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Abstract—Ultrasound imaging of the vasculature has major
significance for the detection of cardiovascular diseases and can-
cer. However, limited spatial resolution or long acquisition times
of existing techniques limit the visualization of the microvascular
structures. Enforcing sparsity in the underlying vasculature as
well as exploiting statistical independence between voxels have
become prominent for fast super-resolution imaging. However,
such a statistical independence may not be valid for all voxels
and may hence lead to a distorted signal model. Here we present
an image reconstruction method that exploits the sparsity of the
vasculature data without distorting the original signal model.
We employ a multiple measurement vector (MMV) model to
enforce the joint sparsity over the images at different time
instants. To reduce the computational complexity of obtaining
the solution, the ℓ1-SVD method is applied to the MMV model.
We demonstrate that our method improves spatial resolution
and provides a clear separation between blood vessels. Although
our method is slightly slower than existing approaches, it
outperforms them in terms of image reconstruction quality.

Index Terms—sparse reconstruction, vascular ultrasound
imaging, multiple measurement vector (MMV) model, ℓ1-SVD

I. INTRODUCTION

Ultrasound imaging is widely used in medicine as it is a

non-invasive and cost-effective imaging technique [1]. Visual-

ization of the vasculature has major significance for the detec-

tion of cardiovascular diseases and cancer. Cancer treatments

cause structural changes in the microvascular structures, and

hence exposing the microvasculature using ultrasound imaging

can provide fast treatment [2]. However, fast detection of the

hemodynamic changes over the microvasculature is prevented

by spatial resolution limitations [3]. Therefore, there is a need

for fast imaging methods that improve the spatial resolution

of identifying the microvasculature structures.

Recently, sparse representations of signals [4], [5] have

gained popularity in areas such as radar [6], magnetic res-

onance imaging (MRI) [7], and ultrasound imaging [8]. The

specific regularization to solve the ultrasound imaging prob-

lem is the sparse structure of the vascular network [3]. A

signal is sparse if it can be represented by a vector with most

coefficients zero, in an appropriate transform domain [9].

Here we focus on the sparsity-based ultrasound hemody-

namic imaging problem presented in [3], [10]. A method

This publication is part of the project TOUCAN (with project number
17208) of the research programme TTW-OTP which is financed by the Dutch
Research Council (NWO).

named SUSHI has been developed to improve the spatial

resolution in contrast-enhanced ultrasound imaging. It is a

fast method exploiting sparsity in the correlation domain of

the underlying vasculature structure [11], [12]. This method

assumes that the temporal fluctuations in volume cells that

belong to different vessels are statistically independent [3].

In this work, we propose an image reconstruction method

that directly uses the sparse structure of the vasculature

instead of enforcing sparsity in the correlation domain. Al-

though assuming statistical independence between the flows

in different vessels is computationally advantageous, this

assumption ignores that blood cells from the same vessel

are correlated to each other. Here we aim to avoid such

a statistical independence assumption. Since the vasculature

at different time instants does not change considerably, we

on the other hand exploit the temporal correlation of the

frames to improve the spatial resolution. For this, we employ

a multiple measurement vector (MMV) model and enforce

the joint sparsity of the vasculature in different frames [13].

Note that such a joint sparsity problem can be considered as

a group lasso problem, with ℓ1-relaxation [14]. Furthermore,

the number of measurements can be decreased using the ℓ1-

SVD method thereby reducing the computational complexity

of solving the MMV problem [15].

The remainder of this work is organized as follows. In the

next section, we define the signal model for the ultrasound

imaging problem of the vasculature. In Section III, we present

the inverse problem by incorporating the available joint spar-

sity information. In Section IV, we express the steps of the

optimization method that solves the inverse problem. Then,

we comparatively evaluate the performance of the proposed

method with the state-of-the-art. In the final section, we

discuss the results and conclude this work.

II. FORWARD MODEL

In this section, we introduce the problem and relate our

proposed approach to an existing method from literature. In

ultrasound imaging, we first construct the image formation

model and represent this in the form of a matrix-vector

multiplication. For simplicity, we consider an imaging model

for a system with a single transmitter that transmits a series of

pulses. However, the model can easily be extended to multiple
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transmitters. At every period ∆t a pulse a(t) is sent, where t

is assumed to be continuous time and the peak of the pulse is

assumed to be located at t = 0. At sensor n and pulse period

m, the sensor output is modeled as

x(n, t,m) =
∑

x,z

an,t(x, z)
∑

v

f(x, z, v) expjvm∆t

=
∑

x,z

an,t(x, z)s(x, z,m),
(1)

where f(x, z, v) is the total amount of scattering of all blood

cells in a high resolution volume cell centered at position

(x, z) and radial velocity v. Note that an,t(x, z) = a(t−τx,z,n),
where τx,z,n is the delay related to the distance from the

transmitter to the receiver n through the pixel at (x, z). Lastly,

s(x, z,m) is the time-varying scattering signal related to the

position (x, z).

In commercial ultrasound imaging, users generally only

have access to the beamformed data. Applying delay-and-sum

(DAS) beamforming on x(n, t,m) from (1) at a low resolution

with spacing (∆x,∆z), the output of the DAS beamformer for

the low-resolution pixel at position (k, l) and pulse period m

is given by

z(k, l,m) =
∑

n

x(n, τk∆x,l∆z,n,m)

=
∑

n

∑

x,z

a(τk∆x,l∆z,n − τx,z,n)s(x, z,m)

=
∑

x,z

hk,l(x, z)s(x, z,m),

(2)

where hk,l is assumed to be the point spread function (PSF) of

the imaging system. Note that instead of a DAS, a matched fil-

ter can also be used as beamformer for the above formulation.

In literature, several works assume hk,l as a shift-invariant

point spread function [16], [17], but this assumption generally

does not hold for realistic systems.

After obtaining z(k, l,m) in (2), several preprocessing

steps are performed on z(k, l,m) prior to performing sparse

reconstruction. First, a singular value decomposition (SVD) is

applied to separate the tissue and blood flow subspaces and

we obtain the blood related part y(k, l,m) [18]. Sparsity will

only be enforced over the blood flow subspace. Subsequent to

SVD filtering, the phase of the received signal is manipulated

to separate different flows (in terms of direction and/or speed)

with Doppler processing. This separation is expected to pro-

vide additional anatomical information and a sparser structure

compared to the original signal [3]. A bank of B bandpass

filters is applied to y(k, l,m) to obtain different videos with

different velocities:

y(b)(k, l,m) =
∑

x,z

hk,l(x, z)s
(b)(x, z,m). (3)

For B = 2, the blood flow is separated into a positive and

negative flow, which corresponds to positive and negative

frequencies in the Doppler domain. Note that this filterbank is

not crucial and we will not use it for all our experiments. To

simplify the presentation, in the remainder of this paper, we

will drop the superscript b but keep in mind that the presented

models and methods apply to any of the frequency bands.

Some approaches such as SUSHI assume that the signal

fluctuations in volume cells that belong to different blood ves-

sels are statistically independent [3], [10]. With this assump-

tion, the autocorrelation of the beamformed and preprocessed

measurements y(k, l,m) in (3) can be approximated as

ry(k, l) =
∑

m

|y(k, l,m)|2 ≈
∑

x,z

|hk,l(x, z)|
2rs(x, z), (4)

where rs(x, z) =
∑

m |s(x, z,m)|2. In (4), the cross-

correlation terms are ignored as the signals from different

vessels are assumed uncorrelated. Signals from pixels that

are in the same vessel are not uncorrelated, but for those

signals the cross terms are still dropped since they are not

deemed important for obtaining super-resolution imaging.

Notice how the approximation results in a squared absolute-

valued PSF, which is narrower than the original PSF and

therefore provides improved separation between vessels [3].

Although this approach has some clear advantages, we want

to investigate some techniques that do not distort the original

signal model of (3). Therefore, we propose not to solve the

problem in the correlation domain and directly work with the

original signal model in (3).

While (4) is based on a single measurement vector (SMV)

model in the correlation domain [3], we employ an MMV

model based on (3) which exploits different pulse periods

in synergy [13], [15]. Such an MMV model is obtained by

stacking the y(k, l,m) and s(x, z,m) values respectively into

a space-time matrix Y and S, resulting in the model

Y = HS+N, (5)

where the H matrix contains hk,l(x, z). Here Y = [y1...yM ]
and S = [s1...sM ] represent a horizontal concatenation of

respectively the vectorized measurements ym and unknown

images sm related to the mth pulse period. Note that ym and

sm include vertically concatenated elements of s(x, z,m) and

y(k, l,m) for a particular m. Finally, N is similarly defined

as Y and represents additional noise that is picked up at the

receiving elements.
III. INVERSE PROBLEM

In the inverse problem, the goal is to recover the unknown

images, S, from their noisy and distorted measurements, Y.

Here, the image data is reconstructed by combining infor-

mation from the measurements with some additional prior

(statistical or structural) knowledge about the unknown image

data. The sparsity-based MMV image reconstruction problem

is formulated as

min
S

1

2
||Y −HS||2F + λ||S||2,1 (6)

where the ℓ2,1-norm is the sparse regularizer enforcing the

joint sparsity of the image over different time instants [15].

In the matrix S, the sparsity is enforced only in the spatial

domain as the signal is not sparse over the time dimension.

Since the vasculature at different time instants is similar,

we expect that all columns have the same sparsity pattern.

As a result, we exploit the temporal correlation to obtain a

better spatial resolution. This is referred to as joint (or group)

sparsity in the literature [19] and it can be enforced via the

ℓ2,1-norm. We first compute the ℓ2-norm of all rows of S.
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Fig. 1: (a) The average absolute value of original and beamformed frames, (b) tissue separated correlation image of measurements and reconstructed
correlation image with SUSHI, and (c) temporal mean of tissue separated measurements and reconstructed image with MMV FISTA

Then, we construct the s(ℓ2) vector, which stacks the ℓ2-norms

of the rows of S. Finally, ||S||2,1 = ||s(ℓ2)||1 is computed [15].

The main disadvantage of the MMV model is computational

complexity. To reduce this cost, the number of measurements

is decreased via the SVD, which relies on the fact that the

set of vectors {ym}Mm=1 lies in a P -dimensional subspace

with P ≪ M . To find this subspace, we first take the SVD

of Y resulting in Y = ULVT . Then a reduced matrix

which contains most of the signal power is obtained as

Ỹ = ULDP = YVDP where DP = [IP 0]T . Similary, we

multiply S and N by these matrices and obtain S̃ = SVDP

and Ñ = NVDP . Now, instead of the large problem in (6)

we solve the following problem

min
S̃

1

2
||HS̃− Ỹ||2F + λ||S̃||2,1, (7)

whose solution can be obtained faster. This approach is known

at the ℓ1-SVD method. If the model does not contain any noise

and the signal subspace has exactly order P , the solutions of

(6) and (7) are the same, i.e. S̃ = S. In case of noise, the

approach in (7) also has a denoising effect. Finally, note that

the SVD was already adopted in the preprocessing stage and

hence the SVD required to formulate (7) does not introduce

any additional complexity.

IV. IMAGE RECONSTRUCTION METHOD

The optimization problem (7) can now be solved using

any off-the-shelf solvers for MMV inverse problems [20].

M-FOCUSS and standard sparse Bayesian learning (SBL)

include a large inverse and thus are computationally complex

for large-scale problems [21], [22]. On the other hand, inverse-

free SBL [23], ADMM [24] and FISTA [20] do not include

Output: S: vectorized unknown images

Input: Ỹ: vectorized measurements, H: sensing

matrix, K: number of iterations

Initialize λ > 0, Lf = ||HHH||2, t1 = 1, S̃0 = Z1, k = 1
while k < K do

calculate Qk = Zk − 1
Lf

(HHHZk −HHỸ)

compute S̃
(i,j)
k = Q

(i,j)
k (1− λ

||Q
(i)
k

||2
) where Q

(i,j)
k

is (i, j)th element of Qk matrix and Q
(i)
k is the ith

row of Q matrix

update tk+1 = 0.5(1 +
√

1 + 4t2k)
update Zk+1 = S̃k + tk−1

tk+1
(S̃k − S̃k−1)

end

S = S̃KDT
PV

T

Algorithm 1: MMV FISTA

a large inverse and hence allow for a fast solution. However,

for a fair comparison with SUSHI, which solves the problem

using FISTA, we apply the MMV version of FISTA whose

updating steps for solving (7) are given in Algorithm 1

[25]. Finally, note that S is easily obtained from S̃ using a

simple matrix product. In MMV FISTA, the computational

complexity in each iteration is O(N2P ) where s(x, z,m) has

N pixels for the mth frame; however, SUSHI has a complexity

of O(N2).
V. NUMERICAL RESULTS

In this section, we comparatively evaluate the performance

of the developed method with SUSHI for two scenarios [3].

A. Results with Shift-Invariant Sensing Matrix

In this section, we use a shift-invariant H matrix in (5) al-

though the shift-invariancy assumption for the sensing matrix

generally does not hold. Note that the sensing matrix for the

SUSHI based on the model in (4) is equal to the element-

wise square of the H matrix. The shift-invariant matrix-

vector multiplication in (5) corresponds to a convolution

with the point spread function (PSF) in the spatial domain,

and hence to an element-wise multiplication in the spatial

frequency domain. Therefore, both SUSHI and our method

are implemented efficiently in the frequency domain. Here,

we use the PSF from [3] to compare the different algorithms.

For the first simulation, we used 101 frames containing

two parallel blood vessels where the blood flows in the same

direction, represented by s(x, z,m), for m = 1, 2, ..., 101.

The high-resolution frames are of size 1024× 1024 and their

average absolute value is shown in Fig. 1a. The background
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Fig. 2: (a),(b) Tissue separated and reconstructed images with SUSHI,
and (c),(d) temporal mean of tissue separated and reconstructed images with
MMV FISTA
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Fig. 3: (a) The average absolute value of original and beamformed frames, (b) tissue separated and reconstructed correlation images with SUSHI, (c) temporal
mean of tissue separated images and reconstructed images with MMV FISTA when 101 frames are reduced to 1, 5 and 10 frames, and all frames are used

is assumed to have an intensity of 1000 whereas the blood

flow has an intensity of 1000 + 30 × N (0, 1). Here, the

low-resolution beamformed images z(k, l,m), are of size

128 × 128. White Gaussian noise with 20 dB SNR is added

to the measurements. After obtaining z(k, l,m), which is also

displayed in Fig. 1a, the tissue is separated from the blood

flow by using SVD filtering and keeping only the components

related to the blood flow as y(k, l,m). Since the flow direction

is the same, Doppler processing is not considered here.

For SUSHI, the correlation image ry(k, l) consists of a

single frame as shown in Fig. 1b. The temporal mean of the

tissue separated image y(k, l,m) is also given in Fig. 1c. To

reduce the number of frames to a single frame in the MMV

model, the ℓ1-SVD is applied with P = 1. Since we only

have a simple image and a well-conditioned sensing matrix

of the PSF, a single frame is sufficient. Note though that

the ℓ1-SVD may require more frames for complex structures

such as actual vasculature. We further select λ = 0.5 in

(7) for 20 dB SNR. The reconstructions with SUSHI and

MMV FISTA are shown in Fig. 1b and 1c, respectively. Here,

we plot the reconstructed rs(x, z) in (4) for SUSHI and the

temporal mean of the reconstructed s(x, z,m) in (3) for the

MMV FISTA. Although their image reconstruction times are

the same for this simulation, the MMV FISTA algorithm

outperforms SUSHI. Fig. 1b shows that SUSHI could not

separate the blood vessels as they are very close to each other

and their flow is correlated.

For the second simulation, we use the same setting but this

time the synthetic flow moves downward in the right vessel

and upward in the left one. We consider a simulation with and

without Doppler processing to separate positive and negative

flow. Both algorithms perform similarly for the opposing flow

image (without Doppler processing) and the positive flow

image (with Doppler processing) in Fig 2. Since the flow in

the different vessels is uncorrelated now, SUSHI (with and

without Doppler processing) can separate the vessels.

B. Results with Sensing Matrix Obtained from k-Wave

In this section, instead of using a simulated shift-invariant

H matrix, the image reconstruction is performed with a

realistic sensing matrix. Here, we assume matched filter

beamforming for X = AS + W, where X corresponds to

the sensor measurements of the ultrasound imaging system

(1). Using the matched filter A, we can obtain the system

in (2), Z = AHX = AHAS + N = HS + N, with H

= AHA, which is not a shift-invariant matrix. Here, A is

constructed using the k-wave toolbox in MATLAB for an

imaging system with 128 transmitters and receivers [26] [27].

Furthermore, the A matrix is constructed in the frequency

domain instead of the time domain. The advantage of a

frequency-domain implementation is that number of frequency

samples is smaller than the number of time samples, and it

provides fast beamforming [28]. Since the sensing matrix is

not shift-invariant, a fast multiplication with H cannot be

performed.

For these simulations, we use the same setting as in

the second simulation of Section V-A with opposing flow.

However, both s(x, z,m) and z(k, l,m) in Fig. 3a are now of

size 101× 101. Therefore, we do not solve a super-resolution

problem but a simple image reconstruction problem. Note that,

even though H is a square matrix, the system is still highly ill-

posed and requires regularization. The tissue is separated from

the blood flow by using SVD filtering to obtain y(k, l,m) but

no Doppler processing is considered here.

The tissue separated correlation image ry(k, l) and the

SUSHI reconstruction rs(x, z) are shown in Fig. 3b. The

number of frames are reduced to 1, 5 and 10 using the ℓ1-SVD

method for the reconstructions with MMV FISTA. Finally, the

full set of frames are used. The temporal mean of the tissue

separated images y(k, l,m) and recovered images s(x, z,m)
are displayed in Fig. 3c for several cases. When a single frame

is used, the image reconstruction performance of SUSHI and

MMV FISTA are similar. Still, the bottom part of the image

is more visible with MMV FISTA. Since SUSHI squares the

sensing matrix and the reconstructed image in the forward

model, high-intensity parts become stronger, and low-intensity

parts weaken. The image reconstruction performance of our

method improves with an increasing number of frames. Each

iteration of SUSHI and MMV FISTA with a single frame takes

0.04 seconds. Each iteration of MMV FISTA with 5, 10, and

all frames takes 0.05, 0.06, and 0.2 seconds, respectively.

Therefore, increasing the number of frames does not cause a

huge increase in the computational time of the MMV FISTA

algorithm.
VI. CONCLUSIONS AND DISCUSSION

In this work, we have proposed an image reconstruction

method that directly exploits the joint sparse structure of

the vasculature. To reduce the computational complexity, the

ℓ1-SVD algorithm is performed over the measurements. We

evaluated the performance of our method within two different

simulation settings. In the first set of experiments, we have

demonstrated that our method improves the spatial resolution

and provides a clear separation between very close vessels.

For the second set of more realistic experiments, our method

seems slightly slower than SUSHI but its image reconstruction

quality is better under appropriate settings.
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