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Feedback Regulation of Elastically Decoupled
Underactuated Soft Robots

Pietro Pustina , Graduate Student Member, IEEE, Cosimo Della Santina , Member, IEEE, and
Alessandro De Luca , Fellow, IEEE

Abstract—The intrinsically underactuated and nonlinear nature
of continuum soft robots makes the derivation of provably sta-
ble feedback control laws a challenging task. Most of the works
so far circumvented the issue either by looking at coarse fully-
actuated approximations of the dynamics or by imposing quasi-
static assumptions. In this letter, we move a step in the direction of
controlling generic soft robots taking explicitly into account their
underactuation. A class of soft robots that have no direct elastic
couplings between the dynamics of actuated and unactuated coor-
dinates is identified. Considering the actuated variables as output,
we prove that the system is minimum phase. We then propose regu-
lators that implement different levels of model compensation. The
stability of the associated closed-loop systems is formally proven
by Lyapunov/LaSalle techniques, taking into account the nonlinear
and underactuated dynamics. Simulation results are reported for
two models of 2D and 3D soft robots.

Index Terms—Control and learning for soft robots, flexible
robotics, modeling, motion control.

I. INTRODUCTION

CONTINUUM soft robots are mechanical systems whose
main body is entirely made of deformable soft materi-

als [1]. This design choice allows safe human-robot interaction
and provides to soft robots the ability to exhibit unprecedented
adaptation, sensitivity, and agility [2]. However, to deliver on
these high expectations, soft robots must be capable at the very
least to control their shape in space in a reliable way. This is still
an open challenge due to the peculiar dynamic characteristics of
such systems.

Deriving exact dynamic equations for soft robots requires
continuum mechanics methods (e.g., by Cosserat rod theory [3]),
with the constitutive equations given by nonlinear partial dif-
ferential equations. However, using infinite-dimensional formu-
lations imposes substantial limitations to model-based control
methods [4], [5]. To address this issue, researchers have pro-
posed finite-dimensional descriptions of soft robots dynamics
based on a discretization of rod models [6]–[9] or on direct
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volumetric FEM [10]–[12]. These formulations can be made
physically consistent and accurate enough. In addition, their
structure lends itself more directly to the design of model-based
controllers [13].

Researchers have devoted much attention to develop-
ing model-based controllers within a purely kinematic ap-
proach [14]–[16]. These control laws work in practice when the
actuator dynamics is dominant and under quasi-static regimes,
e.g., for very lightweight soft robots moving slow. More recently,
these hypotheses have been removed and controllers designed
using full-fledged dynamic models have been proposed [11],
[17], assuming that full actuation is available. However, soft
robots are intrinsically underactuated mechanical systems. Fully
actuated models are obtained only when considering coarse
approximations of the continuum dynamics, leading in turn
to possibly erroneous assessments of controller stability and
performance. Thus, underactuation must be explicitly taken into
account in a more formal control design.

In [18], local stabilization of a robot equilibrium is obtained
within a linear approximation of the dynamics. A regulator
compensating for higher-order deformation modes has been
presented in [8] without a stability analysis. Posture regulation
using an energy shaping method is considered in [19], but
developed only for a single planar soft segment. An heuristic
extension of computed torque to underactuated soft robots is
tested by simulation in [20]. Finally, the soft inverted pendu-
lum is proposed as a template model for nonlinear control of
soft robots in [21], showing how the unstable equilibrium is
stabilized by means of collocated or non-collocated feedback
linearization. Underactuation is taken explicitly into account for
control purposes only in [8] and [21], where stability analyses are
performed for a single soft pendulum with affine or polynomial
curvature. As a matter of fact, there is still no feedback control
method that allows to formally guarantee closed-loop stability
of desired equilibria for general underactuated soft robots.

In this letter, we consider a class of underactuated soft robots
that we call elastically decoupled, for which there is no direct
elastic coupling between actuated and unactuated variables (Sec-
tion II). This class is reasonably large and contains, among oth-
ers, fine piecewise constant curvature (or strain) discretizations
of homogeneous segments [13]. Interestingly, the structure of
the dynamic equations is similar to that of robots with flexible
links [22], [23], other well-studied underactuated mechanical
systems. For elastically decoupled soft robots, we prove first that
the zero dynamics of the collocated control problem is stable,
i.e., the system is minimum phase (Section III). Starting from this
basic result, we present in Section IV the main contribution of
the paper, i.e., a PD regulator with gravity cancellation in the ac-
tuated subsystem for (possibly, global) asymptotic stabilization.
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See https://www.ieee.org/publications/rights/index.html for more information.
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Few variants with different compensation/cancellation of gravity
and of other dynamic terms are briefly presented in Section V.
The stability properties of the various control laws are formally
assessed via Lyapunov/LaSalle techniques. In Section VI, val-
idation is performed through simulations on two models of 2D
and 3D soft robots.

II. DYNAMIC MODEL

Consider a generic soft robot. A finite dimensional model for
such systems can be derived by means of different discretization
approaches. Such models can be obtained through the Euler-
Lagrange formalism. It can be shown [13] that they are described
by Ordinary Differential Equations (ODEs) of the form

B(θ)θ̈ + S(θ, θ̇)θ̇ + E(θ) +Hθ + F (θ) θ̇ = Aτ, (1)

where θ, θ̇, θ̈ ∈ Rn are the vectors of configuration variables and
their time derivatives, B(θ) > 0 is the symmetric robot inertia
matrix, S(θ, θ̇)θ̇ collects Coriolis and centrifugal terms, E(θ) =
(∂U(θ)/∂θ)T is the gravity vector being U(θ) the gravitational
potential energy of the robot. The terms Hθ and F (θ)θ̇ model,
respectively, elastic and (possibly nonlinear) dissipative effects,
with H > 0 and F (θ) > 0 both symmetric. Furthermore, the
(constant) matrix A ∈ Rn×m, with m < n, projects the actua-
tion torques τ ∈ Rm into the configuration space. Without loss
of generality, matrix A is always full column rank.

A. Underactuated Model for Control Design

Model (1) can be conveniently rewritten by separating the
dynamic equations of the actuated and unactuated variables. To
this end, we introduce the linear change of coordinates q = Tθ
with

TT = (A T2 ) , (2)

being T2 ∈ Rn×(n−m) any orthogonal complement to A. We
will refer with the term elastically decoupled to the class of
soft robots that have block diagonal stiffness in these new
coordinates, i.e., that are represented by the dynamic equations

M(q)︷ ︸︸ ︷(
MaaMau

MuaMuu

)(
q̈a
q̈u

)
+

C(q,q̇)︷ ︸︸ ︷(
CaaCau

CuaCuu

)(
q̇a
q̇u

)
+

G(q)︷ ︸︸ ︷(
Ga

Gu

)

+

(
Kaa 0

0 Kuu

)
︸ ︷︷ ︸

K

(
qa
qu

)
+

(
DaaDau

DuaDuu

)
︸ ︷︷ ︸

D(q)

(
q̇a
q̇u

)
=

(
τ

0

)
,

(3)

where qa ∈ Rm and qu ∈ Rn−m denote, respectively, the actu-
ated and unactuated variables, and the dynamic terms have been
partitioned accordingly, omitting the dependence for the ease of
reading. We assume the coordinate transformation (2) is such
that the symmetric stiffness matrix K = T−THT−1 > 0 takes
on the elastically decoupled form in (3) with zero off-diagonal
blocks. Moreover, being D(q) = T−TF (T−1q)T−1 > 0, it is
Duu > 0. Also, symmetry of F implies Dua = DT

au.
Remark 1: This is a reasonably general class of systems,

which includes fine discretizations of sequences of continuum
segments with homogeneous stiffness, and sequences of actu-
ated and passive segments, moving either in 2D or 3D (including
for example the affine and polynomial models in [8], [21]).
Examples of 2D and 3D soft robots are provided in Section VI.

B. Known Structural Properties

Model (3) verifies a set of classical properties of rigid robots
with revolute joints, as inherited from (1) [13].

Property 1: The inertia matrix M(q) is symmetric, positive
definite and bounded for any q ∈ Rn.

Property 2: If the matrix C(q, q̇) is defined through Christof-
fel symbols, then Ṁ(q)− 2C(q, q̇) is a skew symmetric matrix.
This is equivalent to Ṁ(q) = C(q, q̇) + CT(q, q̇).

Property 3: The matrix C(q, q̇) is bounded in q and linear in
the velocity q̇. Thus, there exists a constant γC > 0 such that
‖C(q, q̇)‖ ≤ γC‖q̇‖, for any q, q̇ ∈ Rn.

Property 4: There exist constantsαU , αG, α∂G > 0 such that

‖U(q)‖ ≤ αU , ‖G(q)‖ ≤ αG,

∥∥∥∥∂G(q)

∂q

∥∥∥∥ ≤ α∂G,

for any q ∈ Rn. The latter implies also

‖G(q1)−G(q2)‖ ≤ α∂G ‖q1 − q2‖ ,
for any q1, q2 ∈ Rn.

III. ZERO DYNAMICS ANALYSIS

The role of the zero dynamics is fundamental in assessing
the stability properties of a nonlinear feedback control system,
and can be used as a guideline for the design of effective
control laws [24]. The zero dynamics of a system is the residual
dynamics left in the state space of x when the controlled output
y is forced to be zero at all times (by a suitable control input
u). A nonlinear control system is said to be minimum phase
if the trajectories of its zero dynamics are bounded. To apply
advanced control techniques, such as high-gain output feedback
or input-output feedback linearization for trajectory tracking,
it is necessary that the system is minimum phase w.r.t. the
controlled output. If the zero dynamics is unstable, the system
state will eventually diverge. Indeed, the stability properties of
the zero dynamics may depend on the choice of the controlled
output y, thus establishing what can be expected (or not) from
a proposed feedback control design.

In particular, feedback control of linear or nonlinear mechan-
ical systems turns out to be more problematic if the controlled
output y is associated to an unstable zero dynamics. In fact, one
should resort to a feedback from the full state x (or to a dynamic
feedback law from the output y, e.g., using a state observer)
in order to be able to stabilize the closed-loop system. As a
result, energy-motivated control laws like a PD action on the
error e = yd − y of a positional output y would fail in this case.
Therefore, when considering a general underactuated model of
a soft robot, it is relevant to investigate the nature of the zero
dynamics for different possible controlled outputs of interest.

In this letter, we consider as controlled output of system (3)
the actuated variables qa, i.e., y = qa − qa,d, for a constant qa,d.
This is also known as the collocated case. Due to the presence of
the unactuated dynamics, the system possesses a zero dynamics
of dimension 2(n−m). This is easily found by looking at the
residual dynamics in (3) when y, ẏ, and ÿ are forced to zero:

Muu(qa,d, qu)q̈u + Cuu(qa,d, qu, 0, q̇u)q̇u

+Gu(qa,d, qu) +Kuuqu +Duu(qa,d, qu)q̇u = 0. (4)

The following result shows that the dynamic system (3) with
the chosen output y is minimum phase. Intuitively, this happens
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because (4) contains a damping term that dissipates the energy
initially stored in the unactuated subsystem.

Lemma 1: For any initial state, the trajectories of (4) are
bounded and converge to (qu, q̇u) = (qu,eq, 0) where qu,eq is
a solution of

Kuuqu +Gu(qa,d, qu) = 0. (5)

Proof: Consider the Lyapunov-like function

V (qu, q̇u)=
1

2
q̇TuMuu(qa,d, qu)q̇u+

1

2
qTuKuuqu+ U(qa,d, qu).

The gravitational potential U(qa,d, qu) is lower bounded
thanks to Property 4. This implies that also V (qu, q̇u) is such.
Evaluating V̇ along the trajectories of (4) yields (omitting de-
pendence of the dynamic terms)

V̇ (qu, q̇u) =
1

2
q̇Tu Ṁuuq̇u + q̇TuMuuq̈u + q̇TuKuuqu + q̇TuGu

=
1

2
q̇Tu Ṁuuq̇u + q̇TuKuuqu + q̇TuGu

+ q̇Tu (−Cuuq̇u −Kuuqu −Duuq̇u −Gu)

= −q̇TuDuuq̇u ≤ 0,

where the skew symmetry of Ṁuu − 2Cuu has been used. Being
V both radially unbounded and lower bounded, it is possible
to invoke the Corollary to LaSalle invariance principle in the
Appendix from which the thesis follows. �

Remark 2: The equilibrium reached by the unactuated vari-
ables is not unique in general. In Section IV-B, a sufficient
condition for the uniqueness of qu,eq will be presented.

IV. PD+ CONTROL UNDER GRAVITY

We present here our main result for elastically decoupled
underactuated soft robots under gravity. The law is an extension
of the PD regulator of [13] which uses a constant gravity com-
pensation term evaluated at the target equilibrium. We prove that
regulation can be achieved also by fully cancelling gravity on
the actuated variables at the current configuration. Additional
conditions are provided for obtaining a global result and for
tuning the (lowest) proportional gain in the control law sufficient
for asymptotic stability.

A. PD Control With Gravity Cancellation

Consider the collocated control law for the regulation of the
actuated variables qa,

τ = KP (qa,d − qa)−KD q̇a +Ga(q) +Kaaqa,d, (6)

where qa,d ∈ Rm is the desired set point, and KP > 0 and
KD ≥ 0 are gain matrices assumed to be symmetric.

Theorem 1: There exists a finite constant αP > 0 such that,
for all KP > −Kaa + αPIm, the trajectories of the closed-loop
system (3), (6) are bounded and converge asymptotically to
the equilibrium state (qa, qu, q̇a, q̇u) = (qa,d, qu,eq, 0, 0), where
qu,eq is a solution of

Kuuqu +Gu(qa,d, qu) = 0. (7)

Proof: The proof is based again on the Corollary to LaSalle
reported in Appendix. Consider the Lyapunov-like function1

V (q̄, q̇) = γ1

(
1

2
q̇TM(q)q̇ +

1

2
q̄TK̂q̄ − q̃Ta Ga(q)

1 + 2q̃Ta q̃a
+ U(q)

)

+
2q̃Ta (Maa(q)q̇a +Mau(q)q̇u)

1 + 2q̃Ta q̃a
, (8)

where γ1 > 0 is a scalar and we defined

q̄ =

(
q̃a
q̄u

)
=

(
qa − qa,d

qu

)
, K̂ =

(
KP +Kaa 0

0 Kuu

)
,

D̂(q) =

(
D̂a(q)

D̂u(q)

)
=

(
KD +Daa(q)Dau(q)

Dua(q) Duu(q)

)
.

We show first that hypothesis i) of the Corollary in Ap-

pendix holds. We have that 2q̃Ta (Maaq̇a+Mauq̇u)
1+2q̃Ta q̃a

≥ −2λmax(M)

‖q̇‖, −γ1
q̃Ta Ga

1+2q̃Ta q̃a
≥ −γ1αG, and γ1U ≥ −γ1αU . Hence,

V (q̄, q̇) ≥ γ1
2

λmin(M)‖q̇‖2 − 2λmax(M)‖q̇‖

− γ1(αG + αU ) +
γ1
2

λmin(K̂)‖q̄‖

≥ γ1
2

λmin(M)‖q̇‖2 − 2λmax(M)‖q̇‖+ γ1(αG + αU ).

(9)

The function on the right hand-side of the last inequality is
convex and quadratic in ‖q̇‖. Its minimum is located at ‖q̇‖ =
2λmax(M)/(γ1λmin(M)), with value

γ2 = − 8λ2
max(M)

γ1λmin(M)
− γ1(αG + αU ). (10)

Combining (10) with (9) yields

V (q̄, q̇) ≥ γ2 > −∞. (11)

Being V (q̄, q̇) lower bounded, hypothesis i) holds true.
From (9), V (q̄, q̇) is radially unbounded and thus hypothesis
ii) is also fulfilled. Consider the time derivative of (8):

V̇ (q̄, q̇) = γ1

(
1

2
q̇T Ṁ q̇ + q̇TMq̈ + q̇T K̂q̄ − q̇Ta Ga

1 + 2q̃Ta q̃a

−
q̃Ta

∂Ga

∂q q̇

1 + 2q̃Ta q̃a
+

4q̃Ta Gaq̇
T
a q̃a

(1 + 2q̃Ta q̃a)
2
+ q̇TG

)

+
2q̇Ta (Maaq̇a +Mauq̇u)

1 + 2q̃Ta q̃a
+

2q̃Ta (Maaq̈a +Mauq̈u)

1 + 2q̃Ta q̃a

+
2q̃Ta (Ṁaaq̇a + Ṁauq̇u)

1 + 2q̃Ta q̃a

− 8q̃Ta (Maaq̇a +Mauq̇u)q̃
T
a q̇a

(1 + 2q̃Ta q̃a)
2

.

1The function (8) is inspired by a similar one used in the control of rigid
manipulators, see [25].
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Simple algebraic manipulations lead to

V̇ (q̄, q̇) = γ1

(
− q̇T D̂q̇ +

2q̃Ta q̃aq̇
T
a Ga

1 + 2q̃Ta q̃a
−

q̃Ta
∂Ga

∂q q̇

1 + 2q̃Ta q̃a

+
4q̃Ta Gaq̇

T
a q̃a

(1 + 2q̃Ta q̃a)
2

)
+

2q̇Ta (Maaq̇a +Mauq̇u)

1 + 2q̃Ta q̃a

− 2q̃Ta K̂aq̃a
1 + 2q̃Ta q̃a

− 2q̃Ta D̂aq̇

1 + 2q̃Ta q̃a
+

2(q̇Ta Caa + q̇TuCua)q̃a
1 + 2q̃Ta q̃a

− 8q̃Ta (Maaq̇a +Mauq̇u)q̃
T
a q̇a

(1 + 2q̃Ta q̃a)
2

.

All terms in the right-hand side, except for the first and the
sixth one (the only that are certainly negative definite), can be
easily upper bounded by positive functions using Prop. 1–4 of
Section II. As a result, we can bound V̇ (q̄, q̇) as

V̇ (q̄, q̇) ≤ −

⎛
⎜⎝ ‖q̇‖

‖q̃a‖√
1 + 2‖q̃a‖2

⎞
⎟⎠

T

Q

⎛
⎜⎝ ‖q̇‖

‖q̃a‖√
1 + 2‖q̃a‖2

⎞
⎟⎠ ,

with matrix Q given by(
γ1λmin(D̂)− γC√

2
−4λmax(M)−γ1(2αG+α∂G+σmax(D̂a))

symm 2λmin(KP +Kaa)

)
.

Thus, V̇ ≤ 0 for a matrix Q > 0. According to Sylvester
criterion, this will be the case i.f.f.

γ1λmin(D̂)− γC√
2
− 4λmax(M) > 0,

and

detQ = 2λmin(KP +Kaa)

(
γ1λmin(D̂)

− γC√
2
− 4λmax(M)

)

−
(
γ1(2αG + α∂G) + σmax(D̂a)

)2
> 0. (12)

Both conditions are fulfilled by taking γ1 and KP such that

γ1 >
γC + 4

√
2λmax(M)√

2λmin(D̂)
, (13)

and

λmin(KP +Kaa) >

(
γ1(2αG + α∂G) + σmax(D̂a)

)2
2
(
γ1λmin(D̂)− γC√

2
− 4λmax(M)

) .
(14)

The latter is verified by hypothesis taking αP equal to the
right-hand side of (14). Combining (12), (13) and (14), it follows
that V̇ ≤ 0. All three hypotheses of the Corollary to LaSalle are
therefore verified. Furthermore, Q > 0 implies that V̇ vanishes
if and only if q̃a = 0 and q̇ = 0. As a result, the trajectories of
the closed-loop system will asymptotically converge to q̃a = 0
and q̇ = 0, hence the thesis. �

Fig. 1. Simulation 1 (3D soft arm). Time evolution of the configuration for
the reference (21) (black dashed lines). A force fext = (1 3 0)T [N] is applied
to the robot tip as a disturbance during motion in the time window spanned by
the shaded gray area.

Remark 3: Assuming elastic decoupling between actu-
ated and unactuated variables guarantees the absence of
the term q̇Ta Kauqu in V̇ (q̄, q̇), which is not definite in
sign and possibly unbounded in qu. However, the results
from this section can be generalized to the case of weakly
elastically coupled systems, i.e., having bounded elastic
coupling.

B. Uniqueness of the Equilibrium

The same control law (6) is also sufficient to ensure global
convergence to a single equilibrium, as soon as the stiffness of
the field acting on underactuated variables is large enough.

Corollary 1: Under the hypotheses of Theorem 1, if

Kuu > −∂2U(qa,d, qu)

∂q2u
,

for all qu ∈ Rn−m, then the closed-loop system (3), (6) has a
unique globally asymptotically stable equilibrium.

Proof: Consider the auxiliary function

P (qu) = U(qa,d, qu) +
1

2
qTuKuuqu.

According to Theorem 1, the unactuated variables tend to a
qu,eq such that Gu(qa,d, qu,eq) +Kuuqu,eq = 0. The latter is
the gradient of P evaluated at this closed-loop equilibrium, and
thus qu,eq is an extremum of P . This point is unique since
the Hessian of P (qu) is ∂2U(qa,d, qu)/∂q

2
u +Kuu, which is

positive definite by hypothesis. �

C. Lower Bounds on Control Gains

Asymptotic stability of the (single or multiple) closed-loop
equilibria has been proven under the hypothesis that the propor-
tional gain KP in (6) is large enough. Still, it is useful to find a
lower bound on this gain, that can be used to reduce the control
effort and to avoid stiffening unnecessarily the soft robot [26].
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Fig. 2. Simulation 1 (3D soft arm). Time evolution of the control torques.

Corollary 2: All KP such that

λmin(KP +Kaa) > αth, (15)

verify Theorem 1, with

αth = 2(2αG + α∂G)
2

(
γC√
2
+ 4λmax(M)

)
/λ2

min(D̂)

+ 2 (2αG + α∂G)σmax(D̂a)/λmin(D̂),

where

D̂(q) =

(
D̂a(q)

D̂u(q)

)
=

(
KD +Daa(q)Dau(q)

Dua(q) Duu(q)

)
.

Proof: Consider the right-hand side of inequality (14) as a
function of γ1 subject to the constraint (13), i.e., a function
f(γ1) : D = ((k4/k3),∞) → R+ defined as

f(γ1) =
(k1γ1 + k2)

2

2(k3γ1 − k4)
, (16)

with k1 = 2αG + α∂G, k2 = σmax(D̂a), k3 = λmin(D̂), and
k4 = (γC/

√
2) + 4λmax(M). Function (16) is convex in its

domain of definition D since the second-order derivative

∂2f(γ1)

∂γ2
1

=
(k1k4 + k2k3)

2

(k3γ1 − k4)3

is positive for γ1 > (k4/k3). Thus, its unique global minimum
can be found analytically as the solution of

∂f(γ1)

∂γ1
=

√
2k1

2
√
k3γ1 − k4

−
√
2k3(k1γ1 + k2)

4(k3γ1 − k4)
3
2

= 0. (17)

This is obtained at γ1,min = (2k1k4 + k2k3)/(k1k3) ∈ D,
with minimum value

f(γ1,min) =
2k1(k1k4 + k2k3)

k23
. (18)

The thesis follows by substituting back in (18) the values of
k1, k2, k3 and k4. �

Fig. 3. Simulation 2 (2D soft robot). Time evolution of the actuated variables
for the reference (22) (black dashed lines). A lateral force of fext = (0 3)T [N]
is applied to the robot tip as a disturbance during motion in the time window
spanned by the gray shaded area.

V. VARIANTS FOR HANDLING GRAVITY

We can further simplify the regulator by updating online only
the unactuated variables in the term that cancels gravity in (6),
as in the following ‘mixed’ PD+ control law

τ = KP (qa,d − qa)−KD q̇a +Ga(qa,d, qu) +Kaaqa,d.
(19)

The closed-loop asymptotic stability properties are similar to
the those obtained with the previous solution, with the exception
of a higher proportional gain.

Corollary 3: Under the hypothesis of Theorem 1, with
KP such that λmin(KP +Kaa) > α∂G + αth, the trajectories
of the closed-loop system (3), (19) are bounded and con-
verge asymptotically to the equilibrium state (qa, qu, q̇a, q̇u) =
(qa,d, qu,eq, 0, 0), where qu,eq is a solution of (7).

Proof: We only sketch the proof due to lack of space. The first
part proceeds along similar steps as in the proof of Theorem 1
using the Lyapunov-like function

V (q̄, q̇)= γ1

(
1

2
q̇TM(q)q̇+

1

2
q̄T K̂q̄ − q̃Ta Ga(qa,d, qu)

1 + 2q̃Ta q̃a
+U(q)

)

+
2q̃Ta (Maa(q)q̇a +Mau(q)q̇u)

1 + 2q̃Ta q̃a
.

Instead, the part that deals with defining a lower bound forKP

follows by exactly the same steps as in the proof of Corollary 2.�
Both regulators (6) and (19) guarantee that the trajectories of

the closed-loop system converge asymptotically to an equilib-
rium. However, there is no clue about if and how a sufficiently
fast convergence rate can be obtained in the large. Instead, this
goal is automatically achieved by a controller designed using
(collocated) Partial Feedback Linearization (PFL) theory [23].
When considering our class of underactuated soft robots, it is
possible to compute the explicit expression of q̈uu from the last
n−m equations in (3) and to replace it in the first m equations,
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Fig. 4. Simulation 2 (2D soft robot). Time evolution of the curvatures of the
six CC segments used for the discretization of the soft robot.

Fig. 5. Simulation 2 (2D soft robot). Time evolution of the control torques.

leading to(
Maa −MauM

−1
uuMua

)
q̈aa −MauM

−1
uu

· (Cuaq̇a+Cuuq̇u+Gu+Kuuqu+Duaq̇a+Duuq̇u)

+ Caaq̇a + Cauq̇u +Ga +Kaaqa +Daaq̇a +Dauq̇u = τ.

The above set of equations is exactly linearized by the law

τ =
(
Maa −MauM

−1
uuMua

)
u−MauM

−1
uu

· (Cuaq̇a + Cuuq̇u +Gu +Kuuqu +Duaq̇a +Duuq̇u)

+ Caaq̇a + Cauq̇u +Ga +Kaaqa +Daaq̇a +Dauq̇u,
(20)

where u is the input acting on the linearized system. Choosing
u = KP (qa,d − qa)−KD q̇a, yields the closed-loop dynamics
for the actuated variables

q̈a +KD q̇a +KP (qa − qa,d) = 0.

Thus, for any KP > 0 and KD > 0, qa will converge exponen-
tially fast to qa,d, with a rate explicitly assigned by the choice
of gains, as calculated using standard linear theory. Moreover,
thanks to Lemma 1, the use of (20) will also induce a convergent
behavior to the entire state of the soft robot. However, these nice
properties come at the cost of a substantially more complex and
potentially less robust controller when compared to (6), since
the implementation of (20) requires full knowledge of the robot
dynamics.

Remark 4: To implement the proposed control laws the mea-
sure of both θ and θ̇ (or, equivalently, of q and q̇) is needed.
Although with some limitations, the first can be acquired through
a motion capture system, while the latter estimated through
backward differentiation [17]. Note also that, unlike the PFL
law in (20), the PD+ control laws (6) and (19) do not necessarily
require velocity measures, as KD can be set to zero without
affecting the asymptotic stability of the closed-loop system.

VI. SIMULATION RESULTS

Two simulations are proposed to show that the considered
class of systems encompasses different types of underactuation.
In the first simulation (Section VI-A), we consider an inexten-
sible 3D soft arm described through the state parametrization
proposed in [27], while in the second one (Section VI-B) a planar
soft robot modeled under the Piecewise Constant Curvature
(PCC) formulation presented in [17] is used. In both cases, the
base is rotated so that in the rest position q = 0([m] or [rad]) the
arm is aligned with the gravitational field, with its tip pointing
downwards. The PD law with gravity cancellation (6) and the
partially feedback linearizing control law (20) are compared. We
do not report results for the control law (19) since its performance
were found comparable to those of (6).

A. Simulation 1

Consider an inextensible 3D soft arm with 3 segments,
where only the first and third ones are actuated. In this case,
the change of coordinates (2) boils down to a reordering
of the variables. Thus, the goal is to regulate the two con-
figuration variables of each of the actuated segments, i.e.,
qa = (θ1,1 θ1,2 θ3,1 θ3,2)T ∈ R4. Each uniform segment has
length 0.11 [m] and mass 0.1 [kg]. The stiffness and damping
are assumed uniform and equal to hi = 0.6 [Nm] and fi =
0.03 [N s/m], i = 1, 2, 3. The robot starts at rest and the sim-
ulation runs for 30 [s]. The reference for the controllers has two
successive targets (in [m]):

q(1,2,3,4),d(t) =

⎧⎨
⎩
(
1 2 −1 1

)T
, 0 ≤ t < 15 [s](−1 2 0 0

)T
, t ≥ 15 [s].

(21)

At t = 17 [s], an external force fext = (1 3 0)T [N] is applied
for 1 [s] to the robot tip. The control gains are chosen asKP = 1 ·
I4 [Nm] and KD = 0.1 · I4 [Ns/m] for the PD+ controller (6)
and, respectively, as KP = 20 · I4 [s−2] and KD = 5 · I4 [s−1]
for the nonlinear PFL regulator (20).

Fig. 1 shows the time evolution of the configuration variables.
Despite of the disturbance fext, both regulators yield zero error
at steady state. The PFL law is characterized by a faster tran-
sient, but does not exhibit the same nice disturbance rejection
capability of the PD+ regulator. This is expected since (20)
makes the input-output behavior virtually equivalent to a unitary
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Fig. 6. Simulation 1 (3D soft arm). Stroboscopic views of the robot motion in the workspace for the reference (21). At t = 17 [s], a disturbance force fext =

(1 3 0)T [N] is applied to the robot tip for 0.5 [s]. (a) and (b) show the robot motion under the PD+ regulator for t ∈ [0, 15][s] and t ∈ [15, 30][s], respectively.
Similarly, (c) and (d) show the motion under the PFL regulator in the same time windows.

Fig. 7. Simulation 2 (2D soft robot). Stroboscopic views of the robot motion in the workspace for reference (22), with the same organization as in Fig. 6.

mass-spring-damper system subject to (the projection of) fext.
On the other hand, the PD+ controller preserves the inertial
properties of the soft robot, achieving regulation by cancelling
only the necessary dynamic terms. Fig. 2 shows the control effort
requested to execute the motion. During the action of fext an
oscillatory behaviour is observed in the output of the PFL control
torque, which attains peaks that are one order of magnitude larger
than those of the PD+ torque.

B. Simulation 2

Consider a planar soft robot with 2 actuated segments. It is
assumed that the shape of each segment is well described by 3
CC segments. However, including a higher number of segments
yields similar results.

As discussed in [13], the actuation matrix takes the form

A =

(
1 1 1 0 0 0
0 0 0 1 1 1

)T

.

Hence, according to (2), the first and second variables in the
new coordinates q ∈ R6 are the sum of the three curvatures
of the first and, respectively, the second actuated segment,
i.e., qa = (θ1 + θ2 + θ3 θ4 + θ5 + θ6)T . As a result, through the
commands τ ∈ R2 it is possible to regulate the orientation of
the tip of the two actuated segments. Each CC segment has
length 0.1 [m] and mass 0.3 [kg]. The stiffness and damping
matrices are both taken diagonal with elements 0.2 [Nm/rad]
and 0.2 [Nms/rad], respectively. The robot starts at rest and

the simulation runs for 30 [s]. The reference commanded to the
controllers has again two successive targets (in [rad]):

q(1,2),d(t) =

⎧⎨
⎩
(−π π

)T
, 0 ≤ t < 15 [s](

π/2 0
)T

, t ≥ 15 [s].
(22)

To empirically evaluate the disturbance rejection capabili-
ties, at t = 17 [s] an external force fext = (0 3 )T [N] is ap-
plied to the robot tip for 0.5 [s]. The chosen control gains are
KP = 1 · I2 [Nm/rad] and KD = 0.1 · I2 [Nms/rad] for the
PD+ law (6), and KP = 10 · I2 [s−2], KD = 5 · I2 [s−1] for the
PFL controller (20).

Fig. 3 shows the time evolution of the actuated variables,
together with the corresponding references. The final curvature
of each actuated segment is correctly regulated. The closed-loop
system under the PD+ control exhibits a more oscillatory be-
havior compared to what obtained with the PFL law. However,
also in this scenario, the latter control law is less robust to
the presence of an external disturbance fext. Fig. 4 shows the
curvature of the six CC segments used to discretize the structure.
As expected, these converge to finite values. Finally, Fig. 5 shows
the control torques required to perform the motion, for which
similar conclusions as the ones drawn in Simulation 1 hold. In
particular, the control action for the PFL controller attains a peak
during the action of fext that is one order of magnitude larger
than the peak of the PD+ law.

For better illustration of the dynamic behavior in the
workspace, Figs. 6 and 7 show stroboscopic views of the motion
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of the two soft robots in Simulation 1 and Simulation 2, for both
the PD+ and the PFL controller.

VII. CONCLUSION

We have identified a new class of underactuated soft robots
that we call elastically decoupled. For such systems we proved
the asymptotic stability of the zero dynamics when the collo-
cated variables are taken as controlled output. This has at least
two important consequences. First, it allows the application of
well-established nonlinear control techniques, such as input-
output (partial) feedback linearization. Second, it serves as a
guideline to look for simpler control laws allowing the regulation
of the actuated coordinates. Along this line of thought, we
proposed two PD+ controllers and provided sufficient conditions
that guarantee the global asymptotic stability of the desired
closed-loop equilibrium under gravity. The theoretical results
have been validated through simulations. Future work will be
devoted to the experimental validation of these controllers.

APPENDIX

We report here a trivial variation on the LaSalle invariance
principle that we use to prove the main results of this paper.

Corollary (to LaSalle [28]): Consider the system ẋ = f(x),
with x ∈ Rl. Suppose that ∀x(0) ∈ Rl, t ≥ 0 there exists a
unique solution x(t, x(0)) to ẋ = f(x). Let V (x) : Rl → R be
a continuously differentiable function, such that ∀x ∈ Rl

1) V (x) ≥ γV , for some γV > −∞,
2) V (x) is radially unbounded,
3) V̇ (x) ≤ 0.
Let E be the set of points in Rl where V̇ (x) = 0. Then, for all

initial conditionsx(0) ∈ Rl, the evolutionx(t, x(0)) approaches
the largest invariant set in E as t → ∞.

Proof: Consider Ωc = {x ∈ Rl|γV ≤ V (x) ≤ c}, with
γV < c. This set is bounded ∀c < ∞. Indeed, if that was
not true, then there would be a η ∈ Rl such that αη ∈ Ωc

for all α > 0, and thus limα→∞ V (αη) ≤ c < ∞. This is in
contradiction with 2). Furthermore, Ωc is also closed since the
set [γV ; c] is closed and the inverse image of closed sets on
continuous functions is closed. Hence, Ωc is compact. This set
is also positively invariant. Indeed, from 3) for all x(0) ∈ Ωc

and t ≥ 0, V (x(t, x(0))) ≤ V (x(0)) ≤ c. In addition from 1,
γV ≤ V (x(t)). Thus, if x(0) ∈ Ωc, then x(t, x(0)) stays in Ωc

at all the future instants. Finally, for any initial state x(0) ∈ Rl

it is possible to choose c large enough so that x(0) ∈ Ωc. In
particular, it is sufficient that c ≥ V (x(0)). The thesis follows
choosing Ωc as the set Ω in Theorem 4.4 in [28]. �
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