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A B S T R A C T

Several studies investigated the precision of non-linear finite element analyses (NLFEA) to predict the shear 
capacity of beams or the punching capacity of slab-column connections. However, in the literature, there is little 
discussion regarding the results of NLFEA to predict the ultimate capacity and failure mechanism of slabs sus-
ceptible to different failure mechanisms. In this study, a set of tests from literature that developed different shear 
failure mechanisms was evaluated by NLFEA. A total of thirteen slabs were modeled, where slab’s width and 
shear span varied. A coupled damaged-plasticity model was employed to simulate the concrete behavior. The 
proposed model was calibrated to simulate specimens that failed as wide beams in one-way shear and specimens 
that failed by punching shear. Besides, the effect of different modeling choices was investigated: (i) the assumed 
stress–strain behavior in compression; (ii) tensile stress–strain behavior; (iii) the inclusion or not of damage 
parameters and (iv) the viscosity parameter. The results indicated that, on average, the proposed modeling 
strategy represented the failure mechanism and ultimate loads well. Also, the same calibrated model was found 
capable of representing one-way shear failure and punching shear failure or mixed modes. The sensitivity study 
demonstrated that the tensile stress–strain behavior and viscosity parameter influences the results of the nu-
merical models more significantly than the assumed stress–strain behavior in compression or including/not 
including the damage parameters. This paper concludes that modeling strategies during the calibration process 
shall be checked carefully before performing any parametric analyses to identify the accuracy of the numerical 
models to represent the different failure mechanisms. Moreover, the validation step of the modeling strategy 
shall identify possible limits of the numerical model to be considered in the parametric analyses.   

1. Introduction

One-way slabs under large concentrated loads are commonly found
in bridge deck slabs, industrial floor slabs and even residential buildings 
during their building or use [1–4]. Assuming the use of such structures 
on bridge deck slabs, the load position varies significantly during its use. 
In practice, different shear failure mechanisms may be critical for a 
given slab depending on the load position and other parameters, such as 
the slab width [5,6]. For instance, when the slab’s width is not so large 
compared to the load size in the width direction, the slab may fail as a 
wide beam in one-way shear [7–10]. At the same time, when the load is 

placed close to the support and the slab width is considerably larger than 
the load size, not the entire slab strip may contribute effectively to the 
sectional shear capacity [7]. In such cases, a slab strip called effective 
shear width is assumed to contribute effectively to the sectional shear 
capacity [1]. On the other hand, when the distance from the load to the 
support increases, the shear flow around the load becomes predomi-
nantly radial; hence, the punching failure may become more critical 
than a wide beam in one-way shear. In such cases, the sectional shear 
capacity may eventually not be reached if the test fails by punching. 

Many studies contributed to predicting the sectional shear capacity 
of reinforced concrete (RC) beams [11,12] and the punching capacity of 
flat slabs or slab-column connections [13,14] using three-dimensional 
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(3D) non-linear finite element analyses (NLFEA). However, the 
following gaps were identified:  

(i) A limited number of studies addressed the challenge of using the 
same modeling strategy to assess the ultimate capacity of RC 
members that may develop different shear failure mechanisms 
(one-way shear and punching shear), such as one-way slabs under 
concentrated loads [15,16]. Therefore, it is not clear if a cali-
brated modeling approach to deal with one-way shear, for 
instance, would also lead to accurate predictions of punching 
shear capacity. 

(ii) The methodology used in several recent publications with nu-
merical studies also needs to be discussed. For instance, during 
the validation step of the numerical models, it is frequent to use 
only one test result with a specific failure mechanism for vali-
dating the modeling strategy [17]. However, other failure 
mechanisms could appear when performing parametric analyses 
with significant changes in material and geometry parameters. In 
this way, such different failure mechanisms should also be 
investigated during the validation step to ensure that the 
modeling strategy would also represent these accurately. 

Notations 

a shear span: distance between the center of the load and the 
center of the support in the span direction 

ac, at dimensionless coefficients in damage model from Alfarah 
et al. [39] 

av clear shear span: clear distance between the face of the 
load and the face of the support in the span direction 

bc dimensionless coefficients from damage evolution models 
in compression (assumed = 0.7 based in the model from 
Birtel and Mark [37], in Krätzig and Pölling [22] and 
calculated with specific expression in Alfarah et al. [39]) 

bload size of the load in the span direction 
bslab beam or slab width 
bt dimensionless coefficients from damage evolution models 

in tension (bt = 0.1 in Birtel and Mark [37] and calculated 
with specific expression in Alfarah et al. [39]) 

c1; c2 constants in the tension behavior model from Hordijk [31] 
d damage parameter 
dc damage parameter in compression 
dg maximum aggregate size of concrete 
dl effective depth of the longitudinal reinforcement 
dt damage parameter in tension 
e flow potential eccentricity (CDP) 
E0 undamaged modulus of elasticity of concrete 
Ec modulus of elasticity of concrete 
Ec,sec secant modulus of elasticity of concrete for σc = 0.4fcm 
Ec1 secant modulus from the origin to the peak compressive 

stress 
Eci tangent modulus of deformation of concrete for zero stress 
Ecm measured modulus of elasticity of concrete 
Es steel modulus of elasticity 
F applied concentrated load 
FEXP maximum concentrated load applied in the test (failure 

load) 
FFEM maximum concentrated load applied in the finite element 

model (failure load) 
Fu maximum concentrated load applied in the test (failure 

load) 
Gch Crushing energy 
Gf Tensile fracture energy 
Gf0 coefficient related to maximum aggregate size 
fc,cube concrete compressive strength measured on cube 

specimens 
fc0 limit stress of linear compressive branch 
fck characteristic compressive strength of concrete 
fcm mean compressive strength of concrete (measured in 

cylinders) 
fct concrete tensile strength (peak value) 
fct0 limit stress of linear tensile branch 
fctm measured concrete tensile strength 

h slab or beam thickness 
η coefficient used in the stress-train behavior model from EN 

1992-1-1:2004 (η = εc / εc1) 
k plasticity number from stress-train behavior model in EN 

1992-1-1:2004 (k = Eci / Ec1) 
Kc factor that controls the shape of the yielding surface (CDP) 
lc1, lc2 slab overhang length in supports 1 and 2, respectively 
leq characteristics length related to the element size in the 

mesh 
lload size of the load in the tranverse direction 
lspan span length between supports 
ltotal slab total length in the span direction 
VFu maximum shear force applied in the test caused by the 

concentrated load Fu 
w crack opening 
w1 crack opening corresponding to fct/3 in [29], w1 = 0.8Gf/fct 
w2 critical crack opening or fracture crack opening in [29], σt 

(w2) = 0. 
wc critical crack opening or fracture crack opening in [31], σt 

(wc) = 0. 
αi coefficient to determine the reduced concrete elastic 

modulus (Ec = αi • Eci) 
αt coefficient that controls the shape of the tensile 

stress–strain behavior model in Guo [21] 
βCC parameter that controls the shape of the stress–strain graph 

in Carreira and Chu models [20,33] 
γc factor the controls the shape of the stress–strain behavior 

model after the peak compressive strength in Krätzig and 
Pölling [22] 

ε0c
el elastic compressive strain 

εc total compressive strain (εc = εc
pl + ε0c

el ) 
εc1 compressive strain corresponding to the maximum 

compressive stress fcm 
εc

in inelastic compressive strain 
εc

pl plastic compressive strain 
εt total tensile strength (εt = εt 

pl + εt 
el) 

εt,cr tensile strain at peak tensile stress 
εt

el elastic tensile strain 
εt

in inelastic tensile strain 
εt

pl tensile plastic strain 
μ viscosity parameter (CDP) 
ρl flexural reinforcement ratios in the longitudinal direction 

(span direction) 
ρt flexural reinforcement ratios in the transverse direction 
σb0/σc0 ratio of initial equibiaxial compressive yield stress to initial 

uniaxial compressive yield stress (CDP model) 
σc compressive stress 
σt tensile stress 
ψ Dilation angle for the concrete damaged plasticity model 

(CDP) 
δ slab deflection below the load  
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(iii) Some modeling options are frequently not discussed in numerical 
studies. For instance, the influence of considering or not the 
concrete damage evolution parameters (degradation of the elastic 
modulus) was scarcely investigated [13]. Until now, most studies 
that propose not using the damage evolution law for simulating 
static tests assume that this material characteristic would influ-
ence only cyclic tests. However, some papers have already shown 
that this parameter may have a not insignificant influence on the 
numerical results [13]. Herein, it is assumed that the variation of 
the elastic stiffness from concrete could influence the confining 
conditions on three-dimensional problems. Additionally, some 
mechanical models of one-way shear strength already include the 
elastic modulus from concrete as a critical parameter in the 
predictions of ultimate capacity [18]. Since no specific study was 
found on this matter, the results of NLFEA with and without the 
damage evolution parameters should be investigated. 

This study investigates the accuracy of a developed modeling strat-
egy to represent different shear failure mechanisms that can take place 
for one-way slabs under concentrated loads: one-way shear as wide 
beams and punching shear. Besides that, a sensitivity study is performed 
to show the influence of some modeling choices from the constitutive 
model adopted in the numerical results. The following parameters are 
investigated: (i) the influence of considering or not the concrete damage 
evolution (variation of the elastic modulus in the concrete non-linear 
phase); (ii) the influence of the stress–strain behavior adopted in 
compression and tension; and (iii) the viscosity parameter. 

Firstly, some important modeling options regarding concrete 
modeling are discussed in Section 2. Next, the selected tests from Reiβen, 
Classen and Hegger [8] used as references are detailed in Section 3. In 
the following (Section 4), the modeling strategy proposed is presented, 
detailing the constitutive models, material models, and finite element 
types used. In the validation step (Section 5), the numerical results are 
compared to the experimental results in terms of failure mechanism and 
ultimate load. The sensitivity study section (Chapter 6) presents the 
results of changing specific material parameters of the numerical 
models. 

As a limitation of the study, the presented analysis focuses on the 
Ultimate Limit States (ULS) without including the effect of delayed 
shrinkage and creep as well as the possible reduction of tension stiff-
ening at the slabs due to the age of the test (Serviceability Limit States - 
SLS). The precise estimation of the effect of creep and shrinkage on the 
SLS of flat slabs and slab-columns connections can be consulted else-
where [19]. 

2. Modeling options 

2.1. Stress–strain behavior in compression 

Several models were proposed in the literature to describe the non- 
linear behavior of normal-strength concrete in compression [20–24], 
which differ mainly in the post-peak behavior (Fig. 1a). This occurs 
because some models include parameters related to the finite element 
size leq and crushing energy Gch to soften the degradation of stresses 
under compression [22,24]. In Fig. 1a, the model of Krätzig and Pölling 
[22] considers the crushing energy Gch, which was calculated through 
the following expression [25], which is dependent on the tensile fracture 
energy Gf: 

Gch =

(
fcm

fct

)2

⋅Gf (1) 

In the absence of experimental data, the fracture energy Gf is 
generally determined according to fib Model Code 1990 [26] or fib 
Model Code 2010 expressions [27]. According to fib Model Code 1990 
[26], the fracture energy can be calculated as: 

Fig. 1. Comparison of different stress–strain models to describe the behavior under a) compression and b) tension for normal strength concretes.  

Table 1 
Expressions to determine the stress–strain behavior in compression.  

Reference Expressions 

EN 1992-1-1:2004  
[28] 
and fib Model Code 
2010 [27] 

σc(εc) = fcm⋅
k⋅η − η2

1 + (k − 2)⋅η (4) 

k = 1.05⋅Ec⋅
εc1

fcm
(5)  

η =
εc

εc1 
(6) 

Carreira and Chu  
[20] 

σc(εc)

fcm
=

βCC⋅(εc/εc1)

βCC − 1 + (εc/εc1)
β (7)  

βCC =
1

1 −
fcm

εc1⋅Ec

(8) 

Krätzig and Pölling  
[22] 

σc(εc) = Ec⋅εc,with 0 ≤ σc ≤ 0.4⋅fcm (9)  

σc,2(εc) =

Eci⋅
εc

fcm
− (

εc

εc1
)

1 + (Eci⋅
εc1

fcm
− 2)⋅

εc

εc1

⋅fcm , with 0.4⋅fcm ≤ σc ≤ fcm 

(10)  

σc,3(εc) = (
2 + γc⋅fcm⋅εc1

2⋅fcm
− γc⋅εc +

εc
2⋅γc

2⋅εc1
), with εc > εc1 (11)  

With:  

γc =
π2⋅fcm⋅εc1

2⋅[
Gch

leq
− 0.5⋅fcm⋅(εc1⋅(1 − bc) + bc⋅

fcm
Ec

)]
2 

(12)  

bc =
εc

pl

εc in;Gch = (
fcm
fct

)
2⋅Gf (13)  
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Gf =

⎧
⎪⎨

⎪⎩

Gfo⋅
(

fcm

10

)0.7

, if fcm⩽80MPa

4.3⋅Gfo, if fcm⩽80MPa
(2)  

with Gf0 = 0.025 N/mm for dg = 8 mm, Gfo = 0.30 N/mm for dg = 16 mm 
and Gf0 = 0.058 N/mm for dg = 32 mm. dg is the maximum aggregate 
size of concrete. According to the fib Model Code 2010 [27], the fracture 
energy Gf can be estimated by: 

Gf = 73⋅f 0.18
cm (3) 

Table 1 shows the expressions used to determine the stress–strain 
behavior in compression according to different references (plotted in 
Fig. 1a). 

2.2. Stress–strain behavior in tension 

In tension, most models used to describe the non-linear behavior of 
the concrete provide similar results regarding the relation tensile stress- 
crack opening displacement [27,29–31]. In Fig. 1b, the models from 
Hordijk [31], Petersson [29], and Hillerborg et al. [32] account for the 
fracture energy Gf to describe the softening behavior of concrete in terms 
of tensile stress × crack opening (σt × w). In Fig. 1b, the crack opening w 
is translated to tensile strains εt by the expression: 

εt =
fct

Ec
+

w
leq

= εt,cr + εin
t (14) 

where εt,cr is the undamaged tensile elastic strain and εt
in is the 

damaged tensile cracking strain (also named inelastic tensile strain). It 
can be seen that the expressions from Peterson [29], Hillerborg et al. 
[32] and Hordijk [31] provide quite similar results (Fig. 1b). Conversely, 
the curves using the expressions from Carreira and Chu [33] and Guo 
[21] do not consider the finite element size leq in the expression and 
provide quite different post-peak tensile strengths. 

Table 2 shows the expressions used to determine the strain-strain 
behavior in tension according to different references (related to Fig. 1b). 

2.3. Damage evolution laws 

This study considers the Concrete Damaged Plasticity (CDP) model 
offered in ABAQUS software to perform the numerical analyses. The 
effective elastic modulus E varies as a function of the damage parameter 

d through the following expression: 

E = E0⋅(1 − d) (24)  

where E is the effective elastic modulus and E0 is the initial or undam-
aged elastic modulus. d is the damage variable that varies between 
0 (undamaged) and 1 (fully damaged). Added to that, the damage 
parameter also changes the proportion between the inelastic strains and 
the plastic strains through the following expression: 

εpl
c = εc − εel

0c = εin
c −

dc

1 − dc
⋅
σc

E0
(25)  

εpl
t = εt − εel

t = εin
t −

dt

1 − dt
⋅
σt

E0
(26)  

εc
pl and εt

pl are the compressive and tensile plastic strains, respectively; εc 
and εt are the total compressive and tensile strains, respectively; ε0c

el and 
εt

el are the undamaged compressive and tensile elastic strains, respec-
tively; εc

in and εt
in are the damaged inelastic strain in compression and 

damaged tensile cracking strain (or inelastic strain in tensile), respec-
tively. From expressions (25) and (26) it can be noted that when the 
damage parameter is neglected (d = 0), the plastic strains become equal 
to the damaged inelastic strain (εc 

pl = εc
in and εt 

pl = εt
in). Therefore, even 

in simulations of static problems (not cyclic tests), neglecting the dam-
age parameters may influence the simulation results due to its influence 
on the evolution of plastic strains (or the proportion between plastic and 
inelastic strains), which deserves more investigation. 

Another important aspect of the CDP is how it calculates the uniaxial 
compressive and tensile strengths (or used stress–strain behavior in 
compression and tension). In practice, the uniaxial compressive and 
tensile strengths for a given strain are calculated as follows: 

σc = E⋅
(
εc − εpl

c

)
= (1 − dc)⋅E0⋅

(
εc − εpl

c

)
(27)  

σt = E⋅
(
εt − εpl

t

)
= (1 − dt)⋅E0⋅

(
εt − εpl

t

)
(28) 

It shall be noted that considering the damage parameters dc and dt 
changes not only the effective elastic modulus E, but also the plastic 
strains εc 

pl and εt 
pl. Consequently, for any stress–strain behavior used in 

the CDP, the damage evolution law will not influence the uniaxial 
stress–strain behavior considered in the simulations (σc × εc or σt × εt). 
As a general conclusion, different damage evolution laws will influence 
exclusively the proportion between plastic εc 

pl and inelastic strains εc
in in 

the uniaxial space. 
Nevertheless, the CDP uses effective tensile and compressive stress, σ 

t and σ c, within the yield criterion in the three-dimensional space 
[34,35], based on the following expressions: 

σt =
σt

(1 − dt)
= E0⋅

(
εt − εpl

t

)
= E0⋅εel

t (29)  

σc =
σc

(1 − dc)
= E0⋅

(
εc − εpl

c

)
= E0⋅εel

0c (30) 

With the yield criterion defined by the following expression: 

1
1 − α

( ̅̅̅̅̅̅̅
3J2

√
+ αI1 + β〈σmax〉 − γ〈σmax〉

)
= c (31) 

With 

I1 = σ1 + σ2 + σ3 (32)  

J2 = − (1/6)
[
(σ1 − σ2)

2
+ (σ2 − σ3)

2
+ (σ3 − σ1)

2 ] (33)  

where α, β and γ are material parameters; σmax is the maximum principal 
effective stress; 〈〉 is the Macauley bracked; and c is the compression 
cohesion, with more explanations on these terms given elsewhere [36]. 
Summing up, the including or not of the damage parameter does not 
directly influence directly the development of uniaxial stresses but 

Table 2 
Expressions to determine the stress–strain behavior in tensile.  

Reference Expressions 

Hordijk [31] σt(w)

fct
= [1 + (c1 ⋅

w
wc

)
3
]⋅e

− c2 ⋅
w
wc −

w
wc

⋅(1 + c3)⋅e− c2 (15) 

With: c1 = 3; c2 = 6.93; wc is the critical crack opening or fracture 
crack opening:  

wc = 5.14⋅
Gf

fct 
(16) 

Petersson [29] 

σt(w) = fct −
(fct −

1
3
fct)

w1
⋅w, if w ≤ w1 (17)  

σt(w) =
w1⋅(

1
3
fct)

w2 − w1
−

1
3
fct

w2 − w1
⋅w, if w1 ≤ w ≤ w2 (18) 

Hillerborg et al. 

[32] σt(w) = fct ⋅e
−
w⋅fct
Gf (19) 

Carreira and 
Chu [33] σt(εt) = fct ⋅

βCC(εt/εt,cr)

βCC − 1 + (εt/εt,cr)
β (20)  

βCC = (
fcm

32.4
)
3
+1.55 (21) 

Guo [21] 
σt(εt)

fct
= {

1.2⋅(εt/εt,cr) − 0.2⋅(εt/εt,cr)
6
, ifεt/εt,cr ≤ 1

εt/εt,cr

αt ⋅[(εt/εt,cr) − 1]1.7 + εt/εt,cr
, if εt/εt,cr > 1 

(22)  

‘αt = 0.312⋅f2
ct(23)  
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Table 3 
Models of damage evolution law in compression and tensile from literature.  

Reference Compression Tension 

Birtel and Mark  
[37] dc(εc

in) = 1 −
σc/E0

εc in⋅(1 − bc) + σc/E0
With bc = 0.7 [37,40] dt(εt

in) = 1 −
σt/E0

εt in(1 − bt) + σt/E0
With bt = 0.1 [37,40] 

Yu et al. [41] 
dc(εc)= {

0, ifεc < εc1

1 −
σc

fcm
, ifεc > εc1 

dc(εt)= {

0 , if εt < εt,cr

1 −
σt

ft′
, if εt > εt,cr 

Alfarah et al.  
[39] dc(εc

in) = 1 −
1

2 + ac
[
2(1 + ac)exp(− bcεc

in)

− acexp(− 2bcεc
in)

]ac = 2⋅(
fcm
fc0

) − 1 + 2⋅

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(
fcm
fc0

)
2
− (

fcm
fc0

)

√

=

7.873bc =
fc0⋅leq
Gch

⋅(1+
ac

2
)With fc0 = 0.4fcm 

dt(εin) = 1 −
1

2 + at
[
2(1 + at)exp(− btεt

in)

− atexp(− 2btεc
in)

]at = 2⋅
( fct

fct0

)

− 1 + 2⋅ 
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
( fct

fct0

)2
−
( fct

fct0

)√

= 1 

bt =
fcto⋅leq

Gf
⋅
(

1 +
at

2

)
With fct0 = fct  

Fig. 2. Damage evolution: a) stress–strain behavior in compression according to [28]; b) damage evolution graphs (Table 3); c) calculated stress–strain behavior with 
Eq. (27), using calculated values of damage and plastic strains. d) stress–strain behavior in compression according to [20]; e) damage evolution graphs (Table 3); f) 
calculated stress–strain behavior with Eq. (27); g) stress–strain behavior in tensile according to [31]; h) damage evolution graphs from Table 3; i) calculated 
stress–strain behavior with Eq. (27). ε. 

A.M.D. de Sousa et al.                                                                                                                                                                                                                         



Engineering Structures 293 (2023) 116617

6

influences the triaxial stresses evolution. 
Table 3 presents three different damage evolution laws. The model 

from Birtel and Mark [37] determines the damage parameters dc and dt 
only based on the inelastic strains εc

in and εt
in. Consequently, the model 

from Birtel and Mark [37] considers that damage occurs even before 
reaching the peak compressive strength fcm. The model presented by Yu 
et al. [38] is a simpler way to estimate the damage evolution parameters 
since it depends only on the stress values σc and σt after the critical 
compressive strain εc1 and critical tensile strain εc,cr (strain at which the 
crack starts to open). Therefore, this model assumes that damage occurs 
only in the post-peak branch of the stress–strain behavior (after reaching 
fcm or fct). Consequently, this model assumes that damage does not start 
exactly when the inelastic strains are larger than zero. The model from 
Alfarah et al. [39] is similar to the one from Birtel and Mark [37] as it is 
based on the evolution of inelastic strains. However, the damage model 
from Alfarah et al. [39] also includes the finite element size leq in the 
expressions for compression and tension. 

Fig. 2 shows how these damage models differ according to the 
assumed stress–strain behavior in compression and tension (σc × εc or σt 
× εt entered as input parameters) and the respective stress–strain 

behavior effectively used by the CDP model after calculating the damage 
parameters (Eq. (27) and (28). 

Assuming the stress–strain behavior in compression given by EN 
1992-1-1:2004 [28] expressions (Fig. 2a), it can be seen that the results 
of the damage evolution parameters show significant variability. The 
model from Birtel and Mark [37] presents a sharper increase in the 
damage parameters according to the inelastic strains. The model from 
Alfarah et al. [39] did not reach a value of dc greater than 0.2 at the peak 
compressive strain (which seems inconsistent). This occurs because the 
model from Alfarah et al. [39] was devised to deal with stress–strain 
models with large residual compressive strength, such as the ones from 
Carreira and Chu [20] and Krätzig and Pölling [22]. The model from Yu 
et al. [38] presented an intermediate response between the other 
models. Using the stress–strain behavior in compression according to the 
model from Carreira and Chu [20] (Fig. 2d), the differences between the 
different damage models become less accentuated (Fig. 2e). However, 
the model from Birtel and Mark [37] still results in a sharp increase in 
the damage parameters. The damage parameter with the model from 
Alfarah et al. [39] presents a smoother increase with the inelastic strains 
but reaches larger values (consistent ones) at the ultimate compressive 

Fig. 3. A) stress–strain behavior in compression considered in the Concrete Damaged Plasticity (CDP); b) stress–strain behavior model with and without damage 
parameters considered by pure damage models; c) erroneous assumption of stress–strain behavior when considering damage parameters. 

Fig. 4. Schematic view of the geometry of the one-way slabs tested by Reiβen, Classen and Hegger (2018) evaluated in this study: a) layout of the first test on the 
specimens and; b) layout of the second test on the specimens. Source: Adapted from Reiβen, Classen and Hegger [8]. 
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strains. The model from Yu et al. [38] presents intermediate values 
between the previous ones. 

Similar observations can be made for the different damage evolution 
models in tension (Fig. 2g,h). Besides that, it is shown in Fig. 2c,f,i, that 
regardless of the different damage models, the equivalent stress–strain 
behavior used in the CDP is equal to that inserted as input (applying 
expressions (27) and (28), confirming the previous statement based on 
the expressions. 

It is important to note that the stress–strain behavior with and 
without the damage parameters will always follow the same envelope 
(Fig. 3a). Different from pure damage models (Fig. 3b), the post-peak 
behavior is not influenced by the absence of damage parameters in the 
CDP. Besides, it is important to observe that the decrease of the effective 
elastic modulus when including the damage parameters does not result 
in changes in the uniaxial stress–strain behavior, as could be suggested 
in Fig. 3c (which represents an erroneous interpretation of the effect of 
including the damage parameters). 

3. Control specimens from literature 

3.1. Selection of control specimens 

This study uses one-way slabs under concentrated loads tested by 
Reiβen et al. [8] as reference tests. In this set of tests, different failure 

mechanisms occurred, varying specifically parameters in the analyses, 
such as the load position and slab’s width. With these experiments, it is 
possible to illustrate potential problems by using only one test to vali-
date a defined modeling strategy. In total, 13 of 34 tests were selected to 
be calibrated based on the key parameters in the reported paper by 
Reiβen, Classen and Hegger [8]. The varied parameters are (i) the shear 
span a defined between axes of support and loading plate and (ii) the 
slab width bslab. Different failure mechanisms were observed by varying 
these two parameters (shear, punching or a mixed mode between them). 
This study did not address the tests with continuity over the support 
investigated by [8]. 

3.2. Geometry of control specimens 

Fig. 4 and Fig. 5 show the generic geometry of the one-way slabs 
(control specimens) tested by Reiβen, Classen and Hegger [8]. In this 
study, only the simply supported slabs were evaluated. The span length 
lspan was also changed in some tests, particularly those on which it was 
possible to perform two tests on the same slab. However, no relation 
between the span length and the governing failure mechanism was 
identified [8]. 

The concrete cover was 20 mm for all slabs. High-strength steel bars 
(fyk ≈ 900 MPa) were used for the longitudinal reinforcement on the 
tension side of the slabs to ensure shear or punching failures instead of 

Fig. 5. Layout of some of the tested slabs with varied slab widths. Dimensions in m.  

Fig. 6. Reinforcement layout of simply supported slabs with ltotal = 4.4 m tested by Reißen, Classen and Hegger [8]. Dimensions in m.  
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flexural failures without increasing the reinforcement ratios. Normal 
strength steel bars (fyk = 500 MPa) were applied in the transverse di-
rection. The longitudinal and transverse reinforcement ratios (ρl and ρt) 
on the slab’s tension side were fixed at 0.98% and 0.45%, respectively 
(Ø15/7.5 and Ø12/10). This resulted in an effective depth of the lon-
gitudinal bending reinforcement of dl = 0.241 m and an effective depth 
of the transverse reinforcement of dt = 0.254 m. The reinforcement layer 
on the compression side consisted of normal-strength steel bars (fyk ≈

500 MPa) with the following distribution: Ø10/15 in the longitudinal 
direction (0.22%) and Ø12/10 in the transverse direction (0.45%). Fig. 6 
shows the reinforcement layout, including the stirrups (Ø12) placed at 
the support and at the midspan. Reiβen, Classen and Hegger [8] used 
these stirrups to prevent shear failures out of the region studied, to 
improve the reinforcement anchorage at the supports, and to simplify 
the installation of the top reinforcement. 

Table 4 describes the geometry of the slabs, the layout of the tests 
(see Fig. 4 and Fig. 5), the reinforcement ratios in the longitudinal and 
transverse directions, and the failure loads for the 13 investigated tests. 
The notation of the tests can be illustrated with S25B-1: S means “slab”; 
the first two numbers following identify the slab width in meter (5: blsab 
= 0.5 m; 15: bslab = 1.5 m; 25: bslab = 2.5 m; and 35: bslab = 3.5 m). The 
last letter refers to the shear slenderness (A: a/dl = 2.9; B: a/dl = 4.2; C: 
a/dl = 5.4). The last number means the number of the test (1 = first test; 
2 = second test). 

3.3. Material properties of control specimens 

Table 5 describes the material properties of the concrete used in the 
tests according to Reiβen [15] and Reiβen et al. [8]. The main properties 
used to simulate the concrete behavior are the average tensile strength 
(fctm) measured on cores drilled from the slabs (D ≈ 54.5 mm, H ≈ 110 

mm), the compressive strength measured on cylinder specimens fcm (D 
= 150 mm, H = 300 mm), and the mean modulus of elasticity (secant 
modulus) of concrete Ecm (measured at 40% of fcm). Coarse aggregate 
with a maximum size of 16 mm was used. 

To provide some insight into the comparison between tested and 
predicted material properties, the concrete tensile strength fct,pred and 
secant elastic modulus Ec,sec,pred were calculated based on the fib Model 
Code 2010 [27] expressions as (assuming quartzite aggregates): 

fct,pred = 0.3⋅(fck)
2/3

, with fck = fcm − 8MPa (34)  

Ec,sec,pred = αi⋅Eci (35)  

αi = 0.8+ 0.2⋅
fcm

88
⩽1 (36)  

Eci = 21500⋅
(

fcm

10

)1/3

(37) 

Table 5 shows that, on average, the predicted tensile strength with 
the fib Model Code 2010 [27] expressions fit well with the measured 
values reported by Reiβen [15] (the average error was less than 1%, and 
the maximum deviations were less than 15% except for one outlier). On 
the other hand, the deviations of Ec,pred compared to the measured values 
were generally larger than 10% and, for the slab S25B-2, reached a 
maximum of 27.3%. In this study, the measured values of the concrete 
tensile strength and elastic modulus were adopted in the reference nu-
merical models. Nevertheless, a comparison between the numerical re-
sults using measured and predicted values of concrete elastic modulus is 
also provided in one of the sections (as these values varied more 
significantly). 

The measured yield strength fy varied between 822 MPa and 920 

Table 4 
Geometry, test layout and failure load of the control slabs. Source: Reiβen, Classen and Hegger (2018).  

Test lc1 (m) lspan (m) lc2 (m) ltotal (m) bslab (m) h (m) ρl (%) ρt (%) a/d (-) av/dl (-) FEXP (kN) VFu (kN) 

S5A  0.20  3.0  1.90  5.9  0.5  0.28  0.98  0.45  2.9  1.92 189 145 
S5B-1  0.20  4.0  0.2  4.4  0.5  0.28  0.98  0.45  4.2  3.17 183 137 
S5B-2  1.2  3.0  0.2  4.4  0.5  0.28  0.98  0.45  4.2  3.17 215 144 
S15B-1  0.2  4.0  0.2  4.4  1.5  0.28  0.98  0.45  4.2  3.17 543 407 
S15B-2  1.2  3.0  0.2  4.4  1.5  0.28  0.98  0.45  4.2  3.17 638 425 
S25B-1  0.2  4.0  0.2  4.4  2.5  0.28  0.98  0.45  4.2  3.17 664 498 
S25B-2  1.2  3.0  0.2  4.4  2.5  0.28  0.98  0.45  4.2  3.17 780 520 
S35A-1  0.2  3.0  1.2  4.4  3.5  0.28  0.98  0.45  2.9  1.92 1143 876 
S35A-2  0.2  3.0  1.2  4.4  3.5  0.28  0.98  0.45  2.9  1.92 892 684 
S35B-1  0.2  4.0  0.2  4.4  3.5  0.28  0.98  0.45  4.2  3.17 985 739 
S35B-2  1.2  3.0  0.2  4.4  3.5  0.28  0.98  0.45  4.2  3.17 1024 683 
S35C-1  0.2  4.0  0.2  4.4  3.5  0.28  0.98  0.45  5.4  4.42 1066 787 
S35C-2  0.2  4.0  0.2  4.4  3.5  0.28  0.98  0.45  5.4  4.42 924 623  

Table 5 
Concrete properties described in references. Source: Reiβen [15].  

Test fcm (MPa) fctm (MPa) Ecm (MPa) fct,pred (MPa) fct,pred

fctm
− 1(%) 

Ec,sec,pred(MPa) Ec,sec,pred

Ecm
− 1 (%) 

S5A  36.9  2.7 24,200 2.83  4.6% 29,365  21.3% 
S5B-1  39.2  3.0 26,200 2.97  − 0.9% 30,140  15.0% 
S5B-2  40.5  2.8 28,100 3.06  9.1% 30,571  8.8% 
S15B-1  37.7  2.8 27,300 2.88  2.8% 29,637  8.6% 
S15B-2  38.2  3.0 27,600 2.91  − 3.0% 29,805  8.0% 
S25B-1  27.9  2.5 22,400 2.20  − 11.9% 26,133  16.7% 
S25B-2  29.5  2.6 21,000 2.32  − 10.8% 26,735  27.3% 
S35A-1  41.3  2.7 29,900 3.11  15.0% 30,834  3.1% 
S35A-2  29.0  2.7 23,300 2.28  − 15.4% 26,549  13.9% 
S35B-1  35.9  2.8 28,200 2.76  − 1.4% 29,023  2.9% 
S35B-2  38.2  3.0 *28200 2.91  − 3.0% 29,805  5.7% 
S35C-1  39.6  2.4 27,200 3.00  24.9% 30,273  11.3% 
S35C-2  29.5  2.5 22,700 2.32  − 7.2% 26,735  17.8%     

AVG  0.2% AVG  12.3% 

*assumed value. 
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MPa for the 15 mm diameter bars; 540 MPa to 573 MPa for the 12 mm 
diameter bars; and it was assumed as 550 MPa for the 10 mm diameter 
bars. The ultimate tensile strength fult varied between 1077 MPa and 
1110 MPa for the 15 mm diameter bars; 595 MPa to 639 MPa for the 12 
mm diameter bars. The average steel elastic modulus Es was 199 GPa for 
the 15 mm diameter bars and 200 GPa for the other bars. 

4. Finite element simulations 

4.1. Overview 

The finite element software ABAQUS/CAE [42] was used to model 
the specimens. By considering the specimens’ symmetry, half of the 
slab’s geometry was modeled to reduce the processing time of the nu-
merical models (Fig. 7a). Fig. 7b shows a 3D view of the numerical 
models with highlighted boundary conditions and symmetry planes. A 
rigid body interaction was implemented between the center node of the 
loading plate (master node) and the top surface of the loading plate 
(slave surface) (Fig. 7c). The rotation of the slab surface was free in 
relation to the master node. In this way, an axial hinge has been simu-
lated above the loading plate. A similar interaction was also imple-
mented at the supports to allow a free rotation around the Z-axis while 
the vertical and horizontal displacements were fixed. Fig. 7d shows all 
reinforcement. The interface between the support plates and loading 

plate surface with the slab was modeled assuming (i) hard contact 
(allowing separation of the surfaces) and (ii) frictionless. A perfect bond 
between reinforcement and concrete was also assumed based on [14] 
since no anchorage failure was reported. 

4.2. Mesh 

Concrete parts, supporting plates and loading plates are meshed with 
8-node hexahedral solid elements with reduced integration (C3D8R). 
Reduced integration was considered to avoid the undesirable shear 
locking of the brick elements [42,43]. The rebars were modeled with 2- 
node truss elements (T3D2). Two mesh discretizations were used for the 
concrete parts to optimize the time of processing (Fig. 8). In the region 
closer to the loading plate, where failure was expected to occur, the 
element size for concrete and reinforcement parts was chosen as 28 mm, 
which allows having 10 elements over the thickness of the model. In the 
second part of the slab, the element size used was approximately 56 mm. 
The interaction between the two parts of the slab was performed by a 
tied contact, which allows different mesh discretization between the two 
regions. 

4.3. Solution procedure 

The simulations were conducted using ABAQUS/Standard package 

Fig. 7. Boundary conditions in the numerical models: a) detail of the symmetry axis; b) three-dimensional view of the built numerical model; c) detail of the applied 
load using rigid body displacement with free rotation of the slave surface and d) detail of the longitudinal and transverse reinforcement and stirrups of the 
modeled slabs. 

Fig. 8. Sketch of the mesh discretization applied in the numerical models.  
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[42], on which different implicit solution procedures are available. This 
study used the Newton-Raphson algorithm in the incremental-iterative 
procedure. In summary, the Newton-Raphson algorithm divides the 
analysis process into a series of load increment steps, iterating several 
times in each incremental step until finding an acceptable solution 
(based on convergence criteria), and then solving the next incremental 
step. In the end, the sum of all incremental responses is the approximate 
solution of the nonlinear analysis [44]. The convergence criteria were 
based on force (0.5% in the comparison between internal and external 
forces of the numerical model) and displacement (1% in the comparison 
between the applied displacement and the measured displacement for 
each increment). The automatic increment size definition from ABAQUS 
was used, on which the increment size is reduced to 25% of its original 
value if the solution seems to diverge, and it increases the increment size 
by 50% if convergence is achieved smoothly (if less than 4 iterations are 
needed in two consecutive increments) [45]. The maximum number of 
iterations allowed in a given increment is 16 (default value), and the 
maximum number of cutbacks per increment is set as 5. Therefore, if 
convergence is not achieved for a given increment size, 5 cutbacks and 
16 iterations for each increment size are allowed before stopping the 
simulation. 

4.4. Material modeling 

The CDP model is grounded on three main parts: (i) damage evolu-
tion, yield criterion, and plastic flow rule [42]. The damage evolution 
laws describe how the elastic stiffness E0 is degraded with increasing 
strains. The yield criterion is described according to Lubliner [34] and 
further modified by Lee and Fenves [35]. The plastic flow in the CDP 
used the non-associated potential plastic flow hypothesis. CDP uses a 
potential function G that assumes a Drucker-Prager type hyperbolic form 
[46]. Further details on the expressions that describe the CDP model can 
be consulted elsewhere [13]. 

The required input data for the CDP to represent the concrete 
compressive behavior are the relations between (i) the compressive 
stress σc with the inelastic compressive strains εc

in; and (ii) the evolution 
of the compressive damage variable dc according to the compressive 
damage inelastic strains εc

in. For concrete in tension, the required input 
are the relations between (i) the tensile stress σt with tensile cracking 
strain εt

in and (iii) the evolution of the tension damage variable dt with 
the tensile cracking strain εt

in [36]. The auxiliary input parameters to 
define the yield criterion and the plastic flow rule are the dilation angle 
ψ ; the shape factor Kc; the eccentricity parameter e; the viscosity 
parameter μ, and the ratio between the biaxial compressive strength σb0 
and the uniaxial compressive strength σc0. 

The stress–strain behavior under compression was modeled accord-
ing to the expressions from the current fib Model Code 2010 and EN 
1992-1-1:2005 [47] (see Table 1). In these expressions, εc1 is the strain 
at peak stress and it was calculated according to EN 1991-1:2005 [47]: 

εc1 =
0.7⋅f 0.31

cm

1000
(38) 

The tensile stress–strain behavior was modeled using Hordijk’s 
model [31], which considers the bandwidth leq to reduce the mesh 
sensitivity of the results through the same approach described by Gen-
ikomsou and Polak [13]. In this study, the value of leq was assumed to be 
equal to the average finite element size (28 mm and 56 mm, respec-
tively, in the different regions of the slab). The fracture energy Gf was 
determined according to fib Model Code 2010 expressions [27].The 
model of Alfarah et al. [39] was chosen to determine the damage evo-
lution in tension since it accounts for the bandwidth length leq in tension. 
Therefore, this model can avoid any mesh sensitivity issues due to ten-
sion cracking. The damage parameter evolution in compression was 
determined according to Birtel and Mark [37] to avoid the overly low 
values of dc at the ultimate compressive strains when using the model 
from Alfarah et al. [39] (see Fig. 2b). 

4.5. Plasticity parameters 

The plasticity parameters were chosen based on the literature review 
[13,43,48–51]. The dilation angle adopted for the concrete was 30◦. 
Notably, this value is close to that expected by Poliotti and Bairan [52] 
for the maximum dilation angle of normal strength concretes (ψ = 32◦) 
based on inverse analyses of experimental investigations. The fracture 
energy Gf was calculated according to the fib Model Code 2010 [27] 
since the values with the fib Model Code 1990 [26] underestimated the 
ultimate capacity of the tests that failed by punching. The default value 
of the ratio σb0/σc0 in ABAQUS is 1.16 for the concrete. This value is 
based on the experimental tests of Kupfer et al. [53,54]. 

The viscosity parameter value chosen was 0.00001 in such a way as 
to decrease the sensitivity of the results to the viscoplastic regularization 
in ABAQUS/Standard (implicit integration). However, in the literature, 
the values applied to vary significantly: between 0.00001 and 0.05, for 
instance [14,17,55–57]. In practice, a viscosity parameter is a numerical 
tool used in the CDP model to improve convergence and eventually in-
crease the speed of the simulation through the damping of the crack 
propagation through the numerical models. In practice, using higher 
values of the viscosity parameter makes cracks not concentrate in small 
regions and the damaged region increases considerably [58]. However, 
for higher viscosity values, such as 0.001, the material may show a 
perfect plastic behavior (which means that the residual tensile strength, 
for instance, keeps being the maximum tensile strength during the full 
simulation after cracking) [58]. 

4.6. Summary of the material parameters of the reference FEM 

Table 6 summarizes the main information about the materials 
models adopted for concrete in the reference numerical models. 

5. Validation of the modelling approach 

5.1. Level of accuracy according to the slab width 

Fig. 9 compares the finite element model (FEM) results and the 
experimental results (EXP) in terms of applied load at failure and gov-
erning failure mechanism (shape of the graphs). The statistics about the 
level of accuracy with the proposed approach are discussed in more 
detail in the next sections (relation between tested and predicted re-
sistances, Section 5.3). 

Excluding the results of S5A, which will be described in more detail 
nextly, the results of the numerical models approximate fairly well the 
applied loads at failure from the experiments. Moreover, all numerical 
results clearly indicate a sharp decrease in the load capacity after failure, 
which is a well-known characteristic of brittle failure mechanisms such 
as shear and punching failures. Most predictions with the FEM deviate 
less than 20% from the test results for the ultimate load FEXP. The only 

Table 6 
CDP model parameters used for the reference numerical analyses.  

Parameter Reference 

Yield criterion  
Compressive behavior (σc × εc

in) EN 1992-1-1:2004 [14,28,31] 
Tensile behavior (σt × εt

in) Hordijk [31] 
Damage evolution  
Compression damage (dc × εc

in) Birtel and Mark [37] 
Tensile damage (dt × εt

in) Alfarah et al. [39] 
Plasticity parameters  
Dilation angle, Ψ (◦) 30 
σb0/σc0 1.16 [53,54] 
Parameter Kc 0.66 [42] 
Eccentricity, e 0.1 
Viscosity parameter μ 0.00001 
Fracture energy, Gf fib Model Code 2010 
fct measured (Table 5)  
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exception in Fig. 9 was the test S5A, on which the FEM result over-
estimated the failure load by approximately 38%. Yielding of the rein-
forcement at failure was observed in none of the numerical models, 
which also agrees with the test results. 

Since the presented modeling approach does not include a specific 
calibration for each test (for instance, regarding the concrete tensile 
strength, fracture energy or dilation angle), the level of accuracy is 
considered satisfactory in a global way. In other words, this study 

follows the same modeling strategy for all tests using the same expres-
sions and values of material parameters for all tests. The offset between 
the numerical and experimental graphs (with a stiffer response in the 
numerical results) can be attributed to rubber layers placed between the 
slabs and supports in the experimental program, which was not modeled 
in this study as simplification. 

In this study, the test result from S5A may indicate some limitations 
of the proposed modeling approach. Since this test corresponds to a 

Fig. 9. Comparison between numerical (FEM) and experimental results (EXP) for the tests a) S5A; b) S5B-1; c) S5B-2; d) S15B-1; e) S15B-2; f) S25B-1; g) S25B-2; h) 
S35B-1; and i) S35B-2. 

Fig. 10. Comparison between crack patterns after the failure of experimental tests and FE models for a) S5A; b) S5B-1; c) S5B-2. Note: DAMAGET is the damage 
variable in tension. 
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lower shear slenderness (a/dl = 2.9 and av/dl = 1.92), it may have 
benefited from arching action in the numerical model in a more 
straightforward way compared to the test result. In practice, comparing 
the test results of S5A and S5B-1, the ultimate load FEXP from these tests 
is approximately the same, regardless of the lower shear slenderness av/ 
dl for the test S5A compared to S5B-1 (1.92 compared to 3.17). This 
means that the numerical model may have some limitations in repre-
senting non-slender beams’ one-way shear failure mechanism due to the 
higher sensibility of such tests with the cracking pattern evolution and 
the larger scatter in the arching action efficiency. Similar problems, for 
instance, were found by Henze [16] modeling cantilever slabs when the 
load was placed close to the support (av/dl = 1 and av/dl = 2). At the 
same time, this result could also indicate that the test result S5A did not 
behave as it would be expected. Proof of that is that other tests were 
performed by Reiβen, Classen and Hegger [8] with lower shear slen-
derness, and they achieved a significantly higher failure load (tests S5-D, 
S5D-L8, S5E-L8). 

Fig. 10 also shows that the crack patterns from the test results were 

well reproduced by the numerical models, regardless of the governing 
failure mechanism (the tensile damage variable, DAMAGET, is plotted to 
represent the cracking pattern). In Fig. 10, the numerical models 
reproduced well the flexural cracks followed by the formation of an 
inclined crack that promotes the failure mechanism. However, some 
small differences shall also be highlighted (which are commonly 
neglected in most publications). While the cracking pattern of the test 
results of slender beams indicates an inclined crack with a convex/ 
parabolic shape around the flexural cracks, the numerical models 
sometimes show inclined cracks with a more straight shape. In test S5A, 
this may explain the large difference in the failure loads observed. In 
practice, a parabolic cracking pattern disturbs the load transfer in the 
struts between the load and the support so that arching action cannot 
develop. Therefore, it is reasonable that the failure load in the numerical 
model from S5A has achieved a larger value than the experimental one. 

Fig. 11 shows that, as in the experimental program, the numerical 
models started to fail by punching shear when the slab width increased 
to 2.5 m. At this point, notable differences between the cracking pattern 

Fig. 11. Comparison between the FE models and the test results in terms of the cracking pattern for: a) S15B-1; b) S25B-1; c) S35B-1. DAMAGET is the scalar damage 
variable in tension. 

Fig. 12. Comparison between numerical and experimental results for the tests a) S35A-1; b) S35A-2; c) S35B-1; d) S35B-2; e) S35C-1; f) S35C-2.  
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of the tests S15B-1 and S25B-1 appear: (i) the inclined crack visible on 
the side views from test S15B-1 does not appear in the test S25B-1 at 
failure; (ii) the inclined crack in the test S25B-1 develops only in the 

vicinity of the load, visible though cut views (typical from punching 
failures); (iii) the shape of the cracks from S15B-1 and S25B-1 are 
significantly different: while the test S15B-1 develops an inclined crack 
that connects different flexure cracks, the inclined crack in the test S25B- 
1arises within a strut region around the load. 

5.2. Accuracy level of the NLFEA according to the shear span for the 
wider slabs (bslab = 3.5 m) 

Fig. 12 shows the load × displacement graphs of the numerical 
models and the ultimate load capacity of the tests (horizontal dashed 
lines - FEXP). The tested load × displacement graph of most tests was not 
reported in the references for such group [8]. Consequently, only a 
horizontal dashed line was added to represent the test’s maximum 
achieved load FEXP. Fig. 12 shows that the numerical model predicted 
well the ultimate capacity from most test results when varying the shear 
span, except for the test S35C-1 (a/dl = 5.4). 

Fig. 13 also shows that the punching shear failure that took place in 
the tests was well represented by the numerical models. Due to the 
higher shear demand on one of the sides of the load, an asymmetrical 
punching cone appeared in some tests. This characteristic was also well 
represented in the numerical models based on the higher concentration 
of tensile damage (DAMAGET) between the load and the support. 

5.3. Summary of the level of accuracy with the proposed approach 

Table 7 summarizes the relationship between the tested and pre-
dicted concentrated loads using the proposed approach for NLFEA. 
Different subsets were organized, removing and not removing outliers 
identified in the predictions. Besides, subsets were organized to high-
light the results according to the governing failure mechanism (wide 
beams shear = WB and punching shear = P). 

Table 7 shows that the average ratio between tested and predicted 

Fig. 13. Comparison between the FE models and the test results in terms of the cracking pattern for a) S35A-2, b) S35B-2, and c) S35C-2. Note: DAMAGET is the 
damage variable in tension. 

Table 7 
Summary of the predictions of ultimate capacity with the proposed approach for 
different subsets.  

Test Failure 
mechanism 

av/dl 

[-] 
a/dl 

[-] 
bslab/lload 

[-] 
FEXP / FFEM [-] 

S5A WB = shear 1.91  2.91  1.25  0.63 
S5B-1 WB = shear 3.13  4.17  1.25  0.92 
S5B-2 WB = shear 3.13  4.17  1.25  0.92 
S15B- 

1 
WB = shear 3.13  4.17  3.75  1.18 

S15B- 
2 

WB = shear 3.13  4.17  3.75  1.24 

S25B- 
1 

P = Punching 3.13  4.17  6.25  0.97 

S25B- 
2 

P = Punching 3.13  4.17  6.25  1.06 

S35A- 
1 

P = Punching 1.91  2.91  8.75  1.14 

S35A- 
2 

P = Punching 1.91  2.91  8.75  0.94 

S35B- 
1 

P = Punching 3.13  4.17  8.75  1.10 

S35B- 
2 

P = Punching 3.13  4.17  8.75  1.10 

S35C- 
1 

P = Punching 4.375  5.42  8.75  1.55 

S35C- 
2 

P = Punching 4.375  5.42  8.75  1.20 

All tests  AVG (COV)  1.07 (20%) 
All - S5A, S35C1  A VG 

(COV)  
1.07 (11%) 

WB: S5B-1; S5B-2; S15B1; S15B-2  AVG (COV)  1.06 (16%) 
P: S25(B1,B2); S35(A1; A2; B1; B2; C2)  AVG (COV)  1.07 (9%)  

Table 8 
Comparison between tested and predicted resistances considering or not considering the damage parameters in the simulations.  

Comparison With damage parameters Without damage parameters  

Test Failure mechanism av/dl [-] a/dl [-] bslab/lload [-] FEXP / FFEM [-] FEXP / FFEM [-] Δ(%) 

S5A WB = shear 1.91  2.91  1.25 0.63 0.60 − 5% 
S5B-1 WB = shear 3.13  4.17  1.25 0.92 0.85 − 7% 
S5B-2 WB = shear 3.13  4.17  1.25 0.92 0.90 − 3% 
S15B-1 WB = shear 3.13  4.17  3.75 1.18 1.15 − 3% 
S15B-2 WB = shear 3.13  4.17  3.75 1.24 1.17 − 5% 
S25B-1 P = Punching 3.13  4.17  6.25 0.97 0.87 − 10% 
S25B-2 P = Punching 3.13  4.17  6.25 1.06 0.95 − 11% 
S35A-1 P = Punching 1.91  2.91  8.75 1.14 1.09 − 4% 
S35A-2 P = Punching 1.91  2.91  8.75 0.94 0.89 − 5% 
S35B-1 P = Punching 3.13  4.17  8.75 1.10 1.05 − 4% 
S35B-2 P = Punching 3.13  4.17  8.75 1.10 1.06 − 4% 
S35C-1 P = Punching 4.375  5.42  8.75 1.55 1.39 − 10% 
S35C-2 P = Punching 4.375  5.42  8.75 1.20 1.16 − 4% 
All tests AVG   1.07 (20%)  1.01 (19%) − 6% 
All - S5A, S35C1 AVG   1.07 (11%)  1.01 (12%) − 5% 
WB S5B-1; S5B-2; S15B1; S15B-2 AVG   1.06 (16%) 1.02 (16%) − 4% 
P S25(B1,B2); S35(A1; A2; B1; B2; C2) AVG   1.07 (9%) 1.01 (11%) − 6%  
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applied loads at failure (FEXP/FFEM) was 1.07, with a coefficient of 
variation of only 20%. Since no particular calibration of the fracture 
energy or dilation angle was performed for every single test (the values 
used followed the same values and expressions for all tests), this level of 
precision was satisfactory. Removing the outliers S5A and S35C-1, the 
coefficient of variation decreases to 11%, which highlights the excellent 
precision of the proposed approach. 

By organizing two subsets according to the governing failure mech-
anism, it can be seen that the level of precision was very similar for both 
failure mechanisms (WB and P). The average ratio between tested and 
predicted loads FEXP/FFEM was 1.06, with a coefficient of variation of 
16% for the tests that failed as wide beams (WB). In turn, the tests that 
presented a punching failure (P) presented an average ratio FEXP/FFEM of 
1.07 with a coefficient of variation of 9%. Therefore, a lower scatter was 
identified for the tests that failed by punching. 

6. Sensitivity analysis 

6.1. Effect of concrete damage evolution 

Table 8 compares tested and predicted resistances with the FEM by 
considering and not considering the damage evaluation laws in the 
simulations. In general, it was observed that the predictions of ultimate 
capacity become less conservative without including the damage pa-
rameters. In other words, it was observed that the ultimate capacity 
predicted with the FEM decreased for all tests by including the damage 
parameters. In Table 8, the ratio FEXP/FFEM varied between 3% and 11% 
by including the damage parameters. In practice, the same level of 

variation was observed regardless of the governing failure mechanism 
being wide beam shear (WB) or punching (P). Since both approaches 
(including and not including the damage parameters) led to similar 
levels of accuracy, it can be stated that the simulations could be per-
formed without the damage parameters for simplicity. 

Fig. 14 shows the load–displacement graph of some simulations with 
and without the damage parameters. Sometimes, including the damage 
parameters influenced only marginally the ultimate load and deforma-
tion capacity of some tests (S15B-1, for instance). Besides, Fig. 14 shows 
that in most cases, the brittle failure mechanism of the slabs was well 
represented with and without the damage parameters. This brittle 
mechanism is mainly related to the sharp decrease of the applied load at 
failure in the numerical simulations. 

These similar results are explained in the following way. As 
demonstrated in Section 2, the effective uniaxial stress–strain behavior 
in compression and tension does not change, regardless of the damage 
parameters. In practice, including or not the damage parameters 
changes only the proportion between plastic and inelastic strains. Since 
cracks are not expected to close during the static tests (different from 
cyclic tests), such changes in the proportion between plastic and in-
elastic strains do not play a significant role in the numerical results. 
Nevertheless, the results with including damage parameters change 
slightly (between 3% and 11% in this study) because the difference in 
the evolution of plastic strain changes the evolution of effective stresses 
considered in the three-dimensional yield criterion from CDP [34,35]. 

Fig. 14. Influence of including or not the damage parameters in the load × displacement curves of the numerical simulations. Note: graphs from other tests can be 
consulted in the Appendix. 

Table 9 
Comparison between tested and predicted resistances FEXP/FFEM according to the stress–strain behavior assumed in compression.  

Test Failure mechanism av/dl [-] a/dl [-] bslab/lload [-] Stress–strain behavior in compression 

EN 1992-1-1:2004 (Reference) Carreira and Chu Krätzig and Pölling 
FEXP / FFEM [-] FEXP / FFEM [-] FEXP / FFEM [-] 

S5A shear 1.91  2.91  1.25  0.60  0.59  0.55 
S5B-1 shear 3.13  4.17  1.25  0.85  0.76  0.74 
S5B-2 shear 3.13  4.17  1.25  0.90  0.75  0.89 
S15B-1 shear 3.13  4.17  3.75  1.15  0.76  0.92 
S15B-2 shear 3.13  4.17  3.75  1.17  1.02  0.97 
S25B-1 Punching 3.13  4.17  6.25  0.87  0.82  0.85 
S25B-2 Punching 3.13  4.17  6.25  0.95  0.90  0.87 
S35A-1 Punching 1.91  2.91  8.75  1.09  1.10  1.07 
S35A-2 Punching 1.91  2.91  8.75  0.89  0.89  0.89 
S35B-1 Punching 3.13  4.17  8.75  1.05  1.16  1.04 
S35B-2 Punching 3.13  4.17  8.75  1.06  1.00  1.01 
S35C-1 Punching 4.375  5.42  8.75  1.39  1.31  1.24 
S35C-2 Punching 4.375  5.42  8.75  1.16  1.08  1.02 
All tests AVG (COV) 1.01 (19%)  0.93 (19%)  0.93 (14%) 
All tests (-) S5A, S35C1 AVG (COV) 1.01 (12%)  0.93 (16%)  0.93 (10%) 
WB S5B-1; S5B-2; S15B1; S15B-2 AVG (COV)  1.02 (16%)  0.82 (16%)  0.88 (11%) 
P S25B1-2; S35A-1; A2; B1; B2; C2 AVG (COV)  1.01 (11%)  0.99 (13%)  0.96 (9%)  
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6.2. Effect of the stress–strain behavior in compression 

Table 9 shows the comparison between tested and predicted re-
sistances with the FEM according to the different stress–strain behaviors 
in compression assumed to the concrete: EN 1992-1-1:2004 [28], Car-
reira and Chu [20] and Krätzig and Pölling [22]. In these analyses, the 
finite element models assume all properties of the reference finite 
element approach (Section 4), except that the damage parameters were 
not considered in these evaluations. 

Table 9 shows that the accuracy of the different approaches is quite 
similar for slabs failing by punching (P). However, the predictions 
deviate by more than 12% compared to the reference approach 
considering only the tests that failed as wide beams in shear (WB). In 
practice, considering the large post-peak compressive strength accord-
ing to the models from Carreira and Chu [20] and Krätzig and Pölling 
[22] overestimated the tested resistances in one-way shear. However, re- 
calibrating other parameters, such as the fracture energy and dilation 
angle, these approaches may lead to almost the same results. Therefore, 
any of these models could be used since other secondary parameters can 
be properly calibrated. 

Fig. 15 shows that, in general, the studied models changed only 
slightly the ultimate loads and the displacements at failure for most 
tests. The stress–strain models with a large residual compressive 
strength (Eurocode [28] < Carreira and Chu [20] < Krätzig and Pölling 
[22]) led, in most cases, to a higher ultimate load and deformation ca-
pacity at failure (test S5B1-1, for instance). In general, the governing 
failure mechanism was not changed by changing the stress–strain 

behavior in compression. However, the tests S15B1- and S15B-2 showed 
that, in some cases, the use of the models from Carreira and Chu [20] 
and Krätzig and Pölling [22] might lead to less brittle failure mecha-
nisms at failure (almost ductile for S15B-1). Therefore, it is necessary to 
evaluate more carefully the use of models that assume a large residual 
strength in compression. 

6.3. Effect of the tensile stress–strain behavior 

The assumed tensile stress–strain behavior for the CDP is frequently 
not discussed in depth in numerical studies. In general, this is one of the 
assumptions that varies more between different papers, which deserves 
a detailed analysis. Table 10 shows the influence of the two types of 
tensile stress–strain behavior models: (i) the one from Hodijk [31] is 
based on the tensile stress × crack opening relationship, which depends 
on the tensile fracture energy Gf and the size of the finite element leq; and 
(ii) the one from Carreira and Chu [33], is not dependent on the tensile 
fracture energy and mesh size. 

Table 10 shows that the ratio between tested and predicted re-
sistances FEXP / FFEM varies enormously with the assumed stress–strain 
behavior in tension. The average ratio FEXP / FFEM varied from 1.01 to 
1.53, and the coefficient of variation varied from 19% to 30% when 
replacing the Hordijk model [31] with the Carreira and Chu model [33]. 
The ratio of FEXP / FFEM between the two approaches varied between 
10% and 91% using the Hordijk [31] and Carreira and Chu [33] models. 
The larger deviations in the predictions with the models from Carreira 
and Chu [33] occurred for the tests that failed by punching (P). This 

Fig. 15. Influence of the stress–strain behavior in compression assumed for the concrete. Note: graphs from other tests can be consulted in the Appendix.  

Table 10 
Comparison between tested and predicted resistances FEXP/FFEM according to the stress–strain behavior assumed in compression.  

Test Failure mechanism av/dl [-] a/dl [-] bslab/lload [-] Stress–strain behavior in tension  

Hordijk [31] (Reference) Carreira and Chu [33]  

FEXP / FFEM [-] FEXP / FFEM [-] Δ (%) 

S5A shear 1.91  2.91  1.25  0.60  0.75 26% 
S5B-1 shear 3.13  4.17  1.25  0.85  1.22 43% 
S5B-2 shear 3.13  4.17  1.25  0.90  1.34 49% 
S15B-1 shear 3.13  4.17  3.75  1.15  1.27 10% 
S15B-2 shear 3.13  4.17  3.75  1.17  1.47 25% 
S25B-1 Punching 3.13  4.17  6.25  0.87  1.26 44% 
S25B-2 Punching 3.13  4.17  6.25  0.95  1.33 41% 
S35A-1 Punching 1.91  2.91  8.75  1.09  2.08 90% 
S35A-2 Punching 1.91  2.91  8.75  0.89  1.44 61% 
S35B-1 Punching 3.13  4.17  8.75  1.05  1.78 69% 
S35B-2 Punching 3.13  4.17  8.75  1.06  1.69 60% 
S35C-1 Punching 4.375  5.42  8.75  1.39  2.65 91% 
S35C-2 Punching 4.375  5.42  8.75  1.16  1.66 43% 
All tests AVG (COV) 1.01 (19%)  1.53 (30%)  
All tests (-) S5A, S35C1 AVG (COV) 1.01 (12%)  1.50 (18%)  
WB S5B-1; S5B-2; S15B1; S15B-2 AVG (COV)  1.02 (16%)  1.32 (8%)  
P S25B1-2; S35A-1; A2; B1; B2; C2 AVG (COV)  1.01 (11%)  1.61 (18%)   
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indicates that the punching shear mechanism is more dependent on the 
concrete tensile strength than the wide beam shear mechanism. 

Fig. 16 shows how the assumed models to represent the concrete 
tensile behavior (Hordijk [31] and Carreira and Chu [33]) influence the 
load–displacement graphs of the simulations. The experimental curves 
were suppressed to highlight the influence of the parameter varied, 
keeping only the peak loads in the graphs. Besides showing the larger 
deviations in the peak loads, Fig. 16 shows that the model from Carreira 
and Chu [33] also results in lower concrete cracking loads of the slab 
(the inclination of the graphs that use the Carreira and Chu [33] model 
changes first). 

6.4. Influence of the viscosity parameter and concrete elastic modulus 

The scatter between tested and predicted values of the concrete 
elastic modulus Ec were relatively higher than the ones presented to the 
concrete tensile strength (coefficient of variation around 10% compared 
to < 1% in Table 5). Because of this, we compared the predictions of 
ultimate loads using the measured and predicted values of the concrete 
elastic modulus (Table 11, including damage parameters). Table 11 
shows that, on average, the results were not significantly influenced 
using measured or predicted values of the concrete elastic modulus 
(comparing columns #6 and #7). The average ratio FEXP/FFEM changed 

Fig. 16. Influence of the tensile stress–strain behavior. Note: graphs from other tests can be consulted in the Appendix.  

Table 11 
Comparison between tested and predicted resistances FEXP/FFEM according to the viscosity parameter μ.  

#1 #2 #3 #4 #5 #6 #7 #8 #9 
Test Failure mechanism av/dl [-] a/dl [-] bslab/lload [-] Viscosity parameter μ 

(Reference) μ ¼ 10-5 (Reference) μ ¼ 10-5 μ ¼ 10-4 μ ¼ 10-3 

Ec = Ecm Ec = Ec,sec,pred Ec = Ec,sec,pred Ec = Ec,sec,pred      

FEXP / FFEM [-] FEXP / FFEM [-] FEXP / FFEM [-] FEXP / FFEM [-] 

S5A shear 1.91 2.91 1.25 0.63 0.62 0.54 0.42 
S5B-1 shear 3.13 4.17 1.25 0.92 0.85 0.80 0.58 
S5B-2 shear 3.13 4.17 1.25 0.92 1.07 0.90 0.62 
S15B-1 shear 3.13 4.17 3.75 1.18 1.05 0.95 0.68 
S15B-2 shear 3.13 4.17 3.75 1.24 1.10 0.98 0.70 
S25B-1 Punching 3.13 4.17 6.25 0.97 0.94 0.87 0.68 
S25B-2 Punching 3.13 4.17 6.25 1.06 0.97 0.93 0.71 
S35A-1 Punching 1.91 2.91 8.75 1.14 1.16 1.07 0.77 
S35A-2 Punching 1.91 2.91 8.75 0.94 0.89 0.85 0.63 
S35B-1 Punching 3.13 4.17 8.75 1.10 1.13 1.07 0.81 
S35B-2 Punching 3.13 4.17 8.75 1.10 1.07 1.01 0.76 
S35C-1 Punching 4.375 5.42 8.75 1.55 1.40 1.43 1.06 
S35C-2 Punching 4.375 5.42 8.75 1.20 1.21 1.14 0.90 
All tests AVG 1.07 (20%) 1.04 (18%) 0.96 (21%) 0.72 (22%) 
All tests (-) S5A, S35C1 AVG 1.07 (11%) 1.04 (11%) 0.96 (11%) 0.71 (13%) 
WB S5B-1; S5B-2; S15B1; S15B-2 AVG 1.06 (16%) 1.02 (11%) 0.91 (9%) 0.65 (8%) 
P S25B1-2; S35A-1; A2; B1; B2; C2 AVG 1.07 (9%) 1.05 (11%) 0.99 (11%) 0.75 (12%)  

Fig. 17. Influence of the viscosity parameter value on the numerical results. Note: graphs from other tests can be consulted in the Appendix.  
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from 1.07 using measured values to 1.04 using predicted values of Ec. 
Besides, the coefficient of variation changed from 20% to 18%. There-
fore, in general, the results using the predicted concrete elastic modulus 
were slightly more precise. 

Table 11 also shows the influence of the viscosity parameter value in 
the precision of the predictions of ultimate loads. The viscosity param-
eter values tested were 10-5, 10-4 and 10-3. Comparing columns #7, #8 
and #9, it can be seem that increasing the values of the viscosity pa-
rameters increases the predicted ultimate loads (which resulted in this 

case on overestimated predictions of resistance in most cases). 
Increasing μ from 10-5 to 10-4 slightly changed the average ratio FEXP/ 
FFEM from 1.08 to 0.96 (12.5% of change), while the coefficient of 
variation varied from 18% to 21%. However, increasing the viscosity 
parameter from 10-4 to 10-3 changed the average ratio FEXP/FFEM from 
0.96 to 0.72 (33% of change), while the coefficient of variation 
remained similar. 

Fig. 17 shows the influence of the viscosity parameter on the load ×
displacement graphs. Increasing the viscosity parameter from 10-5 to 
10-4 slightly increased the peak loads and the inclination of the 
descending branch in the load × displacement graphs. By increasing the 
viscosity parameter from 10-4 to 10-3, the peak loads increased more 
significantly and, in some cases (S35C2), provided a less brittle failure 
mechanism. 

The cracking pattern can also be studied in the choice of the viscosity 
parameter. For instance, Fig. 18 shows the influence of the viscosity 
parameter on the distribution of plastic strains and tensile damage for 
the test S5B-1 (whose distribution represents the cracking pattern in the 
numerical models). Fig. 18 shows that, in general, the cracking pattern 
did not change significantly using μ = 10-5 or μ = 10-4. However, using a 
viscosity equal to 10-3 makes the distribution of tensile damage more 
diffuse and less concentrated (different from what would be expected in 
shear failures). In practice, using higher viscosity values has the same 
effect of artificially increasing the residual tensile strength of the con-
crete [58], which explains why the cracks are less concentrated in the 
numerical models with μ = 10-3. 

Fig. 18. Influence of the viscosity parameter μ on the distribution of plastic strains (PE,MAX PRINCIPAL) and tensile damage (DAMAGET) for the test S5B-1: a) μ =
10-5; μ = 10-4 and c) μ = 10-3. 

Table 12 
Modelling options proposed and from different approaches commonly found in 
the literature.  

Parameter Approach (1) - 
Reference 

Approach (2) Approach (3) Approach (4) 

σc × εc EN 1992–1-1  
[47] 

Hognestad 
et al. [59] 

Carreira and 
Chu [20] 

Carreira and 
Chu [20] 

σt × εt Hordijk [31] Petersson  
[29] 

Carreira and 
Chu [33] 

Carreira and 
Chu [33] 

dc × εc – – – – 
dt × εt – – – – 
Fracture 

energy 
Model Code 
2010 

Model Code 
1990 

– – 

Dilation 
angle 

30 40 40 40 

Viscosity 0.00001 0.00001 0.001 0.00001 
Finite 

element 
C3D8R C3D8R C3D8R C3D8R  

Table 13 
Comparison between tested and predicted resistances using the FEM based on different approaches (modeling options from Table 12). F.M. = failure mechanism.       

Approach 1 Approach 2 Approach 3 Approach 4 
Test F.M. av/dl [-] a/dl [-] bslab/lload [-] FEXP / FFEM [-] FEXP / FFEM [-] FEXP / FFEM [-] FEXP / FFEM [-] 

S5A shear 1.91 2.91 1.25 0.60 0.55 0.36 0.63 
S5B-1 shear 3.13 4.17 1.25 0.85 0.73 0.52 1.32 
S5B-2 shear 3.13 4.17 1.25 0.90 0.71 0.54 1.22 
S15B-1 shear 3.13 4.17 3.75 1.15 0.95 0.51 1.18 
S15B-2 shear 3.13 4.17 3.75 1.17 1.01 0.51 1.30 
S25B-1 Punching 3.13 4.17 6.25 0.87 0.87 0.40 1.02 
S25B-2 Punching 3.13 4.17 6.25 0.95 0.92 0.43 1.08 
S35A-1 Punching 1.91 2.91 8.75 1.09 1.07 0.49 1.51 
S35A-2 Punching 1.91 2.91 8.75 0.89 0.89 0.37 1.43 
S35B-1 Punching 3.13 4.17 8.75 1.05 1.02 0.53 1.51 
S35B-2 Punching 3.13 4.17 8.75 1.06 0.95 0.51 1.43 
S35C-1 Punching 4.375 5.42 8.75 1.39 1.20 0.74 2.21 
S35C-2 Punching 4.375 5.42 8.75 1.16 1.07 0.56 1.30 
All tests AVG 1.01 (19%) 0.92 (19%) 0.50 (20%) 1.32 (27%) 
All tests (-) S5A, S35C1 AVG 1.01 (12%) 0.93 (13%) 0.49 (12%) 1.30 (13%) 
WB S5B-1; S5B-2; S15B1; S15B-2 AVG 1.02 (16%) 0.85 (18%) 0.52 (2%) 1.25 (5%) 
P S25B1-2; S35A-1; A2; B1; B2; C2 AVG 1.01 (11%) 0.97 (9%) 0.47 (15%) 1.32 (15%)  
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6.5. Comparative analyses of different approaches from the literature 

Table 12 describes four modeling approaches that combine different 
modeling options involving: (i) stress–strain behaviors in compression 
and tension, (ii) dilation angle values, (iii) fracture energy values, and 
(iv) viscosity parameters. Approach 1 is the proposed one (reference) in 
this study. Approach 2 is a modeling approach commonly found in 
studies related to punching capacity [13]. Approach 3 is one commonly 
used in studies related to composite structures [56]. In approach 3, the 
stress–strain behavior in tension [33] does not include the finite element 
size and, in general, the result is a significantly lower residual tensile 
strength after the peak stress compared to the models from Hordijk [31] 
and Petersson [29] (see Fig. 1b). Based only on the stress–strain 
behavior in tension, one could expect in this way a considerably lower 
ultimate capacity of the slabs considering Approach 3. Approach 4 is a 
modified approach from Approach 3, changing only the viscosity 
parameter. The damage parameters were not included in this section 
since it was observed that, in general, this parameter does not signifi-
cantly change the global behavior of the numerical models in static 
problems. 

Table 13 compares experimental and numerical failure loads using 
the different approaches (modeling options detailed in Table 12). 
Table 13 shows that even using significantly different values of fracture 
energy and dilation angle, approaches 1 and 2 led to similar levels of 
accuracy. In practice, this occurs because the higher fracture energy 
used in approach 1 is balanced with a lower dilation angle used. By 
comparing the predictions from approaches 1 and 2, higher differences 
occurred for the tests that failed in wide beam shear (WB), reaching 
differences between 10 and 20% in the predicted failure load. 
Conversely, the punching capacity predictions were very similar for 
both approaches. 

On the other hand, approach 3 led to errors in the predicted failure 
load higher than 50%. All FEM predicted an overly unsafe failure load 
using approach 3, even though this approach is based on the use of a 
stress–strain behavior in tension with a considerably lower residual 
tensile strength after cracking. In practice, this occurred because the 
viscosity parameter used (μ = 0.001) changed the effective stress–strain 
behavior in tension completely. In practice, a value higher than 0.0001 
may change the material behavior to a perfect-plastic model [58]. 
Consequently, the material never fails in the concrete, and the slabs only 
fail after the reinforcement starts to yield. 

In approach 4, the viscosity parameter from approach 3 was reduced 
to the value of 0.00001, which was demonstrated in other studies as 
being a value sufficiently low not to change the material behavior in an 
unpleasant way and allow numerical convergence in the processing of 
the FEM [14]. Table 13 shows that the predicted failure load decreased 
markedly from approach 3 to approach 4, and most of the prediction 
failure loads became on the safe side. In practice, the results from 
approach 4 become more conservative than the other approaches due to 

the lower residual tensile strength after cracking. This occurs because 
the model from Carreira and Chu [33] to describe the stress–strain 
behavior in tension is not based on a stress-crack opening relationship 
and, hence, does not allow including the finite element size in the ex-
pressions. In general, approach 4 still led to large errors in the predicted 
failure load (>25%) for most tests and shall also be avoided. 

Fig. 19 shows the influence of different sets of modeling options on 
load × displacement graphs (F × δ) of the numerical models (see 
Table 12 for notations). From Fig. 19, the main observation is that 
beyond overestimating the failure load with approach 3, the failure 
mechanism of the slabs is also not represented by the numerical models. 
In practice, all numerical models presented a ductile failure mode using 
approach 3. Therefore, viscosity values should be carefully evaluated 
since they can introduce a large bias in the numerical results. In other 
words, when using large values of viscosity parameters, identifying 
different failure mechanisms of the slabs may become impossible. 

7. Discussion 

Available research in literature with recommendations for modeling 
experiments focuses on the idea that the NLFEA should be in agreement 
with the test results. However, some problems arise frequently in many 
studies: (i) the proposed approach is validated against one specific test; 
(ii) the limitations of the numerical model are not discussed or investi-
gated; (iii) the material parameters are calibrated without considering 
their physical meaning. In this study, the accuracy of an arbitrary 
modeling approach was investigated to bring some light to the 
discussion. 

When the numerical model is validated against one specific test, a 
severe problem may arise: (i) the proposed numerical model may have 
been validated against outlier test results and, hence it may not repre-
sent well most similar problems. For instance, if material parameters 
from the numerical model are calibrated to represent the test results of 
specimen S5A (as tested), the numerical model would not represent most 
test results well. In practice, the error of some numerical models 
increased to more than 50% when the modeling approach was changed 
to represent better the test S5A. Therefore, calibrating the numerical 
models using only one test specimen before applying the modeling 
strategy for a parametric study is not proper since it may reproduce 
inaccurate results. 

Another main pitfall observed in several numerical studies is that the 
validation step from the study usually focuses on representing only one 
failure mechanism and does not cover all possible failure mechanisms 
that may arise in parametric studies. For instance, in the testing program 
performed by Reiβen, Classen and Hegger [8], it was identified that both 
one-way shear failure (as wide beams) and punching shear failure could 
occur by changing the slab’s width. Therefore, this study could not 
include (by consistency) a variable such as a slab width in the parametric 
analyses if the numerical model is not validated to represent both failure 

Fig. 19. Influence of different sets of modeling options (see Table 12) on load × displacement graphs of the numerical models (F × δ). Note: graphs from other tests 
can be consulted in the Appendix. 
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mechanisms. 
In the context of NLFEA, it is also essential to understand the results 

of the outliers (numerical predictions that deviate overly from the test 
results). For instance, the difficulty of representing the failure load for 
test S5A is not coincidental. The failure load from non-slender beams (or 
wide slabs) is very sensitive to the cracking pattern that develops during 
the loading and the strut efficiency to transfer shear forces [60,61]. 
Consequently, a large scatter in the failure loads appears for such 
members, even when testing equal members. Therefore, it is more 
difficult for the numerical model to predict the correct failure load, as 
the failure mechanism to develop in the experiment and model is a 
matter of chance. In the case of test S35C-1, a similar interpretation 
occurs since the punching phenomenon also occurs in a region governed 
by strut and tie mechanisms (load vicinity) [62]. Since this test repre-
sents an asymmetrical punching in terms of load position and rein-
forcement ratios and no specific calibration was applied for each test, it 
would be natural that some predictions deviate more from the test 
results. 

In many numerical studies, damage evolution parameters are not 
considered in the CDP model. The main argument is that the degradation 
of elastic stiffness would play a significant role only in cyclic loading 
tests, where the unloading would produce crack closing. However, an 
essential aspect of three-dimensional problems is neglected in this way: 
the degradation of the elastic modulus influences the triaxial state of 
concrete under confining problems. Since the yielding surface of the 
CDP model is pressure-sensitive, and the punching shear problems 
mobilize high confining stresses around the column, it can be expected 
that not including damage parameters could influence the numerical 
results. However, until now, no comprehensive investigation on this 
aspect has been conducted. This study showed that the failure load for 
shear and punching failure modes decreased between 3% and 11%, 
including the damage parameters. On average, the changes in the peak 
loads were less than 6%. Therefore, it can be stated that including or not 
including the damage parameters does not significantly influence the 
numerical results from static tests. In practice, for instance, decreasing 
the fracture energy Gf or the dilation angle ψ would provide similar 
results to that achieved by including the damage parameters but making 
the required number of input parameters lower. 

One of the most common problems in numerical studies that consider 
the CDP model is the given value of the viscosity parameter. In practice, 
many researchers are tempted to use high values such as 0.001 and 
0.0001 due to the lower processing time. In practice, increasing the 
viscosity parameter from 0.00001 to 0.001 may speed up the processing 
time more than 10 times (substantially decreasing the time required in 
the simulation). However, this choice has a cost that is not discussed in 
most papers. Depending on the value of μ, the concrete may behave as a 
perfectly plastic material in tension and compression. Michał and 
Andrzej [58] show that after a certain value of the viscosity parameter, 
the post-peak behavior of concrete under tension and compression 
changes very much, losing the descending branch in the stress–strain 
relationships expected for such materials. While this characteristic may 
have a minor influence on problems governed by flexure, using high 
values of viscosity parameters may induce flexural failures for all sim-
ulations (even when shear and punching failures are expected). There-
fore, using high viscosity values when considering more than one failure 
mechanism (eg. concrete crushing, shear or punching) can be critical 
and should be avoided. 

As demonstrated by Ungermann et al. [63], the CDP and other 
constitutive models widely adopted in three-dimensional non-linear 
finite element analyses do not accurately represent the development of 
aggregate interlock (evolution of shear stresses between cracked faces). 
Although this shear transfer mechanism is well-known as a key param-
eter at shear failure, its influence in the numerical results may be limited 
due to the following reasons: (i) the contribution of aggregate interlock 
at failure, as well as other shear transfer mechanisms, depends on the 
location, geometry and kinematics of the critical shear crack and, hence, 

in some case may have limited contribution to the shear capacity [64]; 
(ii) the contribution of aggregate interlock, in most cases, is significant 
(30% − 85%) only after the development of the second branch of the 
critical shear crack (CSC) around the compression chord, which usually 
happens close to the failure between (90% and 98% of the ultimate load) 
[65]; hence, inaccuracies in the evaluation of the aggregate interlock 
have more influence only at the last stage of the failure process; (iii) until 
the development of the second branch of the CSC around the compres-
sion chord and load levels around 90%, the compression chord capacity 
tends to be the most important shear transfer mechanism [4,66,67], 
which is well represented in most available constitutive models, 
including the CDP. 

8. Recommendations for NLFEA using the CDP 

In the last years, guidelines for NLFEA were developed that focused 
on using total strain fixed and rotating cracking models [68–73]. 
Nevertheless, the modeling choices using the Concrete Damaged Plas-
ticity Model were not fully covered and were generally varied signifi-
cantly between different publications [13,39,55,56]. In this study, we 
discussed the effect of these modeling choices of the CDP to predict the 
ultimate capacity of slabs failing in one-way shear and punching shear. 
Based on the presented analyses, the following recommendations can be 
stated: 

- Damage parameters may be suppressed in the simulation of static 
tests for which shear and punching shear may be critical. Nevertheless, 
it’s worth mentioning that the response of the numerical models based 
on fully elastoplastic materials tends to increase the ultimate loads be-
tween 3% and 11% compared to materials combining damage and 
plasticity parameters. In structural members associated with higher 
confining stresses, such as concrete-filled steel tubes, this level of in-
fluence may be higher, which requires further investigation. 

- Any of the tested stress–strain behavior models in compression may 
be used in the simulations with the concrete damage plasticity model 
since other parameters from the constitutive models are well-defined. 
Nevertheless, on average, using the model with higher post-peak 
compressive strength [22] resulted in ultimate capacities 8% higher in 
the numerical simulations than the ones using the Eurocode expressions 
[28]. 

- The stress–strain behavior models in tension shall be based on 
stress-crack opening relationships [29–32] and consider the finite 
element size to overcome the mesh sensitivity. The use of models not 
based on the stress-crack opening relationships tends to result in overly 
conservative predictions of ultimate capacity when shear failures are 
expected (see Fig. 16) and shall be avoided. 

- In the absence of testing results, the concrete tensile strength and 
concrete elastic modulus can be predicted using the fib Model Code 2010 
expressions [27] based on the concrete compressive strength. 

- The viscosity parameter shall be chosen in such a way as not to 
change significantly the numerical results and not based on the best 
prediction of ultimate loads, for instance. In this study, it was observed 
that the viscosity parameter should be not higher than 10-4 in simula-
tions involving shear and punching shear failures. 

9. Conclusions 

This study discusses the level of accuracy of the proposed approach 
to predict the ultimate capacity of slabs under concentrated loads aided 
by NLFEA. The limitations and advantages of the proposed approach are 
highlighted. Besides, a sensitivity study was performed to show the ef-
fect of modeling options, such as the stress–strain behavior in 
compression and tension and the effect of damage parameters in the 
simulation of static tests. The following conclusions can be drawn: 

• The proposed NLFEA modeling choices accurately predict the ulti-
mate capacity of slab strips and slabs under concentrated loads when 
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the load is placed at distances av > 2 dl. When the concentrated loads 
are placed closer to the support (av < 2 dl), in some cases, the ulti-
mate capacity is not predicted accurately because such tests are 
mostly influenced by the efficiency of the struts between the load and 
the support. Since there is a large scatter of experimental results for 
such loading conditions, it can be expected that the numerical 
models also have more difficulty in representing such failure 
mechanisms. 

• Including the damage parameters in the NLFEA allows for repre-
senting more accurately the change in the confining stresses around 
the load at failure. However, it was found that the effect of including 
the damage parameters in static tests was limited for the evaluated 
tests. The variations in the predicted ultimate loads were in the order 
of 3% to 11%, including and not including the damage parameters. 
The failure mechanism of the tests did not change when not 
including the damage parameters. In practice, the tests’ predicted 

Fig. A1. Influence of including or not the damage parameters in the load × displacement curves of the numerical simulations.  
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ultimate load and deformation capacity decreased by including the 
damage parameters.  

• The stress–strain behavior assumed in compression influences the 
ultimate capacity of wide beams and slab strips by around 10%. The 
influence of this parameter on the slabs that failed by punching was 
lower (around 5%). The assumed stress–strain behavior in 

compression did not change the failure mechanism of the slabs. 
However, some tests presented a less brittle failure mechanism at the 
maximum load when using models with considerably higher residual 
compressive strength (for instance, Krätzig and Pölling [22]), which 
is an undesirable characteristic. 

Fig. A2. Influence of the stress–strain behavior in compression assumed for the concrete.  

A.M.D. de Sousa et al.                                                                                                                                                                                                                         



Engineering Structures 293 (2023) 116617

22

• The use of large values of the viscosity parameter (for instance, 
0.001) shall be avoided in NLFEA since these values change the 
effective material properties. In practice, the concrete may behave as 
perfectly plastic material; hence, the slabs’ failure loads and mech-
anisms cannot be well represented. Even when flexural failure modes 
are well represented with large values of viscosity parameter, the 

reader shall be aware that using such values introduces a large bias in 
the numerical results.  

• Some modeling choices, even using considerably different values of 
fracture energy and dilation angle (stress–strain behavior under 
confining pressure), may lead to similar levels of accuracy for shear 
and punching shear capacity predictions. Nevertheless, other 

Fig. A3. Influence of the tensile stress–strain behavior.  
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approaches that do not consider the mesh size in the stress–strain 
relationships for tension may provide unrealistic predictions of ul-
timate capacity and shall be avoided. 
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Appendix A 

In this section, we present complementary graphs related to Section 
6 (Sensitivity Analyses), including the load–displacement graphs from 
all tests simulated. Fig. A.1 describes the Influence of including or not 
the damage parameters in the load × displacement curves of the nu-
merical simulations. Fig. A.2 shows the influence of the stress–strain 
behavior in compression assumed for the concrete in the numerical 
results. 

Fig. A.3 shows the influence of the different tensile stress–strain 
behavior models in the predictions. In the same context, Figure A. 4 
describes the influence of the viscosity parameter value on the numer-
ical results and Figure A. 5 detail the influence of different sets of 
modeling options (see Table 12) on load × displacement graphs of the 
numerical models (F × δ). (Figs. A4 and A5). 
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