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Abstract

One of the first steps of component procurement is the identification of required component features in large
repositories of existing components. On the highest level of abstraction, component requirements as well as
component descriptions are usually written in natural language. Therefore, we can reformulate component
procurement as a text analysis problem and apply latent semantic analysis for automatically identifying
suitable existing components in large repositories, based on the descriptions of required component features.
In this article, we motivate our choice of this technique for feature identification, describe how it can be
applied to feature tracing problems, and discuss the results that we achieved with the application of this
technique in a number of case studies.

Keywords: Software Component, Repository, Feature Mapping, Document Analysis.

1 Introduction

Before a software component can be assembled to form part of a new system, it must
be located on a market, its fitness for the purpose has to be determined in terms
of functionality and behavior, and it must be selected according to non-functional
application requirements. These steps are called component procurement, and they
are performed prior to component integration [23,29]. Procurement involves two
stakeholders, the component provider, who develops and offers components, and
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the component customer, who requires components in order to assemble a new ap-
plication. Customer and provider are two roles that may be assumed by individuals
of the same working group, of the same organization, or of different organizations
(third party).

In the software domain it is common that customers adapt their require-
ments specifications partially to the components already available, and component
providers offer dedicated variants of their existing components. This requires adap-
tation which it is motivated by the following considerations:

• If component customers devise their applications entirely according to their own
requirements, it is unlikely, or at least very difficult for them, to find existing
components which will map exactly to their preset specifications.

• When building up systems entirely from existing components according to the
predefined specifications of the component vendors, component customers will
loose their distinction over their competitors who are using the same domain-
specific components. Today, market distinction is primarily achieved through the
distinct “look and feel” of the software functionality, and not so much based on
the underlying hardware.

• Pure outsourced custom development is typically too costly.

Procurement involves the identification of candidate components for a particular
purpose and an assessment of the amount of adaptation to be carried out. During
integration, one of the candidate components is selected and integrated into the
customer’s framework. In other words, the adaptations are implemented. Finally,
the integration must be assessed qualitatively, i.e. through testing, or analysis.
Certainty about the success of a working assembly can then only be assured after
extensive assessment and testing, along the lines described in [22]. An overview of
the activities and artifacts associated with component procurement and integration
including development steps is displayed in Figure 1. From the figure, it becomes
apparent that application engineers have to go through an entire development cycle
involving requirements engineering and analysis, design and modeling, and imple-
mentation and testing, in order to figure out whether a candidate component can
be integrated in the particular context of a given application.

Procurement and integration would be greatly alleviated if both parties identi-
fied in Figure 1 would use the same specification styles for required and provided
component interfaces, if they would apply the same semantics for their requested
and offered component behavior, and if they would communicate on the same level
of abstraction. This is typically not the case now, nor likely in the future, so that
both stakeholders go back to the least common denominator for specification, nat-
ural language. It is the single most important notation for writing down software
requirements [7], and common practice in component procurement and integration
is that engineers select candidate components based on pure textual descriptions.

This article addresses the challenges of the first activity displayed in Fig. 1,
component procurement. Procurement deals with mapping required component
features to provided component features and assessing how well existing compo-
nents meet the stated requirements. We argue that component procurement can
be automated, at least partially, on the highest level of abstraction, to support
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Fig. 1. Activities and artifacts associated with component procurement and integration.

application engineers in the selection of few candidates that are likely to match
the stated requirements out of a huge collection of components. Those candidate
components may be suitable for adaptation to the given context of the customer’s
existing component framework.

In section 2, we outline existing techniques such as component development
frameworks, component models, and coordination notations, that address the prob-
lems of component identification, selection, and adaptation. These techniques are
geared mainly toward lower levels of abstraction. In section 3, we reformulate the
component procurement problem as a document analysis problem and demonstrate
how Latent Semantic Analysis can be applied to identify requirements written in
natural language in a component repository automatically. Section 4 outlines and
discusses the findings from experiments that we have carried out with the technique,
and section 5 summarizes and concludes this article.

2 Related Work and Faced Problems

Despite all the advances in component technology over the last decade, i.e., deploy-
ment environments, and run-time platforms such as CORBA, JavaBeans, COM
or .NET [43], today, component procurement and integration on higher levels
of abstraction, and early during application development, is still not addressed
adequately. In order to kick-off the “software industrial revolution” [11], and
component-based software development to become a success story, we need effec-
tive mechanisms to mediate between various component abstractions, behavioral
descriptions, and non-functional properties, on the highest level of abstraction pos-
sible.
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2.1 Component Mapping and Coordination on the Integration Level

Most of the progress in component-based development has been achieved on the
lowest level of abstraction, the implementation level, or component wiring level
with all the apparent component platforms and technologies, or component models
described in [43]. These technologies support the (automated) interconnection of
component services based on so-called interface description languages (IDL).

The component-based development method and formal language research com-
munities have come up with solutions for component feature mapping on abstraction
levels above implementation. Various approaches have been proposed over the years
to alleviate the typical component adaptation and wiring problems. Some of the
methods proposed are of a more formal nature, such as CL [25], Koala [44], Piccola
[34], or Abstract Behavior Types [2]. Some others view component integration from
a more global perspective and embed the concepts of composition in an overall,
less formal development framework. The most commonly known of these so-called
development methods, most of which are based on object technology, are OMT [41],
Fusion [10], ROOM [42], HOOD [40], OORAM [39], Catalysis [17], Select Perspec-
tive [1], FODA [28], Rational Unified Process (RUP) [26], to name only the most
commonly known. Many of the concepts coming from these methods are readily
applied in industry more or less successfully on an intra-organizational level, e.g.,
the Rational Unified Process. However, development methods are not universally
applicable across organizational boundaries. Due to their complexity, they are usu-
ally embedded deeply in an overall organizational context, so that their concepts are
not transferable easily between customers and suppliers. Moreover, they are bound
to distinct graphical notations, and particular tools, that do not necessarily permit
easy exchange of information between different stakeholders, i.e., in text form.

The previously mentioned formal component composition and coordination lan-
guages elevate the reasoning about properties of component composites to a higher
level of abstraction, trying to avoid a full implementation cycle. However, they
seem not to have made their ways into industry, simply because industry is afraid
of the high initial investment associated with the introduction of rigorous specifi-
cation techniques. Koala is an exception, because it is coming out of an industrial
context. Although, Koala provides syntactical mappings for object wiring only and
does not consider behavior.

The model-driven software development community proposes to build a number
of (UML) models for each component [5,8,37] that can be directly compared and
adapted. For example, the KobrA method proposes a two-stage approach to compo-
nent reuse [4], creation of a conformance map and the derivation of a semantic map.
KobrA proposes to use UML models as native specification notation and requires
from external component interfaces to be specified in UML. Externally procured
components must therefore be described in UML in order to conform to KobrA’s
native representation (conformance map). The UML models of the acquired ex-
ternal component can then be compared with the UML models of the integrating
component framework and adaptations negotiated. The semantic map is the col-
lection of UML models that fully describes the adaptations necessary, and it can be
regarded as the specification of an adapter component.
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2.2 Component Feature Mapping on the Procurement Level

On the procurement level (depicted in Figure 1), natural language is the single
most important communication notation [7,15]. Because of this apparent lack of
formalism of the requirements, the procurement level is not readily supported by
tools in any way.

In general, there are two orthogonal or supplementing ways to address the feature
mapping problem on higher levels of abstraction and make component or system
descriptions more amenable to automated processing.

(i) A bottom up approach to elevate the degree of formalism that is used on
the implementation level up to the requirements engineering level. This is
what the MDA community is currently aiming at [8], or what the component
coordination languages propose: Introduction of (semi) formal descriptions on
higher levels of abstraction than the implementation level and suitable model-
mapping and -transformation mechanisms.

(ii) A top-down approach to introduce more structure and rigor in natural language
requirements and specifications on the highest levels of abstraction. Examples
of this approach comprise the usage of scenarios and templates [20,24,27,38],
or controlled natural languages such as Attempto Controlled English [18,19].

Whereas, in the first approach, it is tried to apply similar formal specification tech-
niques on higher abstraction levels that are used on the lower end of the spectrum,
the second approach acknowledges the fact that natural language is the primary
notation on the requirements and analysis level, and introduces structure and rigor.
The goal of both approaches is the realization of mappings between stated goals and
provided features, or required and provided component attributes on higher levels
of abstraction along the lines that, for example, CORBA provides in terms of map-
pings on the programming language level [36]. More structured requirements, rigor,
and formalization are the key ingredients to make component description mappings
more amenable to automatic processing and automated reasoning.

In the following, we illustrate the challenges of component requirement and
feature mapping on the procurement level based on an example component-based
embedded system. Figure 2 shows the component tree of an existing Vehicle Alarm
Terminal that can be built into vehicles operated by safety/security services such
as ambulances, fire engines, police cars, or armored cars. The alarm system is used
to track the location of a vehicle through GPS and Galileo (in the future), report
the status of a vehicle, through radio or GSM network, issue an alarm if the vehicle
leaves a predefined geographic area, or if something is wrong with the vehicle, and
call help in an emergency, for example, an armed hold-up of an armored car.

Each of the components of the alarm terminal displayed in Fig. 2 is described
according to a standard set of text documents. The textual specifications of the
components are derived and decomposed from the system-level requirements, such
as the example requirements stated in Table 1. When the system had been devel-
oped from scratch, i.e., development of the first alarm terminal system, engineers
had decomposed it into components according to architectural and cohesion con-
siderations. However, in component-based application development reuse is the key
driving force, so that in subsequent versions or variations of the alarm terminal, engi-
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Fig. 2. Logical organization of the components for an example vehicle alarm terminal as containment tree.
This organization corresponds to the Design-layer in Fig. 3.

neers will decompose the system according to existing components in the component
repository. Figure 3 illustrates the mappings along a composition/decomposition
dimension and an abstraction/concretization dimension that must be performed in
a component-based development project. System development starts in the upper
left hand side corner, with abstract system requirements [22]. These requirements
also represent a high level of composition since they are describing the entire sys-
tem. In a subsequent step (design), the requirements are turned into more concrete
sub-system or component specifications. This is where an architecture of the system
emerges and a hierarchy of logical components [4].

Initially, we would have chosen an arbitrary component hierarchy following some
decomposition rules, had we developed everything from scratch, i.e., embodiment
in Fig. 3 with custom development. However, since we aim to increase the degree
of reuse, we have to decompose the logical hierarchy according to the constraints of
existing physical components, i.e., embodiment in Fig. 3 with assembly of existing
components. This is an iterative process that involves

• identification of required features from the logical component hierarchy in the
repository of existing physical components

• refactoring of the logical hierarchy according to the components reused, and
• checking that all requirements have been covered by some existing implementa-

tion.

From the last item, and from the illustration in Fig. 3 it becomes apparent that
component-based development is, to a large extent, a traceability problem [21].
Application engineers have to link requirements with the specified features in the
design artifacts, and in the implementation. This ensures that all requirements are
implemented through some physical component. The following combinations are
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Req-ID Description

R-SYS-1 Send alarm signal when driver pushes the emergency button in an emergency situation

R-SYS-1.1 The alarm button shall be pushed continually for longer than 2s

R-SYS-1.2 The alarm signal shall include alarm category, GPS position, time of alarm

R-SYS-1.3 The alarm signal shall be sent through the GSM network to the service center

R-SYS-3 The time for reacting on an alarm input shall be less than 50ms

R-SYS-4 The alarm signal shall be encrypted

R-SYS-6 The system shall continuously send alarm signal until receiving the response from
service center

R-SYS-8 If the driving route is pre-set, the system shall send an alarm signal when the car
deviates from its route

R-SYS-17 The system should be able to perform a self-check and send the result to service
center

R-SYS 18 The system should check the main power, the GPS antenna and the emergency button
every 50ms and issue an alarm signal if they are broken

R-SYS-22 The emergency alarm shall have the highest priority in case several alarm inputs
happen simultaneously

R-SYS-31 The system shall have a backup battery

R-SYS-31.1 The system shall switch to backup battery when the voltage of main power is lower
than the threshold value

R-SYS-31.2 The system shall charge the backup battery when it is at low voltage

R-SYS-38 Location data should be updated at least every second, and the latest data set should
be stored

R-SYS-39 If the system cannot receive the GPS data, the latest data set stored should be used

R-SYS-43 The system shall be able to receive and process commands from the service center

R-SYS-48 The system shall be able to make a phone call using an extent handle

R-SYS-49 The system shall communicate with the handle through RS485

R-SYS-51 The consumed current of the system in stand-by shall be less than 10mA

R-SYS-55 The system shall run at all times (“watchdog”)

R-SYS-67 The system shall provide a 110 emergency call interface

R-SYS-71 The system shall provide a connector for navigator

R-SYS-72 The system shall provide a connector for vehicle black box recorder

Table 1
Example system-level requirements of a vehicle alarm terminal.

thereby feasible:

• One requirement is linked to one component.
• One requirement is linked to several components.
• One component implements several requirements.
• Some requirements cannot be traced to an implementation (the features will be

implemented from scratch).

The traceability links may also be established bi-directionally which is of particular
importance for embedded system development, in order to assess to which extent
component features are not traceable to requirements. This tells us how much of
the functionality provided by a reused component is actually needed in our system
and how much of it is an undesired overhead.

In this section we have argued that component procurement is, to a large extent,
a feature traceability problem. System requirements must be traceable to the design
artifacts in the decomposition hierarchy, and to their actual physical implementa-
tions. As far as text documents are concerned as primary means for describing
system and component properties, we can use advanced document analysis tech-
niques for automated tracing and linking. How this can be done is described in the
next section.
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3 Reformulating Component Procurement as Docu-
ment Analysis Problem

The fundamental approach of document analysis or information retrieval techniques
is to “match words of queries with words of documents” [12]. The queries are
formulated by a user who would like to retrieve documents of interest (e.g., from
the Internet) according to the meaning of the queries.

We can use the same terminology to describe component procurement as “match-
ing words of queries” coming from requirements, for instance, to “words of docu-
ments” describing a design; or “matching words of queries” coming from design
descriptions to “words of documents” of an implementation. We can therefore re-
formulate the component procurement problem described earlier as a document
analysis problem or an information retrieval problem [35] that is amenable to be
solved by typical retrieval techniques such as Latent Semantic Analysis (LSA) [12].

3.1 Latent Semantic Analysis

LSA or Latent Semantic Indexing (LSI) is a very efficient, fully automatic mathe-
matical/statistical technique for extracting and inferring relations of expected con-
textual usage of words in documents [30]. It takes advantage of implicit higher-order
structure in the associations of terms with documents in order to steer the detection
of relevant documents (in our case, provided component descriptions in a reposi-
tory) on the basis of terms in queries (in our case required component descriptions)
[12].

LSA is based on a terms-by-documents matrix that represents the occurrences
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of terms in existing documents. The columns of the matrix A correspond to the
documents and the rows correspond to the stemmed and normalized terms. The
cells contain the number of occurrences of a term in a document. This matrix A

is analyzed by singular value decomposition (SVD) to derive the latent semantic
structure model [12], leading to three other matrices T , S, and DT : A = T0S0D

T
0.

T0 and DT
0 have orthonormal columns, representing the left and right singular

vectors, and S0 is diagonal, containing the singular values. If the singular values
(S0) are ordered according to size, the first k-largest may be kept and the remaining
smaller ones set to zero, leading to a reduced approximate fit with smaller matrices
[32]. The product of these new matrices Â is only approximately equal to A and of
rank k: A ≈ Â = TSDT . It represents the amended terms-by-documents matrix.
The dimension reduction of the matrices is important in order to filter out sampling
error and unimportant details while keeping the essential latent semantic structure
intact [12]. It can be regarded as compressing the same (or similar) information that
is available in the original terms-by-documents matrix in a smaller space. Taking
the correlation coefficients from this matrix, finally yields the similarity between
the documents. High values [−1..1] represent high correlation, low values represent
low correlation between documents.

3.2 LSA for Establishing Traceability Links

The techniques for establishing semantic links between the concepts of component
requirements and the concepts of existing component specifications are initially
coming from the software maintenance and reengineering community [13,14,32].
Here, the goal is to establish traceability links between the various development
documents of existing software systems in order to make design decisions and model
transformations more explicit. In component-based development, we are facing the
same challenges. The semantic concepts described in system-level or component-
level requirements must be traced to the corresponding concepts of a component
repository. This can be done in the following steps represented in Fig. 4 and 5
[30,31,32].

(i) Definition of the traceability model. Here, we have to decide which artifacts
of our development project we would like to trace, i.e. system or component
requirements on one side, and component descriptions on the other side. The
component descriptions may include textual descriptions, source codes, but
also component tests. This is about choosing the types of documents to be
used in the analysis process.

(ii) LSA. All documents belonging to one component are copied into one single text
file, for term-by-component identification. All requirements that are used for
component identification are copied into one document, representing the search
queries. All documents are analyzed by LSA, generating a term-by-document
matrix. The columns represent all documents, and the rows represent all rele-
vant terms identified in these documents. One document contains the queries
(component requirements) all other documents contain the component speci-
fications from the repository. The cells represent the occurrence of terms per
document (Fig. 4). SVD generates three new matrices (Fig. 5, T0, S0,D

T
0).
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(iii) Reconstruction of the terms-by-documents matrix Â out of the reduced SVD-
matrices (Fig. 5, Â). This represents the same information as the matrix
A, though in a smaller sub-space, thereby filtering out irrelevant information.
For example, originally, the concept “alarm” appeared 13 times in document
“Req.”, but LSI “estimates” that 8.4033 should be the adapted number of oc-
curences according to the context usage of the term “alarm” in all other doc-
uments. Calculating the correlation coefficients of the reconstructed matrix
yields a new matrix representing the similarity of documents: CorrCoef(Â)
in Fig. 5. High numbers mean that the concepts from the component re-
quirements document are also contained in a component description from the
repository.

(iv) Traceability link selection and identification of the suitable components. The
question here is which components are indeed implementing the requirements,
or, in other words, where do we draw the line between interesting components
and irrelevant components? There are several strategies for “ignoring” such
links [32]: cut point (select the top n links), cut percentage (select a set part
of the list), constant threshold (select those greater than, e.g., 0.7), variable
threshold (select, e.g., best 20% similarity). According to the results in our
example displayed in Fig. 5, our analysis method suggests that component C1
appears to be the most suitable candidate (with high probability of 0.9429),
but C8 may also be considered (with lower probability of 0.6633).
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T0 =

0.1408 0.1106 -0.7725 0.1213 -0.5225 0.1365 -0.2546 -0.0000 ...

0.1089 0.0763 -0.5037 0.0593 0.4066 -0.5226 0.5354 0.0000 ...

0.0018 0.0005 -0.0221 0.0021 -0.0920 0.4767 0.5136 -0.7071 ...

0.1441 -0.7783 0.0006 0.6109 0.0135 -0.0021 0.0021 -0.0000 ...

0.1236 -0.0218 -0.2822 -0.0699 0.7286 0.4996 -0.3454 -0.0000 ...

0.4840 -0.4768 -0.0381 -0.7194 -0.1173 -0.0647 0.0392 0.0000 ...

0.8355 0.3851 0.2597 0.2935 -0.0068 0.0070 -0.0010 0.0000 ...

0.0018 0.0005 -0.0221 0.0021 -0.0920 0.4767 0.5136 0.7071 ...

... ... ... ... ... ... ... ... ...

k = 3; S0 =

56.6436 0 0 0 0 0 0 0 ...

0 28.0933 0 0 0 0 0 0 ...

0 0 23.7739 0 0 0 0 0 ...

0 0 0 0 0 0 0 0 ...

0 0 0 0 0 0 0 0 ...

0 0 0 0 0 0 0 0 ...

0 0 0 0 0 0 0 0 ...

0 0 0 0 0 0 0 0 ...

... ... ... ... ... ... ... ... ...

D′
0 =

0.1019 0.0128 -0.5250 0.0426 -0.6482 0.4540 0.2928 -0.0000 ...

0.1327 0.1234 0.0983 0.1325 -0.0087 0.0662 -0.0163 -0.1927 ...

0.3909 0.2036 -0.6946 0.1027 0.2003 -0.4452 -0.2716 0.0079 ...

0.1123 0.0207 -0.2033 -0.0434 0.7069 0.5160 0.3667 -0.0232 ...

0.5859 0.0904 0.2642 -0.2296 -0.1207 0.0388 -0.0280 -0.6398 ...

0.2354 -0.1098 0.0216 -0.3555 0.0404 -0.3244 0.6060 0.1012 ...

0.3275 0.1271 0.1735 0.0089 -0.0304 0.1811 -0.1577 0.2233 ...

0.1710 -0.5121 0.0596 0.5264 -0.0358 -0.2704 0.3333 -0.0103 ...

0.1731 -0.3577 -0.0196 0.3084 0.1264 0.3188 -0.3391 -0.0798 ...

0.0229 -0.2493 0.0002 0.2759 0.0173 -0.0202 0.0329 -0.2262 ...

0.2617 -0.5840 -0.0379 -0.4845 -0.0416 0.0800 -0.2791 0.3632 ...

0.4153 0.3362 0.2917 0.3254 -0.0593 0.0626 0.0884 0.5507 ...

... ... ... ... ... ... ... ... ...

Â =

8.4033 4.2244 16.6394 -2.6378 1.5174 4.3494 -2.7037 -2.5715 ...

5.5935 2.7813 11.3469 -1.7767 1.6187 2.3882 -1.4810 -1.7749 ...

0.2173 0.1098 0.4169 -0.0600 -0.0391 0.1866 -0.1130 -0.0096 ...

-2.0765 -2.5957 6.4256 2.5521 5.1038 -2.2644 2.7504 18.3839 ...

3.2544 1.3799 8.3980 -0.9059 3.1904 -0.1523 0.2383 0.5306 ...

1.3678 -1.1172 16.3386 0.5160 17.4719 -11.1565 7.9988 11.2646 ...

3.8431 0.6839 19.4945 -2.8134 32.0062 -24.9504 15.3553 -9.1094 ...

0.2173 0.1098 0.4169 -0.0600 -0.0391 0.1866 -0.1130 -0.0096 ...

... ... ... ... ... ... ... ... ...

corrcoef(Â) =

Req C1 C2 C3 C4 C5 C6 ...

Req 1.0000 0.9429 0.6253 -0.8798 0.0379 0.1089 -0.1619 ...

C1 0.9429 1.0000 0.3330 -0.8551 -0.2225 0.3317 -0.3977 ...

C2 0.6253 0.3330 1.0000 -0.5492 0.6994 -0.5509 0.5475 ...

C3 -0.8798 -0.8551 -0.5492 1.0000 -0.2695 0.1881 -0.1094 ...

C4 0.0379 -0.2225 0.6994 -0.2695 1.0000 -0.9816 0.9789 ...

C5 0.1089 0.3317 -0.5509 0.1881 -0.9816 1.0000 -0.9956 ...

C6 -0.1619 -0.3977 0.5475 -0.1094 0.9789 -0.9956 1.0000 ...

C7 -0.6433 -0.7199 -0.2254 0.9139 -0.1930 0.1883 -0.0963 ...

C8 0.6633 0.7412 0.2295 -0.9212 0.1737 -0.1646 0.0727 ...

C9 0.5873 0.6603 0.2134 -0.8901 0.2432 -0.2499 0.1585 ...

C10 0.5609 0.6320 0.2075 -0.8775 0.2652 -0.2771 0.1860 ...

C11 -0.5849 -0.6577 -0.2129 0.8890 -0.2453 0.2525 -0.1610 ...

... ... ... ... ... ... ... ... ...

Fig. 5. SVD (T0, S0, DT
0), dimension reduction (S0, k = 3), matrix reconstruction (Â) and correlation

coefficients (CorrCoef(Â)).

SERG Gross, Loormans, Zhou – Towards Software Component Procurement Automation

TUD-SERG-2007-002 11



4 Experiments with LSA and Evaluation

We have applied LSA to a number of tracing problems of different size and complex-
ity, and, in the following, we will discuss our findings and our experience with the
technique. It is important to note that, for assessment, we require existing systems
for which the links between various development artifacts are already known. In
other words, we should apply LSA to legacy systems for which we already know the
traceability links between all artifacts (from requirements to implementation), so
that we can use this knowledge as a benchmark to assess the performance of LSA
for finding (reconstructing) those links. Otherwise, an assessment of the results is
difficult as we have seen in one of the case studies performed. As preprocessing tool,
before we apply LSA, we use the TMG Matlab toolbox by Zeimpekis and Gallopou-
los [45]. It comes equipped with a number of functions for pre-processing, such as
stop-word elimination and stemming, and it generates the term-by-document ma-
trices.

4.1 PacMan Case Study

One of the first case studies in which we applied LSA to reconstruct traceability
links is a PacMan game used in the Computer Science Bachelor curriculum at
Delft University of Technology [31]. The available documentation comprises 10
requirements documents, coming in the form of use case descriptions, 19 documents
describing the design of the game (class hierarchy) and 17 documents with test
descriptions, and the Java implementation. All information is available as plain
text, including the Java code. The key-words of the programming language do not
carry any semantic significance and can be eliminated simply by adding them to
the list of stop words. They are then filtered out by TMG. Alternatively, we can
use Doxygen [16] to generate documentation out of the source codes and use this
as a replacement for the sources [32].

We simply included all available documents in our analysis, leading to a corpus
of some 1200 relevant terms across all documents. We chose the best 20% of all
similarity measures as traceability links. The value for k (matrix reduction) was
varied between 10% and 20% in order to assess the effect of the choices on the
selection of links. Best results were achieved with k set to 20%. In that case, LSA
was able to identify 16 out of 17 traceability links that had been initially defined by
the developer of the program, although LSA found many more links (false positives).
This was due to the fact that the use cases described in different documents, leading
to different implementations are dealing with similar program events, e.g., one with
restarting the game after suspension of the game and one with restarting the game
after game over. Both requirements describe similar concepts, and they are therefore
linked by LSA. The same we found for requirements describing the move of the
player and the move of the monsters, or the descriptions about a player bumping
into a monster and a monster bumping into the player. All these requirements are
describing similar concepts and are therefore linked by the tool. The link which
was not identified by LSA was the description of the GUI of the PacMan and its
corresponding test suite. An analysis of the requirements document of the GUI
and the corresponding test document revealed a mismatch of concepts between
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the two artifacts. Whereas the requirements describe the layout and behavior of
the graphical elements of the GUI, the test description is about what a person
testing the GUI should look at and which elements should be clicked on. The test
description of the GUI was therefore linked to most of the other documents, because
their concepts appear in the test descriptions. They were not linked to the GUI
requirements document, because the concepts described there are different from the
ones in the test description, so that LSA does not link them.

4.2 Callisto Case Study

Another case study we conducted at the Technical University of Eindhoven with a
software system called Callisto. It is a software engineering tool that can be used
to specify component interfaces. We looked at three classes of documents, user
requirements specification, design documents and acceptance test plan, and tried to
link those with each other and the implementation. In the experiments including
the source code, we ended up with 5500 relevant terms. The parameters of the tool
were set to the same values as for the PacMan case. LSA was able to trace 63%
of the requirements into the code correctly and 94% of the requirements into the
test specification accurately. Linking the requirements to the code produced many
false positives. Hence, the low rate of correctly recovered links. It is important to
note that the requirements and test descriptions had explicit links through unique
identifiers. It was therefore possible to trace the requirements to their respective test
documents easily, so that an evaluation of the results for the requirements-to-test
tracing was straightforward.

Further, we found that LSA had more difficulties to establish the links between
the requirements and the design documents, than it had for linking the test suites
with the requirements. This can be attributed to the fact that many of the design
documents contain UML models in the form of pictures capturing many of the
essential concepts. The models were not included in our text-based analysis, so
that the concepts described there would not make it into the term-by-document
matrix. LSA could therefore only consider part of the information contained in the
design documents, leading to much weaker links, and thus the low value of 68%.

4.3 Philips Case Study

With Philips Applied Technologies, we carried out a case study in which we tried
to link requirements to component descriptions and test descriptions for part of a
DVD recorder software. The initial question was whether or to which extent all
requirements agreed in the contract were actually implemented in the end product,
in particular, when new requirements or change requests are emerging. This can be
seen as the most realistic case in which we tried to map descriptions of functionality
to actual component descriptions and assess how well the components cover the
required functionality. In addition, we had no explicit traceability matrix produced
by the developers of the system available, so that a final assessment and drawing
exact conclusions from the case study was difficult. However, it provided many new
insights into the performance of LSA for component feature mapping.

There were requirements on different levels of abstraction available and it was
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not obvious which of the hierarchy would be the most suitable. For the analysis,
we decided to include the first and second highest level of abstraction. Lower-level
requirements seemed to include too many details that could not be traced into the
component descriptions. Before we carried out LSA, we tried to find explicit links
between the documents, aiming to come up with a manually produced traceability
matrix. We transformed the text documents into an XML format and performed
some text queries using Xpath expressions [9]. However, we could neither uncover
the unique identifiers of the requirements, nor the labels of the requirements in any
of the other documents (e.g., as a comment).

LSA was more effective in that respect. 20 artifacts were analyzed, all coming
in the form of text documents. Preprocessing of the artifacts resulted in 2300 terms
in the terms-by-documents matrix.

A noticeable outcome from the experiments was the much higher predicted sim-
ilarity of concepts between the requirements and the component descriptions than
the similarity between the requirements and the test descriptions produced by LSA.
In the other two case studies, it was the other way round. Apparently, the compo-
nent descriptions were linked well to the corresponding requirements because every
component comes equipped with a general high-level description of its functionality
that is expressed in an abstract way similar to the high-level requirements. And,
obviously, the test descriptions were linked poorly to the requirements, because
the tests were defined according to the low-level design descriptions of the compo-
nents which did not correspond to the high-level requirements. This mismatch in
abstractions makes the importance of a well defined tracability model apparent.

We could not derive concrete results about the performance of LSA in this case
because we lacked definite links provided by the developers of this system. They
found that many links, indeed, had been identified correctly in our analysis, but for
many other links they would not agree.

4.4 Discussion of the Results

Working with the cases presented, provided a lot of insight in how LSA can be
applied to linking various types of available documents in a typical software de-
velopment process. Our primary aim here is to link system level requirements or
component level requirements, coming from the decomposition hierarchy of a sys-
tem, to respective candidate components in a repository by using latent semantic
analysis. However, in the experiments we used all available kinds of documents
including high- and low-level requirements, intermediate design documents as well
as test descriptions and source code. For LSA it does not matter which documents
are belonging to which types of artifacts. It simply tries to guess links between
all documents included in an analysis based on an underlying semantic structure
inherent in these documents. It is our responsibility to attribute the various types
of documents to one distinct entity, i.e., one component. This can be done through
copying all relevant information into a single file that represents one component
description. LSA will link whatever concepts it finds in other documents that are
similar to the concepts of our component description to that particular component.
It is, therefore, quite robust with respect to the kind of information provided for
each component, as long as it comes in textual form.
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In the Callisto case study we had many UML diagrams available, apparently
containing essential concepts that were not considered in the analysis. This lead to
poor linking of concepts in these documents. A textual description would probably
lead to much better results. Graphical notations are more and more being used in
industry because people can grasp the essentials of such documents more easily. In
the future we will have to look at how we can extract this information automatically
and make it available in textual form.

It was interesting to see how well test cases could be traced from requirements.
Test cases, especially system level tests and acceptance tests, are usually devised
according to the information found in the requirements documents. They are there-
fore very likely to incorporate similar concepts. After all, they represent implicit
links between the implementation (execution of tests) and the outcome of the tests
(oracle) coming from high-level requirements or design documents. LSA can make
this implicit semantic similarity explicit. Consequently, we claim that component
specifications should always come together with their respective test suites accord-
ing to the tester components described in [22,23].

We also observed that low-level implementation-specific test cases could not
be traced well to high-level requirements. This was somewhat surprising, since
abstraction is the single most important technique for us humans to deal with
complex entities, and we expected that we would use the same semantic concepts
on higher levels of abstraction that we use on lower levels, though, just getting rid
of the details. Apparently, that is not the case, and we have to understand the
mechanics of abstraction better.

5 Summary, Conclusions and Future Work

In this article, we have introduced a novel technique for automatically linking re-
quirements to component specification documents through applying latent semantic
analysis. Being able to trace concepts that are essential in an application develop-
ment project to a collection of component descriptions in a repository is the prereq-
uisite for automated component feature detection and analysis. So far, we can only
identify the required essential concepts of an application in a component repository,
and we can create links in the form of a terms-by-documents matrix to the docu-
ments describing the components. However, the links are weighted (coming with a
probability), so that we can constrain the number of suitable components to only a
few, compared with the potentially huge number of components in a repository.

LSA helps us to identify few relevant components out of a large repository. The
experiments that we performed are quite promising with that respect. LSA does
not provide support for the next step in component procurement, the assessment of
the likely adaptations to be carried out. At this moment we have no answer to this
next problem.

For the future, we are planning to perform many more case studies using varying
types of documents. It would be interesting to see how more structured documents
such as use case descriptions and other templates [27,38], that are more and more
used in industry, affect LSA. Will such structures improve its performance or will
they have a negative effect? The same applies to more formalized documents, such
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as requirements containing logic and formulae. We have seen already how UML
diagrams can inhibit the text-based LSA technique. Is that going to be the same
with formal expressions? Another issue that we will look at in the future is how we
can extract textual concepts from diagrams that are used in industry [8].
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