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2.2 Rational Bézier curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
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Chapter 1

Introduction

This bachelor thesis was written because a software company asked the Delft University
of Technology for advice. The company is the developer of a professional computer aided
design program made for housing developers and carpenters to design windows, frames,
and doors. It allows to plan the complete process of making windows, frames and doors:
starting from the first design and ending with the prize calculation of the final product.

The current version of their program has only the possibility to model with rectangular
shapes. Now the company wants to be able to model more complicated shapes, such as
diagonal lines and curves. For example their program is able to model a window like the
one the left of Figure 1.1, but not the one the right of Figure 1.1. In this project we look
at whether Bézier curves can be used as the mathematical basis for a new version of their
program.

During this project we have developed and implemented algorithms for drawing Bézier
curves, for finding their intersection points, for recognising connected regions and for cal-
culating their area. Furthermore we created a user-friendly interface so we could test and
show that our algorithms work. Using this interface it is possible to create standard objects
such as straight lines and circular arcs and it will automatically detect intersection points
and areas. With this is possible to draw complex figures, where the points where frames
connect are automatically calculated. The program also knows where the areas are, so user
would be able select an area with the mouse and set certain properties of that area.

Figure 1.1: Example windows
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Chapter 2

Bézier curves

Bézier curves were invented by Pierre Bézier and Paul de Casteljau around 1960. The
primary application was in the automobile industry back then, but today they are widely
used in computer programs to draw curves. More information about Bézier curves can be
found in [1].

2.1 Integral Bézier curves

Integral Bézier curves are parametric polynomial curves. So the formula of the curve is a
polynomial and that they are parametric means that a Bézier curve is given as a graph of
a function depending on a parameter t ∈ [0, 1]. The simplest version of a Bézier curve is a
linear Bézier curve. One can see an example of such a curve in the left of Figure 2.1. The
linear Bézier curve P(t) defined by the points P0, P1 ∈ R2 is the line segment connecting
P0 and P1

{P (t) = (1− t)P0 + tP1 : t ∈ [0, 1]}.
A quadratic curve is defined by three points P0, P1, P2. We first create two lines between
P0 and P1 and between P1 and P2 in the same way as the linear curve:

C(t) = (1− t)P0 + tP1

D(t) = (1− t)P1 + tP2.

Now we take the points C(t) and D(t) and calculate the point P (t) which lies on the line
from C(t) to D(t) for every t ∈ [0, 1]:

P (t) = (1− t)C(t) + tD(t).

You can see an example of such a curve in the middle of Figure 2.1. If we spell this out
we get the following formula:

P (t) = (1− t)C(t) + tD(t)

= (1− t)((1− t)P0 + tP1) + t((1− t)P1 + tP2)

= (1− t)2P0 + 2(1− t)tP1 + t2P2
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Figure 2.1: A Linear, Quadratic and Cubic Bézier curve

Defining a cubic Bézier curve is now easy, we just follow the same procedure, but with
four points. An example of this is in the right of Figure 2.1. Here F (t) = (1−t)C(t)+tD(t)
and G(t) = (1− t)D(t) + tE(t). Writing out the whole formula gives:

P (t) = (1− t)3P0 + 3(1− t)2tP1 + 3(1− t)t2P2 + t3P3

This way we can create a Bézier curve of any order n. Such a curve will be given by n+ 1
points, called control points.

Definition (Bézier curve). The general Bézier curve is defined by n + 1 control points
P0, P1, . . . , Pn and equals

B(t) =
n∑
i=0

bi,n(t)Pi.

Here bi,n(t) are the Bernstein polynomials or Bernstein basis functions of degree n defined
by

bi,n(t) =

(
n

i

)
(1− t)n−iti.

And
(
n
i

)
is the Binomial coefficient:(

n

i

)
=

n!

i!(n− i)!
.

This formula is easy to remember: the polynomial bi,n(t) is the ith summand of the
sum of the binomial theorem applied to (1− t) and t:

((1− t) + t)n =
n∑
i=0

(
n

i

)
(1− t)n−iti =

n∑
i=0

bi,n(t).

Some examples of Bernstein polynomials are:

b0,2(t) =

(
2

0

)
(1− t)2−0t0 = (1− t)2
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b1,2(t) =

(
2

1

)
(1− t)2−1t1 = 2(1− t)t

b2,2(t) =

(
2

2

)
(1− t)2−2t2 = t2

b1,3(t) =

(
3

1

)
(1− t)3−1t1 = 3(1− t)2t.

These kind of Bézier curves are also called integral Bézier curves to distinguish them from
the rational Bézier curves, which we will discuss next. The polygon we get by joining the
control points with line segments is called the control polygon. In the case of a quadratic
Bézier curve we have only three control points and we get the triangle of those control
points. One of the important properties of Bézier curves is that the whole curve always
lies in the convex hull of the control points.

Definition (Convex hull). The convex hull of the set of points X = {x0, x1, . . . , xn} is
defined to be the set of points

CH(X) =

{
a0x0 + a1x1 + . . .+ anxn :

n∑
i=0

ai = 1, ai ≥ 0

}

Theorem (Convex hull property). Every point of a Bézier curve lies inside the convex
hull of its defining control points. Thus for all t ∈ [0, 1], B(t) ∈ CH(P0, P1, . . . , Pn)

Proof. We need to show that every point B(t) has the form a0P0 + a1P1 + . . . + anPn for
some ai, with

∑n
i=0 ai = 1 and ai ≥ 0. We can simply take ai = bi,n(t). We have bi,n(t) =(

n
i

)
(1 − t)n−iti ≥ 0 when t ∈ [0, 1]. Applying the binomial theorem to ((1 − t) + t)n = 1

gives

((1− t) + t)n =
n∑
i=0

(
n

i

)
(1− t)n−iti =

n∑
i=0

bi,n(t) = 1.

2.2 Rational Bézier curves

There are three types of quadratic curves: parabolas, ellipses and hyperbolas. The first
type of curve, parabolas, can be parametrized only by polynomial functions, but ellipses
and hyperbolas are parametrized by rational functions. Because integral Bézier curves
have polynomial parametrizations, it is not possible to represent ellipses and hyperbolas.
For this we need rational Bézier curves. With rational Bézier curves, each control point
has an additional weight. We can see this weight has how strong the curve goes in the
direction of a point compared to another. The formula for a rational Bézier curve is

B(t) =

∑n
i=0wibi,n(t)Pi∑n
i=0wibi,n(t)
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Here bi,n are the Bernstein polynomials as before and wi is the weight of the point Pi.
In the rest of the thesis, we only use quadratic rational Bézier curves. The reason for

this is that we can create any quadratic curve (parabola, hyperbola, ellipse) we want to
draw in our CAD program. It also simplifies the mathematics and the programming and
is good enough for the application.

Circular arcs

Rational Bézier curves are needed for drawing circular arcs. The circular arc with radius
r, centered at the origin with end points (r, 0) and (r cos θ, r sin θ), θ ∈ [−π, π], is given by
the following control points and weights:

P0 = (r, 0)

P1 = (r, r tan
θ

2
)

P2 = (r cos θ, r sin θ)

w0 = 1

w1 = cos
θ

2
w2 = 1

To see that this is true, filling in the equation of the Bézier curve we get

x(t) =
r(1− t)2 + 2rt(1− t) cos θ

2
+ rt2 cos θ

(1− t)2 + 2t(1− t) cos θ
2

+ t2

y(t) =
2rt(1− t) sin θ

2
+ rt2 sin θ

(1− t)2 + 2t(1− t) cos θ
2

+ t2

Now we can show that x(t)2 + y(t)2 = r2, but we skip the details here. From this we can
conclude that the arc is circular.

We have to be careful with the arc θ = π, because in that case P1 is (r, r tan π
2
) and

tan π
2

is∞. What happens in practice is that in our formulas P1 is multiplied by w1. If we
do this calculation without first calculating the tangent, we will get r tan θ

2
· cos θ

2
= r sin θ

2
.

For θ = π this means r sin π
2

= r.
Using this formula we can draw every circular arc. If we want to start at a different

angle we can rotate the resulting figure around its centre and if we want to have a different
centre we can use a translation.
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Chapter 3

Bézier curve algorithms

There are many algorithms for Bézier curves known in the literature, such as those found
in [1]. We will briefly discuss the algorithms used.

3.1 De Casteljau algorithm

To evaluate a Bézier curve at a specific t ∈ [0, 1] we can use the de Casteljau algorithm.
A pseudocode implementation of the algorithm can be found is given in the box “Algo-
rithm 1”. The basic algorithm for an integral Bézier curve uses the following recursive
formula:

P 0
i = Pi, i = 0, . . . , n

P j
i = (1− t)P j−1

i + tP j−1
i+1 , j = 0, . . . , n, i = 0, . . . , n− j (3.1)

Then P n
0 is the point of the curve at t, i.e. B(t) = P n

0 . If you compare the formula with
our introduction of Bézier curves in the previous section, you’ll see that we are actually
doing the same thing, we only write it in a different way. Formula 3.1 gives a triangular
set of points. In the case of a quadratic we have Bézier curve we have B(t) = P 2

0 and we
get the following triangle:

P 0
0 P 0

1 P 0
2

P 1
0 P 1

1

P 2
0

We can compute rational curves in the same way by adding the weights to the formula:

P j
i = (1− t)w

j−1
i

wji
P j−1
i + t

wj−1
i+1

wji
P j−1
i+1

wji = (1− t)wj−1
i + twj−1

i+1

6



Algorithm 1 Calculating the point of a rational Bézier curve at parameter t

Input: Bézier curve C with control points P 0
0 , P 0

1 , P 0
2 and weights w0

0, w
0
1, w

0
2, parameter

t ∈ [0, 1]
Output: The point P of the curve C at parameter t
w1

0 ← (1− t)w0
0 + tw0

1

P 1
0 ← (1− t)(w0

0/w
1
0)P

0
0 + t(w0

1/w
1
0)P

0
1

w1
1 ← (1− t)w0

1 + tw0
2

P 1
1 ← (1− t)(w0

1/w
1
1)P

0
1 + t(w0

2/w
1
1)P

0
2

w2
0 ← (1− t)w1

0 + tw1
1

P 2
0 ← (1− t)(w1

0/w
2
0)P

1
0 + t(w1

1/w
2
0)P

1
1

return P 2
0

3.2 Splitting a curve into two curves

The de Casteljau algorithm can also be used for subdividing a Bézier curve into two. The
box “Algorithm 2” gives the pseudocode of the subdivision algorithm. We have the general
integral curve B(t) and want to split it into two Bézier curves at the value t to get two
curves: Bleft(t) and Bright(t). The left curve corresponds to the part of the original curve
between 0 and t, the right curve corresponds to the curve between t and 1. We can do
this by using the de Casteljau algorithm with parameter t, the control points for Bleft are
then P 0

0 , P 1
0 , . . . , P n−1

0 , P n
0 and for Bright they are P n

0 , P n−1
1 , . . . , P 1

n−1, P
0
n . One can see

an example for a quadratic curve in Figure 3.1.

1 2 3 4 5 6

1

2

3

4

P 0
0

P 0
1

P 0
2

P 1
0

P 1
1

P 2
0

Figure 3.1: Splitting a quadratic Bézier curve

We will only prove that this algorithm is correct in the case of quadratic curves, but
it is obvious that we can generalise this for any degree n. Writing out the de Casteljau
formula for t = α gives us the following:
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P 0
0 = P0

P 0
1 = P1

P 0
2 = P2

P 1
0 = (1− α)P 0

0 + αP 0
1

P 1
1 = (1− α)P 0

1 + αP 0
2

P 2
0 = (1− α)P 1

0 + αP 1
1

= (1− α)((1− α)P 0
0 + αP 0

1 ) + α((1− α)P 0
1 + αP 0

2 )

We will now show that P 0
0 , P 1

0 and P 2
0 are indeed the control points for Bleft(t) when we

split at t = α. We do this by showing that the Bleft(t) is the same as B(αt) with t ∈ [0, 1],
i.e. B(t) going from 0 to α.

Bleft(t) = (1− t)2P 0
0 + 2(1− t)tP 1

0 + t2P 2
0

= (1− t)2P 0
0 + 2(1− t)t((1− α)P 0

0 + αP 0
1 )

+t2((1− α)((1− α)P 0
0 + αP 0

1 ) + α((1− α)P 0
1 + αP 0

2 ))

= ((1− t)2 + 2(1− t)t(1− α) + t2((1− α)(1− α))P 0
0

+(2(1− t)tα + t2((1− α)α) + t2(α(1− α)))P 0
1

+α2t2P 0
2

= (1− αt)2P 0
0 + 2(1− αt)αtP 0

1 + (αt)2P 0
2

= B(αt)

We can prove that P 2
0 , P 1

1 and P 0
2 are the control points for Bright(t) in the same way.

Algorithm 2 Splitting a curve at parameter t

Input: Bézier curve C with control points P 0
0 , P 0

1 , P 0
2 and weights w0

0, w
0
1, w

0
2, parameter

t ∈ [0, 1]
Output: Two curves C1 and C2 that result from splitting C at t

procedure Split(C,t)
w1

0 ← (1− t)w0
0 + tw0

1

P 1
0 ← (1− t)(w0

0/w
1
0)P

0
0 + t(w0

1/w
1
0)P

0
1

w1
1 ← (1− t)w0

1 + tw0
2

P 1
1 ← (1− t)(w0

1/w
1
1)P

0
1 + t(w0

2/w
1
1)P

0
2

w2
0 ← (1− t)w1

0 + tw1
1

P 2
0 ← (1− t)(w1

0/w
2
0)P

1
0 + t(w1

1/w
2
0)P

1
1

C1 ← (P 0
0 , P

1
0 , P

2
0 ;w0

0, w
1
0, w

2
0)

C2 ← (P 2
0 , P

1
1 , P

0
2 ;w2

0, w
1
1, w

0
2)

return C1, C2

end procedure
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3.3 Rendering a curve

For rendering a Bézier curve we use the de Casteljau algorithm to subdivide the curve.
The algorithm for rendering is the following:

Step 1: Split the curve at t = 0.5 using the de Casteljau algorithm to get Bleft and Bright

Step 2: Check whether Bleft is “near linear” (see below what we mean with that). If this
is the case, go to step 3. Else go to step 1 and apply the algorithm to Bleft and to
Bright.

Step 3: Because the segment of the curve is near linear, we can approximate it using a
straight line, so we draw a straight line between the starting point and end point of
the segment.

A pseudocode for this algorithm is given in the box “Algorithm 3”. The algorithm
will recursively subdivide the curve into pieces that are near linear and draw the curve by
approximating those segments with straight lines.

Algorithm 3 Render a curve

Input: Bézier curve C that needs to be rendered.
Output: No output, but side effect is that the curve C is rendered

procedure Render(C)
C1, C2 ← Split(C, 0.5)
if NearLinear(C1) then

Draw straight line from the starting point to end point of C1

else
Render(C1)

end if
if NearLinear(C2) then

Draw straight line from the starting point to end point of C2

else
Render(C2)

end if
end procedure

There are a lot of different ways to decide whether a given curve is close to being linear
or not. We use the height of the control triangle to decide whether the curve is near linear.
If height of the triangle is small, the distance between the edge of the triangle and the
curve is also very small and we can conclude that the curve is near linear. We can very
easily calculate the length using trigonometry, the height of a triangle is a sin γ, where γ
is the angle at the starting point of the Bézier curve and the a is the length of the line
of the starting point to the control point. See Figure 3.2 for an illustration. Pseudocode

9



a

γ
h

Figure 3.2: Height of the control triangle

of this algorithm can be found in the box “Algorithm 4”. ATAN2 is the standard two-
argument arctangent function as defined in [3] and LENGTH returns the distance between
two points. P.x means the x coordinate of P .

Algorithm 4 Calculate if a Bézier curve is near linear

Input: Bézier curve C with control points P 0
0 , P 0

1 , P 0
2

Output: True if the curve is near linear, False otherwise
procedure Nearlinear(C)

angle ← atan2(P0.x− P1.x, P0.y − P1.y) - atan2(P0.x− P2.x, P0.y − P2.y)
if angle > 180 then

angle ← 360 - angle
end if
if angle > 90 then

angle ← 180 - angle
end if
height ← length(P0, P1)(sin γ)
if height < precision then

return True
else

return False
end if

end procedure

3.4 Intersecting two curves

The algorithm for calculating intersections of two curves is similar to the rendering algo-
rithm:

Step 1: First we check whether the control triangles of the curves intersect. If the control
triangles do not intersect, then also the curve do not intersect and we can stop here.
This is so because a curve always lies inside its control triangle.

10



Figure 3.3: One iteration of intersection algorithm

Step 2: We check whether the curves are near linear. If this is the case, we go to step 3.
Else we split both curves using the De Casteljau algorithm and start again with step
1 for each pair of resulting curves.

Step 3: If both curves are near linear, we can approximate them with a straight line. The
intersection point is the point where the straight lines intersect, if they intersect.

Although this algorithm is recursive in nature, this does not mean that it is slow. The
reason for this is that we can immediately remove the non-intersecting segments after we
have split in step 1, as illustrated in Figure 3.3. This means that the algorithm approxi-
mates the intersection point (or points) quite fast in practice.

Algorithm 5 Calculating the intersection points of two curves

Input: Two Bézier C1 and C2

Output: The list of intersection points of the curves C1 and C2

procedure Intersect(C1, C2)
if Control polygons of C1 and C2 don’t overlap then

return
else if NearLinear(C1) AND NearLinear(C2) then

return The intersection point of the straight line approximations of C1 and C2,
if it exists

else
C3, C4 ← Split(C1, 0.5)
C5, C6 ← Split(C2, 0.5)
return Intersect(C3,C5), Intersect(C3,C6), Intersect(C4,C5), Inter-

sect(C4,C6)
end if

end procedure

11



Chapter 4

Areas

There are a few different reasons why we need algorithms for areas presented in this chapter.
Areas are one of the basic structures of the CAD program. A user needs to be able to
select an area and tell whether the area is a piece of wood, a windows, etc. For this the
program needs to know in which area a given coordinate lies in. For example for ordering
materials and calculating the price of it we need to know the size of the area.

4.1 Determining All Areas

Algorithm 7 is used to identify every area of the drawing. This uses Algorithm 6 to find
the next point while looping over points and curves. This works by precalculating the
polar angles of all curves and having in each point a list of curves sorted by angle. We
calculate the polar angle using the ATAN2 function (see giving x and y values of the
distance between the point and the point on the other end of the curve as arguments. The
procedure NEXTCURVE gets the current curve and point as arguments, looks up this
curve in the sorted list and returns the next curve from the list.

Algorithm 6 Get next curve in a point when going clockwise around that point

Input: The previous curve Cp and point P that curves point to
Output: The next curve Cn when going clockwise around P starting from Cp

procedure NextCurve(Cp, P )
Look up Cp in the sorted list of curves of P
return The next curve in the list, or the first one if it is the last

end procedure

The main algorithm works by looping over all the points in the drawing. Each point is
then used as the starting point of a potential new area. For each such starting point, we
loop over all curves starting in that point. This way we will correctly find all the available
areas in complex drawings. After selecting the first point and curve, we follow the curve
to the other end point and select that point. Now we have to find the next curve of the

12



Algorithm 7 List all the available areas

Input: All points
Output: List of all areas

for each point P do
Pstart ← P
for each curve C in starting in Pstart do

Ccurrent ← C
Pcurrent ← the other end point of C
L← list of Pstart, Ccurrent and Pcurrent

repeat
Ccurrent ← NextCurve(Ccurrent, Pcurrent)
Pcurrent ← the other end point of Ccurrent

Append Ccurrent and Pcurrent to the list L
until Pcurrent = Pstart

The points and curves in L are an area.
Add this area to the list of areas if it is not already there. (This will be explained

in the text)
end for

end for
return The list of areas

area. We can do this by starting at the previous curve, going clockwise around the select
point, and choosing the first curve we find. See Figure 4.1 for an example. We then follow
that curve, do the same in the next point, etc. until we are back in the starting point.

It is obvious that with this procedure we will find the same area multiple times, so we
need a method to compare the area with the areas we have found before. We do this by
sorting the list of points and curves of every area in a such a way that it always starts
with the leftmost point, and in the case there are multiple leftmost points, the topmost
one. In this way we have a unique representation of the area and can quickly compare
areas. One problem with the method is that we also find the area surrounding the whole
drawing, because if we start at a certain point and curve we will loop over all the curves

Figure 4.1: We start with a point and
curve

Figure 4.2: Decide which curve to take
next

13



Figure 4.3: Do the same at the next points Figure 4.4: Found the area

P0

P1

Figure 4.5: Outside area

on the outside boundary of our drawing. See Figure 4.5 for an example. If we here start at
point P0 and with the line P0P1 and run our algorithm, then we will get the area marked
by thick lines. We can easily detect this area however: the order of the points of the area
is clockwise instead of counterclockwise. If we take a look at the leftmost point, then in
the case of a clockwise area (at the left of Figure 4.6) we will find that the first curve is the
top one and the last curve the bottom one. If we look at the counterclockwise area (at the
right of Figure 4.6, the first curve is actually the bottom one and the top one is the last.
By comparing the angles between the curves as shown in the figure, we can distinguish
between clockwise and counterclockwise areas.

4

5

3

2

1

2

1

3

4

5

Figure 4.6: Clockwise area (left) and counterclockwise area (right)
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4.2 Finding the right area

For a lot of different tasks we need to know in which area a given point is. For example if
the user wants to do something with the area under the cursor. With the areas found in the
previous section this is not really difficult to do. We first make a polygon approximation
of every area. We do this by subdividing every curve of the area such that all resulting
curves are near linear. Then we approximate every curve with a straight line from the
starting point to the end point. After that we only need to check for each point whether a
given point is in the polygon approximation. We can do this by counting how many times
a line from the point to a point outside the figure intersects the boundary of the polygon.
When the lines crosses the boundary of the polygon, it alternately goes from the outside
to inside, then from the inside to the outside, etc. The point is outside the polygon when
we get an even number of crossings and inside the polygon if we have an odd number of
crossings.

4.3 Computing area size

To compute the size of an area, we again use the polygon approximation. To compute the
size of the polygon, we use the Surveyor’s formula.

Theorem (Surveyor’s formula). Let (xi, yi), i = 0, . . . , n be the coordinates of the end
points of the polygon, such that each line from (xi, yi) to (xi+1, yi+1) is an edge of the
polygon and (x0, y0) = (xn, yn). Then the following formula gives the area of the polygon:∣∣∣∣∣12

n−1∑
i=0

det

(
xi xi+1

yi yi+1

)∣∣∣∣∣ =

∣∣∣∣∣12
n−1∑
i=0

(xiyi+1 − xi+1yi)

∣∣∣∣∣
Proof outline. From linear algebra we know that the absolute value of the determinant of
two vectors gives the area of a parallelogram with the two vectors as its side. If we only
take half of it, we get the area of the triangle with both vectors as its side. So the formula

P0
P1

P2

P3

P4

P5

O

Figure 4.7: Surveyor’s formula
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is actually a summation of the areas of triangles, see Figure 4.7 for an example. Here we
got the triangles P0P1O, P1P2O, etc. The key is that the order of the vectors determine the
sign of the determinant. If for det(x y) rotating x towards y is a clockwise movement, we
get a negative determinant and if rotating x towards y is counterclockwise, det(x y) > 0.
In our example this means that det(OP4 OP5) > 0, because going from OP4 to OP5 is a
counterclockwise rotation around O and det(OP5 OP0) < 0, because going from OP5 to
OP0 is a clockwise rotation around O. In total this results in that we add the areas of
OP1P2, OP2P3, OP3P4, OP4P5 and subtract the areas OP5P0 and OP0P1, which results in
the area of the polygon. The order of the points in the polygon does not really matter,
because if we add OP5P0 and OP0P1 and subtract OP1P2, OP2P3, OP3P4, OP4P5 we will
get the same absolute value.
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Chapter 5

Implementation

To test our algorithms and show that they work we created a small graphical program. In
this chapter we will discuss how we created this program.

5.1 Python and QT toolkit

The program we created written in the language Python1 language and uses the Qt toolkit2

for the graphical user interface. Using these technologies it is very easy to create a working
program without spending a lot of time on things like memory management, user interface
parts such as menus, etc. Especially Qt’s Graphic View Framework was very useful. The
framework provides a way to easily work with two-dimensional graphical items, including
handling events like mouse presses, moving of items, etc. Also standard objects like lines
and polygons are already available in Qt, with easy methods for calculating angles between
lines, the intersection of lines and polygons, etc. This made it possible to implement
everything described in the previous chapters in less than 1000 lines.

5.2 The program

The program can draw straight lines, integral Bézier curves and circular arcs. When
curves intersect, the program detects this and split the curves at the intersection point. In
the program we actually did not implement different types of lines, all lines used in the
program are Bézier curves. A straight line is simply a Bézier curve with its controlpoint
in the middle of the start and end point and a circular arc is a rational Bézier curve with
specific weights. So internally every line has the same class. It can also work with areas
when the figure is closed, highlight the area where the cursor is on and compute the size
of an area.

1http://www.python.org
2http://qt.nokia.com/
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5.3 Classes

In this section the class diagrams of the main classes are shown, together with a small
description of their methods. Not all methods and attributes are listed, only the important
ones. The BezierCurve class is the class with most of the discussed mathematical logic.
The algorithms for intersection, splitting and approximating Bézier curves are implemented
there. The QBezierCurve class handles all the communication with the Qt framework and
implements methods for drawing curves, handling mouse events, etc. and calls BezierCurve
for splitting, intersecting etc. Point is a very simple class that just draws a point and keeps
tracks of which curves it is a starting or end point. Those curves are in a list sorted by
angle, so we can easily get the right curve when calculating the areas. And as last we have
the Area class, which is basically a list of points and curves that represent the area. It
implements a test whether a given point in the area and can calculate the size of the area.

Class Point

This class represents a point on the screen and is
a starting or end point of at least one curve.

calculateAngles()
Calculate all the angles of the curves ending in this
point and sort the curves list accordingly.

Point
- curves[]
+ calculateAngles()
+ addCurve(curve)
+ removeCurve(curve)
+ getNextCurve(previouscurve)
+ move()

addCurve(curve)
Add curve to the list of curves. Calls the method calculateAngles() after that.

removeCurve(curve)
Remove curve from the list of curves.

curve getNextCurve(previouscurve)
Return the next curve of the area according to the algorithm described in Section 4.1.

move()
This method is called when the point is moved. For each curve ending in this point, the
method checkintersections() is called. Then it calls the method calculateAngles() on itself.
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Class BezierCurve

This class represents a Bézier curve and imple-
ments all the mathematical logic.

boolean isNearLinear(precision)
Return True if the curve is near linear. precision
is the maximum height of the triangle.

float inverse(point)
Return the t corresponding to point.

BezierCurve
- startpoint: Coordinate
- endpoint: Coordinate
- controlpoint: Coordinate
- weights: Coordinate[3]
+ isNearlinear(precision): boolean
+ inverse(point): float
+ split(point): curve1, curve2
+ intersect(curve): Coordinate[]
+ approximate(): Coordinate[]

curve1, curve2 split(point)
Split the curve at point using the De Casteljau algorithm, return two new curves.

Coordinate[] intersect(curve)
Return the list of intersection points with curve. Return an empty list if the curves do not
intersect.

Approximate()
Return a list of points that is a good approximation of the curve when they are connected
with straight lines.

Class QBezierCurve

This class implements the Bézier curve as seen by
the GUI toolkit. It deals with all the interaction of
the GUI. It uses curve as underlying mathematical
object. Here startpoint and endpoint are a Point as
described earlier, but controlpoint is just a coordinate
because it is not visible and no curves ends there.

QBezierCurve
- startpoint: Point
- endpoint: Point
- controlpoint: Coordinate
- curve: BezierCurve
+ split(point): curve1, curve2
+ checkintersections()

curve1, curve2 split(point)
Split the curve at point, return two new curves.

checkintersections()
Checks whether the curves intersects with any other curve. In the case it intersects, it
splits the curve at the intersection point, destroying the old curve. Then it calls checkin-
tersections() on the two new curves.

19



Class Area

The class represents a closed area.

containsPoint(point)
Return True when point is in the area, False
otherwise.

Areas
- List of points and curves
+ containsPoint(point): boolean
+ calculateArea(): float

calculateArea()
Return the size of the area.

5.4 Screenshots

In this section we show several screenshots of the program.

Figure 5.1: Draw a straight line
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Figure 5.2: Draw a curve, intersection points are calculated

Figure 5.3: Close the figure
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Figure 5.4: Areas are then recognized

Figure 5.5: Also with complex figures areas are recognized
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Chapter 6

Conclusion

In this project we have described how to use Bézier curves in a Computer Aided Design
program to be able to create complex figures. We started with creating the mathematical
framework for Bézier curves, then we described some algorithms for working with Bézier
curves. After that we showed how to work with areas that are enclosed by Bézier curves
and explained our new algorithm to determine all the areas. For the last task we developed
new algorithms.

We implemented those algorithms in a small program. The program can do basic tasks
such as drawing curves, closing them to create areas, determining which areas there are
and calculating the size. This shows that our algorithms work in principle and also shows
that they are fast enough.

This program is very basic however. It is far from usable by an end user. For example
everything drawn are just simple lines with a width of 1 pixel. For a CAD program you
will also need to be able to specify different kind of materials, specify whether an area is
a window or a wall, etc. The user interface is something that might be a whole different
project. Creating a user interface that makes it possible that the user can easily draw a lot
different kind curves is an interesting challenge if you consider the numbers of parameters
you have.

Another issues that needs attention is precision. We currently just use the float data
type that Qt also uses, and approximate Bézier curves by straight lines with a precision of
1 pixel so it will draw nicely on the screen. But if you want to really build the drawing you
might need a better precision. All sizes are also in pixels at the moment, but metrics units,
like mm, cm, etc. are needed. More polishing is also needed, such as detecting whether
intersection points overlap. At the moment it is not detected when you draw three or
more lines in such a way that they share the same intersection point. It will just add an
intersection for every line that it intersects every time you draw a line, without looking
whether it overlaps or is very close to another point.

So there is enough work to be done before there is a program that can be used by an
end user. But this project shows that Bézier curves are a good basis for such a program
and creates a solid mathematical and algorithmical foundation where all future work can
build on.
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