
Faculty of Electrical Engineering, Mathematics and Computer Science

Circuits and Systems
Mekelweg 4,

2628 CD Delft
The Netherlands

http://ens.ewi.tudelft.nl/

CAS-2012-06

M.Sc. Thesis

Implementing and evaluating a simplified
transistor model for timing analysis of

integrated circuits

Xinyue Zheng

Abstract

Static Timing Analysis (STA) is one approach to verify the timing
of a digital circuit. The currently used Gate Level Model (GLM)
has limitations on performing STA for circuits when taking process
variations into consideration. The transistor level model is devel-
oped taking the statistical factors into account. This thesis presents
an implementation of the simplified transistor model in Verilog-AMS
such that the model can be installed as a compiled model in existing
commercial circuit simulators, such as Spectre. A direct comparison
between the proposed transistor model and the sophisticated Berke-
ley Short-channel IGFET Model (BSIM) is presented. Furthermore,
the transistor model is extended with process variations awareness
for statistical timing analysis. The polynomial curve fitting scheme is
proposed in this thesis to improve the model accuracy. The evalua-
tion results indicate that the proposed method has approximately 70%
improvement in terms of estimating one of the components i.e., drain-
source current Ids for the statistical transistor model.

Implementing and evaluating a simplified transistor

model for timing analysis of integrated circuits

Thesis

submitted in partial fulfillment of the
requirements for the degree of

Master of Science

in

Computer Engineering

by

Xinyue Zheng
born in Changchun, China

This work was performed in:

Circuits and Systems Group
Department of Microelectronics & Computer Engineering
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

Delft University of Technology

Copyright c© 2012 Circuits and Systems Group
All rights reserved.

Delft University of Technology

Department of

Microelectronics & Computer Engineering

The undersigned hereby certify that they have read and recommend to the Faculty
of Electrical Engineering, Mathematics and Computer Science for acceptance a thesis
entitled “Implementing and evaluating a simplified transistor model for tim-
ing analysis of integrated circuits” by Xinyue Zheng in partial fulfillment of the
requirements for the degree of Master of Science.

Dated: 28 August 2012

Chairman:
Prof. dr. ir. Edoardo Charbon

Advisor:
Dr. ir. Michel Berkelaar

Committee Members:
Prof. dr. ir. Edoardo Charbon

Dr. ir. Nick van der Meijs

Dr. ir. Michel Berkelaar

Dr. ir. Arjan van Genderen

iv

Abstract

Static Timing Analysis (STA) is one approach to verify the timing of a digital circuit.
The currently used Gate Level Model (GLM) has limitations on performing STA for
circuits when taking process variations into consideration. The transistor level model is
developed taking the statistical factors into account. This thesis presents an implemen-
tation of the simplified transistor model in Verilog-AMS such that the model can be
installed as a compiled model in existing commercial circuit simulators, such as Spec-
tre. A direct comparison between the proposed transistor model and the sophisticated
Berkeley Short-channel IGFET Model (BSIM) is presented. Furthermore, the transis-
tor model is extended with process variations awareness for statistical timing analysis.
The polynomial curve fitting scheme is proposed in this thesis to improve the model
accuracy. The evaluation results indicate that the proposed method has approximately
70% improvement in terms of estimating one of the components i.e., drain-source cur-
rent Ids for the statistical transistor model.

v

vi

Acknowledgments

Firstly, I would like to give my utmost gratitude to my daily supervisor Dr. ir. Michel
Berkelaar, who is the leader of MODERN project. He directed me on the right track
of the project, and gave me many valuable advice and feedbacks. It still remains
fresh in my memory that Michel helped me to contact the person from Cadence and
for requesting XML scripts for Automatic Device Model Synthesizer (ADSM) tool.
Additionally, with great patience, he reviewed this thesis many times and proposed
large amount of suggestions. This thesis would not have been completed without those
valuable advises.

Secondly, I would like to thank my other supervisor Dr. ir. Nick van der Meijs.
Thanks to his feedbacks and for my thesis. In addition, I want to express my sincere
appreciation to Qin Tang, a Ph.D student from MODERN project. She has supported
me during the entire master project, and helped me overcome difficulties I faced during
the study. The project would not have come easily without her assistance. Also, many
thanks to the other group member Dr. ir. Amir Zjajo for his assistance throughout the
project. What is more, I need to thank my colleague Javier Rodriguez. We spent lots
of time discussing together, and he proposed many precious suggestions to improve the
quality of my work.

I would like to thank Prof. dr. ir. Edoardo Charbon and Dr. ir. Arjan van
Genderen too to be my thesis defence committee members, thanks for their precious
time.

Moreover, I thank my dear friend Ijeoma Okeke, who pointed out the grammar
problems in my thesis, which helped greatly with refining the thesis. Thank my friends
Sachin and Nupur, they shared many precious opinions with me, which were quite
helpful. Last but not least, I thank my parents, all my relatives and all my friends. It
is with your firm support that I could get through all the difficulties of studying abroad
alone. These two years mean a lot to me, and I am grateful to you all.

Xinyue Zheng
Delft, The Netherlands
28 August 2012

vii

viii

Contents

Abstract v

Acknowledgments vii

1 Introduction 1
1.1 The Main Problem . 1
1.2 Thesis Goal . 2
1.3 Thesis Outline . 3

2 Literature Review 5
2.1 Composite Current Source (CCS) model for STA 6
2.2 Transistor level circuit simulation . 8

3 Simplified Transistor Model Implementation 11
3.1 Compact model . 12
3.2 Verilog-AMS . 13
3.3 Compiled Model Interface (CMI) . 13

3.3.1 Translator from Verilog-AMS to C 14
3.3.2 Automatic Device Model Synthesizer (ADMS) tool 15
3.3.3 Spectre Verilog-AMS interpreter 16

3.4 Model Implementation . 16
3.4.1 Loading Lookup Tables (LUTs) 18
3.4.2 Interpolation of intrinsic capacitances and Ids 18
3.4.3 Procedure for model development 20

4 Deterministic Timing Analysis 21
4.1 Direct Current (DC) analysis on transistor model 21
4.2 Transient analysis on transistor model 23

4.2.1 Transient analysis on single standard logic gate 23
4.2.2 Transient analysis on the critical path of International Sympo-

sium on Circuits and Systems (ISCAS) benchmark circuits . . . 31

5 Statistical Timing Analysis 35
5.1 The sensitivity of the transistor model 35

5.1.1 The length sensitivity of the transistor model 36
5.1.2 Fixed length sensitivity . 39
5.1.3 The proposed scheme i.e., polynomial curve fitting for the length

sensitivity . 40
5.2 Monte Carlo simulation of the proposed transistor model 51
5.3 Experimental Results . 52

5.3.1 Monte Carlo Simulation on Single Gate 52
5.3.2 Monte Carlo Simulation on Inverter Chain 56

ix

6 Conclusion 59
6.1 Thesis contribution . 59
6.2 Thesis work summary . 59
6.3 Future work . 60

A Appendix A 65

B Appendix B 77

C Appendix C 79

D Appendix D 83

x

List of Figures

1.1 a simplified NMOS transistor model . 2
1.2 comparison on deterministic timing analysis simulation 3

2.1 Definition of propagation delay and slew of a gate 5
2.2 CCS model . 6
2.3 Characterization for CCS model . 7
2.4 Driver and receiver model tables for CCS model 7
2.5 LUT for CCS model . 8
2.6 Principle of circuit simulation engine 10

3.1 Circuit simulation flow . 11
3.2 Circuit modelling strategy . 12
3.3 Statistical library and shared object library 14
3.4 Two methods of generating C codes from Verilog-AMS 15
3.5 The principle of ADMS tool . 15
3.6 a simplified NMOS transistor model . 17
3.7 Load LUTs to model . 18
3.8 Interpolation over intrinsic capacitors 19
3.9 Interpolation over Ids . 19

4.1 I-V curve of NMOS transistor . 22
4.2 I-V curve of PMOS transistor . 22
4.3 Relative interpolation error for Ids . 23
4.4 Absolute interpolation error for Ids . 23
4.6 Intrinsic capacitor Cdb and the effective output load 25
4.5 Relative delay error for NAND gate . 26
4.7 Junction capacitance Cdb . 26
4.8 Internal charge effects . 28
4.9 Error distribution for standard gates 29
4.10 Gate delay errors with falling input signal 29
4.11 Gate delay errors with falling input signal 30
4.12 Relative delay error for C432 . 32
4.13 Relative delay error for C432 . 32

5.1 a simplified model . 36
5.2 Length sensitivities of intrinsic capacitances 37
5.3 length sensitivities for Cgs with different transistor lengths 38
5.4 length sensitivities for Cgd with different transistor lengths 39
5.5 length sensitivities for Cgb with different transistor lengths 39
5.6 Ids values with five transistor length . 40
5.7 Using one degree polynomial y = ax+ b to fit on data from y = x2 . . . 41
5.8 Sensitivity of length in different region 44
5.9 The influence on length sensitivity from Vsb 45

xi

5.10 Maximum error on Ids approximation 46
5.11 Average error on Ids approximation . 46
5.12 An example of Ids estimation . 48
5.13 Gate capacitances of NMOS transistor 49
5.14 Gate capacitors length sensitivities . 50
5.15 Load polynomial coefficients LUTs . 52
5.16 Relative time points errors for INVX1 compared with BSIM4 53
5.17 Relative time points errors for INVX2 compared with BSIM4 53
5.18 Relative time points errors for INVX4 compared with BSIM4 53
5.19 Arrival time of 70% Vdd with respect to the transistor length 54
5.20 Relative time points errors of NAND2X2 compared with BSIM4 55
5.21 Relative time points error of NOR2X2 compared with BSIM4 55
5.22 statistical timing analysis on 7 stages INV chain 57

xii

List of Tables

4.1 Typical inputs in NanGate 45nm Open Cell Library 24
4.2 Index of gate type for Figure 4.10 and Figure 4.11 30
4.3 Delay and slew error for critical path of ISCAS-85 benchmark circuits . 33

5.1 The improvement of estimating Ids compared with the original model . 47
5.2 Gate capacitances in three operating regions 49
5.3 Relative error of gate capacitances estimation with one order polynomial

curve fitting . 51
5.4 statistical timing analysis for 7 stages inverter chain 56

xiii

xiv

Introduction 1
Static Timing Analysis (STA) is an approach to evaluate the timing of a digital circuit
mathematically. The timing variation of a circuit is critical since the delay of the circuit
decides its maximum operating frequency. STA simplifies the design tasks by analysing
the entire design once and the required timing check are performed for all the possible
paths of the design [1]. Gate Level Models (GLM) have been broadly adopted in the
industry as a traditional method for STA. Elaborate models for all the standard logic
cells are required in GLM in order to perform STA. For instance, Non Linear Delay
Model (NLDM) is a typical table-based GLM. The delay and slew of a standard gate
are stored in Look Up Tables (LUTs) indexed by the input slew and the effective output
load capacitance. Such a strategy abstracts the gate behaviour from a gate level and
used to be very efficient and accurate for STA. However, the weakness of conventional
GLMwas gradually exposed as the technological trends of transistors go further to 45nm
and below [2]. Firstly, the inputs of GLMs are simply regarded as saturated ramps,
which can not represent the real input signals properly, especially in the presence of
noise [3]. Secondly, GLMs fail to capture the multi-port coupled interconnect load
due to the over-simplified output equivalent capacitance [2]. In addition, the process
variations of transistors can not be ignored any more in nanometer technology. The
standard gate is composed of transistors, such that the model complexity and the
characterization time for gates grow explosively when the process variations for all the
transistor dimensions and their correlations are taken into consideration. The research
focus has recently shifted to Transistor Level Model (TLM) development due to the
problems mentioned above.

1.1 The Main Problem

GLM has encountered difficulties in analysing the standard cell precisely. Over the
past few decades, intensive research has been carried out with regard to improve the
accuracy of models. Composite Current Source model (CCS) and Effective Current
Source Model (ECSM) have been proposed to improve the accuracy of the signal wave-
form representation, which to some degree improves the model accuracy. Additionally,
models such as the Weibull-based waveform model [4] and multi-port current source
model [5] have been proposed to address the accuracy problem. However, abstracting
a gate roughly according to the input waveform and output load capacitance ignores
too many details inside a cell. The black-box feature of GLMs is the real obstacle for
further improving the accuracy of the model [6]. In contrast, TLMs include the physical
behaviour of a transistor, which fundamentally overcomes the flaw of GLMs in eval-
uating the timing of the circuits. The Berkeley Short-channel IGFET Model (BSIM)
is a transistor model proposed by the University of California at Berkeley. BSIM4, as

1

the fourth version of the BSIM family, addresses the transistor’s physical effects into
the sub-100nm regime [7]. It is currently regarded as one of the most accurate and
complex models for transistors. However, large scale circuits can be composed of mil-
lions of transistors. It is too slow to run BSIM4 for timing analysis at the transistor
level. The transistor model should be simple enough to ensure the speed of the timing
analysis. Efforts have been put into developing fast transistor models [8, 9]. One of the
simplified TLMs is proposed by Tang from MODERN group [10]. The model is shown
in Figure 1.1.

G D

B
cgb csb

ids

+

-

Vgs

cgd

cgs

cdb

+

-

Vds

S

Figure 1.1: a simplified NMOS transistor model

Here we call the proposed Statistical Simplified Transistor Model SSTM. As indi-
cated in Figure 1.1, SSTM is built up with five parasitic capacitances (Cgd,Cgs,Cgb,Cdb

and Csb) and the drain-source current source Ids. The simple structure of the model
enables statistical timing analysis for digital circuits at the transistor level. Further-
more, a new Random Differential Equations (RDE)-based simulation engine used for
non-Monte Carlo (MC) statistical timing analysis is presented in paper [6]. The model
combined with the new simulation-like engine can do both deterministic timing analysis
and non-MC statistical timing analysis fast and accurately.

1.2 Thesis Goal

The goal of this thesis is to evaluate the accuracy of the proposed SSTM. However,
SSTM and the simulation-like engine were implemented as an entire circuit simulation
tool at the early development stage. The accuracy of the SSTM was not known yet
since the circuit simulation errors were both from the model and the engine. In or-
der to remove the difference caused by the simulation engine, the proposed SSTM is
to be installed on a commercial circuit simulator Spectre because our golden model
BSIM4 is running on Spectre. In such a way, the model can be compared with BSIM4
directly. Figure 1.2 shows the way to test the SSTM by comparing with BSIM4.

As shown in the left side of Figure 1.2, the reference sample is set up as the BSIM4
running on the simulation engine provided by Spectre. The SSTM combined with the
same engine is to be tested. In such a way, the difference between the simulation
results are the relative errors caused by the SSTM. In addition, SSTM is capable to
carry out statistical timing analysis too. The accuracy of the statistical feature of the
model considering the transistor process variations is also evaluated by comparing with
BSIM4 running on the same simulation engine.

2

InputInput SPECTRE

BSIM4 ModelBSIM4 Model

SPECTREInputInput

Proposed

transistor

Model

Proposed

transistor

Model

OutputOutputOutputOutput

Golden

sample

Figure 1.2: comparison on deterministic timing analysis simulation

1.3 Thesis Outline

The rest of the thesis is organized as follows

• Chapter 2 introduces the background of STA. The principle of GLM is explained
with the context of Composite Current Source (CCS). The principle of the tran-
sistor level circuit simulation is also stated in this chapter.

• Chapter 3 explains the concept of the compact model and the details of the tran-
sistor model implementation. Moreover, the compiled model interface of Spectre
and the possible ways of installing the new model on the simulation engine are
discussed.

• Chapter 4 presents the model performance by doing deterministic timing analysis
at both gate level (single logic gate) and the circuit level (ISCAS benchmark
circuits).

• Chapter 5 discusses the way to extend the model with process variations aware-
ness. The accuracy of the process variations aware model is checked through
running Monte Carlo simulation for statistical timing analysis at both gate level
and circuit level.

• Chapter 6 gives conclusions of the thesis and suggestions for future work

3

4

Literature Review 2
All electronic circuits experience signal delay from their inputs to outputs. The maxi-
mum frequency capability of a circuit is determined by the critical path of the circuit.
The process of timing analysis is to figure out the critical path of the circuit and analyse
the delay of the critical path, which is usually done by Static Timing Analysis (STA).
STA is static because the timing analysis is independent of the waveform of the input
signals [1]. In practice, the STA engine usually behaves as an integrated block in an
Electronic Design Automation (EDA) tool. It provides the interface to other engines
such as the FPGA synthesis and routing engines which require timing information.

In digital circuit design, standard timing measurements such as propagation delay
and slew, represent the timing characteristics of the gate. The propagation delay rep-
resents the signal traversing time through the gate, and is calculated as the time period
when the output and the input signals cross the delay threshold (commonly set as 50%
of the power supply Vdd). The td in Figure 2.1 (b) shows the definition of propagation
delay. Signal slew reflects the change rate of the signal, which measures the quality
of the transitions [11]. The slew is defined as the period when signal crosses the slew
thresholds, which were chosen as 30% and 70% of the Vdd in this thesis. The tslew in
the Figure 2.1 (c) shows the definition of the slew for a signal.

V
o

lt
a

g
e

Time

30%

tslew

V
o

lt
a

g
e

Time

50%

td

70%

Input SignalOutput Signal

OutputInput

(a) (b) (c)

Figure 2.1: Definition of propagation delay and slew of a gate

According to the definition of the delay and the slew, equation (2.1) can be derived.

tdelay = t|Vout=50%Vdd
− t|Vin=50%Vdd

(2.1a)

S = t|Vout=70%Vdd
− t|Vout=30%Vdd

(2.1b)

Where tdelay and S are the delay and the output slew of a gate.

5

2.1 Composite Current Source (CCS) model for STA

A few decades ago, the linear transistor model was used in Gate Level Model (GLM)
scheme for characterizing the standard logic gates. As a consequence of the transistor
scaling, the conventional linear model was not adequate to account for more com-
plex physical effects such as short channel effects, power supply noise etc. [12]. The
table-based Non-Linear Delay Model (NLDM) was developed for modelling the new
generation transistor. The propagation delay of a gate in NLDM is regarded as a func-
tion of the input slew and the output load capacitance. In order to speed up the timing
analysis, the timing information of the standard cells is pre-characterized and stored
in a library, which contains 2-D LUTs with input signal slew and effective output load
capacitance as indexes. The input signal slew rate decides how fast the MOSFET is
turned on or off, which affects the speed for conducting current through the transistor,
thus influencing the arrival time of the output signal. The output load capacitance will
impact the speed for charging or discharging capacitors. If we regard the gate as a RC
network, the time constant τ is given as

τ = Req × Cload (2.2)

where Req is the equivalent resistance of the RC network, and Cload is the output load
capacitance. τ is the time taken for the voltage across a capacitor to fall to e−1 of its
value. Therefore the effective output load capacitance will impact the output signal
arrival time too.

The NLDM has seen wide adoption and was reasonably accurate. However, with
the transistor scaling reached the deep sub-micron regime, issues such as the crosstalk
effect and Multi Input Switching (MIS) restrict the accuracy of the NLDM. The crude
delay approximation technique based on the input slew and the effective output loads
is not sufficient for modern STA any longer. Therefore, the NLDM has been replaced
gradually by the recent developed Current Source Model. Composite Current Source
(CCS) is one typical current source model taking physical effects like Miller effect, high
interconnect impedance and noise propagation into account [13]. The model is shown
in Figure 2.2.

Standard

gate

Driver
model

Receiver
model

Figure 2.2: CCS model

The driver model is a non-linear current source dependent on both the input slew
and the voltage, while the receiver model is the effective output load capacitor. As
shown in the upper part of Figure 2.3, the driver model of the gate G2 is the receiver
model of its previous stage gate G1, and the receiver model of the gate G2 is the driver

6

model of its next stage gate G3. An input stimulus and a load capacitor are required
for the gate characterization. The procedure for the characterization is shown in the
bottom of Figure 2.3. The current flow at the output pin along with the current and
voltage at the input pin are measured with a combination of different input slews and
output load capacitors [14].

Driver Driver

Receiver Receiver

Measure currentMeasure current & voltage

G2 G3G1

Figure 2.3: Characterization for CCS model

The LUTs for the driver model and the receiver model are shown in Figure 2.4. The
two values C1 and C2 in the receiver model table are due to the fact that the effective
input capacitance of the gate at the next stage is dependent on the input voltage. In
order to increase the accuracy of the model, C1 is the equivalent capacitance before
the input signal reaches the delay threshold, and C2 is the equivalent capacitance after
the input signal reaches the threshold.

Driver

in

out

t t t

t t t

t t t

t t t

in

1 2 1 2 1 2

1 2 1 2 1 2

1 2 1 2 1 2

1 2 1 2 1 2

out

Figure 2.4: Driver and receiver model tables for CCS model

The LUT for the output current waveform of the CCS model is shown in Figure 2.5.

7

Sin

out

t t t

t t t

t t t

t t t

Figure 2.5: LUT for CCS model

The output current is accessed from the LUT of the CCS model. Based on the I-V
relationship for the capacitor, the output voltage is expressed by Equation (2.3).

V (t) =

∫ t

0

I(t)

C
dt (2.3)

Where I, V , and C are the current, voltage, and equivalent capacitance for the output
pin respectively.

2.2 Transistor level circuit simulation

In electronic engineering, nodal analysis is a systematic method to set up and solve the
equations, such that the voltages of the nodes in a circuit can be calculated. Nodal
analysis can be summarized to three main steps [15].

1. Choose ground as a reference node.

2. Name all the remaining unknown nodes.

3. Write equations based on Kirchhoff’s Circuit Law (KCL) to each node not con-
nected to a voltage source

The equations derived from the circuits are usually differential equations because
charging and discharging the devices such as capacitors and inductors are time de-
pendent. Furthermore, the circuit contains the non-linear elements such as transistors
which will cause the equations to be non-linear. However, a discrete computer pro-
gram does not have the ability to solve the differential equations directly. Instead, it
attempts to discretise the differential equations into algebraic equations and to solve
the numerical integration problem with the finite difference method. The Backward
Euler, Forward Euler and Trapezoidal rule are numerical methods commonly used in
computer aided analysis to solve the Ordinary Differential Equations (ODE).

An example ODE is shown in Equation (2.4)

d

dt
x(t) = Ax(t) (2.4)

8

The solution of Equation (2.4) is expressed by Equation (2.5)

x(tn+1) = x(tn) +

∫ tn+1

tn

Ax(τ)dτ (2.5)

where
∫ tn+1

tn

Ax(τ)dτ ≈ △tAx(tn) (2.6)

≈ △tAx(tn+1) (2.7)

≈ △t

2
(Ax(tn) + Ax(tn+1)) (2.8)

The three expressions represent the ways to approximate the numerical integration
with the Backward Euler, Forward Euler and Trapezoidal rule respectively. The Back-
ward Euler and Trapezoidal rules are implicit methods since both the current state
x(tn) and the future state x(tn+1) are involved in calculating the current state. In con-
trast, the explicit method directly indicate how to calculate the next stage based on
the current stage, which is more straightforward. However, the explicit method suffers
from a stability problem caused by the equation which requires extremely small step
size. The solution begins oscillating if the chosen step size is located out of the stable
region. Implicit methods ensure numerical solutions to be always stable. A large step
size means high efficiency for solving the equation. However, solving implicit equations
sometimes can be very complicated.

The circuit simulation flow is shown in Figure 2.6 [16]. The outer loop in Figure 2.6
indicates the way to solve the differential equations. An initial solution is given at the
first step, then the computer program recursively finds the solution for the ODE till
the end of the simulation. The inner loop in Figure 2.6 linearises the circuit equations
around the candidate solution. The Newton-Raphson method is usually applied to
repeat the linearising procedure until convergence is reached.

The conventional nodal analysis has difficulty in expressing the voltage or voltage
dependent source, extra equations for each voltage source are required. To overcome
such problem and set up the matrices of the equations efficiently in the computer pro-
gram, Modified Nodal Analysis (MNA), an enhancement of the nodal analysis approach
is employed in the circuit simulator. Apart from determining the node voltages like
the classical nodal analysis do, MNA has the ability to obtain the branch currents too.
Additionally, all linear circuit elements are accommodated by MNA without virtually
pre- and post-processing [17]. MNA has become the fundamental method for all the
circuit simulators. The details of the MNA is not discussed in this thesis. Readers who
are interested in MNA can read [18] for more details.

9

Figure 2.6: Principle of circuit simulation engine

10

Simplified Transistor Model

Implementation 3
Computer-aided design tools such as Simulation Program with Integrated Circuit Em-
phasis (SPICE) have become crucial in Integrated Circuit (IC) design. SPICE is a
general-purpose analogue electronic circuit simulator capable of running DC analysis,
small signal analysis, nonlinear transient analysis etc. [19]. The SPICE-like simulators
such as Spectre and HSPICE are becoming popular and have gradually achieved the
dominance of the circuit simulators market. NGSPICE is another member of SPICE
family, which is an open source simulator aimed at research field. The variety of sim-
ulators offers multiple choices for this project. Spectre was finally chosen because it is
one of the most commonly used simulator in industry field. Figure 3.1 [20] shows the
basic data flow approach using BSIM for circuit analysis in Spectre.

The Process File shown in Figure 3.1 is also called the model card, which defines the
size-independent parameters for the transistor model such as saturation velocity, sub-
threshold swing factor etc. Different models have different parameters, thus different
model cards. The number of parameters also depends on the complexity of the model.

Figure 3.1: Circuit simulation flow

11

The particular meaning and value of the model is specified in the model user’s guide
(such as BSIM4 User’s Guide). The next step is to determine the device parameters
based on the sizes of the used transistors which need to be passed to the simulator.
With the device parameters, the transistor models can be evaluated. In the end, the
simulation engine (Spectre) will set up the equations based on the circuit topology with
the help of Modified Nodal Analysis (MNA), and generate the simulation results when
a converged solution is reached.

The complex BSIM4 model has hundreds of parameters in the process file, which
requires large amount of resources (time and memory) to evaluate the model. The
proposed transistor model addresses the problem by simplifying the model structure.
Moreover, all elements of the model are characterized ahead and stored in LUTs. Such
scheme considerably reduces the transistor model evaluation time, therefore making
the circuit simulation at the transistor level practicable.

In the following sections, we will firstly introduce the concept of the compact model
and its implementation, then discuss the interface of Spectre. Finally, the possible ways
to install the model in Spectre will be explained.

3.1 Compact model

The model engineer would like to focus more on the model development rather than
handle details of the simulation engine’s interface. Actually it is not necessary for users
to know how the simulator runs in the background. The modelling language targeted
on model development benefits users by hiding the circuits simulator’s implementation
details. A circuit can be modelled at different levels. Figure 3.2 [21] shows an example
of three modelling strategies and the relations between their speeds and accuracies.

S
p

e
e

d

Accuracy

Compact

Model

Gate-level

Model

TCAD

Model

Figure 3.2: Circuit modelling strategy

As indicated by the name, Gate-level Model describes the circuit as a set of logic
gates and their interconnections. A compact model like BSIM is a transistor level
model used for circuit design. The transistor is described by the physically-motivated
currents and voltages equations [21]. A Technology Computer Aided Design (TCAD)
model dives deep into a transistor structure, taking the transistor fabrication process
such as diffusion and ion implantation into consideration. As shown in Figure 3.2,
the more details of the device are taken into account, the more accurate the model is.
Correspondingly, the speed goes down when the complexity of the model increases.

12

The compact model is desirable in this thesis since the SSTM to be implemented is
at transistor level. SSTM is seen as a black-box with input nodes. The voltages of all
input nodes are given, and the outputs of the model are the branch currents.

The multiple ways of implementing models increase the difficulty for integrating
the models to the Electronic Design Automation (EDA). A uniform compact model
standardization ensures all the devices developed efficiently and fit for the simulators
easily. GNU is an influential organization dedicating for free software development.
According to the compact model standardization from GNU perspective, the compact
model should be freedom to run and to adapt the model into users’ demands [22].

3.2 Verilog-AMS

The standard language of compact modelling is C in order to achieve consistency with
the language in which SPICE is currently implemented. However, Verilog-AMS (Ana-
logue Mixed Signal) was released and promoted by the Compact Model Council aimed
at coding the compact model for the next generation MOSFET models [21]. The
Verilog-AMS language and its subset Verilog-A are both Hardware Description Lan-
guages (HDL) providing great support for compact device modelling. The extension
of the IEEE-1364 Verilog digital HDL standard makes the modelling feasible in ana-
logue and mixed-domain [23]. A growing number of semiconductor company and EDA
vendors are involved in supporting the Verilog-AMS proposal.

The straightforward syntax makes the language of Verilog-AMS easy to master,
which accelerates the model development procedure. Furthermore, Verilog-AMS pro-
vides the derivative function used for calculating time dependent components such
as capacitors and inductors, thereby reducing the designers’ burdens of hand coding
derivatives during the model development. The uniform derivative function also guar-
antees the same computing precision which makes the model portable. With the merits
explained above, Verilog-AMS is chosen in this thesis to implement the proposed tran-
sistor model SSTM.

3.3 Compiled Model Interface (CMI)

Spectre, as a member of SPICE family, is developed in the C programming language.
The new devices after being compiled are integrated to the Spectre simulator through
the C-language Compiled Model Interface (CMI). The CMI has become into a common
model interface of EDA tools for customers to install their proprietary models [24].
Spectre currently supports ADMS CMI and Hardware Description Language (HDL)
CMI, which will be discussed in the following sections.

In the C programming language, a library is used to archive the object codes of
commonly used functions. The executable code is formed after the linker links the
application object codes with the required libraries. The concept of the library provides
the developers a way to release their new function as a single component to the interface.
Thus the new model can be installed to the CMI as a library.

The C library is categorized as the static library and the shared object library. As

13

indicated by the name, the static library is linked statically at the compile time. A
copy of the library is required for every program which calls the library. Thus the same
piece of the codes are duplicated which turns the executable codes very cumbersome. In
contrast, the shared object library is dynamically linked to the program. Instead of the
contents (data and text) of the library, only the name of the library is recorded in the
executable file. Although each process calling a share library will map it at a different
virtual address, the same physical copy is shared by all the functions [25]. Figure 3.3 [26]
explains the different concepts between the static library and the shared object library.
Both program A and B in Figure 3.3 require to call library X. The library X in the
static library scheme (left part of the figure) is loaded to the memory twice. While the
library X in the dynamically shared object scheme (right part of the figure) is loaded
to the memory once. Thus the efficiency of the memory usage is increased as well.

Page Table A

Memory Memory

Program

A

Library X

Library X

Library X

Library X

Program

B

Library X

Page Table B

Program

A

Library X

Page Table A

Program

B

Library X

Page Table B

Figure 3.3: Statistical library and shared object library

Furthermore, the concept of the shared object library improves the flexibility of the
interface. Since the shared object library can be resolved during the runtime, updating
the library does not affect the existing programs. Particularly, updating the model
does not impact the Spectre simulator. The new model is compiled as a shared object
library by C compiler such as gcc, and to be installed through the dynamic linker.

The shared object library must start with letters lib and end with the suffix .so.
According to the users guide [27], Spectre demands a set of configuration files specifying
the search path of the new library. Optionally, the search path can also be indicated
through the -cmiconfig arguments.

3.3.1 Translator from Verilog-AMS to C

As indicated in section 3.2 and section 3.3, The model is developed in the Verilog-AMS
language, and being installed through the C-language CMI of Spectre. A converter
is therefore necessary to translate the Verilog-AMS model source codes to the ready
to compile C codes. The corresponding C codes must be compatible with the Spectre
interface. Figure 3.4 demonstrates the whole procedure for installing the model on the
Spectre interface.

14

VerilogAMS

Model.vams

VerilogAMS

Model.vams

ADMS Tool Model.cModel.c

Spectre

VerilogA

intepreter
Model’.cModel’.c

W
ay1

W
ay1

Way2
Way2

Shared Object

Model.so

Shared Object

Model.so

Shared Object

Model’.so

Shared Object

Model’.so

ADMS

Compiled

Model

Interface

ADMS

Compiled

Model

Interface

HDL

Compiled

Model

Interface

HDL

Compiled

Model

Interface

Spectre

Figure 3.4: Two methods of generating C codes from Verilog-AMS

As shown in Figure 3.4, there are two translating schemes. Model.c and Model’.c are
two different sets of C source codes generated by the ADMS tool and Spectre Verilog-A
interpreter respectively. Both of the codes will be compiled to the shared object library
Model.so and Model’.so at the next step. Finally, these shared library are installed to
the corresponding Spectre CMI i.e., ADMS CMI and HDL CMI.

3.3.2 Automatic Device Model Synthesizer (ADMS) tool

The Automatic Device Model Synthesizer (ADMS) tool is a code translator which
converts the compact model from Verilog-AMS into ready to compile C code based on
the requirement of CMI [28]. The application for the ADMS tool is shown in Figure 3.4.
The concept of how ADMS tool works is illustrated in Figure 3.5.

Model2.vamsModel2.vams

XML Internal

data

Xml script for

Cadence Spectre

Xml script for

Cadence Spectre

Xml script for

Motorola

Xml script for

Motorola

Model1.vamsModel1.vams
SpectreModel.cSpectreModel.c

MotorolaModel.cMotorolaModel.c

Figure 3.5: The principle of ADMS tool

Firstly, the parser turns the Verilog-AMS source codes into XML. XML stands for
Extensible Markup Language, which was designed to transport and store data. Cur-
rently XML has been broadly used in the Web domain. Regardless of the information
types, XML wraps the information with labels, and stores it in a tree structure re-
ferred to as an XML tree. As shown in Figure 3.5 [28], the Verilog-AMS source codes
(Model1.vams or Model2.vams) are marked to satisfy the XML format, which are stored
in the tree structure. Since each CMI follows a special format, different scripts such as
Candence Spectre or Motorola are required to rebuild the information according the
specific format requirement from the CMIs of the simulators. Thus the corresponding

15

C codes SpectreModel.c or MotorolaModel.c are created which match the particular
interface.

Spectre provides a set of ADMS-XML scripts, indicating the details of requirements
of its interface. Thus the C codes satisfying the Spectre CMI requirement can be
created from ADMS tool with the help of scripts. The version MMSIM7.2 of Spectre is
used in this project. The corresponding ADMS-XML scripts can be obtained through
the following steps

1. A tool called cmiExtract is stored at directory 〈your MMSIM installation
directory〉/tools/spectre/bin/cmiExtract

2. Run the tool cmiExtract to extract the CMI scripts and documentation. The
default directory is 〈your MMSIM installation directory〉/tools/

3. The directory containing the XML scripts will be found in the sub directory 〈your
MMSIM installation directory〉/tools/spectrecmi/adms xml scripts

A typical run of ADMS tool is shown as below [28]

admsXml 〈modelfile〉.va -e 〈myinterface-file1〉.xml -e 〈myinterface-file2〉.xml -e...

ADMS tool is capable of generating optimized codes. According to the survey
in [28], the hand-coded built-in model is only 10% faster than the model automatically
generated by the ADMS tool.

3.3.3 Spectre Verilog-AMS interpreter

Although ADMS tool is a very promising code translation solution, the versions be-
tween ADMS tool and ADMS-XML scripts provided by Spectre must match with each
other. Due to the fact that the Spectre version used in the project is 2.2.7, while
the version required from the available ADMS tool is 2.2.9 or higher, the incompat-
ibility problems showed up while creating C codes. Therefore, the direct translation
scheme i.e., a Verilog-AMS interpreter provided by Spectre is selected in the project.
The Verilog-AMS interpreter checks the syntax of Verilog-AMS and generates the C
codes for Spectre CMI. The model is finally installed to SpectreHDL (Hardware De-
scription Language) CMI. Figure 3.4 shows the application for Verilog-AMS interpreter.
Compared to ADMS which is suitable for any simulator, the Verilog-AMS interpreter is
used explicitly for the Spectre, which is less flexible. Since the codes generated from the
Verilog-AMS interpreter are highly compatible with the Spectre interface. Verilog-AMS
interpreter was selected in this project.

3.4 Model Implementation

As discussed in Section 1.1, the SSTM to be implemented is shown in Figure 3.6.

16

G D

B
cgb csb

ids

+

-

Vgs

cgd

cgs

cdb

+

-

Vds

S

Figure 3.6: a simplified NMOS transistor model

Determining the branch contribution equations is the crucial step in terms of the
model description. Based on the current-voltage (I-V) relations for the capacitor, the
branch contributions of the simplified transistor model are described by Equation (3.1)

Ibr gd = Cgd ×
dVgd

dt
(3.1a)

Ibr gs = Cgs ×
dVgs

dt
(3.1b)

Ibr gb = Cgb ×
dVgb

dt
(3.1c)

Ibr db = Cdb ×
dVdb

dt
(3.1d)

Ibr sb = Csb ×
dVsb

dt
(3.1e)

Ibr ds = ids (3.1f)

Where g, d, s, and b are the four terminals of the transistor, whose voltages can be
probed. The four nodes behave as the inputs to the model in the model description. The
five intrinsic capacitances Cgs, Cgd, Cgb, Cdb and Csb are stored in five two dimensional
LUTs indexed by Vds and Vgs. Ids is the source-drain current, which is more crucial for
the accuracy of the model than the intrinsic capacitances. Thus Ids is stored in a three
dimensional LUT indexed by Vds, Vgs and Vsb (Vbs for the PMOS transistor model).

The voltage of the power supply (Vdd) in the technology used in the project is 1.1V .
While the LUTs has 0.2V margin such that the signal ranges for Vds and Vgs in NMOS
model are from −0.2V to 1.3V . In this case, the precision is guaranteed even if the
signals reach out of the boundary. The step size is 0.05V . The index Vsb starts from
0V and ends with 1.1V with step size 0.1V . In the PMOS transistor model, the index
range for both Vds and Vgs are from −1.3V to 0.2V . The index Vbs starts from 0V and
ends with 1.1V with step size 0.1V .

In summary, there are five 31 × 31 (31 grids for both Vds and Vgs in LUT) tables
for parasitic capacitors and one 31× 31× 12 (12 grids for Vsb in LUT) table for Ids for
each type of the transistor model.

17

3.4.1 Loading Lookup Tables (LUTs)

The LUTs are stored as text files. However, reading data directly from files will lead
to performance degradation since carrying out file operations is extremely expensive.
Statically loading LUTs into codes is preferred in such case since the size and the
number of LUTs are not huge. LUTs are loaded before the model is compiled, and they
will behave as a 31 × 31 matrix to be accessed locally in the program. A set of bash
scripts help with loading LUTs according to the transistor’s length and width indicated
by the user in a configuration file. The scheme on generating a model containing LUTs
is demonstrated in Figure 3.7.

N(P)MOS 5090

Lookup

Tables

L=50nm

W=90nm

General

N(P)MOS

model

N(P)MOS 50135

Lookup

Tables

L=50nm

W=135nm

General

N(P)MOS

model

L=50 W=90

L=50 W=135

N(P)MOS

Configuration File

W=90

W=135

General

N(P)MOS

model

· Parse the width from

the configuration file

· Search LUTs

· Copy LUTs to model

Script

Lookup

Tables

L=50nm

W=90nm

Lookup

Tables

L=50nm

W=135nm

Figure 3.7: Load LUTs to model

Each complete model in Figure 3.7 has two ingredients. A general NMOS or PMOS
model including all the calculation functions and LUTs for elements of the model (five
intrinsic capacitances and Ids) with the specified transistor width. The user should
indicate the desiring width in the configuration file, such as 90nm and 135nm in Fig-
ure 3.7. All corresponding LUTs are searched and loaded to form a width determined
model which is ready to compile. The implementation of the bash script to search and
load LUTs can be found in Appendix B.

3.4.2 Interpolation of intrinsic capacitances and Ids

Interpolation is an approach to estimate the data located in between the sampled grids
of a table. The model’s accuracy highly depends on the interpolation method, hence the
interpolation scheme is of great importance for all the table-based models. Interpolation
can be basically classified as linear interpolation, polynomial interpolation and spline
interpolation. As indicated by the name, the data construction is based on a straight
line or a polynomial curve. The choice of the interpolation method is based on the
trade-off between the accuracy and complexity of the algorithm. Since the transistor
model emphasizes its simplicity with the guarantee of the accuracy, linear interpolation
is used in the design. In particular, bilinear interpolation is suitable for the model since
the five intrinsic capacitance tables are two dimensional. The closest grids around C
i.e., Vgs1, Vgs2, Vds1 and Vds2 shown in Figure 3.8 [29], have to be calculated at the
first step. The values of C11, C12, C21 and C22 are obtained from the LUT. C1 and C2

are computed during the interpolation on dimension Vgs. C is the desired capacitance

18

obtained by applying the same interpolation rule on dimension Vds. Equations (3.2)
show the details of the calculation [29].

V
d

s
Vgs

Vgs1 Vgs2

Vds1

Vds2
C11 C12

C21 C22

C(Vgs Vds)

C1

C2

Figure 3.8: Interpolation over intrinsic capacitors

C1 ≈
Vgs2 − Vgs

Vgs2 − Vgs1

C11 +
Vgs − Vgs1

Vgs2 − Vgs1

C12 (3.2a)

C2 ≈
Vgs2 − Vgs

Vgs2 − Vgs1

C21 +
Vgs − Vgs1

Vgs2 − Vgs1

C22 (3.2b)

C ≈ Vds2 − Vds

Vds2 − Vds1

C1 +
Vds − Vds1

Vds2 − Vds1

C2 (3.2c)

Due to the fact that Ids is stored in a three dimensional table, one more dimension
extension on bilinear interpolation i.e., trilinear interpolation is performed in order to
obtain the new Ids. Equation (3.3) explains how to construct Ids employing trilinear
interpolation on dimension Vds, Vgs and Vsb (Vsb for PMOS). In Figure 3.9 [29], I1 and
I2 are results of performing bilinear interpolation twice on dimension formed by Vds

and Vgs. The final Ids can be interpolated from Equation (3.3).

Ids

I1

I2

Vsb2

Vsb1

Vsb

Figure 3.9: Interpolation over Ids

Ids ≈
Vbs2 − Vbs

Vbs2 − Vbs1

I2 +
Vbs − Vbs1

Vbs2 − Vbs1

I1 (3.3)

Ids is the desired current obtained by applying trilinear interpolation algorithm.

19

3.4.3 Procedure for model development

The whole procedure for model development can be summarized in the following steps.
The steps marked with N are additional steps used for Monte Carlo simulation in
statistical timing analysis, which will be discussed in Chapter 5. Codes of the NMOS
model can be found in Appendix A

• Define the model with four input parameters d, g, s, b representing four transistor
terminals drain, gate, source and bulk respectively.

• Define the branches of the circuits br gd, br gs, br gb, br db, br sb, and br ds.

• Load LUTs by running a bash script. The length and width of a transistor is
specified in a configuration file. Thereafter, a transistor model with particular
length and width is generated.

• Look up the current Ids and the five intrinsic capacitors from LUTs.

N Pass the transistor length process variation dL to the model.

N Run Matlab to generate the length sensitivity coefficients tables.

N Load the length sensitivity coefficients tables into model by running bash scripts.

N Calculate sensitivities based on coefficients.

N Construct the new current Ids and the gate capacitances according to length
sensitivities.

• Interpolate the current Ids and five intrinsic capacitors.

• Solve the equation for each branch of the circuit.

20

Deterministic Timing Analysis 4
The timing behaviour of the circuit is dependent on the factors such as the local tem-
perature, the power supply and process variations during the transistor fabrication. In
this chapter, we ignore all these variations by assuming the proposed model runs in a
deterministic environment. The related uncertain factors will be discussed in the next
chapter for the statistical timing analysis.

BSIM4 model is by far one of the most sophisticated transistor models. It has
become one of the industry standard models used in circuit simulations. The BSIM4
model along with the Spectre simulation engine are regarded as golden samples to be
compared in this project. The five intrinsic capacitances and the drain-source current
Ids in SSTM are characterized from the BSIM4 model. The accuracy of the SSTM
is approved if the timing behaviour of the new model is close enough to the BSIM4
model. SSTM combined with the Spectre simulation engine is tested through running
the deterministic timing analysis for digital circuits. Same circuits are also tested using
BSIM4 with the same simulation engine. In this way two different models i.e., BSIM4
and SSTM are running on the same Spectre simulation engine. The relative error is
the net error caused by SSTM.

4.1 Direct Current (DC) analysis on transistor model

The accuracy of the SSTM is affected by both the source-drain current Ids and five
intrinsic capacitances. DC analysis is the first step for model testing. All the five
intrinsic capacitances can be ignored since the direct current is not able to flow across
a capacitor. The proposed SSTM in DC analysis can be further simplified as a single
current source Ids, thus the accuracy of the current source Ids in the model is checked.

The transistor level testing starts from a single NMOS transistor. The bulk and
source terminals are connected to the ground. The gate has constant voltage of 1.1V
to enable the NMOS transistor. The voltage of the drain (Vd) is swept from −0.2V
to 1.3V , which covers the entire Vds range for the LUT. The step size of the LUT is
0.05V , while the step size for DC analysis is set to 0.01V such that the interpolation
accuracy of the current Ids is checked. The value of Ids is obtained from the LUTs.
Both Vgs and Vsb are constant in the DC analysis. The current flowing through d and s
is directly influenced by the voltage across d and s. The current voltage characteristic
(I-V curve) of NMOS transistor is shown in Figure 4.1. The two lines indicating Ids are
both captured from BSIM4 and estimated from the proposed SSTM.

21

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−1

−0.5

0

0.5

1

1.5

2
x 10

−4

Vds(V)

Id
s(

A
)

DC analysis of NMOS transistor

BSIM4 model
Proposed model

Figure 4.1: I-V curve of NMOS transistor

The p-type MOSFET(PMOS) transistor is tested in a similar way as the NMOS
transistor. Figure 4.2 shows the current Ids both captured from BSIM4 and estimated
from the proposed SSTM.

−1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2
−6

−5

−4

−3

−2

−1

0

1

2

3
x 10

−5

Vds(V)

Id
s(

A
)

DC analysis of PMOS transistor

BSIM4 model
Proposed model

Figure 4.2: I-V curve of PMOS transistor

Both Figure 4.1 and Figure 4.2 reflect that the Ids is accurately approximated.
The current Ids curve from the SSTM is very close to BSIM4 model. Taking NMOS
transistor as an example, Figure 4.3 and 4.4 demonstrate the relative and the absolute
interpolation errors compared with BSIM4 respectively.

22

Figure 4.3: Relative interpolation error for Ids

Figure 4.4: Absolute interpolation error for Ids

The data shows that the maximum Ids interpolation error for NMOS (PMOS) tran-
sistor is around -4.7% (3.3%), which further proves that the Ids approximation is precise.

4.2 Transient analysis on transistor model

The next step, after DC analysis, is to apply the transient analysis for the transistor
model. Rising ramp and falling ramp are two types of input signals commonly used
for digital circuit simulation. During the transient analysis, an initial solution is given
according to the DC analysis. The calculation based on input signals is time dependent,
and the influence from the intrinsic capacitances to the SSTM is tested in transient
analysis.

4.2.1 Transient analysis on single standard logic gate

Unlike in full-custom Integrated Circuit(IC) design that designers have to dig into the
transistor level, the most commonly used gates such as INV, NAND, NOR. are packed
up and stored in a library in the semi-custom design. The gates are accessed from
the library and their detailed implementations are ignored, which reduces the labour
intensity of the digital IC design.

NanGate was founded in October 2004, which is a provider of physical Intellec-
tual Property (IP), providing tools, analysis and optimization of digital design [30].

23

NanGate Open Cell Library is an open source standard cell library dedicated to the
predictive technology, which is mainly targeted to the research domain. VTH, VTG
and VTL stand for High, General and Low Threshold Voltage technique respectively,
those are included in the NanGate Open Cell library. In particular, 45nm VTL tech-
nique is chosen for this project due to the following reasons. Firstly, the low threshold
has the low commutation point, which means the transistors turn on or off faster than
the high threshold voltage technique. The voltage supply Vdd in VTL is as low as
1.1V . Secondly, the SSTM emphasizes its statistical feature which will be introduced
in Chapter 5. The transistor with 45nm technique is very sensitive to process varia-
tions, such characteristic better supports the accuracy verification for SSTM. Lastly,
the 45nm VTL technique is adopted for the ISCAS85 benchmark circuits which will be
used for SSTM testing.

Table 4.1 shows the typical input slew and output load capacitances given by the
NanGate 45nm Open Cell Library.

Gate size: X1
input slew(ps) 7.5 18.75 37.5 75 150 300 600

capacitance(fF) 0.4 0.8 1.6 3.2 6.4 12.8 25.6

Gate size: X2
input slew(ps) 7.5 18.75 37.5 75 150 300 600

capacitance(fF) 0.4 1.6 3.2 6.4 12.8 25.6 51.2

Gate size: X4
input slew(ps) 7.5 18.75 37.5 75 150 300 600

capacitance(fF) 0.4 3.2 6.4 12.8 25.6 51.2 102.4

Table 4.1: Typical inputs in NanGate 45nm Open Cell Library

All the cells are classified by their driving strengths, which are tagged with X1, X2,
and X4 as shown in Table 4.1. X2 represents the cell which is composed of the largest
unfolded transistors. The X1 gate has transistors which are half of the size of the X2
gate, thus the driving ability compared with X2 reduces by half. X4 implies a copy of
the internal structure connected parallel to its original structure, the transistors sizes
of X4 are twice as big as the size of X2, which has the strongest driving strength.

Some of the gates like NAND, AND, NOR and OR are classified by their inputs
number. The number following the gate name specifies how many inputs of this gate.
For instance NAND3 indicates a NAND gate with three inputs. Transient analysis is
carried out on standard gates with all possible combinations over transistor sizes and
input numbers. The standard gates constituted by both the BSIM4 and the proposed
SSTM are tested with same benchmark circuits. The propagation delay and the output
slew of a gate from both models are computed, and the relative errors for SSTM against
BSIM4 are obtained.

The testing environment is set up as below:

• Both rising and falling input ramps are fed into a standard gate.

• The rising input signal rises from ground 0V to Vdd 1.1V , while the falling input
ramp drops from Vdd 1.1V to ground 0V .

24

• The input slews vary based on the range indicated from NanGate 45nm Open
Cell Library (Table 4.1).

• The effective output load capacitances vary according to the range from NanGate
45nm Open Cell Library (Table 4.1).

• Cells with more than one input such as NAND2, NAND3 etc. have only one input
signal varied, the rest of the pins are fixed to either the power supply Vdd or the
ground to enable the gate.

• The temperature is set to 27.0◦C.

The transient analysis on NAND gates are picked as examples to explain in this
thesis, the rest of the gates can be analysed in the same way. The delay of the gate
composed of SSTM is compared with the delay of the gate composed of BSIM4. Each
gate was simulated with 7 input signals with different slew rates and 9 different output
capacitances. All these combinations lead to 7 × 9 comparisons for each gate. The
relative delay errors for NAND gate are shown in Figure 4.5a and Figure 4.5b.

The following conclusion is drawn from analysing the gate delay error of NAND
gates.

1. When the type, driving strength, and input slew of a gate are fixed, a smaller
load capacitance usually results in bigger errors. As seen from the Figure 4.5a,
the general error for 0.4fF output load is generally larger than the error for
102.4fF .

This can be explained through the transistor level schematic of NAND gate. As
shown in Figure 4.6, the intrinsic capacitance Cdb of a NMOS transistor is parallel
connected with the output loads.

db Cout

Transistor
Model

D

Cgs Cgb

Transistor
Model

Figure 4.6: Intrinsic capacitor Cdb and the effective output load

Since modelling Cdb introduces error, and the error grows when the ratio of
Cdb/Cout increases. The accuracy of Cdb for the model is crucial when the load
capacitances are small. Figure 4.7 shows the formation of junction capacitance
Cdb [31].

n n

substrate

SiO2

GateGate

DrainSource

Bulk
p

Cdb

n type p type
+

+

+

+

-

-

-

-

Drain Bulk
Vdb

Figure 4.7: Junction capacitance Cdb

25

0.4 0.8 1.6 3.2 6.4 12.8 25.6 51.2 102.4
0

0.5

1

1.5

2

2.5

Output load(fF)

R
el

at
iv

e
E

rr
or

 (
%

)

50% gate delay error of NAND3X1 with rising ramp as imput

7.5ps
18.75ps
37.5ps
75ps
150ps
300ps
600ps

(a) Relative delay error for NAND3 X1 gate

0.4 0.8 1.6 3.2 6.4 12.8 25.6 51.2 102.4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Output load(fF)

R
el

at
iv

e
E

rr
or

 (
%

)

50% gate delay error of NAND4X1 with rising ramp as imput

7.5ps
18.75ps
37.5ps
75ps
150ps
300ps
600ps

(b) Relative delay error for NAND4 X1 gate

Figure 4.5: Relative delay error for NAND gate

Taking NMOS transistor as an example, the drain is made from n-type materials
and the bulk is made from p-type materials. As shown in Figure 4.7, Cdb is the
capacitance formed from the PN-junction. Equation (4.1) expresses the way of
calculating PN-junction capacitances [31]:

Cj(V) = A

√

εsiq

2
(

NAND

NA +ND

)
1√

φ0 − V
(4.1a)

φ0 =
kT

q
ln(

NAND

n2
i

) (4.1b)

where ND and NA are the doping densities of n-type and p-type areas respec-
tively, φ0 is the built-in junction potential, εsi is the dielectric constant, k is the
Boltzmann’s constant, T is the temperature, q is the electron charge, and ni is
the intrinsic carrier concentration in silicon.

26

Replacing voltage in Equation (4.1) by Vdb, the Cdb is computed as

Cdb(Vdb) = A

√

εsiq

2
(

NAND

NA +ND

)
1√

φ0 − Vdb

(4.2)

where Vdb=Vds-Vbs. This means the value of junction capacitance Cdb is depen-
dent on the terminal voltage Vbs. However Cdb in the SSTM model is accessed
through the LUT indexed by Vds and Vgs, the influence from Vbs is omitted in the
model. The Vbs for the NMOS transistors in NAND gate are not constant. So the
relative error with small load capacitance is higher than the error with large load
capacitance.

2. When the type, driving strength and load capacitance of a gate are fixed, a sharp
input signal induces large errors. Figure 4.5a shows that for each particular output
load, the error for 7.5ps input slew is significantly larger than the error for 600ps
input slew.

A steep input ramp stimulates a steep output signal. The output voltage Vds

can not keep the pace of the sharp change voltage of input Vgs. The transistor
crosses the saturation region and stays in the linear region for most of the transient
time. However, the large proportion of data are characterized from the saturation
region, and the resolution for linear region is not enough for SSTM compared to
the saturation region. From the Ids interpolation errors, which was illustrated
in Figure 4.3, we can see the huge errors are concentrated at the linear region.
Hence the relative error for an input signal with small slew is larger than the one
with large slew.

3. The error grows with the input numbers of a gate. Comparing errors between
NAND3 gate and NAND4 gate in Figure 4.5a and Figure 4.5b respectively, we
found that the error trend for NAND4 gate starts dropping from about 4.5%,
while the trend for NAND3 begins falling from around 2.5%.

Firstly, the output junction capacitors Cdb for all PMOS transistors in NAND gate
are connected in parallel. The total capacitance of capacitors connected in parallel
equals to the sum of their individual capacitance, which means the equivalent gate
output capacitance C ′

db is the sum of all the individual Cdb for PMOS transistors.
According to the previous discussion, the relative large Cdb leads to large results
deviation. The error reduces accordingly with the growth of load capacitance.

Secondly, the high-stacked structure of NMOS transistors in NAND gate intro-
duces errors. Taking NAND3 gate in Figure 4.8 [32] as an example, suppose pins
A1 and A2 are tied with Vdd, A3 starts rising from 0V to Vdd. The NMOS tran-
sistor M3 is going to turn on. Meanwhile, it discharges node N2. We know a
transistor turns on when

Vgs > Vth (4.3)

For transistor M2, Vg = Vdd, Vs = VN2. Hence equation (4.3) can be derived as

Vdd − VN2 > Vth (4.4a)

VN2 < Vdd − Vth (4.4b)

27

It means that the current can conduct through M2 until node N2 is discharged
below Vdd − Vth, and the same story applies to transistor M1. The internal delay
to conduct current through the stack structure impacts the timing behaviour
directly. The more input numbers of a gate, the longer stacks is, the longer it
takes to conduct the current through the stack structure. The error introduced
from the high stack structure is more obvious. Thus the gate with large number
of inputs has larger error than the one with small number of inputs.

A1 A2

A1

A2

Vdd

A3

A3

2

Vdd

Vdd
2

Figure 4.8: Internal charge effects

The distribution of the delay and the output slew error on NAND gate considering
all combinations of input slews and load capacitances are shown in Figure 4.9. The
simulation results for other standard cells can be found in Appendix D.

Figure 4.9: Error distribution for standard gates

From Figure 4.9 we can see that the propagation delay errors mainly concentrate
on the range from -1% to 1%. Around 18% of the cases have only -0.1% propagation
delay error. The most output slew errors are located between -2% and 2%. The small
relative error indicates the proposed SSTM is in general accurate for digital circuit

28

design. However some gates with some corner cases (small output load and fast inputs)
suffer from huge errors during the simulation.

The mean1, standard deviation2, maximum and minimum delay errors for all the
standard gates are presented in Figure 4.10 and Figure 4.11. The meanings of index
numbers are shown in Table 4.2

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728293031323334353637383940414243444546
−10

−5

0

5

Gate type

R
el

at
iv

e
E

rr
or

 (
%

)

Gate delay error with falling input

Mean
Std
Max
Min

Figure 4.10: Gate delay errors with falling input signal

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728293031323334353637383940414243444546
−5

0

5

10

15

20

Gate type

R
el

at
iv

e
E

rr
or

 (
%

)

Gate delay error with rising input

Mean
Std
Max
Min

Figure 4.11: Gate delay errors with falling input signal

1Here we choose the mean of absolute errors, since the positive and negative errors will cancel each other
2The standard deviation of absolute errors

29

Table 4.2: Index of gate type for Figure 4.10 and Figure 4.11

1 INVX1 13 NOR2X1 25 AND3X1 37 OR4X1
2 INVX2 14 NOR2X2 26 AND3X2 38 OR4X2
3 INVX4 15 NOR2X4 27 AND3X4 39 OR4X4
4 NAND2X1 16 NOR3X1 28 AND4X1 40 XNORX1
5 NAND2X2 17 NOR3X2 29 AND4X1 41 XNORX2
6 NAND2X4 18 NOR3X4 30 AND4X1 42 XORX1
7 NAND3X1 19 NOR4X1 31 OR2X1 43 XORX2
8 NAND3X2 20 NOR4X2 32 OR2X2 44 BUFX1
9 NAND3X4 21 NOR4X4 33 OR2X4 45 BUFX2
10 NAND4X1 22 AND2X1 34 OR3X1 46 BUFX4
11 NAND4X2 23 AND2X2 35 OR3X2
12 NAND4X4 24 AND2X4 36 OR3X4

Through analysing the data in the table, we can say that the mean errors for most
of the gates are less than 1%. Some gates with large inputs such as NAND4, NOR4,
AND4, and OR4 under certain circumstances do not perform well.

Firstly, the errors for NOR4 and OR4 are caused mainly from the rising input,
while for NAND4 and AND4 are mainly resulted from the falling input. Considering
the high-stack structure of NMOS transistor in NAND gate again, when the gate is
injected with a rising signal, the NMOS will switch on, and will dominate the output
signal. The error caused from the NMOS stack structure is more obvious. In contrast,
when injected with a falling signal, the PMOS transistors will switch on and PMOS will
mainly effect the output signal. However, discharging the paralleled PMOS transistors
for the NAND gate has a small internal delay, which guarantees the output accuracy.
In contrast, the NOR gate has the opposite schematic as NAND gate, i.e., NMOS
transistors are connected in parallel to ground and PMOS transistors are connected in
series to Vdd. The stacked PMOS structure dominants the error, hence the falling input
signal causes larger error than rising input signal.

Secondly, the NOR4 gate and the OR4 gate have huge maximum error (16% and
6% respectively). The errors are mainly from the small output loads and the fast input
signals. One reason to explain such a phenomenon is that the proposed SSTM is a
capacitance-based model. The capacitances are non linear and they are dependent on
the terminal voltages. The capacitance of a voltage dependent capacitor is calculated
by Equation (4.5).

dQ = C(V (t))dV (4.5a)

Q =

∫ V

0

C(V (t))dV (4.5b)

However, based on the discussion in Chapter 2, the computer program does not
have the ability to solve the integration problem directly. The numerical method such
as Backward Euler will introduce the local truncation error at every time step when
calculate the integration function. Consequently, the non-conserved charge will impact

30

the current accuracy, and such error is accumulated. The situation become worse when
the capacitor is heavily dependent on the voltages, and the voltages change fast with
the time. The error grows when the inputs switch fast since the voltage changes more
for each time step.

If we look at the transistors sizes for the logic gates, the NOR4 X4 gate has PMOSs
with width of 650nm and NMOSs with width of 180nm. The large transistor size in-
dicate large voltage dependent capacitor in the model. The large number of inputs
indicate more voltage dependent capacitors in the model. The voltage dependent ca-
pacitors will dominate the gate outputs if the output loads are small. This may explain
why huge errors happen on the NOR4 X4 and OR4 X4 gates.

4.2.2 Transient analysis on the critical path of International Symposium
on Circuits and Systems (ISCAS) benchmark circuits

Transient analysis for all the standard gates which are built up by the proposed tran-
sistor model can achieve very accurate delay and output slew. Large scale circuits are
the combinations of standard cells. A benchmark circuit combining the standard gates
is meant to test the combinational logic behaviour. ISCAS-85 [33] benchmark circuits
including c432, c499, c880, c1908, c2670, c3540, c5315, c6288 and c7552 have been ac-
cepted widely for combinational circuits testing. The varieties of gates allows full test
on each type of the gate. ISCAS benchmark circuits are broadly employed in design
verification, power consumption and timing analysis in digital circuit design field [33].
The critical path of the ISCAS-85 benchmark circuits are simulated. Cadence encounter
tool helps with generating the circuit critical path, which also tells if the rising or the
falling input ramp will cause the worst case of the delay. The simulation environment
is set up as follows

• The input slews for all the benchmark circuits are set to 20ps.

• The power supply Vdd is 1.1V , and the temperature is 27.0◦C .

• The standard gates are connected in series. Output loads capacitances are used
to represent the wire capacitance in the real circuit.

The accuracy of the proposed transistor model is judged by the degree of similarity
to BSIM4. Figure 4.12 and Figure 4.13 illustrate examples about transient analysis for
circuit C432. Both the delay and the output slew are compared with BSIM4. The
structure of C432 circuit is a set of standard gates connected in series. The name
and the order of the standard gates are shown in the X -axis in Figure 4.12. The bars
indicate the net error caused by standard gate at each stage, and the line shows the
accumulated error for the entire circuit.

31

Figure 4.12: Relative delay error for C432

Figure 4.13: Relative delay error for C432

Figure 4.12 and Figure 4.13 show that NOR4X2 has the maximum standard gate
delay error, which is around 4.3%, while NAND4X2 has the maximum output slew error
about -4.2%. The gate error can be either positive or negative and they can cancel each
other. The final relative circuit propagation delay error compared with BSIM4 is lower
than 1%, and the final output slew error is less than 2%. It means that the proposed
SSTM is capable of guaranteeing the simulation accuracy at the circuit level.

Table 4.3 reports the gate delay and the output slew error for all the benchmark
circuits. All the tests are carried out with the worst delay cases for critical paths.

32

Relative Error(%)

circuit 50% gate delay output slew

c432 0.30 1.38

c499 -0.95 0.44

c880 -0.21 0.57

c1355 -0.12 0.42

c1908 -0.73 -0.06

c2670 -0.53 -0.29

c3540 -0.59 -1.44

c5315 -0.61 -1.78

c6288 -0.99 -0.08

c7552 0.00 0.01

Table 4.3: Delay and slew error for critical path of ISCAS-85 benchmark circuits

Table 4.3 presents that the gate delay errors for all benchmark circuits are less than
1%. In particular, the maximum delay error is −0.99% for circuit C6288. In addition,
The output slew errors for all benchmark circuits are less than 2%. The maximum
output slew error is −1.78% for C5315. The small error shows that the SSTM is
accurate enough in terms of building up standard cells.

33

34

Statistical Timing Analysis 5
Nothing in the world is exactly identical. Process variations and environmental vari-
ations are two sources of variations that mainly cause the parameters of a circuit to
deviate from their nominal values [34].

Both of the variations impact significantly the timing behaviour of the circuits. As
indicated by the name, environmental variation is the change in the true operating envi-
ronment such as the temperature or the supply voltage [34]. Process variations such as
channel length, width, threshold voltage are uncertain due to the chip manufacturing.
With the transistor fabrication technology scaling down, the process variations in the
nanometer regime cannot be ignored any more. Process variations are typically catego-
rized as intra-die (or within-die) variations and inter-die (or die-to-die) variations [35].

5.1 The sensitivity of the transistor model

The traditional approach to handle uncertain factors is to introduce the corner case for
a device. For instance, the best case assumes the transistor is fast, while the worst case
assumes the transistor is slow. However, this assumption indicates that if one transistor
is fast, all transistors are fast. It handles well for global deviations such as the temper-
ature, power supply voltage etc., but not reasonable for local deviations. Modelling the
gate according to the worst case is very likely to underestimate the performance [36].
Statistical Static Timing Analysis (SSTA) technology targets statistically analyse the
delay variations due to intra-die process variations [37].

The table-based GLM has its limitation on being extended from STA to SSTA
considering process variations. Extra characterizations and interpolations are required
for each transistor dimension such as length, width etc. for performing SSTA. The
number of tables for the standard cell library will grow explosively when considering
all the cells with process variations. In contrast, characterizing only two types (NMOS
and PMOS) of transistors are demanded in TLM for SSTA, which dramatically reduces
the characterization time and the library size. In order to perform SSTA, the proposed
simplified transistor model (introduced in chapter 3) is extended with process variations
awareness. Figure 5.1 [6] shows the extension of the model concerning the variability in
the circuits parameters. The parameter vector ξ represent all types of process variations
such as the channel length, the thick of the isolation layer, the threshold voltage etc.

35

G D

B
cgb(t, ξ) csb

ids(t, ξ)

+

-

Vgs

cgd(t, ξ)

cgs(t, ξ)

cdb

+

-

Vds

S

Figure 5.1: a simplified model

As shown in Figure 5.1, the simplified transistor model is composed of the drain-
source current Ids and the five parasitic capacitances Cgb, Cgs, Cgd, Csb and Cdb. Those
components are dependent on the transistor dimensions such as length, width etc.
Since the transistor dimensions vary during the transistor fabrications, the value of the
model components change accordingly. It is necessary to assign the right value to the
components of the model when running statistical timing analysis. One possible way
to determine component values is to characterize the transistor for each dimension,
and then apply interpolations. For example, the transistor length in the real process
procedure is possible to differ from 35nm to 70nm. Thus transistor characterizations for
sampling lengths are done first. The components values for the rest of the lengths can
be achieved through interpolating over lengths. The accuracy of this method depends
on the sampling step size. A small step size will result in a cumbersome model, causing
the burden for both loading and computing the model. Too few samples will degrade
the accuracy of the model. However, for the many varying parameters (5-8) the table
numbers as well as the interpolation time will grow explosively. With attempting
to ensure the model accuracy, and to secure the model simplicity, this interpolation
method is impractical and is not adopted in the implementation.

In order to estimate the components value of the model with process variations,
we need to know at what degree the variation impacts the component of the model.
Sensitivity is defined to measure such a degree. It can be computed by Equation (5.1).

S =
△A

△P
(5.1)

where S is the sensitivity, △P represents the possible transistor process variations
(length, width etc.), and △A denotes the difference of the corresponding model pa-
rameter caused by the process variation. Both S and A are dependent on the terminal
voltages Vds and Vgs.

5.1.1 The length sensitivity of the transistor model

In particular, the length sensitivity of the transistor is introduced in this thesis work.
Other types of sensitivity can be studied in the same manner. The length sensitivity is
achieved by replacing △P in Equation (5.1) with △L, which is shown in Equation (5.2)

36

0 10 20 30 40

0
20

40
−2

−1

0

x 10
−9

Vgs

Cgd

Vds
0 10 20 30 40

0
20

40
−5

0

5

x 10
−9

Vgs

Cgs

Vds

0 10 20 30 40

0
20

40
−1

0

1

x 10
−9

Vgs

Cgb

Vds
0 10 20 30 40

0
20

40
−1

0

1

Cdb

VgsVds

0 10 20 30 40

0
20

40
−5

0

5

x 10
−10

Vgs

Csb

Vds

Figure 5.2: Length sensitivities of intrinsic capacitances

SC =
C

△L
SC,C ∈ R31×31 (5.2a)

SI =
I

△L
SI, I ∈ R31×31×12 (5.2b)

Where △L is the difference of the transistor length. SC and SI are length sensitivi-
ties for capacitance and current respectively. We notice that the sensitivity is a matrix,
because its value is dependent on the terminal voltages.

In order to see how the parasitic capacitances are sensitive to the transistor length,
we compute the length sensitivities for all capacitances and demonstrate them in Fig-
ure 5.2. All the data are from NMOS transistor with the width of 90nm.

1. The length sensitivity for capacitor Csb is one order of magnitude smaller than its
other counterparts. Thus the influence caused from Csb is negligible. In order to
reduce the model complexity and speed up the computing, the value of Csb in the
model for statistical timing analysis is kept constant.

2. The length sensitivity for capacitor Cdb is always zero. It means that Cdb al-
ways keeps the same value no matter how the length differs. The reason can be
explained through the PN-junction capacitance equation of Cdb,

37

48 49 50 51 52
−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10

−9Length sensitivity for Cgs, Vgs=0.8V

Length

C
gs

/∆
 L

48 49 50 51 52
2

4

6

8

10

12

14

16
x 10

−10Length sensitivity for Cgs, Vds=0.8V

Length

C
gs

/∆
 L

Figure 5.3: length sensitivities for Cgs with different transistor lengths

Cdb(Vdb) = A

√

εsiq

2
(

NAND

NA +ND

)
1√

φ0 − Vdb

where ND and NA are doping densities of n-type and p-type areas respectively,
φ0 is the built-in junction potential, εsi is the dielectric constant, q is the electron
charge.

All the parameters used to calculate Cdb are independent of the transistor length.
Thus the junction capacitor Cdb is also seen as a constant in statistical timing
analysis.

3. The gate capacitances Cgs, Cgd, Cgb are sensitive to the transistor length. We
plot length sensitivities for all three gate capacitances at four sampling lengths
i.e., 48nm, 49nm, 51nm and 52nm in Figure 5.3, Figure 5.4 and Figure 5.5. Taking
Cgs as an example. The left part of Figure 5.3 assumes the terminal Vgs is fixed,
each column indicates a specific transistor length, which has 31 points indicating
the Vds varies from −0.2V to 1.3V with step size 0.05V (the entire range of the
LUT). The value of each point is the length sensitivity for a particular pair of (Vds

and Vds). The same story applies for the right part of Figure 5.3. Instead, the Vds

is assumed fixed, and the Vgs varies.

We can see from two graphs that the length sensitivities are dependent on both
Vds and Vgs. Since the points in each column (length) change in their own way, the
sensitivity is also dependent on the length. However, the irregular trends increase
the difficulty in approximating the new capacitance.

Additionally, the growth trend of the current Ids is shown in Figure 5.6. Similar as
gate capacitances, the current Ids does not change uniformly with the transistor length
within the entire operating region. Specifically speaking, The value of the Ids is more
sensitive to the length in the saturation region than other two regions. Therefore the
length sensitivity of the Ids is also dependent on the transistor length.

38

48 49 50 51 52
0

0.5

1

1.5

2

2.5

x 10
−10Length sensitivity for Cgd, Vgs=0.8V

Length

C
gd

/∆
 L

48 49 50 51 52
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
x 10

−9Length sensitivity for Cgd, Vds=0.8V

Length

C
gd

/∆
 L

Figure 5.4: length sensitivities for Cgd with different transistor lengths

48 49 50 51 52
0

1

2

3

4

5

6

7

8
x 10

−10Length sensitivity for Cgb, Vgs=0.8V

Length

C
gb

/∆
 L

48 49 50 51 52
−2

0

2

4

6

8

10
x 10

−11Length sensitivity for Cgb, Vds=0.8V

Length

C
gb

/∆
 L

Figure 5.5: length sensitivities for Cgb with different transistor lengths

The challenges listed above lead to the difficulty in estimating the gate capacitances
and Ids for the model for any given transistor length due to process variations. Two
possible methods of determining the length sensitivities are discussed in the following
sub-sections, their merits and weaknesses will be discussed too.

5.1.2 Fixed length sensitivity

One intuitive way of deciding the length sensitivity is to roughly regard the gate ca-
pacitances and Ids growing linearly with the transistor length. In other words, the △A
in Equation (5.2) is independent of the transistor length L.

This fixed sensitivity scheme requires to characterize only one set of the extra length
of transistors. This strategy was used at the early development stage of the model.
50nm is set as the nominal length of the transistor because we take an extra 5nm as

39

Figure 5.6: Ids values with five transistor length

the error tolerance from the 45nmV TL technique. The LUTs for the nominal intrinsic
capacitances and Ids are characterized. Besides, the LUTs for the transistors with
length nominal+ dev are also characterized. Here dev is the standard deviation of the
length process variation. For instance, 2nm is used for the standard deviation of the
process variation. Hence 52nm transistor is characterized. Equation (5.2) is rewritten
as Equation (5.3).

SC =
C52 −C50

△L
SC,C52,C52 ∈ R31×31 (5.3a)

SI =
I52 − I50

△L
SI, I52, I52 ∈ R31×31×12 (5.3b)

where SC represents the length sensitivity for the gate capacitance, C52 and C50 are
the capacitance LUTs characterized from transistors with lengths of 52nm and 50nm
respectively; SI represents the length sensitivity for the Ids, I52 and I50 are the Ids
LUTs characterized from transistors with lengths of 52nm and 50nm respectively. △L
is 2nm.

Simplicity is the main advantage of this method since characterizing the intrinsic
capacitances and the Ids requires large amount of CPU time. The accuracy, however,
suffers from the over-simplified approximation method, especially when the standard
deviation of length σL is large. When the transistor length reaches far from the nominal
value, the estimation is not accurate at all.

5.1.3 The proposed scheme i.e., polynomial curve fitting for the length
sensitivity

A more elaborate way to construct the gate capacitances Cgs, Cgb and Cgd and source-
drain current Ids from a given channel length L is essential. The target is to pursue

40

a tolerable estimation error while maintaining the model’s simplicity. Describing the
trend of the length sensitivity with the polynomials according to the curve fitting
theory is put forward in this thesis. Compared to the fixed length sensitivity scheme,
the polynomial curve strategy improves the data approximation accuracy, with which
a wider process variation range for statistical timing analysis is achievable. Meanwhile,
the complexity of the model does not increase considerably, making the statistical
timing analysis for the circuit with MC method practicable. The details of this scheme
will be discussed in the following sub-section.

5.1.3.1 Constructing the polynomial coefficients based on the least squares ap-

proach

The concept of curve fitting is to create a general function to catch the trend
among a set of data. The existing data is regarded as the sampling points, and
the rest of the points are obtained through the function. Figure 5.7 shows an ex-
ample for applying the first degree (linear) polynomial y = ax + b to fit a second-
order curve y = x2. There are 10 given observations in Figure 5.7, which are
[(1, 1), (2, 4), (3, 9), (4, 16), (5, 25), (6, 36), (7, 49), (8, 64), (9, 81), (10, 100)]. The straight
line y = ax+ b is the trend of the sampling points estimated by the first-order polyno-
mial.

0 2 4 6 8 10
−20

0

20

40

60

80

100
First degree polynomial curve fitting

original data
estimated trend

Figure 5.7: Using one degree polynomial y = ax+ b to fit on data from y = x2

The way to construct the polynomial coefficients (a and b) is of utmost importance
to ensure that f(x) in the example is the line that most closely match the given obser-
vations. The least squares approach is one of the many strategies used to achieve the
best polynomial curve. In particular, the linear least squares approach is introduced
to create the polynomial coefficients due to the simple computational feature. Here we
show an example the way that linear least square method is used to generate a first-
order polynomial (y = ax + b). Polynomials with higher degree are computed in the
same way. The higher order the polynomial curve is, the more accurate the estimation

41

is.
The error of the given observation points can be described in Equation (5.4) [38],

which sums the distances (approximation error) between the estimating data and the
original data at the sampling points.

E =
n

∑

i=1

[yi − (axi + b)]2 (5.4)

where E is the estimating error, (xi, yi) indicates an observation point, n is the number
of the given observation points, a and b are polynomial coefficients.

The error is minimum when the derivative of the error with respect to a and b both
reach to 0. Hence the polynomial coefficients a and b are obtained through solving the
Equation (5.5).

∂E

a
= −2

n
∑

i=1

xi(yi − axi − b) = 0 (5.5a)

∂E

b
= −2

n
∑

i=1

xi(yi − axi − b) = 0 (5.5b)

5.1.3.2 Determining the polynomial term for current Ids

As discussed in Section 5.1.3.1, (xi, yi) denotes an observation point. xi is used as the
polynomial term to estimate the point y′i. A good coherence between xi and yi will
dramatically increase the approximation accuracy without modifying the polynomial
order. Thus it is crucial to choose the observation points xi, such that yi is strong
relevant to xi. For instance, the polynomial curve in the previous example can be
expressed as

y = a1x+ b1

The polynomial can be also expressed as

y = a2
1

x
+ b2

where a1, b1 and a2, b2 are the corresponding polynomial coefficients to terms x and
1

x
. Now if we go back to the current (Ids) estimation according to the transistor length

(Leff), the prior knowledge is required to determine which shape of of the transistor
length dominates the values of the current Ids.

The fundamental transistor model Shichman-Hodges model was published in the
1960s by Shichman and Hodges. It constitutes a well known representation of MOS
transistors [39], and is chosen by Simulation Program with Integrated Circuit Empha-
sis(SPICE) simulator as level-1 model. The Level-1 model uses a linear approximation
in both linear and saturation region to predict the channel length according to the
drain voltage(Vds), which is only accurate for long channel transistor with old technol-
ogy. The Equations from (5.6) to (5.8) explain Level-1 transistors in different operating
regions [40].

42

1. Cutoff region(VGS < VT):
Ids = 0 (5.6)

2. Linear region(VDS < VGS − VT):

Ids =
µCis

2
× W

Leff

[2(VGS − VT)− VDS](1 + λVDS) (5.7)

3. Saturation region(0 < VGS − VT < VDS):

Ids =
µCox

2
× W

Leff

(VGS − VT)
2(1 + λVDS) (5.8)

In the preceding equations, µ is the charge-carrier mobility, Cox is the capacitance
per unit area of the gate dielectric, VT is the threshold voltage, λ is the channel length
modulation parameter, W and Leff are the width and length of the transistor channel.

SPICE level-2 has multiple supplements compared with level-1, which includes the
second-order effect such as the influence of sort/narrow channel, the saturation effects
due to limited drift velocity, and the temperature dependence and so on. SPICE level-3
is more sophisticated. For instance, the extension is related to the threshold voltage
sensitivity, length sensitivity, width, drain voltage and other issues. In short, the higher
the level, the more model issues are considered, the more accurate the model is. The
BSIM with version 4.6.4 used in this thesis is taken as SPICE level-54.

Since our main concern lies in determining how the general trends the channel length
Leff and the terminal voltages Vgs and Vds impact the model, the second order effects
from the length and terminal voltages are neglected. SPICE level-1 is selected for
analysing. Parameters irrelevant with Leff , Vgs and Vds in SPICE level-1 equations can
be seen as constants. Thus the relationship between the current Ids and the terminal
voltages Vgs and Vds are simplified as

1. Cutoff region(Vgs < VT):
Ids = 0 (5.9)

2. Linear region(Vds < Vgs − VT):

Ids ∝
K1

Leff

f(Vgs, Vds) (5.10)

3. Saturation region(0 < Vgs − VT < Vds):

Ids ∝
K2

Leff

g(Vgs, Vds) (5.11)

where K1 and K2 are constants, f and g are two functions which depend on Vgs and
Vds. The equations show that Ids grows inversely proportional to transistor channel

length Leff in both the linear and saturation regions. That is to say, the
1

Leff

in

43

4.4 4.6 4.8 5 5.2 5.4 5.6

x 10
−8

−4000

−3500

−3000

−2500

−2000

−1500

−1000

−500

0

500

1000

Channel length(L)

Id
s/

∆L

Length sensitivity for Ids

Cutoff
Saturation

Figure 5.8: Sensitivity of length in different region

Equation (5.10) and Equation (5.11) is the dominant term, determining the general
trend of the function.

Another challenge is that the length sensitivity for both the gate capacitances and
Ids are dependent on the transistor terminal voltages Vds and Vgs. The trend of the
length sensitivities alters with each pair of Vds and Vgs. This can be seen more clearly
through Figure 5.8

The two lines in Figure 5.8 represent the growth trends of length sensitivities of
Ids with respect to Leff in cut-off and saturation region respectively. The trends of
two lines in the graph are obviously different with each other, indicating that one
single polynomial curve cannot precisely represent the length sensitivity for the entire
transistor operating range. Instead, each pair of Vgs and Vds requires an individual
polynomial curve.

However, it is worth mentioning that Ids is stored in a three dimension LUT indexed
by Vds ,Vgs and Vsb (Vbs for PMOS). The influence on length sensitivities from Vsb

compared with Vds and Vgs is not obvious. Figure 5.9 shows an example for the length
sensitivity at a particular pair (Vds, Vgs). The two curves are length sensitivities for Ids
when Vsb = 0V (the start of the LUT) and Vsb = 1.1V (the end of the LUT).

The trends of both curves in Figure 5.9 are similar to each other, which means the
Vsb does not considerably affect the length sensitivity trend for Ids compared with Vds

and Vgs. Considering the trade-off between the accuracy and complexity of the model,
the length sensitivity of the model is assumed independent on Vsb. Hence only the
length sensitivity at Vsb = 0 is calculated.

Regardless of the dimension Vsb, the LUT considering Vds and Vgs is a 31×31 table,
there are 31× 31 polynomial curves in total to construct the new Ids.

44

4.4 4.6 4.8 5 5.2 5.4 5.6

x 10
−8

−4000

−3500

−3000

−2500

−2000

−1500

−1000

Channel length(L)

∆I
ds

/∆
L

Length sensitivity for Ids

Vsb=0V
Vsb=1.1V

Figure 5.9: The influence on length sensitivity from Vsb

5.1.3.3 Determining the polynomial order for current Ids

A well determined order of a polynomial curve can balance the accuracy and the cost of

the data approximation. As mentioned in Section 5.1.3.2,
1

Leff

is set as the polynomial

term. All the polynomials with degree from first to fifth have been tried in the thesis
in order to achieve the optimum between accuracy and cost. A 90nm width NMOS
transistor is chosen as an example to analyse.

In this thesis we assume the transistor length obeys a Gaussian distribution. 50nm
is set as the mean of the length (µL), and the standard distribution σL is set to 1nm.
3σL is equal to 3nm. According to the 3σ principle, more than 99% of the transistor
lengths will be located inbetween nominal length±3σnm, which is from 47nm to 53nm.
Thus 45nm, 47nm, 48nm, 49nm, 51nm, 52nm, 53nm, and 55nm are used for the
sampling transistor lengths. The Ids values are estimated at the sampling lengths via
the polynomial curve in order to compare to the existing samples characterized from
BSIM4. Figure 5.10 and Figure 5.11 illustrate the maximum and average error of the
Ids values for the entire transistor operating range at each observation length.

45

Figure 5.10: Maximum error on Ids approximation

Figure 5.11: Average error on Ids approximation

The figures above reflect the estimation error among polynomials with different
degrees. The 1st order polynomial curve fitting strategy at 55nm has maximum er-
ror larger than 450%, and the corresponding average error is around 30%, which will
severely impact the model accuracy. The 2nd order polynomial curve has obvious im-
provement in terms of accuracy compared with the 1st order polynomial curve. The
average errors for all the lengths are less than 5%, but the maximum errors at 55nm is
still as high as 200%, thus further improvement is required.

All the 3rd 4th and the 5th order polynomial curves have the maximum error about
30%. However, such error only happens once among 31 × 31 cases. Actually most of
the huge errors are located at the cut-off region. The ’cut-off’ points for different length

46

transistors are located at different positions in LUTs. So the Ids with a particular pair
of (Vgs, Vds) can suddenly drop to three order magnitudes smaller than the previous
point (for another length). Since the polynomial curve cannot follow such a fast change,
increasing the polynomial order does not improve the accuracy too much. Specifically
speaking, more than 99.7% of our samplings are located between 47nm and 53nm. All
the 3rd, 4th, 5th order polynomials have almost the same maximum error in this region.
Besides, the average of the absolute errors for the 3rd order polynomial is less than 1%,
which is accurate enough in the digital circuit design. The 3rd order polynomial curve
is chosen for generating the new Ids. However, if the standard deviation of the length is
larger, the 4th order polynomial is the better option since it has large improvement for
the maximum errors at length 45nm and 55nm. With the same strategy, it is trivial
to change the polynomial curve from the 3rd order to the 4th order. What is more, as
indicated from Figure 5.11, the 5th order polynomial curve compared with the 4th order
polynomial curve does not have the significant improvement any more. The maximum
errors at length 48nm and 52nm are even worse than the 4th order curve. We can
get the conclusion that the 4th order curve reaches the limitation for estimating the
current Ids.

The maximum and the average Ids approximation errors with the fixed sensitivity
scheme are also shown in Figure 5.10 and Figure 5.11. Since 52nm was chosen as
sampling length to generate the sensitivity matrix, the relative error at 52nm is 0.
For the rest of lengths, the 3rd order degree polynomial curve has obvious accuracy
improvement especially for the case when the length is far from the nominal length.
For instance, the maximum error at length 45nm drops from 250% to 10% and the
average error reduces from 20% to less than 1%. Comparing with 1 LUT in the fixed
sensitivity scheme, the 3rd polynomial scheme requires 4 LUTs. The complexity of the
model grows very little.

In summary, If we average both the maximum and the average errors for all the
sampling length from 45nm to 55nm, the improvement can be concluded in Table 5.1.
The improvement shows the proposed polynomial curve fitting strategy is more suitable
for statistical timing analysis.

3rd Poly. % Original model % Improvement %

Maximum error 22.94 93.83 70.89

Average error 0.60 6.29 5.69

Table 5.1: The improvement of estimating Ids compared with the original model

5.1.3.4 Construct new current Ids

As discussed in previous sections,
1

Leff

is the polynomial variable, and the 3rd order

polynomial curves are chosen for the Ids approximation. Equation (5.12) describes the

47

way to calculate the current Ids.

I∗ds|Vsb=0 = (
1

Leff

)3 · a+ (
1

Leff

)2 · b+
1

Leff

· c+ d a,b, c,d ∈ R31×31 (5.12a)

S|Vsb=0 =
I∗ds|Vsb=0 − Ids norm|Vsb=0

Leff − Lnorm

S, I∗ds, Ids norm ∈ R31×31×12 (5.12b)

I∗ds = Ids norm + (Leff − Lnorm) · S|Vsb=0 (5.12c)

where I∗ds is the estimated drain-source current. a, b, c, and d are polynomial coef-
ficients, Leff is the effective channel length of the transistor, S is the length sensitivity,
Ids norm is the nominal current, and Lnorm is the nominal length which is 50nm.

Figure 5.12 shows an example of current Ids approximation for NMOS 90nm width
transistor with specific terminal voltages Vgs = 0.8V and Vds = 0.8V (in saturation
region).

4.4 4.6 4.8 5 5.2 5.4 5.6

x 10
−8

3.6

3.8

4

4.2

4.4

4.6

4.8

5

5.2

5.4

5.6
x 10

−5

Channel length(L)

Id
s

Ids estimation

Sampling Ids from BSIM4
Estimated Ids from the polynomial curve

Figure 5.12: An example of Ids estimation

We can see from the figure that the estimated Ids is almost overlap to the original
sampling values from BSIM4.

5.1.3.5 Estimating the gate capacitances

Similar to the procedure of estimating the current Ids, the shape of the polynomial term
and the order of the polynomial curve should be determined. There are five parasitic
capacitors in the model. As discussed in Section 5.1.1 that the junction capacitances
Cdb and Csb are not sensitive to the length variation, only the gate capacitances Cgb,
Cgd and Cgs are to be estimated.

The gate capacitances are formed due to an insulator film such as SiO2 exists
between the substrate and the gate of a MOSFET. Figure 5.13 illustrates the MOSFET
structure and the gate capacitances.

48

n+ n+

GateGate

Drain

Bulk
p

Cg� Cg�Cg�

Figure 5.13: Gate capacitances of NMOS transistor

All the gate capacitors are voltage dependent, and their values alter at different
operating regions of the device. Through studying paper [31], we get the following
conclusions.

1. The source-drain channel in the linear region is considered uniform. The entire
channel capacitance can be regarded as Cchanel = WLeffCox. Therefore, the gate
capacitors can be modelled as

Cgs = Cgd =
1

2
WLeffCox.

where Cox is the capacitance per unit gate area, W is the width of the transistor,
and Leff is the effective channel length of the transistor.

2. The channel at the saturation region is not uniform, it has a tapered shape and is
pinched off near the drain end. The gate capacitors in the saturation region can
be roughly modelled as

Cgs ≈
2

3
WLeffCox Cgd = Cgb = 0.

3. In the cut-off region, the channel is not formed. The gate capacitors can be
modelled as

Cgs = Cgd = 0 Cgb = WLeffCox.

The gate capacitive effects in three operating regions of MOSFET are presented as
in Table 5.2

Operating Region

Capacitance Cut-off Linear Saturation

Cgb CoxWLeff 0 0

Cgd 0
1

2
CoxWLeff 0

Cgs 0
1

2
CoxWLeff

2

3
CoxWLeff

Table 5.2: Gate capacitances in three operating regions

We can conclude from Table 5.2 that all gate capacitances grow linearly with the
effective transistor length Leff . However, the formulas in Table 5.2 are the rough esti-
mations, some effects such as the overlapping capacitances are neglected. Figure 5.14

49

is plotted as an experimental exploration of the length sensitivities for the gate capaci-
tances. This experiment chooses 90nm width NMOS transistor with terminal voltages
Vgs = 0.8V and Vds = 0.8V , which make the transistor running in the saturation region.

4.4 4.6 4.8 5 5.2 5.4 5.6

x 10
−8

0

1

2

3

4

5

6

7

8

9
x 10

−17

Channel length(L)

G
at

e
ca

pa
ci

ta
nc

es

Gate capacitances estimation

Cgd
Cgs
Cgb

Figure 5.14: Gate capacitors length sensitivities

The three curves represent the length sensitivities for gate capacitances i.e., Cgd,
Cgs and Cgb. Two conclusions can be drawn from observing Figure 5.14.

1. The Cgb is less sensitive to the transistor length. The average of the length sensitiv-
ities for all the sampling lengths of the three gate capacitances are calculated. The
average length sensitivity for Cgb is 6.1125×10−18, while for Cgs is 7.6092×10−10,
and for Cgd is 2.3158 × 10−10. The length sensitivity for Cgb compared with the
others can be neglected. Thus Cgb is regarded as a constant matrix during the
statistical timing analysis.

2. The gate capacitances Cgs and Cgd change almost linearly with the effective chan-
nel length Leff . Thus Leff is selected as the polynomial term. Since the contribu-
tions to the model accuracy from the gate capacitances are not as critical as the
drain-source current Ids, a 1st order polynomial curve is employed to approximate
gate capacitances.

Equation (5.13) shows the way to compute gate capacitances at a given length.

C∗

gate = Leff · a+ b C∗

gate, a,b ∈ R31×31 (5.13)

Where C∗

gate is the new gate capacitances, a, b are coefficients of the polynomial curves,
Leff is the effective channel length of the transistor. The polynomial coefficients are
stored in LUTs and are loaded into the model before the model is compiled.

The relative average errors of the estimated gate capacitances compared with sam-
pling values are summarized in Table 5.3.

Generally speaking, the maximum errors for both Cgs and Cgd estimation are less
than 10%, and the average errors are less than 1%. In summary, the gate capacitances

50

Relative error Cgs(%) Relative Error Cgd(%)

Channel length(nm) Maximum Average Maximum Average

45 6.77 0.31 2.79 0.32

47 1.82 0.068 0.69 0.049

48 3.86 0.14 1.26 0.13

49 4.74 0.18 1.37 0.17

51 3.26 0.14 1.08 0.13

52 1.88 0.071 0.56 0.071

53 0.81 0.028 0.26 0.013

55 6.19 0.24 1.79 0.23

Table 5.3: Relative error of gate capacitances estimation with one order polynomial curve
fitting

approximated by the 1st order polynomial curves are precise for statistical timing anal-
ysis. The implementation of the Matlab script to generate the polynomial coefficients
can be found at Appendix C

5.2 Monte Carlo simulation of the proposed transistor model

Monte Carlo (MC) method is an analytical technique to repeat the same computation
with large amount of times, and vary the uncertain variable randomly at each iteration.
The distribution of the outputs indicates how possible such a result can happen. MC
simulation is straightforward and reliable, which is frequently used in circuit simulation
to evaluate and estimate the timing behaviour of a circuit concerning transistor process
variations. The process variation of a transistor is uncertain, the statistical feature of
the transistor model is tested by running the same circuit simulation thousands of
times, and randomly changes the process variation in each iteration of the simulation.
Mean and standard deviation are two typical parameters to describe a distribution in
statistics.

According to the discussion in Section 5.1.3.3 and Section 5.1.3.5, 1st order polyno-
mial curves are used to approximate the intrinsic capacitances and 3rd order polynomial
curves are used for estimating the source-drain current Ids. Those polynomial coeffi-
cients are stored in LUTs, which are loaded statically into the model to avoid the
expensive file operations. Figure 5.15 shows the concept for generating the statistical
model.

51

N(P)MOS 90

Lookup

Tables

L=50nm

W=90nm

N(P)MOS

Configuration File

W=90

W=135

General

N(P)MOS

statistical

model

General

N(P)MOS

statistical

model

General

N(P)MOS

statistical

model

Polynomial

coefficients

Tables

W=90nm

N(P)MOS 135

Lookup

Tables

L=50nm

W=135nm

General

N(P)MOS

statistical

model

Polynomial

coefficients

Tables

W=135nm

W=90

W=135

· Parse the width from

the configuration file

· Search LUTs

· Copy LUTs to model

Script

Lookup

Tables

L=50nm

W=90nm

Lookup

Tables

L=50nm

W=135nm

Figure 5.15: Load polynomial coefficients LUTs

As shown in Figure 5.15, each complete model has three ingredients. 1). A general
NMOS or PMOS statistical model including all calculation functions 2). LUTs for the
components of the nominal model (intrinsic capacitances and Ids) with the specified
transistor width. 3). The polynomial coefficients LUTs with the specified transistor
width. The user should indicate the desiring width in the configuration file, such as
90nm and 135nm in Figure 5.15. The corresponding LUTs are searched and loaded to
form a width determined model which is ready to compile.

5.3 Experimental Results

Similar to the deterministic timing analysis, evaluating a single gate composed of the
proposed SSTM is the first step for statistical timing analysis. The transistor model
is aware of process variations in length. In this project, we assume transistor lengths
obey Gaussian distribution with mean µL of 50nm and standard deviation σL of 1nm.
The transistor length is regarded as a parameter passed to the model. 10000 iterations
MC transient analysis are running.

5.3.1 Monte Carlo Simulation on Single Gate

The inverter is one of the elementary logic gates, the structure of which can be simply
a single NMOS and a PMOS transistor connected in series. The statistical properties
for an inverter with drive strengths X1, X2, and X4 are checked in this section. The
testing environment is set up as below.

• Both rising and falling input signals are tested.

• According to the range (7.5ps to 600ps) given by the NanGate library (Table 4.1),
the input slews were set as 15ps for all the inverter.

• According to the driving ability from Table 4.1, the output capacitance loads are
chosen among 1.6fF , 3.2fF and 6.4fF .

• Other parameters such as the power supply, the temperature etc. stay constant
as during the deterministic timing analysis.

52

Sine both 30% and 70% crossing points of the output signals are necessary for calcu-
lating the output slew, the two time points are tested individually. The testing results
of MC simulation on inverters are shown in Figure 5.16, Figure 5.17, and Figure 5.18.

Figure 5.16: Relative time points errors for INVX1 compared with BSIM4

Figure 5.17: Relative time points errors for INVX2 compared with BSIM4

Figure 5.18: Relative time points errors for INVX4 compared with BSIM4

The mean error of all the time points are less than 1%, which means the output
waveform of the proposed model at the concerning points (t30%, t50% and t70%) on
average are very close to BSIM4 model. Standard deviation reflects the spread of the
arrival times to their averages. During the test, most of the gates have the relative
standard deviation errors less than 5%. However large errors happen sometimes. For

53

instance, the error of 30% crossing point for inverter X2 with 1.6fF output loads is
higher than 10%, the distribution of which is analysed in Figure 5.19.

Figure 5.19: Arrival time of 70% Vdd with respect to the transistor length

Figure 5.19 illustrates the arrival time when the output voltages cross 30% of the
power supply Vdd. The two lines are testing results from both SSTM and BSIM4. We
can see that the line for SSTM grows twisted with the line for BSIM. Apart from that, it
is interesting to notice that the arrival time of the 30% crossing point of BSIM does not
grow continuously with the transistor length, so does the value of SSTM. The jumping
points cannot be predicted and approximated appropriately in the proposed SSTM.
The standard deviation error grows when jumps happen more frequently. However, the
reason why jumps exist in BSIM is beyond the scope of this thesis, thus further study
needs to be done.

In addition, the testing results reflect the fact that the standard deviation error for
the output slew is much more higher than the individual time points (t30% and t70%).

The output slew is defined as t30% − t70%. The way of computing the standard
deviation for the difference of the two points is shown by Equation (5.14)

σ(t30% − t70%) =
√

σ2t30% + σ2t70% − 2cov(t30%, t70%) (5.14)

Where cov(t30%, t70%) is the covariance between points t30% and t70%, which describes
how much two variables tend to be similar to each other. The covariance can be
calculated by Equation (5.15)

cov(t30%, t70%) = E[(t30% −E(t30%)(t70% − E(t70%)] = ρt30%,t70%σt30%σt70% (5.15)

where ρt30% ,t70% is the correlation coefficient, which describes the dependence degree
of two data sets (t30%, t70%). If we take inverter X1 as an example, the correlation
coefficient for BSIM is 0.981, while the correlation coefficient for SSTM is 0.99. It
means t30% and t70% have very strong correlation with each other for both model.
Hence the Equation (5.14) can be approximated as

σ(t30% − t70%) ≈ σt30% − σt70% (5.16)

54

If the standard deviation σt30% and σt70% are very close to each other, their difference
σt30% − σt70% can be very small, and the relative error of the difference in such case
will become huge easily. The covariance refers to the second moments computing
of two jointly distributed variables. The standard deviation of the output slew is
not close to BSIM4 model any more since the two points t30% and t70% are not two
independent events. The implementation method of the SSTM guarantees the accuracy
of single variable distribution till the second moments computing, because the standard
deviation error of a single time point can be guaranteed. However, the accuracy for the
jointly distributed variables is not enough. Improving the interpolation methods and
increasing the LUT resolution are necessary for higher accuracy requirements.

The structures of NAND and NOR gates compared to an inverter are slightly more
complicated. NAND2X2 and NOR2X2 are tested in this thesis. The testing environ-
ments such as input slew, the length distributions output loads are set same as for the
inverter. Figure 5.20 and Figure 5.21 show the testing results.

Figure 5.20: Relative time points errors of NAND2X2 compared with BSIM4

Figure 5.21: Relative time points error of NOR2X2 compared with BSIM4

The relative standard deviation errors for NOR2 gate with small output loads and
falling inputs are around 15%. The error caused from the falling input is larger than the
one from rising input, and the error reduces when output loads increase. The reasons
can be explained in the same way as the deterministic timing analysis.

55

5.3.2 Monte Carlo Simulation on Inverter Chain

The same as the testing procedure introduced in the deterministic timing analysis, the
benchmark circuits are used for circuit level testing after the accuracy of standard cells
composed of the proposed SSTM is tested. Characterizing transistors for statistical
timing analysis requires large amount of time because one transistor width is corre-
sponding to 9 transistors lengths from 45nm to 55nm in the implementation, and all
the required widths and lengths of the transistors need to be characterized. Here we
choose a 7 stages inverter chain as the benchmark circuit since the characterization
for the transistor used to build up the inverter with size from X1 to X4 are already
available when doing single inverter gate analysis.

All the 7 gates share the same length deviation variable. In other words, all the
lengths of transistors in the circuit increase or decrease by the same amount at same
time in order to simplify the testing procedure. The testing environments are listed as
below

• Both falling and rising inputs are tested.

• The input slew is set to 25ps.

• The inverter chain is composed of 7 identical INV X1s, each of the inverter is
followed by a 5fF output load to represent the wire.

• Other statistical parameters such as mean and standard deviation of transistor
length and environment parameters like temperatures and voltage supply have
the same configuration as in the standard cell testing.

The relative mean and standard deviation error against BSIM4 are compared gate
by gate. Figure 5.22 is the testing results for inverter chain with both rising and falling
input. The bars indicate the mean error and the corresponding standard deviation
errors for each individual gate respectively.

The mean errors for all stages with both rising and falling are less than 1%, and
the maximum standard deviation error is around -4% at the second stage with rising
input. The final output delay and slew are summarized in Table 5.4.

Input type
Delay error(%) Slew error(%)

mean µ standard deviation σ mean µ standard deviation σ

R -0.19 -0.49 0.03 0.20

F -0.23 -0.55 0.05 0.24

Table 5.4: statistical timing analysis for 7 stages inverter chain

The output delay error of the whole circuits is the addition of the individual errors.
The effect of the positive and negative values are just cancelled. The eventual waveform
of the inverter chain is very close to the circuit with BSIM4 model. In summary, the
small error compared with BSIM4 for inverter chain indicates the proposed SSTM is
accurate for statistical timing analysis at the circuit level.

56

Figure 5.22: statistical timing analysis on 7 stages INV chain

57

58

Conclusion 6
6.1 Thesis contribution

This thesis implemented and evaluated a simplified transistor model, such that the
model can be installed on commercial simulation engines, such as Spectre. It allows a
direct comparison of the proposed model with the sophisticated model BSIM4. What is
more, the model is extended into the statistical domain for SSTA due to the transistor
process variations. Using the polynomial curve fitting scheme to estimate the compo-
nents of the model was proposed in this thesis. With such a scheme, the estimation
accuracy of the model components such as Ids has been improved. The polynomial
scheme has approximately 70.89% improvement of the maximum error and 5.69% im-
provement of the average error in terms of estimating Ids compared to the original
scheme.

6.2 Thesis work summary

The background of STA was firstly introduced in the thesis, which includes why the
STA is essential for the digital circuit design and how GLM works for STA. The lim-
itations of GLM were explained and it was raised as the main problem of the thesis.
A new simplified transistor model was proposed by Qin Tang and the concept of the
model was discussed. The goal of the thesis was to implement the new model such
that the model can be plugged into the popular commercial circuit simulation software
Spectre from Cadence. The possible ways to install the model were discussed and the
interface of the Spectre was introduced as well. The proposed model and the golden
model BSIM4 were run on the same simulation engine, and the net error caused by
the proposed model was measured. Furthermore, the model was extended to process
variations awareness which allows the SSTA performing on integrated circuits. The
polynomial curve fitting method was brought to the transistor length interpolation,
which significantly improved the accuracy and the available length range of the model
without increasing the complexity of the model too much. The improvement is obvious
especially when the length varies far from the nominal value since the model at the
early design stage applied the fixed sensitivity approximation approach. Both deter-
ministic STA and SSTA were performed to test the accuracy of the model. Among
deterministic STA, followed by the DC analysis, we tested the standard cells from Nan-
Gate library, and the critical path of ISCAS-85 benchmark circuits. In terms of SSTA,
the typical standard cells such as inverter, NAND2 and NOR2 were tested. A seven
stage inverter chain was simulated in order to get the circuit level performance of the
proposed model. The possible reasons for big errors in testing results were discussed,
for some the solutions were given.

59

6.3 Future work

Of course, there are still spaces to improve the project work. Future work can be
divided into two categories. On one hand, to refine the model implementation method.
For instance, to come up with a better interpolation scheme to estimate components
of model accurately and faster. On the other hand, as mentioned in Figure 5.19, the
timing behaviour of BSIM4 model jumps at some certain lengths, and so does the
SSTM. The reasons are not clear yet. One guess can be from the model itself, the
internal function of BSIM4 is not continues with the length variation. Another guess
can be from the simulation engine, the numerical method is discrete such that the step
size is not appropriately set. Furthermore, the relative errors for some standard gates
compared with BSIM4 are large. Although the possible reasons were given in the thesis,
further investigations are still needed. Solutions can be given for further refining the
model.

60

Bibliography

[1] J. Bhasker and R. Chadha. Static Timing Analysis for Nanometer Designs: A
Practical Approach. Springer, 2009.

[2] Qin Tang, Amir Zjajo, Michel Berkelaar, and Nick van der Meijs. Transistor-level
gate modeling for nano cmos circuit verification considering statistical process
variations. In Proceedings of the 20th international conference on Integrated cir-
cuit and system design: power and timing modeling, optimization and simulation,
PATMOS’10, 2011.

[3] A. Goel and S. Vrudhula. Statistical waveform and current source based standard
cell models for accurate timing analysis. In Design Automation Conference, 2008.
DAC 2008. 45th ACM/IEEE, pages 227 –230, june 2008.

[4] Chirayu S. Amin, Florentin Dartu, and Yehea I. Ismail. Weibull based analytical
waveform model. In Proceedings of the 2003 IEEE/ACM international confer-
ence on Computer-aided design, ICCAD ’03, Washington, DC, USA, 2003. IEEE
Computer Society.

[5] Chirayu Amin, Chandramouli Kashyap, Noel Menezes, Kip Killpack, and Eli
Chiprout. A multi-port current source model for multiple-input switching effects
in cmos library cells. In Proceedings of the 43rd annual Design Automation Con-
ference, DAC ’06, pages 247–252, New York, NY, USA, 2006. ACM.

[6] Qin Tang, Amir Zjajo, Michel Berkelaar, and Nick van der Meijs. Rde-based
transistor-level gate simulation for statistical static timing analysis. In Proceedings
of the 47th Design Automation Conference, DAC ’10, pages 787–792, New York,
NY, USA, 2010. ACM.

[7] UC Berkely Device Group. Bsim4. Available online:
http://www-device.eecs.berkeley.edu/bsim/?page=BSIM4.

[8] Pawan Kulshreshtha, Robert Palermo, Mohammad Mortazavi, Cyrus Bamji, and
Hakan Yalcin. Transistor-level timing analysis using embedded simulation. In
Proceedings of the 2000 IEEE/ACM international conference on Computer-aided
design, ICCAD ’00, pages 344–349, Piscataway, NJ, USA, 2000. IEEE Press.

[9] S. Raja, F. Varadi, M. Becer, and J. Geada. Transistor level gate modeling for
accurate and fast timing, noise, and power analysis. In Proceedings of the 45th
annual Design Automation Conference, DAC ’08, pages 456–461, New York, NY,
USA, 2008. ACM.

[10] Modeling and design of reliable, process variation-aware nanoelectronic device
(MODERN).

[11] Ashish Nigam. Standard cell behavior analysis and waveform set model for statis-
tical static timing analysis. Master Thesis TUDelft, pages 10 –11, june 2010.

61

http://www-device.eecs.berkeley.edu/bsim/?page=BSIM4

[12] A. Goel and S. Vrudhula. Current source based standard cell model for accurate
signal integrity and timing analysis. In Design, Automation and Test in Europe,
2008. DATE ’08, pages 574 –579, march 2008.

[13] T. El Motassadeq. CCS vs NLDM comparison based on a complete automated
correlation flow between primetime and hspice. In Electronics, Communications
and Photonics Conference (SIECPC), 2011 Saudi International, pages 1–5, april
2011.

[14] Synopsys CCS timing technical white paper, 2005. Available online:
http://www.opensourceliberty.org/ccspaper/ccs_timing_wp.pdf.

[15] Keith E. Holbert. Nodal analysis tutorial, 2009. Available online:
http://holbert.faculty.asu.edu/ece201/nodalanalysis.html.

[16] Farid N. Najm. Circuit Simulation. Wiley-IEEE Press, Hoboken, NJ, USA, 2010.

[17] L.M. Wedepohl and L. Jackson. Modified nodal analysis: an essential addition to
electrical circuit theory and analysis. Engineering Science and Education Journal,
11(3):84 –92, jun 2002.

[18] L. Pillage. Electronic Circuit & System Simulation Methods (SRE). McGraw-Hill
Companies,Incorporated, 1998.

[19] L.W. Nagel. SPICE2: a computer program to simulate semiconductor circuits.
Memorandum. Electronics Research Laboratory, College of Engineering, University
of California, 1975.

[20] B.J. Sheu, D.L. Scharfetter, P.-K. Ko, and M.-C. Jeng. BSIM: Berkeley short-
channel IGFET model for mos transistors. Solid-State Circuits, IEEE Journal of,
22(4):558 – 566, aug 1987.

[21] G.J. Coram. How to (and how not to) write a compact model in verilog-a. In
Behavioral Modeling and Simulation Conference, 2004. BMAS 2004. Proceedings
of the 2004 IEEE International, pages 97–106, oct. 2004.

[22] Wladek Grabinski Paolo Nenzi. Compact model standardization a GNU perspec-
tive. 2008.

[23] Analog and mixed-signal standard for Verilog HDL moves forward, 2000. Available
online: http://www.prnewswire.com.

[24] Diana Moncoqut. Hicum model in Spectre, 2004. Available online:
http://www.iee.et.tu-dresden.de.

[25] P. Van Der Linden. Expert C Programming: Deep C Secrets. Safari Tech Books
Online. SunSoft Press, 1994.

[26] Unniversity of Alberta. Understanding memory, 2010. Available online:
http://www.ualberta.ca/CNS/RESEARCH/LinuxClusters/mem.html.

62

http://www.opensourceliberty.org/ccspaper/ccs_timing_wp.pdf
http://holbert.faculty.asu.edu/ece201/nodalanalysis.html
http://www.prnewswire.com
http://www.iee.et.tu-dresden.de
http://www.ualberta.ca/CNS/RESEARCH/LinuxClusters/mem.html

[27] Affirma spectre circuit simulator user guide, 1999. Available online:
http://bwrc.eecs.berkeley.edu/designtools/module_design/.

[28] Sergey Sukharev. New enhancements in ADMS and Spectre CMI XML scripts.
March 2006.

[29] E.W. Cheney and W.A. Light. A Course in Approximation Theory. Graduate
Studies in Mathematics. American Mathematical Society, 2000.

[30] NanGate Website. Available online: http://www.nangate.com.

[31] Nebi Caka, Milaim Zabeli, Myzafere Limani, and Qamil Kabashi. Impact of mos-
fet parameters on its parasitic capacitances. In Proceedings of the 6th WSEAS
International Conference on Electronics, Hardware, Wireless and Optical Com-
munications, EHAC’07, pages 55–59, Stevens Point, Wisconsin, USA, 2007. World
Scientific and Engineering Academy and Society (WSEAS).

[32] S. Raja, F. Varadi, M. Becer, and J. Geada. Transistor level gate modeling for
accurate and fast timing, noise, and power analysis. In Design Automation Con-
ference, 2008. DAC 2008. 45th ACM/IEEE, pages 456 –461, june 2008.

[33] M.C. Hansen, H. Yalcin, and J.P. Hayes. Unveiling the iscas-85 benchmarks: a
case study in reverse engineering. Design Test of Computers, IEEE, 16(3):72 –80,
1999.

[34] S.S. Sapatnekar. Timing. Kluwer Academic Publishers, 2004.

[35] Brendan Hargreaves, Henrik Hult, and Sherief Reda. Within-die process variations:
how accurately can they be statistically modeled? In Proceedings of the 2008 Asia
and South Pacific Design Automation Conference, ASP-DAC ’08, pages 524–530,
Los Alamitos, CA, USA, 2008. IEEE Computer Society Press.

[36] Michel Berkelaar. Statistical delay calculation, a linear time method. 1997.

[37] Toshiyuki Shibuya. Izumi Nitta and Katsumi Homma. Statistical static timing
analysis technology. FUJITSU Sci.Tech.J., 19(3):518 –523, april 2007.

[38] A. Bjõrck. Numerical Methods for Least Squares Problems. Miscellaneous Bks.
Society for Industrial and Applied Mathematics, 1996.

[39] M. Tadeusiewicz. Modeling and stability in mos transistor circuits. In Electronics,
Circuits and Systems, 1998 IEEE International Conference on, volume 1, pages
71 –74 vol.1, 1998.

[40] J. Krumm. Circuit Analysis Methodology for Organic Transistors. 2008.

63

http://bwrc.eecs.berkeley.edu/designtools/module_design/
http://www.nangate.com

64

Appendix A A
The proposed simplified transistor model (SSTM)

1 //

//Nmos.vams

//Created 6 Feb, 2012

//Last changed 9 May, 2012

//Version 6.1 ; Author Xinyue

6 //a simple NMOS transistor

//Description: This is a simple transistor model based on the paper. It

Takes ’Vd’, ’Vg’, ’Vs’ and ’Vb’ as inputs

//The model parameters ’Cgd’, ’Cgs’, ’Cgb’, ’Cdb’, ’Csb’ are from the LUT

. Each of them is stored in an one dimension array.

//NMOS LUT horizontal axis: vds[-0.2,1.3]; vertical axis: vgs[-0.2,1.3];

step size 0.1v; 3rd dimension Isb[0,1.1]; step size 0.05v; 31 grids in

total

//PMOS LUT horizontal axis: vds[-1.3,0.2]; vertical axis: vgs[-1.3,0.2];

step size 0.1v; 3rd dimension Ibs[0,1.1]; step size 0.05v; 31 grids in

total

11 //A sensitive length parameter is added for Montecarlo Simulation

//

//use the following construct in order to use this example in other

simulators.

16 ‘include "constants.h"

‘include "discipline.h"

‘define LUTSTEP 0 .05
‘define HALFLUTSTEP 0 .025

21 ‘define ISBLUTSTEP 0 .1
‘define ISBHALFLUTSTEP 0 .05
‘define STARTGRIDVOLT −0.2
‘define ENDGRIDVOLT 1 .3
‘define SBSTARTGRIDVOLT 0

26 ‘define SBENDGRIDVOLT 1 .1
‘define GRIDSPERLINE 31
‘define ISBGRIDSPERLINE 12
‘define SMALLNUMBER 1 .38778e−25
‘define NOMLEN 50e−9

31

65

//declaration of mymodel **The order of the nodes should be consistent

with the order in netlist

module mynmos (d , g , s , b) ;
inout d , g , s , b ;
electrical d , g , s , b ;

36
//Branch definitions

branch (g , s) br_gs ;
branch (g , d) br_gd ;
branch (g , b) br_gb ;

41 branch (d , s) br_ds ;
branch (d , b) br_db ;
branch (s , b) br_sb ;

parameter real dL=0 from [−50e−9:50e−9] ;
46

//insert LUT from script

//local variables declaration

51 //define indexes. ind_gs1, ind_gs2, ind_ds1, ind_ds2 are the nearest

point on axis around Vgs and Vds, final_ind_gs1 , final_ind_gs2 ,

final_ind_ds1 , final_ind_ds2 , final_ind_sb1 , final_ind_sb2 are the

corresponding indexes after inter/extra polation

integer ind_gs1 , ind_gs2 , ind_ds1 , ind_ds2 , ind_sb1 , ind_sb2 , x1 , x2 ,
x3 , x4 , final_ind_gs1 , final_ind_gs2 , final_ind_ds1 ,

final_ind_ds2 , final_ind_sb1 , final_ind_sb2 ;
//slp are used for interpolation

real slpg , slpd ;
//------------C_x1-----C_1------C_x2-----------

56 //---------------------C_----------------------

//------------C_x3-----C_2------C_x4-----------

//Cxx[x1],Cxx[x2],Cxx[x3],Cxx[x4] are grids in LUT, which are the

nearest points around Cxx. Cxx is obtained with bilinear

interpolation from Cxx[x1],Cxx[x2],Cxx[x3],Cxx[x4]

real Cdbx1 , Cdbx2 , Cdbx3 , Cdbx4 , Cdb1 , Cdb2 , Cdb , Cgbx1 , Cgbx2 , Cgbx3

, Cgbx4 , Cgb1 , Cgb2 , Cgb , Cgdx1 , Cgdx2 , Cgdx3 , Cgdx4 , Cgd1 , Cgd2 ,
Cgd , Cgsx1 , Cgsx2 , Cgsx3 , Cgsx4 , Cgs1 , Cgs2 , Cgs , Csbx1 , Csbx2 ,
Csbx3 , Csbx4 , Csb1 , Csb2 , Csb ;

//------------Ids1x1---Ids11--------Ids1x2-----------

61 //---------------------Ids1--------------------------

//------------Ids1x3---Ids12--------Ids1x4-----------

//------------Ids2x1----Ids21-------Ids2x2-----------

//----------------------Ids2-------------------------

66 //------------Ids2x3----Ids22-------Ids2x4-----------

real Ids1x1 , Ids1x2 , Ids1x3 , Ids1x4 , Ids2x1 , Ids2x2 , Ids2x3 , Ids2x4 ,
Ids11 , Ids12 , Ids1 , Ids21 , Ids22 , Ids2 , Ids ;

//Vgs, Vds, Vsb are the voltages across the nodes of the transistor.

real Vgs , Vds , Vsb ;
//**parameters for MC simulation**

71 //MC has exactly the same variables as the statical case

66

real Idscoef_a1 , Idscoef_a2 , Idscoef_a3 , Idscoef_a4 , Idscoef_b1 ,
Idscoef_b2 , Idscoef_b3 , Idscoef_b4 , Idscoef_c1 , Idscoef_c2 ,
Idscoef_c3 , Idscoef_c4 , Idscoef_d1 , Idscoef_d2 , Idscoef_d3 ,
Idscoef_d4 ;

real Cgdcoef_a1 , Cgdcoef_a2 , Cgdcoef_a3 , Cgdcoef_a4 , Cgdcoef_b1 ,
Cgdcoef_b2 , Cgdcoef_b3 , Cgdcoef_b4 ;

real Cgscoef_a1 , Cgscoef_a2 , Cgscoef_a3 , Cgscoef_a4 , Cgscoef_b1 ,
Cgscoef_b2 , Cgscoef_b3 , Cgscoef_b4 ;

real sensIds1 , sensIds2 , sensIds3 , sensIds4 ;
76

real MCIds1x1 , MCIds1x2 , MCIds1x3 , MCIds1x4 , MCIds2x1 , MCIds2x2 ,
MCIds2x3 , MCIds2x4 , MCIds11 , MCIds12 , MCIds1 , MCIds21 , MCIds22 ,
MCIds2 , MCIds ;

real MCCgdx1 , MCCgdx2 , MCCgdx3 , MCCgdx4 , MCCgd1 , MCCgd2 , MCCgd ;
real MCCgsx1 , MCCgsx2 , MCCgsx3 , MCCgsx4 , MCCgs1 , MCCgs2 , MCCgs ;
real L_newCgate , L_newIds , L_newIds2 , L_newIds3 ;

81 real Ids1x1_norm , Ids1x2_norm , Ids1x3_norm , Ids1x4_norm ;

analog begin

//position location: Get the index value according to the input

voltage.

86 //Bilinear interpolation on variables x and y.

//fix the bug, the indexes are according to Vgs instead of Vg,

Vds instead of Vd, respectively. they have same value in NMOS,

but different in PMOS

begin

//Find the corresponding range [ind_gs1, V(gs) ,ind_gs2) according to V(

gs).

//HALFLUTSTEP=step(LUTSTEP)/2. Here we minus a number (HALFLUTSTEP-

SMALLNUMBER) to avoid overflow on grid point //SMALLNUMBER is just a

random small value

91 ind_gs1 = (V (br_gs)−(‘HALFLUTSTEP−‘SMALLNUMBER)−(
‘STARTGRIDVOLT)) /‘LUTSTEP ;

ind_gs2 = ind_gs1 + 1 ;
ind_ds1 = (V (br_ds)−(‘HALFLUTSTEP−‘SMALLNUMBER)−(

‘STARTGRIDVOLT)) /‘LUTSTEP ;
ind_ds2 = ind_ds1 + 1 ;
ind_sb1 = (V (br_sb)−(‘ISBHALFLUTSTEP−‘SMALLNUMBER)−

‘SBSTARTGRIDVOLT) /‘ISBLUTSTEP ;
96 ind_sb2 = ind_sb1 + 1 ;

//ind_gs normal case: ind_gs belongs to [0,30], which means vgs

belongs to [-0.2,1.3]

if (ind_gs2<=(‘GRIDSPERLINE−1) && ind_gs1>=0)begin
101 final_ind_gs1 = ind_gs1 ;

final_ind_gs2 = ind_gs2 ;
Vgs = V (br_gs) ;

end

//ind_ds normal case: ind_gs belongs to [0,30], which means vds

belongs to [-0.2,1.3]

106 if (ind_ds2<=(‘GRIDSPERLINE−1) && ind_ds1>=0)begin

67

final_ind_ds1 = ind_ds1 ;
final_ind_ds2 = ind_ds2 ;
Vds = V (br_ds) ;

end

111 //***extrapolation on Vgs and Vds;zero order is applied here***

// Vgs>=ENDGRIDVOLT

if (ind_gs2>=‘GRIDSPERLINE) begin
final_ind_gs1 = (‘GRIDSPERLINE−2) ;
final_ind_gs2 = (‘GRIDSPERLINE−1) ;

116 Vgs = ‘ENDGRIDVOLT ;
end

// Vds>=ENDGRIDVOLT

if (ind_ds2>=‘GRIDSPERLINE) begin
final_ind_ds1 = (‘GRIDSPERLINE−2) ;

121 final_ind_ds2 = (‘GRIDSPERLINE−1) ;
Vds = ‘ENDGRIDVOLT ;

end

//Vgs<STARTGRIDVOLT

if (ind_gs1<0)begin
126 final_ind_gs1 = 0 ;

final_ind_gs2 = 1 ;
Vgs = ‘STARTGRIDVOLT ;

end

// Vds<STARTGRIDVOLT

131 if (ind_ds1<0)begin
final_ind_ds1 = 0 ;
final_ind_ds2 = 1 ;
Vds = ‘STARTGRIDVOLT ;

end

136
//*****Assign indexes and get capacitor values from LUT

//------------Cxx[x1]-----------Cxx[x2]-----------

//-----------------------Cxx----------------------

//------------Cxx[x3]-----------Cxx[x4]-----------

141
x1 = final_ind_ds1∗‘GRIDSPERLINE + final_ind_gs1 ;
x2 = final_ind_ds1∗‘GRIDSPERLINE + final_ind_gs2 ;
x3 = final_ind_ds2∗‘GRIDSPERLINE + final_ind_gs1 ;
x4 = final_ind_ds2∗‘GRIDSPERLINE + final_ind_gs2 ;

146

Cdbx1 = cdbData [x1] ;
Cdbx2 = cdbData [x2] ;
Cdbx3 = cdbData [x3] ;

151 Cdbx4 = cdbData [x4] ;

Cgbx1 = cgbData [x1] ;
Cgbx2 = cgbData [x2] ;
Cgbx3 = cgbData [x3] ;

156 Cgbx4 = cgbData [x4] ;

Cgdx1 = cgdData [x1] ;

68

Cgdx2 = cgdData [x2] ;
Cgdx3 = cgdData [x3] ;

161 Cgdx4 = cgdData [x4] ;

Cgsx1 = cgsData [x1] ;
Cgsx2 = cgsData [x2] ;
Cgsx3 = cgsData [x3] ;

166 Cgsx4 = cgsData [x4] ;

Csbx1 = csbData [x1] ;
Csbx2 = csbData [x2] ;
Csbx3 = csbData [x3] ;

171 Csbx4 = csbData [x4] ;

//*****Assign Coefficients for MC simulation*****

Idscoef_a1 = MCids3_a [x1] ;
176 Idscoef_a2 = MCids3_a [x2] ;

Idscoef_a3 = MCids3_a [x3] ;
Idscoef_a4 = MCids3_a [x4] ;

Idscoef_b1 = MCids3_b [x1] ;
181 Idscoef_b2 = MCids3_b [x2] ;

Idscoef_b3 = MCids3_b [x3] ;
Idscoef_b4 = MCids3_b [x4] ;

Idscoef_c1 = MCids3_c [x1] ;
186 Idscoef_c2 = MCids3_c [x2] ;

Idscoef_c3 = MCids3_c [x3] ;
Idscoef_c4 = MCids3_c [x4] ;

191 Idscoef_d1 = MCids3_d [x1] ;
Idscoef_d2 = MCids3_d [x2] ;
Idscoef_d3 = MCids3_d [x3] ;
Idscoef_d4 = MCids3_d [x4] ;

196 Cgdcoef_a1 = MCCgd1_a [x1] ;
Cgdcoef_a2 = MCCgd1_a [x2] ;
Cgdcoef_a3 = MCCgd1_a [x3] ;
Cgdcoef_a4 = MCCgd1_a [x4] ;

201 Cgdcoef_b1 = MCCgd1_b [x1] ;
Cgdcoef_b2 = MCCgd1_b [x2] ;
Cgdcoef_b3 = MCCgd1_b [x3] ;
Cgdcoef_b4 = MCCgd1_b [x4] ;

206 Cgscoef_a1 = MCCgs1_a [x1] ;
Cgscoef_a2 = MCCgs1_a [x2] ;
Cgscoef_a3 = MCCgs1_a [x3] ;
Cgscoef_a4 = MCCgs1_a [x4] ;

211 Cgscoef_b1 = MCCgs1_b [x1] ;

69

Cgscoef_b2 = MCCgs1_b [x2] ;
Cgscoef_b3 = MCCgs1_b [x3] ;
Cgscoef_b4 = MCCgs1_b [x4] ;

216 //Assign indexes and get Ids values; LUT is break into 12 pieces and

stored in idsaa-idsal based on Vsb

if (ind_sb1<=0) begin

Ids1x1 = idsaa [x1] ;
Ids1x2 = idsaa [x2] ;
Ids1x3 = idsaa [x3] ;

221 Ids1x4 = idsaa [x4] ;

Ids2x1 = idsab [x1] ;
Ids2x2 = idsab [x2] ;
Ids2x3 = idsab [x3] ;

226 Ids2x4 = idsab [x4] ;
end

if (ind_sb1==1) begin

Ids1x1 = idsab [x1] ;
Ids1x2 = idsab [x2] ;

231 Ids1x3 = idsab [x3] ;
Ids1x4 = idsab [x4] ;

Ids2x1 = idsac [x1] ;
Ids2x2 = idsac [x2] ;

236 Ids2x3 = idsac [x3] ;
Ids2x4 = idsac [x4] ;

end

if (ind_sb1==2) begin

Ids1x1 = idsac [x1] ;
241 Ids1x2 = idsac [x2] ;

Ids1x3 = idsac [x3] ;
Ids1x4 = idsac [x4] ;

Ids2x1 = idsad [x1] ;
246 Ids2x2 = idsad [x2] ;

Ids2x3 = idsad [x3] ;
Ids2x4 = idsad [x4] ;

end

if (ind_sb1==3) begin

251 Ids1x1 = idsad [x1] ;
Ids1x2 = idsad [x2] ;
Ids1x3 = idsad [x3] ;
Ids1x4 = idsad [x4] ;

256 Ids2x1 = idsae [x1] ;
Ids2x2 = idsae [x2] ;
Ids2x3 = idsae [x3] ;
Ids2x4 = idsae [x4] ;

end

261 if (ind_sb1==4) begin

Ids1x1 = idsae [x1] ;
Ids1x2 = idsae [x2] ;

70

Ids1x3 = idsae [x3] ;
Ids1x4 = idsae [x4] ;

266
Ids2x1 = idsaf [x1] ;
Ids2x2 = idsaf [x2] ;
Ids2x3 = idsaf [x3] ;
Ids2x4 = idsaf [x4] ;

271 end

if (ind_sb1==5) begin

Ids1x1 = idsaf [x1] ;
Ids1x2 = idsaf [x2] ;
Ids1x3 = idsaf [x3] ;

276 Ids1x4 = idsaf [x4] ;

Ids2x1 = idsag [x1] ;
Ids2x2 = idsag [x2] ;
Ids2x3 = idsag [x3] ;

281 Ids2x4 = idsag [x4] ;
end

if (ind_sb1==6) begin

Ids1x1 = idsag [x1] ;
Ids1x2 = idsag [x2] ;

286 Ids1x3 = idsag [x3] ;
Ids1x4 = idsag [x4] ;

Ids2x1 = idsah [x1] ;
Ids2x2 = idsah [x2] ;

291 Ids2x3 = idsah [x3] ;
Ids2x4 = idsah [x4] ;

end

if (ind_sb1==7) begin

Ids1x1 = idsah [x1] ;
296 Ids1x2 = idsah [x2] ;

Ids1x3 = idsah [x3] ;
Ids1x4 = idsah [x4] ;

Ids2x1 = idsai [x1] ;
301 Ids2x2 = idsai [x2] ;

Ids2x3 = idsai [x3] ;
Ids2x4 = idsai [x4] ;

end

if (ind_sb1==8) begin

306 Ids1x1 = idsai [x1] ;
Ids1x2 = idsai [x2] ;
Ids1x3 = idsai [x3] ;
Ids1x4 = idsai [x4] ;

311 Ids2x1 = idsaj [x1] ;
Ids2x2 = idsaj [x2] ;
Ids2x3 = idsaj [x3] ;
Ids2x4 = idsaj [x4] ;

end

316 if (ind_sb1==9) begin

71

Ids1x1 = idsaj [x1] ;
Ids1x2 = idsaj [x2] ;
Ids1x3 = idsaj [x3] ;
Ids1x4 = idsaj [x4] ;

321
Ids2x1 = idsak [x1] ;
Ids2x2 = idsak [x2] ;
Ids2x3 = idsak [x3] ;
Ids2x4 = idsak [x4] ;

326 end

if (ind_sb1>=10) begin

Ids1x1 = idsak [x1] ;
Ids1x2 = idsak [x2] ;
Ids1x3 = idsak [x3] ;

331 Ids1x4 = idsak [x4] ;

Ids2x1 = idsal [x1] ;
Ids2x2 = idsal [x2] ;
Ids2x3 = idsal [x3] ;

336 Ids2x4 = idsal [x4] ;
end

//normal case of Vsb: ind_sb belongs to [0,11], which

means Vsb belongs to [0,1.1]

Vsb = V (br_sb) ;
341 final_ind_sb1 = ind_sb1 ;

final_ind_sb2 = ind_sb2 ;

//*****extrapolation on Vsb; extrapolation is done by zero order.

//Vsb<0v

346 if (ind_sb1<0)begin
Vsb = ‘SBSTARTGRIDVOLT ;
final_ind_sb1 = 0 ;
final_ind_sb2 = 1 ;

end

351 //Vsb>=1.1v

if (ind_sb2>=(‘ISBGRIDSPERLINE−1)) begin
Vsb = ‘SBENDGRIDVOLT ;
final_ind_sb1 = ‘ISBGRIDSPERLINE−2;
final_ind_sb2 = ‘ISBGRIDSPERLINE−1;

356 end

//MC simulation: Compute the sensitivity according to the

coefficients

//sens = a*dL^3 + b*dL^2 + c*dL + d; dL is the process

variation

L_newIds=1/(‘NOMLEN + dL) ;
361 L_newIds2=L_newIds∗L_newIds ;

L_newIds3=L_newIds2∗L_newIds ;
L_newCgate=‘NOMLEN + dL ;

//length sensitivity for Ids is based on Vsb=0

366 Ids1x1_norm = idsaa [x1] ;

72

Ids1x2_norm = idsaa [x2] ;
Ids1x3_norm = idsaa [x3] ;
Ids1x4_norm = idsaa [x4] ;

371 sensIds1=Idscoef_a1∗L_newIds3 + Idscoef_b1∗L_newIds2 +
Idscoef_c1∗L_newIds + Idscoef_d1 − Ids1x1_norm ;

sensIds2=Idscoef_a2∗L_newIds3 + Idscoef_b2∗L_newIds2 +
Idscoef_c2∗L_newIds + Idscoef_d2 − Ids1x2_norm ;

sensIds3=Idscoef_a3∗L_newIds3 + Idscoef_b3∗L_newIds2 +
Idscoef_c3∗L_newIds + Idscoef_d3 − Ids1x3_norm ;

sensIds4=Idscoef_a4∗L_newIds3 + Idscoef_b4∗L_newIds2 +
Idscoef_c4∗L_newIds + Idscoef_d4 − Ids1x4_norm ;

376
MCIds1x1=Ids1x1+sensIds1 ;
MCIds1x2=Ids1x2+sensIds2 ;
MCIds1x3=Ids1x3+sensIds3 ;
MCIds1x4=Ids1x4+sensIds4 ;

381
MCIds2x1=Ids2x1+sensIds1 ;
MCIds2x2=Ids2x2+sensIds2 ;
MCIds2x3=Ids2x3+sensIds3 ;
MCIds2x4=Ids2x4+sensIds4 ;

386
MCCgdx1=Cgdcoef_a1∗L_newCgate + Cgdcoef_b1 ;
MCCgdx2=Cgdcoef_a2∗L_newCgate + Cgdcoef_b2 ;
MCCgdx3=Cgdcoef_a3∗L_newCgate + Cgdcoef_b3 ;
MCCgdx4=Cgdcoef_a4∗L_newCgate + Cgdcoef_b4 ;

391
MCCgsx1=Cgscoef_a1∗L_newCgate + Cgscoef_b1 ;
MCCgsx2=Cgscoef_a2∗L_newCgate + Cgscoef_b2 ;
MCCgsx3=Cgscoef_a3∗L_newCgate + Cgscoef_b3 ;
MCCgsx4=Cgscoef_a4∗L_newCgate + Cgscoef_b4 ;

396
/****Bilinear interpolate 5 capacitors and Ids, according to

Vgs and Vds***/

slpg=(Vgs−(‘STARTGRIDVOLT+final_ind_gs1∗‘LUTSTEP)) /
‘LUTSTEP ;

slpd=(Vds−(‘STARTGRIDVOLT+final_ind_ds1∗‘LUTSTEP)) /
‘LUTSTEP ;

401 //Cdb keeps same in MC

Cdb1 = Cdbx1+slpg∗(Cdbx2−Cdbx1) ;
Cdb2 = Cdbx3+slpg∗(Cdbx4−Cdbx3) ;
Cdb = Cdb1+slpd∗(Cdb2−Cdb1) ;

406 //Csb can be ignored in MC

Csb1 = Csbx1+slpg∗(Csbx2−Csbx1) ;
Csb2 = Csbx3+slpg∗(Csbx4−Csbx3) ;
Csb = Csb1+slpd∗(Csb2−Csb1) ;

411 //interpolation on Cgd & MCCgd

Cgd1 = Cgdx1+slpg∗(Cgdx2−Cgdx1) ;

73

Cgd2 = Cgdx3+slpg∗(Cgdx4−Cgdx3) ;
Cgd = Cgd1+slpd∗(Cgd2−Cgd1) ;
MCCgd1 = MCCgdx1+slpg∗(MCCgdx2−MCCgdx1) ;

416 MCCgd2 = MCCgdx3+slpg∗(MCCgdx4−MCCgdx3) ;
MCCgd = MCCgd1+slpd∗(MCCgd2−MCCgd1) ;

//interpolation on Cgs & MCCgs

Cgs1 = Cgsx1+slpg∗(Cgsx2−Cgsx1) ;
421 Cgs2 = Cgsx3+slpg∗(Cgsx4−Cgsx3) ;

Cgs = Cgs1+slpd∗(Cgs2−Cgs1) ;
MCCgs1 = MCCgsx1+slpg∗(MCCgsx2−MCCgsx1) ;
MCCgs2 = MCCgsx3+slpg∗(MCCgsx4−MCCgsx3) ;
MCCgs = MCCgs1+slpd∗(MCCgs2−MCCgs1) ;

426
//interpolation on Cgb & MCCgb

Cgb1 = Cgbx1+slpg∗(Cgbx2−Cgbx1) ;
Cgb2 = Cgbx3+slpg∗(Cgbx4−Cgbx3) ;
Cgb = Cgb1+slpd∗(Cgb2−Cgb1) ;

431
//interpolation on Ids

Ids11 = Ids1x1+slpg∗(Ids1x2−Ids1x1) ;
Ids12 = Ids1x3+slpg∗(Ids1x4−Ids1x3) ;
Ids1 = Ids11+slpd∗(Ids12−Ids11) ;

436 MCIds11 = MCIds1x1+slpg∗(MCIds1x2−MCIds1x1) ;
MCIds12 = MCIds1x3+slpg∗(MCIds1x4−MCIds1x3) ;
MCIds1 = MCIds11+slpd∗(MCIds12−MCIds11) ;

Ids21 = Ids2x1+slpg∗(Ids2x2−Ids2x1) ;
441 Ids22 = Ids2x3+slpg∗(Ids2x4−Ids2x3) ;

Ids2 = Ids21+slpd∗(Ids22−Ids21) ;
MCIds21 = MCIds2x1+slpg∗(MCIds2x2−MCIds2x1) ;
MCIds22 = MCIds2x3+slpg∗(MCIds2x4−MCIds2x3) ;
MCIds2 = MCIds21+slpd∗(MCIds22−MCIds21) ;

446
Ids = Ids1+(Vsb − final_ind_sb1∗‘ISBLUTSTEP) ∗ ((Ids2−Ids1) /

‘ISBLUTSTEP) ;
MCIds = MCIds1+(Vsb − final_ind_sb1∗‘ISBLUTSTEP) ∗ ((MCIds2−

MCIds1) /‘ISBLUTSTEP) ;

//for debugging

451 // file =$fopen("nmos.log","w");

// $fstrobe(file,"dL is %e",dL);

// $fstrobe(file,"Cgs1 is %e", Cgsx1);

// $fstrobe(file,"MCCgs1 is %e", MCCgsx1);

// ...

456 // $fclose(file);

end //begin block

//branch sourses contributions

461 begin

I (br_gd) <+ ddt (V (br_gd)) ∗MCCgd ;
I (br_gs) <+ ddt (V (br_gs)) ∗MCCgs ;

74

I (br_ds) <+ MCIds ; //+ Ides

I (br_gb) <+ ddt (V (br_gb)) ∗Cgb ;
466 I (br_sb) <+ ddt (V (br_sb)) ∗Csb ;

I (br_db) <+ ddt (V (br_db)) ∗Cdb ;

end

end //analog

471 endmodule

75

76

Appendix B B
Bash scripts of load LUTs into code

#!/bin/sh

#pass the length & width from the configuration file

4 while read curline ; do

echo $curline > tmpfilen

#read N_len N_wid

N_len=‘awk ’{ print $1} ’ tmpfilen ‘
N_wid=‘awk ’{ print $2} ’ tmpfilen ‘

9 #the path for SSTM ../Model/Nmos.vams

cp . . / Model/Nmos . vams .
sed −i "s/mynmos/nmos${N_len}${N_wid}/g" Nmos . vams
cp . . / VTL_nmos_char/L"$N_len"n_Wn"$N_wid"n/idsData . rpt .
LUTSIZE=960

14 #split IdsData into 12 files Idsaa-Idsal

split −l 32 idsData . rpt ids

#insert parameters Idsaa-Idsal to new model

for i in ‘ ls | grep idsa ‘
do

19 j="‘cat $i‘"

sed −i "/\/\/insert LUT from script/i\ parameter real ‘echo $i

‘[0:$LUTSIZE]={‘echo $j‘};" Nmos . vams
done

rm ids∗
#insert parameters Cdb, Cgb, Cgd, Cgs, Csb to new model

24 for i in cdbData . rpt cgbData . rpt cgdData . rpt cgsData . rpt csbData . rpt
do

cp . . / VTL_nmos_char/L"$N_len"n_Wn"$N_wid"n/$i .
#Some of the capacitors have negative values! turn them into

positive values

sed ’s/−//g ’ $i > . / $i_2
29 sed ’s/e/e−/g ’ $i_2 > $i

j=‘cat $i ‘
#set parameters without extension

wo_ext=‘basename $i . rpt ‘ ;
sed −i "/\/\/insert LUT from script/i\ parameter real ‘echo

$wo_ext‘[0:$LUTSIZE]={‘echo $j‘};" Nmos . vams
34 rm $i_2

rm $i

done

#***** statistical extension *****

#insert MC coef into new model

39 for i in ‘ ls . . / VTL_nmos_char/L"$N_len"n_Wn"$N_wid"n | grep MC ‘
do

77

j=‘cat . . / VTL_nmos_char/L"$N_len"n_Wn"$N_wid"n/$i ‘

#set parameters without extension

44 wo_ext=‘basename $i . rpt ‘ ;
sed −i "/\/\/insert LUT from script/i\ parameter real ‘echo

$wo_ext‘[0:$LUTSIZE]={‘echo $j‘};" Nmos . vams
done

#turn every ’,}’ into ’}’

49 sed −i ’s / ,} ; / } ; / g ’ Nmos . vams
mv Nmos . vams . . / MCfiles/nmosMC${N_len}${N_wid } . vams

done < . . / conf_n
rm tmpfilen

78

Appendix C C
Matlab scripts for generating polynomial coefficients LUT

1 %This script is used for generate the coefficients for 3rd order

polynomial curve.

%This file is used for Nmos width=90nm. The characterization LUTs are

stored in path: L(length)n_Wn90n/*Data.rpt

mth=0;
ids45=csvread (’L45n_Wn90n/idsData.rpt’ ,31∗mth , 0 , [3 1 ∗ mth 0 31∗mth+30 30]) ;
ids47=csvread (’L47n_Wn90n/idsData.rpt’ ,31∗mth , 0 , [3 1 ∗ mth 0 31∗mth+30 30]) ;

6 ids48=csvread (’L48n_Wn90n/idsData.rpt’ ,31∗mth , 0 , [3 1 ∗ mth 0 31∗mth+30 30]) ;
ids49=csvread (’L49n_Wn90n/idsData.rpt’ ,31∗mth , 0 , [3 1 ∗ mth 0 31∗mth+30 30]) ;
ids50=csvread (’L50n_Wn90n/idsData.rpt’ ,31∗mth , 0 , [3 1 ∗ mth 0 31∗mth+30 30]) ;
ids51=csvread (’L51n_Wn90n/idsData.rpt’ ,31∗mth , 0 , [3 1 ∗ mth 0 31∗mth+30 30]) ;
ids52=csvread (’L52n_Wn90n/idsData.rpt’ ,31∗mth , 0 , [3 1 ∗ mth 0 31∗mth+30 30]) ;

11 ids53=csvread (’L53n_Wn90n/idsData.rpt’ ,31∗mth , 0 , [3 1 ∗ mth 0 31∗mth+30 30]) ;
ids55=csvread (’L55n_Wn90n/idsData.rpt’ ,31∗mth , 0 , [3 1 ∗ mth 0 31∗mth+30 30]) ;

Cgd45=csvread (’L45n_Wn90n/cgdData.rpt’ , 0 , 0 , [0 0 30 3 0]) ;
Cgd47=csvread (’L47n_Wn90n/cgdData.rpt’ , 0 , 0 , [0 0 30 3 0]) ;

16 Cgd48=csvread (’L48n_Wn90n/cgdData.rpt’ , 0 , 0 , [0 0 30 3 0]) ;
Cgd49=csvread (’L49n_Wn90n/cgdData.rpt’ , 0 , 0 , [0 0 30 3 0]) ;
Cgd50=csvread (’L50n_Wn90n/cgdData.rpt’ , 0 , 0 , [0 0 30 3 0]) ;
Cgd51=csvread (’L51n_Wn90n/cgdData.rpt’ , 0 , 0 , [0 0 30 3 0]) ;
Cgd52=csvread (’L52n_Wn90n/cgdData.rpt’ , 0 , 0 , [0 0 30 3 0]) ;

21 Cgd53=csvread (’L53n_Wn90n/cgdData.rpt’ , 0 , 0 , [0 0 30 3 0]) ;
Cgd55=csvread (’L55n_Wn90n/cgdData.rpt’ , 0 , 0 , [0 0 30 3 0]) ;

%Capacitance should be positive!!!!

abs_Cgd45=abs (Cgd45) ;
26 abs_Cgd47=abs (Cgd47) ;

abs_Cgd48=abs (Cgd48) ;
abs_Cgd49=abs (Cgd49) ;
abs_Cgd50=abs (Cgd50) ;
abs_Cgd51=abs (Cgd51) ;

31 abs_Cgd52=abs (Cgd52) ;
abs_Cgd53=abs (Cgd53) ;
abs_Cgd55=abs (Cgd55) ;

Cgs45=csvread (’L45n_Wn90n/cgsData.rpt’ , 0 , 0 , [0 0 30 3 0]) ;
36 Cgs47=csvread (’L47n_Wn90n/cgsData.rpt’ , 0 , 0 , [0 0 30 3 0]) ;

Cgs48=csvread (’L48n_Wn90n/cgsData.rpt’ , 0 , 0 , [0 0 30 3 0]) ;
Cgs49=csvread (’L49n_Wn90n/cgsData.rpt’ , 0 , 0 , [0 0 30 3 0]) ;
Cgs50=csvread (’L50n_Wn90n/cgsData.rpt’ , 0 , 0 , [0 0 30 3 0]) ;
Cgs51=csvread (’L51n_Wn90n/cgsData.rpt’ , 0 , 0 , [0 0 30 3 0]) ;

41 Cgs52=csvread (’L52n_Wn90n/cgsData.rpt’ , 0 , 0 , [0 0 30 3 0]) ;

79

Cgs53=csvread (’L53n_Wn90n/cgsData.rpt’ , 0 , 0 , [0 0 30 3 0]) ;
Cgs55=csvread (’L55n_Wn90n/cgsData.rpt’ , 0 , 0 , [0 0 30 3 0]) ;

%Capacitance should be positive!!!!

46 abs_Cgs45=abs (Cgs45) ;
abs_Cgs47=abs (Cgs47) ;
abs_Cgs48=abs (Cgs48) ;
abs_Cgs49=abs (Cgs49) ;
abs_Cgs50=abs (Cgs50) ;

51 abs_Cgs51=abs (Cgs51) ;
abs_Cgs52=abs (Cgs52) ;
abs_Cgs53=abs (Cgs53) ;
abs_Cgs55=abs (Cgs55) ;

56 Cgb45=csvread (’L45n_Wn90n/cgbData.rpt’ , 0 , 0 , [0 0 30 3 0]) ;
Cgb47=csvread (’L47n_Wn90n/cgbData.rpt’ , 0 , 0 , [0 0 30 3 0]) ;
Cgb48=csvread (’L48n_Wn90n/cgbData.rpt’ , 0 , 0 , [0 0 30 3 0]) ;
Cgb49=csvread (’L49n_Wn90n/cgbData.rpt’ , 0 , 0 , [0 0 30 3 0]) ;
Cgb50=csvread (’L50n_Wn90n/cgbData.rpt’ , 0 , 0 , [0 0 30 3 0]) ;

61 Cgb51=csvread (’L51n_Wn90n/cgbData.rpt’ , 0 , 0 , [0 0 30 3 0]) ;
Cgb52=csvread (’L52n_Wn90n/cgbData.rpt’ , 0 , 0 , [0 0 30 3 0]) ;
Cgb53=csvread (’L53n_Wn90n/cgbData.rpt’ , 0 , 0 , [0 0 30 3 0]) ;
Cgb55=csvread (’L55n_Wn90n/cgbData.rpt’ , 0 , 0 , [0 0 30 3 0]) ;

66 %Capacitance should be positive!!!!

abs_Cgb45=abs (Cgb45) ;
abs_Cgb47=abs (Cgb47) ;
abs_Cgb48=abs (Cgb48) ;
abs_Cgb49=abs (Cgb49) ;

71 abs_Cgb50=abs (Cgb50) ;
abs_Cgb51=abs (Cgb51) ;
abs_Cgb52=abs (Cgb52) ;
abs_Cgb53=abs (Cgb53) ;
abs_Cgb55=abs (Cgb55) ;

76
L=[45e−9 ,47e−9 ,48e−9 ,49e−9 ,51e−9 ,52e−9 ,53e−9 ,55e−9] ;
L_new=1./L ;

%cat(DIM, A1, A2, ...) i.e. ’sens’ has three dimensions

81 sens=cat (3 , ids45 , ids47 , ids48 , ids49 , ids51 , ids52 , ids53 , ids55) ;

Cgssens=cat (3 , abs_Cgs45 , abs_Cgs47 , abs_Cgs48 , abs_Cgs49 , abs_Cgs51 ,
abs_Cgs52 , abs_Cgs53 , abs_Cgs55) ;

Cgdsens=cat (3 , abs_Cgd45 , abs_Cgd47 , abs_Cgd48 , abs_Cgd49 , abs_Cgd51 ,
abs_Cgd52 , abs_Cgd53 , abs_Cgd55) ;

86
% sens = a*L_new^3 + b*L_new^2 + c*L_new + d

for i=1:31
for j=1:31
imsens=[sens (i , j , 1) , sens (i , j , 2) , sens (i , j , 3) , sens (i , j , 4) , sens (i , j , 5) ,

sens (i , j , 6) , sens (i , j , 7) , sens (i , j , 8)] ;
91

80

coef=polyfit (L_new , imsens , 3) ;
%used for CSVwrite

Idscoef (i , j , 1)=coef (1) ;
Idscoef (i , j , 2)=coef (2) ;

96 Idscoef (i , j , 3)=coef (3) ;
Idscoef (i , j , 4)=coef (4) ;

Cgdimsens=[Cgdsens (i , j , 1) , Cgdsens (i , j , 2) , Cgdsens (i , j , 3) , Cgdsens (i , j
, 4) , Cgdsens (i , j , 5) , Cgdsens (i , j , 6) , Cgdsens (i , j , 7) , Cgdsens (i , j , 8)] ;

Cgsimsens=[Cgssens (i , j , 1) , Cgssens (i , j , 2) , Cgssens (i , j , 3) , Cgssens (i , j
, 4) , Cgssens (i , j , 5) , Cgssens (i , j , 6) , Cgssens (i , j , 7) , Cgssens (i , j , 8)] ;

101
Cgdcoef=polyfit (L , Cgdimsens , 1) ;
Cgdcoef2(i , j , 1)=Cgdcoef (1) ;
Cgdcoef2(i , j , 2)=Cgdcoef (2) ;

106 Cgscoef=polyfit (L , Cgsimsens , 1) ;
Cgscoef2(i , j , 1)=Cgscoef (1) ;
Cgscoef2(i , j , 2)=Cgscoef (2) ;

%the estimated current or capacitances

111 Idsnew=polyval (coef , L_new) ;
Cgdnew=polyval (Cgdcoef , L) ;
Cgsnew=polyval (Cgscoef , L) ;
end

end

116
csvwrite(’MCids3_a.rpt’ , Idscoef (: , : , 1)) ;
csvwrite(’MCids3_b.rpt’ , Idscoef (: , : , 2)) ;
csvwrite(’MCids3_c.rpt’ , Idscoef (: , : , 3)) ;
csvwrite(’MCids3_d.rpt’ , Idscoef (: , : , 4)) ;

121

csvwrite(’MCCgd1_a.rpt’ , Cgdcoef2 (: , : , 1)) ;
csvwrite(’MCCgd1_b.rpt’ , Cgdcoef2 (: , : , 2)) ;

126 csvwrite(’MCCgs1_a.rpt’ , Cgscoef2 (: , : , 1)) ;
csvwrite(’MCCgs1_b.rpt’ , Cgscoef2 (: , : , 2)) ;

81

82

Appendix D D
Distributions of relative delay and output slew errors for standard gate compared with
BSIM4 considering all combinations of input slew and output capacitances.

83

84

	Abstract
	Acknowledgments
	Introduction
	The Main Problem
	Thesis Goal
	Thesis Outline

	Literature Review
	Composite Current Source (CCS) model for STA
	Transistor level circuit simulation

	Simplified Transistor Model Implementation
	Compact model
	Verilog-AMS
	Compiled Model Interface (CMI)
	Translator from Verilog-AMS to C
	Automatic Device Model Synthesizer (ADMS) tool
	Spectre Verilog-AMS interpreter

	Model Implementation
	Loading Lookup Tables (LUTs)
	Interpolation of intrinsic capacitances and Ids
	Procedure for model development

	Deterministic Timing Analysis
	Direct Current (DC) analysis on transistor model
	Transient analysis on transistor model
	Transient analysis on single standard logic gate
	Transient analysis on the critical path of International Symposium on Circuits and Systems (ISCAS) benchmark circuits

	Statistical Timing Analysis
	The sensitivity of the transistor model
	The length sensitivity of the transistor model
	Fixed length sensitivity
	The proposed scheme i.e., polynomial curve fitting for the length sensitivity

	Monte Carlo simulation of the proposed transistor model
	Experimental Results
	Monte Carlo Simulation on Single Gate
	Monte Carlo Simulation on Inverter Chain

	Conclusion
	Thesis contribution
	Thesis work summary
	Future work

	Appendix A
	Appendix B
	Appendix C
	Appendix D

