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Superconducting High-Aspect Ratio
Through-Silicon Vias With DC-Sputtered

Al for Quantum 3D Integration
J. A. Alfaro-Barrantes , M. Mastrangeli , D. J. Thoen , S. Visser,

J. Bueno, J. J. A. Baselmans, and P. M. Sarro

Abstract— This paper presents the fabrication and elec-
trical characterization of superconducting high-aspect ratio
through-silicon vias DC-sputtered with aluminum. Fully
conformal and void-free coating of 300 μm-deep and
50 μm-wide vias with Al, a CMOS-compatible and widely
available superconductor, was made possible by tailor-
ing a funneled sidewall profile for the axisymmetric vias.
Single-via electric resistance as low as 80.44 m� at room
temperature and superconductivity below 1.28 K were mea-
sured by a cross-bridge Kelvin resistor structure. This work
thus demonstrates the fabrication of functional supercon-
ducting interposer layers, suitable for high-density 3D inte-
gration of silicon-based quantum computing architectures.

Index Terms— Aluminum, cryogenic, interconnects,
sputtering, superconducting, through-silicon vias.

I. INTRODUCTION

QUANTUM technology has made remarkable progress
in the last two decades [1]. Among quantum technol-

ogy’s four main areas—which also include communication,
simulation, and sensing and metrology—quantum computa-
tion is gaining particular relevance. In this respect, increas-
ing interest has been recently directed to the possibility
of using through-silicon vias (TSVs) at cryogenic tempera-
tures [2]. Such interest was boosted by the demonstration of
silicon-based quantum computers, which need to operate at
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Fig. 1. Sketch of the proposed 3D integration concept for
large-scale high-density quantum computing, including a qubit-based
layer, TSV-based superconducting interconnects in an interposer layer,
and the CMOS circuitry for the control and readout of the qubits.

temperatures lower than 1 K [3]. The quest for supercon-
ducting vias arises from the realization that the number of
physical qubits required for the control and error-correction
of logical qubits is nowadays a limitation to compete with
the performance of classical computers [1]. Actually, several
millions of physical qubits should be integrated on an single
chip to achieve substantially higher performance [4]. Current
implementations of superconducting and spin qubits in silicon
require an area orders of magnitude larger than the size
of typical MOS transistors [3]. This severely limits qubit
integration density in a single substrate. High qubit integration
densities therefore require multilayer technologies, and 3D
superconducting interconnects may suit the purpose (Fig. 1):
they allow to get rid of interconnecting wires, freeing chip
surface to increase qubit density, as well as to vertically stack
and interconnect multiple chips [5].

Copper and doped polysilicon are the most used conductors
for (inter)connection and via-filling thanks to their excep-
tional electrical conductivity and/or thermal stability [6], [7].
However, none of them is superconductive. Moreover, prior
work on superconducting interconnections made use of In
bumps, TSVs with polymer-filled metallic liner materials or
fabrication methods that are not CMOS-compatible or not
easily scalable to large substrate areas [8]–[10].

Here we describe a wafer-scale microfabrication process
that enables TSVs with high-aspect ratio (HAR, up to 6:1)
to be conformally coated with DC-sputtered aluminum,
this ensures at once superconducting and CMOS-compatible
3D interconnects. The purpose of the funneled sidewall profile
of the TSVs is to facilitate the penetration of the sputtered
aluminum into the vias. The sloped surface improves the
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Fig. 2. Sketched cross-sections of a Si substrate illustrating the via fabrication and coating process flow: a) etching of bottom side funnels: isotropic
DRIE followed by anisotropic DRIE; b) SiO2 deposition over bottom side funnels and etch of top side funnels; c) DRIE of straight section of the vias;
d) cleaning and thermal growth of insulating SiO2 layer; e) double-sided sputtering and lithographical patterning of Al/TiN.

coverage and conformality of the Al film on the HAR via
sidewalls.

Notably, DC-sputtering is preferable to other Al deposi-
tion techniques, such as e.g. evaporation, due to the qual-
ity of deposited layers, which are homogeneous, free of
pores and cracks, and have lower surface roughness [11].
Sputtering additionally affords high throughput and faster
depositions, compared with e.g. ALD—desirable features for
industrialisation and upscaling [12]. TSVs coated with Al by
DC-sputtering remained elusive for long.

II. VIAS FABRICATION

The fabrication process consists of wafer-scale microma-
chining of TSVs followed by their electrical insulation and
conformal coating with TiN-capped Al (Fig. 2).

The fabrication started with thermal growth over a 4”,
double-side-polished, 300 μm-thick silicon wafer of a
2.6 μm-thick layer of silicon dioxide, used as hard mask for
the ensuing steps. Aligned hemispherical cavities (“funnels” in
the following, representing the open extremities of the vias)
were then etched on both sides of the Si substrate. To achieve
this, the SiO2 layer was first photo-lithographically patterned
with circular windows on one side of the wafer (Fig. 2a).
Thereafter, isotropic deep reactive ion etching (DRIE) was
introduced for 130 s at 25 ◦C by means of inductively-coupled
SF6 plasma. The plasma was generated near the coils in the
upper part of the reactor chamber (Rapier Omega i2l). This
step etched wine glass-shaped funnels with pronounced under-
cuts. The funnels were subsequently plasma-etched anisotrop-
ically using an SF6- and CH8F8-based plasma generated in
closer proximity of the substrate. This step removed the
aforementioned undercuts and broadened the openings of
the funnels. The aligned funnels at the other side of the
wafer were fabricated in the same way. A protective layer of
silicon oxide deposited by plasma-enhanced chemical vapour
deposition (PECVD) was then added on the bottom side of the
wafer (Fig. 2b). The inner, 50 μm-wide cylindrical section
of the vias was drilled by anisotropic Bosch-type etching,
landing on the previously deposited SiO2 layer (Fig. 2c).
The wafer was then thoroughly cleaned through exposure to
oxygen plasma and immersion in HF and HNO3 solutions.
Repeated oxidation and oxide removal steps were performed
for smoothening the sidewalls and for minimizing its undu-
lations. Finally, an additional thermal SiO2 layer was grown
as electric via insulation for the electrical characterization at
room temperature (Fig. 2d). Fig. 3a shows a micrograph of
vias fabricated through a 300 μm-thick Si wafer.

Fig. 3. Scanning electron microscope (SEM) cross-sectional view of
TSVs (300 µm-deep, 50 µm-wide) before Al/TiN sputtering (a) and of a
single TSV after metal sputtering (b). A close-up of the central part of the
via (c) shows fully conformal coating and negligible sidewall undulations.

The metallization of the vias (Fig. 2e), was performed by
sequential sputter deposition on each side of the wafer of 4 μm
of Al as superconducting layer and of 20 nm of TiN as capping
layer. A cryo-pumped Trikon Sigma 204 sputter-coater with
a base pressure of 10−6 Pa was used. The depositions took
32 minutes per side of the wafer and were performed with
a substrate temperature of 25 ◦C, 50 sccm of argon gas flow
and a DC power of 1.3 kW on the 16” Al target. The chamber
pressure was set to 244 mPa, obtaining a deposition rate of
approximately 2.2 nm/s. The 20 nm of TiN were deposited
at 350◦ C for 58.3 seconds. During the TiN deposition,
the pressure was tuned to 4.27 mTorr by using 20 sccm
of argon and 70 sccm of nitrogen, and the power was set
to 6 kW. The micrographs in Fig. 3b-c show resulting vias
after the metallization, and evidence the layers of materials
stacked during the fabrication process. The metal layers were
finally patterned by lithography (using 12 μm of spin-coated
AZ9260 photoresist) and inductively-coupled plasma etching
at 25 ◦C using HBr (30 sccm) and Cl (20 sccm) as reaction
gases and 500 W RF power (Fig. 4a-b).
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Fig. 4. a) Uniform Al/TiN patterning and interconnect definition over the full 4” Si wafer surface. b) Die singled out from the wafer by saw dicing.
c) Sketch of a single cross-bridge Kelvin resistor structure used for the electrical characterization of the TSVs. d) Map showing the fabrication yield
and sheet resistance for 4” wafer-level TSVs.

III. CHARACTERISATION OF INTERCONNECTS

Electrical measurements were performed at both room and
cryogenic temperature to characterize the fabricated TSVs.
Resistance of single TSVs was measured using a 4-terminal
cross-bridge Kelvin resistor structure (Fig. 4c) [13], [14]. I-V
measurements at room temperature were performed with a
parameter analyzer and a multi-probe station. Current was
applied at the I terminal of Fig. 4c, and the ensuing voltage
drop was measured across terminals V1 and V2. Cryogenic DC
resistance was measured as a function of temperature using
a standard 4-point probe method in a commercial adiabatic
demagnetization refrigerator (ADR, Entropy GmbH). The
sample was mounted on a copper block weakly coupled to the
Gadolinium Gallium Garnet stage of the ADR. A thermometer
and a resistive heater allowed to control the stage temperature
down to 600 mK, well below the Al superconducting transi-
tion. During the measurements the current was kept constant
at 30 μA, and the temperature was repeatedly swept upward
and downward between 1.1 K and 1.6 K.

IV. EXPERIMENTAL RESULTS

Fig. 3 shows the fully conformal coating of 300 μm-deep
HAR TSVs with the Al/TiN stack achieved with the
process described above. The funnels are 120 μm-wide and
50 um-deep (Fig. 3b). The minimum via diameter achiev-
able with this technology is around 30um with a height
of 300-500 μm.

Fig. 4d shows the resistance measurements at room tem-
perature of the fabricated devices across a 4” wafer. The
average electrical resistance value of single vias in the cen-
ter of the cross-bridge Kelvin resistor structure measured
355.3±138.3 m�. The lowest resistance value measured
80.4 m�.

The cryogenic resistance measurements evidenced a
wide superconducting transition (Fig. 5). This is tentatively
attributed to a double superconducting transition in the vias.
The transition at 1.36 K originates in the cylindrical section of
the via, where the metal film is thinner. The transition at 1.28 K
is attributed to the thicker metal film deposited at the junction
of the planar and funnel sections of the via (Fig. 3b). This is
consistent with prior reports, as the superconducting transition
temperature of Al increases for thinner films with higher sheet
resistance [15], [16]. Since the ADR at our disposal could not

Fig. 5. Superconductive transition measured for a single cross-bridge
Kelvin structure with 300 µm-deep Al/TiN-coated TSVs. The overlapping
curves represent consecutive upward (→) and downward (←) tempera-
ture sweeps, and confirm the repeatibility of the measurements.

measure I-V curves, we reserve to quantify the TSV’s critical
current in future work.

V. CONCLUSION

Superconducting, high-density and high-aspect ratio TSVs
were demonstrated for 300 μm-thick Si wafers. Funneled
sidewalls enabled conformal DC-sputtering of the TSVs with
Al, a CMOS-compatible superconductor. Electrical character-
ization evidenced single-TSV resistance as low as 80.4 m�
at 25 ◦C and superconductivity below 1.28 K. This work
prompts the fabrication of superconductive interposer layers
for high-density 3D integration for Si-based quantum comput-
ing. Determining the critical current of our superconducting
TSVs and demonstrating their reliability and integration within
quantum 3D architectures will be part of our future work.
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