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A micromechanical model for estimating the shear modulus
and damping ratio of loose sands under low stresses:

application to a Mars regolith simulant

BERNARDO CAICEDO�, M. J. CHAPARRO�, J. P. CASTILLO BETANCOURT�†, M. A. CABRERA‡,
P. DELAGE†, PH. LOGNONNÉ§ and B. BANERDT∥

The dynamic properties of loose sands under low stresses have been poorly investigated because of the
higher order of magnitude of stress levels in terrestrial geotechnical structures. However, low densities
and low stresses prevail in the sandy surface deposits of some other rocky planets, making low-stress
conditions relevant for extra-terrestrial soil mechanics. This is the case for Mars, on the surface of which
a seismometer has been placed during the InSight mission. In this context, a dynamic shear rheometer
was used to measure the shear modulus and damping ratio of a Martian regolith simulant under very
low stresses to improve the interpretation of the InSight dataset on surface materials. This paper also
revisits the grain contact stiffness and the overall modulus of a random packing of identical spheres,
based on the Hertz–Mindlin contact theory. A micromechanical model accounting for the effects of
both grain roughness and slipping in the soil degradation curve is proposed. The results of the model
show a good agreement with experimental data, capturing the non-linear transition from low to high
shear strains. The model hence provides a new framework for a better understanding of the behaviour of
granular materials in low-gravity (extra-terrestrial) conditions.

KEYWORDS: geotechnical engineering; granular materials; mathematical modelling; modulus of
elasticity; seismic engineering

INTRODUCTION
The dynamic properties of loose sands under low stresses
have been poorly investigated because of the higher order of
magnitude of stress in most geotechnical structures on Earth.
This is not the case at the surface of other (smaller) rocky
planets, where low densities and low stresses prevail,
like for the surface regolith at the InSight landing site on
Mars. InSight (interior exploration using seismic investi-
gations, geodesy and heat transport) is a geophysical
mission managed by NASAwith European space agencies
(e.g. Centre National d’Etudes Spatiales (CNS), France
and Deutschen Zentrum fuür Luft- und Raumfahrt (DLR),
Germany) that successfully installed for the first time on the
surface of Mars (in Elysium Planitia) a high-sensitivity very
broad-band seismometer called SEIS (seismic experiment for
interior structure), together with a self-driving thermal probe
called HP3 (heat flow and physical properties package)
(Lognonné et al., 2019, 2020). Both instruments provided
detailed geophysical and mechanical data of the near-surface
terrain. Fig. 1 is a photograph taken at the beginning of the
mission by the instrument context camera (ICC) of the InSight
lander, showing that the landing site, called Homestead

Hollow, is flat and characterised by a sandy deposit with
little rock abundance, as planned from orbiter data during the
landing site selection (Golombek et al., 2017). Fig. 1 also
shows, in the centre, the semi-spherical white wind and thermal
shield (WTS), covering the SEIS seismometer from Martian
winds (under an average atmospheric pressure of 600 Pa) and
temperature changes (between �20°C and �80°C).
Prior to the mission, the mechanical properties of some

Mars regolith simulants were investigated in the laboratory
(Delage et al., 2017). The selection of proper simulants was
based on orbital thermal inertia measurements, geological
considerations and some observations from former rover
missions (Golombek et al., 2009, 2017, 2020), suggesting that
the surface in Elysium Planitia is made up of loose
sub-rounded to rounded sand with an average grain diameter
of 175 μm. In this work, the regolith simulant used is the
Fontainebleau sand (Andria-Ntoanina, 2011; Morgan et al.,
2018; Mueller et al., 2021; Delage et al., 2022a). The
shear modulus degradation and change in damping ratio
under low stress and density similar to those expected onMars
are investigated by means of a new dynamic shear rheometer
(Chaparro López et al., 2023). This apparatus works like a
torsional cyclic shear apparatus but allows the shear modulus
and damping ratio to be measured continuously along a broad
range of shear strains (10�7, γ, 10�2, see Villacreses et al.,
(2020) and Chaparro López et al. (2023)). The experimental
data obtained are used to propose a micromechanical model
based on the Hertz–Mindlin approach, including the effect of
the grain roughness and slipping (Hertz, 1882; Mindlin, 1949;
Digby, 1981; Walton, 1987; Bachrach et al., 2000; Duffaut
et al., 2010). The model also uses the Hashin–Shtrickman
upper limit for calculating the transition from small to large
strains (Hashin & Shtrikman, 1963). The results of the model
show a good agreement with the experimental data, providing
a framework for better understanding the evolution of shear
modulus and damping ratio of granular materials with respect
to the shear strain.
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BACKGROUND
Since the 1970s, the dependency of the soil stiffness with

respect to the strain amplitude has been recognised as a key
factor in soil dynamics (Seed & Idriss, 1970; Hardin &
Drnevich, 1972a). Under relatively small strains, the soil
stiffness remains nearly constant, suggesting no significant
changes between the inter-grain contact forces and hence no
changes in the soil fabric (Reddy et al., 2022). However, as
strains grow, contact forces might shift and rearrange, leaving
some grains free to move, initiating an accumulation of
irreversible strains that is associated with decreased soil
stiffness. This strain-dependent behaviour changes with grain
size, relative density, degree of saturation and confinement
pressure, among other things (Poblete et al., 2015).

The soil degradation curve can be described through
semi-empirical hyperbolic models, like that initially proposed
by Hardin & Drnevich (1972b).

G
G0

¼ 1
1þ ðγ=γrÞ

ð1Þ

where G is the secant shear modulus at any strain; G0 is the
elastic shear modulus (often measured at γ� 10�6; and γr is a
reference shear strain. More recently, Oztoprak & Bolton
(2013) modified the hyperbolic model proposed by Darendeli
(2001) with an extensive and detailed review of 454 tests,
reporting the secant shear modulus degradation on a wide
range of sands. Their model incorporates an elastic threshold
strain γe and a curvature parameter a, as follows:

G
G0

¼ 1
1þ ðγ� γeÞ=γr½ �a ð2Þ

γe and a are fitting parameters, related to the effects of
cementation and interlocking at small strains, that separate the
instant when grain contacts start sliding. γr is an ad hoc
reference strain, measured at G/G0= 0·5. The simplicity of
equation (2), its ease of use and the good fit with data resulted
in its rapid adoption in the scientific community and in
engineering practice (Hughes & Whittle, 2022). The efficiency
of the model relies on the accuracy of G0, which is found to be
strongly influenced by the sand void ratio e, relative density
DR, uniformity coefficientCu and mean effective stress p′. The
database of Oztoprak & Bolton included tests in the low-stress
range (p′, 70 kPa); however, the best fit was observed
between 70 kPa and 600 kPa, leaving open the validity of
the model for very low stresses (p′=70 kPa). Finally, despite
the low range in which γr, γe and a are found, the empirical
nature hinders the generalisation of physically based

interpretations. Here, this drawback is addressed by consider-
ing the grain contact stiffness and the stiffness of a random
packing of identical spheres as an alternative to the existing
models for soil stiffness degradation.

EXPERIMENTALWORK
Material and methods
Various tests can be combined for measuring changes in

soil stiffness at low and high strain. Low-strain tests (using
the resonant column, the ultrasonic pulse or piezoelectric
bender elements) allow the elastic response for γ, 10�4 to be
measured, while high-strain tests (using cyclic triaxial tests or
cyclic simple shear tests) capture the soil degradation for
γ. 10�4 (e.g. Villacreses et al., 2020). Although it is not
guaranteed, combining low- and high-strain tests on the
same material should yield a unique curve. Moreover, tests at
low confining pressures are challenging and might hinder the
material response, as the soil stiffness significantly decreases
at lower strains. Therefore, Chaparro López et al. (2023)
presented an alternative method by using a new dynamic
shear rheometer (also known as the dynamic material
analyser (DMA)) that allows a wide range of strains under
low and high confining pressures to be covered. This work
employs the DMA rheometer for studying the mechanical
degradation of sand under low confining pressures and over a
wide range of strains.
The DMA test is commonly used for determining the

viscoelastic material properties of asphalt mixtures, such as
the dynamic shear modulus and the phase angle at different
temperatures. The technique is also recommended for
evaluating the deterioration of asphalt materials and their
performance with temperature control (Caro et al., 2015). In
the DMA test, a harmonic oscillatory angular strain with
frequency and amplitude control is applied while measuring
the stress necessary for maintaining the harmonic motion
and the sample rotation with a torque precision of 10�9 Nm
and an angular precision of 40 nrad (TA Instruments, 2007).
The measuring principle of the DMA is similar to that of the
cyclic torsional test currently used to characterise cyclic soil
behaviour, but the DMA has better precision under very low
strains (Chaparro López et al., 2023).
The DMA test allows a direct and precise measurement of

the dynamic shear modulus G and damping ratio. Usually,
the DMA is used on viscoelastic materials without any
confinement. In the present work, the authors adapted the
specimen caps and used a latex membrane to apply, by
vacuum through the bottom cap, a confining pressure to a
dry sand sample (see Fig. 2). Consequently, the experimental
procedure extends the capabilities of the DMA to fine-
grained materials, allowing the investigation of the dynamic
properties in a broader range of deformations and all in a
single test.
Experiments are performed on Fontainebleau sand, which

has a nearly monodisperse grain size distribution, mean
grain diameter of 0·21 mm, uniformity coefficient Cu = 1·52,
void ratio range of [emin : emax] = [0·54 : 0·94] and grain
density of ρ=2·65 g/cm3 (Andria-Ntoanina, 2011).
Loose sand samples (e� emax) are often challenging to set

up. To do so, DMA samples are prepared within a latex
membrane and encapsulated within a rigid sliced pipe. The
sliced pipe controls the sample dimensions, resulting in a
sample of 15 mm dia. and 45 mm high. The available space
between the rheometer pedestal and the piston restricts the
sample height. Two O-rings tighten the latex membrane to
the top and bottom DMA caps, ensuring a joined motion
during testing (see Fig. 3).
The authors achieved loose sand samples with DR= 0·26

by a constant funnel discharge, ensuring no jamming within

Fig. 1. Instrument context camera (ICC) photograph showing the
white hemispherical wind and thermal shield (WTS) covering the
SEIS seismometer and, on the left-hand side, the black support system
of the self-penetrating dynamic thermal sensor of the HP3 device.
Image credit NASA – JPL
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the funnel and a filling height close to zero. Once the sample
height has been reached and both caps are tight, the vacuum
is applied on the bottom cap through a small orifice and the
test is ready to start.

The DMA test allows a sweep shear strain, ranging
between γ= [10�6 : 10�2], maintaining a constant shear
strain rate of 1 Hz over ten cycles. The modified DMA test
allows the role of low confining pressure p′ in sand samples to
be studied using a 100 mbar suction pump, making it
possible to investigate the transition between low and
medium confining pressures, with p′= [1, 3, 5, 7, 10, 20,
30] kPa. For p′� 10 kPa, a water-column manometer was
used to control low confining pressures accurately. A full
sweep shear strain was performed for each confining
pressure, and three repetitions per confinement were carried
out to check repeatability.

Experimental results
The recorded signals show a clean harmonic motion in

time for both torque and rotation (see Fig. 4(a)). These
signals are transformed into shear stress τ and shear strain γ,
from which one derives the hysteretic loop. Then, as shown in
Fig. 4(b), the secant shear modulus G is computed as the
slope of the straight line joining the extremes of the hysteretic
cycle.
The area of the hysteretic cycle represents the energy loss

(ΔW ) due to the accumulation of irreversible strains
(Kramer, 1996). The damping ratio (ξ) is related to the
ratio between ΔW and the maximum stored energy (Ws) as
follows (Kramer, 1996):

ξ ¼ 1
4π

ΔW
Ws

ð3Þ

The results in Fig. 5 show an increase in stiffness with
increased confining pressure for p′= [1, 10, 20, 30] kPa. For
example, for p′=1 kPa, the hysteresis loop has a slope close
to zero because the sample is loose and the confining pressure
low. The hysteresis loop inclination rises for p′=30 kPa,
indicating stiffening.
Figure 6 shows the changes in shear modulusGwith respect

to shear strain γ for different confining stress p′. Each test was
repeated three times to assess the variability and the coefficient
of variation (Cv) was computed for each confining pressure
p′= [1, 3, 5, 7, 10, 20, 30] kPa. The meanCv across strain levels
(γ) was Cv= [22, 12, 11, 16, 30, 15, 26]%, showing good
repeatability of the DMA test and an acceptable variability of
the results.Moreover, the coefficient of variation remains in the

σ3

15 mm
45 mm

γ

Fig. 2. Experimental set-up: sand sample in the dynamic shear
rheometer (Chaparro López et al., 2023)

Funnel

Rigid sliced pipe

O-rings

Bottom
metallic cap

Air pluviation
method

Hand-made
latex membrane

σ3

Rheometer
pedestal

Fig. 3. Sample preparation (Chaparro López et al., 2023)
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same range for all strain levels. Indeed, for shear strain levels of
γ, 10�5, theCv for the confiningpressuresp′= [1, 3,5,7,10,20,
30] kPa, was Cv = [18, 16, 11, 19, 29, 11, 19]%. Then, as the
modulus degrades further and the shear strain increases to
10�4, γ, 10�3, the Cv values are Cv= [24, 9, 10, 15, 29, 18,
31]%. Finally, for higher strain levels (γ. 10�3), when the shear
modulus is completelydegraded, theCv is lower than25%forall
confining pressures – that is, Cv= [23,7,15,4,25,10,10]%,
showing a slight reduction in the dispersion of the results.

Figure 7 presents the differences in the changes in shear
modulus G and damping ratio ξ with respect to the shear
strain at low and high confining stresses (3 and 30 kPa,
respectively). Fig. 7(a) shows that, under the low confining

stress p′=3 kPa, the material degradation starts under very
low strains (10�6). The degradation curve is close to linear,
without observing any elastic range. In contrast, for
p′=30 kPa, the stiffness degradation starts at γ� 10�5, and
the shape of the degradation curve becomes sigmoidal.
Fig. 7(b) shows that the change in damping ratio ξ is
qualitatively in agreement with the degradation of the shear
modulus G: for low confining stress p′ (3 kPa), the damping
ratio at low strains is high, with changes between 0·12 and
0·23, confirming the absence of any elastic range. Also, the
shape of the curve is more regular and closer to linearity, like
the degradation curve. Under 30 kPa, the damping ratio
remains very low at small strains (, 0·01 below 10�5) prior to
rapidly growing up to a maximum value of 0·30 for γ. 10�5,
in agreement with the degradation of the shear modulus
shown in Fig. 7(a).
The experimental observations made with the data of

Fig. 7 highlight the need for further investigation of the shear
modulus degradation under low confining stresses and for
rough grains, where both elastic and plastic behaviours are
involved. A physically based formulation for this purpose is
presented in the following section, based on an extension of
the Hertz–Mindlin theory and accounting for the defor-
mation of rough grains.

DERIVATION OFA NEW DEGRADATION MODEL
BASED ON THE HERTZ–MINDLIN THEORY
Elastic properties of granular media based on the
Hertz–Mindlin theory
The derivation of the expressions describing the elastic

properties of granular media based on the Hertz theory is
based on calculating the relative displacement of two
spherical grains subjected to a normal contact force FN, as
shown in Fig. 8 (Hertz, 1882). The relative displacement
between their centres 2δH is

2 δHð Þ3=2¼ 2
3
4

FN

E′R1=2
g

ð4aÞ

δH ¼ a2H
Rg

ð4bÞ

where E′ is the effective modulus of elasticity given by
1/E′¼ (1-νg

2)/Eg; Rg is the grain radius. Eg and νg are the
Young’s modulus and Poisson’s ratio of the grains, respect-
ively, and aH is the radius of the circular contact area, given
by

aH ¼ 3FNRg

4E′

� �1=3

ð5Þ

Sub-index ‘H’ in variables aH and δH denotes that they result
from the Hertz theory.
In general, spheres i and j can have different radius R,

different Young’s modulus E and Poisson’s ratio ν (Ri,j, Ei,j,
νi,j). In this case, the equivalent radius RG

* , and the effective
modulus of elasticity E′ become:

1
R�

G
¼ 1

Ri
þ 1
Rj

ð6Þ

1
E′

¼ 1� ν2i
Ei

þ 1� ν2j
Ej

ð7Þ

The Hertz–Mindlin (HM) theory (Hertz, 1882; Mindlin,
1949) allows the normal and shear stiffness of two elastic
spheres, Sn

HM and St
HM, to be obtained, respectively (see
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Mavko et al., 1998), as follows:

SHM
n ¼ 4aHGg

1� νg
ð8Þ

SHM
t ¼ 8aHGg

2� νg
ð9Þ

where Gg is the grain shear modulus.
Through statistical averaging, the Walton and Digby

model (Digby, 1981; Walton, 1987) proposed the following
expressions for the normal force FN and the bulk (KHM) and
shear (GHM) moduli of a pack of identical elastic spheres
obeying the Hertz–Mindlin theory:

FN ¼ 4πR2
g p′

n 1� ϕð Þ ð10Þ

KHM ¼ n 1� ϕð Þ
12πRg

SHM
n ð11Þ

GHM ¼ n 1� ϕð Þ
20πRg

SHM
n þ 1�5SHM

t

� � ð12Þ

where p′ is the mean effective stress; n is the coordination
number (average number of contacts per sphere); and ϕ is the
porosity.
Finally, the contact stress p(r) is assumed to be para-

bolically distributed on a circular contact by

p rð Þ ¼ P0;H 1� r
aH

� �2
" #1=2

; then FN ¼ 2
3
P0;Hπa2H ð13Þ

where P0,H is the maximum stress on the contact area.

Contact between rough spheres
The contact between rough particles has received much

attention from both a geotechnical point of view (Yimsiri &
Soga, 2000, 2011; Senetakis et al., 2013a; Otsubo et al., 2015;
Altuhafi et al., 2016; Nardelli & Coop, 2019) and a tribology
one (Archard, 1957; Greenwood & Williamson, 1966;
Greenwood & Tripp, 1967; Majumdar & Bhushan, 1991;
Persson, 2006). Most researchers agree on the fact that, in
rough contact surfaces, asperities decrease the contact
stiffness. However, as the contact stress increases, asperities
undergo plastic deformation and approach the relative
displacement values given by Hertz (see Fig. 9).
Rigorous models for analysing the contact of rough

spheres require an iterative solution of complex integral
equations. Analytical models providing a closed-form
system of equations are scarce. Among these, the model
proposed by Bahrami et al. (2005) and modified by Butt et al.
(2015) assumes that roughness is isotropic and randomly
distributed (i.e. with a Gaussian distribution). The strength
and size of asperities are described by their microhardness
(Hmic) and root mean square (RMS) wave height (σrms),
defined as the square root of the average of the squares of
all wave heights, respectively. The Bahrami–Butt method uses
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two non-dimensional parameters αR and τR, as follows:

αR ¼ σrmsRg

a2H
ð14Þ

τR ¼ E′
Hmic

Rg

σrms

� �1=2

ð15Þ

By fitting the rigorous solution, Butt et al. (2015) proposed
closed-form equations for computing three non-dimensional
variables: the non-dimensional pressure distribution P′0, the
non-dimensional contact radius a′R and the generalised
pressure distribution exponent, γR, given by

P′0 ¼ 1
1þ 1�22αRτ�0�16

R

ð16Þ

a′R ¼ 1�631P′0 � 0�496� 0�631P′03�358 ð17Þ

γR ¼ 1�5P′0a′R2� 1 ð18Þ

These non-dimensional variables allow computing the
radius of the rough contact area aR, and the maximum
contact stress P0, as follows:

aR ¼ a′RaH ð19Þ

P0 ¼ 1� γRð Þ FN

π aRð Þ2 ð20Þ

Then, the maximum displacement at the centres of the
contact area between rough grains, δR, is given by

δR ¼ P0aR
E′

f γRð Þ ð21Þ

where f (γR) is a shape function formulated by Butt based on a
beta function (further details are presented in the Appendix).
Equation (4b) indicates that the displacement between

spheres is proportional to the square of the radius of the
contact area between them (δH/ aH

2 ). Likewise, equation
(8) indicates that the radius of the contact area is
proportional to the normal stiffness (aH/Sn

HM).
Therefore, the ratio between the stiffness of the rough
surface grain and the ideal Hertzian stiffness of a smooth
sphere Sn

Rough/Sn
HM becomes

SRough
n

SHM
n

¼ δR
δH

� �1=2

ð22Þ

This ratio is obtained by calculating δH using
equations (4b), (5) and (10), and by calculating δR using
equation (21). This was done in Fig. 9, which shows that
the reduction in contact stiffness is higher for lower
stresses and decreases as the acting normal stress grows. In
addition, the reduction ratio grows for larger asperities
(i.e. high σrms).
Bachrach et al. (2000) consider the roughness of the

particles by substituting in equation (5) the radius of the
particles Rg with a contact radius Rc, which is much lower
than the radius of the particles, Rc =Rg. This assumption
modifies the Hertzian radius of the contact area aH, which
modifies the normal and shear stiffness. It is important to
note that, considering equations (8) and (9), this assumption
modifies the normal and shear contact stiffness in the same
proportion. The same assumption is adopted in the present
work. Therefore, the normal and shear stiffnesses Sn

HM and
St
HM are affected by the same reduction ratio given in

equation (22). Consequently, the bulk and shear moduli of a
granular arrangement of identical rough spheres (KR andGR)
become
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R
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H
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S
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Fig. 9. (a) Schematic drawing of a smooth sphere resting on a
deformable rough surface for the Bahrami–Butt model (Bahrami
et al., 2005; Butt et al., 2015). (b) Effect of the size of asperities, σrms,
and normal force FN on the stiffness reduction ratio Sn

Rough/Sn
H. In the

case of Fontainebleau sand, the curves are computed for grains with
Rg = 110 μm, porosity ϕ=0·5, coordination number n=6 and
asperities’ microhardness Hmic = 8·2 GPa as suggested in
Yovanovich (2006) for quartz
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Fig. 10. (a) Contact normal and shear stresses given by the Hertz–Mindlin theory. (b) Sliding and sticking regions on the contact area, modified
from Caicedo (2018)
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KR ¼ n 1� ϕð Þ
12πRg

SHM
n

δR
δH

� �1=2

ð23Þ

GR ¼ n 1� ϕð Þ
20πRg

SHM
n þ 1�5SHM

t

� � δR
δH

� �1=2

ð24Þ

Friction-dependent shear modulus
In a larger collection of grains, even under hydrostatic

stress, the shear and compressive forces (Fx and FN,
respectively) act simultaneously and as a function of the
grain assembly (Radjai et al., 1996). In such a condition, as
shown in Fig. 10, the shear stress τ(r) on a point located at a
radius r of the contact area results from a tangential load Fx,
given by the Mindlin solution as

τ rð Þ ¼ τ0 1� r
aH

� �2
" #�1=2

Fx ¼ 2τ0πa2H

ð25Þ

where τ0 is the shear stress at the middle of the contact area
and r is the radius in the contact area.
Equation (25) leads to infinite shear stress at the contact

area perimeter (see Fig. 10(a)). Moreover, the normal stress
decreases near the contact area perimeter. In contrast, the
shear stress increases until it exceeds Coulomb’s friction law.
Therefore, a more realistic approach consists in dividing the
contact area into two regions (see Fig. 10(b)): (a) a sliding
region in which the shear contact stress is τ= μp (where μ is
the friction coefficient and p is the normal contact stress) and
(b) a circular sticking region of radius c. The relationship
between these radii is given by the following equation (Popov,
2010):

c
aH

¼ 1� Fx

μFN

� �1=3

ð26Þ

To obtain the shear modulus accounting for the effect
of sliding grains, GRS, Duffaut et al. (2010) suggest
affecting the shear stiffness of equation (24) by the ratio
c/aH given by equation (26). However, to link inter-grain
contact forces with stresses, it is possible to change Fx/μFN
in equation (26) by the normalised mobilised shear
strength τmob, as follows:

GRS ¼ n 1� ϕð Þ
20πRg

SHM
n þ 1�5SHM

t 1� τmobð Þ1=3
h i δR

δH

� �1=2

;

τmob ¼ τ

μ p′

ð27Þ
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Fig. 11. Effect of the normalised mobilised shear stress on the shear
modulus. Results are computed for grains with Rg = 110 μm, porosity
ϕ=0·5, coordination number n=6, asperities σrms = 0·8 mm and
microhardness Hmic = 8·2 GPa
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Figure 11 shows the effect of the mobilised shear strength
on the shear modulus GRS calculated using equation (27).
As expected, GRS decreases as the mobilised shear stress
increases. However, one observes that, even for a total
mobilisation of the shear strength, the shear modulus
does not decrease to zero. This is due to the contribution
of the normal stiffness Sn

HM into the shear modulus, given
by equation (27). However, this contribution is expected
to vanish when there is localisation of shear strains in the
soil.

Transition from small to large strains
Using the previous theoretical framework for simulating

the transition from small to large strains requires the
adoption of the following hypotheses.

(a) H1. At the inter-grain level, shear strength is mobilised
even when subjected to isotropic confining stress. This
hypothesis agrees with the Mindlin solution,
demonstrating that shear stress increases to infinite even
when the grains undergo very small tangential loads.
This hypothesis also agrees with Bachrach et al. (2000),
Duffaut et al. (2010) and Castillo Betancourt et al.
(2023), who demonstrated that experimental
measurements of the Poisson’s ratio of dry granular
materials subjected to hydrostatic stresses can only be
explained theoretically by assuming the existence of a
given proportion of sliding grains.

(b) H2. The normalised shear strength mobilisation occurs
at two scales – namely, at the grain scale and at the
element scale – herein microscopic and macroscopic,
τmob
μ and τmob

M , respectively.
(c) H3. τmob

μ and τmob
M increases at the same rate up to

τmob
μ ¼ 1, a value at which the shear stiffness becomes
null.

(d ) H4. For a given τmob
M , there is a volumetric portion

of grains ψ whose shear modulus is given by
equation (28) and a complementary portion (1�ψ)
for which there is no effect of the normal stiffness Sn

HM

on the shear modulus (see equation (29)). These
distinct behaviours result from the localisation of

shear strains. Moreover, the combined shear modulus
from these behaviours can be calculated using
the Hashin–Shtrikman upper-bound formulation
shown in equation (30) (Hashin & Shtrikman, 1963).

(e) H5. Following equation (26), it is assumed that the
portion of grains ψ depends on the macroscopic
normalised shear strength to a power of 1/3 – that is,
ψ¼ (τmob

M )1/3. This assumption does not have any
theoretical support, but it is justified by the good
agreement with the experimental results shown in the
next section ‘Performance of the micromechanical
model for the whole range of confining stresses’.

( f ) H6. Normalised shear strength mobilisation does not
affect the soil bulk modulus.

The previous hypotheses suggest the following procedure for
calculating the shear modulus corresponding to a given
macroscopic shear strain mobilisation G(τmob

M ). Fig. 12

illustrates the methodology applied for a confining stress of
10 kPa.

(a) First, according to hypothesis H1, it is necessary to
assume the inter-grain shear strength mobilisation for
the confining stress p′, denoted as τmob

μ (p′). This
variable can be obtained fitting the shear modulus
experimental measurements at very low strains
(γ, 10�5). Three values of τmob

μ (p′) are assumed in
Fig. 12(a), τmob

μ (p′)¼ [0·60; 0·72; 0·85].
(b) Second, for a given macroscopic normalised shear

strength mobilisation τmob
M , hypothesis H3 indicates that

the microscopic normalised shear strength mobilisation
is τμmob ¼ τMmob þ τμmob p′ð Þ � 1. Fig. 12(a) illustrates the
evolution of τmob

μ (p′) for the three initial assumed
values.

(c) According to hypothesis H5, the proportion of grains
affected by the localisation of shear strength is
ψ¼ (τmob

M )1/3. The evolution of proportion ψ is shown
in Fig. 12(b).

(d ) From hypotheses H4 and H6, the shear and bulk
moduli of the two distinct portions of grains are as
follows.

Portion of grains without localisation (see
Fig. 12(c)):

G�L
RS τMmob

� � ¼ n 1� ϕð Þ
20πRg

SHM
n þ 1�5SHM

t 1� τμmob

� �1=3h i

	 δR
δH

� �1=2

ð28Þ
Portion of grains with localisation (see Fig. 12(d)):

GL
RS τMmob

� � ¼ n 1� ϕð Þ
20πRg

1�5SHM
t 1� τμmob

� �1=3h i

	 δR
δH

� �1=2

ð29Þ

(e) Using the Hashin–Shtrikman upper bound, as shown
in Fig. 12(e), the combined shear modulus become

( f ) Finally, the macroscopic shear strain corresponding to
a given τmob

M is computed as the ratio between
the macroscopic shear stress τ and the shear modulus G
(τmob
M ). As a result, the macroscopic shear stress is given

by the product of the macroscopic friction coefficient,
μM, the confining stress p′ and the macroscopic shear
strength mobilisation (i.e. τ¼ μMp′τmob

M). Therefore,
the macroscopic shear strain become

γ τMmob

� � ¼ τ

G τMmob

� � ¼ μM p′τMmob

G τMmob

� � ð31Þ

(g) It is usual to relate the decrement in shear modulus to the
growth of the damping ratio. Equation (32) gives an
empirical equation that allows the damping ratio to be
computed for a particular macroscopic normalised shear
strength mobilisation, ξ(τmob

M ). However, in the case of
very loose sands, according to hypothesis H1, there is

G τMmob

� � ¼ G�L
RS þ 1� ψ

GL
RS � G�L

RS

� ��1 þ 2ψ KR þ 2G�L
RS

� �� �
= 5G�L

RS KR þ ð4=3ÞG�L
RS

� �� 	 ð30Þ
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some shear strength mobilisation even for low strains, so
the damping ratio begins with a non-zero value given by
ξμτmob

μ(p′), where ξμ is a model parameter. Then, as the
mobilisation of the shear strength increases, the shear
modulus G(τmob

M ) decreases and the damping ratio
increases. An exponent of 3 is used in equation (32) to
account for the increase in damping ratio. This exponent
is the inverse of the exponent used in the relationship
proposed in hypothesis H5. Then, ξM is another model
parameter computed a

ξ τMmob

� � ¼ ξμτμmob p′ð Þ þ ξM � ξμτμmob p′ð Þ� �
	 G0 � G τMmob

� �
G0


 �3
ð32Þ

Finally, after computing the shear modulus G(τmob
M ),

it is possible to compute the shear strain γ using

equation (31). It is also possible to compute the
damping ratio using equation (32). Fig. 13 shows a
comparison between the experimental results obtained
for p′=10 kPa, demonstrating very good agreement.
The performance of the model is further discussed in
the following section.

PERFORMANCE OF THE MICROMECHANICAL
MODEL FORTHE WHOLE RANGE OF CONFINING
STRESSES
The proposed model uses several physical parameters that

relate properties at the scale of the grains (i.e. Rg, Gg, νg,
σrms,Hmic, μ) and at the scale of a collection of grains (i.e. ϕ,
n, μM). Table 1 summarises these values, indicating whether
they were directly measured on Fontainebleau sand or adopted
from previous works on similar silica sands. In addition, as

40
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Fig. 13. Comparison between the experimental results and the theoretical model for p′= 10 kPa for three values of τmob
μ (p′) = [060; 0·72; 0·85]:

(a) shear modulus degradation curve; (b) damping ratio. The parameters of the theoretical model are given in Table 1

Table 1. Parameters of the micromechanical model

Parameter Comment References

Porosity ϕ=0·455 Sample porosity measured in tests Delage et al. (2022a,
2022b)

Coordination number n=6 Value for a loose arrangement of uniform spheres. Mavko et al. (1998),
Caicedo (2018)

Grain size Rg = 110 μm Assuming Rg =D50/2, knowing that the Fontainebleau sand
has a well-sorted grain size distribution with a
D50 = 220 μm.

Castillo Betancourt et al.
(2023)

Grain’s shear modulus Gg = 44 GPa For silica grains Bachrach et al. (2000)
Grain’s Poisson’s ratio νg = 0·08 For silica sands Bachrach et al. (2000)
Microhardness of the

asperities
Hmic = 8 GPa For silica sands Yovanovich (2006)

Asperities’ height σrms = 0·7 μm Based on the fitting of Poisson’s ratio in Caicedo et al. (2023) Caicedo et al. (2023)
Inter-grain shear strength

mobilisation
τμmob p′ð Þ Fitted curve given in equation (33) No reference

Micro friction coefficient μ=0·23 Based on the measurements of Leighton Buzzard sand Senetakis et al. (2013a,
2023b)

Macroscopic friction
coefficient

μM=0·55 Corresponding to a friction angle of 29° for loose
Fontainebleau sand

Andria-Ntoanina (2011)

Damping ratio coefficient ξμ¼ 0·03 Fitting parameter No reference
Damping ratio coefficient ξM Fitted curve given by equation (34) No reference
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stated in hypothesis H1, it is necessary to adopt an initial
microscopic normalised shear strength mobilisation value
τmob
μ (p′) to reproduce the change in shape of the shear
modulus degradation curve. The experimental results suggest
that τmob

μ (p′) is high for low confining stresses and decreases
when the confining stress grows. The following sigmoidal
equation was obtained from the experimental results.

τμmob p′ð Þ ¼ 1� 1
1þ e�0�28 p′�13�8ð Þ ð p′ in kPaÞ ð33Þ

Fitting the damping ratio curves is more empirical; it
requires two parameters, ξμ and ξM. Parameter ξμ controls
the damping ratio at low strains and can be taken as constant
(ξμ¼ 0·06). However, parameter ξM, which controls the
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damping ratio at high strains, increases with the confining
stress. The following equation was found after fitting the
experimental results.

ξM p′ð Þ ¼ 0�2þ 0�16
1þ e�0�2 p′�15ð Þ ð p′ in kPaÞ ð34Þ

Table 1 presents the whole set of parameters of the model.
Figures 14 and 15 compare the experimental results and the

data of the theoretical model for the whole range of stress
presented in the earlier section ‘Experimental work’. It can be
observed that the agreement in shear modulus is pretty good,
with a correlation coefficient higher than 0·9 (except for tests
conducted under a confining pressure of 7 kPa, for which this
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stresses. The theoretical model parameters are shown in Table 1
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coefficient decreases to 0·71). The agreement in damping ratio,
shown in Fig. 15, is reasonably good, with a correlation
coefficient decreasing to 0·61 under 7 kPa, but increasing as
the confining stress increases, reaching 0·96 for p′=30 kPa.

In summary, the model captures, to a reasonable extent, the
behaviour of dry, granular materials under low confining
stresses, by accounting for both micro- and macro-mechanical
characteristics. The model accurately represents the typical
characteristics of soil stiffness degradation and sets a prom-
ising framework for studying soil behaviour under dynamic
loading. The calibration of the model is strongly linked to the
availability of a degradation curve, covering a wide range of
shear strains and confining pressures; the authors are
confident that extending this range of observations is
beneficial to understand better the soil behaviour in uncommon
conditions (e.g. extra-planetary low geostatic stresses) or
overlooked scenarios (e.g. low-amplitude cyclic loading).

CONCLUSIONS
This paper presents a micromechanical model for assessing

the changes in shear modulus and damping ratio in loose
sands subjected to low confining stresses, a situation
prevailing in particular in low-gravity conditions, in which
rugosity effects at inter-grain contacts are more significant.
The model is based on both the mechanical properties of the
grains and the characteristics of the grains assembly, a step
forward compared to models based only on fitting exper-
imental results.

The experimental data were obtained using an innovative
methodology based on a shear rheometer able to work along
a broad range of shear strains (Chaparro López et al., 2023).
The experimental work was carried out on a loose
Fontainebleau sand considered as a Martian regolith
simulant at the InSight landing site.

Based on the works of Bachrach et al. (2000), Bahrami
et al. (2005) and Butt et al. (2015), a contact theory model
was developed to assess the maximum shear modulus. Then,
the Hashin–Shtrikman upper bound combined two types of
behaviours, one having inter-grain slippage at the micro-
scopic level and the other one accounting for shear strength
localisation. Good agreement with the experimental datawas
obtained for both shear modulus and damping ratio over a
broader range of confining pressures.

It is important to remark that, in the current approach,
modelling the changes in shear modulus requires only one
fitting parameter, which depends on the confining stress.
Modelling the damping ratio is, however, more empirical,
with two parameters required (one constant and another one
depending on the confining stress).

The model uses the volumetric portion of grains with
shear-strain localisation as a fundamental parameter for
describing the shear modulus degradation; in this work, such
a parameter was calibrated empirically. However, it could be
experimentally calibrated in future works by implementing a
torsional test into an X-ray microcomputed tomography, as
in Hall et al. (2010). Another possibility for calibrating the
proportion of grains undergoing shear-strain localisation is
using discrete-element computations that simulate the same
shear tests, ensuring repeatability and allowing access to
grain-scale quantities.

The work presented here provides a framework for study-
ing the dynamic behaviour of loose sands submitted to low
stresses. The agreement of the model is reasonably good, but
it should be noted that it was applied to a uniform sand,
which can reasonably be assimilated to an assembly of
identical spheres. Further work is required to evaluate if this
model can be applied to polydisperse granular materials with
crushed grains.
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APPENDIX. BUTT’S FITTING FUNCTION FOR THE
CONTACT BETWEEN ROUGH GRAINS

The maximum displacement at the centre of the rough contact
area, δR, given in equation (21) depends on the function f (γR). Butt
et al. (2015) propose evaluating this function through a beta function
as follows:

f ðγRÞ ¼ B 0�5; γR þ 1ð Þ ð35Þ
The beta function B(0·5,γR+1) is obtained based on the gamma

function Γ, as follows:

B 0�5; γþ 1ð Þ ¼ Γ 1=2ð ÞΓ γþ 1ð Þ
Γ γþ 1�5ð Þ ð36Þ

The following closed-form expression for the gamma function was
proposed by Butt et al. (2015):

Γ xþ 1ð Þ ¼ a1 xþ a2ð Þxþa2 1þ a3
a4 þ xa5

þ a6
xa7 þ a8

� �
e�xa9 2πð Þ1=2

ð37Þ
The values of the constants a1…9 of function Γ were obtained by
Butt et al. (2015) by least-squares parameter optimisation, leading
to: a1 = 0·5641886354, a2 = 0·500007096, a3 = 0·1091637999,
a4 = 1·621840565, a5 = 0·992925298, a6 = 0·0115834573,
a7 = 1·271839956, a8 = 1·505508639, a9 = 1. Note that the purpose
of equation (37) is to fit function Γ in a closed form rather than in its
integral form; therefore, the values a1…9 are constants, unrelated to
the physics of the contact problem.

NOTATION
a fitting parameter of the Oztoprak and Bolton

equation
a1…a9 constants of the gamma function

aH Hertzian radius of the contact area between
spherical grains

aR radius of the contact area between rough spherical
grains

a′R non-dimensional contact radius
B(0·5,γ+1) beta function

c radius of the circular sticking region on particles
undergoing shear forces

D50 median grain size
E Young’s modulus
E′ effective Young’s modulus 1/E′¼ (1� ν2)/E
FN compressive grain contact force
Fx shear grain contact force

f (γR) shape function giving the displacement between
rough particles

G shear modulus
G0 shear modulus at low strains
Gg shear modulus of the grains

GHM shear modulus from the Hertz–Mindlin model
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GR shear modulus of a granular arrangement of
identical rough spheres

GRS
L shear modulus for the volumetric proportion of

grains undergoing localisation
GRS
≁L shear modulus for the volumetric proportion of

grains that do not experience localisation
Hmic asperities microhardness
KHM bulk modulus from the Hertz–Mindlin model
KR bulk modulus of a granular arrangement of

identical rough spheres
n coordination number

P0,H maximum stress on the contact between particles
P0
′ non-dimensional pressure distribution

p(r) stress on the contact area between particles
p′ mean effective stress
Rg grain radius
r radius on the contact area

Sn
HM normal contact stiffness for perfect smooth grains

St
HM shear contact stiffness for perfect smooth grains
αR non-dimensional parameter for characterising the

grain’s roughness
γ shear strain
γe fitting shear strain parameter of the Oztoprak &

Bolton equation
γR stress distribution exponent
γr reference shear strain of the Darendeli equation
δH maximum displacement for a Hertz–Mindlin

contact between spherical grains
δR maximum displacement between rough spherical

grains
μ intergranular friction coefficient

μM macroscopic friction coefficient
νg Poisson’s ratio of the grains
ξ damping ratio

ξM model parameter representing damping at large
strains

ξμ model parameter representing damping at low
strains

σrms root mean square asperities height
τ0 shear stress at the middle of the contact area

τmob normalised mobilised shear strength
τmob
M macroscopic normalised shear strength

mobilisation
τmob
μ inter-grain shear strength mobilisation
τ(r) shear stress on a point located at a radius r of the

contact area
τR non-dimensional parameter for characterising the

grain’s roughness
ϕ porosity
ψ volumetric proportion of grains that do not

experience localisation
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