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[1] The Budyko curve is often used to estimate the actual evaporation as a function of the
aridity index in a catchment. Different empirical equations exist to describe this relationship;
however, these equations have very limited physical background. The model concept
presented in this paper is physically based and uses only measurable parameters. It makes
use of two types of evaporation: interception and transpiration. It assumes that interception can
be modeled as a threshold process on a daily time scale. If multiplied with the rainfall
distribution function, integrated, and multiplied with the expected number of rain days per
month, the monthly interception is obtained. In a similar way, the monthly interception can be
upscaled to annual interception. Analogous to the interception process, transpiration can
be modeled as a threshold process at a monthly time scale and can be upscaled by integration
andmultiplicationwith the expected number of rainmonths. The expected rain days permonth
are modeled in two ways: as a fixed proportion of the monthly rainfall and as a power
function based on Markov properties of rainfall. The latter is solved numerically. It appears
that on an annual basis the analytical model does not differ much from the numerical solution.
Hence, the analytical model is used and applied on 10 locations in different climates.
This paper shows that the empirical Budyko curve can be constructed on the basis of
measurable parameters representing evaporation threshold values and the expected
number of rain days and rain months and, in addition, a monthly moisture
carryover amount for semiarid zones.
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1. Introduction

[2] In water resources modeling the Budyko curve is
often used to simulate evaporation as a function of an
aridity index in a simple supply-demand framework. In
some locations of the world, annual evaporation may
approach annual precipitation. This occurs if there is always
sufficient energy available to evaporate the precipitation.
Such locations are moisture constrained. In other locations,
annual evaporation may approach potential evaporation.
This happens if the available energy is less than the required
energy to evaporate the annual precipitation. These loca-
tions are energy constrained. Depending on the dryness of
the climate, either the available water or the available
energy is the limiting factor.
[3] The Budyko curve is based on two balance equations:

the water balance and the energy balance [Arora, 2002]:

dS

dt
¼ P � E � Q ð1Þ

Rn ¼ rlE þ H þ G ð2Þ

where S is the water storage, P the precipitation, E actual
evaporation, Q the catchment runoff, Rn the net radiation, l
the latent heat of vaporization, H the sensible heat flux, and
G the ground heat flux. On an annual time scale we can
assume that the water storage change is negligible (dS/dt = 0)
and that the net ground heat flux approaches zero (G = 0).
By dividing equation (2) by equation (1) we obtain with
Pa = Ea + Qa where the subscript a indicates annual values:

Rn

Pa

¼ rlEa

Pa

þ H

Pa

ð3Þ

If we successively define the annual potential evaporation as
rlEp = Rn (where Arora [2002] interprets potential
evaporation as all energy being converted into evaporation
and none in heating) and define the Bowen ratio asBr =H/rlEa
we obtain

Ep

Pa

¼ Ea

Pa

þ BrEa

Pa

¼ f ¼ Ea

Pa

1þ Brð Þ ð4Þ

with f the aridity index.
[4] Since the Bowen ratio can also be expressed as a

function of the aridity index [Arora, 2002], equation (4) can
be rewritten as

Ea

Pa

¼ f
1þ f fð Þ ¼ F fð Þ ð5Þ
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[5] A lot of studies have been done on finding this
relation. Classical studies were done by Schreiber [1904],
Ol’dekop [1911], Budyko [1974], Turc [1954], and Pike
[1964]. Their equations are summarized in Table 1 and
plotted in Figure 1, with on the x axis the aridity index,
which expresses the ratio of annual potential evaporation by
annual precipitation (Ep/Pa). Turc’s [1954] curve is not
shown in Figure 1, because it is similar to Pike’s [1964] curve.

The observations are from several water balance models with
different catchment sizes [Perrin et al., 2007; Samuel et al.,
2008; C. Jothityangkoon and and M. Sivapalan, Framework
for exploration of climatic and landscape controls on catch-
ment water balance, with emphasis on inter-annual variability,
submitted to Journal of Hydrology, 2008; H. H. G. Savenije,
Lecture notes on hydrology of catchments, rivers and deltas,
Delft University of Technology, 2003].
[6] Building on these almost fully empirical relationships,

other authors attempted to incorporate more physics in the
equations. For example,Choudhury [1999] added net radiation
and a calibration factor a, Zhang et al. [2001, 2004] found a
model parameter, w, describing the integrated effects of catch-
ment characteristics like vegetation cover, soil properties and
catchment topography. Yang et al. [2006, 2008] added a
catchment parameter, Donohue et al. [2007] tried to include
vegetation dynamics, andMilly [1993],Porporato et al. [2004],
and Rodrı́guez-Iturbe and Porporato [2004] developed a sto-
chastic model, that incorporated the maximum storage capacity.
However, these relationships were still not fully physically
based. Even the equation of Yang et al. [2008], who found an
analytical derivation for the Budyko curve where they included
a parameter n, representing catchment characteristics, con-
tains a calibration factor. This extra parameter is a collection

Table 1. Different Budyko Curves as a Function of the Aridity

Index f

Equation Reference

Ea

Pa
= 1 � exp�f Schreiber [1904]

Ea

Pa
= f tanh(1/f) Ol’dekop [1911]

Ea

Pa
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:9þ 1=fð Þ2
p Turc [1954]

Ea

Pa
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 1=fð Þ2
p Pike [1964]

Ea

Pa
= [f tanh(1/f)(1 � exp�f)]0.5 Budyko [1974]

Ea

Pa
¼ 1� f � g

g
f�1

exp�g

G g
fð Þ � G g

f;gð Þ Porporato et al. [2004]

Figure 1. Different representations of the Budyko curves and some observations. The 1:1 limit
expresses the limitation by available energy (Ep < Pa), and the horizontal limit expresses the limitation by
available water (Ep > Pa).
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of all kinds of catchment characteristics and is therefore
difficult to determine or to measure. The aim of this paper
is to find an analytical derivation of the Budyko curve based
on a conceptual model and with only measurable parameters.
[7] The derivation considers evaporation as the mecha-

nism that feeds water back to the atmosphere and that
includes all evaporative processes as defined by, e.g.,
Shuttleworth [1993]:

E ¼ Ei þ Et þ Eo þ Es ð6Þ

Hence, evaporation includes evaporation from interception
(Ei), transpiration (Et), from open water (Eo), and from the
soil (Es). Interception is the evaporation from the entire wet
surface, so not only the canopy, but also the understorey, the
forest floor, and the top layer of the soil. Although the latter
seems to have an overlap with soil evaporation, we
distinguish them by the fact that soil evaporation refers to
rainwater that is stored in the soil and is connected with the
root zone [de Groen and Savenije, 2006]. In this paper we
assume that evaporation from the deeper soil is not
significant or can be combined with evaporation from
interception. Open water evaporation is mainly important in
areas where for example great lakes exist and is therefore

not considered in this paper. Hence, the following equation
is used to calculate total evaporation:

E ¼ Ei þ Et ð7Þ

[8] An important distinction between the different types
of evaporation is the time scale of the underlying processes.
For example, interception is a process that has a short time
scale in the order of 1 day or a few days. Generally, canopy
interception has a very short time scale (less than 1 day),
which can be observed by the fact that after a rainfall event
the canopy is dry within a couple of hours. Forest floor
interception, on the other hand, has a somewhat larger time
scale, since it may take more time (one to several days) to
dry the forest floor [Gerrits et al., 2007; Baird and Wilby,
1999]. The time scale is estimated by dividing the stock by
the flux. In the case of interception the stock amounts to a
few millimeters and the evaporative flux is a few milli-
meters per day, resulting in the conclusion that interception
has a time scale in the order of 1 day. Transpiration on the
other hand has a much longer time scale [e.g., Dolman and
Gregory, 1992; Savenije, 2004; Scott et al., 1995]. For
transpiration the stock is in the order of tens to hundreds
of millimeters, while the flux is a few millimeters per day

Figure 2. Stepwise integration from daily interception to annual interception and from monthly
transpiration to annual transpiration.
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Gerrits et al. [2009] and Baird and Wilby [1999], resulting
in a time scale in the order of month(s).

2. Methodology

[9] When creating a model, it is important to model the
different processes at the right time scale. If one wants to
make a monthly interception model, it is imperative to use
daily information on the precipitation. For the total amount
of interception, it is important to know the rainfall intensity
and the time between rainfall events. It makes a large
difference if monthly rainfall consists of many small events,
or a few very large events. A monthly interception model
does not necessarily require the actual daily rainfall data,
but it does need information on the daily rainfall distribution
(e.g., Markov properties). This is the main idea behind the
proposed model: we model the evaporation process at the
time scale on which it occurs and upscale it by making use
of the temporal characteristics of the rainfall.
[10] In Figure 2 an overview of the model is shown. At a

daily time scale interception can be modeled as a simple
threshold process: all rainwater is intercepted as long as the
storage capacity is not exceeded. Hereafter water will
infiltrate or run off (see experiments of, e.g., Deguchi et
al. [2006], Helvey and Patric [1965], Rutter et al. [1971],
and Viville et al. [1993]). When we have information on
how the rainfall is distributed over the month it is possible
to upscale daily interception to monthly interception. Anal-
ogously, we can upscale monthly interception to annual
interception, if we have information on how monthly
rainfall is distributed over the year.
[11] Similar to interception, we canmodel transpiration as a

threshold process at a monthly time scale as a function of net
precipitation (rainfall minus interception). If the temporal
characteristics of the net rainfall are known, we can upscale
monthly transpiration to annual transpiration. Finally, sum-
ming annual interception and transpiration gives an expression
for annual evaporation as a function of annual precipitation.
[12] In the following sections, the model will be de-

scribed in more detail. In section 3 an analytical derivation
of the model is presented. For the analytical solution we had
to simplify the Markov properties of the daily rainfall. In
section 4 we derive a model that takes full account of the
Markov properties. Both the analytical and numerical der-
ivations are carried out with the mathematical software
package MAPLE 9.5 (Waterloo Maple Inc.).

[13] For this study ten locations in different parts of the
world have been investigated. In Table 2 the characteristics
of the locations are given. These ten locations have been
chosen because both climate data and Markov coefficients
were available. In the last column the available time series
are shown together with the number of years used in the
analysis. Only those years have been used that had complete
monthly rainfall series.
[14] The monthly rainfall data have been obtained from

the Global Historical Climatology Network (GHCN) data-
base, downloadable from http://climexp.knmi.nl. The annual
potential evaporation data has been retrieved from the
AHN, Remote Sensing and Image Research Center (Chiba
University), downloadable from http://www-cger.nies.go.jp/
grid-e/. The potential evaporation has been calculated with
the Priestley-Taylor method [Priestley and Taylor, 1972].

3. Analytical Derivation Without Markov
Properties

3.1. Monthly Interception Equation (Analytical)

[15] On a daily basis, interception is a typical threshold
process [e.g., Savenije, 1997, 2004]. Rainwater is intercepted
by the canopy, the forest floor, or any other body as long as the
storage capacity is not exceeded. When the storage capacity is
reached maximum interception is achieved. Hence daily
evaporation from interception (Ei,d) can be modeled as

Ei;d ¼ min Di;d ;Pd

� �
ð8Þ

here Di,d is the daily interception threshold [L T�1], and Pd

the daily rainfall on a rain day [L T�1] (see Figure 2a).
[16] Since we want to model interception on a monthly

time scale, we have to make use of daily rainfall character-
istics. As shown by many authors [Sivapalan and Blöschl,
1998; Todorovic and Woolhiser, 1975; Woolhiser et al.,
1993; de Groen and Savenije, 2006], the probability distri-
bution of rainfall on a rain day can be described as

fi;d Pdð Þ ¼ 1

b
exp

�Pd

b

� �
ð9Þ

b [L T�1] being the scaling factor, equal to the expected
rainfall on a rain day, which can be expressed as

b ¼ Pm=E nr;djnm
� �

ð10Þ

Table 2. Characteristics of Investigated Locations in This Paper

Place Location Altitude (m) Pa
a (mm/a) Ep

b (mm/a) Data Availability Pc

Harare (Zimbabwe) 17.9�S, 31.1�E 1500 793.8 1319 1950–1995 (44)
Masvingo (Zimbabwe) 20.0�S, 30.9�E 1100 624.9 1344 1951–1996 (44)
Bulawayo (Zimbabwe) 20.2�S, 28.6�E 1340 597.0 1378 1950–1996 (45)
Peters Gate (South-Africa) 34.0�S, 18.6�E 37 524.9 1051 1951–2006 (50)
Hyderabad (India) 17.5�N, 78.5�E 545 785.6 1512 1871–2006 (121)
Indianapolis (Indiana, USA) 39.7�N, 86.3�W 241 1024.5 816 1861–2007 (141)
Kansas City (Missouri, USA) 39.3�N, 94.7�W 297 928.6 841 1871–2003 (121)
Sheridan (Wyoming, USA) 44.8�N, 106.8�W 1144 381.3 642 1894–2004 (98)
Tallahassee (Florida, USA) 30.4�N, 84.4�W 17 1503.7 1139 1886–2005 (114)
Lyamungu (Tanzania) 3.2�S, 37.3�E 1337 1586.9 1567 1936–2003 (67)

aGlobal Historical Climatology Network (GHCN) version 2 database.
bAHN, Remote Sensing and Image Research Center.
cNumber of years is given in parentheses.
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with Pm [L T�1] being the monthly rainfall and nr,d and nm
the number of rain days per month and amount of days per
month, respectively.
[17] Multiplying equations (8) and (9) [de Groen, 2002]

and integrating with respect to Pd from zero to Di,d (events
which are too small to fill the storage capacity) and
subsequently from Di,d to infinity (events which are larger
than the storage capacity) leads to the average interception
per day. Successively, multiplying the average interception
per day with the expected rain days per month leads to
equation (11), which is plotted in Figure 2b:

Ei;m ¼ E nr;d jnm
� � Z 1

0

Ei;d � fi;d Pdð ÞdPd

¼ Pm 1� exp
�Di;d

b

� �� �
ð11Þ

If combined with equation (10), Di,d/b is equal to the
potential amount of monthly interception divided by the
monthly rainfall, which is a sort of aridity index, fi,m [�].
Equation (11) can then be rewritten as

Ei;m ¼ Pm 1� exp �fi;m

� �� �
ð12Þ

3.2. Annual Interception Equation (Analytical)

[18] To upscale monthly interception to annual intercep-
tion, we make use of the probability distribution of rainfall
in a rain month, which can also be described by an
exponential function:

fi;m Pmð Þ ¼ 1

km

exp
�Pm

km

� �
ð13Þ

with km [L T�1] as the monthly scaling factor.
[19] This relation is confirmed by the straight lines

obtainedwhenmonthly rainfall is plotted against the logarithm
of the probability of exceedance for all locations in Table 2. As
an illustration the results for Zimbabwe and Tanzania are
shown in Figure 3. Although at high rainfall amounts the line
tends to deviate from the straight line, we may neglect this,
because our interest is not on extreme rainfall amounts. In
addition, the uncertainty of the extreme rainfall is large since
they are based on a small number of events. However, we
realize that in some climates these extreme events may be
significant for the annual water balance.
[20] Analogous to b, km equals to the expected rainfall in

a rain month expressed as

km ¼ Pa=E nr;mjna
� �

ð14Þ

Figure 3. Probability of exceedance of rainfall amounts on rain months for different stations in
Zimbabwe and Tanzania. The slope equals �1/km.
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where Pa [L T�1] is the annual rainfall, nr,m the number of
rain months in a year, and na the number of months per year.
Since the number of rain months per year is constant for a
given location, the scaling factor km is directly proportional

to Pa. This is confirmed by the high regression values in
Figure 4 and Table 3 (only the results of Tanzania and
Zimbabwe are shown). A rain month is defined as a month
with more than 2 mm/month of rain.

Figure 4. Scaling factor km can be assumed to be directly proportional to the annual rainfall.

Table 3. Expected Number of Rain Days for the Analytical Solution and for the Numerical Solution With Power Functions Coefficients

Describing Markov Probabilitiesa

Location

Analytical

Numerical

Analytical/Numericalp01 = q(Pm)
r p11 = u(Pm)

v

nr,d
b q r u v nr,m

c nnr,m
c Ad (mm/month)

Harare 15 0.020 0.55 0.200 0.24 8.3 (0.66) 7.4 (0.74) 15
Masvingo 11 0.030 0.43 0.200 0.24 8.9 (0.74) 6.9 (0.67) 15
Bulawayo 10 0.044 0.34 0.200 0.24 7.9 (0.47) 6.6 (0.60) 15
Peters Gate 11 0.094 0.33 0.034 0.40 11.2 (0.85) 8.1 (0.74) 5
Hyderabad 10 0.092 0.38 0.024 0.53 8.6 (0.72) 6.7 (0.68) 20
Indianapolis 11 0.129 0.30 0.045 0.42 12.0 (1.00) 11.7 (0.96) 0
Kansas City 11 0.129 0.27 0.061 0.30 11.8 (0.97) 10.6 (0.85) 0
Sheridan 10 0.216 0.22 0.084 0.30 11.7 (0.95) 6.2 (0.72) 0
Tallahassee 15 0.127 0.29 0.017 0.55 11.8 (0.99) 11.5 (0.95) 0
Lyamungu 17 0.053 0.39 0.170 0.20 11.8 (0.97) 10.1 (0.77) 0

aThe analytical solution is from equations (16) and (23). Also given are the number of rain months per year (for gross, nr,m, and net, nnr,m, rainfall) and
the carryover value A for different locations. Markov probabilities are taken from de Groen and Savenije [2006].

bCRU TS 2.1. Only wettest months are used.
cValue in parentheses is r2.
dEstimated values.
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[21] The annual interception can be obtained by integra-
tion of the product of equations (11) and (13) multiplied
with the expected rain months in a year. If we assume
E(nr,djnm) to be independent of Pm (which is not true) and
assume it as a constant (E(nr,djnm) 
 nr,d = constant), then
this can be integrated analytically. In section 4 we shall
compute the annual interception numerically without this
limiting assumption.
[22] Analytical integration yields [Oberhettinger and

Badii, 1973, part 1, section 5.34] (see Figure 2c)

Ei;a ¼ E nr;mjna
� � Z 1

0

Ei;m � fi;m Pmð ÞdPm

¼ Pa 1� 2
nr;dDi;d

km

K0 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nr;dDi;d

km

r� �� �

� Pa 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nr;dDi;d

km

r
K1 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nr;dDi;d

km

r� �� �
ð15Þ

where K0 and K1 are Bessel functions of the first and second
order, respectively. The fraction nr,dDi,d/km is the proportion

of the potential amount of annual interception divided by
the annual rainfall, which is a sort of aridity index for
interception, fi,a. Equation (15) can then be written as

Ei;a ¼ Pa 1� 2fi;aK0 2
ffiffiffiffiffiffiffi
fi;a

q	 
	

� 2
ffiffiffiffiffiffiffi
fi;a

q
K1 2

ffiffiffiffiffiffiffi
fi;a

q	 


ð16Þ

3.3. Annual Transpiration Equation (Analytical)

[23] Transpiration is a different process than interception.
First, transpiration depends on soil moisture storage and not
directly on rainfall. Secondly, the time scale of transpiration
is much longer (order of 10 days to several months depend-
ing on the soil moisture storage capacity). Often, actual
transpiration (Et) is modeled as potential transpiration (Et,p)
times a fraction depending on the wetness of the soil [e.g.,
Shuttleworth, 1993]:

Et ¼ Et;p �min
S

Sb
; 1

� �
ð17Þ

where S is the available soil moisture [L] and Sb the
available soil moisture below which transpiration is soil
moisture contained [L].

Figure 5. Probability of exceedance of net rainfall amounts on rain months for different stations in
Zimbabwe and Tanzania with Di,d = 5 mm/d. The slope equals �1/kn.
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[24] Although transpiration is not directly dependent
on (net) rainfall, de Groen [2002] showed that monthly
transpiration, Et,m [LT

�1], can be described as (see Figure 2d)

Et;m ¼ min Aþ B � Pm � Ei;m

� �
;Dt;m

� �
ð18Þ

with A the initial soil moisture [L T�1] (‘‘carryover value’’)
and B equal to

B ¼ 1� g þ g exp � 1

g

� �
ð19Þ

where g = Sb/(Dt,m � Dtm) and Dtm equals unity.
[25] While the distribution of monthly rainfall over time

can be described with an exponential probability function
(equation (13)), we found that this is also valid for the net
monthly rainfall. To obtain net monthly rainfall (Pn,m), monthly
interception has been subtracted from the monthly rainfall.
Monthly interception is modeled by the expression found
by de Groen and Savenije [2006] with the implementation of
the Markov property of daily rainfall (equation (26)),
explained in section 4.1. We could also have used the model
presented in section 3.1 (equation (12)); however, de Groen
[2002] showed that the monthly interception model with
Markov properties performed better. Hence we choose the
best available monthly interception model. The power func-

tions used for the Markov probabilities are shown in Table 3.
In Figure 5 the results are shown. Hence, the distribution
function of the net rainfall can be described as

ft;m Pn;m

� �
¼ 1

kn

exp
�Pn;m

kn

� �
ð20Þ

where kn is a function of the monthly interception (kn =
km � ki) and ki is the scale factor for the monthly
interception (see Figure 6).
[26] The average monthly transpiration is then obtained by

Et;m ¼
Z Dt;m

0

Aþ B � Pn;m

� �
ft;mdPn;m þ

Z 1

Dt:m

Dt;m ft;mdPn;m

¼ Aþ knB� knB exp
�Dt;m

kn

� �

� A

knB
þ 1þ Dt;m

kn

� Dt;m

knB

� �
ð21Þ

[27] When successively multiplied with E(nnr,mjna) = Pn,a/
kn and substituting Pn,a = Pa � Ei,a we obtain the annual
transpiration as a function of annual precipitation. Similar to
km being linear to Pa, we can assume kn to be linear with net
monthly rainfall, as can be seen in Figure 7 and Table 3. Of
course, this expression is dependent on the daily interception

Figure 6. Probability of exceedance of interception amounts for different stations in Zimbabwe and
Tanzania with Di,d = 5 mm/day. The slope equals �1/ki.
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threshold, Di,d. Hence multiplying equation (21) with
E(nnr,mjna) = Pn,a/kn and Pn,a = Pa � Ei,a results in

Et;a ¼ E nnr;mjna
� �

� Et;m ¼ Pa � Ei;a

� �
B

A

knB
þ 1

� �

� Pa � Ei;a

� �
B exp

�Dt;m

kn

� �
� A

knB
þ 1þ Dt;m

kn

� Dt;m

knB

� �

¼ 2BPa fi;aK0 2
ffiffiffiffiffiffiffi
fi;a

q	 

þ

ffiffiffiffiffiffiffi
fi;a

q
K1 2

ffiffiffiffiffiffiffi
fi;a

q	 
	 


� A

knB
þ 1� exp

�Dt;m

kn

� ��

� A

knB
þ 1þ Dt;m

kn

� Dt;m

knB

� ��
ð22Þ

Introducing ft,a = Dt,m/kn as an ‘‘aridity’’ index, this
equation becomes (see Figure 2e)

Et;a ¼ 2BPa fi;aK0 2
ffiffiffiffiffiffiffi
fi;a

q	 

þ

ffiffiffiffiffiffiffi
fi;a

q
K1 2

ffiffiffiffiffiffiffi
fi;a

q	 
	 


� A

knB
þ 1� exp �ft;a

� ��

� A

knB
þ 1þ ft;a �

1

B
ft;a

� ��
ð23Þ

3.4. Total Evaporation (Analytical)

[28] In the previous subsections annual interception and
transpiration have been derived analytically. The total evap-

Figure 7. Scaling factor kn can be assumed to be directly proportional to the annual rainfall Pn,a for
given Di,d = 5 mm/d.

Table 4. Summary of the Solution of the Analytical Evaporation Model Without Markov Propertiesa

Interception Transpiration

Daily
Ei,d = min(Di,d, Pd) -

Monthly
Ei,m = Pm(1 � exp(�fi,m)) Et,m = min(A + B � (Pm � Ei,m), Dt,m)

Annual
Ei,a = Pa(1 � 2fi,aK0(2

ffiffiffiffiffiffiffi
fi;a

p
) � 2

ffiffiffiffiffiffiffi
fi;a

p
K1(2

ffiffiffiffiffiffiffi
fi;a

p
)) Et,a = 2BPa(fi,aK0(2

ffiffiffiffiffiffiffi
fi;a

p
) +

ffiffiffiffiffiffiffi
fi;a

p
K1(2

ffiffiffiffiffiffiffi
fi;a

p
))

� ( A
knB

+ 1 � exp(�ft,a)( A
knB

+ 1 + ft,a � 1
B
ft,a))
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oration (Ea) can be obtained by summing up equations (16)
and (23). In Table 4 the equations of the analytical solution
are summarized.
[29] In Figure 8 the sensitivity of the analytical model to

thresholds and rainfall distribution is shown. All model
parameters are varied within realistic ranges. The parameter
sensitivity is more pronounced for high annual rainfall
amounts. From Figure 8 it can be seen that the annual
evaporation is obviously sensitive to threshold values, but
also to seasonality (the number of rain months (nr,m)). An
increase of the number of rain months by a factor two, results
in an evaporation increase by the same factor two for Pa =
2000 mm/a. Because the uncertainty in the determination of
the number of rain months per year (the seasonality) is quite
low, this effect is not important at a given location (see also
Figure 4).

4. Numerical Derivation With Markov Properties

[30] In the previous section we assumed E(nr,djnm) to be
constant. However, the expected number of rain days per
months is not constant but a function of the monthly
rainfall. If the monthly rainfall increases, then the expected
number of rain days per month increases as well.

4.1. Monthly Interception Equation
(Analytical/Numerical)

[31] de Groen [2002] showed that the expected number of
rain days per month can be described as

E nr;d jnm
� �

¼ nm
p01

1� p11 þ p01
ð24Þ

By definition p11 is the transition probability which gives
the probability of a future rain day if the present day is also
a rain day. p01 is the transition probability, which gives the
probability of a future rain day if the present day is a dry
day. de Groen [2002] showed that these transition
probabilities can be described by simple power functions

p01 ¼ q Pmð Þr p11 ¼ u Pmð Þv ð25Þ

With p11 + p10 = 1 and p00 + p01 = 1. The parameters q, r, u
and v can be derived from historical daily rainfall data.
[32] In the upscaling equation (11) the expected rain days

per months is now considered to depend on Pm, and thus

Figure 8. Sensitivity of the parameters of the analytical evaporation model to nr,d, nr,m, Di,d, and Dt,m

with g = 0.5.
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E(nr,djnm) should be computed with equations (24) and (25).
The analytical solution is then [de Groen and Savenije, 2006]

Ei;m ¼ Pm 1� exp
�Di;dnmq

P1�r
m � uP1�rþv

m þ qPm

� �� �
ð26Þ

In Figure 9 this equation is plotted and compared with the
analytical solution of equation (12). As can be seen, equation (12) overestimates the low values and under-

estimates the higher values. This can be explained by the
fact that for low rainfall b is higher when the Markov
properties are applied. A higher b causes a lower monthly
interception and so also a lower annual interception. For
high rainfall the opposite is valid.

4.2. Annual Interception Equation (Numerical)

[33] In Figure 10 the numerical solution of the annual
interception model is shown as circles. As can be seen, the
analytical model overestimates interception for low rainfall
amounts and underestimates it for high rainfall amounts.
This is the result of the deviation in the monthly intercep-
tion, which is now accumulated.

4.3. Annual Transpiration Equation (Numerical)

[34] The numerical solution for the annual transpiration is
shown in Figure 11. In contrast to the interception model,
the analytical model underestimates transpiration for low
rainfall and overestimates it for high rainfall amounts. This
is due to the difference between the analytical and numerical
solution of interception. Since Pn,a = Pa � Ei,a this influ-
ences the transpiration results.

4.4. Total Evaporation (Numerical)

[35] The differences between the analytical and numerical
interception and transpiration appear to cancel out for the
total evaporation at all locations where the rainfall is circa
less then about 1500 mm/a. As an illustration the results for
Harare are shown in Figure 12. From this graph we can see
that the difference between the analytical and the numerical
model are small as long as the annual rainfall is less than
1500 mm/a.

Figure 9. Analytical monthly interception model without
Markov properties (equation (12)) and with Markov
properties (equation (26)).

Figure 10. Comparison of the numerical (with Markov
properties of Harare) and analytical (without Markov
properties, E(nr,djnm) = 15 days) annual interception model
(Di,d = 5 mm/a and Dt,m = 82 mm/month).

Figure 11. Comparison of the numerical (with Markov
properties of Harare) and analytical (without Markov
properties, E(nr,djnm) = 15 days) annual transpiration model
(Di,d = 5mm/d,Dt,m = 82mm/month, andA= 15mm/month).

W04403 GERRITS ET AL.: BUDYKO CURVE

11 of 15

W04403



[36] The crosses in Figure 12 show observations of the
Mupfure catchment at Beatrice in Zimbabwe from 1970 to
1979 [Savenije, 2004]. The Mupfure River lies southwest of
Harare. At Beatrice the basin has an area of circa 1215 Mm2.
Although Harare is located just outside the Mupfure catch-
ment (circa 50 km northwest of Beatrice), the observations
at Beatrice are assumed to be highly correlated with our
findings for Harare. It appears that our formula under-
estimates the annual total evaporation. The most likely
cause of this discrepancy is that in the Mupfure catchment
intensive irrigation takes place, which causes higher actual
evaporation than in an undisturbed catchment where evap-
oration is calculated as the difference between precipitation
and runoff [Mazvimavi, 1998]. IWRMS (The Mupfure
catchment, 2001, available at http://www.geogr.uni-jena.
de//fileadmin/Geoinformatik/projekte/iwrms/) estimated
that this water use amounts to about 40 mm/a. Another
reason for the discrepancy is that in the Mupfure basin the
number of rain days is slightly higher than in Harare.

5. From Evaporation Model to Budyko Curve

[37] In Figure 13 the results of our model are compared
with the different types of Budyko curves. In our approach

each location appears as a single dot for every year. In
principle at a given location a dot can be produced if Pa, Ep

and rainfall characteristics are known. Here we only had one
long-term average value for Ep which was combined with
the average annual rainfall characteristics. The number of
rain days (i.e., days with more rainfall than 0.1 mm/day) are
obtained from the CRU TS 2.1 data set [Mitchell and Jones,
2005]. Furthermore, for all locations a daily interception
threshold (Di,d) of 5 mm/day has been used. The monthly
transpiration threshold, Dt,m is calculated as (Ep � Ei,a)/na,
which means that the interception process is considered to
absorb the available energy first, while only the remaining
potential evaporation is available for transpiration.

6. Discussion

[38] The results presented in Figure 13 deviate from the
classical Budyko curves. For some locations our results
yield more evaporation than predicted by the existing curves
while others yield less. In general, locations with a distinct
monsoon season, like southern Africa, underestimate evap-
oration and, are closer to Schreiber’s [1904] curve, while
others are closer to Budyko’s [1974] curve. In order to
explain this discrepancy, we looked at the possible effect of
the most sensitive parameter: nr,m, the number of rain
months per year. This is the indicator for a climate with a
distinct dry and wet season (see Figure 8). In Figure 13 the
range of possible outcomes is presented. The upper bound
corresponds with 12 rain months per year and the lower
bound represents 6 rain months per year. It is clear that the
monsoon effect cannot explain the discrepancy. However, it
is clear that the outliers are from stations with a clear dry
season.
[39] Another possible explanation was mentioned by

Budyko [1974] and Potter et al. [2005]. They found sys-
tematic deviations for certain catchments and they explained
the effect by seasonality. They observed that locations
where monthly potential evaporation and precipitation rates
are in phase, in general are overestimated the classical
Budyko curves. Locations where the potential evaporation
and precipitation are out of phase, are generally under-
estimated. Milly [1994] investigated this process in more
detail. He developed a model where he incorporated sea-
sonality and demonstrated that he could explain the devia-
tions. In our locations we see the same: the locations that are
out of phase plot below the curves, and those that are in
phase plot higher.
[40] A possible reason for this effect could be vegetation

as also suggested by Milly and Dunne [1994]. In areas
where potential evaporation and precipitation are out of
phase, for example in semiarid regions, vegetation has been
adapted to the rainfall pattern. In times of droughts, plants
can withdraw water from deeper layers by developing a
deep root system. Hence they still can transpire even during
the dry season. This process can be modeled by the
carryover factor A of equation (23). If we estimate a
reasonable value for this water consumption from deeper
layers (see Table 3), our results improve significantly. In
Figure 14 the results are shown. These results should be
seen as an indication of the amount of the annual carry over
required to compensate for seasonality, and not as a confir-
mation of this process. Further research is required to test
this hypothesis.

Figure 12. Comparison of the numerical (with Markov
properties of Harare) and analytical (without Markov
properties, E(nr,djnm) = 15 days) annual evaporation model
(Di,d = 5 mm/d, Dt,m = 82 mm/month, and A = 15 mm/
month) and observed data from the Mupfure catchment
(Zimbabwe).
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[41] Another seasonality effect is the change in intercep-
tion threshold, Di,d and transpiration threshold, Dt,m

throughout the seasons. In our approach, we use a constant
value. By neglecting the seasonality of the transpiration
threshold an error is made, since most vegetation has a
distinct growing and dormant period. However, one may
question if this is a wrong assumption for the interception
process. Often it is concluded that the interception capacity
changes throughout the year [e.g., Link et al., 2004; Loustau
et al., 1992]. During summer time higher canopy storage
capacity values are observed, because deciduous trees still
have leaves. During fall, the trees drop their leaves, so the
canopy storage capacity is less. However, in our model
interception is not only defined as canopy interception, but
as the sum of canopy and forest floor interception. When a
tree loses its leaves, they fall on the ground and stay there
for a long time. Hence, one might expect that the total
interception capacity remains the same (or does not differ
much) over the year.

7. Conclusions

[42] A lot of research has been done on finding the
relation between the aridity index and actual evaporation

as a function of annual precipitation. Although observations
do not fully agree with empirical relationships, all these
curves have similar shapes. The model presented in this
paper lies within the range of these curves and the scatter-
plots generated by observations. The evaporation model
distinguishes between interception and transpiration. Inter-
ception is modeled as a threshold process on daily time
scale. It is upscaled by equation (11) making use of the daily
rainfall characteristics and the expected rain days per
month. Successively, monthly interception is upscaled to
annual interception, making use of the rainfall distribution
of monthly rainfall. Also transpiration can be modeled as a
threshold process on a monthly time scale and successively
upscaled to annual transpiration. For the expected rain days
per month two equations are used. One where the number of
rain days is considered linear to the monthly rainfall and one
where theMarkov probabilities of daily rainfall are used. The
first equation can be solved analytically and is summarized in
Table 4. The equation with Markov properties could not be
solved analytically, hence it is solved numerically.
[43] The analytical and numerical solutions differ for

interception and transpiration, but when added up, the
difference in the total evaporation is less. If the model
output is compared with measured data from Harare, we can

Figure 13. Results of the analytical model for the ten locations and the different classical Budyko
curves as well as the effect of number of rain months on the Budyko curve. The lower bound represents a
number of rain months of 6 and the upper bound a number of rain months of 12.
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conclude that the annual evaporation model preforms quite
well for this location.
[44] Since the analytical and the numerical solutions do

not differ much, we applied the analytical model for ten
locations around the world in different climates. The results
look promising and do not deviate much from the classical
Budyko curves. Remarkable is the fact that locations with a
distinct rainy season are below the existing curves and the
others are on the formula found by Budyko [1974], yielding
highest evaporation to precipitation ratios. Budyko [1974],
Potter et al. [2005], and Milly [1994] gave a possible
explanation for this. They claim that this can be caused
by the phase difference between potential evaporation and
rainfall. When a carryover factor, A, is used for semiarid
areas (which takes into account that plants can withdraw
water from deeper layers by developing a deep root system)
the results improve significantly.
[45] Concluding, the analytical model, with only five

(measurable) parameters, is capable of representing the Budyko
curve. However, further research is necessary on the sea-
sonality of the thresholds for interception and transpiration.

Notation

Ei evaporation from interception [L T�1].
Et transpiration [L T�1].

E actual evaporation [L T�1].
Eo open water evaporation [L T�1].
Es soil evaporation [L T�1].
Ep potential evaporation [L T�1].

Di,d interception threshold (daily) [L T�1].
Dt,m transpiration threshold (monthly) [L T�1].

b scaling factor for daily rainfall [L T�1].
ki,m,n scaling factor for monthly interception,

rainfall and net rainfall, respectively [L T�1].
f aridity index [�].
l latent heat of vaporization coefficient [L2 T�2].
r density of water [M L�3].
g time scale for transpiration (= Sb/Dt,m)[T].

nr,d number of rain days per month [�].
nr,m number of rain months per year [�].
nnr,m number of net rain months per year [�].
nm days within a month (= 30.5) [�].
na months within a year (= 12) [�].
p01 Markov probability of rain day 1 occurring after

dry day 0 [�].
q constant in p01 = q(Pm)

r [(T L�1)r].
r power in p01 = q(Pm)

r [�].
u constant in p11 = u(Pm)

v [(T L�1)v].
v power in p11 = u(Pm)

v [�].
P precipitation [L T�1].
Pn net precipitation [L T�1].

Figure 14. Results of the analytical model for the ten locations and the different classical Budyko
curves when taking deep root systems into account.
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Sb available soil moisture content at the boundary
between moisture constrained transpiration and
potential transpiration [L].

S water storage [L].
Q runoff [L T�1].
Rn net radiation [M T�3].
H sensible heat flux [M T�3].
G ground heat flux [M T�3].
Br Bowen ratio [�].
A monthly moisture carry over for transpiration

[L T�1].
B slope of relation between monthly effective

rainfall and monthly transpiration [�].
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