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Abstract - Motion cueing algorithm design often involves a trade-off between priorities due to the limited workspace
of the simulator. Such a trade-off requires a detailed understanding of human perception, which we do not yet have.
For that reason, objective motion cueing quality metrics, based on the difference between vehicle and simulator
signals, offer a fast and simple alternative. Next to motion cueing quality, we argue that the total motion cueing
algorithm (MCA) quality is about more than only the quality of the motion, and can also entail implementation
and operational aspects of an MCA for a specific use-case and simulator combination, i.e., it is a task-dependent
issue. In this paper this idea is discussed by comparing three objective motion cueing quality metrics (absolute
difference, delay and cross-correlation) from literature and two metrics regarding simulator operations (workspace
management and energy consumption). Comparing such metrics is difficult, but is nevertheless useful to improve
the process of simulator operations if various MCAs and/or simulators are available, to aid their selection pro-
cess. As a first step towards such a method, a Virtual Test Environment (VTE) was developed as a versatile
software environment to compare these metrics, as well as to visualize simulator motion and its characteristics
in a 3D-animation. This aims at helping MCA designers in making choices between different MCA types, their

configurations, simulators and use-cases, guiding them to select the best-suited motion cueing solution.

Keywords: Motion cueing; quality comparison; objective criteria; test environment.

1. Introduction

The key function of a motion simulator is to provide
drivers with similar motion as they would experience
in a real vehicle. As the workspace of a simulator
is by definition limited, a Motion Cueing Algorithm
(MCA) is required, which typically limits the vehicle
specific forces and rotational rates to fit the resulting
motion inside the simulator workspace, while keeping
differences between vehicle and simulator motion as
small as possible. As perfect motion cueing is often
not possible, the critical questions are which differ-
ences are acceptable, which are important to avoid
and at what cost, such as investigated by [Cle20].

In recent years, these questions have become even
more important due to two developments. Firstly,
high-performance motion driving simulators, such as
currently under construction at BMW, have the po-
tential to improve the overall motion cueing quality
compared to the classical hexapod structures. Larger
workspaces allow for higher scaling factors, which
not only lead to better tracking of the vehicle refer-
ence signal, but can also result in an amplification
of motion cueing errors [Rom19]. In other words, the
larger the simulator workspace is, the more important
it becomes to focus on what the simulator is exactly
doing wrong than what it is roughly doing right.

The second development comes from novel MCA
types, such as model-predictive control (MPC) algo-
rithms that currently find their way into motion sim-
ulators [Gar10]. First published by [Dag04, Dag09],
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an MPC algorithm typically provides a higher motion
cueing quality compared to traditional filter-based
classical washout algorithms (CWAs) [D. 17], as it op-
timizes the simulator movement based on the avail-
able workspace at each moment in time, compared
to the overall, worst-case scenario tuning of CWAs.
Nevertheless, MPC algorithms may not always offer
the best practical solution, as they often put heav-
ier constraints on other factors, such as inducing a
higher computational load and being more complex
to implement. For that reason, MCA designers re-
quire a comparison method looking at more than just
motion cueing quality, which might depend on the
available simulator(s) and/or use-case, as well as the
wishes of designers, operators and users.

To the best of our knowledge, there is no such task-
dependent approach to be found in literature. A task-
oriented approach to compare driving simulators was
made by [Fis15]. Although this work focused on spe-
cific simulator qualities based on the requirements of
a use-case, a similar approach could eventually be of
use for the trade-off between MCAs and simulators.

Thus, what is still missing in this context is a task-
oriented approach for MCA tuning, testing and com-
parison that is able to help the trade-off between var-
ious MCAs. The goal of this paper is to describe a
Virtual Test Environment (VTE) that can form the ba-
sis for such an approach within a single offline soft-
ware environment. An offline analysis can also help
the further design of MCAs [Qai12], as motion cue-
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ing quality can be used as a tool to quickly analyse
a large set of MCAs. Although our future goal is to
perform a deeper analysis of MCA quality metrics, in
this paper, only three objective motion cueing qual-
ity metrics as defined by [Gro19] are implemented in
the VTE for a single simulator as a demonstration.
Many other objective metrics exist as well (such as
those proposed by [Pou98, Cas15, Qai12]). Further-
more, two metrics regarding the operational aspects
of motion cueing are implemented, being workspace
management and energy consumption of the the sim-
ulator. The VTE can not only help trade-offs between
MCAs, but also provides an insight in simulator be-
haviour due to differences in MCAs by showing simu-
lator movement in 3D-animation. The VTE serves as
a methodological preparation of the new simulators
currently under construction at BMW in Munich.

The paper is structured as follows. First, an overview
is given of objective metrics for MCA quality. Then the
working principle of the VTE is explained, after which
the simulator and use-case used in the analysis are
discussed in Section 4. Results and discussion are
given in Section 5, followed with the conclusions.

2. MCA Quality Metrics

In this section an overview is given of various exam-
ple MCA quality metrics that can be used for trade-
offs between MCAs. The goal of this analysis, and
one of the main reasons the VTE was developed, is
to be able to assess and compare specific character-
istics of different types of MCAs, as well as different
configurations of the same MCA, and assess their vi-
ability for a certain use-case.

An important component of such an analysis is to
predict how satisfactory the motion cueing quality
as perceived by the human driver will be. However,
we suggest that other metrics regarding the imple-
mentation and operation of MCAs could also have a
large effect on the MCA choice and that '"MCA qual-
ity is therefore a broader term than only motion cue-
ing quality. A trade-off between MCA quality proper-
ties therefore becomes a task-dependent approach,
as motivations for a certain weighting between such
quality metrics may depend on the priority deter-
mined by the use-case. For example, some testing
scenarios in a simulator have a low focus on accurate
motion, such that a simpler MCA with smaller plat-
form excitations, and therefore with a lower energy
consumption, is a viable option. Other use-cases
might require the best motion cueing quality possi-
ble, regardless the cost.

Another reason for the importance of MCA qual-
ity analysis and comparison is the BMW Simula-
tion Center currently under construction in Munich,
Germany, which will operate multiple motion simula-
tors. These simulators have different characteristics
as they are being constructed for different purposes,
including a simulator for highly dynamic maneuvers
and a simulator for urban driving scenarios. The MCA
quality metrics could give instructions on which use-
case is best performed on which simulator and with
which MCA. The development of the Virtual Test En-
vironment therefore also serves the methodological
preparation for enabling the best motion cueing solu-
tion across a simulator fleet.

-2-

2.1. Motion cueing quality

Even when regarding a variety of 'cueing quality met-
rics’ that also look at the operations perspective of
each MCA, the difference between expected and ac-
tual motion as experienced by humans drivers in the
simulator is often the most critical part of MCA qual-
ity. It must be recognized that currently the models
and tools to fully understand the human element are
not available [Cas20], and therefore subjective rat-
ings are still often used for motion cueing quality as-
sessment, such as done by [Cle18]. Their main draw-
back is that subjective analyses are often too time-
consuming to systematically assess the motion cue-
ing quality for a large number of possible MCAs and
their parameterizations, as they require experimental
data for each of these variations.

However, even without fully understanding the human
element in simulator studies, objective metrics can
be used for MCA comparison by evaluating factors
that drivers generally find important for their percep-
tion of good cueing quality. Here, ’objective’ refers
to numerical differences in vehicle reference (input)
and MCA (output) signals. For example, [Cas15] in-
troduced various objective metrics that were com-
pared to subjective ratings, to see which metric would
best predict human evaluations. Although not in the
context of a comparisons between MCAs, their re-
sults showed the strongest dependence on delay and
cross-correlation, rather than absolute differences,
between the vehicle reference and MCA signals.

Similar to [Cas15], [Gro19] computed the absolute
difference, a delay indicator and the correlation co-
efficient between the vehicle reference signal and
the computed MCA signal between two variations
of the same MPC controller with different configura-
tions, although these were not experimentally com-
pared to subjective ratings. We use the quality met-
rics of [Gro19], as these are the simplest to imple-
ment, without any perceptual thresholds as a basis
and first example for the viability of the VTE.

2.1.1. Absolute difference

The first metric is the absolute difference (AD), as
defined by [Gro19], which is based on the ratio of
the area of the difference between the two signals
divided by the area of the reference signal:

I — ke

AD
! Tifglae

(1)

where f7 is the reference specific force signal with
d € {x,y,z} for the degree-of-freedom. In this case
the vehicle acceleration is taken as the reference sig-
nal. The signal f; is the resulting simulator specific
force resulting as output from the MCA. Similarly, the
same equation can be used for the three rotational
rates by substituting wj and wj with d € {¢,0,¢}. A
value closer to zero indicates a better reproduction
of the vehicle cues. Arguably, this is one of the sim-
plest and most direct comparison metrics for motion
cueing quality, as it is directly based on the signal dif-
ferences.
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2.1.2. Cross-correlation

The correlation coefficient (CC) in direction d is de-
fined as:
max R(fy, f3)(7)

CC1= Lax RUY, [1)(7) @)

where R(fY, f3)(r) is the cross-correlation of the ac-
celeration signals fj and f; (and similarly for the
three rotational rates) as a function of the time shift
7 between the two signals. The denominator term of
the correlation coefficient represents the normaliza-
tion by dividing by the auto-correlation of f. A value
closer to 1 indicates a better reproduction of the ve-
Ihicle cues, whereas a value of 0 indicates no corre-
ation.

2.1.3. Time delay

The delay indicator (DI) in degree-of-freedom d be-
tween two signals can be found by calculating the
time shift = that maximizes the cross-correlation:

Dl = arg max R(fi(t=7), fi(t)) @)

It is expected that a clear difference can be seen in
this indicator, as the type of MCA strongly affects the
delay. A washout-algorithm inherently has phase shift
as it makes use of filters, whereas model-predictive
control algorithms can compensate for delays if the
prediction horizon is large enough.

2.2. Operational quality

Besides the motion cueing quality metrics, two opera-
tional quality metrics are included in the comparison.

2.2.1. Workspace management

Workspace management aims to answer how much
of the available workspace is used, and thus if the
MCA is able to exploit all the space it is offered. As a
first step, a convex hull similar to that by [Gro19] was
calculated, which is the volume that spans around the
outer most points the simulator has reached during a
chosen time period, in this case a single maneuver,
for the three positions vectors (z,y, z) as well as the
three rotation vectors (¢, 6,1). In the future a similar
volume metric per unit of cueing quality could be use-
ful as well, in which the lower volume that is used for
getting the same cueing quality thus means that the
MCA is superior to an MCA that results in a higher
volume. In other words, it makes more effective use
of the workspace it is given.

2.2.2. Energy consumption

Energy consumption can be an important metric for
MCA trade-off, especially if motion cueing quality
does not have the highest priority. More accurate
models of energy consumption based on the specific
simulator characteristics can be included, although in
this example a simple mass-normalized total kinetic
energy metric summed over time as introduced by
[Ven15] was used:

6
E=Y / Lys(t)dt, ()
=1
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where vj(t) is the velocity along the d‘"-axis,
summed over the six axes. Although [Ven15] used
this expression to calculate the amount of motion the
simulator produces, this metric can be applied as a
simplified energy consumption estimate by assuming
that it is only caused by movement of the hardware.

3. Comparison environment

The core functionality of the developed Virtual Test
Environment is the ability to simulate the output of dif-
ferent MCAs within a single environment, for a given
simulator and input file, such as measured vehicle
data from test runs. This not only results in simulated
output data that can be used for MCA comparison,
but also gives the ability to render the outputs (simu-
lator motion) in a 3D visualization with live plotting the
simulator output and corresponding quality metrics at
the same time, resulting in an intuitive method of see-
ing differences between different MCA outcomes.

3.1. Simulink structure

MCAs can be expressed in various programs or
programming languages (such as Simulink, C++ or
python), although a core functionality of the VTE is
the ability to simulate different MCAs at the same
time. For that reason, the VTE was developed in Mat-
lab/Simulink. Simulink accepts, besides MCAs devel-
oped in Simulink itself, models defined in other pro-
gramming languages as well. This allows for a large
flexibility in the amount of sources that can be used.
The outputs of MCAs typically have the same form,
including (but not limited to) platform and perceived
dynamics and actuator deflections.

3.2. Working principle
The VTE requires three different user inputs:

1. The (measured or simulated) vehicle data for the
considered use case, which are to be cued in the
simulator using its motion cueing algorithm.

2. The MCAs that are to be compared. These can be
either completely different MCAs in terms of struc-
ture (such as classical washout, model-predictive
control or other) or variations of the same MCA, of
which the parameters can be altered in the VTE as
well. This can for example be used to visualize the
difference between various cut-off frequencies for
the distribution of lateral accelerations, whereas
all other model parameters remain the same. Fur-
thermore, for MCAs that require large computa-
tional times to be computed within the VTE (such
as MPC-based algorithms), the option also exists
to add pre-calculated data of that MCA.

3. The simulator geometry, type, and workspace
parameters to be used in the simulation. The out-
put of an MCA is typically limited by the simulator
workspace, i.e., by limiting the excursions, veloci-
ties and accelerations that the simulator is allowed
to make based on its hardware limits. These limits
are specified per simulator in a separate file.

Matching each simulator’s DoFs and limits, 3D mod-
els were made in the Simulink 3D world editor. The
various components of each simulator (such as its
projector dome, yaw table, hexapod plate, legs and
base or platform/rail) can all be individually included

-3-
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Table 1: Hexapod position, velocity and acceleration

by a simple 3D-representation. An example of the lab
limits of the PMS.

hexapod simulator used in the viability analysis of this
paper is shown in Figure 1. The Simulink 3D work-
bench has the benefit of being able to directly com- » v a
municate with Simulink and thus the translations and 1036 m 0.6 m/s 17 m/s2
rotations of each individual components of the sim- 9
ulator in the 3D model, corresponding to what one +038m  06ms  11m/s
would see for the real simulator. +0.26 m 0.5m/s 12 m/s?
+23.00deg 40deg/s 500 deg/s?

+23.00deg 40deg/s 500 deg/s?
+22.00deg 40deg/s 700 deg/s?

e TR v e 8

4.2. Use-case

Vehicle data (specific forces and rotational rates)
were collected on the PMS simulator for a rural
road near Haimhausen, Bavaria, Germany. The cor-
responding vehicle data was computed based on the
driver behaviour, which subsequently served as the
inputs for the two MCAs under investigation. The
road as driven by the driver is shown by its coordi-
nates in Figure 3 and was divided into four maneu-
vers, which consisted of combined longitudinal and
lateral specific forces, where for each maneuver the
calculated metrics were determined separately:

M1: Acceleration up to 100 km/h with slight cornering.
M2: Slalom at at 100 km/h.

M3: Braking for a 50 km/h sign.

Figure 1: VTE screenshot of the CWA (green) and M4: Braking down to 20 km/h, roundabout, followed by

OP'g (red) MCA plate and hexapod actuators for the
PMS.

4. Application example

4.1. Simulator

In this example application of the VTE the Portable
Motion Simulator (PMS) is used, which is a tradi-
tional hexapod configuration, shown in Figure 2. The
position, velocity and acceleration limits are listed in
Table 1 in all six degrees-of-freedom, whereas the
maximum excursion of each of the actuators from the
neutral state is §, = £0.2 m.

—

Figure 2: The Portable Motion Simulator as used in
the analysis.
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y-position, m

an acceleration to 100 km/h.

400 1

200 1

0 250 500 750 1000 1250 1500
X-position, m

Figure 3: (z,y)-positions of the road signal used for
analysis, with the separate maneuvers numbered.

4.3. Motion Cueing Algorithms

Two motion cueing algorithms were directly com-
pared in the VTE. As both are common in the sim-
ulator industry, these are discussed briefly.

Classical washout algorithm: The first MCA was a
typical classical washout algorithm. This filter-based
approach, based on the work of [Rei85], uses a high-
pass filter in the inertial frame for the translational
as well as the rotational channels, to avoid the sim-
ulator reaching positions outside of its workspace
and washout the simulator motion back to its neutral
state. The low-frequency translational accelerations
are reproduced by tilt-coordination. This makes use
of the gravity vector to create a sustained accelera-
tion in z and y due to rotations in 0 and ¢, respec-
tively. Tilt-coordination in z-direction is not needed,
as a rotation in ¢ does not affect the gravity vector.
The signal for tilt-coordination is low-pass filtered in
the body frame complementary to the high-pass fil-
tered simulator translational accelerations.

This MCA is denoted as 'CWA’

Antibes, 9 - 11 Sep 2020
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Figure 4: VTE output data of the perceived specific forces (a-c) and rotational rates (d-f) for the measured vehicle

data and two MCA outputs.

Optimal model-predictive control: Instead of only
responding to the simulator state using filters, an
MPC algorithm uses predictions of future states to
optimize the simulator motion to bring it as close as
possible to a reference, such as the accelerations
and rotations one is trying to reenact in the simula-
tor. Here, knowledge of the kinematics of the sys-
tem, in this case the motion simulator, is required.
Although online MPC has become a viable option
in recent years [Dro18, Beg12, Ell19a], the model-
predictive control application used in this paper is
a form of optimal control as it had perfect knowl-
edge of future states, which is not possible in on-
line applications. A non-perfect knowledge of the fu-
ture, for example when using a finite prediction hori-
zon, will result in a non-optimal solution [Kat15]. De-
tails on the specific structure of this algorithm can be
found in [Ell19b]. Similarly, the cueing error weights
along the six degrees-of-freedom were set to W =
[11110 10 10].

This MCA is denoted as 'OPT'.

5. Results and Discussion

Figures 4a-f show the simulated outputs of the CWA
(green) and OPT (red) algorithms, together with the
vehicle data (blue) that they aim to reproduce. The
calculated hexapod actuator deflections for both al-
gorithms are shown in Figures 5a-f. As is clear from
the pitch- and roll rates, the OPT algorithm makes
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strong use of tilt-coordination, resulting in a decent
reproduction of the specific forces f, and f,. With
this in mind, and by using the 3D-visualization op-
tion of the VTE, the parameters of the CWA were
tuned to produce similar behaviour as the OPT. Nev-
ertheless, the longitudinal- and lateral specific forces
are clearly worse for the CWA. As this algorithm
is not able to foresee upcoming maneuvers, it re-
quires high rotational rates to provide effective tilt-
coordination, which is typically sensed by human
drivers [Rei85], meaning that less tilt-coordination
was possible. The OPT algorithm can slowly build-
up the tilt-coordination, resulting in higher specific
forces. In the tuning process, the 3D-animation tool
as part of the VTE drastically sped up the tun-
ing process, as visualization of the motion platform,
while at the same time looking at the actuators,
showed where and why the limits of the simulator are
reached. A video of this 3D-tool in action is provided
at the end of this paper.

The five MCA quality metrics are shown in Table 2
and were calculated for each of the four maneuvers
separately. [Gro19] only computed the absolute dif-
ference (AD) for the signals f,, f, and v, as these ve-
hicle signals have a relatively high power compared
to ¢, # and f,. These latter three signals are also
highly affected by the tilt-coordination and therefore
also shown, for completion purposes, in Table 2.

As noted before, the OPT MCA uses the predic-
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Figure 5: VTE output data of the hexapod deflections for both MCAs, black dashed lines indicate actuator limits.

Table 2: VTE output values for classical washout and optimal MCAs for the four maneuvers.

M1 M2 M3 M4
CWA OPT CWA OPT CWA OPT CWA OPT
AD [ fa 0.74 0.30 0.87 0.72 0.71 0.23 0.73 0.21
fu 0.62 0.29 0.64 0.30 0.65 0.32 0.59 0.24
fz 0.0064 0.014 0.01 0.012 0.0073 0.010 0.0081 0.014
é 1.96 3.21 2.15 3.40 2.54 3.65 1.50 217
6 1.50 3.72 0.99 1.14 1.99 5.04 1.01 2.23
) 2.69 2.74 2.58 253 1.22 1.23 1.02 1.01
DI [s] fx 0.23 0.00 0.80 -0.080 0.35 0.00 0.02 0.00
CC [ fa 0.27 0.74 0.22 0.47 0.28 0.78 0.26 0.80
fy 0.39 0.71 0.38 0.71 0.39 0.70 0.41 0.76
W 0.11 0.12 0.10 0.10 0.090 0.090 0.040 0.040
WM [cm®]  pa, py, p.  320.05 248.71 98.34 40.81 39.50 40.88 141.78 42.32
[rad®] ¢,6,v 56.22 359.42 0.94 515 4.19 24.76 20.07 132.00
EC  [Jkg] 75.93 23.80 40.70 10.03 51.49 32.45 648.98 275.02

tion function of the algorithm to consistently outper-
form the CWA in f, and f, by applying slower tilt-
coordination, as its values are closer to zero for the
AD and closer to 1 for the CC. Both the AD and CC
also show a poor reproduction of the yaw cues for
both MCAs, which simply could not be reproduced
by the motion platform.

The delay indicator (DI) is only shown for f,, which
was in all cases the same as the delay of f,. As the
other signals show a poor correlation, these were not
used for the DI. Clearly, the model-predictive control
algorithm again performs better, as it does not have
inherent phase shift due to the filtering. It is further-
more able to account for future states and is therefore
able to compensate for any other delays.

Finally, the two operational metrics are shown at
the bottom of Table 2. The workspace management
(WM) is separately shown for the translations and the
rotations as they have different units. As the CWA has
a larger dependency on simulator translation rather
than tilt-coordination, a clear dominance is seen in
the translational WM, whereas the opposite is true

-6-

for the rotational WM. For the energy consumption
(EC) metric, which is based on a summation of trans-
lational velocities and rotational rates, the OPT algo-
rithm again benefits from its large dependency on
slow rotation of the platform. Its energy consump-
tion is on average 2.8 times smaller than the CWA.
Even when rotational rate thresholds would be dis-
regarded, the energy consumption of the OPT algo-
rithm is still considerably smaller due to the slow ro-
tations, which is a clear advantage.

The main goal of this paper was to show how MCAs
can be simulated in a single environment and how
MCA quality metrics can be of use to trade-off be-
tween MCAs. The VTE allowed for quicker tuning
due to its visualization options. The calculated met-
rics can subsequently be used to trade-off between
two or more algorithms. Although beyond the scope
of this paper, the next step is to develop a method-
ology on how these metrics can be combined in a
single trade-off based on available MCAs and their
configurations, the simulators and use-case.

Antibes, 9 - 11 Sep 2020
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6. Conclusion

Based on a realistic car driving use-case, an anal-
ysis of objective Motion Cueing Algorithms (MCAs)
quality metrics was made within a newly developed
Virtual Test Environment (VTE). This environment
is able to simulate the simulator outputs for differ-
ent MCA types, which are then compared using a
3D-animation as well as quality metrics. By looking
at the absolute difference, cross-correlation, delay,
workspace management and energy consumption, a
comparison between a classical washout algorithm
and a model-predictive control algorithm with a per-
fect prediction of the future states was made, which
helped identifying the strengths and weaknesses of
each algorithm. Although an overall analysis on how
these metrics should be compared to each other for
trade-off is still under development, the methodology
applied in this paper is useful to trade-off between
MCAs, simulators and use-cases.

VTE 3D-Animation

For a 3D-animation of the Virtual Test Environment
in action, please visit:
http://cs.lr.tudelft.nl/cybernetics/
projects/driving-simulator-cueing/.
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