

Abriviating the right-to-left quaternion multiplication ⊗
𝑅
and the angular rate 𝝎□ as 𝜴□ for later use:

𝒆̇□ = 1
2𝜴□𝒆□ (7.5)

And in turn can be expanded to:

⎧{{
⎨{{⎩

̇𝑒0□
̇𝑒𝑥□
̇𝑒𝑦□
̇𝑒𝑧□

⎫}}
⎬}}⎭

= 1
2

⎡
⎢⎢
⎣

0 −𝑝□ −𝑞□ −𝑟□
𝑝□ 0 𝑟□ −𝑞□
𝑞□ −𝑟□ 0 𝑝□
𝑟□ 𝑞□ −𝑝□ 0

⎤
⎥⎥
⎦

⎧{{
⎨{{⎩

𝑒0□
𝑒𝑥□
𝑒𝑦□
𝑒𝑧□

⎫}}
⎬}}⎭

(7.6)

The resulting quaternion attitude derivation is no different from Equation 4.33, but the sequence is
altered to aid further explanation in this section.

The discrete propagated quaternion 𝒆□𝑘+1
over one time step Δ𝑡 with an assumed constant angular

rate 𝝎□, expressed in the non-inertial frame 𝔼□, is derived as [41, 51]:

𝒆□𝑘+1
= exp(1

2𝜴□𝑘
Δ𝑡)𝒆□𝑘

(7.7)

Where 𝜴□𝑘
is a 4 × 4 skew-symmetrical matrix shown in Equation 7.5, similar to the 3 × 3 version in

Equation 5.6, composed of the angular rate 𝝎□𝑘
at time-step 𝑘. The effective rotation in attitude caused

by the angular rate 𝝎□𝑘
, assumed constant, over one time step Δ𝑡 in the non-inertial moving frame 𝔼□,

is defined as:
𝝎□𝑘

Δ𝑡 = (𝑝□𝑘
Δ𝑡 𝑞□𝑘

Δ𝑡 𝑟□𝑘
Δ𝑡) {𝔼□} (7.8)
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The effective rotation 𝝎□𝑘
, presented in Equation 7.8, is given in the angle-axis form. In this form,

the total rotation ‖𝝎□𝑘
Δ𝑡‖ is given around a unit-axis 𝝎□𝑘 Δ𝑡

‖𝝎□𝑘 Δ𝑡‖ , as is the case with a Micro-Electro-
Mechanical Systems (MEMS) based gyroscopes.

Next, the 4 × 4 skew-symmetrical matrix 𝜴□𝑘
Δ𝑡 used in Equation 7.7 is composed similar to

Equation 7.5, whereby the elements of the effective rotation 𝝎□𝑘
Δ𝑡, found in Equation 7.8, are used,

i.e.,

𝜴□𝑘
Δ𝑡 =

⎡
⎢⎢
⎣

0 −𝑝□𝑘
Δ𝑡 −𝑞□𝑘

Δ𝑡 −𝑟□𝑘
Δ𝑡

𝑝□𝑘
Δ𝑡 0 𝑟□𝑘

Δ𝑡 −𝑞□𝑘
Δ𝑡

𝑞□𝑘
Δ𝑡 −𝑟□𝑘

Δ𝑡 0 𝑝□𝑘
Δ𝑡

𝑟□𝑘
Δ𝑡 𝑞□𝑘

Δ𝑡 −𝑝□𝑘
Δ𝑡 0

⎤
⎥⎥
⎦

(7.9)

The exponential factor in Equation 7.7 can be expanded and truncated using the skew-symmetrical
matrix 𝜴□𝑘

Δ𝑡 in Equation 7.9 to the closed-form notation [41, 51] as:

exp(1
2𝜴□𝑘

Δ𝑡) = 𝑰 cos (𝑠□𝑘
) + 1

2𝜴□𝑘
Δ𝑡

sin (𝑠□𝑘
)

𝑠□𝑘

(7.10)

Where 𝑠□𝑘
is defined as half the norm of the effective rotation 𝝎□𝑘

Δ𝑡, i.e.,

𝑠□𝑘
= 1

2 ∥𝝎□𝑘
Δ𝑡∥ = 1

2 ∥𝑝□𝑘
Δ𝑡 𝑞□𝑘

Δ𝑡 𝑟□𝑘
Δ𝑡∥

= 1
2

√(𝑝□𝑘
Δ𝑡)2 + (𝑞□𝑘

Δ𝑡)2 + (𝑟□𝑘
Δ𝑡)2

(7.11)

Using the closed-form notation presented in Equation 7.10 in Equation 7.7 results in:

𝒆□𝑘+1
= [𝑰 cos (𝑠□𝑘

) + 1
2𝜴□𝑘

Δ𝑡
sin (𝑠□𝑘

)
𝑠□𝑘

] 𝒆□𝑘
(7.12)

Expanding Equation 7.12 using the 4 × 4 skew-symmetrical matrix defined in Equation 7.9 finalizes the
discrete integration of the angular rate into the quaternion attitude:

⎧{{
⎨{{⎩

𝑒0□𝑘+1
𝑒𝑥□𝑘+1
𝑒𝑦□𝑘+1
𝑒𝑧□𝑘+1

⎫}}
⎬}}⎭

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

cos (𝑠□𝑘
) −𝑝□𝑘

Δ𝑡 sin (𝑠□𝑘 )
2𝑠□𝑘

−𝑞□𝑘
Δ𝑡 sin (𝑠□𝑘 )

2𝑠□𝑘
−𝑟□𝑘

Δ𝑡 sin (𝑠□𝑘 )
2𝑠□𝑘

𝑝□𝑘
Δ𝑡 sin (𝑠□𝑘 )

2𝑠□𝑘
cos (𝑠□𝑘

) 𝑟□𝑘
Δ𝑡 sin (𝑠□𝑘 )

2𝑠□𝑘
−𝑞□𝑘

Δ𝑡 sin (𝑠□𝑘 )
2𝑠□𝑘

𝑞□𝑘
Δ𝑡 sin (𝑠□𝑘 )

2𝑠□𝑘
−𝑟□𝑘

Δ𝑡 sin (𝑠□𝑘 )
2𝑠□𝑘

cos (𝑠□𝑘
) 𝑝□𝑘

Δ𝑡 sin (𝑠□𝑘 )
2𝑠□𝑘

𝑟□𝑘
Δ𝑡 sin (𝑠□𝑘 )

2𝑠□𝑘
𝑞□𝑘

Δ𝑡 sin (𝑠□𝑘 )
2𝑠□𝑘

−𝑝□𝑘
Δ𝑡 sin (𝑠□𝑘 )

2𝑠□𝑘
cos (𝑠□𝑘

)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎧{{
⎨{{⎩

𝑒0□𝑘
𝑒𝑥□𝑘
𝑒𝑦□𝑘
𝑒𝑧□𝑘

⎫}}
⎬}}⎭

(7.13)

If there is no angular rate, meaning 𝝎□𝑘
= 0 and causing 𝑠□𝑘

= 0, the next quaternion attitude 𝒆□𝑘+1
is

equal to the current one 𝒆□𝑘
, i.e.,

⎧{{
⎨{{⎩

𝑒0□𝑘+1
𝑒𝑥□𝑘+1
𝑒𝑦□𝑘+1
𝑒𝑧□𝑘+1

⎫}}
⎬}}⎭

=
⎡
⎢⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥
⎦

⎧{{
⎨{{⎩

𝑒0□𝑘
𝑒𝑥□𝑘
𝑒𝑦□𝑘
𝑒𝑧□𝑘

⎫}}
⎬}}⎭

if 𝑠□𝑘
= 0 (7.14)

7.1.2. Setpoint Integration
In this section, the accuracy of the discretization step of the setpoints 𝒔 implementation in the continuous
process model f𝑃 of Configuration 3 is improved over the Forward Euler method by deriving an
analytical expression of the discretized system.

The discrete terms of a linear state-space state 𝑨 and input 𝑩 matrices are found, assuming the input
𝒖 is kept constant over the duration of the time step, working out the following:

exp([𝑨 𝑩
0 0 ] Δ𝑡) = [𝑨𝑑 𝑩𝑑

0 𝑰 ] (7.15)
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In order to apply Equation 7.15 to Equation 5.20 requires both the translational ⃛𝒄𝑃 and angular jerk
𝝎̈𝑃 equations to be isolated from the rest of the equation. To accomplish this, the time lag variables,
𝝉 ̈𝒄 and 𝝉 𝝎̇, are assumed to be constant over one time-step Δ𝑡. Even though the derivative of the
time-lag is non-zero, this change is expected to be small. The validity of this statement can be found in
Section 6.2.3. This results in Equation 5.20 to be written in terms of state 𝑨 and input 𝑩 matrices, i.e.,

𝒙̇ = 𝑨𝒙 + 𝑩𝒖

𝑨 = [− 1
𝝉 ̈𝒄

] 𝑩= [ 1
𝝉 ̈𝒄

] (7.16)

With,

𝒙 = [ ̈𝒄𝑃 ] 𝒖 = [𝒔 ̈𝒄] (7.17)

Finally applying Equation 7.15 to Equation 7.16, i.e.,

exp([− 1
𝝉 ̈𝒄

1
𝝉 ̈𝒄

0 0 ] Δ𝑡) = [exp ( −Δ𝑡
𝝉 ̈𝒄

) 1 − exp ( −Δ𝑡
𝝉 ̈𝒄

)
0 1 ] (7.18)

Simplifying Equation 7.18, i.e.,

̈𝒄𝑃 𝑘+1
= ̈𝒄𝑃 𝑘

exp(−Δ𝑡
𝝉 ̈𝒄

) + 𝒔 ̈𝒄 (1 − exp(−Δ𝑡
𝝉 ̈𝒄

))

= exp(−Δ𝑡
𝝉 ̈𝒄

) ( ̈𝒄𝑃 𝑘
− 𝒔 ̈𝒄) + 𝒔 ̈𝒄 (7.19)

The same method applied to Equation 5.21 results in:

𝝎̇𝑃 𝑘+1
= exp(−Δ𝑡

𝝉 𝝎̇
) (𝝎̇𝑃 𝑘

− 𝒔𝝎̇) + 𝒔𝝎̇ (7.20)

7.2. Motion
In this section both the motion as well as the method of generating said motion will be described in this
section. The position and attitude of both the SRS and HMD are created from multiple superimposed
sinusoidal function over time per axis. Meaning, that per Degree-of-Freedom (DoF), there will be
superimposed sinusoids over time 𝑡. To simulate motion from rest, the motion will be scaled linearly
for the first 10 s, these 10 s are indicated by 𝑇 . Moreover, the motion is computed in the inertial frame
of reference 𝔼𝐼 . The attitude is represented per axis in angle-axis formulation and transformed to
quaternion representation by Equation 7.27 in Section 7.2.1. Given all this, the sinusoids for both the
position and attitude are computed over time 𝑡, with amplitude 𝐴, and frequency 𝑓 per axis as:

𝑦(𝑡) = {
𝐴
𝑇 𝑡 sin (2𝜋𝑓𝑡)
𝐴 sin (2𝜋𝑓𝑡)

𝑡 ≤ 𝑇
𝑡 > 𝑇 (7.21)

In turn, only the velocity is computed per axis in the inertial frame of reference 𝔼𝐼 by taking the derivative
of Equation 7.21, i.e.,

𝑦′(𝑡) = {
𝐴
𝑇 (2𝜋𝑓𝑡 cos (2𝜋𝑓𝑡) + sin (2𝜋𝑓𝑡))
2𝜋𝑓𝐴 cos (2𝜋𝑓𝑡)

𝑡 ≤ 𝑇
𝑡 > 𝑇 (7.22)

The second derivative of Equation 7.21 results in the acceleration per axis of the inertial frame of
reference 𝔼𝐼 , i.e.,

𝑦″(𝑡) = {
2𝜋𝑓𝐴

𝑇 (−2𝜋𝑓𝑡 sin (2𝜋𝑓𝑡) + 2 cos (2𝜋𝑓𝑡))
−(2𝜋𝑓)2𝐴 sin (2𝜋𝑓𝑡)

𝑡 ≤ 𝑇
𝑡 > 𝑇 (7.23)
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7.2.1. Quaternion Attitude Derivative
However, the angular rate and angular acceleration are computed numerical. Whereby the difference
between subsequent quaternions attitudes are transformed to angle-axis formulation and divided by
the time-step Δ𝑡, i.e.,

𝝎𝑘 = 𝒆𝑘+1⊖𝒆𝑘
Δ𝑡 (7.24)

Here, the quaternion difference that results in an angle-axis attitude is symbolized by the quaternion
deduction operator ⊖. In turn, the deduction operator ⊖ is defined as the quaternion multiplication ⊗

𝐿
with the opposite attitude of the right-hand quaternion∼𝒆𝑘, the negative quaternion symbol∼ explained
in Equation 5.15. The result of the deduction should be transformed from quaternion to angle-axis
notation by Q2R, i.e.,

=
Q2R (𝒆𝑘+1⊗

𝐿
∼𝒆𝑘)

Δ𝑡 (7.25)

The effective rotation in angle-axis notation devided by the time-step Δ𝑡 should result in an angular
rotation in the same form and reference frame as measured by a MEMS based Inertial Measurement
Unit (IMU) in the moving reference frame 𝔼□.

The transformation from quaternion to angle-axis notation Q2R is found by reversing the angle-axis to
quaternion transformation R2Q. The R2Q transformation can be established by using Equation 7.13
and setting the right quaternion to a real unit quaternion (1, 0, 0, 0) representing no rotation from the
inertial reference frame, and thus leaving only the change in quaternion attitude written in terms of the
effective rotation Δ𝑡𝝎𝑘 in angle-axis notation [51], i.e.,

𝜟𝒆 =
⎡
⎢⎢
⎣

Δ𝑒0
Δ𝑒𝑥
Δ𝑒𝑦
Δ𝑒𝑧

⎤
⎥⎥
⎦

=
⎡
⎢⎢⎢
⎣

cos (𝑠𝑘)
𝑝𝑘Δ𝑡 sin (𝑠𝑘)

2𝑠𝑘
𝑞𝑘Δ𝑡 sin (𝑠𝑘)

2𝑠𝑘
𝑟𝑘Δ𝑡 sin (𝑠𝑘)

2𝑠𝑘

⎤
⎥⎥⎥
⎦

if 𝑠𝑘 ≠ 0 (7.26)

Here, the quaternion change in attitude 𝜟𝒆 with scalar Δ𝑒0 and vector components Δ𝑒𝑥, Δ𝑒𝑦, Δ𝑒𝑧 are
expressed in terms of an angle-axis attitude, i.e., constant angular rate 𝝎𝑘 for a time step Δ𝑡, with the
effective rotation 𝝎𝑘Δ𝑡 and half the norm of the effective rotation 𝑠𝑘 defined similarly to Equations 7.8
and 7.11 respectively.

If however there is no rotation, i.e. 𝑠𝑘 = 0, a real unit quaternion is inserted instead. Including this
information and writing Equation 7.26 in the ordered pair quaternion form, i.e. 𝒆 = (𝑒0, 𝒒), as:

𝜟𝒆 = {(cos (𝑠𝑘), 𝝎𝑘Δ𝑡 sin (𝑠𝑘)
2𝑠𝑘

) if 𝑠𝑘 ≠ 0
(1, [0]3×1) if 𝑠𝑘 = 0 (7.27)

And will be further abbreviated as:

𝜟𝒆 = R2Q (𝝎𝑘Δ𝑡) (7.28)

Having established the effective rotation in angle-axis form to quaternion attitude transformation
R2Q, the reverse transformation Q2R is found by first isolating the quaternion scalar term Δ𝑒0 in
Equation 7.26 and deducing half the norm of the rotation 𝑠𝑘, i.e.,

𝑠𝑘 = arccos (𝑒0) (7.29)

Following, the vector component of the quaternion 𝒒 is used to compute the effective rotation 𝝎𝑘Δ𝑡,
i.e.,

𝝎𝑘Δ𝑡 = Q2R (𝒆) = Q2R (𝑒0, 𝒒) (7.30)

𝝎𝑘Δ𝑡 = {𝒒 2𝑠𝑘
sin (𝑠𝑘) if 𝑠𝑘 ≠ 0

[0]3×1 if 𝑠𝑘 = 0 (7.31)
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Using the transformationQ2R in Equation 7.31 the constant angular rate necessary to rotate the current
quaternion attitude 𝒆□𝑘

to the next 𝒆□𝑘+1
can now be computed by Equation 7.25.

Next, the angular acceleration 𝝎̇ is computed as the inverse of the integration method, the forward
Euler method, i.e.,

𝝎̇𝑘 = 𝝎𝑘+1 − 𝝎𝑘
Δ𝑡 (7.32)

7.2.2. Motion Data
The motion of the SRS, as pointed out in [43], should be large enough to make sure to explore the
nonlinearity in the SRS stewart platform [1]. The level of nonlinearity impacts the UKF Gaussian
approximation in both the prediction as well in the correction phase. The frequency and amplitude of
each sinusoid per axis is given in the table below, in Table 7.1. Inserting the frequencies and amplitudes,
given in Table 7.1, in Equations 7.21, 7.22, 7.25, 7.23, and 7.32 results in the position, attitude, velocity,
angular rate, acceleration and angular acceleration. The initial velocity, acceleration, attitude, angular
rate, and angular acceleration are all set to zero, except for the initial position of the SRS UGP, which is
initially −2.39m removed over the z-axis from the Lower Gimbal Point (LGP), i.e. the motion reference
point, the definition of which is stated in Section 4.4.

Table 7.1: Amplitudes and Frequencies of the sinusoidal motion of the SRS.

Translation Rotation
SRS: Amplitude [m] Frequency [Hz] Amplitude [rad] Frequency [Hz]

x: −0.1 0.1 −0.07 0.1
0.1 0.25 0.07 0.25
0.0123 0.65 0.0123 0.65
0.016 0.85 0.016 0.85
0.002 2.0 0.002 2.0

y: 0.1 −0.1 0.07 −0.1
0.1 −0.25 0.07 −0.25
0.0123 0.65 0.0123 0.65
0.016 0.85 0.016 0.85
0.002 2.0 0.002 2.0

z: 0.03 0.5 0.05 0.5
0.002 2.0 0.002 2.0

The resulting translational and rotational motion of the SRS is shown in Figures 7.1 and 7.2 respectively.
The attitude, in Figure 7.2, is presented in angle-axis formulation for better readability when compared
to quaternion attitude formulation. The 𝐼 subscript in the labels of the rotational figure is to indicate that
the value is expressed in the inertial reference frame.

The frequency and amplitude of the motion of the HMD is presented in Table 7.2. The motion of the
HMD is similar to the SRS motion with some extra movement on top. This does not reflect real live as
the derivatives of the attitude of the SRS influence the velocity and acceleration of the HMD. However,
this choice of movement of the HMD simplifies the generation of the input data and does not alter
the validity of the observations. The initial velocity, acceleration, attitude, angular rate, and angular
acceleration are all set to zero. Except for the initial position of the HMD, where the z-axis position
starts at −3.0m from the LGP.
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Figure 7.1: Position, velocity, and acceleration in the inertial reference frame 𝔼𝐼 of SRS.

Figure 7.2: Angle-axis attitude, angular rate, and angular acceleration in the inertial reference frame 𝔼𝐼 of SRS.
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Figure 7.3: Position, velocity, and acceleration in the inertial reference frame 𝔼𝐼 of the HMD.

Table 7.2: Amplitudes and Frequencies of the sinusoidal motion of the HMD on the user’s head. The extra sinusoid motion,
compared to the SRS motion, highlighted in gray.

Translation Rotation
HMD: Amplitude [m] Frequency [Hz] Amplitude [rad] Frequency [Hz]

x: −0.1 0.1 −0.07 0.1
0.1 0.25 0.07 0.25
0.0123 0.65 0.0123 0.65
0.016 0.85 0.016 0.85
0.002 2.0 0.002 2.0

−0.02 0.5 −0.25 0.25
y: 0.1 −0.1 0.07 −0.1

0.1 −0.25 0.07 −0.25
0.0123 0.65 0.0123 0.65
0.016 0.85 0.016 0.85
0.002 2.0 0.002 2.0
0.02 −0.5 0.25 −0.25

z: 0.03 0.5 0.05 0.5
0.002 2.0 0.002 2.0
0.01 0.5 0.05 0.25

The resulting translational and rotational motion of the HMD is shown in Figures 7.3 and 7.4 respectively.
The attitude, in Figure 7.4, is presented in angle-axis formulation for better readability when compared
to quaternion attitude formulation. The 𝐼 subscript in the rotational figure is to indicate that the value is
expressed in reference to the inertial reference frame.

7.2.3. Input and Observation Data Generation
Following the analytical description of the motion of both entities, SRS and HMD, the discrete measured
input 𝒖𝑘 and observation 𝒚𝑘 of each sensor is sampled using the analytical motion. In this section the
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Figure 7.4: Angle-axis attitude, angular rate, and angular acceleration in the inertial reference frame 𝔼𝐼 of the HMD.

data generation of each sensor is discussed and the method used explained.

First, the data generation of both IMU, one attached to the UGP of the SRS and the other one attached
to the HMD itself, are discussed in Section 7.2.3.1. Second, the data generation of setpoints for the
SRS is presented in Section 7.2.3.3. Last, the data generation of all observation sensors are given in
Section 7.2.3.4.

Inertial Measurement Unit: Specific Force and Rate
Both IMU, described in Chapter 6, measure both the specific force 𝒇□𝑚𝑘

and angular rate 𝝎□𝑚𝑘
discretely in their respective non-inertial reference frame 𝔼□, i.e. the reference frame attached to the
HMD 𝔼𝐻 and the reference frame attached to the center of the UGP 𝔼𝑃 of the SRS. In order to simulate
the measurements the actual data is necessary.

First, the discrete actual specific force 𝒇□𝑘
for both entities, SRS and HMD, IMU is computed by first

deducting the gravity 𝒈 from the acceleration ̈𝒄□𝑘
. The acceleration ̈𝒄□𝑘

of each entity, SRS and HMD,
is sampled at the discrete sample rate of the respective IMU from the analytical acceleration, presented
in Figures 7.1 and 7.3 by computing the data in Tables 7.1 and 7.2 with Equation 7.23. Both the sampled
acceleration ̈𝒄□𝑘

and gravity 𝒈, are defined in the inertial frame 𝔼𝐼 in this case. The specific force each
entity IMU is subjected to can be computed by the opposite operation of that in Equation 4.30 and
transferring the result to the entity respective non-inertial frame 𝔼□, i.e.,

𝒇□𝑘
= ̈𝒄□𝑘

− 𝒈
(𝑓𝑥̈□𝑘

𝑓 ̈𝑦□𝑘
𝑓 ̈𝑧□𝑘

) {𝔼𝑃 } = ( ̈𝑥□𝑘
̈𝑦□𝑘

̈𝑧□𝑘
) {𝔼𝐼} − (0 0 𝑔) {𝔼𝐼}

(𝑓𝑥̈□𝑘
𝑓 ̈𝑦□𝑘

𝑓 ̈𝑧□𝑘
) = ( ̈𝑥□𝑘

̈𝑦□𝑘
̈𝑧□𝑘

− 𝑔) 𝑻 𝑇
□𝐼

(7.33)

Next, the discrete actual angular rate 𝝎□𝑘
each entity IMU is subject to is computed. The angular rate

𝝎□𝑘
, presented in Figures 7.2 and 7.4 by computing the data in Tables 7.1 and 7.2 with Equations 7.21

and 7.25, is in the inertial reference frame 𝔼𝐼 . The actual angular rate 𝝎□𝑘
in the non-inertial reference

frame 𝔼□ is found by applying the transformation matrix 𝑻□𝐼 using the required and already established
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quaternion attitude representation, i.e.,

(𝑝□𝑘
𝑞□𝑘

𝑟□𝑘) {𝔼□} = (𝑝𝐼□𝑘
𝑞𝐼□𝑘

𝑟𝐼□𝑘
) {𝔼𝐼}

(𝑝□𝑘
𝑞□𝑘

𝑟□𝑘) = (𝑝𝐼□𝑘
𝑞𝐼□𝑘

𝑟𝐼□𝑘
) 𝑻 𝑇

□𝐼
(7.34)

Inertial Measurement Unit: Noise
Both discrete biases of the IMU, accelerometer bias 𝝀𝒇□𝑘

and angular rate bias 𝝀𝝎□𝑘
are modelled

using the accumulation of their respective Brownian Gaussian noise distribution, ℵ (0, 𝝈2
𝒇𝝁□

) and

ℵ (0, 𝝈2
𝝎𝝁□

) respectively, over time. The discrete accelerometer biasses 𝝀𝒇□𝑘
are modelled as:

𝝀𝒇□𝑘+1
= 𝝀𝒇□𝑘

+ Δ𝑡𝝁𝒇□𝑘

= 𝝀𝒇□𝑘
+ Δ𝑡ℵ (0, 𝝈2

𝒇𝝁□
)

(7.35)

And in the same manner the discrete angular rate bias 𝝀𝝎□𝑘
is computed, i.e.,

𝝀𝝎□𝑘+1
= 𝝀𝝎□𝑘

+ Δ𝑡𝝁𝝎□𝑘

= 𝝀𝝎□𝑘
+ Δ𝑡ℵ (0, 𝝈2

𝝎𝝁□
)

(7.36)

Following, white noise 𝒏 and bias 𝝀 are superimposed on the actual discrete results computed in
Equations 7.33 and 7.34 following the modeling specified in Equation 4.8, i.e.,

𝒇□𝑚𝑘
= 𝒇□𝑘

+ 𝒏𝒇□ + 𝝀𝒇□𝑘

𝒇□𝑚𝑘
= 𝒇□𝑘

+ ℵ (0, 𝝈2
𝒇□

) + 𝝀𝒇□𝑘

(7.37)

And in the discrete measured angular rate is computed in the same manner, i.e.,

𝝎□𝑚𝑘
= 𝝎□𝑘

+ 𝒏𝝎□ + 𝝀𝝎□𝑘

𝝎□𝑚𝑘
= 𝝎□𝑘

+ ℵ (0, 𝝈2
𝝎□) + 𝝀𝝎□𝑘

(7.38)

Setpoints
In this section the setpoint generation of the SRS used for modeling purposes are explained.
Equations 7.19 and 7.20 are written in terms of their second order setpoints, 𝒔 ̈𝒄 and 𝒔𝝎̇. Both equations
becoming a function of the current and next discrete acceleration ̈𝒄𝑃 𝑘

and angular acceleration 𝝎̇𝑃 𝑘+1
of the SRS, i.e.,

𝒔 ̈𝒄𝑘
=

̈𝒄𝑃 𝑘+1
− ̈𝒄𝑃 𝑘

exp ( −Δ𝑡
𝝉 ̈𝒄

)
1 − exp ( −Δ𝑡

𝝉 ̈𝒄
)

(7.39)

𝒔𝝎̇𝑘
=

𝝎̇𝑃 𝑘+1
− 𝝎̇𝑃 𝑘

exp ( −Δ𝑡
𝝉𝝎̇

)
1 − exp ( −Δ𝑡

𝝉𝝎̇
)

(7.40)

The acceleration setpoints are based in the inertial frame and no changes are required. However, the
angular acceleration of the motion is computed in the inertial frame 𝔼𝐼 . Here, a transfer to the upper
moving platform 𝔼𝑃 is required, i.e.,

( ̇𝑝𝑃 𝑘
̇𝑞𝑃 𝑘

̇𝑟𝑃 𝑘) {𝔼𝑃 } = ( ̇𝑝𝐼𝑃𝑘
̇𝑞𝐼𝑃𝑘

̇𝑟𝐼𝑃𝑘
) {𝔼𝐼}

( ̇𝑝𝑃 𝑘
̇𝑞𝑃 𝑘

̇𝑟𝑃 𝑘) = ( ̇𝑝𝐼𝑃𝑘
̇𝑞𝐼𝑃𝑘

̇𝑟𝐼𝑃𝑘
) 𝑻 𝑇

𝑃𝐼
(7.41)
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Observation
In order to generate the data of the observational sensors, namely the linear encoders of the SRS and
the TrackIR 5 of the Virtual Reality (VR) system, the respective observational models are used. For
the observation of all the observational sensors, the actual state 𝒙𝑘 is sampled through the respective
observation modelsH□, outlined in Sections 4.4.2 and 5.2.2. The noise is superimposed as a Gaussian
distribution on the samples taken in place of the observation random noise values 𝒐□.

In the case of the observation model H𝑃 of the SRS, Equation 4.44, this results in:

𝒚𝑃 𝑘
= {𝑙𝑖𝑘

+ ℵ (0, 𝜎2
𝑙𝑖

)}
= {∥(𝑥𝑃 𝑘

𝑦𝑃 𝑘
𝑧𝑃 𝑘) + (𝑝𝑥𝑖

𝑝𝑦𝑖
0) 𝑻𝑃𝐼 − (𝑏𝑥𝑖

𝑏𝑦𝑖
0)∥ + ℵ (0, 𝜎2

𝑙𝑖
)}

} ∀𝑖 = 1, … , 6 (7.42)

And in the case of the observation model H𝐻𝑃 of the VR system, found in Equation 5.18, becomes:

𝒚𝐻𝑃 𝑘
=

⎧{{{
⎨{{{⎩

𝑥𝐻𝑃 𝑘
𝑦𝐻𝑃 𝑘
𝑧𝐻𝑃 𝑘
𝜓𝐻𝑃 𝑘
𝜃𝐻𝑃 𝑘
𝜙𝐻𝑃 𝑘

⎫}}}
⎬}}}⎭

+

⎧{{{{
⎨{{{{⎩

ℵ (0, 𝜎2
𝑥𝐻

)
ℵ (0, 𝜎2

𝑦𝐻
)

ℵ (0, 𝜎2
𝑧𝐻

)
ℵ (0, 𝜎2

𝜓𝐻
)

ℵ (0, 𝜎2
𝜃𝐻

)
ℵ (0, 𝜎2

𝜙𝐻
)

⎫}}}}
⎬}}}}⎭

=

⎧{{{{
⎨{{{{⎩

𝑻𝑃𝐼

⎧{
⎨{⎩

𝑥𝐻𝑘
− 𝑥𝑃 𝑘

𝑦𝐻𝑘
− 𝑦𝑃 𝑘

𝑧𝐻𝑘
− 𝑧𝑃 𝑘

⎫}
⎬}⎭

arctan((𝑒0𝐻𝑃𝑘
𝑒𝑥𝐻𝑃𝑘

+ 𝑒𝑦𝐻𝑃𝑘
+ 𝑒𝑧𝐻𝑃𝑘

) , (0.5 − 𝑒𝑥𝐻𝑃𝑘
− 𝑒𝑦𝐻𝑃𝑘

))
arcsin(2 (𝑒0𝐻𝑃𝑘

𝑒𝑦𝐻𝑃𝑘
− 𝑒𝑥𝐻𝑃𝑘

𝑒𝑧𝐻𝑃𝑘
))

arctan((𝑒0𝐻𝑃𝑘
𝑒𝑧𝐻𝑃𝑘

+ 𝑒𝑥𝐻𝑃𝑘
+ 𝑒𝑦𝐻𝑃𝑘

) , (0.5 − 𝑒𝑦𝐻𝑃𝑘
− 𝑒𝑧𝐻𝑃𝑘

))

⎫}}}}
⎬}}}}⎭

+

⎧{{{{
⎨{{{{⎩

ℵ (0, 𝜎2
𝑥𝐻

)
ℵ (0, 𝜎2

𝑦𝐻
)

ℵ (0, 𝜎2
𝑧𝐻

)
ℵ (0, 𝜎2

𝜓𝐻
)

ℵ (0, 𝜎2
𝜃𝐻

)
ℵ (0, 𝜎2

𝜙𝐻
)

⎫}}}}
⎬}}}}⎭
(7.43)

7.2.4. Analytical vs. numerical Integration
In this section, the influence of the discrete integrationmethod, the forward Euler method, is analyzed as
it will increase and color the perceived noise in the process model. Certain mitigations will be proposed
in order to adapt to the increased noise and reduce the coloring of said noise.

A discrete integration method, such as the forward Euler method, can introduce a numerical error in
the prediction phase of the UKF. By using the ‘more true to real life’ analytically generated translational
motion, see Sections 7.2 and 7.2.3, the induced error by the forward Euler integration method is
analyzed in this section. Due to the numerical method used for the attitude and its derivatives lack this
error and therefore cannot be analyzed.

The analytical generated higher order state values are different from the required discrete higher order
state values. The term ‘required’, in this case, meaning the value that is necessary for the integration
method to compute the lower order state value. The numerical errors introduced in the integration
method in the process model of an UKF should be taken into account and solved by increasing
the process noise [36]. The process noise should cover for the whole process model, including its
integration method, rather than just the sensor noises.

For example, the induced error on the IMU of the SRS due to its translational motion profile on the
x-axis, presented in Section 7.2, is found by first computing the required discrete velocity. Where, the
required discrete velocity ̇𝒄req.𝑘 is the velocity needed for the forward Euler integration to compute the
correct position and can thus be defined as:

̇𝒄req.𝑘 = 𝒄𝑘+1 − 𝒄𝑘
Δ𝑡 (7.44)
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Figure 7.5: Plotting of the induced error on the velocity, acceleration, and angular rate of the SRS at 100Hz.

Figure 7.6: Plotting of the induced error on the velocity, acceleration, and angular rate of the HMD at 100Hz.

Following, the required discrete acceleration ̈𝒄req.𝑘 is the acceleration needed for the forward Euler
integration to compute the correct required discrete velocity ̇𝒄req.𝑘 , i.e.,

̈𝒄req.𝑘 =
̇𝒄req.𝑘+1

− ̇𝒄req.𝑘
Δ𝑡 (7.45)

The acceleration induced error, due to the forward Euler integration, is computed as ̈𝑥𝑘 − ̈𝑥req.𝑘 . The
acceleration induced errors of the both entities, SRS and HMD, are plotted in Figures 7.5 and 7.6
at 100Hz. The angular rate induced error is zero in both entities cases as the data was generated
discretely, see Section 7.2, but plotted in case of the SRS for a comparison later on in this section to
Figure 7.7, where a higher integration frequency was used. The red scattered dots in the plot, are a
representation of the white noise present on the IMU of the SRS as presented in Section 6.2.2. When
examining both plots the importance of the ratio between the strength of the white noise to the numerical
error of the motion is of importance.

Even though the movement pattern, and thus the induced error, is largely the same, between the
SRS and HMD, the fact that the noise strength of the IMU is ten times larger makes the ratio different.
Analyzing the noise superimposed over the induced error, i.e. the combined error, can give an indication
of the actual process noise applicable to the process model. However, it must be noted that the
combined error is no longer Gaussian as the underlying motion clearly permeates through.

For example the x-axis, taking the Standard Deviation (SD) of the combined error on the x-axis of the
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Table 7.3: Forward Euler integration method induced error on the IMU of the SRS at 100Hz.

SRS @ 100Hz
Standard deviation

Accelerometer [m/s2] Combined error [m/s2] × Scale
x: 1.9 × 10−3 3.13 × 10−2 16.4
y: 2.1 × 10−3 3.14 × 10−2 14.9
z: 1.8 × 10−3 2.69 × 10−2 14.9

Table 7.4: Forward Euler integration method induced error on the IMU of the HMD at 100Hz.

HMD @ 100Hz
Standard deviation

Accelerometer [m/s2] Combined error [m/s2] × Scale
x: 3.0 × 10−2 4.30 × 10−2 1.4
y: 2.9 × 10−2 4.32 × 10−2 1.5
z: 4.7 × 10−2 5.42 × 10−2 1.2

SRS results in 3.13 × 10−2 m/s2, scaled by 16.4 from the SD on the accelerometer of 1.9 × 10−3 m/s2.
Moreover, the SD of the combined error on the x-axis of the HMD results in 4.30 × 10−2 m/s2, scaled
by 1.4 from the SD on the accelerometer of 3.0 × 10−2 m/s2. In the case of the SRS, the forward Euler
method induced error is very large compared to the noise on the accelerometer. So much so, that
improving the SD on the accelerometer by a factor of 1000 would result in the SD on the combined
error of 3.12 × 10−2 m/s2. The rest of the combined errors SD and their impact on the perceived
accelerometer precision is found in Tables 7.3 and 7.4.

One of the solution would be to increase the process noise to the level indicated by the combined error
SD. This, however, reduces the apparent quality of the accelerometer used. Moreover, this solution
was applied by Miletović et al. described in [43], where the the process noise 𝑸, comprised of the IMU
variance, was scaled by a factor of 1000, manually found by tuning the filter on measured data. The
factor 1000 would equate to scaling the SD by

√
1000 ≈ 31.62. It must be noted that the motion used

was different and that the jerk, third time deviation of position, in the motion matters how much induced
error is present.

It is known that the induced error due to discrete integration methods, such as the forward Euler method,
can be reduced by reducing the time-step Δ𝑡, i.e. increasing the computational frequency. A question
to be answered would be what the reduction in integration induced error is if the entity, in this case
the SRS, transmits its data at only 100Hz. For the following analysis the computational frequency is
raised to 600Hz, dividable by both 120Hz, frequency the TrackIR 5 runs at, and 100Hz. The result of
increasing the frequency to 600Hz is presented in Figures 7.7 and 7.8.
In Figure 7.7, the IMU of the SRS sample-rate is kept at a 100Hz but the computations are run at
600Hz. Meaning, that the velocity and position are updated six times with every accelerometer reading.
In the zoomed in area of Figure 7.7, the induced error is seen to increase sharply every six time-steps
as the accelerometer measurement is held constant for the next six measurements. The increased
frequencies of the velocity and positional updates decreases the forward Euler integration induced
error on the x-axis to a combined error SD of 2.03×10−2 m/s2, a decrease of 35 %. The combined error
per axis is presented in Table 7.5.

In the UKF algorithm, this method of updating more frequently with the same sensor reading has the
added benefit that it is easier to maintain a proper state covariance 𝑷𝑥̂ at every prediction step. A state
covariance with only a part up to date would lead to suboptimal performance of the UKF in general.

A similar pattern is observed in the induced error on the angular rate in Figure 7.7. Here, the induced
error seemingly increased by increasing the computational frequency. The reason for this behavior is
due to the fact that the actual angular rate uses the same computation as the required angular rate,
i.e. the actual angular rate is computed discretely. By computing the required angular rate at 600Hz,
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Figure 7.7: Plotting of the induced error on the velocity, acceleration, and angular rate of the SRS at 600Hz.

Figure 7.8: Plotting of the induced error on the velocity and acceleration of the HMD at 600Hz.
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Table 7.5: Forward Euler integration method induced error on the IMU of the SRS sampled at 100Hz but computed at 600Hz.

SRS @ 600Hz
Standard deviation

Accelerometer [m/s2] Combined error [m/s2] × Scale
x: 1.9 × 10−3 2.03 × 10−2 10.7
y: 2.1 × 10−3 2.05 × 10−2 9.8
z: 1.8 × 10−3 1.75 × 10−2 9.7

Gyroscope [rad/s] Combined error [rad/s] × Scale
p: 2.4 × 10−3 3.15 × 10−3 1.3
q: 4.1 × 10−3 4.58 × 10−3 1.1
r: 3.3 × 10−3 3.77 × 10−3 1.1

Table 7.6: Discrete integration methods induced errors.

HMD @ 600Hz
Standard deviation
Accelerometer [m/s2] Combined error [m/s2] × Scale

x: 3.0 × 10−2 3.05 × 10−2 1.0
y: 2.9 × 10−2 2.96 × 10−2 1.0
z: 4.7 × 10−2 4.70 × 10−2 1.0

and using only every sixth element to alter the attitude, the angular rate is only based on the last five
predictions. This is exactly what is shown in the figure and will increase the perceived noise in the
simulation of the gyroscope of the SRS. Moreover, this behavior brings it closer in line to reality. Taking
this behavior to the extreme, i.e. increasing the frequency at which the discrete motion is computed,
would eventually lead to exactly the continuous figures.

In Figure 7.8, the induced error on the acceleration on the x-axis of an IMU of the HMD read at 600Hz
is plotted next to the accelerometer noise as red dots for perspective. The induced error is now much
smaller than the noise present on the accelerometer itself in this case. The combined errors per axis
of the IMU of the HMD can be found in Table 7.6.

It can be concluded that the selection of the computational frequency, and choice of integration method
should be dictated by the quality of the IMU, expected jerk in the motion profile and computation
power. Moreover, not accounting for this induced integration error in the process noise 𝑸 will lead
to overconfidence in the prediction phase of the UKF.

7.3. UKF Quaternion Implementation
In this Section, the UKF implementation specificities are discussed. The quaternion attitude
representation used throughout this Thesis has many advantages over its counterparts such as the
Euler-angle attitude representation. The main advantage is its computational cost due to the linear
kinematic equations of the attitude, see Equation 4.33, and the simple transformation matrices, see
Equation 4.6, when compared to the Euler-angle attitude representation [51].

However, care must be taken when computing the weighted mean and covariance, in Equa-
tions 3.20, 3.21, 3.23, and 3.24 of the UKF, of the quaternion values without any regard of their origin.
This is due to the fact that a four dimensional unit-quaternion represents the three dimensional attitude
space in a two to one mapping. The weighted mean and covariance of the quaternion are discussed
in Sections 7.3.1 and 7.3.2 respectively.

7.3.1. Quaternion Averaging
The UKF requires the computation of the weighted mean of the state as per Equation 3.20. Computing
said equation results in the proper weighted average state’s scalars except for the weighted average
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attitude.

By simply taking the average individually of the quaternion scalar 𝑒0 and its vector components
(𝑒𝑥, 𝑒𝑦, 𝑒𝑧) two problems arise.
The first problem is that the resulting quaternion would not be of unit length. For example,
given two quaternions, (1 0 0 0) and (0 0 1 0), the individual component average would
be (0.5 0 0.5 0) while the proper quaternion attitude average should be (

√
2/2 0

√
2/2 0).

However, this could be fixed afterwards by dividing the resulting non-unit quaternion by its norm, i.e.
𝒆/‖𝒆‖.
The second problem is caused by the fact that a quaternion with all individual components negative
represent the same attitude as the positive ones, due to the quaternion’s characteristic two to one
mapping of the rotational space [61], i.e.,

(𝑒0 𝑒𝑥 𝑒𝑦 𝑒𝑧) = (−𝑒0 −𝑒𝑥 −𝑒𝑦 −𝑒𝑧) (7.46)

Changing the sign of the quaternion scalars in (weighted) averaging equations, such as Equation 3.20,
should not change the average attitude but taking the individual component average of a quaternion
would.

In [37] it is proven that average quaternion 𝒆̄ is the result from solving the following maximization
equation:

𝒆̄ = argmax
𝒆∈

𝒆𝑇 𝑴𝒆 (7.47)

Where the 4 × 4 matrix 𝑴 is defined as:

𝑴 =
2𝐿
∑
𝑖=1

𝒘(𝑚)
𝑖 𝒆𝑖𝒆𝑇

𝑖

Here, the weights are represented as 𝒘(𝑚)
𝑖 and 𝒆𝑖𝒆𝑇

𝑖 simply means the each quaternion’s individual
components covariance, i.e.,

=
2𝐿
∑
𝑖=1

𝒘(𝑚)
𝑖

⎡
⎢⎢
⎣

𝑒0
𝑒𝑥
𝑒𝑦
𝑒𝑧

⎤
⎥⎥
⎦

⋅ [𝑒0 𝑒𝑥 𝑒𝑦 𝑒𝑧] (7.48)

The average quaternion 𝒆̄, the solution to this maximization problem, in Equation 7.47, is proven in [72]
to be the eigenvector of the 4 × 4 matrix 𝑴 with the highest eigenvalue.

7.3.2. Quaternion Covariance
Taking a ‘scalar covariance’ of a quaternion results neither in the attitude covariance nor a unit-
quaternion. The solution is to represent any covariance of a quaternion as the angle-axis covariance [9].
The angle-axis form, contrary to the quaternion notation, is mapped to three-dimensional rotational
space. Moreover, a convenient transformation to and from quaternion form exist, see Equations 7.27
and 7.31. Both the linearly mapping and convenient transformations make the angle-axis attitude form
a solution for the covariance of the attitude. Also, it must be noted that the contribution to the total
degrees of freedom 𝐿 due to the attitude are three, in line with the expectation from the angle-axis form.
This is crucial for the computation of the sigma-point weights 𝒘. The angle-axis form of an attitude
or effective rotation was given in Equation 7.8. The angle-axis representation for the uncertainty of
the state’s attitude results in amendments to the UKF. Two kind of functions in the UKF need to be
examined.

First, the difference between quaternion state attitudes should result in an angle-axis from which the
covariance 𝑷 can be computed as with any other scalar. The deduction operator ⊖ deducting two
unit-quaternions, 𝒆1 and 𝒆2, and presents the resulting attitude in an angle-axis form. The difference
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between unit-quaternions is first resolved by quaternion multiplying ⊗
𝐿
the opposite ∼ quaternion before

transformed in angle-axis form Q2R, i.e.,

𝒆1⊖𝒆2 = Q2R (𝒆1⊗
𝐿

∼𝒆2) (7.49)

The difference operator ⊖ is used to alter Equations 3.21 and 3.25 to signify the altered subtraction
operation for the attitude specifically. The predicted state covariance𝑷 −

𝑥̂ 𝑘
computation in Equation 3.21

results in:

𝑷 −
𝑥̂ 𝑘

=
2𝐿
∑
𝑖=0

𝒘(𝑐)
𝑖 [𝓧𝑥,−

𝑘,𝑖 ⊖𝒙̂−
𝑘 ]𝑇 [𝓧𝑥,−

𝑘,𝑖 ⊖𝒙̂−
𝑘 ] (7.50)

And the cross-covariance between the predicted state 𝒙̂−
𝑘 and the estimated observation ̂𝒚𝑘 in

Equation 3.25 becomes:

𝑷𝑥̂𝑘 ̂𝑦𝑘
=

2𝐿
∑
𝑖=0

𝒘(𝑐)
𝑖 [𝓧𝑥,−

𝑘,𝑖 ⊖𝒙̂−
𝑘 ]𝑇 [𝓨−

𝑘 − ̂𝒚𝑘] (7.51)

It must be noted that the ⊖ operator only modifies the attitude subtraction, for all other scalars the ⊖
operator is the same as the − operator. Due to the transformation from quaternion to angle-axis form,
the dimension of the state covariance 𝑷𝑥̂, cross-covariance 𝑷 ̂𝑦𝑘

, and indirectly Kalman gain 𝑲 will be
one smaller on their state-axis than the state 𝒙.
Second, the addition and subtraction function of an attitude in angle-axis form to the state’s quaternion
attitude are examined. This occurs when an attitude, related to a covariance 𝑃 or Kalman gain 𝑲,
in angle-axis form, is added or subtracted from the state’s quaternion attitude. More precisely, in
Equations 3.17 and 3.27 angle-axis attitudes are added to the state’s quaternion attitude. An addition
operator⊕ is defined to signify this change in behavior in the UKF, The angle-axis attitude𝝎□𝑘

Δ𝑡 is first
transformed to a unit-quaternion, using Equation 7.27, before being ‘added’ to the quaternion attitude
by quaternion multiplication ⊗

𝐿
, i.e.,

𝒆⊕𝝎□𝑘
Δ𝑡 =R2Q (𝝎□𝑘

Δ𝑡) ⊗
𝑅

𝒆 =𝒆⊗
𝐿

R2Q (𝝎□𝑘
Δ𝑡) (7.52)

And similar for the subtraction:

𝒆⊕ (−𝝎□𝑘
Δ𝑡)=R2Q (−𝝎□𝑘

Δ𝑡) ⊗
𝑅

𝒆=𝒆⊗
𝐿

R2Q (−𝝎□𝑘
Δ𝑡) (7.53)

Following, the addition and subtraction of the scaled square-root of the previous augmented state
covariance 𝑷 𝑎

𝑥̂ 𝑘−1
to the previous estimated state 𝒙̂𝑎

𝑘−1 from Equation 3.17 is redefined as:

𝓧𝑎
𝑘−1 = [𝒙̂𝑎

𝑘−1 𝒙̂𝑎
𝑘−1⊕√(𝐿 + 𝜁) 𝑷 𝑎

𝑥̂ 𝑘−1
𝒙̂𝑎

𝑘−1⊕ (−√(𝐿 + 𝜁) 𝑷 𝑎
𝑥̂ 𝑘−1

)] (7.54)

Moreover, the correction of the predicted state 𝒙̂−
𝑘 by adding the innovation 𝝐 scaled by the Kalman

gain 𝑲 is redefined as:

𝒙̂𝑘 = 𝒙̂−
𝑘 ⊕𝑲𝑘𝝐𝑘 (7.55)

Again, it must be noted that for non-attitude scalars ⊕ is the same operator as +.

7.3.3. Additive Noise
The UKF as presenting in Chapter 3, can be simplified by noting that in all observation models H□
presented, i.e. Equations 4.44 and 5.18, the observation noise random variables 𝒐□ are introduced
linearly. The linear addition of the observation noise random variables 𝒐□ causes the inclusion of the
observation noise covariance 𝑹 in the augmented state covariance 𝑷 𝑎

𝑥̂ to be unbeneficial. Following,
the additive noise model of the UKF, a special and simplified case of the regular UKF, can be used
instead for the correction phase. The simplifications are as follows:



7.3. UKF Quaternion Implementation 99

• The observation noise variables 𝒐 are removed from the augmented state𝒙𝑎 as per Equation 3.10,
i.e.,

𝒙𝑎 = [𝒙𝑇 𝝂𝑇 ]𝑇 (7.56)

• The covariance of the observation noise variables 𝑹 is removed from the covariance 𝑷 𝑎
𝑥̂ of the

augmented state 𝒙𝑎 as per Equation 3.11, i.e.,

𝑷 𝑎
𝑥̂ = [𝑷𝑥̂ 0

0 𝑸] (7.57)

• The reduction of the state’s dimension 𝐿 due to the removal of the observation noise, i.e.,

𝐿 = 𝐿𝑥 + 𝐿𝑣 (7.58)

• The removal of the observation noise random variables 𝒐□ from the observation models H𝑃 and
H𝐻𝑃 found in Equations 4.44 and 5.18, i.e.,

𝒚𝑃 𝑘
= H𝑃 (𝒙𝑃 𝑘

)
{𝑙𝑖𝑘

} = {∥(𝑥𝑃 𝑘
𝑦𝑃 𝑘

𝑧𝑃 𝑘) + (𝑝𝑥𝑖
𝑝𝑦𝑖

0) 𝑻𝑃𝐼 − (𝑏𝑥𝑖
𝑏𝑦𝑖

0)∥} ∀𝑖 = 1, … , 6 (7.59)

And,

𝒚𝐻𝑃 𝑘
= H𝐻𝑃 (𝒙𝐻𝑘

, 𝒙𝑃 𝑘
)

⎧{{{
⎨{{{⎩

𝑥𝐻𝑃 𝑘
𝑦𝐻𝑃 𝑘
𝑧𝐻𝑃 𝑘
𝜓𝐻𝑃 𝑘
𝜃𝐻𝑃 𝑘
𝜙𝐻𝑃 𝑘

⎫}}}
⎬}}}⎭

=

⎧{{{{
⎨{{{{⎩

𝑻𝑃𝐼

⎧{
⎨{⎩

𝑥𝐻𝑘
− 𝑥𝑃 𝑘

𝑦𝐻𝑘
− 𝑦𝑃 𝑘

𝑧𝐻𝑘
− 𝑧𝑃 𝑘

⎫}
⎬}⎭

arctan((𝑒0𝐻𝑃𝑘
𝑒𝑥𝐻𝑃𝑘

+ 𝑒𝑦𝐻𝑃𝑘
+ 𝑒𝑧𝐻𝑃𝑘

) , (0.5 − 𝑒𝑥𝐻𝑃𝑘
− 𝑒𝑦𝐻𝑃𝑘

))
arcsin(2 (𝑒0𝐻𝑃𝑘

𝑒𝑦𝐻𝑃𝑘
− 𝑒𝑥𝐻𝑃𝑘

𝑒𝑧𝐻𝑃𝑘
))

arctan((𝑒0𝐻𝑃𝑘
𝑒𝑧𝐻𝑃𝑘

+ 𝑒𝑥𝐻𝑃𝑘
+ 𝑒𝑦𝐻𝑃𝑘

) , (0.5 − 𝑒𝑦𝐻𝑃𝑘
− 𝑒𝑧𝐻𝑃𝑘

))

⎫}}}}
⎬}}}}⎭

(7.60)

• The direct addition of the covariance of the observation noise 𝑹 to the computation of the
covariance of the estimated observation 𝑷 ̂𝑦𝑘

, in Equation 3.24, i.e.,

𝑷 ̂𝑦𝑘
=

2𝐿
∑
𝑖=0

𝒘(𝑐)
𝑖 [𝓨−

𝑘,𝑖 − ̂𝒚𝑘] [𝓨−
𝑘,𝑖 − ̂𝒚𝑘]𝑇 + 𝑹 (7.61)

The ability to reduce the augmented state’s dimension 𝐿 leads to a direct reduction in computational
cost.
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7.4. Analysis
In this section the various configurations, presented in Chapter 5, are simulated, the states estimated
using the data generated, explained in Section 7.2, and the performance of the proposed Unscented
Kalman Filter (UKF) algorithm analyzed.

For this reason, the performance metrics of the algorithm are presented and discussed in Section 7.4.1.
With these performance metrics in mind, three base runs are performed, comparing the performance
of each configuration against Configuration 0 in Section 7.4.2. Following these three base runs, a
sensitivity analysis is performed per configuration, in Section 7.5, whereby each run a different set of
parameters are altered, including the noise values of the different sensors, motion profile, UKF specific
parameters, and computational frequency. The resulting performance metrics are in turn compared
against their base runs and conclusions are drawn.

After which, the base runs are repeated each twice with a delay present of 50ms on the output of the
SIMONA Research Simulator (SRS) linear encoders sensors in Section 7.5.4. The first of the two runs
with a delay present will be shown as is, meaning no alteration will be made to the algorithm. The
second of the two runs with a delay present will be performed with the Smoothed Delayed Unscented
Kalman Filter (SDUKF) algorithm, presented in Section 3.3.2. Following both runs will be plotted and
the discussed performance metrics applied.

7.4.1. Performance Metrics
In this section the performance metrics are described that help to ascertain the quality of the overall
system in tandem with analyzing the plotted data. The performance of the algorithm on the systems is
defined by two main metrics sets, pose errors and robustness.

The error that defines the user experience of a Virtual Reality (VR) system is the Head-Mounted Display
(HMD) vehicle-fixed pose error, consisting out of error on the vehicle-fixed position 𝜀𝒄𝐻𝑃

as well as the
error on the vehicle-fixed attitude 𝜀𝒆𝐻𝑃

. However, this error can only be ascertained in simulation as in
real life the correct pose would be unknown.

In contrast, the observational innovation 𝝐 of a Kalman Filter (KF), defined in Equation 3.27, can always
be analyzed. The innovation 𝝐 is analyzed by plotting it together with its covariance 𝑷 ̂𝑦𝑘

to get a view
onto the condition of the KF. This will be done in various plots in the next sections. In order to analyze
the innovation 𝝐 at a quick glance, the Normalized Estimated Error Squared (NEES) [6] is computed
for both observation sensors, i.e. linear encoders 𝜈𝝐𝑙𝑖

and TrackIR 𝜈𝝐𝐻𝑃
.

Also, the NEES is computed of both the HMD (𝜈𝒄𝐻
, 𝜈𝒆𝐻

) and SRS pose (𝜈𝒄𝑃
, 𝜈𝒆𝑃

) by comparing the
pose error with respect to (w.r.t.) the inertial reference frame 𝔼𝐼 , the same reference frame as the
generated motion in Section 7.2.3, against its relevant part of the state covariance 𝑷𝑥̂. This is done in
order to relate and analyze the state based NEES (𝜈𝒄□ , 𝜈𝒆□) and plots to the innovation based NEES
(𝜈𝝐𝑙𝑖

, 𝜈𝝐𝐻𝑃
).

Absolute Pose Errors
The HMD vehicle-fixed absolute pose errors, 𝜀𝒄𝐻𝑃𝑘

and 𝜀𝒆𝐻𝑃𝑘
, are computed at each iteration of the

algorithm. The actual 𝒆𝐻𝑃 𝑘
and estimated HMD vehicle-fixed quaternion attitude ̂𝒆𝐻𝑃 𝑘

are computed
using Equation 5.13. Meanwhile, the actual 𝒄𝐻𝑃 𝑘

and estimated HMD vehicle-fixed position ̂𝒄𝐻𝑃 𝑘
are

derived using the upper part, i.e. the positional part, of Equation 5.17. Using said equations, both the
actual and estimated HMD vehicle-fixed pose can be computed using the generated actual state 𝒙𝑘
and the recorded estimated state 𝒙̂𝑘 respectively.

First, the absolute attitude vehicle-fixed error 𝜀𝒆𝐻𝑃
is defined as the smallest angle between the

estimated ̂𝒆𝐻𝑃 and actual attitude 𝒆𝐻𝑃 of the HMD in the upper motion platform reference frame 𝔼𝑃 .
The smallest angle [71] between two quaternions is computed as per time-step 𝑘 as:

𝜀𝑒𝐻𝑃𝑘
= arccos(

̂𝒆𝐻𝑃 𝑘
⋅ 𝒆𝐻𝑃 𝑘

‖ ̂𝒆𝐻𝑃 𝑘
‖‖𝒆𝐻𝑃 𝑘

‖)
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Assuming the norm of both quaternions are equal to one, i.e. ‖ ̂𝒆𝐻𝑃 𝑘
‖ = ‖𝒆𝐻𝑃 𝑘

‖ = 1, the equation can
be simplified to:

= arccos(𝑒0𝐻𝑃𝑘
̂𝑒0𝐻𝑃𝑘

+ 𝑒𝑥𝐻𝑃𝑘
̂𝑒𝑥𝐻𝑃𝑘

+ 𝑒𝑦𝐻𝑃𝑘
̂𝑒𝑦𝐻𝑃𝑘

+ 𝑒𝑧𝐻𝑃𝑘
̂𝑒𝑧𝐻𝑃𝑘

) (7.62)

Second, the absolute positional error is defined as the Euclidean distance of the difference between
the actual 𝒄𝐻𝑃 𝑘

and estimated ̂𝒄𝐻𝑃 𝑘
vehicle-fixed position, i.e.,

𝜀𝑐𝐻𝑃𝑘
= √(𝑥𝐻𝑃 𝑘

− 𝑥̂𝐻𝑃 𝑘
)2 + (𝑦𝐻𝑃 𝑘

− ̂𝑦𝐻𝑃 𝑘
)2 + (𝑧𝐻𝑃 𝑘

− ̂𝑧𝐻𝑃 𝑘
)2

(7.63)

The absolute SRS pose error in the inertial frame 𝔼𝐼 is also computed as a secondary performance
indicator of the SRS pose estimation itself. The total attitude error 𝜀𝑒𝑃𝑘

of the SRS in the inertial frame
𝔼𝐼 can be computed using Equation 7.62 using the actual 𝒆𝑃 𝑘

and estimated ̂𝒆𝑃 𝑘
attitude of the SRS.

The total positional error 𝜀𝑐𝑃𝑘
of the SRS in the inertial frame 𝔼𝐼 is computed using the actual 𝒄𝑃 and

estimated ̂𝒄𝑃 𝑘
attitude of the SRS in Equation 7.63.

Normalized Estimated Error Squared
The NEES metric, when applied to the pose error 𝜀 or innovation 𝝐, can be an indication for a ‘properly’
behaving and tuned UKF [6], meaning the noise is white and within expected covariance.

The NEES 𝜈 is computed by averaging the result of division between the variance on the state
estimation error 𝜀 or innovation 𝝐 by the KF expected covariance per iteration. If the measured/actual
variance is equal over time to the expected covariance, this should equate to one per Degree-of-
Freedom (DoF).

The NEES 𝜈𝝐 of the innovation 𝝐 can be computed as:
𝜈𝝐 = 𝝐𝑇

𝑘 𝑷 −1
̂𝑦𝑘

𝝐𝑘 (7.64)

Meanwhile, the NEES 𝜈𝜀 of the pose of the state is defined as:

𝜈𝜀 = [𝒙𝑘⊖𝒙̂𝑘]𝑇 𝑷 −1
𝑥̂𝑘

[𝒙𝑘⊖𝒙̂𝑘] (7.65)

Where, ⊖ was defined in Equation 7.49, turning quaternion differences into angle-axis attitudes. In this
form, the attitude difference can be directly compared to the state covariance 𝑷𝑥̂, also in angle-axis
attitude formulation.

Equations 7.64 and 7.65 result in a scalar, i.e. defining the dimension of 𝝐 or 𝒙 as (𝑛 × 1), the result of
the NEES computation is (1 × 𝑛)(𝑛 × 𝑛)(𝑛 × 1) = (1 × 1). The relationship between random variables
and their covariance is supposed to be chi-squared distributed with 𝑛 degrees of freedom [6]. Or in
other words the resulting average NEES ̃𝜈 should be equal or smaller than the degrees of freedom 𝑛.
Meaning, 3 for the position and attitude, and 6 for both observational sensors. This will be highlighted
when published in the tables with: green to indicate smaller or equal values; orange to indicate
slightly larger values (but still satisfactory results in most-cases); red to indicate NEES to large and
not satisfactory.

The reason for only computing the NEES of the pose and not the velocity or similar is the method of
motion generation outlined in Section 7.2.4. The estimated velocity in particularly will be in an ‘awkward’
phase. The acceleration, used as input in certain models, is generated based on the second derivate
of a cumulative sinusoidal motion that is not equal to the acceleration necessary to the velocity and
subsequently position needed. Due to the fact that the both systems observe the pose, the UKF will try
to correct the estimated velocity based on the given pose. This correction will be based on the required
velocity according to the process model. Hence, an omnipresent error will exist due to the conflict
between the result of the integrated acceleration, due to the process model and the velocity required
for the positional difference between iterations, due to the observation model. The influence of each
model, process or observation, is determined by the ratio between the process 𝑸 and observation
noise covariance 𝑹. Following, the velocity generated from sampling the first derivate of a cumulative
sinusoidal motion will be close to the estimated velocity but not exact. The resulting error will show the
underlying motion depending on the scale of the difference between the integrated acceleration and
velocity required.
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7.4.2. Base Runs
In this section, the three configurations, presented in Chapter 5, are simulated and subsequently
analyzed. First, in Section 7.4.2.0 the base configuration, Configuration 0, with only visual tracking
of the HMD is simulated and analyzed. Following, the Base run of Configurations 1 is analyzed in
Section 7.4.2.1. This configuration uses the Micro-Electro-Mechanical Systems (MEMS) based Inertial
Measurement Unit (IMU) in the HMD, while also visual tracking it. Moreover, the linear encoders are
also used to track the state of the SRS, which is necessary to relate the HMD’s IMU to the vehicle-fixed
frame. Next, the Base run of Configuration 2 is discussed in Section 7.4.2.2. This configuration, in
comparison to Configurations 1, enables the MEMS based IMU of the SRS to aid the estimation. Last,
the Base run of Configuration 3 is analyzed in Section 7.4.2.3. This configuration swaps out the SRS’s
IMU, enabled in Configuration 2, for an implementation that uses the Motion Command Signals to the
SRS itself.

Before each simulation of each configuration the initial estimated state 𝒙̂0, initial estimated state
covariance 𝑷𝑥̂0

, process noise covariance 𝑸, observation noise covariance 𝑹, the Scaled Unscented
Transformation (SUT) parameters, and the computational frequency are defined.

All runs will be computed at 600Hz unless specified differently as mentioned in Section 7.2.4. Also
stated and analyzed in Section 7.2.4, the publishing frequency of the SRS subsystem is set to 100Hz.
The initial implications were already discussed in Section 7.2.4. In this section, the consequences in
terms of performance and condition of the algorithm are analyzed.

After each simulation the plots of the relevant states are plotted against time, performance metrics and
NEES are computed of the last 25 % of the run. Taking only the last 25 % of the run is done to give
ample time for the algorithm to converge and be able to compare run to run performance independent
of initial values. The convergence itself will be analyzed visually from the plots.

The error of the estimated states or innovation of the observation will be plotted as the blue line —.
Moreover, the error or innovation will be plotted against its covariance. The covariance, representing
the certainty on said error or innovation, is plotted as an red dotted - - upper and lower bound. The area
within both bounds representing the 95 %-certainty range. The values for the upper and lower bound
given by two times the square-root of the relevant part of the relevant covariance 𝑃 , i.e. ±2 ×

√
𝑃 .

Configuration 0: Only Visual Tracking of the HMD
In this section, the baseline will be analyzed to which all subsequent configurations are compared
against. While, the TrackIR 5 published its measurements at 120Hz, this analysis is performed at
600Hz, the baseline for all other runs. This means that one out of five ticks (of the 600Hz) the measured
pose is compared to the actual pose with the same time stamp. However, the other four out of five ticks
the same measured pose will be compared to a slightly newer current actual pose.

The actual and measured HMD vehicle-fixed pose are computed using the observation model
presented in Equations 7.59 and 7.43 respectively. The resulting pose error, both positional and attitude,
are computed via Equations 7.63 and 7.62 and the results compiled in Table 7.7. From this point on
this run will be marked as ‘Run 0’.
Table 7.7: Performance overview of the base run of configuration 0 using the error of the vehicle-fixed position and attitude of

the HMD.

HMD Vehicle-Fixed
Position Error m Attitude Error °

Run Mean Standard Deviation (SD) Max Mean SD Max
0 7.36 × 10−4 3.65 × 10−4 2.37 × 10−3 1.04 × 10−1 4.74 × 10−2 3.04 × 10−1

Configuration 1: SRS's Linear Encoders + HMD's Visual Tracking and IMU
In Equation 7.66, the expected initial state of both the SRS 𝒙̂𝑃 0

and HMD 𝒙̂𝐻0
are presented based

on Equation 3.14. Both expected initial state, 𝒙̂𝑃 0
and 𝒙̂𝐻0

, were given a small random offset to their
expected estimated starting position ( ̂𝒄𝑃 0

, ̂𝒄𝐻0
), and attitude ( ̂𝒆𝑃 0

, ̂𝒆𝐻0
). Resulting in an initial total

error on the estimated attitude of 1.71° and 2.22° in case of the SRS and HMD respectively. Moreover,
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the total Euclidean distance error on the estimated position is 0.34m and 0.14m for the SRS and HMD
respectively. The assumption here is that the entities start from a standstill, but the expected position
and attitude estimates are wrong.

𝒙̂0 = 𝐸 |𝒙0| = 𝐸 ∣(𝒙𝑇
𝑃 0

𝒙𝑇
𝐻0)𝑇 ∣

= 𝐸 ∣(𝒄𝑇
𝑃 0

̇𝒄𝑇
𝑃 0

𝒆𝑇
𝑃 0

𝝎𝑇
𝑃 0)𝑇 (𝒄𝑇

𝐻0
̇𝒄𝑇
𝐻0

𝒆𝑇
𝐻0

𝝀𝑇
𝐻0)𝑇 ∣

{𝒙̂𝑃 0
𝒙̂𝐻0

} =

⎧{{{{{
⎨{{{{{⎩

̂𝒄𝑃 0̂ ̇𝒄𝑃 0
̂𝒆𝑃 0

𝝎̂𝑃 0
̂𝒄𝐻0̂ ̇𝒄𝐻0
̂𝒆𝐻0

𝝀̂𝐻0

⎫}}}}}
⎬}}}}}⎭

=

⎧{{{{{{
⎨{{{{{{⎩

(0.1173657 −0.19418465 −2.13843659)𝑇

(0 0 0)𝑇

(0.99955551 0.01350639 0.00515045 −0.02607374)𝑇

(0 0 0)𝑇

(0.12892825 −0.04333829 −3.01418109)𝑇

(0 0 0)𝑇

(0.99924809 0.00405833 0.02351122 0.03056158)𝑇

(0 0 0 0 0 0)𝑇

⎫}}}}}}
⎬}}}}}}⎭

(7.66)

Following, the expected initial state covariance 𝑷𝑥̂0
should reflect the certainty on the expected initial

state, see Equation 3.15. The expected initial state covariance 𝑷𝑥̂0
is presented in Equation 7.67. For

presentation the diagonal of the covariance is split into two according the the subsystem they belong.
The upper values are from the SRS and the lower are from the HMD system.

𝑷𝑥̂0
= 𝐸 ∣[𝒙0 − 𝒙̂0] [𝒙0 − 𝒙̂𝑇

0 ]∣

= diag
⎛⎜⎜⎜
⎝

⎧{
⎨{⎩

1
1
1

⎫}
⎬}⎭

𝑇 ⎧{
⎨{⎩

1
1
1

⎫}
⎬}⎭

𝑇 ⎧{
⎨{⎩

(rad(25))2

(rad(25))2

(rad(25))2

⎫}
⎬}⎭

𝑇
⎧{
⎨{⎩

1
1
1

⎫}
⎬}⎭

𝑇

⎧{
⎨{⎩

1
1
1

⎫}
⎬}⎭

𝑇 ⎧{
⎨{⎩

1
1
1

⎫}
⎬}⎭

𝑇 ⎧{
⎨{⎩

(rad(30))2

(rad(30))2

(rad(30))2

⎫}
⎬}⎭

𝑇

⎧{{{{
⎨{{{{⎩

(10−3)2

(10−3)2

(10−3)2

(10−4)2

(10−4)2

(10−4)2

⎫}}}}
⎬}}}}⎭

𝑇
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(7.67)

Here, the initial state covariance was set with relative large values for the systems at hand. The relative
large initial state covariance would indicate an uncertain start. However, the covariances of the IMU
biases of the HMD, were set small ((10−3)2, (10−4)2) relative to the other variances. This will cause the
UKF to correct the other estimated states more based on the observations in the initial iterations. Later,
in Section 7.5, this will be further investigated by setting the initial bias covariance larger and smaller.

In Equation 7.68 the expected covariance of the process noise 𝑸 present in Configuration 1 is
presented. The acceleration 𝝈 ̈𝒄𝑃

and angular acceleration 𝝈𝝎̇𝑃
noise parameters of the SRS, which

are there to provide a means for the UKF to adjust the estimated velocity ̂ ̇𝒄𝑃 and angular rate 𝝎̂𝑃 of the
SRS as in this configuration the SRS has no IMU, were chosen after some trial and error and should
be tuned according to the expected motion. Later, in Section 7.5, a sensitivity analysis is performed on
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the acceleration 𝝈 ̈𝒄𝑃
and angular acceleration 𝝈𝝎̇𝑃

noise parameters of the SRS.

𝑸 = diag (𝝈2
̈𝒄𝑃

𝝈2
𝝎̇𝑃

𝝈2
𝒇𝐻

𝝈2
𝝎𝐻

𝝈2
𝒇𝝁𝑃

𝝈2
𝝎𝝁𝑃

)

= diag ⎛⎜⎜
⎝

⎧{
⎨{⎩

1
1
1

⎫}
⎬}⎭

𝑇 ⎧{
⎨{⎩

1
1
1

⎫}
⎬}⎭

𝑇

⎧{
⎨{⎩

0.0302

0.0292

0.0472

⎫}
⎬}⎭

𝑇

⋅ 1.12
⎧{
⎨{⎩

0.00332

0.00362

0.00382

⎫}
⎬}⎭

𝑇

⋅ 1.12
⎧{
⎨{⎩

0.0152

0.0642

0.0482

⎫}
⎬}⎭

𝑇

⋅ 1.12
⎧{
⎨{⎩

0.000182

0.000342

0.000452

⎫}
⎬}⎭

𝑇

⋅ 1.12⎞⎟⎟
⎠

(7.68)

The 10 % scaling of the expected accelerometer 𝝈𝒇𝐻
and gyroscope SD 𝝈𝝎𝐻

are based on the analysis
in Section 7.2.4. Furthermore, to create a safety margin from measurement to measurement variance
the expected variances was set 10 % higher than measured in Chapter 6. 10 % was also added to the
expected accelerometer 𝝈𝒇𝝁𝑃

and gyroscope biases SD 𝝈𝝎𝝁𝑃
.

The expected covariance of the observation noise 𝑹 is shown in Equation 7.69. The observation noise
covariance 𝑹 is constructed from the noise parameters gathered in Chapter 6. Here, they are also
scaled by 10 %.

𝑹 = diag

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎧{{{
⎨{{{⎩

𝜎2
𝑥𝐻

𝜎2
𝑦𝐻

𝜎2
𝑧𝐻

𝜎2
𝜓𝐻

𝜎2
𝜃𝐻

𝜎2
𝜙𝐻

⎫}}}
⎬}}}⎭

𝑇

⎧{
⎨{⎩

𝜎2
𝑙1
⋮

𝜎2
𝑙6

⎫}
⎬}⎭

𝑇
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= diag

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎧{{{{
⎨{{{{⎩

(9.19 × 10−5)2

(3.04 × 10−4)2

(4.94 × 10−4)2

(1.94 × 10−3)2

(1.30 × 10−3)2

(2.47 × 10−3)2

⎫}}}}
⎬}}}}⎭

𝑇

⎧{
⎨{⎩

(5 × 10−6)2

⋮
(5 × 10−6)2

⎫}
⎬}⎭

𝑇
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⋅ 1.12 (7.69)

The Scaled Unscented Transformation parameters are defined as:

𝛼 = 0.01 𝛽 = 2 𝜅 = 0 (7.70)

These SUT parameters, where found to be proper default values in [41, 43, 31].

In Tables 7.8, 7.10, and 7.9 the performance metrics are collected of Configuration 1. From this point
forward, this run will be indicated as ‘Run 1’. The total accuracy of the HMD vehicle-fixed pose is
compared against Configuration 0 in Table 7.8. In this configuration, both the position as well as the
attitude improve as expected.

Table 7.8: Performance overview of the base run of Configuration 1 using the error of the vehicle-fixed position and attitude of
the HMD.

HMD Vehicle-Fixed
Position Error m Attitude Error °

Run Mean SD Max Mean SD Max
0 7.36 × 10−4 3.65 × 10−4 2.37 × 10−3 1.04 × 10−1 4.74 × 10−2 3.04 × 10−1

1 1.70 × 10−4 8.22 × 10−5 5.05 × 10−4 6.87 × 10−3 3.35 × 10−3 2.01 × 10−2

Following, the NEES values for Configuration 1 are computed and presented in Table 7.9. As explained
in Section 7.4.1 the various NEES are coloured relative to their degrees of freedom.
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The linear encoder innovations are slightly larger than expected, this can have two reasons not mutually
exclusive: coloured innovation within bounds and/or random innovation out of bounds. Figure 7.16
shows that the innovation is coloured but within bounds.

Table 7.9: Condition overview of the base run of Configuration 1, see Section 7.4.1 for the explanation on the color use.

NEES
SRS HMD

Run Position Attitude Lin. Enc. Inno. Position Attitude TrackIR 5 Inno.
1 2.59 2.62 7.43 3.11 2.01 5.00

Below, the position and attitude estimated error, i.e. 𝒙̂𝑘⊖𝒙𝑘, are plotted against their relevant part of
the state covariance 𝑷𝑥̂𝑘

over time 𝑡 in Figures 7.9 and 7.10. Table 7.9 indicated that the error on the
inertial position was slightly large relative to its covariance or coloured. Figure 7.9 shows hints of the
underlying motion. This is explained by the method the position and acceleration are generated, see
Section 7.2.4. Also both the position and attitude of the HMD converge after approximately 1 s.

Figure 7.9: Base run Configuration 1, the error of the HMD estimated position per axis of the inertial frame plotted against its
covariance over time.
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Figure 7.10: Base run Configuration 1, the error of the HMD estimated attitude in angle-axis formulation per axis of the inertial
frame plotted against its covariance over time.

Both the accelerometer and gyroscope biases stay well within their sigma-bounds in Figures 7.11
and 7.12. The small initial covariance is visualized in case of the accelerometer. Here, the covariance
expands initially.

Moreover, the HMD accelerometer bias 𝝀𝒇𝐻
follows the underlying motion error. Here, the bias is used

by the UKF to compensate for the forward Euler integration error on the motion generation. This also
explains why the coloured noise is absent on the bias of the gyroscope 𝝀𝝎𝐻

the attitude as they were
computed discretely.
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Figure 7.11: Base run Configuration 1, the error of the accelerometer bias of the HMD per axis plotted against its covariance
over time.
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Figure 7.12: Base run Configuration 1, the error of the gyroscope bias of the HMD per axis plotted against its covariance over
time.

In Table 7.10 the total pose error of the SRS is collected. At the end of this section, SRS performance
in all three configurations is compared to another in Table 7.16.

Table 7.10: Performance overview of the base run of Configuration 1 using the SRS error of the inertial position and attitude.

SRS
Position Error m Attitude Error °

Run Mean SD Max Mean SD Max
1 2.95 × 10−5 2.09 × 10−5 1.38 × 10−4 7.71 × 10−4 5.52 × 10−4 3.58 × 10−3

The error on the estimated position and attitude of the SRS are random and within sigma-bounds, as
hinted by the NEES in Table 7.9. Even though the expected acceleration and angular acceleration SD
were set equal over all axes, see Equation 7.68, the covariance on the z-axis of both the position as well
as the attitude are smaller than the x and y-axis. For the SRS, the certainty on the z-axis is increased
by 100 % and 50 % respectively. Here, the reduction in covariance is solely due to the physical shape
of the Stewart platform. This also explains the change in covariance over time of the pose due to the
change in sensor attitude and thus certainty per axis in the inertial frame.
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Figure 7.13: Base run Configuration 1, the error of the SRS estimated position per axis of the inertial frame plotted against its
covariance over time.

Figure 7.14: Base run Configuration 1, the error of the SRS estimated attitude in angle-axis formulation per axis of the inertial
frame plotted against its covariance over time.

The error on the estimated velocity in the inertial frame of the SRS is plotted in Figure 7.15. At first
glance the velocity is coloured and not random. Here, the error is computed with respect to the first
derivate of the actual position, as stated in Section 7.2. However, the linear encoder observations
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correct the velocity to the required velocity according to the process model.

Figure 7.15: Base run Configuration 1, the error of the SRS estimated velocity per axis of the inertial frame plotted against its
covariance over time.

Moreover, the innovations of the linear encoders 𝝐𝑙𝑖
and the TrackIR 5 𝝐𝐻𝑃 are depicted against their

part of the observation covariance 𝑷 ̂𝑦𝑘
in Figures 7.17 and 7.16 respectively.

In contrast to SRS pose errors in Figures 7.13 and 7.14, the motion permeates the innovation 𝝐𝑙𝑖
on

the linear encoders, and therefore not random. This is due to the fact that the SRS has no IMU in this
configuration, only a acceleration 𝝂 ̈𝒄𝑃

and angular acceleration noise parameter 𝝂𝝎̇𝑃
with zero mean

and a variance of 𝝈2
̈𝒄𝑃
and 𝝈2

𝝎̇𝑃
respectively. The lack of IMU hinders the predictive capabilities of the

UKF in case of the SRS in this configuration, but the noise parameters 𝝂 ̈𝒄𝑃
and 𝝂𝝎̇𝑃

allow the UKF
to correct the state, including the velocity and angular rate of the SRS based on the measurements
of the linear encoders. The fact that the UKF cannot predict the SRS estimated state effectively but
mostly react to the measurements is why the innovations of the linear encoders show the motion in this
configuration.
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Figure 7.16: Base run Configuration 1, the innovation of linear encoders measuring the length of the hydraulic actuators of the
SRS plotted against its covariance over time.

The TrackIR 5 innovation in Figure 7.17 is random and within bounds as the NEES in Table 7.9 would
indicate.

Figure 7.17: Base run Configuration 1, the innovation of Track IR 5 measuring the position and attitude (Euler attitude
formulation) of the HMD attached to the SRS plotted against its covariance over time.
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Configuration 2: SRS's Linear Encoders and IMU + HMD's Visual Tracking and IMU
The initial estimated state of both the SRS 𝒙̂𝑃 0

and HMD 𝒙̂𝐻0
are presented in Equation 7.71 based

on Equation 3.14. In comparison to the expected initial state 𝒙̂0 of Configuration 1 in Equation 7.66,
only the SRS IMU biases, the values set similar to the ones of the HMD, are new.

𝒙̂0 = 𝐸 |𝒙0| = 𝐸 ∣(𝒙𝑇
𝑃 0

𝒙𝑇
𝐻0)𝑇 ∣
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𝑃 0

̇𝒄𝑇
𝑃 0
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𝑃 0
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𝑃 0)𝑇 (𝒄𝑇

𝐻0
̇𝒄𝑇
𝐻0

𝒆𝑇
𝐻0

𝝀𝑇
𝐻0)𝑇 ∣

⎧{{{{{
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̂𝒆𝑃 0
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⎫}}}}}
⎬}}}}}⎭

=
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(0 0 0)𝑇
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(0 0 0 0 0 0)𝑇
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(7.71)

The expected initial state covariance𝑷𝑥̂0
, presented in Equation 7.72, is just as the expected initial state

𝒙̂0 similar to the expected initial state covariance 𝑷𝑥̂0
presented in Configuration 1 in Equation 7.67.

𝑷𝑥̂0
= 𝐸 ∣[𝒙0 − 𝒙̂0] [𝒙0 − 𝒙̂𝑇

0 ]∣

= diag
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The process noise covariance 𝑸 is compiled based on the IMU noise parameters and the combined
error established in Section 7.2.4. The 10 % scaling to the expected accelerometer𝝈𝒇𝝁□

and gyroscope
bias SD 𝝈𝝎𝝁□

of both the SRS and HMD. Also the case when presenting the process noise covariance
𝑸 in Configuration 1 in Equation 7.68.

𝑸 = diag (𝝈2
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The observation noise covariance 𝑹 due to the fact that the observation sensors do not change w.r.t.
Configuration 1. Also the SUT parameters do not change in this configuration from Configuration 1
in order to make the comparison about the configurations themselves. Later, in Section 7.5 the SUT
parameters are altered to investigate their influence. Following, the observation noise covariance 𝑹
and SUT parameters, 𝛼, 𝛽, and 𝜅, presented in Equations 7.69 and 7.70 respectively are used.
With the initial state 𝒙̂0, initial state covariance 𝑷𝑥̂0

, process noise covariance 𝑸, observation noise
covariance 𝑹, and the SUT parameters set of Configuration 2 the performance metrics are presented
in Tables 7.11, 7.13, and 7.12. From this point forward, this run will be indicated as ‘Run 2’.
The total accuracy of the HMD vehicle-fixed pose is compared against Configurations 0 and 1 in
Table 7.11. Here, the data serves to give an understanding of the scale and quantity of the improvement
brought forth by the overall configuration and algorithm.

Table 7.11: Performance overview of the base run of Configuration 2 using the error of the vehicle-fixed position and attitude of
the HMD.

HMD Vehicle-Fixed
Position Error m Attitude Error °

Run Mean SD Max Mean SD Max
0 7.36 × 10−4 3.65 × 10−4 2.37 × 10−3 1.04 × 10−1 4.74 × 10−2 3.04 × 10−1

1 1.70 × 10−4 8.22 × 10−5 5.05 × 10−4 6.87 × 10−3 3.35 × 10−3 2.01 × 10−2

2 1.93 × 10−4 9.56 × 10−5 5.80 × 10−4 9.43 × 10−3 4.78 × 10−3 2.47 × 10−2

Compared to the base-line, i.e. Run 0, improvements across the board are observed similar to Run
1. However, contrary to expectations Configuration 1 actually performed better with regards to the
HMD’s vehicle fixed pose, approximately 15 % reduction in error on the position and 30 % on the attitude
estimation. As Configuration 2 has an extra sensor, in theory, should perform better compared to
Configuration 1. In this case, an optimal, or close to optimal, process noise covariance 𝑸 could have
been found for Configuration 1 for the motion at hand.

The source of the increase in error is found in the estimation of the SRS state 𝒙̂𝑃 and its covariance
𝑷𝑥̂𝑃

and discussed later in Table 7.13 and corresponding Figures 7.20 and 7.21. Even so, less tuning
should be necessary to make Configuration 2 work compared to Configuration 1, as will be evident in
Section 7.5 where the sensitivity of each configuration is analyzed.

Following, the NEES values for Configuration 2 are presented in Table 7.12. Here, the impact of the
motion generation in combination with the forward Euler integration method is evident in the case of
the SRS. The error shows the underlying motion clearly in Figures 7.20 and 7.21 even after scaling the
expected SD present on the IMU. As the UKF assumes a Gaussian noise, the underlying motion is still
present. The motion also shows in the innovation of the linear encoders and to a lesser extent in the
HMD pose error NEES.

Table 7.12: Condition overview of the base run of Configuration 2, see Section 7.4.1 for the explanation on the color use.

NEES
SRS HMD

Run Position Attitude Lin. Enc. Inno. Position Attitude TrackIR 5 Inno.
1 2.59 2.62 7.43 3.11 2.01 5.00
2 26.40 15.92 26.59 3.90 3.79 5.18

The resulting errors of the HMD position 𝒄𝐻 and attitude 𝒆𝐻 in the inertial reference frame 𝔼𝐼 are
presented in Figures 7.18 and 7.19 are very similar to their configuration counterparts in Figures 7.9
and 7.10. Both position and attitude of the HMD are mostly within 2𝜎-bounds indicated by the red line.
Concluding that even though more underlying motion is present in the error the UKF algorithm is still
capable in estimating the pose.
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Figure 7.18: Base run Configuration 2, the error of the HMD estimated position per axis of the inertial frame plotted against its
covariance over time.

Figure 7.19: Base run Configuration 2, the error of the HMD estimated attitude in angle-axis formulation per axis of the inertial
frame plotted against its covariance over time.

For brevity’s sake, the HMD accelerometer and gyroscope biases are not shown. They performed
similarly in Configuration 1.

The statistics on the total error on the SRS pose is compiled in Table 7.13. Even though the NEES
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values indicated suboptimal performance in terms of error profile versus covariance, the regression in
total pose error is small if any. The variance and max positional error actually improve.

Table 7.13: Performance overview of the base run of Configuration 2 using the SRS error of the inertial position and attitude.

SRS
Position Error m Attitude Error °

Run Mean SD Max Mean SD Max
1 2.95 × 10−5 2.09 × 10−5 1.38 × 10−4 7.71 × 10−4 5.52 × 10−4 3.58 × 10−3

2 2.98 × 10−5 1.71 × 10−5 9.23 × 10−5 9.30 × 10−4 5.54 × 10−4 4.54 × 10−3

Following, the SRS position and attitude error in the inertial frame 𝔼𝐼 are shown in Figures 7.20 and 7.21.
Here, the increase in z-axis certainty in both the position as well as the attitude is still observable as
was the case in Figures 7.13 and 7.14. The certainty increased in this configuration, compared to
Configuration 1, due to the smaller overall process noise covariance 𝑸 due to the addition of the
IMU. However, in Configuration 2 both the positional as well as the attitude error of the SRS show
the underlying motion in comparison to Configuration 1. The forward Euler integration induced error is
clearly visible due to the 100Hz sampling rate set on the IMU of the SRS.

Figure 7.20: Base run Configuration 2, the error of the SRS estimated position per axis of the inertial frame plotted against its
covariance over time.
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Figure 7.21: Base run Configuration 2, the error of the SRS estimated attitude in angle-axis formulation per axis of the inertial
frame plotted against its covariance over time.

The SRS accelerometer𝝀𝒇𝑃
and gyroscope biases 𝝀𝝎𝐻

, depicted in Figures 7.22 and 7.23 respectively,
try to to compensate for the forward Euler induced error.

Figure 7.22: Base run Configuration 2, the error of the accelerometer bias of the SRS per axis plotted against its covariance
over time.
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Figure 7.23: Base run Configuration 2, the error of the gyroscope bias of the SRS per axis plotted against its covariance over
time.

Moreover, the innovations from TrackIR 5 𝝐𝐻𝑃 and linear encoders 𝝐𝑙𝑖
are depicted against their own

part of the observation covariance 𝑷 ̂𝑦𝑘
in Figures 7.24 and 7.25 respectively. The innovation resulting

from the TrackIR 5 observations are within bounds and seemingly Gaussian as the NEES results
in Table 7.12 indicate. However, the innovation of the six linear encoders show clear signs of the
underlying motion as well as not respecting the expectations set by the 2𝜎-bounds. This is caused by
the discrepancy between the non-Gaussian error introduced in the prediction and the expectations of
the correction phase.
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Figure 7.24: Base run Configuration 2, the innovation of Track IR 5 measuring the position and attitude (Euler attitude
formulation) of the HMD attached to the SRS plotted against its covariance over time.

Figure 7.25: Base run Configuration 2, the innovation of linear encoders measuring the length of the hydraulic actuators of the
SRS plotted against its covariance over time.

Configuration 3: SRS's Linear Encoders and Setpoints + HMD's Visual Tracking and IMU
The setpoints for Configuration 3 were created at 100Hz but the prediction was performed at 600Hz.
Similar to the IMU data generation for the SRS.
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Again, the initial estimated state of both the SRS 𝒙̂𝑃 0
and the HMD 𝒙̂𝐻0

are presented in Equation 7.74.
In this configuration the expected initial lag, 𝝉 ̈𝒄0

and 𝝉 𝝎̇0
, were all set to 0.06. Moreover, the SRS

expected initial acceleration and angular acceleration were set to zero.
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The expected initial state covariance𝑷𝑥̂0
, presented in Equation 7.75, is just as the expected initial state

𝒙̂0 similar to the expected initial state covariance 𝑷𝑥̂0
presented in Configuration 2 in Equation 7.72.

The initial covariance of the lag states of the SRS were set initially small, (10−5)2. The covariance of
the lags was set low relative to the others, i.e. the certainty was relatively high, in order to promote the
correction of other states in favor of the lag state in the initial phase of the UKF.

𝑷𝑥̂0
= 𝐸 ∣[𝒙0 − 𝒙̂0] [𝒙0 − 𝒙̂𝑇

0 ]∣
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The SRS related variances were set after some trial and error. The expected process noise covariance
on the lag was set small so the estimated lag would not change quickly and represent the errors in
the system. The expected variance on the SRS acceleration and angular acceleration relaxes the
prediction step of the UKF by introducing additional uncertainty. Moreover, the addition of said variance
makes this configuration more robust to apply to different motion platforms. If the setpoints of a motion
platform are generated by a different discrete integration method than presented here, the variance on
the acceleration and angular acceleration relaxes the need for an exact knowledge on the generation
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of said setpoints. This is a trade-off between precision and ease of integration, i.e. tuning.

𝑸 = diag (𝝈2
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The total accuracy of the HMD vehicle-fixed pose of Configuration 3 is compared against Configuration
0, Configuration 1, and Configuration 2 in Table 7.14. This configuration improves over the base-line
in similar fashion to the other configuration. The scale of improvements on the total accuracy of the
HMD vehicle-fixed pose of all three configurations over the base-line configuration are similar. Leading
to the conclusion that the main gain can be contributed to the addition of the IMU on the HMD.

Table 7.14: The error of each run in terms of the vehicle-fixed position and attitude of the HMD.

HMD Vehicle-Fixed
Position Error m Attitude Error °

Run Mean SD Max Mean SD Max
0 7.36 × 10−4 3.65 × 10−4 2.37 × 10−3 1.04 × 10−1 4.74 × 10−2 3.04 × 10−1

1 1.70 × 10−4 8.22 × 10−5 5.05 × 10−4 6.87 × 10−3 3.35 × 10−3 2.01 × 10−2

2 1.93 × 10−4 9.56 × 10−5 5.80 × 10−4 9.43 × 10−3 4.78 × 10−3 2.47 × 10−2

3 1.72 × 10−4 8.35 × 10−5 5.28 × 10−4 6.76 × 10−3 3.29 × 10−3 1.95 × 10−2

The NEES in this configuration can be tuned for the SRS easily by the variance on the acceleration and
angular acceleration. Based on the values for the SRS the variance on the acceleration and angular
acceleration in the process noise covariance 𝑸 is set marginally too large. Decreasing said variances
would increase the SRS accuracy slightly. The innovation based NEES on the linear encoders verify
the NEES found on the states themselves. This is an important indicator for real life tests. For both
system the innovation based NEES can be employed to tune the parameters set in the process noise
covariance 𝑸.

Table 7.15: Condition overview of the base run of Configuration 3, see Section 7.4.1 for the explanation on the color use.

NEES
SRS HMD

Run Position Attitude Lin. Enc. Inno. Position Attitude TrackIR 5 Inno.
1 2.59 2.62 7.43 3.11 2.01 5.00
2 26.40 15.92 26.59 3.90 3.79 5.18
3 2.35 2.31 4.64 3.11 1.97 5.11

The HMD error on the position and attitude, depicted in Figures 7.26 and 7.27 are similar to the error
found in Configuration 1. Both the position and attitude take about one second to converge.
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Figure 7.26: Base run configuration 3, the error of the HMD estimated position per axis of the inertial frame plotted against its
covariance over time.

Figure 7.27: Base run configuration 3, the error of the HMD estimated attitude in angle-axis formulation per axis of the inertial
frame plotted against its covariance over time.

For brevity’s sake, the HMD accelerometer and gyroscope biases are not shown. They performed
similar as in Configuration 1.

The total accuracy of the SRS in the inertial frame of Configuration 3 is compiled in Table 7.16. Even
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though Configuration 3 results in the most accurate configuration in terms of SRS. However, this does
not translate to the HMD vehicle-fixed pose compiled in Table 7.14. Following, the total accuracy of the
HMD vehicle-fixed pose is seemingly limited by the sensors used, i.e. TrackIR 5 and IMU HMD. If the
accuracy of the sensors, TrackIR 5 or MPU-6500 IMU, used would improve, Configuration 3 could be
more beneficial.

Table 7.16: The error of each run in terms of the inertial position and attitude of the SRS.

SRS
Position Error m Attitude Error °

Run Mean SD Max Mean SD Max
1 2.95 × 10−5 2.09 × 10−5 1.38 × 10−4 7.71 × 10−4 5.52 × 10−4 3.58 × 10−3

2 2.98 × 10−5 1.71 × 10−5 9.23 × 10−5 9.30 × 10−4 5.54 × 10−4 4.54 × 10−3

3 7.61 × 10−6 3.46 × 10−6 2.12 × 10−5 1.80 × 10−4 7.92 × 10−5 5.16 × 10−4

The SRS error on the position and attitude is plotted in Figures 7.28 and 7.29 against there respective
covariance. As the NEES in Table 7.15 hinted at, the error on the position and attitude is seemingly
Gaussian and well within 2𝜎-bounds.

Figure 7.28: Base run configuration 3, the error of the SRS estimated position per axis of the inertial frame plotted against its
covariance over time.
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Figure 7.29: Base run configuration 3, the error of the SRS estimated attitude in angle-axis formulation per axis of the inertial
frame plotted against its covariance over time.

The error on the translational lags 𝝉 ̈𝒄 show interesting behavior in Figure 7.30. In this figure, all three
lag errors converge to approximately −0.0017 s, roughly equal to the negative time-step Δ𝑡. This is not
a coincidence, in the forward Euler method employed in the translation integration, the acceleration
takes one extra time-step to influence the position. As the acceleration setpoints are generated based
on the actual acceleration, and not the ‘required’ acceleration, see Section 7.2.3.3, the lag is reduced
to bring the setpoints, i.e. the acceleration, forward in time to match the observation by the linear
encoders. Moreover, the lag converges only after 10 s. In Section 7.5, it is looked into if this is linked
to the initial 10 s linear scaling of the motion.
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Figure 7.30: Base run configuration 3, the error on the translational lag over the acceleration setpoints of the SRS per axis
plotted against its covariance over time.

The error on the rotational lags 𝝉 𝝎̇ are depicted in Figure 7.31. These, in contrary to the translational
lags 𝝉 ̈𝒄, converge around zero. This makes sense as the angular acceleration setpoints are based
on the ‘required’ angular acceleration rather than the actual acceleration, see Sections 7.2.3.3 in
combination with Equations 7.25 and 7.32. Similar to their translational counterparts in Figure 7.30
they converge after 10 s.
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Figure 7.31: Base run configuration 3, the error on the rotational lag over the angular acceleration setpoints of the SRS per
axis plotted against its covariance over time.

Following, the innovations, from TrackIR 5 𝝐𝐻𝑃 and linear encoders 𝝐𝑙𝑖
, are depicted against their

relevant observation covariance 𝑷 ̂𝑦𝑘
in Figures 7.32 and 7.33. Both innovations plotted are within

2𝜎-bounds and seemingly Gaussian as the NEES values in Table 7.15 would indicate.
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Figure 7.32: Base run configuration 3, the innovation of Track IR 5 measuring the position and attitude (Euler attitude
formulation) of the HMD attached to the SRS plotted against its covariance over time.

Figure 7.33: Base run configuration 3, the innovation of linear encoders measuring the length of the hydraulic actuators of the
SRS plotted against its covariance over time.
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7.5. Sensitivity Analysis
In this section a sensitivity analysis is performed. Meaning, certain initial parameters per configuration
are modified and the resulting run analyzed in terms of performance metrics. The parameters selected
to be modified are listed for every configuration.

The resulting performance metrics are compared to their base run established in Section 7.4.2 in tables.
The tables that present the error on the HMD vehicle-fixed pose and inertial SRS pose will use color
to help identify improvements or decreases to the accuracy due to the modified parameters. Green is
used to highlight improvements and red for reductions in accuracy.

7.5.1. Configuration 1: SRS's Linear Encoders + HMD's Visual Tracking and IMU
The sensitivity analysis of Configuration 1 looks at the influence of process noise covariance 𝑸 in
terms of acceleration 𝝈 ̈𝒄𝑃

and angular acceleration 𝝈𝝎̇𝑃
. As these terms were initial set due to trial

and error after all. Moreover, the influence of the expected/actual accuracy of the IMU sensor of the
HMD and linear encoders of the SRS are investigated. Next, the robustness of this configuration is
tested by increasing the estimation error on the initial state. Subsequently, the reduction in accuracy is
investigated if the computational frequency were reduced from 600Hz to 100Hz. Last, the amplitudes
and frequencies presented in Section 7.2 are doubled to test the robustness of this configuration against
an increase in the overall motion.

Configuration 1

• Process noise 𝑸
1.1 SRS: Acceleration 𝝈 ̈𝒄𝑃

and angular acceleration 𝝈𝝎̇𝑃

1.1.1 Increase expected SD: ×10
1.1.2 Decrease expected SD: ÷10

1.2 HMD: IMU 𝝈𝒇𝐻
, 𝝈𝝎𝐻

1.2.1 Increase actual SD: ×10
1.2.1.1 Change expected SD accordingly
1.2.1.2 No change to expected SD
1.2.2 Decrease actual SD: ÷10
1.2.2.1 Change expected SD accordingly
1.2.2.2 No change to expected SD

• Observation noise 𝑹
1.3 SRS: linear encoders 𝝈𝒍𝑖

1.3.1 Increase actual SD: ×10
1.3.1.1 Change expected SD accordingly
1.3.1.2 No change to expected SD
1.3.2 Decrease actual SD: ÷10
1.3.2.1 Change expected SD accordingly
1.3.2.2 No change to expected SD

• Initial state 𝒙̂0

1.4 Increase error
• Computational frequency

1.5 Decrease to 100Hz
• Motion profile

1.6 Double amplitude and frequency
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The impact on the performance metrics of each alteration on Configuration 1 is compiled into
Tables 7.17, 7.18, and 7.19. In each of these tables, the modified runs are compared to the base
run established in Section 7.4.2.1.

First, Runs 1.1.1 and 1.1.2, where the acceleration 𝝈 ̈𝒄𝑃
and angular acceleration 𝝈𝝎̇𝑃

are scaled up
and down, are analyzed from the data provided in the three tables below, Tables 7.17, 7.18, and 7.19.
Increasing the acceleration 𝝈 ̈𝒄𝑃

and angular acceleration 𝝈𝝎̇𝑃
improved absolute performance of the

SRS, indicated in Table 7.19. However the NEES values in Table 7.18 of the SRS, especially the
innovation, indicates that the uncertainty is larger than necessary. The increased uncertainty influenced
also the TrackIR 5 sensor as evident from the NEES value. Nonetheless, this barely influenced the
HMD vehicle-fixed pose as evident in Table 7.17 due to the limited accuracy of the TrackIR 5 sensor
when compared to the SRS linear encoders.

Decreasing the expected SD on the acceleration 𝝈 ̈𝒄𝑃
and angular acceleration 𝝈𝝎̇𝑃

increases the error
for both subsystems, HMD and SRS. In a real use case, the very small NEES values of the innovation
could be an indicator of a lack of certainty, as seen in Table 7.18.

Second, Runs 1.2.1.1 to 1.2.2.2 alter the actual and expected SD of the HMD IMU. These changes
have an impact on the accuracy of the HMD vehicle-fixed pose. The result of increasing the actual SD
of the HMD IMU are as expected. The error goes up, especially in Run 1.2.1.2 where the increase in
actual SD on the IMU is not taken into account.

The results of the runs in which the actual SD of the IMU was decreased, i.e. 1.2.2.1 and 1.2.2.2, are
unexpected. The NEES values indicate suboptimal conditions in both runs. Run 1.2.2.1, that takes
into account the increased accuracy of the IMU,scales the expected SD of the accelerometer with 2.1
according to Section 7.2.4. Moreover, Run 1.2.2.1 has decreased positional but increased attitude
performance according to Table 7.17. While Run 1.2.2.2, that not takes into account the increased
accuracy of the IMU of the HMD, its performance moves in the opposite manner to Run 1.2.2.1, i.e.
increased positional but decreased attitude performance.

The scaled expected SD of the accelerometer in Run 1.2.2.1 of 2.1 is apparently not enough to
overcome the non-Gaussian noise present due to the forward Euler integration on the accelerometer
of the HMD. The forward induced error is not present on the attitude in this simulation for reasons
mentioned in Section 7.2. The difference between the method of computation of the angular rate and
acceleration relevant data also explains why sometimes only the attitude but not the position accuracy
improves.

These runs, Runs 1.2.1.1 to 1.2.2.2 have an impact on the SRS estimated pose as well. This shows that
the HMD IMU has an impact on the SRS pose estimation translated through the TrackIR 5. However,
the impact is rather small according to Table 7.19.

Runs 1.3.1.1 to 1.3.2.2 alter the expected and actual SD of the linear encoders 𝝈𝒍𝑖
. Reducing the

accuracy by a factor of ten in Runs 1.3.1.1 and 1.3.1.2 increases the error of the pose by a factor of
about five in both the position as well the attitude of the SRS.

The HMD vehicle-fixed pose is less influenced by the reduction in accuracy of the accuracy of the linear
encoders. Here, the total positional error increased around 50 % while the total attitude error increased
around 15 % to Run 1.

The NEES values for Run 1.3.1.2, i.e. not taking into account the increased actual SD on the linear
encoders, meaning the expected SD is smaller than the actual SD creates unfavorable conditions,
resulting in sigma-points sampled closer to the state than would be optimal. Moreover, the UKF
algorithm would also trust the observation too much in this case.

In Runs 1.3.2.1 to 1.3.2.2 the accuracy of the linear encoders is improved by a factor of ten. The
total error of the SRS, in the Run 1.3.2.1, is reduced by 43 % and 35 % for the position and attitude
respectively. Again, the estimation improvement in the SRS subsystem are barely measurable in the
HMD vehicle-fixed pose error.

Run 1.3.2.2 reduces the mean error on the pose by approximately 20 % when not taking into account
the improved linear encoders. The lack of certainty in the sensors is evident from the NEES values in
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Table 7.18. NEES values this small indicate that the algorithm expects the estimated state to change
more than it will, i.e. the state covariance 𝑷𝑥̂ is to large. If the SRS subsystem would have had another
input, say an IMU such as in Configuration 2 in Section 7.4.2.1, the NEES value of the innovation would
have been small and resembled the discrepancy between the expected and actual SD on the sensors
output.

In Run 1.4 the error on the initial state 𝒙̂0 was modified from the state given in Equation 7.66 to:

𝒙̂0 =

⎧{{{{{
⎨{{{{{⎩

̂𝒄𝑃 0̂ ̇𝒄𝑃 0
̂𝒆𝑃 0

𝝎̂𝑃 0
̂𝒄𝐻0̂ ̇𝒄𝐻0
̂𝒆𝐻0

𝝀̂𝐻0

⎫}}}}}
⎬}}}}}⎭

=

⎧{{{{{{
⎨{{{{{{⎩

(0.58682858 −0.97092327 −1.13218296)𝑇

(1.22803562 0.46829199 −2.37069145)𝑇

(0.99364229 0.10614029 −0.03567829 −0.0116746)𝑇

(0.12301066 0.71263982 0.9263408)𝑇

(−0.47145191 −0.60514862 −3.50374137)𝑇

(1.2907381 0.99407434 1.91678943)𝑇

(0.99311633 −0.11389189 0.02575446 −0.00923585)𝑇

(0 0 0 0 0 0)𝑇

⎫}}}}}}
⎬}}}}}}⎭

(7.77)

Here, alongside increasing the initial estimation errors on the position and attitude, estimation errors are
introduced on the velocity and angular velocity. Again, these values are extreme and, in the case of the
position of the HMD, physically impossible. But, this initial state 𝒙̂0 was chosen as such to investigate
if the algorithm is mathematically robust to deal with them as such. The initial estimated SRS state had
a random positional error of 1.69m, velocity error of 2.71m/s, attitude error of 6.46°, and angular rate of
67.33 °/s. The initial estimate state of the HMD in this run had a random error on the position of 0.92m,
velocity of 2.52m/s, and attitude of 6.73°.
The algorithm took longer to converge onto the HMD pose, in this case about 2 s. The SRS pose, as
was the case in the base run in Figures 7.13 and 7.14, converges as soon as the first observation is
sampled. The reason for the longer convergence duration is due to the algorithm initially solving the
mismatch between the HMD’s IMU input and observation by contributing the error to the HMD’s IMU
biases, shown in Figures 7.34 and 7.35.

Figure 7.34: Sensitivity Run 1.4, the error of the accelerometer bias of the HMD per axis plotted against its covariance over
time.
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Figure 7.35: Sensitivity Run 1.4, the error of the gyroscope bias of the HMD per axis plotted against its covariance over time.

Next, Run 1.5 decreases the computational frequency from 600Hz to 100Hz. In order to compare
the errors found in Tables 7.17 and 7.19 the error of Run 1.5 was computed at 600Hz. Meaning, that
every state estimation was compared against the actual state sampled at 600Hz, using every estimated
state six times when comparing against the sampled actual state. It must be noted that the expected
SD of the accelerometer of the HMD IMU was scaled by 1.5 as found in Section 7.2.4. Nonetheless,
the scaling on the expected SD of the accelerometer the NEES value of the HMD increases further,
indicating more motion present in the error. For the HMD vehicle-fixed pose the mean error increases
by 3.3 and 7.4 for the position and attitude respectively. Compared against the base-line, Configuration
0, the improvements, especially in the positional case, are small, 5 to 25 %, depending on the metric.
Underlying the notion that with an IMU attached to the HMD the state should be estimated at a higher
interval in order to generate benefits from having the IMU in the first place. The decrease in accuracy
for the SRS is surprising given that the sampling rate of the linear encoders is 100Hz. The real source of
the increase in error has more to do with the fact that no interim estimations are provided by integration
of the velocity and angular rate in the prediction phase.

Finally, Run 1.6 scales the amplitudes and frequencies presented in Tables 7.1 and 7.2 in Section 7.2
by a factor of two. In order to compare Configuration 1 to 0, the baseline, Run 0.6 was created. In Run
0.6 the same motion profile, as used in Run 1.6, was observed by only the TrackIR 5 sensor. Following
the increased error of the assumption that the IMU’s input is a constant for the time-step’s Δ𝑡 duration
due to the increased motion, the error on the HMD’s vehicle-fixed pose has increased in Table 7.17 for
both Runs 1.6 and 0.6 when compared to Runs 1 and 0 respectively.

However, analyzing the reduction of the average error of the HMD’s vehicle-fixed pose per motion
profile of Configuration 0 to 1, i.e. Run 1 to Run 0 and Run 1.6 to Run 0.6, hints at the fact that the
addition of the HMD’s IMU improves the HMD’s pose estimation more when there is more motion. Due
to the fact that for the original motion profile, i.e. Run 0 to 1,the average error reduced by a factor 4.3
and 15.1 for the position and attitude respectively, while for the increased motion profile, i.e. Run 0.6
to 1.6, the average error reduced by a factor 5.1 for the position and 23.5 for the attitude in Table 7.17.
Even though the accuracy of the SRS’s pose estimation was reduced by almost a factor of 10.
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Table 7.17: The error of each Configuration 1 modified run in terms of the vehicle-fixed position and attitude of the HMD.

HMD Vehicle-Fixed
Position Error m Attitude Error °

Run Mean SD Max Mean SD Max
0 7.36 × 10−4 3.65 × 10−4 2.37 × 10−3 1.04 × 10−1 4.74 × 10−2 3.04 × 10−1

1 1.70 × 10−4 8.22 × 10−5 5.05 × 10−4 6.87 × 10−3 3.35 × 10−3 2.01 × 10−2

1.1.1 1.72 × 10−4 8.26 × 10−5 5.13 × 10−4 6.82 × 10−3 3.37 × 10−3 2.00 × 10−2

1.1.2 2.49 × 10−4 1.17 × 10−4 7.56 × 10−4 9.11 × 10−3 4.01 × 10−3 2.21 × 10−2

1.2.1.1 2.83 × 10−4 1.40 × 10−4 9.23 × 10−4 2.41 × 10−2 1.13 × 10−2 7.26 × 10−2

1.2.1.2 6.06 × 10−4 3.44 × 10−4 1.85 × 10−3 4.92 × 10−2 2.06 × 10−2 9.90 × 10−2

1.2.2.1 1.82 × 10−4 9.94 × 10−5 5.52 × 10−4 6.76 × 10−3 2.37 × 10−3 1.63 × 10−2

1.2.2.2 1.61 × 10−4 8.13 × 10−5 5.16 × 10−4 6.96 × 10−3 2.64 × 10−3 1.48 × 10−2

1.3.1.1 2.51 × 10−4 1.26 × 10−4 8.25 × 10−4 7.70 × 10−3 3.88 × 10−3 2.37 × 10−2

1.3.1.2 2.86 × 10−4 1.33 × 10−4 9.24 × 10−4 7.95 × 10−3 3.66 × 10−3 2.55 × 10−2

1.3.2.1 1.69 × 10−4 8.21 × 10−5 5.10 × 10−4 6.81 × 10−3 3.37 × 10−3 2.02 × 10−2

1.3.2.2 1.68 × 10−4 8.18 × 10−5 5.10 × 10−4 6.84 × 10−3 3.36 × 10−3 2.03 × 10−2

1.4 1.78 × 10−4 8.98 × 10−5 6.30 × 10−4 7.68 × 10−3 3.92 × 10−3 1.94 × 10−2

1.5 5.61 × 10−4 3.47 × 10−4 2.17 × 10−3 5.07 × 10−2 3.58 × 10−2 1.52 × 10−1

0.6 1.99 × 10−3 1.41 × 10−3 7.57 × 10−3 2.09 × 10−1 1.37 × 10−1 6.84 × 10−1

1.6 3.92 × 10−4 1.64 × 10−4 9.61 × 10−4 8.89 × 10−3 4.34 × 10−3 2.88 × 10−2

Table 7.18: Condition overview of the modified runs of Configuration 1, see Section 7.4.1 for the explanation on the colors.

NEES
SRS HMD

Run Position Attitude Lin. Enc. Inno. Position Attitude TrackIR 5 Inno.
1 2.59 2.62 7.43 3.11 2.01 5.00
1.1.1 2.47 2.49 0.09 3.10 1.98 3.56
1.1.2 209.87 220.08 660.57 3.18 3.27 7.07
1.2.1.1 2.58 2.61 7.41 2.48 2.47 4.97
1.2.1.2 2.69 2.73 7.43 45.21 105.92 9.69
1.2.2.1 2.61 2.63 7.44 10.03 4.08 5.31
1.2.2.2 2.58 2.61 7.43 2.74 1.92 4.98
1.3.1.1 4.36 4.33 9.74 3.04 1.93 5.55
1.3.1.2 236.33 238.79 94.06 4.42 1.99 10.06
1.3.2.1 2.46 2.48 6.56 3.11 1.99 4.98
1.3.2.2 0.26 0.26 6.57 3.10 2.00 4.94
1.4 2.68 2.61 7.43 3.60 2.24 4.99
1.5 2.46 2.45 1.25 5.42 3.36 4.72
1.6 16.52 16.57 406.70 18.65 1.97 9.64
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Table 7.19: The error of each Configuration 1 modified run in terms of the inertial position and attitude of the SRS.

SRS
Position Error m Attitude Error °

Run Mean SD Max Mean SD Max
1 2.95 × 10−5 2.09 × 10−5 1.38 × 10−4 7.71 × 10−4 5.52 × 10−4 3.58 × 10−3

1.1.1 2.74 × 10−5 1.86 × 10−5 1.37 × 10−4 7.24 × 10−4 5.10 × 10−4 3.57 × 10−3

1.1.2 1.45 × 10−4 8.42 × 10−5 4.86 × 10−4 3.45 × 10−3 1.88 × 10−3 1.14 × 10−2

1.2.1.1 2.94 × 10−5 2.08 × 10−5 1.38 × 10−4 7.72 × 10−4 5.53 × 10−4 3.58 × 10−3

1.2.1.2 2.98 × 10−5 2.09 × 10−5 1.38 × 10−4 7.78 × 10−4 5.53 × 10−4 3.60 × 10−3

1.2.2.1 2.97 × 10−5 2.10 × 10−5 1.39 × 10−4 7.68 × 10−4 5.50 × 10−4 3.57 × 10−3

1.2.2.2 2.95 × 10−5 2.09 × 10−5 1.38 × 10−4 7.71 × 10−4 5.52 × 10−4 3.58 × 10−3

1.3.1.1 1.59 × 10−4 8.99 × 10−5 5.99 × 10−4 3.90 × 10−3 1.97 × 10−3 1.39 × 10−2

1.3.1.2 1.67 × 10−4 9.05 × 10−5 5.98 × 10−4 4.06 × 10−3 2.15 × 10−3 1.41 × 10−2

1.3.2.1 1.69 × 10−5 1.60 × 10−5 8.39 × 10−5 5.02 × 10−4 4.76 × 10−4 2.34 × 10−3

1.3.2.2 2.38 × 10−5 2.01 × 10−5 1.08 × 10−4 6.35 × 10−4 5.44 × 10−4 2.84 × 10−3

1.4 2.98 × 10−5 2.10 × 10−5 1.49 × 10−4 7.73 × 10−4 5.52 × 10−4 3.56 × 10−3

1.5 8.38 × 10−4 6.55 × 10−4 3.06 × 10−3 2.23 × 10−2 1.68 × 10−2 8.16 × 10−2

1.6 1.91 × 10−4 1.60 × 10−4 9.11 × 10−4 5.10 × 10−3 4.37 × 10−3 2.43 × 10−2

7.5.2. Configuration 2: SRS's Linear Encoders and IMU + HMD's Visual Tracking
and IMU

The sensitivity analysis of Configuration 2 focusses on the IMU of the SRS, as it is the main difference
to Configuration 1. Moreover, the analysis looks into the impact of removing all the bias estimation
without changing the underlying IMU model. In this configuration the impact of the noise present on the
TrackIR 5 sensor is investigated. Next, the impact of reducing the computational frequency to 100Hz
is looked into. Following, the influence of increasing the SRS IMU sample rate to 600Hz to match the
HMD IMU. Last, the motion profile was changed by doubling the amplitudes and frequencies presented
in Section 7.2 as was the case for Run 1.6 of Configuration 1.

Configuration 2

• Process noise 𝑸
2.1 SRS: IMU 𝝈𝒇𝑃

, 𝝈𝝎𝑃

2.1.1 Increase actual SD: ×10
2.1.1.1 Change expected SD accordingly
2.1.1.2 No change to expected SD
2.1.2 Decrease actual SD: ÷10
2.1.2.1 Change expected SD accordingly
2.1.2.2 No change to expected SD

2.2 Ignore induced error
• Observation noise 𝑹
2.3 HMD: TrackIR 5

2.3.1 Increase actual SD: ×100
2.3.1.1 Change expected SD accordingly
2.3.1.2 No change to expected SD
2.3.2 Increase actual SD: ×10
2.3.2.1 Change expected SD accordingly
2.3.2.2 No change to expected SD



7.5. Sensitivity Analysis 133

2.3.3 Decrease actual SD: ÷10
2.3.3.1 Change expected SD accordingly
2.3.3.2 No change to expected SD
2.3.4 Decrease actual SD: ÷100
2.3.4.1 Change expected SD accordingly
2.3.4.2 No change to expected SD

• Computational frequency

2.4 Decrease to 100Hz
• SRS IMU sample rate

2.5 increase from 100Hz to 600Hz
• TrackIR 5 sample rate

2.6 increase from 100Hz to 200Hz
• Motion profile

2.7 Double amplitude and frequency

First, Runs 2.1.1.1 and 2.1.1.2 increase, whileRuns 2.1.2.1 and 2.1.2.2 decrease the actual SD on the
IMU on the SRS. The modification of this parameter has a direct result on the performance of the SRS,
as shown in Table 7.22. Here, the attitude error behaves as expected, the error increase or decreases
following the IMU of the SRS. However, the positional error of these aforementioned runs decreases
as the expected SD on the IMU increases. This is contrary to the expected outcome but in line with the
outcome of Run 1.2.2.1. It must be noted that the new expected SD on the accelerometer of the SRS
is scaled, according to Section 7.2.4, by a factor of 1.4 in Run 2.1.1.1, resulting in 14.0 times scaling to
the original actual SD of the IMU. Also in Run 2.1.2.1, the new expected SD on both the accelerometer
and gyroscope of the IMU on the SRS are rescaled by a factor of 106.6 and 8.6 respectively. Factoring
in the reduction in actual SD results in a scaling of 10.66 to the original actual SD on the accelerometer
and 0.86 scaling on the gyroscope.
Increasing the SD on the IMU output actually decreased the positional error of the SRS in Run 2.1.1.1.
Indicating that the whiter output of the positional predictions improved the estimating performance of
the algorithm concerning the SRS. These findings correlate with the NEES values in Table 7.21. Where,
from Runs 2.1.1.1 to 2.1.2.2 every time the NEES values improve of the SRS position the estimation
improves of the position.

The variance in SRS estimation performance do not translate themselves to the HMD vehicle-fixed
estimation performance found in Table 7.20. The improvement in SRS position estimation of Run
2.1.1.1 in particular does not translate. From the viewpoint of the HMD vehicle-fixed pose, the changes
to the SRS IMU noise profile the impact is small but expected.

In Run 2.2 the expected SD scale was ignored on all IMU and set to the standard 1.1. Ignoring
the forward Euler induced error, thereby reducing the expected SD on both IMU, i.e. reducing the
uncertainty on the IMU readings, makes the UKF algorithm trust the prediction phase more. The
positional error of the HMD vehicle-fixed pose increases. The impact on the attitude of the HMD is
small as this factor did not change. The angular rate, computed for the gyroscope was based on
the required rate not on the actual rate, as was the case for the acceleration, for the reasoning see
Section 7.2.4. The NEES values increase in Table 7.21, indicating an increase in motion present in the
output.

Next, Runs 2.3.1.1 to 2.3.4.2 modify the accuracy for the TrackIR 5 sensor. Changing the accuracy of
this sensor also changes the baseline performance of the sensor. The changing baseline performance
of the TrackIR 5 in Configuration 0 is given in Table 7.20. Here, the first number in the run indicator, in
this case 2 is replaced by the baseline run indicator 0. Thus every run that is labeled 0.3.x in Table 7.20
is the baseline performance of the TrackIR 5 in the aforementioned noise profile.
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The TrackIR 5 performance by itself in Runs 0.3.1, 0.3.2, 0, 0.3.3, and 0.3.4, where in each the accuracy
is improved by a factor of 10, i.e. the actual SD on the measurements decreases by 90 %. Run 0.3.1 to
Run 0.3.2 result in the expected decrease of 90 % in pose error across the board. The error decreases
close to the expected value of 90 % from Run 0.3.2 to Run 0, averaging around 88 %. However,
comparing Runs 0 and 0.3.3 the error only decrease 48 % and 66 % for the average total position and
attitude error respectively. The variability on the error improves even less in this comparison, 1 %
and 23 % for the position and attitude respectively. Finally, comparing Runs 0.3.3 to 0.3.4 the error
decreases only percentage points. Moreover, the error variance even increases.

This observed behavior, the declining rate of improvement, is not unlike the behavior observed in
Section 7.2.4. The performance of the TrackIR 5 is computed at 600Hz in order to compare the other
values in Table 7.20. This is also the source of the declining rate of improvement, the TrackIR 5 sensor
measures the pose but until the next measurement the actual object will have moved. The subsequent
error is computed five times, i.e. at 600Hz, per measurement. This source of error stays constant run
to run and is the reason for the non-linear error response.

Comparing Runs 2.3.1.1, 2.3.2.1, 2, 2.3.3.1, and 2.3.4.1 to another, i.e. each run the TrackIR 5 accuracy
improves by a factor of 10 and is taken into account, reveals the position improving less while the attitude
improves more each run. The mean positional error decrease by 85 %, 84 %, 82 %, and 63 %. While the
mean total attitude error decreases by 25 %, 70 %, 71 %, 61 %. Furthermore, the improvements of the
SD and max total error are in the same range for the position. This is not true for Run 2.3.4.1 where the
SD and max total error decreased less when compared to the mean percentage wise. Also noteworthy
is the comparison between Runs 2.3.1.1 and 2.3.2.1, here the attitude SD and max error increases by
around 10 %.

Even though the TrackIR sensor by itself in Run 0.3.4 started to converge on a maximum performance
for the motion at hand. Including the IMU of the HMD to the system pushed out the aforementioned
maximal performance as it provided updates in between observation improving the HMD vehicle-fixed
pose estimation performance of the system.

Analyzing Runs 2.3.1.1 to 2.3.4.2 from the SRS point of view in Table 7.22. The error on the SRS pose
does not increase when the expected SD on the TrackIR is set correctly, i.e. in Runs 2.3.x.1. Moreover,
in Run 2.3.4.1, i.e. the accuracy of the TrackIR 5 improves by a factor of 100, the estimation accuracy
on the SRS improves notably. Indicating that the certainty on the HMD pose has improved enough for
the TrackIR 5 readings extrapolate through to the SRS pose estimation by state covariance 𝑷𝑥̂.

In Run 2.4 the computational frequency of the overall system was reduced from 600Hz to 100Hz.
A similar pattern to Run 1.5 can be observed where the computational frequency was also reduced.
Again here the performance is still computed at 600Hz in order to make comparisons to the other runs
in Tables 7.20 and 7.22. Comparing the HMD and the SRS pose errors in Tables 7.20 and 7.22 of
Run 2.4, the accuracy of the SRS seemingly deteriorates more, ≈ ×25, than the HMD, ≈ ×3 − 5,
when compared against Run 2. This statement is also true for Run 1.5. The SRS accuracy seems
to deteriorate more due to the accuracy original achieved in combination with the error computed at
600Hz.
Increasing the sample rate of the SRS IMU improves the SRS pose as expected in Run 2.5. Increasing
the sample rate also reduces the forward Euler induced integration error on the SRS IMU, reducing
the accelerometer and gyroscope expected SD scaling to 3.0 and 1.1 respectively, according to
Section 7.2.4. Interestingly, increasing the sample rate improves the accuracy more than improving
the sensor itself by a factor of 10 as shown in Run 2.1.2.1. The improvements on the accuracy of
the SRS subsystem improve the HMD vehicle-fixed pose error, found in Table 7.20. The HMD pose
improvement are the result of the combination of the increased certainty on the SRS estimated state
and accuracy in general.

Increasing the sample rate this run of the TrackIR 5 result in two data point in Table 7.20, Runs 0.6
and 2.6. Run 0.6 is the result of Configuration 0, while, Run 2.6 is the result of Configuration 2. As
expected, increasing the sample-rate of the TrackIR 5 sensors would improve the HMD vehicle-fixed
pose error when comparing Runs 0 to 0.6 and 2 to 2.6. The improvements on the accuracy of the SRS
where small if any except on both the max positional error and attitude error improving by 2 % and 15 %
respectively.
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As hinted at by comparing the reduction in average error of the HMD’s vehicle-fixed pose average
error between the baseline and Configuration 1 with different motion profiles, the IMU contribution
is increased due to the faster and larger motion profile. This is again confirmed by comparing the
comparison between Run 0 to Run 2 to the comparison between Run 0.7 to 2.7 in Table 7.20. However,
the contribution of the SRS’s IMU in case of the increased motion profile in Run 2.7 in Table 7.22 is
clear when compared to Run 1.6 in Table 7.19. In Run 2.7 the increase in motion causes the SRS’s
pose average error to only almost double.
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Table 7.20: The error of each Configuration 2 modified run in terms of the vehicle-fixed position and attitude of the HMD.

HMD Vehicle-Fixed
Position Error m Attitude Error °

Run Mean SD Max Mean SD Max
0 7.36 × 10−4 3.65 × 10−4 2.37 × 10−3 1.04 × 10−1 4.74 × 10−2 3.04 × 10−1

2 1.93 × 10−4 9.56 × 10−5 5.80 × 10−4 9.43 × 10−3 4.78 × 10−3 2.47 × 10−2

2.1.1.1 2.32 × 10−4 1.12 × 10−4 8.42 × 10−4 1.18 × 10−2 5.92 × 10−3 5.01 × 10−2

2.1.1.2 2.33 × 10−4 1.12 × 10−4 8.34 × 10−4 1.18 × 10−2 5.91 × 10−3 4.98 × 10−2

2.1.2.1 1.91 × 10−4 9.54 × 10−5 5.76 × 10−4 9.35 × 10−3 4.82 × 10−3 2.49 × 10−2

2.1.2.2 1.92 × 10−4 9.55 × 10−5 5.78 × 10−4 9.39 × 10−3 4.83 × 10−3 2.49 × 10−2

2.2 2.34 × 10−4 1.12 × 10−4 6.53 × 10−4 9.41 × 10−3 5.15 × 10−3 2.62 × 10−2

0.3.1 5.36 × 10−2 2.88 × 10−2 2.01 × 10−1 8.72 3.94 2.75 × 101

2.3.1.1 7.62 × 10−3 3.80 × 10−3 1.88 × 10−2 4.14 × 10−2 1.31 × 10−2 6.86 × 10−2

2.3.1.2 1.53 × 10−2 8.83 × 10−3 5.28 × 10−2 7.46 × 10−1 3.56 × 10−1 1.84
0.3.2 5.38 × 10−3 2.88 × 10−3 2.01 × 10−2 8.74 × 10−1 3.94 × 10−1 2.75
2.3.2.1 1.19 × 10−3 5.27 × 10−4 3.11 × 10−3 3.11 × 10−2 1.42 × 10−2 7.70 × 10−2

2.3.2.2 1.55 × 10−3 8.80 × 10−4 5.34 × 10−3 7.46 × 10−2 3.66 × 10−2 1.90 × 10−1

0.3.3 4.58 × 10−4 3.62 × 10−4 1.78 × 10−3 4.60 × 10−2 3.68 × 10−2 1.44 × 10−1

2.3.3.1 3.51 × 10−5 1.71 × 10−5 1.25 × 10−4 2.77 × 10−3 1.33 × 10−3 8.21 × 10−3

2.3.3.2 1.01 × 10−4 4.64 × 10−5 2.55 × 10−4 5.73 × 10−3 2.13 × 10−3 1.24 × 10−2

0.3.4 4.46 × 10−4 3.72 × 10−4 1.77 × 10−3 4.36 × 10−2 3.84 × 10−2 1.35 × 10−1

2.3.4.1 1.30 × 10−5 9.96 × 10−6 9.52 × 10−5 1.09 × 10−3 6.03 × 10−4 4.62 × 10−3

2.3.4.2 9.91 × 10−5 4.39 × 10−5 2.43 × 10−4 5.62 × 10−3 2.03 × 10−3 1.19 × 10−2

2.4 5.58 × 10−4 3.44 × 10−4 2.05 × 10−3 4.65 × 10−2 3.56 × 10−2 1.44 × 10−1

2.5 1.70 × 10−4 9.59 × 10−5 7.62 × 10−4 6.25 × 10−3 2.43 × 10−3 1.30 × 10−2

0.6 5.82 × 10−4 2.87 × 10−4 1.87 × 10−3 9.16 × 10−2 4.12 × 10−2 2.75 × 10−1

2.6 1.33 × 10−4 6.22 × 10−5 3.78 × 10−4 6.43 × 10−3 2.61 × 10−3 1.75 × 10−2

0.7 1.99 × 10−3 1.41 × 10−3 7.57 × 10−3 2.09 × 10−1 1.37 × 10−1 6.84 × 10−1

2.7 4.83 × 10−4 1.98 × 10−4 1.27 × 10−3 9.59 × 10−3 4.44 × 10−3 2.54 × 10−2

Table 7.21: Condition overview of the modified runs of Configuration 2, see Section 7.4.1 for the explanation on the colors.

NEES
SRS HMD

Run Position Attitude Lin. Enc. Inno. Position Attitude TrackIR 5 Inno.
2 26.40 15.92 26.59 3.90 3.79 5.18
2.1.1.1 16.68 10.47 26.36 3.86 3.75 7.00
2.1.1.2 32.97 40.90 740.90 3.92 3.76 9.71
2.1.2.1 28.67 17.96 26.60 3.90 3.75 5.17
2.1.2.2 26.28 15.60 19.47 3.90 3.78 5.15
2.2 3910.63 1184.91 702.97 13.60 3.52 6.07
2.3.1.1 26.24 15.82 26.57 3.08 1.09 5.11
2.3.1.2 80.91 59.03 43.94 21 097.55 22 004.89 49 857.31
2.3.2.1 26.23 15.82 26.58 3.01 2.47 5.10
2.3.2.2 27.09 16.46 26.82 214.26 220.68 498.50
2.3.3.1 26.70 15.78 26.18 9.04 2.86 6.76
2.3.3.2 26.38 15.90 26.61 1.65 1.49 0.28
2.3.4.1 24.69 13.44 24.65 20.13 3.28 10.54
2.3.4.2 26.37 15.89 26.59 1.62 1.45 0.24
2.4 4.32 3.70 7.25 5.51 2.27 5.42
2.5 48.88 8.02 17.26 3.63 1.64 5.00
2.6 26.35 15.81 26.70 3.53 2.44 5.06
2.7 5.46 4.71 24.51 19.31 3.94 8.61
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Table 7.22: The error of each Configuration 2 modified run in terms of the inertial position and attitude of the SRS.

SRS
Position Error m Attitude Error °

Run Mean SD Max Mean SD Max
2 2.98 × 10−5 1.71 × 10−5 9.23 × 10−5 9.30 × 10−4 5.54 × 10−4 4.54 × 10−3

2.1.1.1 2.55 × 10−5 1.41 × 10−5 7.96 × 10−5 6.31 × 10−3 5.31 × 10−3 3.78 × 10−2

2.1.1.2 3.31 × 10−5 1.94 × 10−5 1.19 × 10−4 6.41 × 10−3 5.23 × 10−3 3.83 × 10−2

2.1.2.1 3.07 × 10−5 1.72 × 10−5 9.40 × 10−5 6.68 × 10−4 3.34 × 10−4 1.93 × 10−3

2.1.2.2 2.98 × 10−5 1.70 × 10−5 9.16 × 10−5 6.19 × 10−4 3.18 × 10−4 1.86 × 10−3

2.2 1.89 × 10−4 1.10 × 10−4 5.64 × 10−4 3.54 × 10−3 2.23 × 10−3 1.12 × 10−2

2.3.1.1 2.98 × 10−5 1.71 × 10−5 9.15 × 10−5 9.30 × 10−4 5.54 × 10−4 4.53 × 10−3

2.3.1.2 5.21 × 10−5 2.92 × 10−5 1.81 × 10−4 1.30 × 10−3 6.88 × 10−4 6.16 × 10−3

2.3.2.1 2.98 × 10−5 1.71 × 10−5 9.13 × 10−5 9.30 × 10−4 5.54 × 10−4 4.55 × 10−3

2.3.2.2 3.03 × 10−5 1.72 × 10−5 9.59 × 10−5 9.37 × 10−4 5.53 × 10−4 4.45 × 10−3

2.3.3.1 2.92 × 10−5 1.68 × 10−5 9.28 × 10−5 9.20 × 10−4 5.53 × 10−4 4.54 × 10−3

2.3.3.2 2.98 × 10−5 1.71 × 10−5 9.18 × 10−5 9.30 × 10−4 5.54 × 10−4 4.54 × 10−3

2.3.4.1 2.70 × 10−5 1.53 × 10−5 8.67 × 10−5 8.72 × 10−4 5.44 × 10−4 4.53 × 10−3

2.3.4.2 2.98 × 10−5 1.71 × 10−5 9.18 × 10−5 9.30 × 10−4 5.54 × 10−4 4.54 × 10−3

2.4 8.35 × 10−4 6.53 × 10−4 3.04 × 10−3 2.23 × 10−2 1.68 × 10−2 8.14 × 10−2

2.5 2.63 × 10−5 1.48 × 10−5 7.46 × 10−5 6.33 × 10−4 3.20 × 10−4 2.21 × 10−3

2.6 2.98 × 10−5 1.70 × 10−5 9.09 × 10−5 9.37 × 10−4 5.62 × 10−4 3.85 × 10−3

2.7 3.81 × 10−5 2.59 × 10−5 1.53 × 10−4 1.77 × 10−3 1.77 × 10−3 1.04 × 10−2

7.5.3. Configuration 3: SRS's Linear Encoders and Setpoints + HMD's Visual
Tracking and IMU

The sensitivity analysis of Configuration 3 focusses on the setpoint integration to improve the vehicle-
fixed pose estimation of the HMD. First, the impact of changing the expected variance on the lag 𝝈𝝉 is
investigated, followed by looking into the influence of the acceleration 𝝈 ̈𝒄𝑃

and the angular acceleration
𝝈𝝎̇𝑃

variances.

This configuration is not as robust to initial conditions as its predecessors, i.e. Configurations 1 and 2.
To establish the sensitivity of Configuration 3 to initial conditions, the initial state 𝒙̂0 as well as the initial
state covariance 𝑷𝑥̂0

were altered and tested. The initial expected lag ̂𝝉 for run 3.3 was varied from
0.0001 to 1.00, testing how well the configuration deals with ÷100 to ×100 wrong initial estimation of said
lag. Moreover, the initial random error of the position, velocity, attitude and angular velocity were set to
similar initial errors to Run 1.4. Furthermore, the initial lag covariance of the lag was varied to see the
impact on the initial convergence and robustness. Next, the SUT parameters were varied in run 3.7.1
to 3.10.3, as this configuration is the most sensitive to initial conditions. Last, the motion profile itself
was changed.

Configuration 3

• Process noise 𝑸
3.1 SRS: lag 𝝈𝝉

3.1.1 Increase expected SD: ×10
3.1.2 Decrease expected SD: ÷10

3.2 SRS: acceleration 𝝈 ̈𝒄𝑃
and angular acceleration 𝝈𝝎̇𝑃

3.2.1 Increase expected SD: ×10
3.2.2 Decrease expected SD: ÷10

• Initial state 𝒙̂0

3.3 Set initial lag

3.3.1 ∀ = 0.0001
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3.3.2 ∀ = 0.001
3.3.3 ∀ = 0.01
3.3.4 ∀ = 0.10
3.3.5 ∀ = 1.0
3.3.6 ∀ = 10.0

3.4 Increase error position, velocity, attitude, and angular velocity

3.4.1 Similar to Run 1.4
3.4.2 Half the initial error of Run 1.4

• Initial state covariance 𝑷𝑥̂0

3.5 Scale variance lag

3.5.1 ×1000
3.5.2 ×100
3.5.3 ×10
3.5.4 ÷10
3.5.5 ÷100
3.5.6 ÷1000

• Computational frequency

3.6 Decrease to 100Hz
• SUT parameters

3.7 𝛼
3.7.1 0.001
3.7.2 0.1

3.8 𝛽
3.8.1 0
3.8.2 10

3.9 𝜅
3.9.1 1
3.9.2 10

• Motion profile

3.10 Double amplitude and frequency

Any failed run is indicated in the tables below by ‘-’. The reason for the failure will be indicated in the
accompanying text.

In Runs 3.1.1 and 3.1.2 the expected SD is scaled up or down respectively by a factor of 10. The
translation and rotation estimated lag are plotted in Figures 7.36, 7.37, 7.38, and 7.39 over time.
Comparing the lag in Figures 7.36 and 7.36 of the increased expected SD to Figures 7.30 and 7.31 the
reduced time to converge onto the correct value is evident. Here it takes about 2 s for the algorithm to
get close to the correct value.

Also in this simulation it was assumed for the actual lag to be constant over a period of time. Therefore,
a larger expected SD on the lag, as in Run 3.1.1, could be preferred if the actual lag was changing over
time. However, care should be taken that the expected lag SD should be small relative to the lag itself,
so sampling one of the sigma-points with a lag almost or less than zero is not possible.
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Figure 7.36: Sensitivity Run 3.1.1, the error on the translational lags the SRS per axis plotted against its covariance over time.

Figure 7.37: Sensitivity Run 3.1.1, the error on the rotational lags the SRS per axis plotted against its covariance over time.

Whereby Run 3.1.2 in Figures 7.38, and 7.39 take upward of 50 s to converge on to the correct value.
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Figure 7.38: Sensitivity Run 3.1.2, the error on the translational lags the SRS per axis plotted against its covariance over time.

Figure 7.39: Sensitivity Run 3.1.2, the error on the rotational lags the SRS per axis plotted against its covariance over time.

The impact of the expected variance in the lag on the SRS pose in Table 7.25 and the vehicle-fixed HMD
pose in Table 7.23 is minimal. This is expected as both Run 3.1.1 and Run 3.1.2 got close, eventually,
to the actual lag.

Runs 3.2.1 and 3.2.2 investigate the impact of the expected variance on the acceleration and angular
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acceleration in a similar manner to Runs 1.1.1 and 1.1.2. The difference is that in this configuration
the expected variance on the acceleration and angular acceleration is not the main source of input to
the pose itself. As explained in Section 5.4, the expected variance on the acceleration and angular
acceleration introduces uncertainty into the state covariance 𝑷𝑥̂. This in turn allows the algorithm to
deal with the fact that the lag is an estimation and not an exact delay. Both runs decrease the accuracy
on the SRS platform, hinting at the expected variance of the acceleration and angular acceleration in
Run 3 being close to a local optimum, further evidenced by the NEES values in Table 7.24. The NEES
values of Run 3 are already on the small side, indicating that the system might be more optimal with
slightly less variance. Run 3.2.1 increase the expected variance, resulting in an even lower NEES
value, even on the linear encoders innovation. Run 3.2.2 on the other hand, decreases the expected
variance to much for this simulation. With NEES value well above the optimal 3 and, in the case of
the linear encoders, 6. The innovation of the linear encoders can be a good indication of the expected
variance in a real life system.

The impact of the expected variance on the acceleration and angular acceleration on the lag is of
interest, in particular the convergence rate. Increasing the expected variance on the acceleration and
angular acceleration reduced the converge rate of the lag, pictured in Figures 7.40 and 7.41. Increasing
the variance, i.e. increasing the uncertainty, reduces the systems ability to find the lag. With the lag
taking up to 40 s to converge.

Figure 7.40: Sensitivity Run 3.2.1, the error on the translational lags the SRS per axis plotted against its covariance over time.
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Figure 7.41: Sensitivity Run 3.2.1, the error on the rotational lags the SRS per axis plotted against its covariance over time.

Reducing the expected variance on the acceleration and angular acceleration has the opposite effect
as depicted in Figures 7.42 and 7.43. The error on the lag is more volatile, possibly picking up other
sensor errors within the system. In this configuration, the dynamics between the expected variances
of the lag and the acceleration and angular acceleration are of note.

Figure 7.42: Sensitivity Run 3.2.2, the error on the translational lags the SRS per axis plotted against its covariance over time.
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Figure 7.43: Sensitivity Run 3.2.2, the error on the rotational lags the SRS per axis plotted against its covariance over time.

Runs 3.3.x all modified the initial estimated lag in the state covariance 𝑷𝑥̂, ranging from 10−4 to 101

and with the correct lag around 6 × 10−2, found in Section 6.2.3.

The first run, Run 3.3.1, failed due to the lag getting smaller than zero and consequently causing
the state covariance 𝑷𝑥̂ to be no longer positive definite, which is necessary for the Cholesky
decomposition [10] and thus failing Equation 3.19. This failure is indicated in Tables 7.23, 7.24, and 7.25
as ‘-’.

The sixth run, Run 3.3.6, did not fail as none of its sigma-points samples lag estimates were smaller
than zero. However, the system did not converge onto the correct lag due to scale difference between
the error and the expected SD on the lag, and, therefore, the estimation failed. The errors and NEES
values of this run are still presented in Tables 7.23, 7.24, and 7.25, but the run is considered a failure.
Given this failure to estimate the correct lag, the accuracy presented in Table 7.25 is the result of the
variance present on the acceleration and angular acceleration in combination with the accurate linear
encoders. The impact on the vehicle-fixed pose error of the HMD is relatively small as the pose of the
SRS only impact the measurement of the IMU of the HMD.

The estimated lags of Runs 3.3.2 and 3.3.5 are plotted in Figures 7.44, 7.45, 7.46, and 7.47. The lags
of these two runs were plotted as they represented the two extremes simulated.

Interestingly, Run 3.3.2 takes roughly the same time to converge as Run 3 in Figures 7.30 and 7.31
even though the initial error was larger.
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Figure 7.44: Sensitivity Run 3.3.2, the error on the translational lags the SRS per axis plotted against its covariance over time.

Figure 7.45: Sensitivity Run 3.3.2, the error on the rotational lags the SRS per axis plotted against its covariance over time.

Run 3.3.5 was getting close to converging onto the correct lag near the end of the run at 50 s. For this
reason the run duration was extended in this case to 100 s. The convergence rate of the lag increase
near the actual value, due to the nonlinear nature of the underlying model, i.e. Equations 5.20 and 5.21.
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Figure 7.46: Sensitivity Run 3.3.5, the error on the translational lags the SRS per axis plotted against its covariance over time.

Figure 7.47: Sensitivity Run 3.3.5, the error on the rotational lags the SRS per axis plotted against its covariance over time.

In Figure 7.48 the innovation on the linear encoders of the SRS per hydraulic actuator plotted against
its covariance over time. Here, the innovation starts to reduce onwards from 70 s to nominal values,
relative to their covariance, from 80 s onward. This is the time-stamp at which all lags, plotted in
Figures 7.46 and 7.47, are converged onto their actual value.
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Figure 7.48: Sensitivity Run 3.3.5, the innovation on the linear encoders of the SRS per hydraulic actuator plotted against its
covariance over time.

Run 3.4.1 the initial estimated state 𝒙̂0 is modified from Equation 7.74 to an initial error exact to that
added in Equation 7.77, i.e.,

𝒙̂0 =

⎧{{{{{{{{{
⎨{{{{{{{{{⎩

̂𝒄𝑃 0̂ ̇𝒄𝑃 0̂̈𝒄𝑃 0
̂𝒆𝑃 0

𝝎̂𝑃 0̂𝝎̇𝑃 0
̂𝝉 ̈𝒄0
̂𝝉 𝝎̇0
̂𝒄𝐻0̂ ̇𝒄𝐻0
̂𝒆𝐻0

𝝀̂𝐻0

⎫}}}}}}}}}
⎬}}}}}}}}}⎭

=

⎧{{{{{{{{{{{
⎨{{{{{{{{{{{⎩

(0.58682858 −0.97092327 −1.13218296)𝑇

(1.22803562 0.46829199 −2.37069145)𝑇

(0 0 0)𝑇

(0.99364229 0.10614029 −0.03567829 −0.0116746)𝑇

(0.12301066 0.71263982 0.9263408)𝑇

(0 0 0)𝑇

(0.06 0.06 0.06)𝑇

(0.06 0.06 0.06)𝑇

(−0.47145191 −0.60514862 −3.50374137)𝑇

(1.2907381 0.99407434 1.91678943)𝑇

(0.99311633 −0.11389189 0.02575446 −0.00923585)𝑇

(0 0 0 0 0 0)𝑇

⎫}}}}}}}}}}}
⎬}}}}}}}}}}}⎭

(7.78)

Here, alongside increasing the initial estimation errors on the position and attitude, errors are introduced
on the velocity and angular velocity. Again, these values are extreme and, in the case of the position
of the HMD, physically impossible. But, this initial state 𝒙̂0 was chosen as such to investigate if the
algorithm is mathematically robust to deal with them as such. The initial estimated SRS state had a
random total positional error of 1.69m, velocity error of 2.71m/s, attitude error of 6.46°, and angular
rate of 67.33 °/s. Moreover, the initial estimate state of the HMD in this run had a random total error on
the position of 0.92m, velocity of 2.52m/s, and attitude of 6.73°.
Run 3.4.1 failed after 36 iteration due to a sigma-point sample lag dropping below zero. The algorithm
trusts the linear encoders of the SRS such that it assumes that the error is on the input side, i.e. the
lag variable.
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This behavior is visible in Run 3.4.2, where the initial estimated errors halved and resulted in the new
initial estimated state 𝒙̂0:

𝒙̂0 =

⎧{{{{{{{{{
⎨{{{{{{{{{⎩

̂𝒄𝑃 0̂ ̇𝒄𝑃 0̂̈𝒄𝑃 0
̂𝒆𝑃 0

𝝎̂𝑃 0̂𝝎̇𝑃 0
̂𝝉 ̈𝒄0
̂𝝉 𝝎̇0
̂𝒄𝐻0̂ ̇𝒄𝐻0
̂𝒆𝐻0

𝝀̂𝐻0

⎫}}}}}}}}}
⎬}}}}}}}}}⎭

=

⎧{{{{{{{{{{{
⎨{{{{{{{{{{{⎩

(0.29341429 −0.48546163 −1.76109148)𝑇

(0.61401781 0.234146 −1.18534573)𝑇

(0 0 0)𝑇

(0.99840931 0.0531547 −0.01786757 −0.0058466)𝑇

(0.06150533 0.35631991 0.4631704)𝑇

(0 0 0)𝑇

(0.06 0.06 0.06)𝑇

(0.06 0.06 0.06)𝑇

(−0.23572596 −0.30257431 −3.25187068)𝑇

(0.64536905 0.49703717 0.95839471)𝑇

(0.9982776 −0.0570442 0.01289945 −0.00462589)𝑇

(0 0 0 0 0 0)𝑇

⎫}}}}}}}}}}}
⎬}}}}}}}}}}}⎭

(7.79)

This causes the initial state 𝒙̂0 of the SRS to have a total error on the position of 0.85m, velocity of
1.36m/s, attitude of 3.23°, and angular rate of 33.67 °/s. Moreover, the HMD has a total error on the
position of 0.46m, velocity of 1.26m/s, and attitude of 3.36°.
In Figures 7.49 and 7.50 the error on the translational and rotational lags of the SRS are plotted per axis
against their covariance over time. Here, the focus is on the initial error on the lag. Which, in the cases
of 𝜏 ̈𝑦 and 𝜏 ̇𝑟 reduce sharply due the initial overall state error. Furthermore, Tables 7.23, 7.24, and 7.25
show that once the algorithm overcomes the initial estimated state error, the impact is minimal.

Figure 7.49: Sensitivity Run 3.4.2, the error on the translational lags the SRS per axis plotted against its covariance over time.
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Figure 7.50: Sensitivity Run 3.4.2, the error on the rotational lags the SRS per axis plotted against its covariance over time.

In Runs 3.5.x the initial estimated lag variance, part of the state covariance 𝑷𝑥̂, is scaled ranging from
103 to 10−3. Resulting in an estimated lag variance, ranging from 10−2 to 10−8. These runs test the
robustness of this configuration to initial conditions regarding the estimated lag on the setpoints. The
first 2 runs fail, Run 3.5.1 fails after 24 iterations and Run 3.5.2 after 30 iterations. In both cases the
failures were one of the lags being less than zero. All the failures in this configuration have in common
that the failures occur after the linear encoder information have corrected the estimated state, i.e. an
iteration count with a modulus of 6.
The two most extreme cases of Runs 3.5.x are highlighted by plotting there estimated lags of the SRS
in Figures 7.51 to 7.54.

In case of Run 3.5.3, the initial excursion of the lag on the x-axis 𝜏𝑥̈ is larger than any in Run 3.4.2. As
the error plot is centered around 0.0587 s, the −0.015 s excursion reduces the estimated lag by 25 %.
This explains how the lag of one of the sigma-point samples of Runs 3.5.1 and 3.5.2 end up below zero.
Furthermore, the error and NEES values in Tables 7.23, 7.24, and 7.25 show that once the algorithm
overcomes the initial estimated state error, the impact is minimal.
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Figure 7.51: Sensitivity Run 3.5.3, the error on the translational lags the SRS per axis plotted against its covariance over time.

Figure 7.52: Sensitivity Run 3.5.3, the error on the rotational lags the SRS per axis plotted against its covariance over time.

The difference in the initial reaction of the estimated lag to the initial estimated error because of the
reduced initial expected variance of the lag can be seen in Figures 7.53 and 7.54. Due to the small initial
variance on the lag, the initial lag is almost constant in the initial iteration of the algorithm. Only when
the expected variance, indicated by the red dotted lines, grows large enough, because of the influence
of the process noise on the lag, the estimated lags start converging onto the actual value. This is also
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further helped by the fact that by the time the covariance on the lag increases the estimated state has
converged. Causing smaller changes in the estimated state. Reducing the initial state covariance 𝑷𝑥̂0
on sensitive states is a way to force the algorithm to estimate other states first.

Figure 7.53: Sensitivity Run 3.5.6, the error on the translational lags the SRS per axis plotted against its covariance over time.

Figure 7.54: Sensitivity Run 3.5.6, the error on the rotational lags the SRS per axis plotted against its covariance over time.

Reducing the computational frequency to 100Hz from 600Hz in Run 3.6, just as in Runs 1.5 and
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2.4, reduces the accuracy of the whole system. However, the estimated first order lags of the SRS
subsystem are of note and shown in Figures 7.55 and 7.56.

The translational lag again converge onto −0.01, i.e. the negative time-step of the prediction. The
sigma-bounds on both the translational and rotational lags are twice as large. As the sigma-bound are
≈ √𝑷𝑥̂, the covariance is roughly four times as large as in base Run 3.

Figure 7.55: Sensitivity Run 3.6, the error on the translational lags the SRS per axis plotted against its covariance over time.
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Figure 7.56: Sensitivity Run 3.6, the error on the rotational lags the SRS per axis plotted against its covariance over time.

Runs 3.7.1 to 3.9.2 focus on the impact of the sigma-point variables (𝛼, 𝛽, 𝜅). First 𝛼 is varied in Runs
3.7.1 and 3.7.2. 𝛼 scales the ‘distance’ between the sigma-point sample and the estimated state. As
working the term, 𝐿 + 𝜁, scaling the state covariance 𝑷𝑥̂, in Equation 3.9, results in 𝛼2 (𝐿 + 𝜅).
Run 3.7.1, with 𝛼 set to 10−3, fails due to the state covariance matrix no longer being positive definite,
necessary for the Cholesky decomposition [10] in Equation 3.19. Smaller 𝛼 are preferred to capture
local non-linearities into the sigma-points [41].

Increasing 𝛼 to 10−1 in Run 3.7.2 causes no stability issues and even manages to slightly improve the
accuracy by a couple of percentage points. Increasing 𝛼, i.e. increasing the distance to the sampled
sigma-points, could increase the risk of sampling a negative lag. In this configuration, setting an 𝛼 of
0.95 would make the algorithm sample negative lag sigma-point.

In Runs 3.8.1 and 3.8.2 varied 𝛽, the sigma-point variable that only influences the computation of the
covariance weights in Equation 3.7. 𝛽 was varied from zero to ten, but the impact was small given the
data in Tables 7.23, 7.24, and 7.25.

Runs 3.9.1 and 3.9.2 modified 𝜅, the sigma-point variable responsible for guaranteeing positive semi-
definiteness of the state covariance matrix 𝑷𝑥̂. If problems arise with positive-definiteness of the state
covariance matrix, the value of 𝜅 could be increased to guarantee again said characteristic of the state
covariance matrix 𝑷𝑥̂. For example, in the case of Run 3.7.1, setting 𝜅 to 103 resolved the positive-
definiteness issue, with again similar performance to Run 3.

Run 3.10 scales the amplitudes and frequencies presented in Tables 7.1 and 7.2 in Section 7.2 by a
factor of two. This causes the forces to be scaled by a factor of eight, deducted from Equation 7.23.
Figures 7.57 and 7.58 show again that an increase in motion amplitude and or frequency causes
the lag to converge faster. This is due to Equations 7.19 and 7.20, the equations for computing the
accelerations from the setpoints. In these two equations, an acceleration of zero would cause the
lag to become unobservable. The opposite is also true, larger forces cause the lag to become more
observable and hence increase the lag convergence rate.
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Figure 7.57: Sensitivity Run 3.10, the error on the translational lags the SRS per axis plotted against its covariance over time.

Figure 7.58: Sensitivity Run 3.10, the error on the rotational lags the SRS per axis plotted against its covariance over time.

Moreover, the expected SD on IMUwas adapted to the motion at hand, resulting in scaling the expected
SD on the accelerometer by 3.2. The accuracy of Run 3.10 is reduced because of the increase in jerk,
angular rate, and angular acceleration increasing the error by integrating these values as a constant
per prediction step. On first glance at Table 7.23 the accuracy impact seems worse than it actually
is. The actual comparison is to Run 0.11 in the same table. Run 0.11 is the performance at 600Hz
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of the TrackIR 5 by itself, i.e. Configuration 0, on the motion of Run 3.10. Comparing these two runs,
Run 3.10 and 0.10, shows a higher accuracy improvement from Run 3 to Run 0 due to the increase in
motion already mentioned.

The NEES values in Table 7.24 show that the motion is present in the resulting states and innovations.
However, due to the method of integration this is expected.

Table 7.23: The error of each Configuration 3 modified run in terms of the vehicle-fixed position and attitude of the HMD.

HMD Vehicle-Fixed
Position Error m Attitude Error °

Run Mean SD Max Mean SD Max
0 7.36 × 10−4 3.65 × 10−4 2.37 × 10−3 1.04 × 10−1 4.74 × 10−2 3.04 × 10−1

3 1.72 × 10−4 8.35 × 10−5 5.28 × 10−4 6.76 × 10−3 3.29 × 10−3 1.95 × 10−2

3.1.1 1.73 × 10−4 8.34 × 10−5 5.28 × 10−4 6.74 × 10−3 3.30 × 10−3 1.95 × 10−2

3.1.2 1.72 × 10−4 8.34 × 10−5 5.28 × 10−4 6.76 × 10−3 3.30 × 10−3 1.95 × 10−2

3.2.1 1.72 × 10−4 8.34 × 10−5 5.25 × 10−4 6.74 × 10−3 3.30 × 10−3 1.95 × 10−2

3.2.2 1.74 × 10−4 8.53 × 10−5 5.41 × 10−4 6.80 × 10−3 3.33 × 10−3 1.99 × 10−2

3.3.1 - - - - - -
3.3.2 1.72 × 10−4 8.35 × 10−5 5.28 × 10−4 6.75 × 10−3 3.30 × 10−3 1.95 × 10−2

3.3.3 1.72 × 10−4 8.35 × 10−5 5.28 × 10−4 6.75 × 10−3 3.29 × 10−3 1.95 × 10−2

3.3.4 1.72 × 10−4 8.34 × 10−5 5.28 × 10−4 6.75 × 10−3 3.30 × 10−3 1.95 × 10−2

3.3.5 1.96 × 10−4 1.05 × 10−4 6.25 × 10−4 7.92 × 10−3 3.35 × 10−3 2.12 × 10−2

3.3.6 3.40 × 10−4 1.72 × 10−4 1.01 × 10−3 8.40 × 10−3 4.02 × 10−3 2.49 × 10−2

3.4.1 - - - - - -
3.4.2 1.83 × 10−4 9.08 × 10−5 5.93 × 10−4 7.65 × 10−3 3.91 × 10−3 1.96 × 10−2

3.5.1 - - - - - -
3.5.2 - - - - - -
3.5.3 1.72 × 10−4 8.34 × 10−5 5.28 × 10−4 6.76 × 10−3 3.31 × 10−3 1.95 × 10−2

3.5.4 1.72 × 10−4 8.35 × 10−5 5.29 × 10−4 6.76 × 10−3 3.30 × 10−3 1.95 × 10−2

3.5.5 1.72 × 10−4 8.35 × 10−5 5.28 × 10−4 6.76 × 10−3 3.30 × 10−3 1.95 × 10−2

3.5.6 1.72 × 10−4 8.34 × 10−5 5.28 × 10−4 6.72 × 10−3 3.29 × 10−3 1.94 × 10−2

3.6 5.62 × 10−4 3.47 × 10−4 2.17 × 10−3 5.07 × 10−2 3.59 × 10−2 1.52 × 10−1

3.7.1 - - - - - -
3.7.2 1.72 × 10−4 8.34 × 10−5 5.28 × 10−4 6.68 × 10−3 3.34 × 10−3 1.94 × 10−2

3.8.1 1.72 × 10−4 8.34 × 10−5 5.28 × 10−4 6.73 × 10−3 3.30 × 10−3 1.94 × 10−2

3.8.2 1.72 × 10−4 8.35 × 10−5 5.28 × 10−4 6.74 × 10−3 3.30 × 10−3 1.95 × 10−2

3.9.1 1.73 × 10−4 8.34 × 10−5 5.28 × 10−4 6.75 × 10−3 3.31 × 10−3 1.95 × 10−2

3.9.2 1.72 × 10−4 8.35 × 10−5 5.28 × 10−4 6.73 × 10−3 3.29 × 10−3 1.94 × 10−2

0.10 1.99 × 10−3 1.41 × 10−3 7.57 × 10−3 2.09 × 10−1 1.37 × 10−1 6.84 × 10−1

3.10 4.97 × 10−4 2.07 × 10−4 1.20 × 10−3 6.79 × 10−3 2.74 × 10−3 1.54 × 10−2
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Table 7.24: Condition overview of the modified runs of Configuration 3, see Section 7.4.1 for the explanation on the colors.

NEES
SRS HMD

Run Position Attitude Lin. Enc. Inno. Position Attitude TrackIR 5 Inno.
3 2.35 2.31 4.64 3.11 1.97 5.11
3.1.1 2.29 2.25 4.58 3.11 1.97 5.12
3.1.2 2.34 2.35 4.70 3.11 1.98 5.11
3.2.1 2.20 2.25 3.75 3.10 1.97 5.10
3.2.2 31.58 12.38 13.89 3.25 1.99 5.11
3.3.1 - - - - - -
3.3.2 2.35 2.31 4.63 3.11 1.97 5.11
3.3.3 2.33 2.29 4.63 3.11 1.97 5.11
3.3.4 2.34 2.31 4.61 3.11 1.96 5.11
3.3.5 18.63 10.82 4.53 3.58 2.61 5.03
3.3.6 1007.62 962.30 1460.70 3.00 2.14 7.36
3.4.1 - - - - - -
3.4.2 2.45 2.29 4.61 3.61 2.26 5.11
3.5.1 - - - - - -
3.5.2 - - - - - -
3.5.3 2.34 2.28 4.62 3.11 1.98 5.11
3.5.4 2.33 2.29 4.62 3.11 1.98 5.11
3.5.5 2.34 2.29 4.63 3.11 1.98 5.11
3.5.6 2.34 2.31 4.63 3.11 1.96 5.11
3.6 3.53 2.84 5.70 5.45 3.34 5.59
3.7 2.47 2.28 4.70 3.11 1.97 5.11
3.7.1 - - - - - -
3.7.2 2.30 2.25 4.62 3.11 1.95 5.11
3.8.1 2.34 2.29 4.63 3.11 1.96 5.11
3.8.2 2.33 2.29 4.63 3.11 1.96 5.11
3.9.1 2.33 2.29 4.63 3.11 1.97 5.11
3.9.2 2.33 2.28 4.61 3.11 1.96 5.11
3.10 40.58 21.71 45.91 19.10 1.99 9.53
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Table 7.25: The error of each Configuration 3 modified run in terms of the inertial position and attitude of the SRS.

SRS
Position Error m Attitude Error °

Run Mean SD Max Mean SD Max
3 7.61 × 10−6 3.46 × 10−6 2.12 × 10−5 1.80 × 10−4 7.92 × 10−5 5.16 × 10−4

3.1.1 7.86 × 10−6 3.64 × 10−6 2.44 × 10−5 1.87 × 10−4 8.36 × 10−5 5.25 × 10−4

3.1.2 7.54 × 10−6 3.41 × 10−6 2.12 × 10−5 1.80 × 10−4 7.82 × 10−5 5.09 × 10−4

3.2.1 1.08 × 10−5 5.30 × 10−6 4.11 × 10−5 2.66 × 10−4 1.26 × 10−4 9.42 × 10−4

3.2.2 1.70 × 10−5 8.23 × 10−6 4.35 × 10−5 2.86 × 10−4 1.54 × 10−4 7.85 × 10−4

3.3.1 - - - - - -
3.3.2 7.61 × 10−6 3.44 × 10−6 2.10 × 10−5 1.80 × 10−4 7.88 × 10−5 5.37 × 10−4

3.3.3 7.56 × 10−6 3.41 × 10−6 2.11 × 10−5 1.79 × 10−4 7.84 × 10−5 5.13 × 10−4

3.3.4 7.59 × 10−6 3.44 × 10−6 2.10 × 10−5 1.80 × 10−4 7.91 × 10−5 5.28 × 10−4

3.3.5 1.19 × 10−5 1.27 × 10−5 9.51 × 10−5 2.76 × 10−4 3.38 × 10−4 3.31 × 10−3

3.3.6 2.11 × 10−4 1.28 × 10−4 6.21 × 10−4 4.86 × 10−3 2.80 × 10−3 1.45 × 10−2

3.4.1 - - - - - -
3.4.2 7.69 × 10−6 3.66 × 10−6 2.44 × 10−5 1.79 × 10−4 7.77 × 10−5 4.94 × 10−4

3.5.1 - - - - - -
3.5.2 - - - - - -
3.5.3 7.58 × 10−6 3.43 × 10−6 2.12 × 10−5 1.79 × 10−4 7.84 × 10−5 5.20 × 10−4

3.5.4 7.55 × 10−6 3.43 × 10−6 2.10 × 10−5 1.79 × 10−4 7.86 × 10−5 5.10 × 10−4

3.5.5 7.58 × 10−6 3.42 × 10−6 2.14 × 10−5 1.79 × 10−4 7.83 × 10−5 5.17 × 10−4

3.5.6 7.58 × 10−6 3.47 × 10−6 2.11 × 10−5 1.79 × 10−4 7.96 × 10−5 5.13 × 10−4

3.6 8.37 × 10−4 6.55 × 10−4 3.05 × 10−3 2.23 × 10−2 1.68 × 10−2 8.16 × 10−2

3.7 7.84 × 10−6 3.58 × 10−6 2.21 × 10−5 1.82 × 10−4 8.02 × 10−5 5.42 × 10−4

3.7.1 - - - - - -
3.7.2 7.47 × 10−6 3.39 × 10−6 2.06 × 10−5 1.77 × 10−4 7.77 × 10−5 5.06 × 10−4

3.8.1 7.58 × 10−6 3.43 × 10−6 2.11 × 10−5 1.79 × 10−4 7.90 × 10−5 5.11 × 10−4

3.8.2 7.55 × 10−6 3.45 × 10−6 2.14 × 10−5 1.79 × 10−4 7.89 × 10−5 4.98 × 10−4

3.9.1 7.57 × 10−6 3.43 × 10−6 2.11 × 10−5 1.79 × 10−4 7.83 × 10−5 5.20 × 10−4

3.9.2 7.55 × 10−6 3.44 × 10−6 2.09 × 10−5 1.79 × 10−4 7.85 × 10−5 5.10 × 10−4

3.10 4.45 × 10−5 2.25 × 10−5 1.21 × 10−4 7.76 × 10−4 4.05 × 10−4 2.35 × 10−3

In general, the Stewart platform of the SRS couples the measurement of the position and attitude. This
causes the forward Euler induced error, not present on the attitude, to spread to the attitude. This is
most evident from the NEES values in Tables 7.18, 7.21, and 7.24. Here, a regression in positional
condition is coupled to a regression in attitude. This is not true for the NEES values of the HMD. Due
to their observation models behave independent of one another.

7.5.4. Latency Compensation
In this section the impact of a latency of 50ms on the linear encoder and its proposed mitigation is
investigated. Here, the definition of latency is the time between the physical measurement and the
arrival of the corresponding data. The mitigation used is the SDUKF proposed in Section 3.3.2.

First the impact of the latency is investigated. The combination of a latency of 50ms and a sample rate
of 100Hz causes the linear encoders to buffer five measurements at a time in this case.
In all three configurations the impact of the latency in the non-mitigated case, indicated as ‘Run x.D’, is
such that the accuracy of Configuration 0 is superior when looking at Table 7.28. Also, the impact on
the accuracy of the SRS, compiled in Table 7.27 is similar for all three configuration.

Interestingly, the NEES values, in Table 7.26, of the linear encoders innovation in Run 1.D do not change
from Run 1. In Configuration 1, the SRS subsystem prediction was designed to inject uncertainty into
the acceleration and angular acceleration, the uncertainty to be integrated into the position and attitude,
and for the linear encoders of the Stewart platform to estimate the state. Lacking any other input and
the uncertainty, i.e. the observation noise 𝑹, being small, the innovations of the linear encoders seem
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nominal compared to a non-delayed run.

This behavior is reaffirmed by comparing Figures 7.16 and 7.59.

Figure 7.59: Delayed Run Configuration 1, the innovation of linear encoders measuring the length of the hydraulic actuators of
the SRS plotted against its covariance over time.

However, this is not true for the HMD subsystem. Here, the TrackIR 5 innovation NEES, in Table 7.26,
shows the disagreement with the IMU of the HMD and true for all subsequent configuration. The
TrackIR 5 measurements, sampled in the upper moving platform reference frame 𝔼𝑃 , introduce the
corruption due to the latency on the linear encoders. Comparing Figures 7.17 and 7.60 shows the
detrimental effect of the linear encoders latency, the difference between the prediction, by the HMD
IMU, and the correction, by the TrackIR 5.
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Figure 7.60: Delayed Run Configuration 1, the innovation of Track IR 5 measuring the position and attitude (Euler attitude
formulation) of the HMD attached to the SRS plotted against its covariance over time.

Table 7.26: Condition overview of each run through the computation of the NEES, see Section 7.4.1 for the explanation on the
color use. x.D indicator for the Delayed Runs. x.M indicator for the Mitigated Runs, i.e. were the delay is mitigated by use of

the SDUKF, found in Section 3.3.2.

NEES
SRS HMD

Run Position Attitude Lin. Enc. Inno. Position Attitude TrackIR 5 Inno.
1.SRS 2.56 2.60 7.41
1.SRS.D 1.95 × 106 2.58 × 106 7.51
1.SRS.M 12.30 13.30 7.48
1 2.59 2.62 7.43 3.11 2.01 5.00
1.D 1.96 × 106 2.59 × 106 7.26 4.68 × 104 371.48 130.66
1.M 11.78 13.54 5.11 4.70 2.01 8.00
2 26.40 15.92 26.59 3.90 3.79 5.18
2.D 4.71 × 106 3.81 × 106 1187.86 4.67 × 104 375.52 115.99
2.M 85.63 21.68 25.61 6.02 3.70 5.44
3 2.35 2.31 4.64 3.11 1.97 5.11
3.D 4.53 × 106 5.81 × 106 263.66 4.68 × 104 373.50 137.89
3.M 1.86 1.31 3.49 3.17 2.00 5.10

Moreover, the algorithm solves the difference partly between the measurements of the TrackIR 5 and
the HMD IMU as the bias of the IMU, evidenced in Figures 7.61 and 7.62. Comparing the following two
figures, Figures 7.61 and 7.62, to Figures 7.11 and 7.12 highlights the motion in the bias error.
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Figure 7.61: Delayed Run Configuration 1, the error of the accelerometer bias of the HMD per axis plotted against its
covariance over time.

Figure 7.62: Delayed Run Configuration 1, the error of the gyroscope bias of the HMD per axis plotted against its covariance
over time.

Further of note in the delayed runs are the lags on the setpoints of Configuration 3 and plotted in
Figures 7.63 and 7.64. Both the translational and rotational lags are estimated 50ms above their correct
value. This is equal to the latency introduced in the linear encoders.
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Figure 7.63: Delayed Run Configuration 3, the error on the translational lags the SRS per axis plotted against its covariance
over time.

Figure 7.64: Delayed Run Configuration 3, the error on the rotational lags the SRS per axis plotted against its covariance over
time.

In order to try and mitigate the negative impact of the latency present on the linear encoders the SDUKF
is applied, as introduced in Section 3.3.2. The runs where SDUKF is applied are labeled x.M, x being
the configuration.



7.5. Sensitivity Analysis 161

Analyzing the SRS accuracy of the x.M runs, compiled in Table 7.27, Run 1.M recovers its accuracy the
least. This is due to the fact that Configuration 1 has no direct input on the SRS subsystem. In this case,
Configuration 1 is predicting the pose of the SRS based on the SRS state of 50ms ago and the HMD IMU
measurements indirectly through the TrackIR 5 sensor observation. In order to prove this statement,
three extra runs were made with only the SRS as per Configuration 1. This means that only the SRS
state 𝒙̂𝑃 was estimated, with a process F𝑃 and observation model F𝑃 as in Equations 5.8 and 4.44
respectively. These three runs are identified by ‘Run 1.SRS’ in Tables 7.26 and 7.27. Comparing Runs
1.SRS.M to 1.M, it is evident that the HMD IMU is beneficial in this case, reducing the error on the
position and attitude by 35 % and 10 % respectively.

Mitigated Configurations 2 and 3 fare better due to their direct input into the SRS subsystem. Following,
this input is integrated over the next 10ms while receiving corrections from 50ms through the past state.

Table 7.27: The error of each run in terms of the inertial position and attitude of the SRS. x.D indicator for the Delayed Runs.
x.M indicator for the Mitigated Runs, i.e. were the delay is mitigated by use of the SDUKF, found in Section 3.3.2.

SRS
Position Error m Attitude Error °

Run Mean SD Max Mean SD Max
1.SRS 2.95 × 10−5 2.09 × 10−5 1.38 × 10−4 7.73 × 10−4 5.52 × 10−4 3.75 × 10−3

1.SRS.D 1.00 × 10−2 3.20 × 10−3 1.83 × 10−2 2.66 × 10−1 7.20 × 10−2 4.88 × 10−1

1.SRS.M 1.12 × 10−3 4.75 × 10−4 2.79 × 10−3 3.32 × 10−2 1.37 × 10−2 7.67 × 10−2

1 2.95 × 10−5 2.09 × 10−5 1.38 × 10−4 7.71 × 10−4 5.52 × 10−4 3.58 × 10−3

1.D 1.00 × 10−2 3.20 × 10−3 1.83 × 10−2 2.66 × 10−1 7.20 × 10−2 4.88 × 10−1

1.M 7.26 × 10−4 3.12 × 10−4 1.83 × 10−3 3.00 × 10−2 1.21 × 10−2 6.67 × 10−2

2 2.98 × 10−5 1.71 × 10−5 9.23 × 10−5 9.30 × 10−4 5.54 × 10−4 4.54 × 10−3

2.D 1.01 × 10−2 3.25 × 10−3 1.86 × 10−2 2.67 × 10−1 7.25 × 10−2 4.86 × 10−1

2.M 1.30 × 10−4 6.87 × 10−5 3.62 × 10−4 5.31 × 10−3 2.22 × 10−3 1.53 × 10−2

3 7.61 × 10−6 3.46 × 10−6 2.12 × 10−5 1.80 × 10−4 7.92 × 10−5 5.16 × 10−4

3.D 1.00 × 10−2 3.21 × 10−3 1.84 × 10−2 2.67 × 10−1 7.23 × 10−2 4.89 × 10−1

3.M 1.88 × 10−5 8.23 × 10−6 4.72 × 10−5 3.76 × 10−4 1.66 × 10−4 9.90 × 10−4

Analyzing the performance metrics on the errors of the HMD vehicle-fixed pose in Table 7.28 show
similar behavior to the performance metrics on the SRS pose, compiled in Table 7.27. The difference
between no-latency and latency mitigated runs are not as large as the case for the SRS. The TrackIR
5 would measure the correct pose after all, in the case of the latency it is the IMU that reduces the
accuracy.
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Table 7.28: The error of each run in terms of the vehicle-fixed position and attitude of the HMD.
x.D indicator for the Delayed Runs. x.M indicator for the Mitigated Runs, i.e. were the delay is mitigated by use of the SDUKF,

found in Section 3.3.2.

HMD Vehicle-Fixed
Position Error m Attitude Error °

Run Mean SD Max Mean SD Max
0 7.36 × 10−4 3.65 × 10−4 2.37 × 10−3 1.04 × 10−1 4.74 × 10−2 3.04 × 10−1

1 1.70 × 10−4 8.22 × 10−5 5.05 × 10−4 6.87 × 10−3 3.35 × 10−3 2.01 × 10−2

1.D 2.90 × 10−3 1.60 × 10−3 7.76 × 10−3 2.50 × 10−1 6.42 × 10−2 4.20 × 10−1

1.M 5.65 × 10−4 2.77 × 10−4 1.77 × 10−3 3.04 × 10−2 1.22 × 10−2 7.28 × 10−2

2 1.93 × 10−4 9.56 × 10−5 5.80 × 10−4 9.43 × 10−3 4.78 × 10−3 2.47 × 10−2

2.D 2.71 × 10−3 1.48 × 10−3 6.97 × 10−3 2.49 × 10−1 6.46 × 10−2 4.19 × 10−1

2.M 2.04 × 10−4 9.40 × 10−5 5.75 × 10−4 1.06 × 10−2 4.52 × 10−3 2.83 × 10−2

3 1.72 × 10−4 8.35 × 10−5 5.28 × 10−4 6.76 × 10−3 3.29 × 10−3 1.95 × 10−2

3.D 2.94 × 10−3 1.64 × 10−3 7.87 × 10−3 2.50 × 10−1 6.45 × 10−2 4.21 × 10−1

3.M 1.76 × 10−4 8.39 × 10−5 5.19 × 10−4 6.82 × 10−3 3.35 × 10−3 2.05 × 10−2

Overall, the latency mitigation shows satisfactory performance, managing in Configuration 2 and 3
to overcome the latency imposed on the system almost completely. Only in Configuration 1, the
improvements were less noticeable.

7.6. Conclusion
Keeping the experiment in mind, the innovation based NEES values are the most important measurable
data in real life on which to base the success of the implementation [6] as the actual state is not available.

However, from the data presented in Tables 7.15, 7.18, 7.21, 7.24, and 7.26 it is concluded that the
theoretical NEES values of one per DoF, as mentioned in Section 7.4.1, are not realistic in the case of
the SRS in Configuration 2, where the combination of the relative low update rate, the motion profile,
and discrete integration methods hurt the optimal theoretical performance of the observational NEES
values, causing them to increase to values between 25 and 30 as indicated by Table 7.21.

Moreover, due the discrete method with which the angular rate and angular acceleration data were
approximated for the simulation, see Section 7.2.1, the innovation based NEES values are not per se
showing a realistic picture. Realistic values in Tables 7.15, 7.18, 7.21, 7.24 and 7.26 would be slightly
higher in value, because the angular rate and acceleration used in this Thesis are approximations of
reality.

Furthermore, Configuration 1, thus only linear encoders for the SRS, is sensitive to the balance between
the SRS’s expected acceleration and angular acceleration on the one hand, and the motion profile of
the SRS on the other hand. The SRS pose estimation in Configuration 2 and 3 are less sensitive to a
change in motion profile due to the increase in accuracy of their prediction, which is in turn caused by
their addition of an IMU and setpoints respectively. As such, Configurations 2 and 3 are more robust to
changes in the motion profile than Configuration 1, and therefore would yield a more optimal outcome.

Also, the cases were the expected noise variance for a sensor would be of a different order then the
actual noise variance, the innovation based NEES values should be an indicator. However, the relevant
sensor should be found by trial and error.

From Runs 1.6, 2.7, and 3.10, which doubled the amplitude and frequencies of the motion profile, show
for all three configurations a sensitivity to the scale of the motion at hand. For this reason all three
configurations should be tested with a motion profile of the SRS close to the maximum acceleration
and angular acceleration possible.

Analyzing Equations 7.19 and 7.20 in combination with the convergence speed in Run 3.10 also hint
at sensitivity to a lack of acceleration and angular acceleration of Configuration 3.
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Experiment Plan

In order to test the success of the implementation proposed throughout this Thesis of a Virtual
Reality (VR)/Augmented Reality (AR) system in an enclosed Stewart platform, an experiment is to
be designed and performed. As mentioned in the conclusion of the sensitivity analysis, the success of
the implementation will be evaluated by measuring the innovation based Normalized Estimated Error
Squared (NEES) values. The layout and setup of this experiment will be presented in this chapter.

8.1. System Layout
The experiment will be conducted with the systems in the layout depicted in Figure 8.1. The sensors
depicted in Figure 8.1 are the the sensors first introduced in Chapter 6.

HMD

IMU

TrackIR 5

SRS

IMU

Setpoints

Dueca

ServerLinear

Encoder

Windows

PC Algorithm Estimated


State

Figure 8.1: Experiment setup layout.

Starting on the left of Figure 8.1 with the six HeidenHain LC 415 [19] linear encoders of the SIMONA
Research Simulator (SRS) transmitting their data to a server running DUECA.

DUECA, the abbreviation for Delft University Environment for Communication and Activation, is a
middleware that enables real-time simulations by using both inter-module communication as well as
communication between different modules on a distributed network of computers [50]. Moreover,
DUECA uses a publish and subscribe design that enables modules, a self-contained possible real-
time computational element, to activate when receiving or sending data. In design and use, it is similar
to other middlewares like enhanced Communication Abstraction Layer (eCAL) [11], Message Queuing
Telemetry Transport (MQTT) [48] and Robot Operating System (ROS) [49].

Also, the SRS’s Inertial Measurement Unit (IMU) publishes its data onto DUECA. The setpoints of the
SRS are generated by the motion limiter and filter algorithm, mentioned in Section 2.3, already running
on a DUECA module and thus available for transmitting.
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When any of the above mentioned data is available, it is sent to a Personal Computer (PC) running a
recent Microsoft Windows operating system. The Microsoft Windows operating system is used since
it is required by the proprietary software of TrackIR 5, which is connected to said PC over Universal
Standard Bus (USB).

Furthermore, the measurements of the MPU-6500, the IMU onboard the Pimax 8k-x [52], are read
by a modified version of the open-source tool libsurvive [35], which in turn also runs on the Microsoft
Windows PC.

In addition, also running on the Microsoft Windows PC is the Unscented Kalman Filter (UKF) algorithm,
described throughout this Thesis. The UKF predicts and corrects the estimate state depending on the
data received, as well as the configuration selected.

8.2. Experiment Run
The experiment itself will consist out of two runs per motion profile per configuration. Both runs on
a moving platform will last 300 s. The first run will have the Head-Mounted Display (HMD) strapped
in place inside the cockpit, i.e. no motion relative to the upper motion platform reference frame 𝔼𝑃 ,
and the second run will introduce movement relative to the upper motion platform reference frame 𝔼𝑃 ,
resembling a realistic use case. In the latter run, a user will track a virtual sphere trough the HMD to
validate the working of the configuration in a realistic use case.

Two motion profiles for the SRS will be generated to stress the configurations in the manners discussed
in Section 7.6. The first motion profile exist to stress all three configurations by creating a motion profile
similar in design to the motion profile presented in Section 7.2, but takes into account the physical
limitations of the SRS in terms of acceleration and angular acceleration.

The second motion profile will stress Configuration 3, whose lag’s convergence speed is dependant
on the absolute values of acceleration and angular acceleration setpoints, as shown in Section 7.6.
Following, the second motion profile will consist of long durations with the SRS at a standstill
interspersed with relative small movements.

8.3. Data Collection
In order to validate the implementation and verify its success the data incoming to the Microsoft
Windows PC will be recorded. This data will consist of:

• DUECA data packages send to the Microsoft Windows PC
• IMU measurement data of the HMD read by the libsurvive [35] program
• The HMD pose interpreted by the TrackIR 5 proprietary software

As mentioned in Section 2.3, the state of the Stewart platform is already estimated via a Gauss-
Newton (GN) method solely based on the linear encoders in order to compute the setpoints for said
Stewart platform. This estimated state of the Stewart platform is recorded for validation purposes to be
compared against the UKF estimated state.

During the runtime of the algorithm the following data is recorded at every prediction/correction phase:

• Estimated state 𝒙̂
• Estimated covariance 𝑷𝑥̂
• Observational covariance 𝑷 ̂𝑦𝑘

• Innovation 𝝐
Using the innovation and its covariance 𝑷 ̂𝑦𝑘

the NEES 𝜈 values can be computed afterwards via
Equation 7.64 to ascertain the success of the implementation.

Also, recording all this data has the added benefit that one recording can serve for testing/debugging
of other Configurations offline.
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8.4. Hypothesis
The aim set out by this Thesis was to present a solution on the implementation of a HMD with both an
IMU and visual tracking inside an enclosed motion platform by developing a sensor fusion algorithm
that generates a proper relative pose estimate. In order to quantify every implementation the innovation
based NEES 𝜈 should be used [6].

The theoretical NEES values for both the set of linear encoders and the TrackIR 5 should, according
to theory [6], equal to 6. Corresponding to the sensitivity analysis in Section 7.5 values between 4 and
9 are deemed acceptable for all innovation based NEES values, except for the set of linear encoders
in Configuration 2. Due to the combination of the motion profile, discrete integration methods used,
and the relative low update rate of the SRS subsystem colors the innovation values. Due to the
aforementioned reasons it is not realistic to expect the theoretical optimal results of six, but rather
according to Table 7.22 and also taking into account the fact that the angular simulation is a discrete
approximation of reality the expected NEES values should be between 25 and 30.
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Conclusion

To sum up, this report presented the preliminary findings of the research aiming to designing an effective
fusion algorithm that generates a proper relative pose estimation of a Head-Mounted Display (HMD) of
a Virtual Reality (VR)/Augmented Reality (AR) system within an enclosed motion platform.

For the sensor fusion algorithm the Unscented Kalman Filter (UKF) was chosen and adapted further into
the Smoothed Delayed Unscented Kalman Filter (SDUKF) to deal with a possible delayed observation
sensor.

Three configurations were identified from which its estimated state the proper, vehicle-fixed, pose of
the HMD of a VR/AR system could be computed.

These three configuration differ very little to one another but for the sensor layout of the SIMONA
Research Simulator (SRS), a Stewart platform. The first configuration, Configuration 1, only uses
the linear encoders measuring the length of the actuators to estimate the state of the SRS. Next,
Configuration 2 also used the linear encoders in addition to an Inertial Measurement Unit (IMU) attached
to the upper moving motion platform. Lastly, Configuration 3 uses the future information encapsulated
within the setpoints to be fused with the linear encoders. These setpoints are generated by the motion
limiter and filter algorithm meant as motion commands for the motion control computer, which directs
the pose of the Stewart platform itself.

The sensor layout, and thus the mathematical model, of the HMD is the same in all three configurations.
The measurements stemming from the HMD’s built-in IMU are fused together with the outside-in visual
tracking.

Next to these three configurations a baseline configuration was presented where only the visual outside-
in tracking, already measuring the vehicle-fixed pose, would be used. By forgoing the fast and frequent
pose predictions enabled by the IMU of the HMD the need to estimate the Stewart platform state
was removed. This baseline configuration will serve as a benchmark to the three just mentioned
configurations.

The HMD’s IMU was identified and parametrized by a Allan Variation (AV) method. Moreover, it was
found difficult to generate a noise model for the measurements coming from the proprietary software
of the visual tracking sensor. Further validation of said noise model must be done.

A sensitivity analysis showed that Configuration 1, the configuration with only the linear encoders to
estimate the pose of the SRS, showed sensitivity to changes made that upset the balance between the
motion profile and the SRS’s expected process noise values.

The sensitivity analysis also showed that the innovation based Normalized Estimated Error Squared
(NEES) values of the linear encoders in case of Configuration 2, where the IMU attached to the upper
moving motion platform was enabled, were higher then the theoretical expected value. This was due
to a combination of three factors namely the relative low selected update rate of 100Hz, the motion
profile, and the integration methods.
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The sensitivity analysis of Configuration 3, where the setpoints were used to help predict the SRS’s
future state, showed promising results where the algorithm designed was capable of estimating the
approximate first order lag online. It must be noted, however, that the setpoints for the simulation were
computed exactly according to the first order system response, thus reducing the uncertainty in the
simulated system. The experiment, using the innovation based NEES values, will give an indication
about the optimality of Configuration 3.

The method used for mitigating the delay on observation sensors in all three configurations, in this case
the linear encoders, was almost capable of removing the impact of said delay given exact knowledge
of the delay.

In order to validate the three configurations as solutions in combination with the proposed UKF, and
thus find a conclusive answer to the aforementioned research question, the following Hypothesis was
formulated:

The innovation based NEES values should be between 4 and 9 for both innovation sets,
i.e. linear encoders and TrackIR 5 innovations, except for the set of linear encoders in
Configuration 2 where values are expected between 25 and 30 on average during the
runtime of the sensor fusion algorithm.

The Hypothesis will be tested according to the experiment plan setup in the previous chapter, Chapter 8.
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A
Overlapping Allan Deviation

In this section, the Overlapping Allan Deviation (OAD) is first briefly discussed, followed by an
explanation via an example of the possible result of an Overlapping Allan Deviation (OAD) sensor
analysis.

The Allan Deviation (AD) is a time-domain-analysis technique capable of determining both the
derivation as well as the source of the Gaussian noise. Given that the noise profile is also assumed
Gaussian in the AD, this noise profiling method is well suited to be used in the Kalman Filter (KF)-
framework [73, 15, 27].

The OAD is a superior adaptation of the AD by exploring the available data in different size ‘overlapping’
bins [32]. Given 𝑀 number of measured samples 𝑧, measured at a constant time step 𝜏0, arranged in
varying sized bins of size 𝑚, named averaging factor, the variation 𝜎2 can be computed as:

𝜎2(𝑚𝜏0) = 1
2𝑚2 (𝑀 − 2𝑚 + 1)

𝑀−2𝑚+1
∑
𝑗=1

(
𝑗+𝑚−1
∑
𝑖=𝑗

𝑧𝑖+𝑚 − 𝑧𝑖)
2

(A.1)

The deviation is simply the square-root of the variation, i.e.,

√𝜎2(𝑚𝜏0) = 𝜎(𝑚𝜏0) (A.2)

Stated in [21, 16], the relationship between the Allan variance 𝜎2 and the two-sided Power Spectral
Density (PSD) Ω is given in terms of frequency 𝑓 as:

𝜎2(𝑚𝜏0) = 4 ∫
∞

0
Ω(𝑓)sin

4 (𝜋𝑓𝑚𝜏0)
(𝜋𝑓𝑚𝜏0)2 𝑑𝑓 (A.3)

When the deviation, defined in Equations A.1 and A.2, of an Inertial Measurement Unit (IMU) is
plotted on a log-log scale the result will be equivalent to the example in Figure A.1. In this figure,
the quantization noise was added for completeness, however, due its diminished contribution to the
overall random process, they are not further discussed, see [21, 60] for more information on these
topics. The angle/velocity random walk, bias instability and rate/acceleration random walk are further
explained in Section A.1, A.3 and A.2 respectively.
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Figure A.1: An example of a log-log plot of an Allan Deviation sensor analysis [57]

Figure A.1 is plotted on a log-log scale as it helps to graphically indicate various noise sources and
their derivation by fitting a certain sloped line through said plot. The result of substituting the known
rate PSD Ω into Equation A.3 and solve for its integration will indicate the slope and averaging time
𝑚𝜏0 for a particular noise source.

A.1. Angle/Velocity Random Walk
The angle or velocity random walk is another term for the white random noise that is present on a IMU
output and presents itself as Gaussian spread errors around the actual measurement. The white noise
spectrum PSD Ω is defined by the angle/velocity random walk coefficient 𝑁 as:

Ω(𝑓) = 𝑁2 (A.4)

Integrating Equation A.3 while substituting Equations A.4 results in:

𝜎2(𝑚𝜏0) = 𝑁2

𝑚𝜏0
(A.5)

Expressing Equation A.5 on a log-log scale proves that the slope of the fitting line is equal to −1/2, i.e.,

√𝜎2(𝑚𝜏0) = 𝑁√ 1
𝑚𝜏0

log (𝜎(𝑚𝜏0)) = −1
2 log (𝑚𝜏0) + log (𝑁) (A.6)

After fitting a line with a slope of −1/2 graphically through the plotted Allan deviation 𝜎 versus the
averaging time 𝑚𝜏0 on a log-log scale, the value for 𝑁 can be found at the averaging time set to one,
i.e. 𝑚𝜏0 = 1, a result of Equation A.5. The units of the angle or velocity random walk coefficient 𝑁 are
rad/s/

√
Hz or m/s2/

√
Hz respectively depending on the sensor being a gyroscope or an accelerometer.

A.2. Rate/Acceleration Random Walk
The rate or acceleration random walk is also called Brownian noise and presents itself as the derivative
of a gyroscope or accelerometer respectively. The PSD of the rate/acceleration random walk is defined
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by the rate/acceleration random walk factor 𝐾 as:

Ω(𝑓) = (𝐾2

2𝜋 )
2 1

𝑓2 (A.7)

Substituting into Equation A.3 and solving the integration results in:

𝜎2(𝑚𝜏0) = 𝐾2 𝑚𝜏0
3 (A.8)

Expressing Equation A.8 on a log-log scale proves that the slope of the fitting line is equal to 1/2, i.e.,

√𝜎2(𝑚𝜏0) == 𝐾√𝑚𝜏0
3

log (𝜎(𝑚𝜏0)) = 1
2 log (𝑚𝜏0) + log (𝐾) (A.9)

After fitting a line with a slope of 1/2 graphically through the plotted Allan deviation 𝜎 versus the
averaging time𝑚𝜏0 on a log-log scale, the value for𝐾 can be found at the averaging time set to one, i.e.
𝑚𝜏0 = 3, a result of Equation A.8. The units of the rate or acceleration random walk coefficient 𝑁 are
rad/s

√
Hz or m/s2√

Hz respectively depending on the sensor being a gyroscope or an accelerometer.

A.3. Bias Instability
Bias instability, or also called pink noise, presents itself trough random fluctuations in the bias itself.
This noise factor is usually small, relative to the overall error modeling due to angle/velocity random
walk and rate/acceleration random walk. The bias instability can be ignored for modeling purposes if
the overlapping time at which the log-log plot is flat is relatively short. The PSD of the bias instability is
defined by the bias instability term 𝐵 as:

Ω(𝑓) = {( 𝐵2
2𝜋 ) 1

𝑓 𝑓 ≤ 𝑓0
0 𝑓 > 𝑓0

(A.10)

Substituting into Equation A.3 and solving the integration results in:

𝜎2(𝑚𝜏0) = 2𝐵2

𝜋 (ln 2 − sin3 Υ
2Υ2 (sinΥ + 4Υ cosΥ) + 𝐶𝑖(2Υ) − 𝐶𝑖(4Υ)) (A.11)

Where, Υ represents and 𝐶𝑖 the cosine-integral function. When the duration of the averaging time is
much longer than the inverse of the cutoff frequency, i.e. 𝑚𝜏0 ≫ 1/𝑓0, Equation A.11 can be simplified
to:

𝜎2(𝑚𝜏0) = 2𝐵2

𝜋 ln 2 (A.12)

This results in a line with slope of 0 when seen on the same log-log scale of averaging time vs Allan
derivation, as presented in Figure A.1. This means that the value of the bias instability coefficient 𝐵
can be graphically deduced where the Allan derivation 𝜎 bottoms out. The Allan derivation 𝜎 found at
the lowest point in the graph should be scaled to find the bias instability coefficient 𝐵. i.e.,

𝐵 = √ 𝜋
2 ln 2 𝜎(𝑚𝜏0)

≈ 1.505 𝜎(𝑚𝜏0) (A.13)

The units of the bias instability coefficient 𝐵 are, depending on the sensor being a gyroscope or an
accelerometer, rad/s or m/s2 respectively.
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B
Rotation Moment Linear Acceleration

coupling

For Configuration 2, the one where both the Head-Mounted Display (HMD) and the SIMONA Research
Simulator (SRS) have an Inertial Measurement Unit (IMU), the process model f𝑃 of the SRS should
be altered to improve the incorporation of its own IMU input 𝒖𝑃 . The reason for this alteration is due
to the fact that the fact that the IMU of the SRS is not located at the Upper Gimbal Point (UGP), i.e.,
the center of its reference frame 𝔼𝑃 . The position 𝒄IMU of the SRS’s IMU to the UGP expressed in the
upper moving reference frame 𝔼𝑃 is written as:

𝒄IMU = (𝑥IMU 𝑦IMU 𝑥IMU) {𝔼𝑃 }
= (0.305 0 0.0105) {𝔼𝑃 } (B.1)

The IMU’s distance to the center of rotation causes a rotation-moment-linear-acceleration coupling
component 𝒂𝜔𝑃

[41, 43]:

𝒂𝜔𝑃
= ( ̈𝑥𝜔𝑃

̈𝑦𝜔𝑃
̈𝑧𝜔𝑃 ) {𝔼𝑃 }

= 𝝎̇𝑃 × 𝒄IMU + 𝝎𝑃 × (𝝎𝑃 × 𝒄IMU) (B.2)

=
⎧{
⎨{⎩

̇𝑝𝑃
̇𝑞𝑃
̇𝑟𝑃

⎫}
⎬}⎭

×
⎧{
⎨{⎩

𝑥IMU
𝑦IMU
𝑥IMU

⎫}
⎬}⎭

+
⎧{
⎨{⎩

𝑝𝑃
𝑞𝑃
𝑟𝑃

⎫}
⎬}⎭

× ⎛⎜
⎝

⎧{
⎨{⎩

𝑝𝑃
𝑞𝑃
𝑟𝑃

⎫}
⎬}⎭

×
⎧{
⎨{⎩

𝑥IMU
𝑦IMU
𝑥IMU

⎫}
⎬}⎭

⎞⎟
⎠

(B.3)

⎧{
⎨{⎩

̈𝑥𝜔𝑃
̈𝑦𝜔𝑃
̈𝑧𝜔𝑃

⎫}
⎬}⎭

=
⎧{
⎨{⎩

𝑞𝑃 (𝑝𝑃 𝑦IMU − 𝑞𝑃 𝑥IMU) + ̇𝑞𝑃 𝑧IMU + 𝑟𝑃 (𝑝𝑃 𝑧IMU − 𝑟𝑃 𝑥IMU) − ̇𝑟𝑃 𝑦IMU
−𝑝𝑃 (𝑝𝑃 𝑦IMU − 𝑞𝑃 𝑥IMU) − ̇𝑝𝑃 𝑧IMU + 𝑟𝑃 (𝑞𝑃 𝑧IMU − 𝑟𝑃 𝑦IMU) + ̇𝑟𝑃 𝑥IMU
−𝑝𝑃 (𝑝𝑃 𝑧IMU − 𝑟𝑃 𝑥IMU) + ̇𝑝𝑃 𝑦IMU − 𝑞𝑃 (𝑞𝑃 𝑧IMU − 𝑟𝑃 𝑦IMU) − ̇𝑞𝑃 𝑥IMU

⎫}
⎬}⎭

(B.4)

Here, × indicates the vector-cross-product, and 𝝎̇𝑃 is the angular acceleration of 𝔼𝑃 computed by
differentiating the angular rate 𝝎𝑃 and taking the mean of all Sigma-points. In turn, the angular rate 𝝎𝑃
of 𝔼𝑃 in this configuration is computed as:

𝝎𝑃 = 𝝎𝑃 𝑚
− 𝝀𝝎𝑃

− 𝒏𝝎𝑃
(B.5)

Finally, the rotation-moment-linear acceleration coupling component 𝒂𝜔𝑃
is included in the SRS’s
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process model f𝑃 in Equation 4.35 as:

𝒙̇𝑃 (𝑡) = f𝑃 (𝒙𝑃 (𝑡), 𝒖𝑃 (𝑡), 𝝂𝑃 (𝑡))
⎧{{{{{{{{{{{{
⎨{{{{{{{{{{{{⎩

̇𝑥𝑃
̇𝑦𝑃
̇𝑧𝑃
̈𝑥𝑃
̈𝑦𝑃
̈𝑧𝑃
̇𝑒0𝑃
̇𝑒𝑥𝑃
̇𝑒𝑦𝑃
̇𝑒𝑧𝑃

𝜆̇𝑥̈𝑃
𝜆̇ ̈𝑦𝑃
𝜆̇ ̈𝑧𝑃
𝜆̇𝑝𝑃
𝜆̇𝑞𝑃
𝜆̇𝑟𝑃

⎫}}}}}}}}}}}}
⎬}}}}}}}}}}}}⎭

=

⎧{{{{{{{{{{{{
⎨{{{{{{{{{{{{⎩

̇𝑥𝑃
̇𝑦𝑃
̇𝑧𝑃

𝑻 𝑇
𝑃𝐼

⎧{
⎨{⎩

𝑓𝑥̈𝑃𝑚
− 𝜆𝑥̈𝑃

− 𝑛𝑥̈𝑃
+ ̈𝑥𝜔𝑃

𝑓 ̈𝑦𝑃𝑚
− 𝜆 ̈𝑦𝑃

− 𝑛 ̈𝑦𝑃
+ ̈𝑦𝜔𝑃

𝑓 ̈𝑧𝑃𝑚
− 𝜆 ̈𝑧𝑃

− 𝑛 ̈𝑧𝑃
+ ̈𝑧𝜔𝑃

⎫}
⎬}⎭

+
⎧{
⎨{⎩

0
0
𝑔

⎫}
⎬}⎭

1
2

⎡
⎢⎢
⎣

−𝑒𝑥𝑃
−𝑒𝑦𝑃

−𝑒𝑧𝑃
𝑒0𝑃

−𝑒𝑧𝑃
𝑒𝑦𝑃

𝑒𝑧𝑃
𝑒0𝑃

−𝑒𝑥𝑃
−𝑒𝑦𝑃

𝑒𝑥𝑃
𝑒0𝑃

⎤
⎥⎥
⎦

⎧{
⎨{⎩

𝑝𝑃 𝑚
− 𝜆𝑝𝑃

− 𝑛𝑝𝑃
𝑞𝑃 𝑚

− 𝜆𝑞𝑃
− 𝑛𝑞𝑃

𝑟𝑃 𝑚
− 𝜆𝑟𝑃

− 𝑛𝑟𝑃

⎫}
⎬}⎭

𝜇𝑥̈𝑃
𝜇 ̈𝑦𝑃
𝜇 ̈𝑧𝑃
𝜇𝑝𝑃
𝜇𝑞𝑃
𝜇𝑟𝑃

⎫}}}}}}}}}}}}
⎬}}}}}}}}}}}}⎭

(B.6)



C
Testing Procedure

In this chapter the testing procedure is presented. First, the system for recording the data is presented
in Section C.1. Next, various motion profiles for the SIMONA Research Simulator (SRS) are discussed
in Section C.2. The motion profiles presented range from standstill, in order to validate the various
noise parameters, to very firm motion, in order to stress the system’s non-linearities.

However, before the testing procedure can commence, a calibration procedure of the TrackIR 5 is
necessary in order to create an pose offset. This is required as the visual-tracking system, TrackIR 5,
presents a pose that is the offset from system initialization. The offset position is not an issue for the
pose estimation of the Head-Mounted Display (HMD). However, the attitude offset is problematic due
to its reliance to cancel out the influence of the gravity. The TrackIR 5 calibration process is presented
in Appendix D.

C.1. Data Recording System
The data recording system is records the three systems shown in bold on top of Figure C.1. Below those,
the software packages are given with a short fact list. The right most software package, enhanced
Communication Abstraction Layer (eCAL) [11], is used for recording all the data.

It was opted to record the data using eCAL on a Windows Personal Computer (PC). For this reason,
the data of the SRS is send by Delft University Environment for Communication and Activation
(DUECA) over an ethernet connection using User Datagram Protocol (UDP) from a Linux to Windows
environment, shown in Figure C.2. The Windows PC receives the UDP messages and publishes them
in turn onto eCAL.

The TrackIR 5 sensor is directly connected to the Windows PC, which in turn runs the software that
translates and publishes the TrackIR 5 measurements onto eCAL, also depicted in Figure C.2.

The HMD’s Universal Standard Bus (USB) data was decoded using libsurvive, an open-source software

Figure C.1: An overview of the physical systems alongside their software packages.
The software packages from left to right: TrackIR v5 [69], libsurvive [35], DUECA [50], and eCAL [11].
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Figure C.2: Recording system data flow.

package, and published onto eCAL.

C.2. Motion Profiles
Each motion profile, except for standstill, consist of summed sinusoids per axis over its duration. The
amplitudes and frequencies of each sinusoids will be given in tables. In order for the system to have
ample time to perform the calibration shown in Section D, a stationary time of one minute was inserted
before each motion profile. Furthermore, all motion profiles have a fade-in and fade-out duration of ten
seconds. This was achieved by scaling thw whole motion profile with a hyperbolic tangent. Finally, for
each motion profile, a short reasoning was given for its existence.

The motion profiles builds up from standstill to singular sinusoid on one axis to the original motion profile
presented in Table 7.1 in order for potential problems to be isolated.

No Movement
• Duration: 10 minutes
• Description: Standstill
• Reasoning:

– Configuration 3 could be problematic as it potentially divide by zero.
– Validate that the real-time software implementation works.
– Prior knowledge about both HMD and SRS pose.
– Test the validity of the calibration duration.
– Validate the noise parameters.

Simple Motion around a Single Axis
Let <rotation> → roll, pitch, yaw:

SRS <rotation> around DERP
• Duration: (1 + 5 minutes) × 3
• Description:
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– SRS: Sinusoidal <rotation> motion around Design Eye Reference Point (DERP), with an
amplitude of 10° and frequency of 0.2Hz.

– HMD: Stationary relative to cockpit.
• Reasoning:

– HMD’s Inertial Measurement Unit (IMU) should only measure <rotation>.
– Prior knowledge about the HMD vehicle-fixed pose.
– Comparisons can bemade to other motion profiles with<rotation> around the Upper Gimbal
Point (UGP).

SRS <rotation> around UGP
• Duration: (1 + 5 minutes) × 3
• Description:

– SRS: Sinusoidal <rotation> motion around UGP, ith an amplitude of 10° and frequency of
0.2Hz.

– HMD: Stationary relative to cockpit.
• Reasoning:

– HMD’s IMU should, in addition to the <rotation>, also measure the centripetal forces.
– Prior knowledge about HMD relative pose.
– Comparisons can be made to other motion profiles with <rotation> around DERP.

SRS's Circular Translation around UGP in the xy-plane
• Duration: 1 + 5 minutes
• Description:

– SRS: Circular motion in the xy plane, with an amplitude of 0.2m and frequency of 0.2Hz.
– HMD: Stationary relative to cockpit.

• Reasoning:

– Verify translational implementation of the algorithm while there’s no rotation.
– Verify that HMD stays static relative to cabin even though both systems are defined in the
inertial frame.

Complex Motion around a Single Axis
The downside of moving at a singular amplitude and frequency combination is that this motion could
hide or highlight aspects of the system, i.e. subsystem delay, the integration errors following the
sinusoidal motion, convergence of the algorithm. In order to verify that the results found in the previous
section are valid for a wide range of motion, the commanded motion, in this section, is the combination
of multiple amplitudes and frequencies.

As the user moves their head, it is assumed that the resulting motion will be complex.

Let <rotation> → roll, pitch, yaw:

HMD <rotation>
• Duration: (1 + 2 minutes) × 3
• Description:

– SRS: Stationary.
– HMD: <rotation> motion with an amplitude of approximately 15° and a frequency of
approximately 1Hz.

• Reasoning:
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– Prior knowledge about SRS’s pose.
– Verify that the HMD’s motion does not influence the SRS pose estimation.

SRS <rotation> around UGP
• Duration: (1 + 5 minutes) × 3
• Description:

– HMD: Stationary relative to cockpit.
– SRS: Sinusoidal <rotation> motion around UGP with:

Amplitude [°] Frequency [Hz]
−4.01 0.1

4.01 0.25
0.705 0.65
0.917 0.85
0.115 2.0

• Reasoning: See section introduction.

Complex Motion
By increasing the total motion the total integration error will increase. This will stress the accuracy and
thus possible the convergence of the system.

SRS Motion
• Duration: 1 + 5 minutes
• Description:

– HMD: Stationary relative to cockpit.
– SRS: Sinusoidal motion around UGP with:
Translation Amplitude [m] Frequency [Hz]

x:

−0.1 0.1
0.1 0.25
0.0123 0.65
0.016 0.85
0.002 2.0

y:

0.1 −0.1
0.1 −0.25
0.0123 0.65
0.016 0.85
0.002 2.0

z: 0.03 0.5
0.002 2.0

Rotation Amplitude [°] Frequency [Hz]

roll:

−4.01 0.1
4.01 0.25
0.705 0.65
0.917 0.85
0.115 2.0

pitch:

4.01 −0.1
4.01 −0.25
0.705 0.65
0.917 0.85
0.115 2.0

yaw: 2.865 0.5
0.115 2.0
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• Reasoning:

– By keeping the HMD stationary, its pose, and particularly its pose relative to the cockpit, can
still be ascertained with some certainty.

– The SRS based results can be compared to DUECA own SRS pose estimates for validation.

Full Motion
• Duration: 1 + 2 minutes
• Description:

– HMD: Glance around cockpit, around x, y, z.
– HMD: See previous motion
– Reasoning:

* The SRS results can still be compared to DUECA own SRS pose estimates for
validation.

* This run can be compared to the previous run, to possible observe how the extra
superimposed HMD motion influences the SRS pose estimation.



D
TrackIR 5 Calibration Using the

Head-Mounted Display's Inertial
Measurement Unit

A calibration must be performed before the system can be used in order to create an attitude offset
and a point of origin of the Head-Mounted Display (HMD) reference frame. This is necessary as the
visual tracking system, TrackIR 5 presented in Section 6.1.2, does not present an absolute but a pose
relative to initialization of the TrackIR 5 sensor.

D.1. Position
The relative position is not an issue for the pose estimation of the HMD as the offset position 𝒄𝐻𝛿

can
be guessed at the expected head position, i.e., Design Eye Reference Point (DERP):

(𝒄𝐻𝑃 𝛿
) {𝔼𝑃 } = (0 −0.550 −1.2075) {𝔼𝑃 } (D.1)

This assumption has little negative consequences for the user and algorithm, as the error would be
constant and can be easily adjusted by the user itself.

D.2. Attitude
However, the TrackIR’s relative attitude is problematic for the pose estimation of the HMD. An initial
attitude offset would influence the transformation of the Inertial Measurement Unit (IMU) measurements
into the inertial reference frame 𝔼𝐼 in Equations 4.30 and 4.33. Therefore, the potential attitude offset
should preferably be found before starting the algorithm.

In order to find this attitude offset 𝒆𝐻𝑃 𝛿
, the gravitational vector of the HMD’s IMU is used to compute

the tilt of the attitude offset 𝒆̆𝐻𝑃 [70] and is compared to the relative attitude 𝒆𝐻𝑃 𝑚
provided by the

TrackIR sensor.

At standstill the accelerometer measurements should only measure gravity 𝒈 in the HMD reference
frame 𝔼𝐻 , resulting in,

𝑓𝑥̈
2
𝐻

+ 𝑓 ̈𝑦
2
𝐻

+ 𝑓 ̈𝑧
2
𝐻

= 𝑔2 (D.2)

Or written in their respective reference frames,

(𝒇𝐻) {𝔼𝐻} = (𝒈) {𝔼𝐼}
(𝑓𝑥̈𝐻

𝑓 ̈𝑦𝐻
𝑓 ̈𝑧𝐻) {𝔼𝐻} = (0 0 𝑔) {𝔼𝐼}
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At initialization it is assumed that the upper platform is at rest, i.e. the upper platform 𝔼𝑃 and inertial 𝔼𝐼
reference frames align,

= (0 0 𝑔) {𝔼𝑃 }

Using the transformation matrix 𝑻 𝑇
𝐻𝑃 , found in Equation 4.3, to write the whole equation into the HMD

reference frame 𝔼𝐻 ,

= (0 0 𝑔) 𝑻 𝑇
𝐻𝑃 {𝔼𝐻} (D.3)

Transposing Equation D.3 and dividing by gravity 𝑔 leads to,

⎧{
⎨{⎩

𝑓𝑥̈𝐻
/𝑔

𝑓 ̈𝑦𝐻
/𝑔

𝑓 ̈𝑧𝐻
/𝑔

⎫}
⎬}⎭

= 𝑻𝐻𝑃
⎧{
⎨{⎩

0
0
1

⎫}
⎬}⎭

Furthermore, expanding the transformation matrix 𝑻𝐻𝑃 using Equation 4.5 leads to,

=
⎧{
⎨{⎩

2 (𝑒𝑥𝐻𝑃
𝑒𝑧𝐻𝑃

− 𝑒0𝐻𝑃
𝑒𝑦𝐻𝑃

)
2 (𝑒𝑦𝐻𝑃

𝑒𝑧𝐻𝑃
+ 𝑒0𝐻𝑃

𝑒𝑥𝐻𝑃
)

𝑒2
0 − 𝑒2

𝑥𝐻𝑃
− 𝑒2

𝑦𝐻𝑃
+ 𝑒2

𝑧𝐻𝑃

⎫}
⎬}⎭

(D.4)

The transfer between the upper platform 𝔼𝑃 and HMD 𝔼𝐻 reference frames can be achieved in infinite
rotations. Restricting the yaw, i.e. 𝑒𝑧𝐻𝑃

= 0, results in,

=
⎧{
⎨{⎩

−2𝑒0𝐻𝑃
𝑒𝑦𝐻𝑃

2𝑒0𝐻𝑃
𝑒𝑥𝐻𝑃

𝑒2
0 − 𝑒2

𝑥𝐻𝑃
− 𝑒2

𝑦𝐻𝑃

⎫}
⎬}⎭

(D.5)

The system presented in Equation D.5 is fully determined, taking into account that Equation D.2 can

be rewritten as ( 𝑓𝑥̈𝐻
𝑔 )

2
+ ( 𝑓𝑦̈𝐻

𝑔 )
2

+ ( 𝑓 ̈𝑧𝐻
𝑔 )

2
= 1, and choosing the solution with a positive quaternion

scalar 𝑒0, the tilt quaternion 𝒆̆𝐻𝑃 can be equated to,

𝒆̆𝐻𝑃 = (√ 𝑓 ̈𝑧𝐻 /𝑔+1
2

𝑓𝑦̈𝐻 /𝑔
√2(𝑓 ̈𝑧𝐻 /𝑔+1)

−𝑓𝑥̈𝐻 /𝑔
√2(𝑓 ̈𝑧𝐻 /𝑔+1)

0) (D.6)

Equation D.6 is valid for all values, except 𝑓 ̈𝑧𝐻
/𝑔 = −1. In order to solve for the singularity, 𝑒𝑦𝐻𝑃

= 0 is
set in Equation D.4 to obtain an alternative reduced system [70]:

⎧{
⎨{⎩

𝑓𝑥̈𝐻
/𝑔

𝑓 ̈𝑦𝐻
/𝑔

𝑓 ̈𝑧𝐻
/𝑔

⎫}
⎬}⎭

=
⎧{
⎨{⎩

2 (𝑒𝑥𝐻𝑃
𝑒𝑧𝐻𝑃

)
2 (𝑒0𝐻𝑃

𝑒𝑥𝐻𝑃
)

𝑒2
0 − 𝑒2

𝑥𝐻𝑃
+ 𝑒2

𝑧𝐻𝑃

⎫}
⎬}⎭

(D.7)

The following equation is the solution to Equation D.7:

𝒆̆𝐻𝑃 = ( −𝑓𝑦̈𝐻 /𝑔
√2(1−𝑓 ̈𝑧𝐻 /𝑔)

√ 1−𝑓 ̈𝑧𝐻 /𝑔
2 0 𝑓𝑥̈𝐻 /𝑔

√2(1−𝑓 ̈𝑧𝐻 /𝑔) ) (D.8)

Equation D.8 was chosen over other solutions, as it has its singularity at 𝑓 ̈𝑧𝐻
/𝑔 = 1. Combining both

results, Equations D.6 and D.8, allows both equation’s singularity to be mitigate with a margin. This
margin helps to avoid numerical instability around both singularities.

𝒆̆𝐻𝑃 =
⎧{{
⎨{{⎩

(√ 𝑓 ̈𝑧𝐻 /𝑔+1
2

𝑓𝑦̈𝐻 /𝑔
√2(𝑓 ̈𝑧𝐻 /𝑔+1)

−𝑓𝑥̈𝐻 /𝑔
√2(𝑓 ̈𝑧𝐻 /𝑔+1)

0) , 𝑓 ̈𝑧𝐻
≥ 0

( −𝑓𝑦̈𝐻 /𝑔
√2(1−𝑓 ̈𝑧𝐻 /𝑔)

√ 1−𝑓 ̈𝑧𝐻 /𝑔
2 0 𝑓𝑥̈𝐻 /𝑔

√2(1−𝑓 ̈𝑧𝐻 /𝑔) ) , 𝑓 ̈𝑧𝐻
< 0

(D.9)
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Rather then using a single observation to ascertain the tilt of the system, multiple measurements are
used of which the average is taken ̄𝒇𝐻 and has the following advantages. First, any translational
movement of the system is lost in the average given that the system stays in the same place (which
can be checked by the visual sensor). Second, the possible influence of the sensor’s noise on the tilt
correction is reduced by averaging multiple measurements.

Any tilt changes during the calibration process are mitigated by also recording the observed tilt attitude
of the TrackIR sensor in the same time frame and ‘deducting’ the resulting average 𝒆̄𝐻𝑃 𝑚

from the
gravity based tilt attitude 𝒆̆𝐻𝑃 , i.e.,

𝒆𝐻𝑃 𝛿
= 𝒆̆𝐻𝑃 ⊗

𝐿
(∼𝒆̄𝐻𝑃 𝑚

) (D.10)

The average quaternion attitude of the HMD since the initialization of the TrackIR sensor 𝒆̄𝐻𝑃 𝑚
relative

to the upper platform reference frame 𝔼𝐼 can be computed via Equation 7.47.

Moreover, the tilt attitude of the TrackIR sensor measurements is acquired by setting the measured
Euler attitude yaw to zero before computing the corresponding quaternion attitude and averaging them.

D.3. Unscented Kalman Filter modification
The only step that needs modification to implement the calibration of the TrackIR is the observation
function h𝐻𝑃 in Equation 5.18. As mentioned, the observation of the TrackIR 𝒚𝐻𝑃 is relative to the
zero initialized pose. Thus, the actual pose is the measurements pose plus the offset and can be
written as:

actual = measurement + offset
↓

measurement = actual − offset

Rewriting Equation 5.10 with the offset in mind results in,

𝒚𝐻𝑃 = h𝐻𝑃 (𝒙𝐻(𝑡), 𝒙𝑃 (𝑡), 𝒐𝐻(𝑡)) (D.11)

[𝒄𝐻𝑃 𝑚
𝒆𝐻𝑃 𝑚

] = [
𝒄𝐻𝑃 − 𝒄𝐻𝑃 𝛿

+ 𝒏𝒄𝐻
𝒆𝐻𝑃 ⊗

𝐿
(∼𝒆𝐻𝑃 𝛿

) + 𝒏𝒆𝐻
] (D.12)

Expanding the HMD’s quaternion attitude 𝒆𝐻𝑃 relative to the upper platform of the SIMONA Research
Simulator (SRS) using Equation 5.16, i.e.,

= [
𝒄𝐻𝑃 − 𝒄𝐻𝑃 𝛿

+ 𝒏𝒄𝐻
𝒆𝐻⊗

𝐿
(∼𝒆𝑃 ) ⊗

𝐿
(∼𝒆𝐻𝑃 𝛿

) + 𝒏𝒆𝐻
] (D.13)

D.4. Conclusion
The duration necessary for the calibration was initially envisioned around one minute to be on the (very)
save side. After running this calibration computation a couple times, it can be stated that the calibration
duration should depend on the amount of movement during the calibration phase. Given that the SRS
is in rest and neither the TrackIR or the HMD’s IMU measure motion, calibration durations around 5 s
will give reliable results. (Of note, some of these runs where performed with the HMD strapped to the
headrest.)

Care should be taken with the yaw angle of the HMD when initializing the TrackIR 5 sensor, due to the
fact that the yaw angle cannot be calibrated with the present method. The HMD should face forward
when initializing the TrackIR sensor, as there is no yaw offset.

Moreover, a constant attitude error/offset on the TrackIR 5 sensor would impact its Kalman Filter (KF)
corrections, resulting in a HMD attitude error. This in turn would create a pose estimation problem,
similar to an IMU alignment issues for the HMD.



E
Noise Parameter Validation through

Static Tests

Using the ‘No Movement’ motion profile in Section C.2 various sensors’ noise parameters used in the
simulation in Chapter 7 could be analyzed. The values found in this appendix are the ones used in the
Paper.

In this appendix, the data recorded in enhanced Communication Abstraction Layer (eCAL) is plotted
against the simulated data. For more details on the simulation, see Chapter 7.

E.1. SRS
E.1.1. Linear Encoders
Inspecting the real measurements plotted in Figures E.1 and E.2 leads to three interesting observations.
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Figure E.1: SRS linear encoders’ measurements during a static test.
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Figure E.2: SRS linear encoders’ measurements during a static test (adjusted to align with simulation).

The first observation is that the platform is not resting at exactly the zero-position. This has no further
consequence for the simulation or algorithm.

The second observation is that the linear encoders reported a downward trend over time, in all but 𝒍𝑚1
and 𝒍𝑚5. This effect is most likely caused by the reduction of the hydraulic oil operating temperature
due to the tested motion, i.e., ‘No Movement’. This in turn resulted in a minor reduction of max 0.1mm
of hydraulic actuator length, correctly reported by the linear encoders. This has no further consequence
for the simulation or algorithm.

The third observation is that the Standard Deviation (SD) of the measurements were slightly lower
then the simulated values. This was further highlighted in Table E.1, where the expected and the
measured SD are collected. The actual SD of each linear encoder is probably between 2 × 10−6 m to
3 × 10−6 m. The computation of the SD were hindered by the wandering values and some irregularities
at the beginning of the measurement, see 𝒍𝑚2 in Figure E.2.

Table E.1: SRS linear encoders’ SD of the first 50 s of a static test, as shown in Figure E.1.

𝐿0 𝐿1 𝐿2 𝐿3 𝐿4 𝐿5

Expected SD: 5.00 5.00 5.00 5.00 5.00 5.00 (×10−6 m)
Measured SD: 3.52 1.94 6.78 5.61 2.69 3.31 (×10−6 m)

As discussed in the sensitivity analysis, this would have minor implications. The 𝜈 would be less then
expected if the noise parameters of the linear encoders are adapted. Meaning that the algorithm should
thrust the linear encoder observations more.

E.1.2. Accelerometer
The Accelerometer of the SIMONA Research Simulator (SRS) is plotted during standstill for
approximately 10min in Figure E.3. Here, two observation stand out.
First, norm of the signal is larger then the expected 9.81m/s2. Assuming this is the result of biases,
the algorithm should have no problem estimating these.
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Figure E.3: SRS accelerometer’s measurement during a static test.

Second, the SRS accelerometer’s SD, presented in Table E.2, highlight a discrepancy between the
expected and measured SD. From the sensitivity analysis, it was clear that the major performance
hurdle with the SRS Inertial Measurement Unit (IMU) implementation was the 100Hz publishing rate.
However, the increase in noise of the accelerometer causes the algorithm to trust the output of the IMU
to much and this should be accounted for.

Table E.2: SRS accelerometer SD measured from the data presented in Figure E.3.

𝑓𝑥 𝑓𝑦 𝑓𝑧

Expected SD: 1.90 2.10 1.80 (×10−3 m/s2)
Measured SD: 8.10 9.31 12.09 (×10−3 m/s2)

E.1.3. Gyroscope
The SRS’s gyroscope is plotted during the ≈10min standstill in Figure E.4.
In this figure, the bias of the gyro is clearly shown, but can be estimated in the algorithm and should thus
be of no further consequence. From this plot nothing can be said about any potential misalignment.

However, in the SRS’s gyroscope case, the expected noise parameters were overestimated by quite
the margin. The SD’s are collected in Table E.3. Deducing from the sensitivity analysis, the decrease
in noise present of the gyroscope would have a minor but positive influence.

Table E.3: SRS gyroscope SD measured from the data presented in Figure E.4.

𝑝 𝑞 𝑟
Expected SD: 24.00 41.00 33.00 (×10−4 rad/s)
Measured SD: 1.41 1.69 1.73 (×10−4 rad/s)
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Figure E.4: SRS gyroscope’s measurement during a static test.

E.2. HMD
E.2.1. TrackIR 5
Figures E.5 and E.6 show the measurements of the 10min standstill. The drifting of the output is
evident from these figures. A possible explanation is that the Head-Mounted Display (HMD) settles
into place onto the headrest and/or in software, as this was the first experiment after all. This finding is
reinforced by subsequent TrackIR data further into the test. Moreover, in these Figures E.5 and E.6
and Tables E.4 and E.5 show both an overestimation regarding the TrackIR noise parameters.

The sensitivity analysis showed pose estimation improvements due to the use of the algorithm versus
only the visual tracking regardless of the proposed sensor quality of the TrackIR. However, with the
TrackIR, setting the correct expected noise parameter did have a relative large impact on the pose
estimation and ‘condition’ of the algorithm, i.e., a 𝜈 value within expected bounds.

Table E.4: TrackIR 5 positional SD measured over the first 50 s in Figure E.5.

𝑥 𝑦 𝑧
Expected SD: 9.19 30.40 49.40 (×10−5 m)
Measured SD: 2.75 3.58 3.69 (×10−5 m)

Table E.5: TrackIR 5 attitudinal SD measured over the first 50 s in Figure E.6.

𝜙 𝜃 𝜓
Expected SD: 19.40 13.00 24.70 (×10−4 rad)
Measured SD: 2.26 1.02 2.15 (×10−4 rad)

E.2.2. Accelerometer
The mean of the norm of the data presented in Figure E.7 resulted in 9.84m/s2, close to the expected
9.81m/s2. Moreover, the apparent bias present on the x-axis is actually the result of the pitch down
resting position of the HMD.

The resulting SD from this dataset are collected in Table E.6. These are close to the expected
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Figure E.5: TrackIR 5 position during a static test.
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Figure E.6: TrackIR 5 attitude during a static test.

values, but consistently underestimated. The original method to estimate the noise parameters, the
Overlapping Allan Deviation, also took Brownian noise into account and could account for some of the
discrepancy found.
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Figure E.7: HMD accelerometer data during the static test.

Table E.6: HMD accelerometer’s SD measured from the data presented in Figure E.7.

𝑓𝑥 𝑓𝑦 𝑓𝑧

Expected SD: 3.00 2.90 4.70 (×10−2 m/s2)
Measured SD: 7.51 5.32 5.17 (×10−2 m/s2)

E.2.3. Gyroscope
The data of the HMD’s gyroscope is plotted in Figure E.8. The bias present over ≈10min in Figure E.8
is small and can be estimated by the algorithm.

The SD’s presented in Table E.7 indicate that the expected values were good.

Table E.7: HMD gyroscope SD measured from the data presented in Figure E.8.

𝑝 𝑞 𝑟
Expected SD: 3.30 3.60 3.80 (×10−3 rad/s)
Measured SD: 4.22 3.60 3.00 (×10−3 rad/s)
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Figure E.8: HMD gyroscope measurement during the static test.



F
TrackIR 5 Delay

The proprietary software of the TrackIR 5 sensor obfuscates the raw sensor measurements. The data
used in this appendix was based on the measurements done while the SIMONA Research Simulator
(SRS) was at standstill, and the user wearing the Head-Mounted Display (HMD) was rotating their
head around x, y, and z in sequence. The resulting data of the HMD’s gyroscope was integrated and
subsequently compared in Figure F.1 to the TrackIR 5 reported data.
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Figure F.1: Integrated

In this figure it can be observed that the TrackIR 5 has a approximately one second delay to the
integrated gyro attitude. This one second delay of the TrackIR 5 renders its measurements mostly
obsolete.

This delay is too large for the delay compensation method described in Section 3.3 due to the large state
and its covariance matrix and its resulting computational requirement. In order to reduce the impact
of this delay in sensor data, it was opted to increase the TrackIR noise parameters to reduce the trust
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the algorithm placed in the TrackIR 5 sensor’s measurements in favor of the Inertial Measurement Unit
(IMU) based prediction.

Moreover, the resulting attitude of the TrackIR 5 looks smoothed when compared to the HMD’s
gyroscope based attitude. This behavior makes sense when considering its original purpose, to
measure and send the head rotation to a Personal Computer (PC) based game. These head rotation
would be scaled and used in-game to change the viewport into the game. In this use case a stable, i.e.,
smooth, viewport was probably more important than a precise one.



G
Recording Timestamp Issue

While recording the data with the layout described in Appendix C.1, a timing issue on the recording side
happened. The issue concerns the data gathered by ethernet connection, i.e., the SIMONA Research
Simulator (SRS) related data.

The difference between timestamps of the incoming data, as recorded by enhanced Communication
Abstraction Layer (eCAL), are plotted in Figure G.1. Here, the messages’ average and most delta times
Δ𝑡 were equal to the expected value of 10ms, i.e., 100Hz. However, the timing in certain instances
would vary between 0ms to 24ms as shown in Figure G.1. Other recordings were checked for this
behavior with similar results as presented here.
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Figure G.1: Time difference Δ𝑡 in seconds between recorded data messages of the SRS of the ‘Complex SRS motion’.

This issue is likely due to the packet coalescing setting of the recording Personal Computer (PC)’s
network card, hindering the timely arrival of the various data messages. While using packet coalescing,
a reduction in system interrupts is achieved through coalescing, i.e., combining multiple data packages
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received through the ethernet port [42]. This resulted in eCAL receiving these messages at a non-
constant time interval.



H
Final Results

In this appendix the most interesting plots are shown based on the data gathered with the method
described in Appendix C and the state estimated by the relevant algorithm described by the section
headings. The noise and starting values used in these results are presented in Section H.1.

H.1. Parameters and Initial State
The reasoning for the parameters and initial states listed can be found in the paper in part I.

Table H.1: HMD’s IMU noise parameters

Description Var. Value Unit
𝒏𝑓𝐻

≈ ℵ(0, 𝝈𝑓𝐻
)

Accelerometer’s
Velocity Random Walk

𝜎𝑓𝑥𝐻
8.26

}×10−2 m/s2𝜎𝑓𝑦𝐻
5.85

𝜎𝑓𝑧𝐻
5.60

𝝁𝑓𝐻
≈ ℵ(0, 𝝈𝜇𝑓𝐻

)
Accelerometer’s

Acceleration Random Walk
𝜎𝜇𝑓□𝐻

1.00 ×10−4 m/s3 ∀□ = 𝑥, 𝑦, 𝑧

𝒏𝜔𝐻
≈ ℵ(0, 𝝈𝜔𝐻

)
Gyroscope’s

Angle Random Walk

𝜎𝑝𝐻
4.64

}×10−3 rad/s𝜎𝑞𝐻
3.96

𝜎𝑟𝐻
3.30

𝝁𝜔𝐻
≈ ℵ(0, 𝝈𝜇𝜔𝐻

)
Gyroscope’s

Rate Random Walk
𝜎𝜇□𝐻

1.00 ×10−5 rad/s2 ∀□ = 𝑝, 𝑞, 𝑟

The estimated initial stochastic state 𝒙̂0 of Configuration 1, where only the Head-Mounted Display
(HMD) has an Inertial Measurement Unit (IMU), is set in Equation H.1. The initial position of the
SIMONA Research Simulator (SRS) was set to its neutral position and the HMD’s position was set
to that of the captain’s headrest. Both quaternion attitudes were set to an identity rotation, and all other
values were set to zero.

𝒙̂0 =𝐸 ∣𝒙0∣=𝐸 ∣(𝒙𝑇
𝑃0

𝒙𝑇
𝐻0

)𝑇 ∣ (H.1)

{𝒙̂𝑃0
𝒙̂𝐻0

}={ (02× −2.39 03× 1 06×)𝑇

(0 −0.55 −3.5975 03× 1 09×)𝑇} (H.2)

The covariance of the estimated initial stochastic state 𝑷𝑥̂0
of Configuration 1 is shown in Equation H.3.
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Table H.2: SRS Process noise parameters

Description Var. Value Unit
Configuration 1:

𝝂 ̈𝑐𝑃
≈ ℵ(0, 𝝈 ̈𝑐𝑃

)
Acceleration Deviation

𝜎□𝑃
1.5 m/s2 ∀□ = ̈𝑥, ̈𝑦, ̈𝑧

𝝂𝜔̇𝑃
≈ ℵ(0, 𝝈𝜔̇𝑃

)
Angular Acceleration

Deviation
𝜎□𝑃

1.5 rad/s2 ∀□ = ̇𝑝, ̇𝑞, ̇𝑟

Configuration 2:
𝒏𝑓𝑃

≈ ℵ(0, 𝝈𝑓𝑃
)

Accelerometer’s
Velocity Random Walk

𝜎𝑓□𝑃
4.0 × 10−2 m/s2

∀□ = 𝑥, 𝑦, 𝑧𝝁𝑓𝑃
≈ ℵ(0, 𝝈𝜇𝑓𝑃

)
Accelerometer’s

Acceleration Random Walk
𝜎𝜇𝑓□𝑃

1.0 × 10−4 m/s3

𝒏𝜔𝑃
≈ ℵ(0, 𝝈𝜔𝑃

)
Gyroscope’s

Angle Random Walk
𝜎□𝑃

8.0 × 10−3 rad/s

∀□ = 𝑝, 𝑞, 𝑟𝝁𝜔𝑃
≈ ℵ(0, 𝝈𝜇𝜔𝑃

)
Gyroscope’s

Rate Random Walk
𝜎𝜇□𝑃

1.0 × 10−5 rad/s2

Configuration 3:
𝜼𝜏 ̈𝑐

≈ ℵ(0, 𝝈𝜏 ̈𝑐𝑃
)

Translational Lag
Deviation

𝜎𝜏□ 1.0 × 10−3 s

∀□ = ̈𝑥, ̈𝑦, ̈𝑧𝝂 ̈𝑐𝑃
≈ ℵ(0, 𝝈 ̈𝑐𝑃

)
Acceleration Deviation

𝜎□𝑃
5.0 × 10−1 m/s2

𝜼𝜏𝜔̇
≈ ℵ(0, 𝝈𝜏𝜔̇𝑃

)
Rotational Lag
Deviation

𝜎𝜏□ 1.0 × 10−3 s

∀□ = ̇𝑝, ̇𝑞, ̇𝑟𝝂𝜔̇𝑃
≈ ℵ(0, 𝝈𝜔̇𝑃

)
Angular Acceleration

Deviation
𝜎□𝑃

5.0 × 10−1 rad/s2

Table H.3: Observation sensors noise parameters

Description Var. Value Unit
𝑛𝑙𝑖

≈ ℵ(0, 𝜎𝑙𝑖
) , 𝜎𝑙𝑖

∈ 𝝈𝑙
Absolute Linear

Encoders Deviation
𝜎𝑙𝑖

5.0 × 10−6 m ∀𝑖 = 1, … , 6

TrackIR 5 Deviation:
Positional:

𝒏𝑐𝐻𝑃
≈ ℵ(0, 𝝈𝑐𝐻𝑃

) 𝜎□𝐻𝑃
1.5 × 10−3 m ∀□ = 𝑥, 𝑦, 𝑧

Attitudinal:
𝒏𝑒𝑃

𝐻
≈ ℵ(0, 𝝈𝑒𝑃

𝐻
) 𝜎□𝐻𝑃

5.0 × 10−3 rad ∀□ = 𝜙, 𝜃, 𝜓
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The deviation in the expected initial stochastic state are all set independent to one another.

𝑷𝑥̂0
=𝐸 ∣{𝒙0 − 𝒙̂0} {𝒙0 − 𝒙̂0}𝑇 ∣ (H.3)

[
𝑷𝑥̂𝑃0

0

0 𝑷𝑥̂𝐻0

]=[
diag(16× 0.443× 13×)2 012×15

015×12 diag(16× 0.523× 0.13× 0.053×)2] (H.4)

Taking the deviation values presented in Table H.1, H.2, and H.3 into account, the process 𝑸 and
observation noise matrices 𝑹 can be constructed as follows:

𝑸 = diag(𝝈𝑃 𝝈𝐻)2 (H.5)

= diag(𝝈 ̈𝑐𝑃
𝝈𝜔̇𝑃

𝝈𝑓𝐻
𝝈𝜇𝑓𝐻

𝝈𝜔𝐻
𝝈𝜇𝜔𝐻

)
2

𝑹 = diag(𝝈𝑙 𝝈𝑐𝐻𝑃
𝝈𝑒𝑃

𝐻
)2

(H.6)

For Configuration 2, where both the SRS and HMD have an IMU, only the SRS’s sub-system changes,
thus resulting in:

𝒙̂𝑃0
= (02× −2.39 03× 1 09×)𝑇 (H.7)

𝑷𝑥̂𝑃0
= diag(16× 0.443× 0.13× 0.053×)2 (H.8)

𝑸 = diag(𝝈𝑓𝑃
𝝈𝜇𝑓𝑃

𝝈𝜔𝑃
𝝈𝜇𝜔𝑃

𝝈𝐻)
2

(H.9)

For Configuration 3, where setpoints are used rather than an IMU for the SRS, the setpoint related
values are printed. Here, attention should be paid when selecting a lag starting value and its
corresponding covariance. Choosing a initial lag value close to zero with a large covariance could
cause a sigma-point to be sampled below zero causing unstable behavior. Here, it was opted to choose
the initial lag variance too small to increase robustness at the cost of convergence duration of said lag.

𝒙̂𝑃0
= (02× −2.39 06× 1 09× 0.036×)𝑇 (H.10)

𝑷𝑥̂𝑃0
= diag(19× 0.443× 16× 10−5

6×)2
(H.11)

𝑸 = diag(𝝈𝜏 ̈𝑐𝑃
𝝈 ̈𝑐𝑃

𝝈𝜏𝜔̇𝑃
𝝈𝜔̇𝑃

𝝈𝐻)
2

(H.12)

Finally, the sigma parameters (𝛼, 𝛽, 𝜅) were chosen as follows:
𝛼 = 0.01, 𝛽 = 2, 𝜅 = 100 (H.13)

𝜅 is chosen larger than the recommended value [22] to increase mathematical stability in case of
Configuration 3 with the small initial lag variance. These values were kept constant for all configurations.

H.2. SRS Complex Motion
In this section, the states and innovation per configuration of the motion described in ‘Complex Motion
— SRS Motion’ in Appendix C.2 are plotted.

This motion profile is the most complex and most firm of all motion profiles tested. Therefore, this
motion profile will stress the nonlinearities of the Stewart platform and maximize the integration error
in the process models.

Note the 43 s mark in most plots in this section showing the biggest impact of the timing issue discussed
in Appendix G.

H.2.1. Configuration 1 --- only HMD with IMU
SRS
From Figures H.1 and H.3 the motion profile can be ascertained via the position and attitude of the
SRS.
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Figure H.1: SRS’s position in the inertial reference frame 𝔼𝐼 .
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Figure H.2: SRS’s velocity in the inertial reference frame 𝔼𝐼 .
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Figure H.3: SRS’s Euler attitude w.r.t. the inertial reference frame 𝔼𝐼 .
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Figure H.4: SRS’s angular rate in the upper moving reference frame 𝔼𝑃 .
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Figure H.5: SRS’s linear encoders innovation.
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Figure H.6: SRS’s linear encoders innovation .
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Figure H.7: HMD’s position in the inertial reference frame 𝔼𝐼 .

With the firm motion profile the chair, headrest, and HMD still move. These small vehicle-fixed
movements can be seen in Figures H.10 and H.11

The second of delay on the TrackIR 5 measurements combined with the minor movements the HMD
made while strapped to the chair resulted in the innovations plotted in Figures H.14 and H.15. In these
figures, the underlying motion profile is visible and thus colored, i.e., non-Gaussian.

The TrackIR 5 noise parameters were tuned such that the 𝜈 were close to the targeted values, i.e., six.
This caused the Unscented Kalman Filter (UKF) algorithm to trust the measurements of the TrackIR 5
less and the predictions more.



H.2. SRS Complex Motion 205

0.25

0.00

0.25

x H
 [m

/s
]

state ±2  bound

0.25
0.00
0.25

y H
 [m

/s
]

0 20 40 60 80 100
time [s]

0.2

0.0

0.2

z H
 [m

/s
]

Figure H.8: HMD’s velocity in the inertial reference frame 𝔼𝐼 .
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Figure H.9: HMD’s Euler attitude w.r.t. the inertial reference frame 𝔼𝐼 .
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Figure H.10: HMD’s relative position to the UGP in the upper moving reference frame 𝔼𝑃 .
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Figure H.11: HMD’s relative Euler attitude w.r.t. the upper moving reference frame 𝔼𝑃 .
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Figure H.12: HMD’s accelerometer bias in the HMD reference frame 𝔼𝐻 .
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Figure H.13: HMD’s gyroscope bias in the HMD reference frame 𝔼𝐻 .
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Figure H.14: TrackIR 5 position based innovation.
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Figure H.15: TrackIR 5 attitude based innovation.
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Figure H.16: TrackIR 5 innovation .

H.2.2. Configuration 2 --- both HMD and HMD with IMU
Due to the fact that the motion is the same, the plots already presented in the previous section (H.2.1)
are not shown here due to their similarity. However, the linear encoders innovation is shown again as
these plots are different enough. The plots of note are the SRS IMU biases.

SRS
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Figure H.17: SRS’s accelerometer bias in the upper moving reference frame 𝔼𝑃 .
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Figure H.18: SRS’s gyroscope bias in the upper moving reference frame 𝔼𝑃 .
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Figure H.19: SRS’s linear encoders innovation.
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Figure H.20: SRS’s linear encoders innovation .
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H.2.3. Configuration 3 --- HMD with IMU and SRS with Setpoints
Due to the fact that the motion is the same, the plots already presented in the previous sections
(H.2.1, H.2.2) are not shown here due to their similarity. However, the linear encoders innovation is
shown again as these plots are different enough. The plots of note are the SRS lags on the setpoints.
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Figure H.21: SRS’s acceleration in the inertial reference frame 𝔼𝐼 .
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Figure H.22: SRS’s translation lag in the inertial reference frame 𝔼𝐼 .
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Figure H.23: SRS’s angular acceleration in the upper moving reference frame 𝔼𝑃 .



H.2. SRS Complex Motion 214

0.01

0.02

0.03

p P
 [s

]
state ±2  bound

0.02

0.03

q P
 [s

]

0 20 40 60 80 100
time [s]

0.025

0.030

0.035

r P
 [s

]

Figure H.24: SRS’s rotational lag in the upper moving reference frame 𝔼𝑃 .
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Figure H.25: SRS’s linear encoders innovation.
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Figure H.26: SRS’s linear encoders innovation .

H.3. SRS's Circular Translation around UGP
In comparison to the ‘Complex’ motion profile, the circular translation only has motion on certain axis.
For Configuration 1 and 2 this is not an issue and makes the state estimation actually easier due to the
decrease in overall motion. However, for Configuration 3, the lack of data causes observability issue
on certain lags.

H.3.1. Configuration 3 --- HMD with IMU and SRS with Setpoints
SRS
Note in Figures H.28 and H.30 the sigma-bound of the lag on the z-axis or yaw increasing with time.
This is due to lack of information on said lag with the current motion profile.

The lag in this motion profile is also lower then then in the ‘complex’ motion profile. This is probably due
to the ‘relaxed’ motion profile chosen, making it easier for the SRS to follow its commands, resulting in
a lower overall time-lag.

The timing issue, discussed in Appendix G, was worse for this dataset. Due to this reason, the 𝜈 values
shown in Figure H.32 are larger than in Figure H.26.
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Figure H.27: SRS’s acceleration in the inertial reference frame 𝔼𝐼 .
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Figure H.28: SRS’s translation lag in the inertial reference frame 𝔼𝐼 .
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Figure H.29: SRS’s angular acceleration in the upper moving reference frame 𝔼𝑃 .
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Figure H.30: SRS’s rotational lag in the upper moving reference frame 𝔼𝑃 .



H.3. SRS's Circular Translation around UGP 218

0.002

0.000

L 0
[m

]

Innovation ±2  bound

0.000

0.002

L 1
[m

]

0.001
0.000
0.001

L 2
[m

]

0.0025

0.0000

L 3
[m

]

0.000

0.002

L 4
[m

]

0 20 40 60 80 100
time [s]

0.001
0.000
0.001

L 5
[m

]

Figure H.31: SRS’s linear encoders innovation.

0 20 40 60 80 100
time [s]

10 3

10 2

10 1

100

101

102

103

104

105

NE
ES

NEES target @ 6 avg: 3148.0

Figure H.32: SRS’s linear encoders innovation .
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H.4. No Movement
Due to the fact that there is absolutely no movement, Configuration 3 gains no knowledge on its lags.
This is evident from Figures H.34 and H.36.

H.4.1. Configuration 3 --- HMD with IMU and SRS with Setpoints
SRS
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Figure H.33: SRS’s acceleration in the inertial reference frame 𝔼𝐼 .

This motion profile does not strain the process model in any way as is evident from the innovations
plotted in Figures H.37 and H.38.
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Figure H.34: SRS’s translation lag in the inertial reference frame 𝔼𝐼 .
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Figure H.35: SRS’s angular acceleration in the upper moving reference frame 𝔼𝑃 .
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Figure H.36: SRS’s rotational lag in the upper moving reference frame 𝔼𝑃 .
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Figure H.37: SRS’s linear encoders innovation.
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Figure H.38: SRS’s linear encoders innovation .
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