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Abstract

Motion planning in cluttered environments is challenging for multi-robot systems,
in which each robot needs to avoid obstacles as well as other robots. This thesis
presents a distributed risk-aware motion planning method for multi-robot systems
in dynamic environments. For each robot navigating in a multi-robot scenario, two
major risk elements are considered and formalized: a) the collision risk that is as-
sessed using the defined "deformed distance to the centroid of free space" metric,
and b) the congestion risk that is assessed via the designed "potential to goal" met-
ric. These risk elements are incorporated into a distributed model predictive control
(MPC) framework for risk-aware multi-robot motion planning, in which the collision
and congestion risks of each robot are minimized. Simulation results show that the
proposed method can improve the robot’s safety regarding clearance to each other
and obstacles comparing to the baseline method without risk minimization. More-
over, the trajectory efficiency, i.e., time to reaching goals, is also improved thanks
to minimizing the congestion risk. We also validate the proposed method in real
experiments with a team of Crazyflie 2.1 quadrotors.
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Chapter 1

Introduction

1-1 Motivation

In the last few years, the development of hardware technology and artificial intelli-
gence has facilitated commercial applications of robots. Autonomous vehicle fleets
and aerial robot phalanxes are popular applications of multi-robot systems, as Fig.
1-1 shows. One of the most critical tasks for multi-robot systems is to find appropri-
ate paths for all robots to complete their tasks, which is the main task of multi-robot
motion planning.

(a) A quadrotor group sprays pesticides over a (b) Autonomous vehicles are controlled by ur-
corn field* ban fleet management platform?

Figure 1-1: Applications of quadrator groups in agriculture and military

"https://consortiq.com/using-drones-in-agriculture-industry/
2https:// fleetnewsdaily.com/stratim-unveils-fleet-management-platform-urban-fleets-
autonomous-vehicles/
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2 Introduction

Planning in unknown environments entails plenty of challenges. The uncertainty
of navigation and localization increases errors in the position information, and the
predicted trajectories of obstacles sometimes differ too much from actual values.
These uncertainties obstruct robots from finding available trajectories, which in-
creases the risk in multi-robot motion planning. The risk in motion planning rep-
resents the possibility that the robot will not be able to complete its path. Deadlock
may happen in the middle of planning due to unexpected terrain. Robots may crowd
in a cluttered space but not choose a free region on the side. By minimizing risk in
multi-robot motion planning, robots can plan safer and more efficient trajectories
to finish their tasks.

Recent studies focus on how to assess collision risk, and how to minimize collision
risk in planning. But other risk metrics also profoundly influence the possibilities
of accidents. These metrics can evaluate the planning efficiency, power supplies,
communication cost, and many different properties of multi-robot motion planning.
Due to the limits of computation, it is sometimes inconvenient to involve these met-
rics in local motion planning as it is challenging to formulate them as functions.
Therefore, it is necessary to develop efficient and reasonable metrics to assess risk
in multi-robot motion planning.

This thesis presents metrics that can evaluate collision risk and congestion risk
in multi-robot motion planning. The metrics will be considered in an MPC-based
local multi-robot motion planner. To show the performance of our metrics, we will
also adopt traditional risk metrics in the planner. All the planners will be tested in
cluttered environments so that the possibilities of collision and congestion will be
higher than in general scenarios.

1-2 Contribution

The main contributions of this thesis are:

* Arisk assessment method that can evaluate the collision risk and congestion
risk in multi-robot motion planning. The method is based on the risk elements,
Deformed Distance to the Centroid of Free Space (Dis2Centr) and Potential to
Goal (P2g). Dis2Centr involves both obstacle density and distance to obstacles.
And P2G evaluates congestion risk by the relative positions and orientations of
obstacles and goals. Both metrics assess risk more reasonably than traditional
metrics.

* Arisk-aware MPC-based motion planner is developed. Incorporated with corre-
sponding risk elements, the result of the planners shows lower risk compared
with classic multi-robot motion planners. Safety and efficiency are both im-
proved with the planner.The planner is tested on a multi-robot testing system,
which is based on Crazyflie 2.1.

Qi Luo (4994736) Master of Science Thesis



1-3 Thesis Outline 3

1-3 Thesis Outline

This thesis starts with Chapter 2, where I will introduce the background knowledge
of this thesis, including multi-robot motion planning, model predictive control, and
risk assessment methods. In Chapter 3, we will compare the risk elements that
can evaluate risk in motion planning. And I will focus on the formulations of these
metrics and their applications in planning. In Chapter 4, I will discuss the basic
formulation of risk-aware motion planning and how to incorporate our elements into
it. Different scenarios are built up to the performance of the planners. In Chapter
5, the proposed methods will be tested on Crazyflie 2.1 quadrotor groups to validate
their performance in cluttered environments. Finally, in Chapter 6, I will summarize
the results of experiments and present some potential works in the future.

Master of Science Thesis Qi Luo (4994736)
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Chapter 2

Preliminary

In this chapter, the theoretical background of the thesis is introduced. The knowl-
edge of multi-robot motion planning will be introduced in Section 2-1. Model pre-
dictive control is chosen as the trajectory planner in this thesis. The structure and
properties will be discussed in Section 2-2. In the end, the state of the art of risk-
aware motion planning will be overviewed to show the assessment of risk in motion
planning in Section 2-3.

2-1 Multi-robot Motion Planning

Motion planning is a fundamental topic in robotics, which studies how a robot finds
an available path without violating any constraints or limits—furthermore, multi-
robot motion planning focus on how a group of robots can complete the motion
planning task.

The basic idea of single robot motion planning is to generate an available trajectory
7 in configuration space C from its initial position g¢;,; to goal g4, Without collid-
ing with obstacles O € W in workspace W [17]. The configuration space C is the
construction of the physical state spaces of robots. Moreover, By following a con-
tinuous path in C, a robot will run in a continuous sequence of motions. Various
indicators can evaluate the performance of a robot in motion planning. Commonly,
the robots are expected to reach the goal within the shortest time, following the
shortest trajectory, or meeting any other requirements.

The classic methods to solve motion planning can be divided into global and lo-
cal motion planning methods. Combinatorial and incremental methods are classic
global motion planning approaches. Local motion planning usually depends on lo-
cal optimization methods to find the available trajectories. The local means that at
a specific position, the algorithms generate actions of the robots in one or several
next time steps. In every time step, this process would repeat until the robots reach
the goal.

Master of Science Thesis Qi Luo (4994736)



6 Preliminary

This section assumes that the variables in planning, including locations and veloci-
ties, are deterministic, which means the uncertainties of the variables are ignored in
planning. In Section 2-3, the methods to involve the uncertainties in deterministic
motion planning will be introduced.

2-1-1 Collision Avoidance

In local motion planning, the robots need to avoid collision with obstacles and other
agents in every time step. The collision avoidance methods can be mainly divided
into geometric approaches, optimization-based approaches, and artificial potential
field. Also, the space decomposition method is introduced, which is a practical
approach to solve the multi-robot collision avoidance problem.

The geometric approach reformulates the geometric structure by considering the
velocity and position of the obstacles, which means it can avoid collisions with dy-
namic obstacles. A good example is velocity obstacle (velocity obstacle (VO)) [9].
The volumes of obstacles are extended in velocity orientation, which represents the
region with high collision risk. Based on VO, the reciprocal VO (reciprocal veloc-
ity obstacle (RVO)) is proposed to solve the oscillation problem in the original VO,
which smooths the path and promotes the safety of the planning trajectory[23]. The
distributed formulation of RVO will slow down the calculation exponentially with
the increasing number of robots. To solve this, the optimal reciprocal collision-
avoidance (optimal reciprocal collision-avoidance (ORCA)) transforms the problem
into a low-dimensional linear optimization program, which performs well in com-
plex situations that contain thousands of robots at a time[24]. RVO can only be
applied to the same holonomic robots with linear dynamics models, and the gener-
alized RVO approximates the dynamics models, which can be used in multi-modal
robot systems.

The optimization-based approach is similar to the geometric method, as geometric
information plays an important role. The geometric method usually assumes that
the velocity of obstacles will not change in the next few time steps. However, the
optimization-based method predicts all possible states of obstacles and verifies the
predicted vehicle trajectory does not intersect these obstacles [4]. In that case, this
method shares similarities with obstacle trajectory prediction. In [4], trajectories of
the robots will be generated considering the possible motion of the obstacles in the
future. The robot will optimize a "best" position, where the collision is free, and all
other requirements of local motion planning can be fulfilled.

The artificial potential field (artificial potential field (ARF)) assesses the distance
between the robots and obstacles[16] to avoid collisions. The free spaces in the
workspaces are mapped as a potential field, and the potential energy will decrease
with the distance to obstacles. ARF requires accurate information of the surround-
ing environments, which makes it inaccurate in uncertain environments [10]. The
control barrier function also takes into account ARF, which ensures the Lipschitz
continuity in the constraint set[1].

Another interesting method of collision avoidance is space decomposition. One typi-
cal method is Buffered Voronoi Cells (Buffered Voronoi Cells (BVC)) in local collision

Qi Luo (4994736) Master of Science Thesis



2-1 Multi-robot Motion Planning 7

avoidance[27]. BVC method separates the space into non-overlapping Voronoi cells
and plans the paths in the independent spaces. It highly relies on navigation and
localization accuracy, and the number of robots is required to be small enough[28].
Another method divides space into high-resolution discrete grids, finds the opti-
mal path by graph searching, and smooth the path by the dynamic models of the
robots[15]. This method can be adopted to giant-sized robot groups with linear
dynamics models. Both methods are sensitive to navigation errors, which is not
suitable to be combined with risk-awareness methods.

2-1-2 Multi-Robot Motion Planning

As we have studied single robot motion planning, the main topic of this section is
how other robots in the workspace influence planning. Assume a group of n robots
running in a workspace » and planning in its k-dimension configuration space C*.
The motion planning turns into a problem in configuration space C, = Y% ,(CF).
The dimension of the whole problem turns into Dim(C,) = n * k, which means the
dimension increase linearity with the number of the robots, which will lead to high
computation costs and makes the problem intractable. A classic way to solve the
problem is to separate the problem into n single robot motion planning with n — 1
dynamic obstacles. The configuration space for a specific robot can be defined as
equation 2-1. The core of the problem is to obtain other robots’ states while planning,
which means the communication between robots is one of the keys of multi-robot
motion planning.

¢ -l ( U cy) 2-1)

JIF

Setting priority for robot group is a common solution[2], which orders the robots in
the group with different priorities. The highest-order robot will plan first without
considering the others. Then the second-order robot will plan based on its config-
uration and the planning result of the first one. Another option is that all robot
planning without considering the states of others independently [11]. Then per-
form a collision check to find out whether the result is collision-free. If not, deform
the configuration space by optimization rules and repeat the process. Both of the
methods show promising results in practice. However, as there is no communication
between robots in planning, it will take longer when the distances between robots
are constrained.

For local motion planning, different communication methods can be adopted. As
the planning performs in every step and the result is based on the instantaneous
configuration space, the configurations can be updated in time by the planning re-
sult of the other robots. The other robots can be regarded as dynamic obstacles that
can communicate their states during planning. The difference in communication
methods in local motion planning will be introduced in Section 2-2.

Master of Science Thesis Qi Luo (4994736)
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2-2 Model Predictive Control

In this section, the general formulation of MPC is introduced. We analyzed the
effects of cost functions, equality constraints, and inequality constraints. Also, dif-
ferent communication approaches in MPC are compared.

2-2-1 Introduction

The general idea of Model Predictive Control (model predictive control (MPC)) is to
find an optimal input that can minimize objective functions under different con-
straints within finite time 7y [8]. The result of an MPC problem will be a set of input
values at each time step within the time horizon, and only the first input value will be
applied. This method can deal with nonlinear, multivariate problems with complex
constraints, making it a popular algorithm to solve complex optimization problems.

For a discrete multi-robot system with n MAVs, given the obstacle position p!V and
the estimated initial state %*, k € [0, N — 1], the cost function is designed to optimize
the trajectory from the initial position to the goal without collided with obstacle
and other robots. The basic formulation of an MPC designed for motion planning is
shown as equation 2-2

1. SN gk (xk, uk) is the stage cost among O to N — 1 time steps. J (XN ) is the
terminal cost at Nth time step. As the aim of a MPC is to minimize the cost
function, by using different cost functions, we can control the robot to perform
as our expectations.

The robot should potentially run forward to the goal position. Therefore, it
is necessary to minimize the distance between the current location and goal
position. An option is to set a terminal cost as the equation,

N
IV (xN) = wév"alHEz—E;:H’ (2-3)

where, p, is the goal position and wg)al is the weight coefficient.

Qi Luo (4994736) Master of Science Thesis



2-2 Model Predictive Control 9

Another popular cost function for motion planning is to minimize the input
value, as the equation 2-4 shows. The robot will achieve a smoother perfor-
mance with help of this cost. By applying this cost, robots are less likely to
show sharp and quiver movement in practice [29].

N—-1

k k\ _ ...k
Z J (u ) - winput
k=0

‘uk’, k={12,...,N—1}, (2-4)

where, wi";put is the weight coefficient.

2. x" =%(0), %F=¢f (}2’“_1, u’“_l) is the equality constraint that confirms the dy-
namic continuity of the whole system. All robots in the real world follow their
own dynamics model, and a precise dynamic model can describe the robots’
motions more realistically, which will achieve better performance. However, a
too complicated and highly nonlinear dynamic model may lead to higher com-
putation costs, even infeasible results. Therefore, dynamics models should
always match the workload of application scenarios.

3. O(x*)NO(pk) = ) show that there is no overlapping between the occupied spaces
of robots and obstacles, which means there is no collision between robots and
obstacles and for different types of definition approaches of obstacles, the con-
straints are following,

* For spherical robot and obstacle models, the constraint can be:

where, R, and R, are the radius of the robot and obstacle.

p* —pf| > R, + R,, (2-5)

* For convex obstacles, it is possible to set the half-space between robot and
obstacles as collision constraints,

A,x* < b,. (2-6)

Although the linearization simplifies the problem, the feasible spaces in
configurations are also compressed.

4. O(x*) € C is a constraint that confirms that the robot stays in its configuration
space.

5. The time horizon N = Ty /At decides how "far" the robot can predict. By in-
creasing N, the prediction ability of the method can be enhanced. However, a
too-long horizon results in unacceptable calculation time for one step, leading
to local deadlock.

One of the most significant advantages of MPC is that it is convenient to apply
the risk-aware component into the inequality constraints and nonlinear objective
functions of MPC. In Section 2-3, the methods that combine MPC with risk-aware
methods will be introduced.

Master of Science Thesis Qi Luo (4994736)



10 Preliminary

2-2-2 Multi-Robot Communication in MPC

As mentioned in Section 2-1, by dividing the multi-robot motion planning into sev-
eral single robot motion planning with dynamic obstacles, the dimensions of config-
uration spaces are reduced, which simplifies the problem. However, different from
dynamic obstacles, the planning result of other robots is available during planning.
In MPC, the planning result is the control input, which is equivalent to a trajectory
path. In every stage in MPC, inequality constraints avoid collision with obstacles
at the planned position. Therefore, by communicating their planning trajectories,
the robots can approximate the future states of the others without prediction. Here
we introduce three main approaches, centralized sequential MPC, distributed MPC,
and decentralized MPC.

Centralized Sequential MPC

Similar to the global multi-robot motion planning with priority, this method pri-
oritizes each robot in the group and solves MPC sequentially. The robot with the
highest priority plans first and sends its planning result to the next one at each
step. The next one plans its trajectory to avoid collision with the planning result
of the last robots in the current time step and the inferior robots in the previous
time step. After the last robot completes the planning, all the robots execute the
optimization result simultaneously. After that, inferior robots send their planning
trajectory to prior robots to estimate their position next step. Centralized sequential
planning transfers the actual execution in the current time step, which will help the
robot avoid collision better since the robot’s prediction is equal to real value theo-
retically. Compared to optimizing all trajectories, this method saves computation
costs and confirms the planning precision. One disadvantage of sequential plan-
ning is that when the number of robots is too large, the robots with lower priority
will perform not so "freely" like the senior ones[6]. This problem can be lightened by
change increasing the parallel robots and reduce the priority levels. Also, accurate
localization of robots and high sampling rates are necessary, so the predictions of
other robots will not differ too much from the actual positions.

Distributed MPC

The distributed MPC requires all robots to communicate once a time step to ex-
change their planning trajectories. Unlike centralized sequential MPC, the robots
avoid the trajectories of all the other robots at the previous time step. After all the
robot completes the planning, they execute the optimization result at the same time.
The computation cost in distributed MPC is the same as centralized one, but the
communication cost is much lower when the computation is performed in the plan-
ner on robots individually. Also, the optimization problem can be solved parallelly in
practice, which is much faster than the sequential one. Although the prediction of
other robots may not be the same as actual execution, the result is still reliable when
the sampling rate is high enough. One of the shortages of distributed MPC, which
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2-3 Risk-Aware Motion Planning 11

is also the shortage of centralized MPC, is that all robots are required to move si-
multaneously. Due to the communication delay and response time, it is a challenge
when the number of robots is high in practice.

Decentralized MPC

The decentralized MPC only requires the robot to communicate their locations but
not the total planning result to each other. It is even possible that the robots using
perception approaches to locate the others, and the problem is simplified into sin-
gle robot motion planning with dynamic obstacles. The main focus in decentralized
MPC is trajectory prediction. As mentioned in section 2-1, both constant velocity
model (CVM) and learning-based prediction are applicable in practice. The perfor-
mance of decentralized MPC highly depends on the trajectory prediction. When a
rough prediction model like CVM is used, the performance will be highly degraded,
even though it can prevent collision in some scenarios. The most significant advan-
tage of this method is that the robot can perform optimization and execute the result
individually. Moreover, the errors from other robots will not influence the results.

2-3 Risk-Aware Motion Planning

Risk in motion planning, which can be defined as relative likelihood of the robot not
being able to finish the paths [25], is an important component to evaluate the quality
of the planning result. If a trajectory indicates low risk, a robot will possibly run
from the initial to the goal by following the path. Risk is a very general element, and
the methods to scale risk numerically is the main topic of this section. Currently
risk can be parameterized as planning uncertainty or a risk function consisted
by states of robots [26]. Collision probability is a classic method to assess planning
uncertainty, especially localization uncertainty. Restricting the collision probability
between one robot and one obstacle in motion planning helps the robot avoid colli-
sion with obstacles under uncertainty. There are also many other risk functions to
evaluate the risk of robots by different specialties of robot performance. By combin-
ing these functions with motion planners, the trajectory will be more reasonable,
and the likelihood of the robot completing the path will be increased. In this thesis,
I mainly focus on the reasoning elements that can assess various risk in motion
planning.

2-3-1 Risk Reasoning by Elements

Apart from planning uncertainty, risk functions can evaluate the comprehensive
risk of the planning by risk elements. The risk here is more than the collision risk
caused by planning, but all metrics can influence the robots finishing the path.

The risk elements in robot motion planning should follow specific requirements. Six
axioms are proposed to normalize the design of risk elements [18], monotonicity,
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translation invariance, positive homogeneity, subadditivity, comonotone additivity,
and law invariance[18]. However, not all popular risk elements can fulfill these
axioms. Therefore, it is necessary to formulate risk elements into proper functions
in practice.

Risk elements reflect the properties of risk from different perspectives. They can
be divided into three types elements, instantaneous risk elements, action risk ele-
ments, and global risk elements [26]. The main difference between these risk ele-
ments is the dependence of the information from planning history. The risk elements
belonging to one category are independent, and the relationship between different
types of elements are shown as {instantaneous, action} C global [26].

Instantaneous risk elements adopt no information from planning history but only
the states in the current time step. Instantaneous risk elements are commonly in-
volved in local motion planning, as both of them use the current state information.
Classic instantaneous risk elements, like clearance and visibility, mainly evaluate
collision risks with surrounding objects in the workspace, which will also be intro-
duced in the following sections. Other instantaneous risk elements focus on the
risk caused by the properties of robots, such as motion singularity and deadlock,
which evaluate the risk that the robots deadlock in unexpected space.

Action risk elements evaluate the risk in limited planning history, which means how
the last finishing robot states will influence the risk of the current state. A typical
element is the action length, which evaluates the norm distance of input between
neighboring time steps. An extended action length shows that the rapid movement
of the robots, which will lead to higher risk in planning. Action risk elements can
reflect the properties of robot movements in a limited time window, which are more
reasonable compared to instantaneous elements. However, the action risk limits
the response flexibility of robots, which makes it hard to avoid collisions in ever-
changing environments. Therefore, it is essential to balance the importance between
instantaneous and action risk elements in practice.

Global risk elements evaluate the general risk of the entire planning history, which
is a summary of instantaneous and action risk elements. Apart from analyzing the
previous risk elements over entire history, global elements can also reflect global
risk, like communication delay and the remaining power of the energy system. These
elements assess the risk caused by the complexities and stabilities of working en-
vironments. An unstable working environment will lead to unexpected danger, and
the robots will be more likely to meet accidents. As it is complex to combine global
risk elements with local motion planning, it is not in the scope of this thesis.

2-3-2 Applications of Risk Elements in Local Motion Planning

Although the risk elements above can evaluate different risks in motion planning,
not all of them are suitable for local motion planning, which requires numerical
formulations of risk elements. Also, the computation efficiency should be good
enough to fulfill the requirement of a high sampling rate. A classic way is to apply
risk elements r* to the cost functions of MPC, as the equation 2-7 shows.
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(2-7)

By using MPC, the risk of the result assessed by r* can be minimized, by which
the robot will run in a safer trajectory. In chapter 3, we proposed several navigation
risk elements that are suitable for motion planning. In chapter 4, we discussed the
formulations to combine these elements with a classic local MPC motion planner.
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Chapter 3

Risk Assessment

In this chapter, I mainly focus on risk assessment methods that evaluate naviga-
tion risk in motion planning. As mentioned in the previous sections, risk in mo-
tion planning is a relative likelihood of the agent not finishing the path, which is
numericalized by risk elements in planning. Using risk elements to evaluate risk
numerically is efficient and straightforward in practice. This chapter discusses risk
elements that assess the collision and congestion risk, whose pros and cons are an-
alyzed in different scenarios. New elements are also developed to assess risk more
reasonably. The Free Space Area and the Distance to the Centroid of Free Space are
two elements that can assess the danger of the collision between a single robot and
other obstacles in workspaces. Potential to Goal is the element that can evaluate
the congestion risk for multi-robot systems. All these elements can be formulated
numerically.

The outline of this chapter is the following. In section 3-1, the collision risk ele-
ments are introduced. Examples are generated to show the pros and cons of these
elements. In section 3-2, the idea of congestion risk are introduced. Potential to
Goal is implemented to assess congestion more reasonably, compared with existing
numerical elements.

3-1 Navigation Risk Among Static Obstacles

3-1-1 Collision Risk Elements

Collision risk elements are used to evaluate the collision risk between robots and
obstacles. The word “collision” means a statement of a robot striking against other
obstacles in the workspace, and "collision risk" means the risk caused by the rel-
ative location between robots and other obstacles which may lead to collisions. In
multi-robot motion planning, robots are more likely to work in safer spaces by mini-
mizing collision risk, which means they are less likely to collide with obstacles. The
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following collision risk elements are all based on the current position information
of robots and other obstacles, which contains no history working information. In
the scope of this thesis, collision risk elements include the Sum of Distances to all
obstacles, the Clearance (the closed distance to obstacles), the Free Space Area, and
the Distance to the Centroid of Free Space.

Sum of Distances

Sum of distances ¥; = >, d; is the most direct element to evaluate the collision
risk. The "distance" between two obstacles is the clearance between the closest
two points on the obstacles. X; is also named as collision potential field, which is
widely used in the studies of motion planning [29][28][12]. The value of the sum
of distance evaluates how close a robot is to other obstacles. The limitation of this
element is that all position information is added, which ignores the other statement
information, like the orientations and density of obstacles. The Fig. 3-1 show that
the sums of distance are the same in the left and right scenarios, but in 3-1(b) the
robot is situated in a narrower space, which shows higher risk intuitively. Therefore,
more elements are required to evaluate risk in this scenario.

3 4 3t
2 2
2 ; 2 “
1 4 1 4
= )
= 0 v — 0
> v >
-1 1
-2 ; -2 f
vV “
-3 2 -3 2
-2 0 2 -2 0 2
x [m] X [m]
(a) The obstacle partly surrounds the robot (b) The obstacle totally surrounds the robot

Figure 3-1: Comparison between two scenarios of Sum of Distance. The black squares represent
the obstacles and the blue circle represents the robot.

Clearance

Clearance d,,;, = min(d;), which is the closed distance to all other obstacles, is
also a pretty widely used elements. Unlike the sum of distances, every distance
is compared with each other, and only the shortest one makes a difference. This
element also shows its limitation in some situations. As the Fig. 3-2 show, the
clearances are the same in the two scenarios. However, in left scenarios 3-2(a), the
robot is not so tightly surrounded as the right one, showing the lower probability
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of colliding with surroundings. Sum of Distance and Clearance only contain the
scale information between the robot and other obstacles, excluding relative position
information among obstacles. In the following, elements that adopt the obstacle
densities are introduced to assess collision risk more reasonably.

Free Space Area

Free space area S, represents the size of the secure space where a robot can move
without collisions. Sg. can be formulated as the intersection of the half-space feasi-
ble regions, whose edges are vertical to the centerline of the robot and the obstacles.
The free space is always convex, and the obstacle density influences the shape of the
free space. Position information is adopted in Sg... more sufficiently than previous
elements. The weakness of the free space area shows when the obstacles tightly
surround the robot. As the Fig. 3-3 show, the robot in 3-3(a) is more closed to
obstacles, and the collision risk is higher in the left scenario. However, the Sy is
the same as the right one in 3-3(b). This example indicates that the free space area
can only represent the obstacle density but is short of assessing the distance to
obstacles.

3 2 3
2 4 2
%

1 ; 1
A 2 — 0 2
> > ;
-1 -1 “
“
“
-2 -2 /
/
/
-3 -3 ’

-2 0 2 -2 0 2
x [m] X [m]
(@) The obstacles are far away from the robot. (b) The obstacles are closed to the robot.

Figure 3-2: Comparison between two scenarios of Clearance. The black squares represent the
obstacles and the blue circle represents the robot. The red line represents the clearance.

Distance to the Centroid of the Free Space

Distance to the centroid of the free space (distance to the centroid of the free space
(Dis2Centr)) d..nr indicates the distance to the geometry centroid of the free space,
which is a complement of the free space area, as the Fig. 3-4 shows. For a given free
space, the centroid of free space always locates in the middle and keeps the same
distance with surrounding obstacles. Consider a 2-demension polygon free space
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(a) The robot locates close to obstacles (b) The robot locates at the center of free space

Figure 3-3: Comparison between two scenarios of Free Space Area. The red area represents the
obstacles and the blue circle represent the robot. The green region represents the free space.

with a Sgee area and a group of vertices p; = (x;,y;) € P,. The centroid of this free
region Ceentr = (¢, ¢y) can be computed as:

n—1
D (@ + i) (@yirn — Ti1y)
i=0
n—1
> Wi + yis1) Witig1 — yir12i)
i=0

o= 6SF‘ree
(3-1)

v= 6SFree

Only the boundaries that shape free space influence the value of d., which mutes
the "invalid" obstacles. It is fascinating that when the robot locates at ccentr, it also
is closed to all obstacles equally. It seems reasonable to use the sum of distances
to valid obstacles to assess collision risk. However, the number of valid obstacles
varies with the robot position in a cluttered environment, making the value of ¥,
discontinuous. The centroid of the free space changes continuously with the robot
position, which keeps the numerical value of collision risk smooth in plannings.

3-1-2 Deformed Distance to the centroid of the Free Space

To sum up, the elements based on distance and obstacle density are necessary
for assessing collision risk. The absolute distance information evaluates how close
the robot is to a location, and the obstacle density evaluates how tightly obstacles
surround the robot. Therefore, I propose that the combination of distance to the
centroid of the free space and area of free space is sufficient enough to evaluate risk
in most situations in multi-robot motion planning, as the equation 3-2 shows.

(pr - pcentr)T(pr — pcentr) _ dgentr
SFree SFree

(3-2)

hcentr =
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Figure 3-4: The scenario of Distance to the Centroid of the Free Space. The red area and the
green arrows represent the obstacles and their velocities, the blue circle represent the robot. The
green region and the black line represent the free space and the distance to the centroid of the
free space.

In the previous subsection, the intersection of the half-space feasible regions rep-
resents the free space. The dynamic constraints restrict the movement of a robot,
which means the obstacles that locate too far away from robots make no difference
to the "freedom" of a robot. The distances to the workspace’s boundary hardly influ-
ence the planning of the robot. Therefore, I propose the Valid Free Region to reshape
the free space, limiting the biggest free area of robots. The intersection of the origin
free space and the valid free region formulates the reshaped free space, eliminating
the obstacles or boundaries in the distance.

The most reasonable valid free region should be a circle area around the robot,
as the distances to the boundary of the valid free region are equal. However, it is
challenging to compute the area of a space that is shaped by both straights and
curves using geometric methods. Therefore, in this thesis, the valid free region
is represented by a rectangle region of length acenty and width beentr, as the Fig. 3-5
shows. The orientation of the valid free region should be the same as the orientation
of the robot velocity. When the value of dcenty and beentr are different, the orientation
of the rectangle will always keep the same as the robot movement, which equals
the distance to the boundary of the rectangle in the forward direction. The region
shaped by the blue dotted line is the biggest valid region, the yellow polygon is
the original free space, and the green intersection area of these two spaces is the
reshaped free space.

Compared with other classic collision elements, the deformed distance to centroid
shows better performance will assess risk in a cluttered environment, like a narrow
corridor. A simple experiment can prove this advantage, as the Fig. 3-6 shows. Two
MPC local motion planners are designed as the baseline in section 2-2. The only
difference between these two planners is that dceyt, is involved in the cost function in
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Figure 3-5: Comparison between the origin free space and the reshaped free space. The green
region, the reshaped free space, is the intersection of the blue-spot valid free region and the yellow
origin free space

one of the planners, and the other adopts the potential field. The result shows that
the planner with d.,, prefers to pass around the obstacle group but not go through
it, as the free space in the middle of the obstacle group is much smaller than the
outside. Also, the closer the robot is approaching obstacles, the higher dcent, Will
be. This simple experiment shows that the deformed distance to the centroid can
assess collision risk reasonably. The experiments will carry on in chapter 4 to test
its performance in more complex environments.

5 I T
—
E o
) ® o o
—Deformed Dis2Centr|
—Potential Field
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-10 -5 0 5 10

X [m]

Figure 3-6: The planning result by the planner involving deformed distance to centroid and
potential field. The green circle represent the robot and its initial position.
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3-2 Navigation Risk Among Moving Agents

3-2-1 Congestion Risk

Congestion is a situation in which there is too much traffic, and movement is strenu-
ous. For a multi-robot system, when the robots crowd in a narrow space, the robots
may block the paths of each other, even deadlock in the middle. The congestion risk
is the risk that the robots cannot finish the path but crowd in the unexpected space.
Since robots’ task is to find a collision-free trajectory from initial to goal positions,
the goal position plays an essential role in navigation. Also, for robots working in a
2-dimensional workspace, it is crucial to involve the robot velocity to solve conges-
tion problems [5]. Therefore, it is more complex to assess congestion risk in practice
than collision risk.

Currently, a cellular automaton model has been developed to evaluate the conges-
tion. The workspace is divided into grids, and the congestion risk in each grid is
computed discretely [21]. The numerical value of congestion on each grid is deriv-
able, but the computation cost is pretty high. This method is more appreciate to
be applied in global motion planning methods, and the congestion potential field is
a better choice when using local motion planning methods. The basic congestion
potential field is based on the position information of robots. The behavior potential
field is a promotion to evaluate the congestion risk in dynamic environments, as the
equation 3-3 shows [14]. The explanation of equation 3-3 is introduced in [14]. The
Diagram 3-7 shows the geometric relationship of a robot group in a workspace. The
behavior potential field captures the relative positions and directions and absolute
velocities of moving agents.

vl (3-3)

T
exp |k cos (0;; Pi — D Pi — P
R(pla 1]7p]>V] Z hd X exp l_( J) ( ])

271’[0( ) 20’h

Risk Level Set (Risk Level Set (RLS)) is another choice to evaluate collision risk [20].
Similar to behavior potential risk, RLS captures the relative positions between the
robot and other agents. The only difference is the absolute velocities of moving
obstacles, as the equation 3-4 shows.

vl — n exp(_(Pi—pj)TQ(pi_pj))
R(pi,pj,Vj) _i:Zl 1+ exp (—ONJT (pi—Pj))

(3-4)

The basic constructions of both methods are a distance peak function multiplied
by a twisting function. The distance peak function represents the collision risk
discussed in section 3-1. The twisting function skews the original risk functions by
obstacle velocities. Both twisting functions capture the relative direction between
relative position and absolute velocities of moving agents. However, both methods
sacrifice the collision risk to meet the requirement of congestion risk. Therefore, I
propose a new congestion risk element: Potential to Goal.
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robot i

Figure 3-7: Geometric diagram of a objective robot, its goal position, and a moving robot in
workspace

3-2-2 Potential to Goal

Unlike previous congestion risk elements, Potential to Goal (Potential to Goal (P2QG))
twists the navigation cost by the velocities of moving agents. The congestion risk
formulated by Potential to Goal is shown as equation 3-5,

1 cos (0;g) +1
Rpiaeiap'aprA = o Z
(BB 1P V2) = | L |50 T3 (T + (s — 1)

+ 1) Ipi =Pl (35)

where, m is the number of other moving agents in the workspace, p;, pjand p, the
positions of the objective robot, moving agents and goal, v; is the velocity of moving
agents, 0;, is the angle between robot to agent and agent to positions and 3 is the
parameter controlling the smoothness of the potential.

The twisting parameter of potential to goal, as the equation 3-6 shows, consists of
two main parts, the intention of motion Iy,, and skewing parameter 7.

1
PQG(pw eigv Pj,Pg; V]) = Z |:219igTvel:|
j=1 L=
L l 1 cos (0;g) +1
= [2m 1+ exp(=Bv] *(pi — D))
Iy,, = cos (i) + 1
- 1 (3-6)
1 pu—
14 exp(=pv] * (pi — py))
PR— . T p— .
coS (ezg) — (pj _pl) (pg_ p])
Ipj = pill lpg — sl
cos (0;4) + 1
IO«;gTvel = ( zg)

1+ exp(—fv] * (pi — Pj))
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Figure 3-8: Contours of one example of Ip,, and P2G. The line with lighter color represents
higher risk positions.

The intention of motion Iy, represents the relative congestion potential between
objective robot, moving agents, and goal. We proposed that when 6;, is equal to
0, the objective robot ¢« shows the highest risk to congest with moving agent j. When
the robot ¢ has passed by j, the congestion risk is closed to 0. Similar to RLS,
skewing parameter 7., is applied to deform the intention of the motion to the velocity
direction of moving agents. P2G is higher along the direction of the velocities of
moving agents than the original intention of motion. The Fig. 3-8(a) and 3-8(b)
illustrate the contours of Potential to Goal before and after skewing. The moving
agent locates at (-4,0), and the robot’s goal is (4,0). The velocity of the robot is (-1,1),
as the arrow in Fig. 3-8 shows. The lowest risk region keeps the same after skewing.
However, the highest risk region is skewed to the direction of velocity v;.

The congestion risk is defined as the risk of robots congesting together but not head-
ing to their goals. Therefore, it is more reasonable to combine them with the distance
to the goal position. The Fig. 3-9 shows the contour of congestion risk formulated
by Potential to Goal. As the Fig. shows, when a robot i is running from A to goal
position, the congestion risk is higher than origin navigation risk around initials.
After passing by the robot j, the congestion risk hardly influences the navigation
cost. The robot will run directly to the goal position.
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Figure 3-9: The Contour and the value of congestion risk formulated by Potential to Goal
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Chapter 4

Risk-Aware Multi-Robot Motion
Planning

In this chapter, the proposed risk-aware multi-robot motion planning is the main
topic, which can navigate the robot from the initial to the goal position while mini-
mizing the risk of trajectory. In this scope, we focus more on the navigation risk in
Chapter 3. Collision risk among static obstacles and congestion risk among moving
obstacles are the central parts of our study. To study the performance of collision
risk elements, we will test a single robot in cluttered environments with static ob-
stacles. As for the performance of congestion risk elements, we mainly focus on how
a group of robots swaps their positions in environments without static obstacles.

The core of the work is the combination between risk elements and the classic multi-
robot motion planner. Therefore, we introduce distributed multi-robot model predic-
tive control as the baseline of multi-robot motion planning. By modifying objective
functions of the baseline with risk elements, the planner can evaluate risks from
different perspectives. As discussed in section 2-2, the distributed multi-robot MPC
will be solved parallelly by the same computer, using the planned trajectory from
the last time step as the prediction of current states of the robot.

The outline of this chapter is shown as follows. In section 4-1, the formulation
of the risk-aware motion planning and the combination of different risk elements
will be introduced. In section 4-2, the basic scenarios and settings of my planner
will be described. In section 4-3, I will introduce the test scenarios of collision
risk elements and compare their performance by collision number, clearance, and
average velocity. In section 4-4, I will introduce the test scenarios of congestion risk
elements, which shows how to formulate a risk-aware motion planner to balance the
efficiency and safety of planning trajectories. In section 4-5, I focus on the influence
of the uncertainty of robots’ localization.
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4-1 Problem Formulation

This section presents the risk-aware multi-robot motion planning that we used in
the following experiments. All components of the MPC planner are introduced in
this section. This MPC planner can solve both single and multi-robot robot motion
planning problems, which will be adopted in Sections 4-3 and 4-3 to check the
performance of collision and congestion risk elements.

4-1-1 Baseline

The main topic of this scope is using multi-robot motion planning to plan the ex-
pected trajectory to finish the task. The basic formulation of MPC has been intro-
duced in section 2-2. A group of n robots working in a bounded workspace W C R2,
Adopting a 2-dimensional workspace but not a 3-dimensional one is because the
collision and congestion problems are more complicated in 2-dimensional environ-
ments, as robots cannot move vertically to avoid collisions or deadlocks in cluttered
environments. Therefore, the performance of risk elements can be shown more
clearly in a 2-D workspace.

Collision Constraints

Each robot i € R = {1,2,...,n} is represented by a circle with a radius r, as the real
geometric model of robots is complicated, which will reduce the computation cost
of collision checking at the same time. Each static obstacle o € O = {1,2,...,m}
is represented by ellipses or rectangle with width 2a, height 2b and orientation ~.
The shapes of static obstacles in cluttered environments are usually irregular and
hard to be indicated mathematically. The approximation can simplify the collision
checking but keep the basic geometry information of obstacles as well. Dynamic
obstacles are not in the scope of this article, as other agents can be regarded as
dynamic obstacles in risk-aware multi-robot motion planning, and no more dynamic
obstacles are required in tests.

One of important constraints mentioned in section 2-2 is the collision free con-
straints. Even though robots and obstacles are approximated as primitive objects,
it is still not simple to check collision between a circle and a ellipse, or a circle and
a rectangle, as the distance to a ellipse can not be expressed as a closed form for-
mulation [22] and the distance to a rectangle is not a linear function. The classic
way to check the collision is adopting quadratic constraints, which is shown as,

pf_péﬁHQ:(pz_pO)TQ(pl_po)>17 iERa 0607
1 1 (4-1)
(a+r)%’ (b+7“)2>'

) = diag(

In order to normalize the collision constraints between different obstacles, we as-
sume that every robot should work in its free space, which is shaped by all sur-
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Figure 4-1: Linearized Collision Constraints of the MPC. The blue ploygons represents the free
space in different time stages. The red curve is the planning result and the green curve is the
path of the centroids of free space.

rounding static obstacles and moving agents. The distributed MPC adopts the plan-
ning trajectories in the last time step as the position of moving agents. Therefore,
the collision constraints turn into a set of linear constraints. The linearization of
quadratic constraints between a circle and ellipse can be expressed as a linear half-
space A;,p; < bip,i € R,0 € O, whose boundary is tangent to the obstacle ellipse.
The formulation of A and b can be expressed as,

Ao = ARTQM(y), b = B

10
tr tr
k P, — P k T k
Aio = Hpir — p?rH ) bio = Aio (pfj - Aio) )
7 o
pi" = QM(y)pi, Py =QM(v)p;,

| cosy —siny
M(v)_lsinv cosy ]’

(4-2)

where, p!” and p!" are the normalized position of robots and obstacles and M(v) is
the rotation matrix by the orientation of the obstacle. As for rectangle obstacles, we
suppose that obstacles are surrounded by closed ellipses with width 2v/2a, height
24/2b. For other agents in the workspace, the constraints can also be transformed
into A;;p; < b, € R,j # i € R. And the conditions that the robot stays in its free
space can be expressed as,

Aipi < by, A = [Aio, Aij),  bi = [bio, byl (4-3)
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Dynamics Equality
The dynamics model of each robot i can be formulated as a discrete-time equation,

p!
ok

)

X = +

p; | [T AT
Vf“ 0 1

0 N
At-T ] U_?, Xg = X?a (4-4)

where, x¥ € X C R™ is the states of the robots, including the positions and velocities,
u¥ € U c R™ is the inputs of the system, x) is the initial state of robots, I is the
identity matrix and At is the sampling time. All the robots in the experiments are
assumed to have the same dynamics model.

Objective Function

The objective of the multi-robot motion planning is to find a control input u? for each
robot i at discrete time step k. By following the control input, the robots can find an
available trajectory to get closer to the goal g position while following the dynamic
model and avoiding collision with other objects in the workspace in the next time
horizon .

The baseline of the objective function can be shown as,

xllerflizQI:lN—l ]:Z: I (Xf) +J (X£V7gi> ) (4-5)

where, JF is the stage cost of robot i at time k, J¥ is the terminal cost of robot i at
time N and N = 7/At is the number of time steps of MPC, which is time horizon.

The stage cost is a collision potential cost function, which guides the robot to keep
its distance from other agents and static obstacles, as the equation 4-6 shows,

T (xb) = S we (Ch+ L),

-1
B b R L I L T
/Ll p— ex ex
0, |t —pf], =1,
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where, C% is the sum of collision potential cost of all objects in the workspace, which
include all static obstacles and other moving agents. C£ is the collision potential
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cost of workspace boundary £. w, is the weight coefficient of the collision cost, >,
is the extended distance metric, \; and ), is the extended parameter of obstacles
and robots. Only if the robot locates in the extended region {\ja + \.r, \jb + A1}
around obstacles, the cost will make a difference to the planning result. The value
of \; and )\, decide the area of extended regions, which are always larger than 1.
d’ is the vector to each boundary of the workspace. d; is the threshold distance
of collision potential cost to the boundaries. when deeH is smaller than d., the
collision potential will be computed, otherwise it the collision potential cost is O.

The terminal cost is the goal navigation cost, which evaluates how a robot is close
to the goal position, as the equation shows,

N (PN - gi)T (PN — &) )
) ’Ll)g ’pN—g )
ip g

where, w, is the weight coefficient of the goal navigation cost, df;’ is the terminal
position of the planning trajectory in the last time step. Moreover, for the first time
step, dfz is equal to the initial position. Dividing the distance to the goal by the
previous distance normalizes the value of cost around 1, which is more convenient
when designing the weight coefficient.

Baseline Formulation

The completed formulation of multi-robot MPC is shown as 4-8. The baseline of
multi-robot MPC only considers the simple collision risk, which is not enough to
minimize various risks in planning. In the next part, we will introduce how to adopt
risk assessment into the baseline.

N-1
min Jik (Xf) + JN (XZN,gi)

(xk_l,uk_l), (4-8)
bi, A= [Ai, Aij)", b= [bio,biy]",  xF = [pF,vFT,

wleu, xFex, Vke{l,... N},

Vie R={1,2,..,n},Vj#i € R,Yoe O=1{1,2,...,m}.

4-1-2 Risk-Aware Multi-Robot Motion Planning

Compared to classic motion planning, risk-aware motion planning will involve risk
elements in the MPC formulation. As we discussed in section 2-3, chance con-
straints and risk function are two assessments of risk in motion planning. However,

the constraints can only restrict the risk under a pre-defined threshold. Involving
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risk functions into objective functions in MPC can minimize risk while planning, en-
suring that the gradient of objective functions is always in the direction of the lower
risk. Therefore, we designed two groups of experiments to test the performance of
the risk elements in MPC.

Collision Risk

The baseline of multi-robot motion planning has already contained a simple collision
risk cost function C¥. This function is the promotion of sum of distance ¥, that we
discussed in section 3-1. Compared with the origin, C% considers the obstacle den-
sity by adopting extended regions around obstacles. To compare the performance of
the risk elements Deformed Distance to the centroid of Free Space, we introduce

our collision risk function, as the equation 4-9 shows,

(pr - pcentrS)T(pr - pcentr)7 Peenter ¢ F,
JF = (4-9)
(pr - pgoal) (pr - pgoal) F
SF ) Pcenter € I,
ree

where, F is the reformed free space region that we defined in Section 3-1. When
the goal position locates in the free space, the potential to get closer to the deformed
centroid and get closer to the goal may conflict with each other, resulting in deadlock
in the middle of two positions. Thus, the distance to the goal will replace the distance
to the centroid, as the equation 4-9 shows.

A challenge of this method is to compute the area of free space because solving the
area of the free space is a linear searching problem. Therefore, It is assumed that
free space between neighboring time steps will keep similar under a high sampling
rate. The area of free space in the last time step could represent the current area
approximately. The area and the centroid of free space need to be computed once
a stage before optimization, and the area will not be optimized in MPC. In this way,
the objective function becomes quadratic, and the time-consuming in planning can
be highly reduced.

Another collision element that we discussed in Section 3-1 is the Clearance. Similar
to collision potential cost, the clearance can be formulated as 4-10 in MPC. The
maximum distance to the obstacles or the boundaries of the workspace represents
the clearance value, and only the closed distance will make a difference in planning.

JE (xf) = w, max (M?,Mfe) , 1E€ER, 1€ (RUO\i),_e eé,

(2

_lnk _ pk kE_ _k
M-’?:{1 ‘pl pl’ﬂex’ ‘p’ pl‘ﬂex<1’
g E_ _k
0, |t ot 0o 21 (4-10)
T
dk " dk
1 - Sie Sie o |lak | < g
k ) iy
Mie = detTdet ’ s ‘
0, |t > der
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where, M} and M} are the deformed distance of a single object [ or a boundary e.
One shortage of clearance in MPC is the max function. The gradients of the objective
functions in an optimization problem decide the searching direction. However, it is
impossible to compute the gradient of the max function mathematically. Therefore,
the optimizer is difficult to converge to the optimal value when two distances are
close.

Congestion Risk

In the scope of this article, two collision risk elements, Potential to Goal and Risk
Level Set, are adopted into MPC to show the influence of collision risk elements.
The formulation of potential to goal in MPC is similar to R(p;, 0i4,p;,pg,v;) in section
3-2. The difference is that the parameter of distance to goal is transformed into the
terminal cost of the baseline, which is shown as equation 4-11,

N_ o) (0N o
TN —w, (P2G + 1) (v gzN (b )
‘ P;, — &
i cos (9%) +1
= 2m1 4 exp(— 6v§VT «(p) —p}))

P —pz) (b~ p7')

s
Mo o]

)

(4-11)

)

o () -

The robots will prefer to finish the paths in a shorter time without congesting to-
gether, which increases the average velocities at the same time. Another type of
congestion risk application is Risk Level Set that we discussed in Section 3-2, as
the equation 4-12 shows,

T
O OP (— (o —pf)" (o - p?)) _
Ji = ; | + exp (—aV?T (pf B p?)) . 4-12)

Risk Level Set is formulated as a twisted collision potential field and a combination
of congestion and collision risk elements. The skewing parameter is similar to Po-
tential to Goal. By skewing the peaks of potential fields to the directions of obstacle
velocities, the objective function gradient becomes lower on the risky region, and
the robots will choose to pass by the obstacles from the opposite directions of their
speeds.

These two applications of congestion risk in MPC reflect the formulations of con-
gestion risk elements in terminal navigation cost and stage collision cost. In the
following experiments, we will test the influence of the two applications in cluttered
environments.
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4-2 Simulation Setup

To test the influences of different applications of risk in multi-robot motion plan-
ning, we built up a simulation platform in Matlab 2017b in a computer with an
Intel(R) Core(TM) i5-7360U CPU @ 2.30GHz CPU. The structure of the MPC is based
on the work of [29], which relies on Forces Pro to [7] generate NMPC code. The
objective functions and inequality collision constraints are refactored to meet the
requirements of the MPC in section 4-1.

In both groups of simulations, the sampling time is At = 0.1s, and the time horizon
of the MPC is N = 20. The radius of the enclosing circle of the robots is 0.5m. The
initial guess for each time step is based on the previous planning result. When the
result is invalid, like reaching the maximum iteration, a constant velocity model will
be adopted to predict the robot trajectories. The maximum iteration is defined as
800, which is high enough to find optimal value in practice. The initial velocities are
all set as 0. The uncertainties of robot positions and velocities are considered in the
experiments, representing the localization and sensor error in practice. The testing
scenarios will be introduced in section 4-3 and 4-4. Each scenario consists of 50
samples.

4-3 Performance of Collision Risk Elements

Three scenarios, circle obstacle group, narrow corridor, and random corridor, are
generated to show the performance of collision risk elements in motion planning.
Robots are tested in closed workspaces in all scenarios and will start and end at the
same initial and goal positions.

* Circle Obstacle Group: As Fig. 4-2 show, the robots are tested in a 20 x 20m
workspace. The initial position is at (-8, 8), and the goal is at (8, -8). The static
obstacles locate on the vertices and the center of a pentagon. The sizes and
orientations of obstacles and the size of the pentagon are generated randomly,
which confirms enough free space between obstacles so that the robots may
choose to go around the group but not pass through.

* Narrow Corridor: As Fig. 4-3 show, the robots are tested in a 20x 10m rectangle
workspace. The initial position is at (-8, 0), and the goal is at (8, 0). Four static
obstacles locate on the side of the corridor, and the sizes and orientations of
obstacles are generated randomly. The shape of the obstacle is more extreme
than the previous obstacle group, which will lead to narrow passages in large
part of scenarios. However, the passage is wide enough space for the robot
to pass through. As the shapes of the passages differ a lot between different
scenarios, the robots may deadlock in unexpected space.

* Random Corridor: As Fig. 4-4 show, similar to narrow corridor, the robots
are tested in a 20 x 10m rectangle workspace. The initial position is at (-8,
0), and the goal is at (8, 0). Five static circle obstacles with a radius of 0.5m
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are placed in the corridor area randomly. The distances between obstacles are
mostly more comprehensive than the other scenarios. Therefore, the collision
risk is much smaller.

The basic structure of the there MPC controllers is the baseline. All MPC controllers
contain the essential terminal navigation cost. By combing different collision risk el-
ements, the robots will show different trajectories to avoid collision in the workspace.
The weights of objective functions are similar, ensuring the cost values are close to
each other. Also, the weights are set reasonably so that the robot can finish the
path in most scenarios.

¢ Baseline+PF (PF): The baseline of multi-robot MPC. It is the basic formulation
of collision risk in motion planning

* Baseline+Clearance (Clear): Clearance, shown as equation 4-10, replaces the
collision pential field of the baseline. Only the closed distance to obstacles will
influence the planning result

¢ Baseline+Dis2Centr (Centr): Distance to the Centroid of Free Space, shown as
equation 4-9, replaces the collision pential field of the baseline.

Although the weight of objective functions is adjusted to make sure the robot can
pass through most passages, it is still possible that the robots get deadlock. There-
fore, the number of deadlocks and the number of collisions are recorded. The clear-
ance, which is the minimal distance to the obstacles, is the most important metric
to evaluate collision risk. The average trajectory lengths evaluate the efficiency of
the robots finishing the task. The summary of the simulation results are shown as
table 4-1. The Fig. 4-2 to 4-4 shows the trajectories of the robots from each type of
scenarios by each controller.

As the simulation result shows, the controller Dis2Centr performs best compared
with others. By adopting Dis2Centr, The robots keep appropriate distances to obsta-
cles, which shows the lowest collision risk in all scenarios. Moreover, in the scenar-
ios narrow corridor and random corridor, the number of collisions is much smaller
when the MPC adopts Dis2Centr. However, Dis2Centr will lead to more deadlock
as the centroid of the free space lays opposite to the goal in some scenarios. Vary-
ing the size of the feasible region can release the problem. Also, the trajectories of
Dis2Centr are longer than the others in the random corridor scenario, as the robots
prefer to go around the crowded obstacles but not pass through the narrow pas-
sages, as the Fig. 4-4 shows. The performance of Clear is similar to PF in cluttered
environments. However, the number of iterations of Clear is much higher than the
other controllers, especially in a less risky environment. As we discussed in sec-
tion 4-1, the stage cost function of Clear is non-differentiable. When the robots are
located in the middle of two obstacles, the optimizer may spend higher iterations,
even over the maximum, to converge to the optimal value. Too many iterations will
lead to a longer planning time. Therefore, Clear is only suitable for low sampling
rate scenarios.
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. Motion Num. Num. Clearance (m) Traj.
Scenarios
Planner of of . Length
Colli. | Deadlock | &X min  avg | ()
Circle Obs Baseline+PF 0 0 0.70 0.06 0.49 | 23.49
Grou | Baseline+Clearance 0 0 0.66 0.09 0.49 | 23.63
p Baseline+Dis2Centr 1) 4 0.86 0.18 0.57 | 24.08
Narrow Baseline+PF 2 3 1.33 0.09 0.71 16.54
Corridor Baseline+Clearance 2 2 1.38 0.08 0.73 | 16.62
Baseline+Dis2Centr o 5 1.94 0.03 0.98 | 17.21
Random Baseline+PF 1 0 1.07 0.04 0.61 17.12
Corridor Baseline+Clearance 1 0 1.08 0.05 0.61 17.11
Baseline+Dis2Centr 1) 2 1.45 0.23 0.69 | 17.87
Table 4-1: Comparison of performance of 3 MPC motion planners (Baseline+PF, Base-

line4Clearance, Baseline+Dis2Centr) in 3 different scenarios (circle obstacle group, narrow corri-

dor, and random corridor). For each scenario, 50 different test samples have been generated

4-4 Performance of Congestion Risk Elements

Four different types of scenarios are generated to show the performance of conges-
tion risk elements in motion planning, symmetric swapping, asymmetric swapping,
pair-wise swapping, and random. Six robots are tested in a 12 x 12m space, whose
initial and goal positions differ among test samples.

e Symmetric Swapping: As Fig. 4-5 show, The robots locate on the vertices

Qi Luo (4994736)

of a regular hexagon at the beginning and swap their positions with the ones
on the opposite side of the origin. In different test samples, the side lengths
of regular hexagons are equal to 4m, and the regular hexagons rotate random
angles around the origin. As all the robots will pass around the origin to their
goals, they will possibly congest and collide with each other.

* Asymmetric Swapping: As Fig. 4-6 show, the robots locate on the vertices
of a random irregular hexagon at the beginning, and the opposite robots are
symmetric about the origin, which will swap their positions. Compared to
symmetric swapping, the distances to the origin are different initially, which
will lead to more challenging congestion problems.

* Pair-wise Swapping: As Fig. 4-7 show, the six robots are separated into three
groups and swap their positions. The positions of the three groups are gener-
ated randomly, and the paths of robots may interact with each other. Thus, the
test is different from three individual pair-wise swappings without interaction.
The robots are less likely to congest in this scenario than asymmetric swapping
as all six robots are not symmetric about the same position.

* Random: As Fig. 4-8 show, the goal and initial positions of the robots are
generated randomly. The congestion is unlikely to happen in most scenarios.
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4-4 Performance of Congestion Risk Elements 35

The basic structure of the five MPC controllers is the baseline. By adopting the
risk elements in objective functions, the robots will show different congestion and
collision avoidance performances. The following is the explanation of the five motion
planner in Section 4-1. The weights of objective functions are equal to each other,
and the whole cost values are close enough. Therefore the influence of weights can
be minimized in planning.

* Baseline-PF: The baseline of multi-robot MPC without collision potential cost.
Although the collision potential cost mainly shows the collision risk, it can
release the congestion risk in practice.

* Baseline: The baseline of multi-robot MPC. The collision potential field and
original terminal navigation cost are adopted. Here we propose potential risk
but not distance to the centroid of free space as the collision risk assessment,
as RLS also involves collision potential field to control collision risk.

* Baseline+RLS: The baseline of multi-robot MPC. Moreover, the collision poten-
tial cost is replaced by RLS. It shows the performance of different congestion
risk assessments.

¢ P2G: Only the potential are adopted as terminal objective functions. Only con-
gestion risk is evaluated in the test.

* P2G+PF: The potential to goal replace the objective functions in the baseline,
and the collision potential field keeps the same. Both collision and congestion
risks are assessed in this controller.

The number of simulations that are not complete the test is recorded as a numerical
metric to evaluate the performance of robots. The trajectory time shows the perfor-
mance of the controllers controlling congestion risk. The average speed of the robots
is also analyzed to reflect the congestion situations of a simulation. To numerical-
ize the control performance of collision risk, I also compute the clearance, which is
the minimal distance between any two robots, in a simulation. The summary of the
simulation results are shown as table 4-2. The Fig. 4-5 to 4-8 shows the trajectories
of the robots from each type of scenarios by each controller.

The result of table 4-2 shows that the combination of potential to goal and col-
lision potential field P2G+PF performs best, especially in the cluttered scenarios.
P2G+PF balances the control of congestion and collision risk, which shorten the
trajectory time without collisions. High average speed and short average time con-
sumption represent excellent performance in controlling congestion risk. In the
symmetric and asymmetric swapping scenarios, Our controller P2G+PF shows the
highest average velocities and lowest trajectory time. Although the time consuming
of baseline+RLS is also acceptable, the minimal distance is much less than P2G+PF
and also baseline. Collisions are avoided completely in all test samples when using
Baseline and P2G+PF, while baseline+RLS produces 4 and 7 collisions. It shows
that RLS scarifies the collision risk to release the congestion, leading to high col-
lision risk in cluttered environments. In less risky scenarios, pair-wise swapping
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. Motion Num. Num. Avg. Traj. time (s)
Scenarios Clearance
Planner of of vel. .
Colli. | Deadlock | (m/s) | M3 ~mun  avg (m)
Baseline-PF 24 0 0.55 | 31.40 11.80 17.41 0.05
Symmetric Basel%ne 0 7 0.66 | 15.90 13.90 15.00 0.30
Swapping Baseline+RLS 4 0 0.61 36.60 11.20 13.34 0.08
P2G 22 0 0.63 | 21.60 11.20 15.09 0.10
P2G+PF 0 3 0.72 | 14.80 11.20 12.55 0.46
Baseline-PF 30 2 0.59 | 39.70 11.50 15.90 0.04
Asymmetric Basel@ne 0 2 0.67 | 24.60 11.50 14.47 0.37
Swapping Baseline+RLS 7 1 0.70 | 27.40 10.50 13.16 0.08
P2G 3 1 0.66 | 27.30 11.00 13.86 0.13
P2G+PF 1 0 0.72 | 14.90 10.80 12.63 0.13
Baseline-PF 14 0 0.60 | 13.10 7.40 9.93 0.04
Pair-wise Basel%ne 0 1 0.59 | 17.00 8.10 11.04 0.23
Swapping Baseline+RLS 6 0 0.60 | 13.00 7.90 10.20 0.06
P2G 1 0 0.59 | 28.30 7.80 10.70 0.12
P2G+PF 0 0 0.60 | 11.00 7.90 10.94 0.17
Baseline-PF 14 1 0.56 | 16.90 8.30 10.29 0.05
Baseline 0 0 0.55 | 15.80 8.40 11.08 0.26
random Baseline+RLS 2 0 0.57 16.00 8.60 10.40 0.11
P2G 0 0 0.55 | 18.80 8.50 10.96 0.21
P2G+PF 0 0 0.56 | 11.80 9.30 10.53 0.23

Table 4-2: Comparison of performance of 5 MPC motion planners (Baseline-PF, Baseline, Base-
line+RLS, P2G and P2G+PF) in 4 different scenarios (symmetric swapping, asymmetric swapping,
pair-wise swapping and random). For each scenario, 50 different test samples have been generated

and random scenarios, collisions and deadlock rarely happen when using P2G. The
controller P2G+PF and baseline spend more time to complete the test, as minimiz-
ing the collision risk of the objective functions will result in longer trajectories and
higher time-consuming. This result is acceptable because a different trajectory is
required to keep robots in the distance, leading to a longer time.

4-5 Uncertainty of Robots in Risk-Aware Motion Planning

In the previous two tests, the distributions of robot positions and velocities are 7, =
0.06 and 7, = 0.01, which represent the navigation uncertainties in experiments. As
the estimated positions and velocities deviate from their real states, the planning
result may lead to collision when the robots are closed to the obstacles.

In this section, I focus on the influence of navigation uncertainties on the planners.
The testing scenarios of collision and congestion risk elements are the same as the
random corridor and the asymmetric swapping. The distributions of robot positions
and velocities are defined as,
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e 7,=0.17,=0.015,
* 7, =0.06 7, = 0.01,

* 7, =0.03 7, = 0.005,

which represent the high to low navigation uncertainties. The robots are tested in 50
different samples. The summary of the simulation results are shown as the tables
4-3 and 4-4.

In the experiments of collision risk elements, the navigation uncertainties increase
the collision numbers. In all three groups, the average clearance of Centr is higher
than the others, which proves that the planner with Centr can assess collision risk
better. The numbers of deadlocks keep almost the same. The obstacles are static
in the experiments, and only one robot has uncertainties, which will make a slight
difference to the congestion risk. The trajectory lengths increase when the un-
certainties become serious in three groups, showing that the errors aggravate the
efficiencies of planning results. In conclusion, the planners with Centr can evalu-
ate the collision risk well under uncertainties. Increasing uncertainties will hardly
influence the collision risk assessment in MPC.

Scenarios Motion Num. Num. Clearance (m) Traj.
Planner of of . Length
Colli. | Deadlock | MaX mn  avg | ()

- —01 Baseline+PF 2 0 1.10 0.08 0.59 17.14
. " 0 dl 5 Baseline+Clearance 1 0 1.11 0.04 0.59 | 17.12
Y ' Baseline+Dis2Centr 0 1 1.26 0.05 0.67 | 18.30
— 00c | Baseline+PF 1 0 1.07 0.04 0.61 ] 17.12
Tp _ 001 Baseline+Clearance 1 0 1.08 0.05 0.61 | 17.11
v ' Baseline+Dis2Centr o 2 1.45 0.23 0.69 | 17.87
- — 003 Basel%ne+PF 0 0 1.06 0.01 0.63 17.08
Tp  0.005 Baseline+Clearance 0 0 1.08 0.01 0.64 | 17.07
v ' Baseline+Dis2Centr o 2 1.46 0.28 0.73 | 17.57

Table 4-3: Comparison of performance of 3 MPC motion planners (Baseline+PF, Base-
line4Clearance, Baseline+Dis2Centr) in the random corridor scenario. The robots are under
high, middle, and low navigation uncertainties. For each group, 50 different test samples have
been generated

The results of the experiments of congestion risk elements are interesting. Similar
to the collision risk elements, the number of collisions increases with the uncer-
tainties. However, the number of deadlocks decreases with them. The symmetry of
the robot positions causes most deadlocks in the experiments, and the uncertain-
ties increase the randomness of the planning results, which weakens the symmetry.
The velocities almost keep the same, but the trajectory time increase with the uncer-
tainties. The clearance shows the same performance in the experiments of collision
risk elements, which shows that the collision risk is also enhanced. The other plan-
ners have revealed their weaknesses when the uncertainties increase. The number
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Uncertainty Motion Num. Num. Avg. Traj. time (s) Clearance
Planner of of vel. .

Colli. | Deadlock | (m/s) | MaX ~mn  avg (m)
Baseline-PF 32 3 0.61 31.80 12.00 15.24 0.03
- —01 Baseline 0 1 0.67 | 28.00 11.40 14.54 0.34
P 0 0'15 Baseline+RLS 8 0 0.69 | 1850 11.40 13.35 0.04
To =1 P2G 9 0 0.65 | 21.90 11.50 14.20 0.11
P2G+PF 4 0 0.71 14.80 10.70 12.88 0.11
Baseline-PF 30 2 0.59 | 39.70 11.50 15.90 0.04
- —0.06 Baseline 0 2 0.67 | 24.60 11.50 14.47 0.37
P 0'01 Baseline+RLS 7 1 0.70 | 27.40 10.50 13.16 0.08
To =5 P2G 3 1 0.66 | 27.30 11.00 13.86 0.13
P2G+PF 1 0 0.72 | 14.90 10.80 12.63 0.13
Baseline-PF 14 17 05 |27.60 11.10 15.16 0.05
=003 Baseline 0 8 0.68 25.80 11.30 14.02 0.39
P 0 605 Baseline+RLS 7 4 0.71 | 23.10 10.30 12.60 0.12
To =5 P2G 2 5 0.66 | 29.60 10.90 14.13 0.12
P2G+PF (0] 3 0.72 | 14.90 10.40 12.56 0.13

Table 4-4: Comparison of performance of 5 MPC motion planners (Baseline-PF, Baseline, Base-
line+RLS, P2G and P2G+PF) in the asymmetric swapping scenario. The robots are under high,
middle, and low navigation uncertainties. For each group, 50 different test samples have been
generated

of collisions is too high when the robot is controlled by the planner RLS under high
uncertainties. The Baseline meets difficulty to overcome deadlock under low uncer-
tainties. The result shows that the planner with P2G+PF can evaluate both collision
and congestion risk in the multi-robot motion planning under uncertainties. The
uncertainties in practice are more complex than the settings of experiments. Thus,
the robots can finish the paths under lower risk with the planner with P2G+PF.
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Figure 4-2: Planning results for one of the the circle obstacle group scenario. The blue star and
the red diamond represent the initial and goal positions
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Figure 4-3: Planning result for one of the narrow corridor scenario. The blue star and the red
diamond represent the initial and goal positions

Qi Luo (4994736)

Master of Science Thesis



4-5 Uncertainty of Robots in Risk-Aware Motion Planning

41

y [m]
(o]
f/v
\
|
/

0 5 10
X [m]

(a) Baseline and collision potential field

« Start
+ Goal

y [m]
e

/
®
®

-10 -5 5 10
X [m]

(b) Baseline and clearance

y [m]
(o]
®
\\

®
/ !

-10 -5

X [m]

(c) Baseline and distance to centroid of free space
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Figure 4-5: Planning result for one of the symmetric swapping scenarios. The solid circles
represent the goal positions of the robots and the trajectories with corresponding colors represent
the planning results.
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Figure 4-6: Planning result for one of the asymmetric swapping scenarios. The solid circles
represent the goal positions of the robots and the trajectories with corresponding colors represent
the planning results.
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the goal positions of the robots and the trajectories with corresponding colors represent the
planning results.
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Chapter 5

Experimental Validation

In this chapter, the proposed MPC planners are investigated through experiments.
In chapter 4, the structure of the MPC planner is introduced to show the application
of risk elements in motion planners. The performance of the proposed MPC plan-
ners in simulations shows that the robot can complete the task faster and smoother
compared with other planners. The robustness of the controller under high uncer-
tainty is also acceptable. To validate the performance of the controller, I will test my
controller on quadrotor UAVs. In section 5-1, the experiment environments are set
up, including the equipment and control structure. In section 5-3, the experiment
results are discussed to show the performance of our controllers.

5-1 Experiment Setup

The experiment setup consists of several components, as the Fig. 5-1 shows. In
the experiments, up to three quadrotors (4) are used, whose positions are measured
by a motion capture system (1). The system consists of 14 Optitrack Prime 17W
cameras and is controlled by the software Motive on a Windows computer (2). The
system sends the positions and orientations of the robots to the state estimator,
which will compute the estimated positions and velocity of robots. The estimated
states are regarded as the inputs of the distributed local multi-robot motion planners
in section 4-1. The local motion planner is executed in Matlab using Forces Pros
(3). The state estimator and the local motion planners are implemented on a Linux
laptop. The velocity commends solved by the planner are sent to the quadrotors
wirelessly. The internal controllers of the robots will execute the commands. All
the components communicate through the Robot Operating System (ROS), and an
Xbox360 handle is used to control the takeoff and landing of the quadrotors.
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Figure 5-1: Scheme of the components used in the experiments

@ MATLAB

5-1-1 Quadrotor platform

The experiments are carried on the Crazyflie 2.1 quadrotor UAVs, open-source entry-
level nano quadcopters targeting researchers and engineers. The quadcopter is
shown as Fig. 5-2(a) and features a size of 92x92mm size. The small quadcopter
(92 x92mm) weights only 27g, making them suitable for indoor multi-quadrotor ex-
periments. The Crazyflies are communicated with the operating laptop using a USB
dongle, Crazyradio PA, as the Fig. 5-2(b) shows. The Crazyradio can communicate
with the quadrotor swarm in different channels up to 1km away with a powerful
amplifier. Therefore, only one Crazyradio is required in the experiment to send the
messages.

The state of the quadrotor consists of the position p € R?, the velocity ¢ = p and
the orientation [®; ©; V], which represent the roll, pitch, and yaw. The control in-
puts of the quadrotors are the desired velocity [g;; ¢j; ¢;], and the desired orienta-
tion [®,; ©,; ¥,]. The operating laptop sends the desired waypoints to the PID-based
velocity controller, which will transfer the input to the quadrotors. The onboard mi-
crocontrollers implement the control input in the Crazyflies. Based on the posture
information measured by the Internal Measurement Unit (IMU), the microcontrollers
can output the required trusts of the four motors in terms of the control inputs.

It is also possible to send the desired velocity computed by the MPC directly to
quadrotors. However, the microcontroller is not stable enough to control the robot’s
speed, as the output of the MPC is not equal to the PID controller. Due to the low
onboard control precision of Crazyflie, a PID controller is required to stabilize the
control velocity.

"https://store.bitcraze.io/collections/kits
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(@) Bitcraze Crazyflie 2.0 quadrotor (b) Crazyradio PA 2.4 GHz USB dongle

Figure 5-2: The target gradrotor (left) is controlled from a laptop using a USB dongle (right)®

5-2 Control Structure

The Robot Operating System (ROS) is an open-source framework for robot software
development. It is mainly used to simplify the communications between different
robotics platforms and components in Fig. 5-1. AROS software consists of ROS
nodes, and the data is transformed as ROS topics. Each ROS node is a computa-
tion process that can subscribe and publish topics from other nodes. In our control
systems, a group of ROS nodes constitutes a feedback controller connecting the
Crazyfile 2.1 quadrotors, the MPC controllers, the Optitrack motion capture sys-
tems, and other equipment. The structure of our control system is shown in Fig.
5-3.

1. /mocap_node[19] This node is based on the ROS package mocap_optitrack.
It is used to transform the position and orientation of robots measured by
optitrack to the coordination of Matlab and the velocity controller.

2. /position_velocity_orientation_filter[3] The motion capture system can only
measure the position and orientation of the robots. The velocity of the quadro-
tors is computed by a Kalman filter using the poses message transformed by
/mocap_node.

3. /MPC_planner This node is our MPC planner in Matlab. Matlab can create its
node using the Robotics System ToolBox. It will subscribe to the estimated po-
sition and velocities and publish the desired waypoint to the velocity controller.

4. /crazyflie_controller The PID-based velocity controller is based on the ROS
package crazyflie_controller, which is a part of Crazyflie controller system
crazyflie_ros[13]. Apart from publishing the desired velocity in terms of the
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MPC result, the controller can also issue the initialization and end commands.
The takeoff and landing triggers are included in the controller, guiding the robot
to the desired start and landing positions. The takeoff and landing functions
are reorganized to fulfill the requirement of our experiment area. An emer-
gency braking function is also designed to stop the experiments and land the
quadrotors immediately.

5. /joy_stick This node will receive the actions of the Xbox controller. By pressing
different buttons, I can send the takeoff command and landing command to
activate the trigger in /crazyflie_controller. The joy sticker can also activate
the emergency braking to avoid crushes.

6. /crazyflie_server This node is based on the ROS package crazyflie_driver,
which is also a part of Crazyflie controller system crazyflie_ros. This node will
listen to the commands of different quadrotors and send the message. It is the
connection between the laptop and the Crazyradio.

The MPC planner receives the state of the quadrotors and computes a reference tra-
jectory for each robot. The computations will start 5s after the quadrotors hovering
at their start positions. The planning is performed continuously, which means as
soon as one group of desired trajectories are computed, the next group of plan-
ning will start immediately. The desired horizontal positions are quadrotors are set
to constant in the experiments, imitating the 2-dimensional environments in the
simulations.

The basic settings of the MPC controller, including the time horizon, the sampling
rate, and the motion limitation of the robot models, are mostly the same as the
simulations in chapter 4. The only difference is the size of the robots and obstacles.
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5-3 Experiment Results

Collision risk elements and congestion risk elements are the main topic of my thesis.
Therefore, I have designed two experiments to test the performance of collision-risk-
aware and congestion-risk-aware MPC motion planners. Similar to the simulations,
only one quadrotor is used to test collision risks. Five static obstacles are placed
in the workspace. Due to the limitation of experiments, the positions of the static
obstacles are virtually defined in the MPC planner but not perceived by the optical
systems. It will not influence the result of the experiments. As for the congestion risk
elements, three quadrotors swap their positions, which is similar to the symmetric
swapping scenarios in section 4-4.

The experiments are conducted at the Cyberzoo of the Faculty of Aerospace Engi-
neering, Delft University of Technology, whose space is large enough to perform the
experiments. The size of the experiment area is 8 x 8m, which is smaller than the
simulations. The Fig. 5-4 shows the workspace for the experiments.

-IIWI lm@yo»ro»"ro»’x

'« X

/

Figure 5-4: The workspace for the experiments. The box and the mental shelves are the takeoff
platform of the quadrotors. The three nano quadrotors are the Crazyflie 2.1 UAVs

5-3-1 Collision Risk

As the Fig. 5-6 show, the five static obstacles are placed in the workspace. The sizes
of the obstacles are equal to the robots. The experiment scenario is similar to the
random corridor scenarios in section 4-3. The locations of the obstacles are similar
to the examples in section 4-3. The three subfigures 5-6(a), 5-6(b) and 5-6(c) are the
measured waypoints of the robots. The simulation results are not always equal to
the experiments because of the imprecise quadrotor actuators. But the trend of the
trajectories is similar to the simulations. The experiments prove that the planner
considering the Distance to the Centroid of the Free Space can guide the robot to
follow a safer trajectory, which can increase the clearance simultaneously.
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The Fig. 5-5 shows how the clearances between the robot and the closed obstacle
perform when the three planners are executed. The robot is placed close to an ob-
stacle at the beginning. All three planners keep the robot at an appropriate distance
to the obstacles in the middle of the trajectories. The clearance is also high enough
to avoid collisions. As the goal is closed to the obstacles, the collision risk increases
at the end of the trajectories. As the PF and Clear result in similar paths, the per-
formances of the clearance are also closed to each other. The Dis2Centr avoids the
narrow passage and chooses to work in the broader region. The experiments show
that Dis2Center assess the risk more reasonably compared with other planners. As
the obstacle density is considered in the planning, the robot prefers to choose a tra-
jectory not surrounded by the obstacles. The robot’s velocity makes no difference to
the planners so that the inaccurate velocity actuator will not influence the perfor-
mance of the proposed planner. Therefore, the planner can complete the required
motion planning task in practice.
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Figure 5-5: The workspace for the experiments. The box and the mental shelves are the takeoff
platform of the quadrotors. The three nano quadrotors are the Crazyflie 2.1 UAVs

5-3-2 Congestion Risk

The Fig. 5-7 show the performances of the quadrotor group in experiments. Three
quadrotors are used in the experiments. The initial positions are separated equally
on a circle with a radius of 2.4m. The goal positions are opposite to the origin.
As we mentioned in the previous sections, the velocity tracking of Crazyflie 2.1 is
inaccurate. And using the planned velocity of the MPC will lead to higher error
than using the intended positions in combination with a PID velocity controller.
Therefore, the actual speed is different from the planned result. The movement of
the quadrotors can be regarded as hovering between different desired waypoints.
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And the linear velocities of the quadrotors are much smaller than expected.

The experiments show that all three controllers can guide the robot to finish the
paths without collision and congestion. But the shape and the length of the trajec-
tories are similar. The clearance between quadrotors is safe enough to avoid colli-
sions. And The robot will not congest in the middle. Several simulations have also
been performed before the experiments, and the result shows that the trajectories
planned by P2G are the shortest. RLS also performs better than the baseline in the
simulations. But the superiority disappears in the experiments.

After analyzing the quadrotors’ estimated and planned velocities, I conclude that
poor velocity tracking leads to unexpected results. The planned speeds usually are
two to three times higher than the estimated. The lower velocities will weaken the
congestion in the planning, and the possibility of deadlock is lower than expected.
P2G and RLS consider the relative velocity as an essential parameter to evaluate the
congestion, and the basic structures of the planners are similar. Therefore, the low
relative velocities will eliminate the difference between the three planners. Due to
the limitations of the equipment and time, I have not performed further experiments
on other quadrotors. But I will discuss my plan to solve the problems and show the
expected performance of the controllers in section 5-4.

5-4 Discussion

In this chapter, the proposed method is validated in the experiments to show the
performance in real environments. A multi-robot testing system is built up to con-
trol and communicate with the target quadrotor Crazyflie 2.1. The Crazyflie 2.1 is
small and easy to maintain. The open-source control software reduces the develop-
ment difficulty. However, the velocity tracking of the Crazyflie 2.1 can not meet the
requirement. Therefore, I developed a position tracking control platform to track the
desired waypoints in the workspace.

The experiments show that, Dis2Centr can assess collision risk more reasonable
compared with PF and Clear. The quadrotor can choose the heading positions con-
sidering the obstacle density. Therefore, the risk of the planned trajectories becomes
lower. However, in the experiments to test the performance of PF, RLS and P2G, the
result paths are similar. The poor velocity tracking ability is the main cause of this
problem. As we mentioned in the section 5-1, the crazyflie_control node is adapted
to control the output velocities. Using different control functions can promote the
quality of the trajectory. And adjusting the PID parameters may also promote the
control qualities. Another solution is using different bands of quadrotors. By us-
ing quadrotors with a larger size, the control stability can be enhanced. The final
solution is to change the dynamic functions of my controllers into 3-dimensional
nonlinear functions, whose state values consist of roll, pitch, yaw, and horizontal
trust. It is also possible to use the classic Euler angles and trust as the input
commands of the quadrotors. The document from Crazyflie 2.1 website shows that
using Euler angles and trust can achieve expected control performance. Therefore,
it is possible to modify the equality constraints of the MPC to output desired Euler
angles and trust, which can be sent to the quadrotors directly.
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Figure 5-6: Experiment results of the collision-risk-aware motion planner. The blue star and

the green diamond represent the initial and goal positions. The cyan trajectories represent the
estimated positions of quadrotors.
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Figure 5-7: Experiment results of the congestion-risk-aware motion planner. The stars and the
diamonds represent the corresponding initial and goal positions.
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Chapter 6

Conclusion and Future Work

6-1 Conclusions

The goal of this thesis is to propose a risk-aware distributed motion planner for
multi-robot systems. The risk is the relative likelihood of the robot not being able
to finish the paths. This thesis focuses on navigation risk, including collision risk
and congestion risk in motion planning.

To evaluate collision risk, I have developed the deformed distance to the centroid of
free space (Dis2Centr), which represents the obstacle density and the distance to
the optimal positions. The free space is the intersection of the valid free region and
the origin free space, eliminating the influence of invalid obstacles and boundaries.

It is more complex to parameterize congestion risk in cluttered environments. I have
proposed the Potential to Goal (P2G), twisting the navigation cost by the intention
of motion and velocity skewing parameter. The intention of motion represents the
angle between the two vectors. The first connects the initial, the objective robot,
and the terminal, the moving obstacle robot. The second connects the initial, the
moving obstacle robot, and the terminal, the goal position. The skewing parameter
deforms the peak of the intention of motion to the velocity of the moving obstacle
robot. The navigation cost twisted by P2G is defined as the distance to the goal. The
robot entails high risk when the moving robots locate in the directions to the goal
position, and low risk when the objective robot is close to its goal or distant from
other agents in workspaces.

To assess the navigation risk in motion planning, I have designed a risk-aware dis-
tributed model-predictive-control(MPC)-based multi-robot motion planner. The po-
sitions of other robots in the future are predicted by the solutions of the correspond-
ing MPC controller. Moreover, the collision constraints of the MPC are defined as the
original free spaces, the polygons in 2-dimensional workspaces. Laying on the foun-
dations of the baseline, I have involved the risk elements in the objective functions
of the MPC to test the performance in different scenarios.
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In the simulations of collision risk elements, the trajectories planned by Dis2Centr
show higher clearance to static obstacles, and the number of collisions is lower than
other planners, which proves that Dis2Centr can assess collision risk better. In the
simulations of congestion risk elements, the robots planned by P2G and potential
field (PF) show the highest average velocities, shortest trajectory time, and lower
number of deadlocks, which has proved that the congestion risk is significantly con-
trolled. In the scenarios showing high congestion risk, the robots adopted P2G+PF
can also keep high clearance to other agents, which proves the planner can also
minimize collision risk. I have also compared the performance of the robots under
different uncertainties. High position uncertainties will increase collision risk and
reduce congestion risk. In all scenarios, the planners with Dis2Centr and P2G+PF
show expected performance compared to other classic planners. The numbers of
collisions and deadlocks vary slightly by the uncertainties.

To validate the performance of the proposed methods, we have tested the planners on
the Crazyflie 2.1 quadrotors with the motion capture system Optitrack. The experi-
ment results of the collision-risk-aware planner show that, the proposed Dis2Centr
can plan a safer trajectory than the other planners. The robot prefers to choose
a broader passage to pass through the obstacle group. As for the congestion-risk-
aware planner, the experiment results show similar performance among the three
controllers. The result shows that accurate velocity tracking makes a significant
difference in the congestion risk assessment. Therefore, a different experiment
platform should be applied in the future to test the performance of the proposed
method.

In conclusion, it is necessary to minimize the collision and congestion risk in motion
planning to prevent failures. The risk-aware multi-robot motion planner Dis2Centr
and P2G+PF controls the risk in planning under uncertainty well in various scenar-
ios. Dis2Centr and P2G+PF are sufficient risk-aware multi-robot motion planners
to produce trajectories with slight navigation risk.

6-2 Future Work

During the design of the collision and congestion risk elements, I have tried different
formulations of the functions to make the method more reasonable. Furthermore,
the result has shown me how challenging to develop a new numerical formulation
to assess risks. I hide the process of formulating the elements, as the elements I
attempted are invalid to evaluate the risk. I have used a contour map and simulation
results to prove my elements. In the future, more mathematical derivations should
be taken to complete my theory.

In the planner with Dis2Centr, the free space area in the formulations is assumed
as a constant during optimization, which will weaken the assessment of obstacle
density. My approximation will increase the computation speed, but a more precise
approximation formulation may promote the result. As for the planner with P2G,
I only test its performance of the potential in assessing the collision risk. Further
tests can be generated to compare the influence of collision risk elements. I have
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not tested the performance of the planner with P2G+Dis2Centr because Dis2Centr
will show a negative influence on the congestion risk assessment. Therefore, a more
suitable method can be generated to solve the problems.

As for the MPC controller, I have used the corresponding planning result as the
future positions, eliminating prediction errors. In workspaces with dynamic obsta-
cles, accurate prediction methods are required to prevent errors. Classic methods,
like the constant velocity model (CVM), are insufficient in cluttered environments.
A recurrent neural network (RNN) can predict the robot positions by the testing
samples. Therefore, the risk-aware MPC-based motion planner can be transformed
into a decentralized planner by using prediction methods, reducing communication
costs, and preventing communication errors.

The problem of the experiments is the inaccurate velocity tracking of the quadro-
tors. As the relative velocities are used to assess congestion risk, this problem will
weaken the risk evaluation of the controllers. Changing another quadrotor platform
may solve the problems. Another solution is to transform the dynamic equality con-
straints in the MPC into 3-d and send the Euler Angles and horizontal trust as the
input message of the quadrotors. The planners that are not related to velocities, like
I1extitPF and Dis2Centr, will not be influenced by the problem. More experiments
are required to evaluate the performance of P2G and RLS.
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List of Acronyms

MPC model predictive control

VO velocity obstacle

RVO reciprocal velocity obstacle

ORCA optimal reciprocal collision-avoidance
ARF artificial potential field

BVC Buffered Voronoi Cells

MPC model predictive control

Dis2Centr distance to the centroid of the free space
RLS Risk Level Set
P2G Potential to Goal
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