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This paper presents a method to control chaotic behavior of a typical Smart Grid based on generalized fuzzy hyperbolic model
(GFHM). As more and more distributed generations (DG) are incorporated into the Smart Grid, the chaotic behavior occurs
increasingly. To verify the behavior, a dynamic model which describes a power system with DG is presented firstly. Then,
the simulation result shows that the power system can lead to chaos under certain initial conditions. Based on the universal
approximation of GFHM, we confirm that the chaotic behavior could be suppressed by a new controller, which is designed by
means of solving a linear matrix inequality (LMI). This approach could make a good application to suppress the chaos in Smart
Grid. Finally, a numerical example is given to demonstrate the effectiveness of the proposed chaotic suppression strategy.

1. Introduction

Various types of stability problems in power systems, such
as voltage collapse and oscillatory phenomenon, can be
analyzed through chaotic theory [1]. Thus, chaos analysis
has become an important analysis tool in stability studies of
power networks. A chaotic system is a very special nonlinear
dynamical system and it possesses several properties such
as sensitivity to initial conditions, as well as an irregular,
unpredictable behavior, and thereby confines the precise
operation of the system. Such problems led to many severe
events in the past [2, 3]. Therefore, various effective methods
have been proposed in the past decades to achieve the
control and stabilization of chaotic systems, such as the
LMI optimization approach [4], the nonfeedback method
[5], inverse optimal control [6], the sliding method control
[7], 𝐻

∞
control [8, 9], impulsive control [10], backstepping

design technique [11], cascade adaptive control [12], and the
switching control [13]. However, although these references
focus on restraining chaotic behavior, most of them are based
on theoretical models and are not yet associated with power
systems. Moreover, some previous articles which are devoted
to chaos in power systems just consider traditional networks.

By contrast, they neglect the uncertainty caused by Smart
Grid.The reason is that when distributed generation parallels
in the grid, some system state changes [14–16].

Motivated by the aforementioned discussion, this study
aims to present a control scheme to suppress chaos of a
specific Smart Grid. To achieve this target, we innovatively
come up with a dynamic model and then provide initial
conditions which lead to the system falling into chaos. Then
we establish a novel fuzzy model based on GFHM. In this
model, we can simplify the task of assigning the performance
of the closed-loop system. Finally, a novel controller is
designed by solving a LMI to guarantee the stability of sliding
motion and thereby achieve chaos suppression of the specific
system.

The rest of the report is designed as follows. First of
all, the fourth-order differential equation model of a typical
Smart Grid is put forward via analytical modeling method
where the wind turbine generator (WTG) is considered as
the distributed source. Based on the established explicit
mathematical model of the considered Smart Grid, when
the system’s parameters lie in a certain region, chaos is
generated in the system,which yields greatly disadvantageous
influences on the power grid. Secondly, by virtue of the
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î2

î3
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Figure 1: System infrastructure of Smart Grid.

universal approximation of GFHM, the chaotic system is
approximated by a simple fuzzy model with prescribed
precision. Then the sufficient conditions for the stabilization
of the closed-loop system are derived based on a lemma and
the controller gainmatrices can be obtained by solving a LMI.
In this way, a corresponding controller can be realized to
suppress the chaotic behavior. Finally, a numerical example
is given to demonstrate the effectiveness of the proposed
chaotic suppression strategy.

2. Chaotic Dynamics in Smart Grid

2.1. SystemModel and Data. In order to analyze the electrical
parameter variation, a typical infrastructure of Smart Grid
has been examined in Figure 1. In the model, a power station
is connected to an infinite Bus 1 through a purely inductive
line. Bus 2 connects a WTG and there is a dynamic load at
Bus 3. The system is connected to Bus 4.

Here, we suppose 𝑋
𝑖
(𝑖 = 1, 2, 3, 4) is the corresponding

impedance of the system and𝜑 is the angle of impedance.The
voltage of infinite Bus 4 is𝑉

1
and its phase is 0.WTGworks as

a DG. It is a sixth-order model. Its model can be represented
as follows [17]:

̇𝛿
𝑡
= 𝜔,

𝜔̇ =
−𝐷
𝑚
𝜔 + 𝑇
𝑚
− 𝑇
𝑒

𝑀
,

(1)

where 𝛿
𝑡
is the rotator angle,𝑀 is the generator inertia,𝐷

𝑚
is

the damping factor per unit,𝑇
𝑚
is the generator input torque,

and 𝑇
𝑒
is the generator output torque.

The load at Bus 3 is chosen as the dynamic model:

𝑃 = 𝑃
0
+ 𝑃
1
+ 𝐾
1

̇𝛿L + 𝐾2𝑉̇L + 𝐾3𝑉L,

𝑄 = 𝑄
0
+ 𝑄
1
+ 𝐾
4

̇𝛿L + 𝐾5𝑉L + 𝐾6𝑉
2

L .
(2)

The dynamic equations describing the system are con-
ducted as follows. When we interconnect WTG with the
power grid, the WTG should not influence the voltage of
the connecting point. Therefore, the current will be the same
before and after the WTG interconnection:

𝑖̂
1
=
1∠ (𝛿
𝑡
− 𝜑) − 𝑉L (𝛿L − 𝜑)

𝑋
2
+ 𝑋
3

. (3)

The PWM inverter is used in this model to transform
the interface circuit when we interconnect theWTGwith the
power grid [18]. According to the active power and reactive
power, output of the PWM inverter is decoupled and thus
they can be controlled, respectively. In this paper, we suppose
that the output reactive power of WTG cancels the reactive
power of Bus 1 at the interconnecting point. For the sake
of convenience, the output active power current 𝑖

0
of PWM

inverter is used to represent the output active power of the
WTG. Consequently, the output current of PWM inverter is

𝑖̂
2
= 𝑖
0
+
−𝑗 sin (𝛿

𝑡
− 𝜑) + 𝑗𝑉L (𝛿L − 𝜑)

𝑋
2
+ 𝑋
3

. (4)

The current flow through𝑋
3
is

𝑖̂
3
= 𝑖̂
1
+ 𝑖̂
2
= 𝑖
0
+
cos (𝛿

𝑡
− 𝜑) + 𝑗𝑉L (𝛿L − 𝜑)

𝑋
2
+ 𝑋
3

. (5)

The current flow through𝑋
4
is

𝑖̂
5
=
𝑉L∠ (𝛿L − 𝜑) − 1∠ (−𝜑)

𝑋
4

. (6)

The current at Bus 3 is

𝑖̂
4
= 𝑖̂
3
− 𝑖̂
5
= 𝑖
0
+
cos (𝛿

𝑡
− 𝜑) + 𝑗𝑉L∠ (𝛿L − 𝜑)

𝑋
2
+ 𝑋
3

−
𝑉L∠ (𝛿L − 𝜑) − 1∠ (−𝜑)

𝑋
4

.

(7)

The power supplied at Bus 3 is

𝑆 = 𝑉L∠𝛿L ∗ 𝑖̂
∗

4

= 𝑉L𝑖0∠𝛿L +
cos (𝛿

𝑡
− 𝜑) − 𝑉L cos (𝛿L − 𝜑)
𝑋
1
+ 𝑋
2

𝑉L∠𝛿L

−
𝑉
2

L∠𝜑 − 𝑉L∠ (𝛿L + 𝜑)

𝑋
4

.

(8)

The active power and reactive power at Bus 3 are

𝑃 = 𝑖
0
𝑉L cos 𝛿L +

cos (𝛿
𝑡
− 𝜑) − 𝑉L cos (𝛿L − 𝜑)
𝑋
1
+ 𝑋
2

𝑉L cos 𝛿L

−
𝑉
2

L cos𝜑 − 𝑉L cos (𝛿L + 𝜑)
𝑋
4

,

𝑄 = 𝑖
0
𝑉L sin 𝛿L +

cos (𝛿
𝑡
− 𝜑) − 𝑉L cos (𝛿L − 𝜑)
𝑋
1
+ 𝑋
2

𝑉L sin 𝛿L

−
𝑉
2

L sin𝜑 − 𝑉L sin (𝛿L + 𝜑)
𝑋
4

.

(9)
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The deduced process of the active power for the power station
is as follows:

𝑖̂
6
=
1∠ (𝛿
𝑡
− 𝜑) − 1∠ (−𝜑)

𝑋
1

,

𝑖̂
7
= 𝑖̂
1
+ 𝑖̂
6

= ((𝑋
1
+ 𝑋
2
+ 𝑋
3
) ∠ (𝛿
𝑡
− 𝜑) − 𝑋

1
𝑉L∠ (𝛿L − 𝜑)

− (𝑋
2
+ 𝑋
3
) ∠ (−𝜑))

× (𝑋
1
(𝑋
2
+ 𝑋
3
))
−1

.

(10)

So the active power for the power station is

𝑃G = Re {1∠𝛿
𝑡
∗ 𝑖̂
∗

7
} , (11)

where Re{ } represents the real part of {∙}, 𝑖̂∗
7
represents the

conjugate part of 𝑖̂
7
, and 𝑃G is equal to the generator output

torque 𝑇
𝑒
.

According to (11), the balance of active power and reactive
power at Bus 3, and the system parameter values in Tables
1, 2, and 3 [17, 19], the system mathematic representation is
derived as

̇𝛿
𝑡
= 𝜔,

𝜔̇ = 0.573 − 0.167𝜔 + 20𝑉L cos (𝛿𝑡 − 𝛿L + 1.483)

+ 11.667𝑉
𝑡
cos (𝛿

𝑡
+ 1.483) ,

̇𝛿L = 69 − 93.33𝑉L − 179.05𝑉
2

L − 50𝑖0𝑉L sin 𝛿L

− 300𝑉L sin 𝛿L cos (𝛿𝑡 − 1.483) ,

𝑉̇L = 25.322𝑉
2

L + 13.054𝑉L + 3.529𝑉L cos (𝛿𝑡 − 1.483)

− 3.529𝑉L cos 𝛿L cos (𝛿L − 1.483)

+ 42.353𝑉L sin 𝛿L cos (𝛿𝑡 − 1.483) + 7.059𝑖0𝑉L sin 𝛿L

− 42.353𝑉L sin 𝛿L cos (𝛿L − 1.483)

− 35.294𝑉L sin (𝛿L + 1.483) + 0.588𝑖0𝑉L cos 𝛿L

+ 2.941𝑉L cos (𝛿L − 1.483) + 1.31778.
(12)

2.2. Chaotic Behavior in Smart Grid. As we can see, the
dynamics of (12) depend on five independent parameters,
which makes a complete search in this large parameter space
rather tedious. Since there is no simple method to predict
which region of the parameter space is likely to yield chaotic
solutions, some subsets (𝛿

𝑡
, 𝜔, 𝛿L, 𝑉L)

𝑇 of parameters are kept
fixed while the inverter current 𝑖

0
is taken as a control

parameter and allowed to vary arbitrarily.
Assume 𝑥 = (𝑥

1
, 𝑥
2
, 𝑥
3
, 𝑥
4
)
𝑇

= (𝛿
𝑡
, 𝜔, 𝛿L, 𝑉L)

𝑇.
After searching several subsets 𝑥, we observed chaotic
phenomenon when 𝑥 = (0.3, 0.2, 0.1, 0.97)

𝑇 and 𝑖
0
=

0.01. Simulations of chaotic state response and Lyapunov

Table 1: Generator parameters (pu).

𝐷
𝑚

𝑀 𝑇
𝑚

0.05 0.3 1

Table 2: Network parameters (pu).

𝑋
1

𝑋
2

𝑋
3

𝑋
4

𝜑 𝜑

0.286 0.1 0.0667 0.2 85∘ 85∘

Table 3: Dynamic load parameters (pu).

𝐾
1

𝐾
2

𝐾
3

𝐾
4

𝐾
5

𝐾
6

𝑃
0

𝑄
0

𝑃
1

𝑄
1

0.24 0.2 1.7 −0.02 −1.866 1.4 0.4 0.8 0 0.58

exponents on this occasion are shown in Figures 2, 3, 4, 5, and
6. From these figures, we can see that as time elapses, 𝑥 does
not return to its equilibrium state. On the contrary, it enters
into a disorganized oscillation.This phenomenon proves that
the system causes chaotic behavior. In addition, the positive
Lyapunov exponent proves this conclusion.

3. Controller Design Based on GFHM

Aiming at systems with severe nonlinearity and strong
coupling, such as the model considered here, the GFHM
with universal approximation provides a useful approach to
design a controller. We can utilize GFHM to approximate
the system in arbitrary precision so as to provide a theoret-
ical basis of controlling a strong nonlinear chaotic system.
Furthermore, the corresponding controller based on GFHM
can be designed via intelligent control theory. Therefore, the
equivalent model of Smart Grid based on GFHM brings
convenience to controller synthesis.

3.1. Review of a GFHM. In 2001, Zhang and Quan came up
with a brand-new fuzzy model, which is the GFHM [20].
In this model, there are two types of fuzzy sets, including
Positive (𝑃

𝑥
) and Negative (𝑁

𝑥
). The membership functions

𝑃
𝑥
and𝑁

𝑥
are defined as

𝑢
𝑃
𝑥

(𝑥
𝑧
) = 𝑒
−(1/2)(𝑥

𝑧
−𝑘
𝑧
)
2

,

𝑢
𝑁
𝑥

(𝑥
𝑧
) = 𝑒
−(1/2)(𝑥

𝑧
+𝑘
𝑧
)
2

,

(13)

where 𝑘
𝑧
> 0. However, only two fuzzy sets are not able

to cover the whole input space. In order to make the model
a universal approximator, we define new variables 𝑥

𝑖
by

transforming the input variables 𝑥
𝑧
as follows:

𝑥
𝑖
= 𝑥
𝑧
− 𝑑
𝑖
, (14)

where 𝑖 = 1, . . . , 𝑤 (𝑤 is a positive integer) and𝑑
𝑖
is a constant.

We can see that, after the transformation of the input variables
𝑥
𝑧
, the fuzzy sets will cover the whole input space if𝑤 is large

enough.
Before defining the GFHM, the definition of generalized

input variables and the generalized fuzzy hyperbolic rule base
are given first.
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Definition 1. Given a plant with 𝑛 input variables 𝑥
1
(𝑡),

𝑥
2
(𝑡), . . . , 𝑥

𝑛
(𝑡), the generalized input variables are defined

as 𝑥
1
= 𝑥
1
− 𝑑
11
, . . . , 𝑥

𝑤
1

= 𝑥
1
− 𝑑
1𝑤
1

, . . . , 𝑥
𝑤
1
+1

=

𝑥
2
− 𝑑
21
, . . . , 𝑥

𝑤
1
+𝑤
2

= 𝑥
2
− 𝑑
2𝑤
2

, . . . , 𝑥
𝑚−𝑤
𝑛
+1

= 𝑥
𝑛
−

𝑑
𝑛1
, . . . , 𝑥

𝑚
= 𝑥
𝑛
− 𝑑
𝑛𝑤
𝑛

, where 𝑚 = ∑
𝑛

𝑖=1
𝑤
𝑖
is the number

of generalized input variables, 𝑤
𝑧
(𝑧 = 1, . . . , 𝑛) represent

the number of transformations associated with each 𝑥
𝑧
, and

𝑑
𝑧𝑗
(𝑧 = 1, . . . , 𝑛, 𝑗 = 1, . . . , 𝑤

𝑧
) are constants that define the

transformations.

Definition 2. Given a plant with 𝑛 input variables 𝑥
1
(𝑡),

𝑥
2
(𝑡), . . . , 𝑥

𝑛
(𝑡) and an output variable 𝑥̇, the generalized

input variables are defined as Definition 1. And the fuzzy rule
base is called the generalized fuzzy hyperbolic rule base if the
following conditions are satisfied.

(1) The 𝑙th fuzzy rule has the following form (𝑙 =

1, 2 . . . , 2
𝑚

):
IF (𝑥
1
− 𝑑
11
) is 𝐹

𝑥
11

,. . ., (𝑥
1
− 𝑑
1𝑤
1

) is 𝐹
𝑥
1𝑤
1

, (𝑥
2
−

𝑑
21
) is 𝐹
𝑥
21

,. . ., (𝑥
𝑛
− 𝑑
𝑛1
) is 𝐹
𝑥
𝑛
1
, and (𝑥

𝑛
− 𝑑
𝑛𝑤
𝑛

) is
𝐹
𝑥
𝑛
𝑤
𝑛

, THEN 𝑥̇
𝑙

= 𝑐
𝐹
11

+ ⋅ ⋅ ⋅ + 𝑐
𝐹
1𝑤
1

+ 𝑐
𝐹
21

+ ⋅ ⋅ ⋅ +

𝑐
𝐹
2𝑤
2

+ ⋅ ⋅ ⋅ + 𝑐
𝐹
𝑛𝑤𝑛

, where 𝑤
𝑧
(𝑧 = 1, . . . , 𝑛) represent

the number of transformations associated with each
𝑥
𝑧
, 𝑑
𝑧𝑗
(𝑧 = 1, . . . , 𝑛, 𝑗 = 1, . . . , 𝑤

𝑧
) are constants

that define the transformations, 𝐹
𝑥
𝑧𝑗

are fuzzy sets of

0.1
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𝑥
𝑧
−𝑑
𝑧𝑗
which include subsets 𝑃

𝑥
and𝑁

𝑥
, and 𝑐

𝐹
𝑧𝑗

are
constants corresponding to 𝐹

𝑥
𝑧𝑗

.

(2) The constants 𝑐
𝐹
𝑧𝑗

(𝑧 = 1, . . . , 𝑛, 𝑗 = 1, . . . , 𝑤
𝑧
) in the

THEN-part correspond to 𝐹
𝑥
𝑧𝑗

in the IF-part. That
is, if there is 𝐹

𝑥
𝑧𝑗

in the IF-part, 𝑐
𝐹
𝑧𝑗

must appear in
the THEN-part; otherwise, 𝑐

𝐹
𝑧𝑗

does not appear in the
THEN-part.

(3) There are 𝑠 = 2𝑚 fuzzy rules in the rule base, where
𝑚 = ∑

𝑛

𝑖=1
𝑤
𝑖
, that is, all the possible 𝑃

𝑥
and 𝑁

𝑥

combinations of input variables in the IF-part and all
the linear combinations of constants in the THEN-
part.

Lemma 3. For a plant with 𝑛 input variables
𝑥
1
(𝑡), 𝑥
2
(𝑡), . . . , 𝑥

𝑛
(𝑡) and an output variable 𝑥̇, if one defines

the generalized fuzzy hyperbolic rule base and generalized
input variables as Definition 2 and defines the membership
function of the generalized input variables 𝑃

𝑥
and 𝑁

𝑥
as (13),

then one can derive the following model:

𝑥̇ = 𝐴 tanh (𝐾𝑥) , (15)
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where tanh(𝐾𝑥) = [tanh(𝑘
1
𝑥
1
), . . . , tanh(𝑘

𝑛
𝑥
𝑛
)]
𝑇 and it is

hyperbolic value of the state variables 𝑥
𝑖
(𝑖 = 1, 2 . . . 𝑛). One

calls (15) as the GFHM.

Lemma 4. For any real continuous function 𝑓 defined in 𝑈 ⊂
𝑅
𝑛 and an arbitrary 𝜀 > 0, there exists a system 𝑔 based on

GFHM that makes sup
𝑥∈𝑈
|𝑓(𝑥) − 𝑔(𝑥)| < 𝜀.

Remark 5. Lemma 4 indicates that the GFHM has univer-
sal approximation, and thus the GFHM can be used to
approximate the chaotic Smart Grid system in any precision
theoretically. Therefore, we can stabilize the GFHM instead
of the original strong nonlinearity system.

3.2. Chaotic Suppression Strategy. Now, we focus on design-
ing a new controller, which stabilizes an equilibrium point of
the closed-loop deterministic system for the corresponding
chaotic system.

According to Lemma 4, the GFHM of Smart Grid can be
established by parameter identification method [21]. Since it
is significant to transform the equilibrium point to the origin

point before establishing its GFHM, theGFHMof the chaotic
Smart Grid system is expressed as

𝑥̇ = 𝐴 tanh𝑥 + 𝑖
0
𝐵 tanh𝑥. (16)

𝐴 and 𝐵 are obtained by matrix based on system identifica-
tion:

𝐴 =

[
[
[

[

0 1 0 0

−1 −0.95 −7.17 12.32

−25.46 0 −10.98 287.64

−22.98 0 −214.84 −150.34

]
]
]

]

,

𝐵 =

[
[
[

[

0 0 0 0

0 0 0 0

127.3 35.82 2.49 14.28

114.9 −61.6 −378.28 32.34

]
]
]

]

.

(17)

Therefore, the strong nonlinear system (12) can be repre-
sented as

𝑥̇ = (𝐴 + 𝑖
0
𝐵) tanh𝑥. (18)

The following theoremwill give the advanced suppression
strategy to the chaotic Smart Grid system.

Theorem 6. If there is a positive-definite diagonal matrix
𝑃 and a positive scalar 𝑖

0
such that the following LMI (19)

holds, then the chaotic Smart Grid system can be stabilized
asymptotically:

𝑃 (𝐴 + 𝑖
0
𝐵) + (𝐴 + 𝑖

0
𝐵)
𝑇

𝑃 < 0. (19)

Proof. Denotethe Lyapunov function as

𝑉 (𝑥) = 2

4

∑

𝑖=1

𝑝
𝑖
× ln (cosh 𝑥

𝑖
) , (20)

where 𝑝
𝑖
> 0 (𝑖 = 1, 2, 3, 4), and then we can get

𝑉̇ (𝑥) = 2(tanh𝑥)𝑇𝑃𝑥̇, (21)

where 𝑃 = diag(𝑝
1
, 𝑝
2
, 𝑝
3
, 𝑝
4
) > 0.

Combining system (18), we can obtain

𝑉̇ (𝑥) = (tanh𝑥)𝑇 (𝑃 (𝐴 + 𝑖
0
𝐵) + (𝐴 + 𝑖

0
𝐵)
𝑇

𝑃) (tanh𝑥) ,
(22)

where 𝑖
0
is the output active power current of the PWM

inverter. Hence, when the LMI (19) holds, (22) is negative. So
the system (18) can be stabilized asymptotically.

Remark 7. In the above theorem, the stabilization condition
for a closed-loop chaotic Smart Grid system is obtained based
on the GFHM. Obviously, a new controller is designed by
means of solving a LMI.

4. Simulation Study

With simulation study, we can illustrate the effectiveness of
the proposed suppression scheme for (12). Here, we choose
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Figure 9: Stable state response curve of 𝑥
3
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the same initial condition in Section 2 and the matrix 𝑃 is
chosen as a unit matrix. By solving (19), we can get 𝑖

0
= 0.2.

The state response curves of controlled system are shown
in Figures 7, 8, 9, and 10 which, respectively, denote the stable
state response curves (𝑥

1
, 𝑥
2
, 𝑥
3
, 𝑥
4
). Since we have observed

chaotic phenomenon before when 𝑥 = (𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑥
4
)
𝑇

=

(𝛿
𝑡
, 𝜔, 𝛿L, 𝑉L)

𝑇

= (0.3, 0.2, 0.1, 0.97)
𝑇, the initial values

of subsets 𝑥 are also set as 𝑥 = (0.3, 0.2, 0.1, 0.97)
𝑇 to

demonstrate the effectiveness of the proposed suppression
scheme based on generalized fuzzy hyperbolic model. From
these figures, we can see that the state response curves
(𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑥
4
) of original controlled system return to the

equilibrium state after several fluctuations. The simulation
results show that the proposed controller can suppress chaos
in the Smart Grid successfully.

5. Conclusion

In this paper, we have studied a typical SmartGridwith strong
coupling and nonlinearity. In this research, it is shown that
Smart Grid is more likely to fall into chaos, as more andmore
DG are incorporated. And a new controller is designed to
suppress the chaos based on the GFHM,which will guarantee

0 10.2 0.4 0.6 0.8

x
4

0.6

0.4

0.2

0

−0.2

−0.4

t (s)

Figure 10: Stable state response curve of 𝑥
4
.

that the power network is stable. The numerical simulation
demonstrates its effectiveness.
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