
Transformation of DEMO models into
exchangeable format

Master’s Thesis in Computer Science

by

Yan Wang

14th April 2009

Information System Design group
Faculty of EEMCS
Delft University of Technology
Delft,The Netherlands
www.ewi.tudelft.nl

Author
Candidate: Yan Wang
Student number: 1301080
Email: y.wang124@gmail.com

Title
Transformation of DEMO models into exchangeable format

MSc presentation
22nd April 2009

Graduation Committee
Prof. dr. ir. J.L.G. Dietz (chair) Information Systems Design Group, EEMCS

Delft University of Technology
Dr. A. Albani (supervisor) Information Systems Design Group, EEMCS

Delft University of Technology
Dr. J. Barjis (member) Systems Engineering, TBM

Delft University of Technology

Abstract

Globalized business development requires enterprises to have more flexible and
interoperable information systems. The use of reusable and marketable business
components has proved valuable for the development of a high-level information
system [6]. Business Component Identification (BCI) is the first step and a crucial
one in the development of an information system. A well defined business domain
modeling is demanded to provide the requisite information for identifying business
components. The DEMO methodology, which satisfies the requirements to be a
well defined domain modeling for BCI, functions at a high level of abstraction
and models the essence of an organization. However the gap between platform
independent DEMO models and platform specific applications for BCI requires
extra human efforts. This master’s thesis seeks to transform DEMO models into an
exchangeable format, which will be beneficial to BCI. The model transformation
approach used in this research is adopted from Model Driven Architecture (MDA),
and metamodeling is used in the transformation.

Contents

List of Figures 8

List of Tables 9

1 Introduction 13
1.1 Problem Statement . 13
1.2 Research Questions . 15
1.3 Research Approach . 17
1.4 Report Structure . 19

2 Background 21
2.1 Business Components Modeling Process 21
2.2 DEMO Methodology . 22
2.3 Metamodeling and Model Transformation 24
2.4 XML Schema . 29
2.5 Conclusion . 30

3 DEMO Metamodel 33
3.1 Factual knowledge . 35
3.2 Specification of the Meta Construction Model 37
3.3 Specification of the Meta Process Model 41
3.4 Specification of the Meta Action Model 45
3.5 Specification of the Meta State Model 46
3.6 Specification of the metamodel for cross-model tables 53
3.7 Conclusion . 55

4 Transformation Analysis 59
4.1 Requirements for DEMO Transformation 59
4.2 Transformation Rules . 61
4.3 Conclusion . 64

5 DEMO Model schema 67
5.1 Construction Model schema . 67
5.2 Process Model schema . 70

3

5.3 Action Model schema . 73
5.4 State Model schema . 74
5.5 Cross-model tables schema . 78
5.6 Conclusion . 80

6 Producing XML Documents 83
6.1 Construction Model . 83
6.2 Process Model . 84
6.3 Action Model . 85
6.4 State Model . 85
6.5 Cross-Model Table . 86
6.6 Conclusion . 86

7 Transformation Evaluation 89
7.1 Transformation Verification . 89
7.2 Transformation Result Utilization 98
7.3 Conclusion . 99

8 Conclusion and Discussion 101
8.1 Project Reflection . 101
8.2 Scientific foundation . 104
8.3 Project Evaluation . 105
8.4 To Be Discussed . 106

Abbreviations 111

Bibliography 112

Appendices 115

A XML Schema Quick Reference [18] 117
A.1 XML Schema Elements . 117
A.2 Attribute . 118
A.3 XML Schema Data Types . 118

B XML schema for DEMO metamodel 125
B.1 Meta Construction Model . 125
B.2 Meta Process Model . 126
B.3 Meta Action Model . 127
B.4 Meta State Model . 127
B.5 Metamodel of Cross-Model Tables 129
B.6 Graphical Representation of the schema 130

C Application Screenshot 137

5

D Exemplary XML Documents of the Library Case 145
D.1 XML documents for CM . 145
D.2 XML documents for PM . 146
D.3 XML documents for AM . 148
D.4 XML documents of SM . 148
D.5 XML documents for Cross-Model Tables 149

E Manual 151

14th April 2009

6

14th April 2009

List of Figures

1.1 Thesis project research approach 18

2.1 Component Based Domain Analysis [3] 22
2.2 The ontological aspect models 23
2.3 The OMG four-layer hierarchy [8] 25
2.4 MDA model transformation process [11] 27
2.5 Metamodel transformation [11] 28
2.6 UML to XML Schema Transformation 28

3.1 The metamodel of DEMO model 34
3.2 The ontological parallelogram 36
3.3 OCD of the library . 41
3.4 The structure of enclosing a transaction 43
3.5 PSD of a business process of the library 44
3.6 The specification of DERIVED FACT TYPE in MSM 47
3.7 The specification of OBJECT CLASS in MSM 48
3.8 The specification of exclusion law in MSM 48
3.9 The specification of unicity law in MSM 48
3.10 Example of a reference law . 49
3.11 Example of a dependency law 49
3.12 Basic construct at both metamodel level and model level (without

dependency law) . 50
3.13 Basic construct at both metamodel level and model level (with de-

pendency law) . 50
3.14 Basic construct of Object Property in SM 51
3.15 An example of Object Property of the library 51
3.16 The definition of the left side of an Object Property 52
3.17 The definition of the right side of an Object Property 52
3.18 The metamodel of cross-model tables 54
3.19 The diagrams . 57
3.20 The cross-model tables . 57

7.1 First part of the detailed ATD of the Library 91
7.2 PSD of business process 1 of the Library 93

14th April 2009 7

8 LIST OF FIGURES

7.3 The basic pattern in diagram and XML 93
7.4 The comparison of the basic construct in SM - 1 96
7.5 The comparison of the basic construct in SM - 2 97

8.1 DEMO metamodel transformation 104
8.2 Exemplary reproduced CM diagram 109
8.3 Exemplary reproduced PM diagram 110
8.4 Legend of the reproduced diagrams 110

A.1 XML Schema Data Type Hierarchy 118

B.1 The graphical representation of the schema for CM 131
B.2 The graphical representation of the schema for PM 132
B.3 The graphical representation of the schema for AM 133
B.4 The graphical representation of the schema for SM 134
B.5 The graphical representation of the schema for TRT, BCT and IUT

(in order) . 135

C.1 The information items required for CM 137
C.2 The exemplary XML document for CM 138
C.3 The information items required for PM 138
C.4 The exemplary XML document for PM 139
C.5 The information items required for AM 140
C.6 The exemplary XML document for AM 140
C.7 The information items required for SM 140
C.8 The exemplary XML document for SM 141
C.9 The exemplary XML document for TRT 141
C.10 The Construction of the BCT . 142
C.11 The exemplary XML document for BCT 142
C.12 The Construction of the IUT . 142
C.13 The exemplary XML document for IUT 143
C.14 The Construction of the Create / Use Table 143

14th April 2009

List of Tables

1.1 Research questions and corresponding tasks 17

3.1 The TRT of the library . 40
3.2 Example BCT of the library . 54
3.3 Example IUT of the library . 55

4.1 The selected information from the DEMO metamodel (MCM and
MPM) . 62

4.2 The selected information from the DEMO metamodel (MAM and
MSM) . 63

4.3 The selected information from the DEMO metamodel (TRT, BCT
and IUT) . 63

7.1 Mapping of T01 membership registration 91
7.2 Mapping of T02 membership fee payment 92
7.3 Mapping of T03 reduced fee approval 92
7.4 Mapping of TRT . 97
7.5 Mapping of BCT . 97
7.6 Mapping of IUT . 97

A.1 Top Level Element . 119
A.2 Particles . 119
A.3 Multiple XML Documents and Namespaces 120
A.4 Identity Constraints . 120
A.5 Attributes . 120
A.6 Named Schema Objects . 121
A.7 Complex Type Definitions . 122
A.8 Simple Type Definitions . 123
A.9 Attribute . 123

14th April 2009 9

10 LIST OF TABLES

14th April 2009

Chapter 1

Introduction

Many people would agree that it is reckless to execute an implementation with-
out a holistic and strategic plan, no matter whether it is about building a mansion
or launching the development of an information system. However, it is also true
that making an ideally perfect but not implementable plan would be just wishful
indulgence in reverie. Experience tells us how important a smooth and effective
connection is, to bridge the distance between blueprint and operation. This also
applies to developments in the field of software engineering.

1.1 Problem Statement

As worldwide development continues to globalize and integrate, enterprises must
rethink and reengineer their entire business process, which includes their organiza-
tional structure, staffing, and especially their information systems and technology
infrastructures on an international level [21]. As recognized by Malone [23], trans-
actions within organizations will become indistinguishable from transactions be-
tween organizations; organizational boundaries will become much less important,
and business processes will cross the boundaries between once proprietary enter-
prises, which means more cooperation is demanded. With the increasing business
scale, companies are encountering more complex situations, such as globalized
sales and sourcing markets, shortened product life cycles, and innovative pressure
on products, services and processes [7]. In order to stay in and win the game in the
competitive business world, enterprises need to adapt to the fast changing market
quickly and expand their cooperative relationships with their business partners.

Regarding the globalized and drastic business competition, flexibility and inter-
operability are crucial factors for enterprises. Flexibility promises the enterprise
an agile and quick adjustment to both organizational and technical structure, and
releases the constraints from traditional stereotypes, complying with certain busi-
ness strategies of the enterprise. Interoperability, from the perspective of informa-
tion technology, enables communication among diverse systems and organizations,

14th April 2009 13

14 Problem Statement

which provides the possibility to increase the effectiveness of applications.

Since the first use of information technology for business applications a half-century
ago, the business value and impact of information technology on organizations has
been increasing, as reviewed by Mooney [16], “the business value of information
technology is a joint of technology organization phenomenon, and it requires the-
oretical perspectives of both technology and organizations, and their interaction”.
Thus while developing information systems for enterprises, it is necessary to have a
suitable methodology for modeling the business domain. The fact of modeling the
business domain implies that the information systems need to be modeled at a high-
level of information abstraction, which can be understood by business people who
define the organizational requirements. The concept of reusable and marketable
business components is proposed for building adaptive and agile information sys-
tems for enterprises [22]. The use of business components in deploying high level
information systems has been proved valuable by [6], since they “directly model
and implement the business logic, rules and constraints that are typical, recurrent
and comprehensive notions characterizing a domain or business area”.

Proposed in [5], Business Component Identification (BCI) is the first and a crucial
step in the business component modeling process. It starts by generating a set of
essential elements from the business domain, preferably on the basis of a high-level
business domain model, which abstracts the organizational activities. The appro-
priateness and the quality of the business domain model are vital to the information
elicited from the business domain. Dietz proposes some quality criteria regarding a
business domain model in [9], which are coherence (the domain models constitute
a logical and truly integral whole), comprehensiveness (complete coverage of all
relevant issues), consistency (the domain models are free of contradictions or irreg-
ularities), conciseness (all relevant models are compact and succinct), and essence
(the domain model should only show the essence of the enterprise). In addition, he
also elaborates a well-defined methodology called DEMO (Design and Engineer-
ing Methodology for Organizations), which satisfies all of the mentioned quality
criteria.

DEMO is a promising modeling paradigm to represent the essence of an orga-
nization. Compared with other existing process modeling techniques, such as Petri
Net, Event Driven Process Chains (EPC) and Activity Diagrams, which do not
define the business process well and do not distinguish the business and informa-
tional actions [4], DEMO analyzes the organizational activities at a high level of
abstraction, purely from the business domain, and distinguishes between business,
informational and documental actions. DEMO provides four related aspect models,
which are the construction model (represents the organizational construction), the
process model (represents the interrelations within and between the transactions),
the action model (includes all the action rules), and the state model (represents
the allowable states of the production world and the coordination world of the en-

14th April 2009

Research Questions 15

terprise). By providing deep insights into the essential structure of the business
process within an enterprise, DEMO can be chosen for producing the business do-
main models of an enterprise, in preparation for the BCI.

One of the methods for identifying the business component is the three dimen-
sional method for business components identification (BCI-3D), which “aims at
grouping business tasks and their corresponding information objects into business
components” [4]. Choosing DEMO methodology for producing the business do-
main models, the information required by BCI-3D about the organizational activi-
ties is all elicited from the DEMO aspect models.

As introduced in [5], the BCI-3D method uses information objects and process
steps from the DEMO aspect models, including their relationships. However the
tool for implementing the BCI-3D method cannot generate the mentioned infor-
mation directly from the graphical DEMO aspect models. Currently, all the infor-
mation for identifying the business component is generated manually, due to the
inability of communication between different platforms of the BCI-3D tool and
the DEMO models. The DEMO aspect models are high-level conceptual models,
and its modeling procedure does not take any implementation related question into
consideration. Being separated from specific applications guarantees that DEMO
models are platform independent, but also makes a gap to the specific platform
applications. After establishing the DEMO models, it requires extra human effort
to transfer the platform independent model information into another format which
can be used by the BCI-3D tool. Therefore, an automatic identification of business
components is demanded, which is “without the need of manually transforming
the model information into the representation needed in order to apply the BCI-
3D method” [5]. More specifically speaking, an automatic transformation of the
DEMO model information, from the original graphical notations to an exchange-
able format which can be accessed by other applications, such as the BCI-3D tool,
is initiated.

1.2 Research Questions

As already mentioned in the problem statement (Chapter 1.1), the conceptual DEMO
models are separated from any specific platform. The gap between the platform
independent DEMO models and the platform specific programmable models com-
plicates the procedure of identifying the business components. It is required to
bridge the gap with smooth transformation from the graphical DEMO models into
the ones that can be applied in a specific platform. Therefore this raises the main
research question of this graduation project as below:

14th April 2009

16 Research Questions

How can graphical DEMO models be transformed
into an exchangeable format, without information
loss, that is readable by third party applications?

With the purpose of answering the above-mentioned research question, some pre-
requisite work has been done in [27]. The Object Management Group (OMG)
proposes a design approach for developing software systems, Model Driven Archi-
tecture (MDA), in which a model transformation process is defined. The transfor-
mation is from the Platform Independent Model (PIM) to Platform Specific Model
(PSM), under the guidance of some transformation rules. The metamodel, which
represents the models, and the metamodeling, which is the act and science of en-
gineering a metamodel, are also introduced by the OMG and play an important
role in MDA model transformation. By using metamodels, the MDA model trans-
formation is elaborated at a higher level of abstraction, the level of metamodel [17].

Resulting from our previous research [27], in which several existing modeling
paradigms have been studied, we choose the XML Schema language [24] as the
target format for the transformed model. Inspired by MDA model transformation
and metamodeling, we will seek a probable way of transforming the DEMO mod-
els by applying the MDA model transformation approach.

In the expected transformation of the DEMO models, by applying the MDA model
transformation approach, the DEMO aspect models are the source PIM, and the tar-
get PSM will be in the XML based format. The actual transformation will be elab-
orated at the level of metamodel, which implies that the metamodel of the DEMO
models is the crucial factor in our research. The expected transformation should be
conducted under guidance, so that the transformation rules need to be defined for
the entire transformation. Since we choose the XML Schema as the target format
for the PSM, there should be a corresponding metamodel for the PSM in XML
Schema, and the concrete transformation work should bridge the gap between the
PIM (DEMO models) and the PSM (XML based model). As completion of the
transformation, verifying the transformation result is also necessary. In addition,
an example of the utilizing the transformation result by other applications would
be convincing evidence to show that the whole transformation would be helpful to
the existing problem mentioned in Chapter 1.1.

Regarding the outline of the expected transformation mentioned above, we divide
the main research question into several sub-questions, and the answers to those
questions are intended to realize the expected model transformation step by step.
The sub-questions and corresponding tasks are listed in Table 1.1. The explana-
tions for each subtask will be made in Section 1.3.

14th April 2009

Research Approach 17

Table 1.1: Research questions and corresponding tasks
Research Questions Tasks

1 How would the DEMO metamodel
be constructed?

Understand and analyze DEMO meta-
model.

2 How can the transformation rules
be defined?

Define the transformation rules with an un-
derstanding of the demands of transform-
ing the DEMO and the knowledge of the
DEMO metamodel.

3 How can we transform the graph-
ical model information into a
syntax-based format?

Design XML schema for DEMO meta-
model.

4 What would the transformed model
look like?

Produce the instance XML documents with
model information.

5 How can we verify the result of the
transformation?

Compare the produced instance XML doc-
uments with the original diagrams.

6 How can the transformed model be
used by other applications?

Construct the Create / Use Table.

1.3 Research Approach

The graduation project covers a period of 11 months, starting in May, 2008 (ex-
cluding the seven-week literature research), and was completed in April, 2009.
The research approach is proposed in Figure 1.1, and the research steps in this ap-
proach correspond to the research questions and tasks mentioned in Table 1.1. The
research contents contained in this approach are explained below.

1. DEMO metamodel construction
The research starts with acknowledging the metamodeling approach in model trans-
formation, and analyzing the DEMO metamodel 1. As the outcome of this step, an
adequate knowledge about the role of metamodeling in model transformation is
obtained by analyzing the DEMO metamodel. The acknowledgement of meta-
modeling is considered a requisite foundation to steer the whole research. A full
understanding of the DEMO metamodel prepares us with the clear perception of
the essential structure of the DEMO aspect models. By accomplishing this step,
it is supposed to answer the first research question (see Table 1.1), “How will the
DEMO metamodel be constructed?”

2. Transformation analysis
Specifically regarding the expected transformation in this research, mentioned in
Chapter 1.2, analysis of the demands and requirements to transforming the DEMO
models is made in this step. We will address the reasons that raise the demands to
the transformation and the desired transformation result. In addition, some trans-
formation rules will be defined based on the mentioned analysis and our knowledge

1The DEMO metamodel is provided by Prof. Dr. Ir. Jan.L.G.Dietz.

14th April 2009

18 Research Approach

XML document

storage

Data flow Process Data store

3. XML schema

design

1. DEMO

metamodel

construction

DEMO metamodel

DEMO XML document

XML based DEMO schema
Information Object

Process steps
Create / Use

Table

DEMO XML document

2.

Transformation

analysis

Transformation rules

4. XML

document

producing

5. Model

comparison

6. Create / Use

Table

construction

DEMO

metamodel

Figure 1.1: Thesis project research approach

about the DEMO metamodel. By accomplishing this step, we answer the second
research question (see Table 1.1), “How can the transformation rules be defined?”

3. XML schema design
A schema for the DEMO metamodel is designed in XML schema language in this
step (the specific schema language is chosen in [27]). The schema is the interpre-
tation of the DEMO metamodel, and will cover the essential structure of DEMO
models. The transformation rules will be used in the schema design. By accom-
plishing this step, we answer the third research question (see Table 1.1), “How can
we transform the graphical model information into a syntax-based format”.

4. XML document producing
After accomplishing the schema design for the DEMO metamodel, a set of instance
XML documents are produced in this step, against the designed XML schema.
The content of the produced instance XML documents are from the DEMO as-
pect model information from a case study. The elaboration of producing the XML
documents is supported by an application (see Appendix E), and indicates that the
graphical DEMO models are transformed into a syntax-based format. By accom-
plishing this step, we answer the fourth research question (see Table 1.1), “What
would the transformed model look like?”

14th April 2009

Report Structure 19

5. Model comparison
This step will verify the results of the expected transformation. We will com-
pare the produced instance XML documents, which are the transformed DEMO
models from the previous step, with the original DEMO models. The information
contained in both models will be mapped with each other in order to see the infor-
mation completeness and correctness during the transformation. The result of this
comparison is used in our evaluation of the model transformation. By accomplish-
ing this step, we answer the fifth research question (see Table 1.1), “How can we
verify the result of the transformation?”

6. Create / Use Table construction
In this step, we will produce the Create / Use Table, which can be used by the BCI-
3D tool to identify the business components. The information used to create this
table is directly obtained from the instance XML documents, which are produced
as the result of our proposed DEMO model transformation. The elaboration of pro-
ducing this table is supported by an application (see Appendix E). The producing
of the Create / Use Table shows that the result of our proposed DEMO model trans-
formation can be used by other applications and helps generate the information for
BCI. By accomplishing this step, we answer the sixth research question (see Table
1.1), “How can the transformed model be used by other applications?”

1.4 Report Structure

An overview of this thesis is given in this section. In Chapter 2, background infor-
mation on DEMO and business component is provided. In addition, the theory of
metamodeling and model transformation is introduced, which illustrates the impor-
tance of metamodeling in model transformation. A short review of the characteris-
tics of our chosen schema language for the transformed model, the XML Schema
language, is made as well in this chapter.
A specification of the DEMO metamodel is provided in Chapter 3. The DEMO
metamodel provides an essential graphical schema for DEMO models. The first
research question is answered in this chapter.
In Chapter 4, we analyze the requirements to transform the DEMO models; with
the analysis and knowledge on the DEMO metamodel, we define the transforma-
tion rules that are used throughout the entire transformation. The second research
question is answered in this chapter.
Following the transformation rules, the corresponding XML specification of the
DEMO metamodel is made in Chapter 5. The XML specification interprets the
DEMO metamodel and defines the XML schema for DEMO models. The third
research question is answered in this chapter.
In Chapter 6 we produce the instance XML documents based on the designed
schema for the DEMO metamodel. The produced XML documents are consid-

14th April 2009

20 Report Structure

ered the result of the proposed transformation in this research. The fourth research
question is answered in this chapter.
In order to evaluate the entire DEMO transformation, we compare the produced in-
stance XML documents with the original DEMO models, and produce the Create
/ Use Table in Chapter 7. The comparison between the XML documents and the
original DEMO diagrams verifies the transformation results. The production of the
Create / Use Table is an example to show how the transformation result could be
used by third party applications. The last two research questions are answered in
this chapter.
At last, Chapter 8 recaps the research content of this project, emphasizes the scien-
tific foundation that the research is based on, and evaluates the project work from
four aspects, which focus on the transformation contents, the transformation of the
chosen contents, the verification of the transformation results and the added value
of the transformation result. In addition, some relevant issues for future work are
also discussed in this chapter.

14th April 2009

Chapter 2

Background

This chapter aims to provide necessary background information concerning this
graduation project. Business Component Modeling Process (BCMP) and DEMO
methodology are explained in Chapter 2.1 and 2.2. The concepts of metamodel-
ing and model transformation are introduced in Chapter 2.3, which provides the
theoretical foundation that guide the research work. Chapter 2.4 recaps the charac-
teristics of the XML Schema that prepares us with the knowledge of this schema
language, in which the graphical DEMO models will be transformed.

2.1 Business Components Modeling Process

A component is a reusable, self-contained, and marketable piece of software, which
provides services through a well-defined interface and which may be deployed in
configurations unknown at the time of development. A business component is a
component of an information system that supports directly the activities in an en-
terprise. In the process of Business Component Modeling (BCM), there are three
phases, Component Based Domain Analysis, Domain Based Component Realiza-
tion and Components Composition. It starts with the domain modeling and identi-
fication of business component, which are in the analysis phase. [3]

The domain modeling is intended to provide the information of an enterprise in the
business domain, by making a reference model within defined scope. The identifi-
cation of business component is based on the information provided by the domain
model. There are three design principles forming the base for the identification:

- Within a business component, coherent domain functionality must be clus-
tered.

- Business components must be coupled loosely.

- Related information objects must be managed within one business compo-
nent.

14th April 2009 21

22 DEMO Methodology

The above principles form the base of the formal business components identifi-
cation method, BCI-3D. It is required that information objects corresponding to
certain business tasks must be grouped together, the functionality performed by
the formed business component must be coherent and consistent. Each business
component is self-contained, namely individual, but should have well-defined in-
terface to the environment.

The above requirements imply that the crucial measurement for grouping those
information objects are relationships between them. The kinds of relationships
are influenced by the process steps in which the information objects are involved.
The more coherent process steps are, the stronger relationship there is. Different
relationships indicate the relevant information objects and process steps within a
component. These information objects, process steps and the relationships must
be generated from an abstraction of an enterprise in a valid level, comprehensively
and correctly.

Figure 2.1: Component Based Domain Analysis [3]

2.2 DEMO Methodology

DEMO methodology provides a way of representing the essence of an enterprise
on an ontological level. The essential information is visualized in a set of models,
each of which expresses different aspects of the certain enterprise. The models,
which are Construction Model (CM), Process Model (PM), Action Model (AM)
and State Model (SM), are built correlated with each other, containing coherent
information in a platform-independent way.

CM specifies the construction of the organization, it declares the actor roles and
the transactions between them, the information links between the actor roles and
the information banks. Due to the activeness and the passiveness of the influence

14th April 2009

DEMO Methodology 23

Figure 2.2: The ontological aspect models

between actor roles, the CM is divided into interaction model (IAM) and inter-
striction model (ISM). IAM shows the interaction structure of the organization,
which consists of the transaction types and the partaking actor roles, initiator and
executor. ISM contains the internal and external information banks, as well as the
information links between the actor roles and the information banks.
PM contains the specific transaction pattern for each transaction in CM. The con-
tained transaction pattern is comprehensive, including basic pattern, cancellation
pattern, as well as the causal and conditional relationships between transactions.
AM is the rule base that serves as guidelines for the actors in dealing with their
agenda. The action rules contain all the information from CM, PM, and SM, which
means all the information about the enterprise’s business is covered in this model.
SM specifies the object classes, fact types, result types, and the ontological coexis-
tence rules. This model is constructed around the main object types, which are the
variables in the result types of the transaction types. [9]

The information contained in the aspect models is valid and available for perceiv-
ing the architecture of the certain enterprise. All the above models constitute an
essential representation of an enterprise in the business domain, with specifying the
information objects and their relationships successfully. DEMO is a well-defined
methodology in the business domain.

14th April 2009

24 Metamodeling and Model Transformation

2.3 Metamodeling and Model Transformation

2.3.1 Metamodeling

Metamodeling, similar with modeling, is the act and science of engineering meta-
models. Metamodel is a specific kind of model. With the prefix “meta-”, which
means “higher” or “posterior” in Greek, and here we use it to mean “about its own
category”, the metamodel is built to represent other models. [8]
Regarding to the characteristics of models, a model is to represent a part of the
real-world in an abstract, understandable, accurate, predictive and inexpensive way
[20]. As metamodel is a kind of model, it implies that the five characteristics also
apply to the metamodel, just with different levels of information abstraction due to
the contents modeled in metamodel.
The subject, the metamodel represents, is models. More explicitly, the metamodel
states what can be expressed and how it should be structured in models. It specifies
the concepts, rules and syntax that are used in models. The metamodel is concern-
ing nothing about the contents in instance models, but the essential construction
and modeling language of the models.

The relationship between a model and its metamodel is always “instance-of” [8],
which means the model is built upon its metamodel, and embodying the structure,
defined in metamodel, with concrete contents. The structures the model construc-
tion follows, the language used in building the model, even the syntax adopted by
the modeling are all included in the metamodel and specified during the metamod-
eling.

Let us take an example to explain the relationship between the metamodel and
model in a more understandable way. The real world is various and comprehen-
sive. The models, which abstract and represent a part of the real world, are diverse
in either type or content. Models of the cars are totally different from models of
the pianos. Even within the car models, the model of a sports car differs from the
model of a pony car. The instance models are quite miscellaneous items with con-
crete contents.
However, regardless of the diversity in instance models, there are some generic
rules that could be generated to define the same sort of models. The cars, no matter
what specific type they are, are made based on similar components and principles
of work. When learning the principle and components used for making a car, it
does not refer to any specific type of cars. With deepening the knowledge, it would
detail the classification and embody the representation with concrete and specific
features of cars. Thus the car models are the artifacts resulted from instantiating
the car metamodel.

The classical metamodeling architecture, proposed by Object Management Group
(OMG), is a layered hierarchy. Depicted in Figure 2.3, it is formed with four lay-

14th April 2009

Metamodeling and Model Transformation 25

ers with different levels of information abstraction. M0 contains the data from the
real-world. M1 is the model that represents the data of the real-world in layer M0.
The metamodel in M2 specifies the concepts and constraints of M1. The concepts
used in M2 are defined in M3. Within M3, the Meta-Object Facility (MOF) is the
metamodel of the metamodel in M2. There is no more layer above M3, which in-
dicates that there is no higher level of information abstraction.

Instance_of

Instance_of

Instance_of

M3

MOF

M2

Metamodel

M1

Model

M0

Data

Figure 2.3: The OMG four-layer hierarchy [8]

The relationship “instance-of”, according to [8], implicates that every entity in any
layer Mx is instantiated from the entity in its above layer Mx+1. One entity in the
higher layer could have numerous instance models in the lower layer. No matter in
which layer, the one in a higher layer is the metamodel of the one in a lower layer.
This relationship ties the models and the metamodels up with each other.

In principle, the layering of this architecture could be continued to infinity, as long
as the concepts used in layer Mn are defined in layer Mn+1. However we need
it to stop at some point to make more sense in practice. The OMG architecture
stops at the level which is defined by its own concepts, namely metacircular [10].
It does not require additional concepts, but just uses existing concepts to express
the models in each layer, including themselves. [12] argues about the number of
layers in the OMG four layer architecture, and proves that the metamodel in M3 is
the same as the metamodel in M2, since the metamodel is self-defined already in
M2.
The number of the layers is not the main concern in this chapter. Our attention is
paid on the relationship between model and metamodel, and the idea of the lay-
ered metamodeling architecture. The “instance-of” relationship moves the focus
of modeling from concrete models to higher abstracted metamodel. Metamodel-
ing stands at a higher level of information abstraction, views and constructs the

14th April 2009

26 Metamodeling and Model Transformation

essential concepts of modeling.

2.3.2 Model Transformation

When developing systems, there are several different viewpoints to vision a sys-
tem [10], namely, we can model the system from different levels of information
abstraction. In Model Deriven Architecture (MDA), it proposes three viewpoints
[11], which are computation independent viewpoint, platform independent view-
point and platform specific viewpoint.
The perspectives of these three viewpoints are from different levels of information
abstraction. In the viewpoint of independent computation, it is about the environ-
ment of the system and the requirements for the system. The structure or processing
details of the system does not emerged yet from this perspective.
The platform independent viewpoint focuses on the operation of a system, but with-
out considering any particular platform. The statements or specification made from
this viewpoint would not be different from one platform to another. A general mod-
eling language is used in this viewpoint.
The core focus of platform specific viewpoint is similar with the one of platform
independent viewpoint, but plus an additional attention on using a specific platform
by a system.

The models corresponding to the three viewpoints, defined by MDA, are the Com-
putational Independent Model (CIM), the Platform Independent Model (PIM), and
the Platform Specific Model (PSM).
A CIM is made from the computation independent viewpoint. It does not show
details of the structure of a system. In software engineering, the CIM is considered
as a domain model, and specified by domain experts. It defines the function of the
system without showing the constructional details. [11]
From the platform independent viewpoint, the PIM shows the specification of the
whole system. It maintains the focus on an ontological level to describe the system
construction. Staying at the ontological level means the PIM does not contain any
implementation details.
With the viewpoint of specific platform, the PSM combines the specification in
PIM with details of the particular platform. In other words, the PSM details the
PIM with adding relevant technological elements. [11]

The levels of information abstraction increase from PSM to PIM and CIM, which
shift our focus from a lower level to a higher level. It is advisable to use a high-level
modeling language and generate the modeling information into a platform-specific
details. The Figure 2.4 visualizes the process of MDA transformation, that the PIM
is transformed into PSM based on some transformation rules. The transformation
rules contain descriptions about how elements in PIM should be transformed into
elements in PSM. There is no uniform standard for the transformation rules. It can
be patterns, logic or any other terms as long as it fits the transformation require-

14th April 2009

Metamodeling and Model Transformation 27

Platform

Independent

Model (PIM)

Platform Specific

Model

 (PSM)

Transformer

Transformation

rules

Figure 2.4: MDA model transformation process [11]

ment.
The relationship between PIM and PSM is that the PSM is made based on the PIM,
which is in compliance with the meaning of transformation. Since almost no one
codes in assembler languages, but prefer to work with a high-level language, the
PSM is the result of a transformation from the PIM via several machine steps, from
model building to coding [13].

We did not dig into any specific model transformation technique or language used
in MDA in this chapter, because our focus is on the general theory of model trans-
formation. Model transformation bridges the gap between PIM and the PSM. Ini-
tiated by OMG in terms of their MDA vision [17], metamodeling proposes an ef-
ficient approach to elaborate the transformation. This approach will be explicated
in the following section.

2.3.3 Metamodeling for Model Transformation

There are several approaches to elaborate the model transformation in MDA [11].
One of them is using the metamodel, visualized in Figure 2.5. The transformation
is from Platform Independent Model (PIM) to Platform Specific Model (PSM).
The language used for expressing PIM is defined in platform independent meta-
model. The platform specific metamodel defines the language that describes the
PSM. These two languages are connected by the transformation specification. The
duty of this specification is to map the source language and the target language,
so that it can build a bridge from independent platform to specific platform. The
specification is expressed in terms of a set of transformation rules that address the
detailed guidance of the transformation. Thus the transformation procedure from
PIM to PSM is accomplished by the metamodeling.

A good example of applying metamodeling for model transformation is the trans-
formation between UML class diagram and XML Schema from [14]. Depicted in
Figure 2.6, the UML model is considered as the platform independent model and
the XML Schema is chosen as the specific platform language. The source UML

14th April 2009

28 Metamodeling and Model Transformation

PIM

PSM

Platform

Independent

Metamodel

Platform

Specific

Metamodel

Transformation

Specification

Language used

Language used

Source language

Target language

Figure 2.5: Metamodel transformation [11]

model and the target alternative XML Schema are situated in level M1, the source
UML metamodel and the target XML Schema metamodel are situated in level M2.
The source and target models are mapped with each other within the same level.
For example, the class construct from UML metamodel, which is in level M2, is
possible to be mapped either to element declaration or complexType definition con-
struct from XML Schema metamodel, which is also in level M2. As instances of
metamodel, the class from UML model (level M1), in the same principle of the
metamodel mapping in level M2, is mappable either to an element or a complex-
Type in alternative XML Schema.

Figure 2.6: UML to XML Schema Transformation

When using the metamodeling in model transformation, the actual transformation

14th April 2009

XML Schema 29

in model transformation is executed within the modeling languages used in the
metamodel of PIM and PSM, that it leaves the complex instance contents at the
model level out of our sight during the transformation.

2.4 XML Schema

At the beginning of this section, a distinction needs to be declared between the
terms of “XML Schema” and “XML schema”. XML Schema (with capital letter
S) is a specific schema definition language, recommended by World Wide Web
Consortium (W3C), also called XSD. XML schema is the general term for schema
defined in XML format. In the rest of this report, we will use XSD for short instead
of XML Schema, when we mention the language used during transformation, in
order to be distinguished from XML schema.

With the knowledge of applying metamodeling in model transformation (Figure
2.5), the transformation is carried out between the languages used for platform in-
dependent metamodel and platform specific metamodel. The source DEMO meta-
model is expressed in World Ontology Specification Language (WOSL) [9]; XSD
has been chosen as the language of target metamodel [27].

XSD is the W3C-recommended schema definition language, expressed in XML
1.0 syntax, which is intended to describe the structure and constrains the content
of documents written in XML. With XSD, it is possible to exchange information
between applications with greater confidence and less custom programming to test
and confirm the structure of an instance document, or to confirm that the data in a
particular part of the document is of a particular data type [24].

XSD performs well in perspectives of the main building block, the supported data
type, to what extent the schema could be specified, and how much room left for
adoptions by other languages or systems.

Building Block
In XSD, items could be defined as either an element or a type. Simple elements
in XSD could be empty or contain only text. Complex elements contain other ele-
ments / attributes or a combination of elements and text. The concept of type is one
big merit of XSD, that could be reused by other elements and it is always possible
to create an element from a type [2].

Data Type
Data types in XSD are in a wide range. The most basic programming types are
included, such as String, Date, Numeric and other miscellaneous data types. The
String data type can contain characters, line feeds, carriage returns, and tab char-
acters. Date and time data could be defined in XSD by using the Date / Time data

14th April 2009

30 Conclusion

type. The specific date, time, time zones, time intervals are all available. The nu-
meric data could be decimal, integer, byte and so on. Other data types, such as
Boolean, is also used validly. A full list can be found at [25].

Structural Capacity1

XSD provides a powerful XML document structure and restrictions, even though
it could be very verbose [15]. XSD is namespace aware and has good capability
by using both element and type. The concept of type provides more possibility in
creating more elements and expanding the schema structures [2]. The feature of
reusing types in XSD makes the structure compact and flexible, which reduces the
redundancy and enhances the possibility of interactions with other structures.

Compatibility2

XSD is written in XML and has a schema of its own. When validating the XML
document in such schema language, any node of this XML document is expressed
in terms of the schema itself, which transform the document into a hierarchy of
typed objects. The resulted objects can be accessed in a programming language
through a neutral interface.

The above recaps the background information about XSD. For the lists of the el-
ements and data types provided and supported in XSD, a quick reference is made
available in Appendix A.

2.5 Conclusion

This chapter prepares us with background information on DEMO methodology
and Business Component Modeling. The notion of business component has proved
valuable for developing the information system. There are three phases in the pro-
cess of BCM, which are: Component Based Domain Analysis, Domain Based
Component Realization, and Components Composition. The beginning step in this
process is domain modeling and the identification of the business component.
DEMO is a well-defined methodology for representing the essence of an organi-
zation, which provides a holistic picture of the entire organization in the business
domain. Built on the existing DEMO methodology, there is a set of aspect models
that represents the ontological knowledge of the organization. It covers issues of
the organization’s construction, the business process steps, the business rules, and
the information objects.

The concepts of metamodeling and model transformation are also introduced in

1Structural capacity measures to what extent of specification the schema language can be used to
define.

2Compatibility measures the schema languages extensive capacity with other languages or sys-
tems.

14th April 2009

Conclusion 31

this chapter. A metamodel is a specific kind of model, which represents other
models at a higher level of information abstraction. Any model is an instance of its
metamodel.
MDA proposes three viewpoints in visioning a system, the platform specific view-
point, the platform independent viewpoint, and the computation independent view-
point. Our focus is shifted from a lower level to a higher level of information ab-
straction in the mentioned order of these three viewpoints. Models corresponding
to these viewpoints are transformed based on transformation rules.
Metamodeling is one approach to elaborate the model transformation in MDA. It
conducts the transformation at the level of metamodel, and moves the focus away
from the instance models. We will follow this approach (Figure 2.5) to transform
the DEMO models in this project.

In addition, we create a short recap of the characteristics of XSD from the re-
search assignment [27]. The format of the transformed DEMO model information
is XSD. We made this decision due to the good performance of XSD in the build-
ing blocks, the data type, the structural capacity, and the compatibility.

Next Task
With the above background information, we will research and answer the research
questions, mentioned in Chapter 1.2, in the following chapters. Regarding the fact
that the metamodel is the main modeling material in the metamodeling, and we
intend to use metamodeling as the model transformation approach in this project,
we will start with understanding and analyzing the DEMO metamodel in Chapter
3.

14th April 2009

32 Conclusion

14th April 2009

Chapter 3

DEMO Metamodel

In this chapter, a specification of DEMO metamodel is presented. The graphical
DEMO metamodel1 is showed in Figure 3.1. Firstly, some factual knowledge is
recollected in Chapter 3.1, in order to understand the foundation of constructing
the metamodel. The description of the metamodel is divided in five parts: Chapter
3.2 the specification of Meta Construction Model (MCM), Chapter 3.3 the specifi-
cation of Meta Process Model (MPM), Chapter 3.4 the specification of Meta Ac-
tion Model (MAM) and Chapter 3.5 the specification of Meta State Model (MSM),
Chapter 3.6, the metamodel for three cross-model tables, namely Transaction Re-
sult Table (TRT), Bank Contents Table (BCT), and Information Use Table (IUT). It
is intended to provide a clear insight into the structure of DEMO models as well as
the interrelationships between them. At the end of this chapter, a short conclusion
and answers to the first research question are provided.

1This metamodel of DEMO model is provided and owned by Prof. Dr. Ir. Jan.L.G.Dietz.

14th April 2009 33

34

COORDINATION

BANK

PRODUCTION

BANK

TRANSACTION

KIND

ELEMENTARY

ACTOR ROLE

A T

A is the executor of T

T F

F is the result kind of T

A T

A is an initiator of T

B A

A uses information from B

B T

B is the production bank of T

B T

B is the coordination bank of T

T P

P is the O-phase of T

T P

P is the E-phase of T

T P

P is the R-phase of T

T P

T is initiated from P

P S

S is a step in P

TRANSACTION

PHASE

TRANSACTION

STEP

S1 S2

S1 is a wait condition for S2

x y

the domain of x is y

x y

x is dependent on y

x is a unary fact type

x

x y

mutual exclusion holds for x and y
(reference law)

(dependency law)

(exclusion law)

UNARY

FACT

TYPE

OBJECT

CLASS

CATEGORY

FACT

TYPE

x is a derived fact type

x

x is a

generalization

type

x

x is a

specialization

type

x

x is a

aggregation

type

x

x is a

partition

type

x

unicity holds for x

x

(unicity law)

s is a scale

SCALE

s

DERIVED

FACT

TYPE

INFORMATION

BANK

x is a declared fact type

x

 Meta Process Model

Meta Construction Model

 Meta State Model

x is a binary fact type

x
BINARY

FACT

TYPE

x is a property

x

PROPERTY

x s

s is the range of x

Derived fact type

Declared fact type

Object class

Exclusion law

Dependency law

Reference law

Unicity law

Union

x c

c is the domain of x

S R

R is the action rule

for performing step S

ACTION RULE

Meta Action Model

Figure 3.1: The metamodel of DEMO model

14th
A

pril2009

Factual knowledge 35

3.1 Factual knowledge

Before we start specifying the metamodel, some factual knowledge needs to be
recollected. The following knowledge is the foundation for describing the DEMO
metamodel. The core notions in the basic ontological parallelogram (Chapter
3.1.1), and the relationships between those notions are the base to construct the
MSM. The content of state space and transition space (Chapter 3.1.2), prepares us
with the essential content of the SM and PM, which would help understanding the
procedure of constructing MSM and MPM.

This section only pick up the knowledge from [9] for analyzing the DEMO meta-
model . For the other fundamental concepts in DEMO methodology, such as on-
tology, production world (P-world), coordination world (C-world), acts, and facts,
an explicit explanation could be found in [9].

3.1.1 Ontological Parallelogram

Figure 3.2 shows the four core notions in ontology and their relations: concept,
type, object, class. The notions of concept and type are considered to be a subjec-
tive notion, whereas object and class are considered to be objective notions.

Subjective notions are thoughts inside the human mind. A concept
is a consequence of how the human mind works about the objective
world. Concepts are the human thoughts that relate to objects in the
world, which includes concrete concepts and abstract concepts. For
instance, the mental picture people may have of a laptop is a concrete
concept; the concept of number three is absolutely an abstract one. A
concept is always a concept of a type.

A type is a generic concept, such as: the type laptop, the type per-
son. A type prescribes a collection of properties of an object. It may
be that one object conforms to one or more types, due to the different
collections of properties, for instance one object could be referred by
its color, as well as by its shape, which are different types.

The relationship between a concept and a type is instantiation, which means every
concept is an instantiation of a type. Examples: the person Salvador Dali is an
instantiation of the type person.

The notion of object in this ontological parallelogram includes the notions of con-
crete objects and abstract objects. Concrete objects are the ones which are observ-
able by human beings. Abstract objects are the ones which can not be observed.
The number three is absolutely an abstract object, and a car is a concrete object
obviously.

14th April 2009

36 Factual knowledge

A class is a collection of objects. The objects, which conform to the
associated type, belong to a class. Let us take persons as an example
again. The class of persons contains all the objects that have some
shared properties which make them conform to the type person. Pop-
ulation is the relationship between an object and a class. Simply, it is
said that the object is a member of the class.

The relationship between a concept and an object is Reference, which means a con-
cept is referred to an object. By object here we mean both concrete and abstract
objects in the world. Conformity is the relationship between an object and a type.
An object conforms to a type.

A type is extended to a class. The relationship Extension is held between a type
and a class. Examples: the class persons is the extension of the type person.

concept type

classobject

instantiation

re
fe
re
n
ce

population

e
xte
n
sio
nco

n
fo
rm
iy

subjective

objective

Figure 3.2: The ontological parallelogram

It is advisable to bear in mind this ontological parallelogram, especially the re-
lationships held by different pair core notions. These relationships are one of the
foundations in understanding the MSM. It will be explained in section 3.5.

3.1.2 State and Transition Space

The elementary state elements are called facts. Two kinds of facts are
distinguished. A fact is either a statum (plural: stata) or a factum (plu-
ral: facta). A statum is something that is the case, has always been
the case, and will always be the case. It is an inherent property of a
thing or an inherent relationship between things. One example of stata
in the context of library is: “the author of book title T is A” (in which
the variables, expressed in the capital letters, are the placeholders of
object instances).

14th April 2009

Specification of the Meta Construction Model 37

The existence of stata is timeless, which means, for example, if it is the
case that a particular book title has one or more particular author(s), it
will forever be the case. Even before the book was written, it was still
the case, but just was not knowable yet.

Some stata come into existence only when there is necessary and suf-
ficient condition. These kind stata is called derived stata. Those nec-
essary and sufficient conditions are the rules for derivation. There are
four types2 of derived stata, which are the generalization type, the spe-
cialization type, the aggregation type and the partition type.

A factum is the result or the effect of an act. One example in the case of
library is: “membership X has been started”. An event is the becom-
ing existent of a factum. Events can be conceived as status changes of
a concept of some type; an event has a time stamp.

The world is in a particular state at any moment. The state is de-
fined as a set of facts, which are said to be current during the time
that the state prevails. A state space is understood as the set of lawful
or allowed states. It is specified by means of the state base and the
existence laws. The state base contains a set of statum types, and the
existence laws determine the inclusion or exclusion of the coexistence
of stata.

A state change is called a transition. A transition is always from one
state to another state. A transition space is understood as the set of
allowed or lawful sequences of transitions. It is specified by the tran-
sition base and the occurrence laws. The transition base is a set of
factum types, and the occurrence laws determine the order in which
facta are required or allowed to occur.

This section mainly focus on the contents of state space and transition space. Dis-
tinguishing the different kinds of stata and facta, helps clarifying the composition
of the state space and transition space. Furthermore, it prepares us with fundamen-
tal knowledge for eliciting the structure of PM and SM. It will be explained later
in Chapter 3.3 and Chapter 3.5.

3.2 Specification of the Meta Construction Model

The definition and function of Construction Model (CM) is explained clearly in
DEMO methodology [9].

2For detailed explanation about the derived stata, please check section 5.3 in [9].

14th April 2009

38 Specification of the Meta Construction Model

The CM specifies the identified transaction3 types and the associated
actor roles, as well as the information links between the actor roles
and the information banks; in short the CM specifies the construction
of the organization.

CM is about the organization’s composition, environment and its structure, accord-
ing to chapter 6 in [9], where the composition is a set of elements of some category
(physical, social, biological, etc.); the environment is a set of elements of the same
category; the structure is a set of influence bonds among the elements in the com-
position, and between them and the elements in the environment. At model level,
the environmental actor roles are drew as composite actor roles, since it is not al-
ways clear that an environmental actor role is elementary or composite. Only the
actor roles within the kernel are elementary actor roles.

Differentiated from the level of model, at metamodel level, it does not distinguish
composition and environment of any specific organization. It just abstracts the pure
relationships between transaction types, elementary actor roles and information
banks, namely the interaction structure. There is no need to specify the concept
of boundary at the meta level, since the structure constructed here is not related to
any specific construction of organization.

In the MCM, it specifies the correlation between the transaction types, actor roles
and the information banks in higher abstraction. As a meta schema for CM, the
metamodel does not relate to any specific example, but comprehends all the pos-
sible conditions that occur in practice. In other words, any instance CM could be
instantiated based on this meta schema. Being outlined in figure 3.1, transaction
kind, elementary actor role and information banks including the production bank
and coordination bank are the core object classes within the MCM.

For describing the DEMO metamodel we adopt the next convention (we take the
type elementary actor role as an example): if there is a fact a, and the type of a
is the elementary actor role, we would say that a is an elementary actor role or
elementary actor role a, which is equivalent to saying that elementary actor role
(a) holds. This kind of expression will be used throughout the entire specification
of the DEMO metamodel in this chapter.

Let us first look into the correlation between the ELEMENTARY ACTOR ROLE
and TRANSACTION KIND, the right side links of ELEMENTARY ACTOR ROLE.
The capital letters are used to represent the object class. As known from the model
level, there are two kinds of elementary actor roles in the CM, namely the initiator
and the executor. If there is an elementary actor role a is an initiator of transaction
kind t, there must be a transaction kind (t) holds. Meanwhile, constrained by the
dependency law, for every transaction kind, there must be an elementary actor role

3The concept of transaction is defined in chapter 10 of [9]

14th April 2009

Specification of the Meta Construction Model 39

a, that a is an initiator of t holds, t is the transaction kind.

If there is an elementary actor role a is the executor of transaction kind t, there
must be a transaction kind (t) holds. Meanwhile, constrained by the dependency
law, for every transaction kind, there must be an elementary actor role a, that a is
the executor of t holds, t is the transaction kind. Note that there are unicity laws
hold for both a and t in the lawful binary fact type, that means every transaction
kind and every elementary actor role cannot occur more than once in the lawful
binary fact type. Thus it implicates that there is a strict one-to-one relationship
between the transaction and its executor.

On the left side of ELEMENTARY ACTOR ROLE, it states that if for some facts
a and b that a uses information from b holds, then it is necessary that elementary
actor role (a) and information bank (b) also hold. Conversely, if for some elemen-
tary actor role (a) or information bank (b) holds, then it may be the case that the
predication a uses information from b holds, but not necessarily.

The object class INOFRMATION BANK is the union of object classes PRODUC-
TION BANK and COORDINATION BANK. When an actor role uses information
from information banks, it could be either from production bank or coordination
bank.

The correlation between transaction kinds and information banks are specified as
below. If for some facts b and t that b is the production bank of t holds, then it is
necessary that transaction kind (t) and production bank (b) also hold. Conversely,
if there is some transaction kind (t) or production bank (b)holds, then it is also
necessary that the predication b is the production bank of t holds. Note that there
are unicity laws hold for both b and t in the lawful binary fact type, that means
every transaction kind and the every production bank cannot occur more than once
in the lawful binary fact type. Thus it implicates that there is a strict one-to-one
relationship between the transaction and its production bank.
The similar correlations apply to the one between the transaction kind and coor-
dination bank. Dependency laws hold for both transaction kind and coordination
bank, and there is also a strict one-to-one relationship between the transaction and
its coordination bank, thus the two unicity laws hold for both b and t in the lawful
binary fact type.
Note that there are dependency laws for both transaction kind and the two kinds of
information banks respectively in their lawful binary fact type. The reason is that
every transaction kind must have its coordination bank and production bank, since
there are always c-facts and p-facts produced as the results of the c-acts and p-acts
which are performed during transaction process steps. And vise versa, the coordi-
nation bank and production bank cannot be without the corresponding transaction
kind. Thus, the dependency laws are necessary in these two binary fact type.

14th April 2009

40 Specification of the Meta Construction Model

The result types are the connections with SM at the model level4, and the same
connections hold at the metamodel level. The transaction kind plays the crucial role
in connecting MCM to MSM. The connection part is defined in the metamodel like
this5: if transaction kind (t) holds, there must be a declared fact type (f) such that
f is the result kind of t holds. Unicity laws hold for both f and t. The connection
between the transaction kind and its result kind is strictly one-to-one relationship.

Figure 3.3 shows an instance CM of the library6. The whole instance CM con-
tains ten business transactions; we will just take transaction T01 as example to
explain how the instance model is structured upon the MCM.

In transaction T01, membership registration, the initiator of T01 is composite ac-
tor role CA02 aspirant member; the executor of T01 is elementary actor role A01
registary. The composite actor role could be an elementary actor role or a compos-
ite actor role. For T01, there must be a result listed in the transaction result table
(TRT). In table 3.1, the result type for T01 is R01. Thus the relationship between
actor roles and transaction in the instance model is fully consistent with the corre-
sponding structure in the metamodel.

The transaction symbol has two meanings, one is the transaction T01, the other
one is the combination of production bank PB01 and coordination bank CB01 that
belong to transaction T01. The elementary actor role A01 uses information from
composite production bank CPB11 personal data. This structure is stated in MCM.

Table 3.1: The TRT of the library
transaction type result type
T01 membership registration R01 membership M has been started
T02 membership fee payment R02 the fee for membership M in year Y has been paid
T03 reduced fee approval R03 the reduced fee for M in year Y is approved
T04 loan start R04 loan L has been started
T05 book return R05 book copy C has been returned
T06 loan end R06 loan L has been ended
T07 return fine payment R07 the late return fine fee for loan L has been paid
T08 book shipment R08 shipment S has been performed
T09 stock control R09 the stock control for month M has been done
T10 annual fee control R10 the annual fee control for year Y has been done

4The result types are produced by transactions in CM. In SM, the result types are used to denote
the different states of the object classes.

5This connection is the construct for Transaction Result Table (TRT) (section 3.6), we also present
it here in order to show the central position of transaction kind in DEMO metamodel.

6The description of the library case can be found in the appendix of the book [9].

14th April 2009

Specification of the Meta Process Model 41

Figure 3.3: OCD of the library

3.3 Specification of the Meta Process Model

The definition and function of Process Model (PM) is explained clearly in DEMO
methodology [9].

The PM of an organization is the specification of the state space and
the transition space of the C-world; thus, the set of lawful or possible
or allowed sequences of states in the C-world.

14th April 2009

42 Specification of the Meta Process Model

Simply speaking, PM specifies the transaction steps for every transaction. In ad-
dition, for every transaction step, the information used to perform the step is also
included in PM, so does the responsibility areas. The responsibility areas are gen-
erated from CM that states which actor roles perform which process steps. Ap-
parently, transactions play the role of being the connection between CM and PM,
since PM details the transaction types of CM into a sequence of process steps.

Let us look into the composition of a transaction’s structure. A transaction evolved
in three phases: the order phase (O-phase for short), the execution phase (E-phase
for short), and the result phase (R-phase for short). The two partaking actor roles
are called the initiator and executor of the transaction.

In the order phase, the initiator requests for the intended result, and the execu-
tor agrees and promises to reach the intended result. The intended result is the
production fact of the transaction. In the execution phase, the agreed production
fact is brought out by the executor. In the result phase, the executor states that the
production fact is produced, and the production fact come into existence when the
initiator accepts the result. This sequence of transaction steps forms the basic pat-
tern of a transaction. By basic it means the initiator and executor keep consenting
to each other’s acts.

Besides the basic pattern, in a transaction, there may be more acts performed by
either initiator or executor and more facts resulted from those acts. When the two
actor roles have dissent about the each other, more acts are performed. In the stan-
dard transaction pattern, the executor may decline the request, instead of promising
it; the initiator may reject the statement, instead of accepting it.

In addition to those acts already mentioned above, it is also possible for both initia-
tor and executor to revoke their C-acts. Thus, there are patterns started with cancel
a request, cancel a promise, cancel a statement or cancel an acceptance. An explicit
explanation about the different transaction patterns is elaborated in chapter 10 of
the book [9].

The transaction pattern outlines the particular structures of the clustered transaction
steps. No matter which pattern the transaction steps follow, they are all conducted
within the three transaction phases. Any transaction step is taken in one of the three
phases. And in which transaction phase the transaction steps should be, it regards
to the specific type of the transaction step, which is not a question for this MPM. It
will be explained later this section.

The structure of PM is specified in the MPM, outlined in Figure 3.1. TRANS-
ACTION PHASE and TRANSACTION STEP are the two core object classes.
An instance of TRANSACTION PHASE can only be one of the three transac-
tion phases. For every transaction phase p, there must be a transaction kind t that

14th April 2009

Specification of the Meta Process Model 43

p is the transaction phase of t holds. And if for some facts p and t that p is the one
of the transaction phases of transaction kind t holds, there must be a transaction
phase (p) holds. In addition, transaction phase p could only be one of the three
transaction phases at one time and occur exactly once in a transaction kind.

The correlation between TRANSACTION PHASE and TRANSACTION STEP
is: for every transaction step, there must be a transaction step s that s is a step in
transaction phase p holds. Conversely, if for some fact s that s is a step in transac-
tion phase fact p holds, there must be a transaction step (s) holds. Note that there
is a unicity law hold for s in the binary fact type, that means every transaction step
occurs exactly once in this binary fact type. Interpreted at the model level, this
correlation means every transaction step must be and only occur once in one of the
transaction phases.

As we know, stated in chapter 11 of [9], that every transaction is enclosed in some
other transaction, or is a customer transaction of the organization under consid-
eration, or is a self-activation transaction. It shows that the transaction steps are
interrelated with each other in a causal way; the starting step is either a request
performed by external actor role (external activation) or a request performed by an
internal actor role to itself (self-activation). For example, in Figure 3.4, transaction
T1 is initiated by self-activation, while transaction T2 is initiated by transaction
T1. Transaction T2 is an enclosed transaction T1.

Figure 3.4: The structure of enclosing a transaction

The above enclosing structure of a transaction, showed in Figure 3.4 is expressed

14th April 2009

44 Specification of the Meta Process Model

in the MPM like this7: for every transaction kind, there must be a transaction kind
t that t is initiated from transaction step p holds. Conversely, if for some facts t and
p that t is initiated from p holds, then there must be transaction kind (t) holds. It
means, every transaction is initiated from a transaction step; this transaction step
could be a request from another transaction, but also could be a request from itself.
It does not mention any specific step or specific transaction in the metamodel, but
just presents the generic initiation condition here.

There is another kind of relationship between transaction steps, which is called
wait condition. In Figure 3.4, the dashed link between step accept of T2 and step
execute of T1 means there is a wait condition. The execution of T1 is waiting for
the completion of T2.

The wait condition between transaction steps is expressed in the MPM as below.
For some facts s1 and s2, if the predication that s1 is a wait condition for s2 holds,
there must be transaction step (s1) and transaction step (s2) also hold. In an in-
stance PM, let us assume s1 and s2 are two transaction steps, it means that dealing
with the result from step s2 has to wait until the result from step s1 has been cre-
ated.

Figure 3.5: PSD of a business process of the library

There is no need to draw the transaction patterns completely in the metamodel. It
is true that the transaction pattern contains the structure of PM, and a meta schema
should provide the structure for the instance model. However at a higher level
of abstraction, the pure relationship kinds between those specific transaction steps
are the ones we are concerned about. The transaction steps do not need to be en-
titled with specific types. That is why we only present the generic relationship
between transaction step and transaction phase, the generic initiation condition be-

7The enclosing structure we are concerned about is within the kernel of the system, so the acts
performed by external actor role is not expressed in the metamodel.

14th April 2009

Specification of the Meta Action Model 45

tween transaction kind and transaction step, and the generic wait condition between
transaction steps.

Actually, different patterns could be instantiated based on the initiation condition
and wait condition. Every transaction step is connected with another transaction
step. The start of every transaction step is triggered by either another transaction
step or itself. So the MPM covers all the possible conditions that may occur in the
instance model.

Let us see how the transaction steps structure in MPM is instantiated in PM. Figure
3.5 shows an exemplary PSD of library. It details the transactions T04 and T05
in Figure 3.3. Actor role CA04, as initiator of T04, performs two acts: T04\rq
and T04\ac. Actor role A04, as executor of T04, performs three acts: T04\pm,
T04\ex, and T04\st. Actor role A04, as initiator of T05, performs two acts: T05\rq
and T05\ac. Actor role CA04, as executor of T04, performs three acts: T05\pm,
T05\ex and T05\st.

In the process of T04, the transaction step T04\rq is initiated from external ac-
tivation, which is out of the kernel of concern. The sequential transaction steps
T04\pm, T04\ex, T04\st and T04\ac are initiated by its previous step. It can also
be considered that the start of these steps waits for the completion of its previous
step. The step T04\ex has one more wait condition, which is from the comple-
tion of transaction step T05\pm. The transaction T05 is initiated from transaction
step T04\pm. The rest steps in T05 follows the same sequencing as the one in T04.

It does not specify the responsibility area in the MPM. The reason is that the infor-
mation about responsibility area is generated from the specific transaction in CM.
The elementary actor roles that determine the responsibility area are already spec-
ified in the MCM, related to the transaction kind. The MPM contains connection
with transaction kind already, which means it is possible to generate the informa-
tion of actor roles in its instance model. So there is no need to duplicate a part of
the structure in this essential metamodel.

3.4 Specification of the Meta Action Model

The definition and function of Action Model (AM) is explained clearly in DEMO
methodology [9].

The AM of an organization is the specification of the action rules that
serve as guidelines for the actors in dealing with their agenda.

The action rule is the only construct in AM8, thus in MAM, the structure is simple.
Outlined in figure 3.1, the object class ACTION RULE is the set of all the instance

8It is explained in chapter 18 of [9].

14th April 2009

46 Specification of the Meta State Model

action rules. If there are objects s and r that r is the action rule for performing step
s holds, then it is necessary that action rule (r) and transaction step (s) also hold.
Conversely, if for some action rule (r) or transaction step (s) holds, then it may be
the case that the predication r is the action rule for performing step s holds, but not
necessarily. Note that the unicity laws hold for both s and r in the lawful binary
fact type, that means there is a strict one-to-one relationship between the transac-
tion step and its action rule.

Based on the presented structure in MAM, the action rules are concerning with
transaction steps, but not every transaction step necessarily needs action rules, for
instance: transaction step accept.
Every instance action rule belongs to the object class ACTION RULE. We do not
dig into the various possible conditions in concrete instance rules, but just group
them into the set of action rules at a higher level of abstraction.

3.5 Specification of the Meta State Model

The definition and function of State Model (SM) is explained clearly in DEMO
methodology [9].

The SM of an organization is the specification of the state space of the
P-world. It consists of specifying the object classes, the fact types, and
the result types, as well as the existential laws that hold.

According to the factual knowledge mentioned earlier in Chapter 3.1, the relation-
ships between types and classes, as well as the concept of state space are obtained,
which are the premise to elaborate the specification of the MSM. Being aware of
the distinction between statum types and factum types, we conclude that the SM
contains both stata and facta. The object fact types in SM are statum types, and the
result types are factum types. At meta level, the concepts of all the fact types and
their existential laws are defined in the MSM.

In the chapter 5 of the book [9], it presents a language for the specification of
world ontology, which is called World Ontology Specification Language (WOSL).
It is used for specifying SM, and contains the constructs that are needed for SM.
The graphical notations used in WOSL are adopted from Object Role Modeling
(ORM) [19], which is one of the fact oriented conceptual modeling languages.

In the MSM, the graphical notations are adopted from ORM as well, in consis-
tency with the one used in the SM. This metamodel explains the fact types, object
classes and the existence laws at a higher level of abstraction, compared with the
specifications of SM in the book [9]. In the following sections, it is going to present
the specification of MSM in a number of figures.

14th April 2009

Specification of the Meta State Model 47

3.5.1 Fact types and object classes

The declaration of fact9 types are specified in the MSM. Outlined in Figure 3.1,
we use capital letter FACT TYPE to refer the set of fact types, any fact type is an
instance of the object class FACT TYPE. A unary fact type is a member of FACT
TYPE. The declared fact type is symbolized by a rectangle, denoted with lower-
case letters. The derived fact type is symbolized by a rectangle filled with slash
pattern, denoted with lowercase letters. The object class is symbolized by a round
rectangle, denoted by capital letters.

Objects belong to FACT TYPE can either be declared fact types or derived fact
types. The declared fact type is the one that is the case, has always been the case,
and will always be the case. The derived fact type is the one that its existence know
by people is determined by some conditions. Only under those certain conditions,
the derived fact type is also the one that is the case, has always been the case, and
will always be the case. Thus, an exclusion law is hold between the two types.

As already mentioned in 3.1.2, derived fact types come to exist by the derivation
rules. There are four kinds of derivation: generalization, specialization, aggrega-
tion and partition. The object class DERIVED FACT TYPE is formed with objects,
which are one of the four types. The specification of DERIVED FACT TYPE in
MSM is shown in figure 3.6.

FACT

TYPE

x is a derived fact type

DERIVED

FACT

TYPE

x

x is a

generalization

type

x is a

specialization

type

x

x is a

aggregation

type

x

x is a

partition

type

x x

Figure 3.6: The specification of DERIVED FACT TYPE in MSM

With the knowledge obtained from the ontologcial parallelogram in Chapter 3.1.1,
the notion of a class is the extension of a fact type. A category is a primal type, and
is not a derived type. Explained in the book [9], any other class is the extension

9The more common term “fact” is used to refer the elementary object in the world, it includes
both stata and facta.

14th April 2009

48 Specification of the Meta State Model

of a statum type that is defined on the basis of one or more other classes, includ-
ing categories, by means of reference law. Object class UNARY FACT TYPE is a
set of unary fact types. In MSM, OBJECT CLASS is defined as the union of the
extension of unary fact type and CATEGORY (Figure 3.7).

OBJECT

CLASS

CATEGORY
UNARY

FACT

TYPE

Figure 3.7: The specification of OBJECT CLASS in MSM

3.5.2 Existence laws

The exclusion law is described in the MSM, marked by a bracketed exclusion law
(Figure 3.8): for two unary fact types x and y, which belong to the class UNARY
FACT TYPE, a predication that mutual exclusion holds for x and y is declared. If
there is an exclusion law between two fact types, there is no one object that would
be instance of both these two fact types. The graphical notation for an exclusion
law could be seen between declared fact type and derived fact type in Figure 3.1.

x is a unary fact type

x

x y

mutual exclusion holds for x and y

(exclusion law)

UNARY

FACT

TYPE

Figure 3.8: The specification of exclusion law in MSM

x is a

partition

type

x

unicity holds for x

x

(unicity law)

Figure 3.9: The specification of unicity law in MSM

The unicity law is defined by means of that, for a unary fact type x, which belongs
to the derived partition type, a predication that unicity holds for x is declared. In

14th April 2009

Specification of the Meta State Model 49

the metamodel, this definition is marked by a bracketed unicity law (Figure 3.9).
In graphical notations, a line above a unary fact type indicates that a unicity law is
held for the unary fact type. The reference law and dependency law are specified

PERSON

x is a student

x

student

Figure 3.10: Example of a reference law

coherently in the MSM. Let us first recollect the specification of reference law and
dependency law at the model level. An example of a reference law from the book
[9] is showed in Figure 3.10. It states that if for some object x student(x) holds,
then it is necessary that person(x) also holds. It is equivalent to saying that x ∈
PERSON must hold. Conversely, it is not necessarily be the case that if some ob-
ject x person(x) holds, then student(x) holds also.

MEMBER

SHIP

member

PERSONx y

Y is member of X

Figure 3.11: Example of a dependency law

An example of a dependency law is showed in Figure 3.11. First concerning the
reference laws in it, if some x and y member(x,y) holds, then membership(x) and
person(y) must hold also. With the dependency law, for every x ∈ MEMERSHIP,
there must be a y ∈ PERSON such that member(x,y) holds. Holding the depen-
dency law means that the coexistence of a member object and a membership is
dependent on each other.

At metamodel level, in a binary fact type, object x and y, x belongs to class UNARY
FACT TYPE, y belongs to class OBJECT CLASS, a predication, that the domain
of x is y, is declared. The declaration is visualized as the normal link without a dot
at any end of the line, namely reference law. The expression of reference law is the
declaration of relationship “belong to”. This definition is marked by a bracketed
reference law in the metamodel.

For object x and y, x belongs to class UNARY FACT TYPE, y belongs to an ex-
tension of unary fact type, a predication, that x is dependent on y, is declared. This

14th April 2009

50 Specification of the Meta State Model

declaration is visualized as a dot, which is used at the end of a reference law line,
namely dependency law. This definition is marked by a bracketed dependency law
in the metamodel.

3.5.3 Basic construct

The MSM defines the concepts of fact types, object classes, existence laws that
used in the SM. In addition, it also defines the basic construct of the SM. An in-
stance SM is instantiated in terms of a lawful set of basic constructs.

x y

the domain of x is yx is a unary fact type

x

UNARY

FACT

TYPE

OBJECT

CLASS

x

A

(a) one simple construct in meta State Model (b) one simple construct in State Model

F

Figure 3.12: Basic construct at both metamodel level and model level (without
dependency law)

Figure 3.12 shows how the MSM specifies a basic construct without a dependency
law in SM. The basic construct in SM states that the role x in fact type F has a
domain A. A reference law is held between the object class and the fact type. The
corresponding construct at the meta level is expressed like this: for every unary fact
type there must be one and only one instance fact type x in the binary fact type <x,
y>, the domain of fact type x is the object class y. This meta construct contains the
definition of the reference law, which is compliant with the exemplary construct in
SM.

x

A

(a) one simple construct in meta State Model (b) one simple construct in State Model

F

x y

the domain of x is y

x y

x is dependent on y

x is a unary fact type

x

(reference law)

(dependency law)

UNARY

FACT

TYPE

OBJECT

CLASS

Figure 3.13: Basic construct at both metamodel level and model level (with depen-
dency law)

Figure 3.13 shows how the MSM specifies a basic construct with a dependency law

14th April 2009

Specification of the Meta State Model 51

in SM. The basic construct in SM states that the role x in fact type F has a domain
A. There is a dependency law for A, which means, for every a ∈ A there must be
a tuple <a>in F. Thus in MSM, we add an extra part for defining the dependency
law. Besides the same construct with the one in Figure 3.12, this extra part states
that object x is dependent on object y, x belongs to class UNARY FACT TYPE, y
belongs to an extension of unary fact type.

The above construct (Figure 3.12 and Figure 3.13) presents the core object classes
and fact types, plus the existential laws. For other fact types that are pure proper-
ties, the MSM also defines relevant construct. Let us first recap how the property
type is displayed in SM.

In OPL, the property type, object class and scale are listed in terms of table, the
object class and scale are mapped with each other by mathematical functions. In
WOSL, the property fact is a binary fact type, showed in Figure 3.14. The domain
of role a of property P is object class A; the range of role s of property P is scale
S. For every a ∈ A there must be a tuple <a,->in P, and the tuple <a,->can only
appear once in a population of P.

<range><domain>

A a s S
P

Figure 3.14: Basic construct of Object Property in SM

An example of the library explains the structure more explicitly. In the property
type #books in loan (Figure 3.15), the domain of this property type is object class
MEMBERSHIP; the range of this property type is absolute scale NUMBER. It is
clearly to see that for every membership there is a property states the number of
books which are in loan. This property type is always there once the membership
holds, which is in compliance with the dependency law in the construct. For the
same membership, it is not possible to have more than one of the same property
type, since it makes no sense to state the number of books in loan in more than one
property type. In the construct, this condition is constrained by the unicity law.

<range><domain>

MEMBERSHIP m a A

#books_in_loan

NUMBER

Figure 3.15: An example of Object Property of the library

14th April 2009

52 Specification of the Meta State Model

As already seen how the property type is expressed in a binary fact type, we can
find the corresponding structure in MSM. The structure of the property type is de-
fined in two separate parts in MSM. We can divide the construct in Figure 3.14
from the middle, the left side includes role a of property P and the domain of role
a, the role s of property P and the range of role s belong to the right side.

To be distinguished from the unary fact type, there is an exclusion law hold be-
tween the unary fact type and binary fact type in MSM (Figure 3.1). Object class
BINARY FACT TYPE is a set of binary fact types. Some objects that belong to
BINARY FACT TYPE are properties. The object class PROPERTY is defined as a
set of properties. Object class SCALE is derived from a set of objects. Those ob-
jects are members of class CATEGORY, and with a sentence that predicates each
of them is a scale.

The left side of the property type, how the property is associated with the object
class, is defined in Figure 3.16. If for some objects x and c that c is the domain of
x holds, then it is necessary that property (x) and domain (c) also hold. Conversely,
if for some property (x) or domain (c) holds, then it is not necessary that the pred-
ication c is the domain of x holds. For each property, it cannot occur more than
once in a lawful population of the fact type that c is the domain of x.

x is a property

x

PROPERTY

x c

c is the domain of x

OBJECT

CLASS

Figure 3.16: The definition of the left side of an Object Property

The structure of the right side of the property type is defined in Figure 3.17. This
construct specifies that how the property is associated with the scale. If for some
objects x and s that s is the range of x holds, then it is necessary that property (x)
and scale (s) also hold. Conversely, if for some property (x) or scale (s) holds, then
it may be the case that the predication s is the range of x holds, but not necessarily.
For each property, it cannot occur more than once in a lawful population of the fact
type that s is the range of x.

x is a property

x

PROPERTY

x s

s is the range of x s is a scale

SCALE

s

Figure 3.17: The definition of the right side of an Object Property

14th April 2009

Specification of the metamodel for cross-model tables 53

According to the contents defined in the MSM, this metamodel could be considered
from two perspectives, namely it fulfills two roles. The first one is the metamodel
of SM. Being this role, the MSM is at the same level as the other two metamodel,
MCM and MPM, that it defines the basic construct used in the instance SM.
Apparently, the whole metamodel, including the MCM, MPM, MAM and MSM,
could be regarded as a big SM, since they are correlated with each other as a whole
and expressed in the same language, WOSL. The whole DEMO metamodel uses
fact types, object classes and existence laws to present structures of DEMO mod-
els. The meanings of those symbols are the same as the ones used in SM. At this
point, another role of MSM is being the metamodel of the DEMO metamodel. We
call the metamodel of DEMO metamodel as meta schema. The MSM defines the
meta schema of the whole DEMO metamodel, and specifies the concepts of the
symbols that used in DEMO metamodel.

3.6 Specification of the metamodel for cross-model tables

In DEMO, there are three cross-model tables (Figure 3.20) that containing infor-
mation from more than one aspect model. Due to the fact that these tables cross dif-
ferent models, the object classes in their metamodel belong to different metamodel
of aspect models. For the convenience of reading, we present the metamodel of the
cross-model tables in Figure 3.18, separately from the main DEMO metamodel.

TRT contains the transactions and their corresponding transaction results. The
metamodel for TRT10 is: if transaction kind (t) holds, there must be a declared fact
type (f) such that f is the result kind of t holds. Unicity laws hold for both f and t.
The connection between the transaction kind and its result kind is strictly one-to-
one relationship. The object class TRANSACTION KIND belongs to MCM; the
object class DECLARED FACT TYPE belongs to the MSM.

In Chapter 20 of [9], it states that BCT specifies the fact banks in which the el-
ements of object classes, and the instances of fact types and result types from the
SM are contained. We specify the metamodel for BCT like this: if fact type (t)
holds, there must be an information bank (b) such that b is the information bank
of f holds. If there is an information bank (b) holds, there also must be some fact
type (t) so that b is the information bank of f holds. FACT TYPE is the general
object class that including declared fact types and derived fact types. Unicity law
holds for f, which means every member of class FACT TYPE can only have one
information bank. There are both dependency laws hold for FACT TYPE and IN-
FORMATION BANK, that implicates every member of FACT TYPE must belong
to an information bank; conversely it is also necessary for information banks to
have some facts, otherwise the information banks cannot exist.

10This construct is also presented in Chapter 3.2.

14th April 2009

54 Specification of the metamodel for cross-model tables

IUT specifies the transaction steps in which the elements of object classes, and
the instances of fact types and result types from the SM are used. The metamodel
for IUT is: if for some facts f and s that f is used in s holds, then it is necessary that
fact type (f) and transaction step (s) also hold. There is no other constraint hold for
this construct, which means a fact type could be used in more than one transaction
steps, and a transaction step could used more than one fact types, however it is not
necessarily to hold fact type (f) or transaction step (s) all the time. Examples of

T F

F is the result kind of T x is a declared fact type

x
TRANSACTION

KIND

B F

B is the information bank of F

FACT

TYPE

S F

F is used in S

FACT

TYPE

Transaction

Result (TRT)

Table

Bank

Contents (BCT)

Table

Information

Use (IUT)

Table

DECLARED

FACT

TYPE

TRANSACTION

STEP

INFORMATION

BANK

Figure 3.18: The metamodel of cross-model tables

TRT has been discussed in Chapter 3.2. Table 3.2 shows part of the instance BCT
of the library case11. Information banks PB01 and PB02 are instances of INFOR-
MATION BANK, the items in the first column are the instances of FACT TYPE.
PB01 includes the first three instances of fact type, while the other one belongs to
PB02. Note that every instance of FACT TYPE could only belong to one informa-
tion bank, which is constrained in the metamodel.
Table 3.3 provides part of the instance IUT of the library case. The items in first
column are the instances of FACT TYPE; the instances of TRANSACTION STEP
are listed in the second column. It is obviously to see that, in appliance with its
metamodel, there might be more than one transaction steps using the same in-
stance of fact type; and in one transaction step it is possible to use more than one
instances of fact type.

Table 3.2: Example BCT of the library
object class, fact type, or result type P-bank
MEMBERSHIP PB01
P is the member in M
membership M has been started
the fee for member ship M in year Y has been paid PB02

11Note: if the bank in which instances of a type are contained is the same as the one in the previous
entry of the table, the bank number is not repeated. [9]

14th April 2009

Conclusion 55

Table 3.3: Example IUT of the library
object class, fact type, or result type process steps
MEMBERSHIP T01/rq T01/pm T04/rq T10/pm
P is the member in M T01/rq

3.7 Conclusion

DEMO metamodel summary
DEMO metamodel specifies the basic constructs and relationships in CM, PM, AM
and SM. The language used to express the metamodel is the same one adopted in
SM. The whole metamodel could be considered as a big SM. The transaction kind
has the central position in this big SM, since it connects MCM with MPM and
MSM respectively.
MCM and MPM provide the essential structure for CM and PM, The structure for
CM includes the transaction kind, elementary actor role, information banks and
the correlations between them. It indicates the constraints to those items on their
occurrence in CM.
The structure for PM focuses on the relations among transaction steps and trans-
action phases. In MPM, it does not consider any specific transaction pattern used
in PM, but concentrates on the pure relation between every single transaction step.
By instantiating the relations between transaction steps, every possible instance
process steps could be obtained in different transaction patterns.
MCM and MPM are connected via transaction kind. Transaction phase and trans-
action step in MPM have linkage with transaction kind respectively. It is also the
reason that MPM does not address anything about the responsibility area in PM,
since the information of identifying the responsibility area could be generated via
this link in MCM; it is better to avoid this information duplication.
Connected with transaction step in MPM, MAM provides the only construct in
AM. It only specifies the interrelationship between action rules and transaction
steps, but not digs into any concrete condition in instance action rules.
MSM plays two roles, namely the metamodel of SM and the meta schema of the
whole DEMO metamodel. Being the metamodel for SM, it defines the basic con-
structs used in MS, such as basic construct with/without dependency law (Figure
3.10, Figure 3.11), construct of object property (Figures 3.14 and 3.17).
As the meta schema of the DEMO metamodel, it gives definitions to concepts of
declared fact type, derived fact type, unary fact type, binary fact type, object class,
scale and category. In addition, existence laws, such as exclusion law, unicity law,
reference law and dependency law, are also specified in the meta schema.
The connection with MCM is the link between the declared fact type in MSM and
the transaction kind in MCM. The instance of declared fact type in DEMO models
is the result type, which is the fact produced by transaction in CM and also is in-
cluded in SM.

14th April 2009

56 Conclusion

Reflection of metamodeling
The specification of DEMO metamodel is elaborated in five separate sections, ac-
cording to the metamodel of the CM, PM, AM, SM and the cross-model tables.
In each section, the metamodel visualizes the schema that can be instantiated into
DEMO models. Applying the knowledge of metamodeling mentioned in Chapter
2.3.1, this is in compliance with the “instance-of” relationship that the DEMO as-
pect models are instances of DEMO metamodel. Therefore we can say that the
information abstraction of DEMO metamodel is equivalent to the metamodel level
in OMG’s architecture (figure 2.3), while the DEMO aspect models are of course
equivalent to the model level.
Regarding the characteristic of MSM and the fact that MSM is part of the whole
DEMO metamodel, it leads to the conclusion that DEMO metamodel is self-defined,
which implicates that there is no higher level of information abstraction above this
DEMO metamodel. Considering the stop point in OMG’s opinion12, this DEMO
metamodel is already sufficient in metamodeling.

Completeness of the DEMO metamodel
DEMO metamodel includes the metamodels of all the diagrams. MCM presents
the structure of Organization Constructtion Diagram (OCD), which combines the
Actor Transaction Diagram (ATD) and Actor Bank Diagram (ABD). MPM, MAM
and MSM describe the other three diagrams’ (Figure 3.19) structure respectively.
Besides the diagrams, there are also three cross-model tables in DEMO aspect
models. In Figure 3.18, we also provide the metamodel for Transaction Result Ta-
ble (TRT), Bank Contents Table (BCT) and Information Use Table (IUT).
Thus we conclude that DEMO metamodel is a complete model of all the aspect
models, including all the diagrams and cross-model tables. Next, we are going
to design XML schema for DEMO models in Chapter 5, based on the mentioned
metamodel.

Answers to the research question
In this chapter, the first research question “How would the DEMO metamodel be
constructed?” has been answered. The DEMO metamodel represents the DEMO
aspect models. It abstracts the essential structure in DMEO aspect models, includ-
ing the concepts used in building those models, as well as the relationships and
the constrains among them. The DEMO metamodel is specified in WOSL and
self-defined, so that there is no higher level of information abstraction in DEMO
metamodeling.

Next Task
Having a clear structure of the DEMO aspect models from the metamodel that has
been specified earlier in this chapter, Chapter 4 will firstly illustrate the require-

12OMG’s opinion about stop layering the metamodeling architecture is mentioned in Chapter
2.3.1.

14th April 2009

Conclusion 57

Figure 3.19: The diagrams

Figure 3.20: The cross-model tables

ments to transform the DEMO models, and then define the rules that will provide
the guidance and restriction to the expected transformation from the DEMO mod-
els to the XML format.

14th April 2009

58 Conclusion

14th April 2009

Chapter 4

Transformation Analysis

This project was initiated by the demands to bridge the gap between graphical
DEMO models and platform specific models (Chapter 1.1). After obtaining the
background information about the DEMO methodology and BCMP, we will an-
alyze this gap in more detail, and find the reasons which cause the complexities
in the gap. Chapter 4.1 illustrates the demands to transform DEMO models, as
well as the desired result from the transformation. Another part of the analysis in
this chapter (Chapter 4.2) is the definition of the transformation rules. These rules
are defined based on our knowledge about the DEMO metamodel and also with
consideration of the requirements from the first section in this chapter.

4.1 Requirements for DEMO Transformation

DEMO models1, as a high-level conceptual model, are created and understood by
humans. They visualize the business organization in terms of either graphical di-
agrams, such as the Organization Construction Diagram (OCD) in CM, Process
Structure Diagram (PSD) in PM or Object Fact Diagram (OFD) in SM, or in ex-
pressive format, such as the Action Rule Specifications in AM and the cross-model
tables TRT, BCT and IUT [9].
As a conceptual model, DEMO models are not intended for direct application in
information systems. They cover issues in an enterprise such as: the organization’s
construction, the business processes, the business rulesm, and the information ob-
jects on the business level. This leads the abstracted essence of the organization to
stay away from the concrete application platform.

The desire to transform conceptual DEMO models is raised when the focus is
moved to bridge the gap between conceptual DEMO models and platform specific
models. Business Component Modeling is a good example that will benefit from
an automatic and effective transformation [4] of the DEMO models. The informa-
tion used for identifying business components in the BCI-3D method includes the

1DEMO models are explained with examples in chapter 16-20 in [9].

14th April 2009 59

60 Requirements for DEMO Transformation

business process steps from PM, and the information objects from SM. In addition,
the relationship among these types of information is also required for BCI. How-
ever, the relationships are not directly shown in any one of DEMO aspect models,
which leads us to generate them out of our own knowledge and understanding [4].

The complexity of information generation for BCI is twofold. First is the diversity
of information resources. DEMO separates concerns into several aspect models.
CM focuses on the organization construction, PM specifies the business process,
AM comprehends the action rules of the entire organization, SM concentrates on
the existence of information objects within the organization’s business. Besides
clarifying the essence of each aspect, this separation also group the information
into different sets, which belong to different aspect models. Thus when generat-
ing information for BCI, required information has to be obtained from different
resources. Even though there are three cross-model tables in DEMO2 to collect
information from different models, the information provided by these tables is not
complete and suitable for direct usage.

Another complexity comes from the indirect information. By indirect informa-
tion, we mean the relationships among the information objects and process steps,
because those relationships are not directly shown in any of the DEMO aspect
models, even the cross-model tables cannot provide sufficient information. The
demanding relationships are in three different types, which are the relationship
between the process steps and information objects, the relationship between infor-
mation objects, and the relationship between process steps [3].
The relationship between information objects needs to state three types of rela-
tions, which are “relate-to”, “part-of” and “state-of”. “Relate-to” indicates which
information objects are connected with each other, “part-of” points out which in-
formation object is part of another one, “state-of” marks different states of infor-
mation objects. All the items of information objects are contained in SM, and
those relations are diagrammed in Object Fact Diagram (OFD). The OFD diagram
is readable if we have knowledge of the modeling language WOSL3; however the
relationship contained in this diagram can not be generated directly by machine.
It requires additional translation of this relationship into machine understandable
format.
All the process steps are shown in PM. Generally, the process steps from the same
transaction are grouped in fixed sequence, to which we assign a “standard” rela-
tion. There are also some optional connections between some process steps, to
which we assign “optional” relation, due to the connection between different trans-
actions4. By optional, we mean the following step might not be executed every
time. Besides the standard and optional conditions, some process steps may be

2The cross-model tables are mentioned first in chapter 15 of [9]
3A short explanation about the modeling language in SM is provided in chapter 3.
4More details are explained in the Composition Axiom, chapter 11 of [9].

14th April 2009

Transformation Rules 61

executed more than once, to which we assign the term “main” relation with their
followed process step. For these process steps the three kinds of relations between
process steps, namely “standard”, “optional” and “main” are requisite relationships
between business process steps for BCI.
The most complex and important is the relationship between information objects
and business process steps. BCI asks for a relationship that states which process
step creates the information objects and in which steps the information objects are
used [3]. The cross-model table Information Use Table (IUT) collects the infor-
mation objects and process steps from SM and PM respectively, and assigns the
information objects to the relevant steps. But the relation of “use” in IUT does
not distinguish the relations of “create” and “use” which are demanded in BCI.
Thus the IUT cannot provide sufficient information, which implies that additional
division of the relations between information objects and process steps needs to be
done over IUT.

Considering the complexity in generating the information from DEMO aspect
models for BCI, the transformation of DEMO models ought to be able to relieve
people of the need for massive information collection and analysis. The requisite
information should be gathered from various resources automatically, and reduce
the complexity of generating the relationships among the information as much as
possible. Practically and ideally, a successful transformation will avoid any infor-
mation loss, and expand the usage of the transformed information in a wide range
of fields.

4.2 Transformation Rules

We need rules to define the contents of the DEMO transformation and the way that
the transformation should be elaborated. In this section, we specify the rules that
have been followed during the entire transformation procedure, which are selection
rules, structuring rules and mapping rules. Selection rules and structuring rules are
used during the DEMO transformation, while mapping rules are sued to verify the
transformation results.

Selection rules
The core information in the DEMO metamodel must be transformed into XML
schema completely. Selection rules aim to define the complete and essential infor-
mation objects for the transformation. Regarding the fact that the DEMO meta-
model is a big State Model (SM)5, we select information in the same way as the
one used in [9] for constructing the Information Use Table (IUT). Thus the target
information to be selected includes the object class and fact type.
Tables 4.1, 4.2 and 4.3 list all the information objects chosen from the Meta Con-
struction Model (MCM), Meta Process Model (MPM), Meta Action Model (MAM),

5We illustrated it in Chapter 3.5.3.

14th April 2009

62 Transformation Rules

Meta State Model (MSM) and the metamodels of three cross-model tables. These
information objects are either object classes or fact types contained in those meta-
models.

Considering the unique characteristics of MSM6, its being the meta schema of
the DEMO metamodel, we make an additional rule when defining the to-be trans-
formed information objects in MSM. It is: we only pick up the object classes and
fact types that are directly used in constructing the instance models.
The interpretation of this rule is: the definitions of fact type and object class are
exclusive in our selection. We only pick up the object classes and fact types that are
used in the basic constructs mentioned in Chapter 3.5.3. In addition, the definitions
of the existence laws are also taken into our account, since they are directly used
in building the instance models by the other three metamodels (MCM, MPM and
MAM).

Table 4.1: The selected information from the DEMO metamodel (MCM and MPM)
Meta Construction Model Meta Process Model
TRANSACTION KIND TRANSACTION PHASE
A is an initiator of T P is the O-phase of T
A is the executor of T P is the E-phase of T
ELEMENTARY ACTOR ROLE P is the R-phase of T
A uses information from B TRANSACTION STEP
INFORMATION BANK S is a step in P
PRODUCTION BANK T is initiated from P
B is the production bank of T S1 is a wait condition for S2
COORDINATION BANK
B is the coordination bank of T
F is the result kind of T

The selected information is the target information to be structured in the XML
schema files in Chapter 5.

Structuring rules
The chosen contents from the DEMO metamodel must be structured hierarchically
in the XML schema files. It implies that those information objects must be clus-
tered as elements, complex types or attributes in XSD, regarding their different
features and priorities in DEMO metamodel.

We define those which have the central position in the metamodel as the root ele-
ment in the schema. By central position, we may mean several cases, such as: the
one which holds the most dependency laws, or the one which is the most generi-
cally constructed in the metamodel. For instance, the transaction kind has the cen-
tral position in MCM or even the entire DEMO metamodel, since in DEMO aspect

6It has been discussed in chapter 3.7.

14th April 2009

Transformation Rules 63

Table 4.2: The selected information from the DEMO metamodel (MAM and
MSM)

Meta Action Model Meta State Model
ACTION RULE FACT TYPE
R is the action rule for performing step S OBJECT CLASS

the domain of x is y
x is a declared fact type
SCALE
PROPERTY
c is the domain of x
s is the range of x
mutual exclusion holds for x and y
x is dependent on y
unicity holds for x

Table 4.3: The selected information from the DEMO metamodel (TRT, BCT and
IUT)

Metamodel of the TRT Metamodel of the BCT Metamodel of the IUT
TRANSACTION KIND INFORMATION BANK TRANSACTION STEP
F is the result kind of T B is the information bank of F F is used in S
DECLARED FACT TYPE FACT TYPE FACT TYPE

models, CM is the most concise model, while the other models detail part of the
CM; in MCM the transaction kind holds the most dependency laws. In MPM, the
transaction phases are more generic than the transaction steps, since every trans-
action step belongs to one and only one transaction phases. In MAM, which is
obvious, the ACTION RULE is the root element. The basic constructs in MSM
occupy the central positions in the schema for the SM.
The other more detailed branch information, compared with the root elements, is
defined as complex types in order to detail the root element. The existential con-
straints contained in the metamodels are defined as attributes of either elements or
complex types. An example of the ruled structure is shown in Listing 4.1.

Listing 4.1: An example of defining the elements and complex types
<xsd : e l e m e n t name=”ELEMENT” t y p e =”COMPLEX TYPE”/>

<xsd : complexType name=”COMPLEX TYPE”>
. . .

<xsd : a t t r i b u t e name=” a t t r i b u t e ” t y p e =” t y p e ” use =” r e q u i r e d / o p t i o n a l ”/>
</ xsd : complexType>

Besides considering the hierarchy in the chosen contents, we should also pay at-
tention to the structure of the instance XML files. Sometimes we need to add an
additional root element to have the structured model information nesting in the root
element.
An example of the root element in the schema of the CM explains itself (List-

14th April 2009

64 Conclusion

ing 5.1). The element <Transaction>and its complex type content “TRANS-
ACTION KIND” comprehends all the model information7 within the transaction.
However we set another element <Transactions>as the root element, because in
CM there is usually more than one business transaction, so that we need the el-
ement <Transactions>to include all the <Transaction>elements in the instance
XML file.

The structuring rules are applied to the construction of the XML schema for DEMO
models in Chapter 5.

Mapping rules
This rule is made to guarantee the information completeness and correctness in the
transformation results, in order to verify the transformation results. The mapping
is made from two perspectives, which are the precision of the constraints in the
XML schema files and the completeness of the information objects in the instance
XML documents, compared with the original DEMO metamodel. Therefore, for
each information object in the original DEMO metamodel, there should be a cor-
responding interpretation in the XML schema files in terms of either an element or
a complex type; for every necessary constraint, there should also be an equivalent
part in the schema files, in terms of an attribute of an element or a complex type.

The mapping rules are applied in the comparison between the produced instance
XML documents and the original DEMO diagrams in Chapter 7.1.

4.3 Conclusion

In Chapter 1.1 the gap between the graphical DEMO models and the platform spe-
cific models was already mentioned. We described this gap in the first section of
this chapter in more detail, in that it causes the complexities in the information
generation from the DEMO models to the BCI in the BCI-3D tool. Two reasons
for the complexities are found in our analysis, which are the diverse information
resources and the indirect information. There are demands for easing the informa-
tion generation procedure for these two reasons.

With a clear picture of the DEMO metamodel and the complexities in the current
information generation procedure from the DEMO models to the BCI-3D tool, we
define three transformation rules as guidance for the model transformation that
will be done in this project. Following the selection rules, we decide which in-
formation should be chosen to be transformed. The structuring rules give us how
the selected information should be structured in the XML schema. The mapping
rules guarantee information completeness during the entire transformation process.

7The rest of the definition of the CM schema file is explained in Chapter 5.1.

14th April 2009

Conclusion 65

Answers to the research question
In this chapter, the research question “How can the transformation rules be de-
fined?” has been answered. We first analyzed the reasons for the complexities in
generating the information from the DEMO models for BCI, and clarified the ex-
pectation of the DEMO model transformation. Combining the requirements with
the expected DEMO transformation and the knowledge about the DEMO meta-
model, we defined three rules in selecting information items from the metamodel,
structuring the selected information in XSD, and guaranteeing information com-
pleteness and correctness in the transformation results.

Next Task
In Chapter 5 the interpretation of the DEMO metamodel will be made in XSD, un-
der the direction of the transformation rules. The interpretation will transform the
requisite information selected from the DEMO metamodel into a syntax-based for-
mat, and be structured hierarchically following the structuring rules. The selected
information and the constructed elements or complex types in XSD should be able
to be mapped with each other.

14th April 2009

66 Conclusion

14th April 2009

Chapter 5

DEMO Model schema

In Chapter 3, the DEMO metamodel showed the essential structure of DEMO mod-
els, including the MCM, MPM, MAM and MSM, as well as the metamodel for
three cross-model tables, the TRT, BCT, and IUT. In this chapter, we will present
the corresponding structure of the MCM, MPM, MAM, MSM, TRT, BCT, and IUT
in XSD, including the interrelationships within them. By means of that, the graph-
ical DEMO metamodel will be transformed into an exchangeable format, which
can be used by third party applications.

Conforming with the way that we specified the DEMO metamodel in Chapter 3, we
separately provide the specification about the XML schema for DEMO metamodel
in five sections, namely the CM schema (Section 5.1), PM schema (Section 5.2),
AM schema (Section 5.3), SM schema (Section 5.4) and the cross-model tables
schema (Section 5.5). In each section, the schema will be explained in detail, and
some design issues are discussed following the schema specification.

A short summary about the schema design is given at the end of this chapter, and
answers to the second research question are provided. A quick reference about
the elements, data types and attributes used in the designed XML schema can be
found in Appendix A. The complete schema codes for CM, PM, AM, SM, TRT,
BCT, and IUT can be viewed in Appendix B, with their corresponding graphical
representation of the schema.

5.1 Construction Model schema

The Construction Model (CM) consists of a sequence of transactions that elemen-
tary actor roles and information access to information banks are involved. Regard-
ing to the dependency laws held by class TRANSACTION KIND in the MCM, the
way that represents the structure of CM in XML Schema should be transaction-
centered. By transaction-centered, the global element in the instance CM XML
document is <Transactions>.

14th April 2009 67

68 Construction Model schema

The schema for the global element <Transactions>is expressed in Listing 5.1. The
<Transactions>element content is defined as a sequence of <Transaction>element.
Each <Transaction>element has complex type content “TRANSACTION KIND”.
The maximal time of <Transaction>element occurrence is unlimited in the se-
quence.

Listing 5.1: XML schema for global element <Transactions>
<xsd : e l e m e n t name=” T r a n s a c t i o n s ”>

<xsd : complexType>
<xsd : sequence>

<xsd : e l e m e n t name=” T r a n s a c t i o n ” t y p e =”
TRANSACTION KIND” maxOccurs =” unbounded ”/>

</ xsd : sequence>
</ xsd : complexType>

</ xsd : e lement>

The <xsd:complexType>element contains the information that defines the com-
plex type named “TRANSACTION KIND” in Listing 5.2. It is formed up with
a sequence of elements with element type names of Tname, Initiator, Executor,
ProductionBank, CoordinationBank and Result. In addition, an attribute, Transac-
tionID, is given in this complex type.
<Tname>is used to present the transaction name, in simple type of <xsd:string>.
Elements <Initiator>and <Executor>are with complex type content, “ELEMEN-
TARY ACTOR ROLE”. One transaction must have at least one initiator, and one
and only one executor. So in every <Transaction>element, the number of oc-
currence of <Initiator>is minimal once and maximal unbounded; the number of
occurrence of <Executor>is restrictly set to one for both attributes minOccurs and
maxOccurs. Elements <UseInformation>is with complex type content, “INFOR-
MATION BANK”. The information bank used here we mean the combination of
the production bank and the coordination bank that belong to a transaction, be-
cause, in the instance ISM, we interpret the transaction symbol as the combination
of the production bank and the coordination bank that belong to a transaction [9].
We specify one for their attribute minOccurs and maxOcurs, since it is necessary to
have the information bank in the parent element <Transaction>, and the interrela-
tionship between transaction kind and information banks are strict one-to-one re-
lationship. Element <Result>is with complex type content, “DeclaredFactType”.
It must occur once and exactly once in its parent element, so its number of occur-
rence is restricted to one, for both attributes minOccurs and maxOccurs.
Every transaction should have an uniquely identified ID. The <xsd:attribtue>element
named “TransactionID” is added to the complex type content, in simple type of
<xsd:string>. The use of this attribute is required.

Listing 5.2: XML schema for complex type named TRANSACTION KIND
<xsd : complexType name=”TRANSACTION KIND”>

<xsd : sequence>
<xsd : e l e m e n t name=”Tname” t y p e =” xsd : s t r i n g ”/>

14th April 2009

Construction Model schema 69

<xsd : e l e m e n t name=” I n i t i a t o r ” t y p e =”ELEMENTARY ACTOR ROLE”
minOccurs =”1” maxOccurs =” unbounded ”/>

<xsd : e l e m e n t name=” E x e c u t o r ” t y p e =”ELEMENTARY ACTOR ROLE”
minOccurs =”1” maxOccurs =”1”/>

<xsd : e l e m e n t name=” U s e I n f o r m a t i o n ” t y p e =”INFORMATION BANK”
minOccurs =”1” maxOccurs =”1”/>

<xsd : e l e m e n t name=” R e s u l t ” t y p e =” D e c l a r e d F a c t T y p e ”
minOccurs =”1” maxOccurs =”1”/>

</ xsd : sequence>
<xsd : a t t r i b u t e name=” T r a n s a c t i o n I D ” t y p e =” xsd : s t r i n g ” use =”

r e q u i r e d ”/>
</ xsd : complexType>

In Listing 5.3, the content of complex type “ELEMENTARY ACTOR ROLE” is
defined. It consists of a sequence of elements with element type names of name
and UseInformation, plus an attribute with name of ActorID.
<name>is used to present the name of the actor role, in simple type of <xsd:string>.
Element <UseInformation>is with complex type content, “INFORMATION BANK”.
The number of the occurrence of <UseInformation>is not limited, so we set zero
for attribute minOccurs and unbounded for attribute maxOccurs.
An unique actor role identification is assigned to every elementary actor role. It
is set by the attribute “ActorID”, in simply type <xsd:string>. The use of this
attribute is required.

Listing 5.3: XML schema for complex type named ELEMEN-
TARY ACTOR ROLE
<xsd : complexType name=”ELEMENTARY ACTOR ROLE”>

<xsd : sequence>
<xsd : e l e m e n t name=”name” t y p e =” xsd : s t r i n g ”/>
<xsd : e l e m e n t name=” U s e I n f o r m a t i o n ” t y p e =”INFORMATION BANK”

minOccurs =”0” maxOccurs =” unbounded ”/>
</ xsd : sequence>
<xsd : a t t r i b u t e name=” ActorID ” t y p e =” xsd : s t r i n g ” use =” r e q u i r e d ”/>

</ xsd : complexType>

The content of complex type “INFORMATION BANK” is defined in Listing 5.4.
This complex type has simple content, which is extended by adding two attributes.
These two attributes are nested within the <xsd:extension>element, and based on
simple type <xsd:string>.
The type of the information bank is set by the attribute “BankType”. The choices
of this attribute is restricted to production and coordination. This restriction is ac-
complished by using the <xsd:restriction>element. Two values, Prodcution and
Coordination, in simple type <xsd:string>can be chose as the value of the attribute
“BankType”.
The attribute “BankID” is used to assign a unique identification to every informa-
tion bank; the “BankID” is with simple type content <xsd:string>.

Listing 5.4: XML schema for complex type named INFORMATION BANK
<xsd : complexType name=”INFORMATION BANK”>

<xsd : s i m p l e C o n t e n t >
<xsd : e x t e n s i o n base =” xsd : s t r i n g ”>

14th April 2009

70 Process Model schema

<xsd : a t t r i b u t e name=” BankType ” use =” o p t i o n a l ”>
<xsd : s impleType>

<xsd : r e s t r i c t i o n base =” xsd : s t r i n g
”>

<xsd : e n u m e r a t i o n v a l u e =”
P r o d u c t i o n ”/>

<xsd : e n u m e r a t i o n v a l u e =”
C o o r d i n a t i o n ”/>

</ xsd : r e s t r i c t i o n >
</ xsd : s impleType>

</ xsd : a t t r i b u t e >
<xsd : a t t r i b u t e name=” BankID ” t y p e =” xsd : s t r i n g ” use

=” r e q u i r e d ”/>
</ xsd : e x t e n s i o n >

</ xsd : s i m p l e C o n t e n t >
</ xsd : complexType>

The last complex type content definition is for complex type “DeclaredFactType”.
Shown in Listing 5.5, its simple content is extended by adding one attribute. The
attribute “ResultID” is required to use in this complex type, which content is to
identify a unique transaction result in simple type <xsd:string>.

Listing 5.5: XML schema for complex type named DeclaredFactType
<xsd : complexType name=” D e c l a r e d F a c t T y p e”>

<xsd : s i m p l e C o n t e n t >
<xsd : e x t e n s i o n base =” xsd : s t r i n g ”>

<xsd : a t t r i b u t e name=” R e s u l t I D ” t y p e =” xsd : s t r i n g ”
use =” r e q u i r e d ”/>

</ xsd : e x t e n s i o n >
</ xsd : s i m p l e C o n t e n t >

</ xsd : complexType>

It is apparently to see the convenience of the transaction-centered design. The ini-
tiator and executor are vital elements in the complex type of TRANSACTION KIND,
since there are dependency laws hold between transaction kind and them respec-
tively in MCM. In addition, the transaction kind is the connection between MCM
and MPM that it is easy to search for the relevant information if setting the trans-
action as root element.

5.2 Process Model schema

The Process Model (PM) consists of a sequence of transaction phases for each
transaction kind. Each transaction phase contains a sequence of transaction steps.
They together form up the transaction pattern in PM. From analyzing the MPM
(Chapter 3.3), we are aware of that those transaction phases and transaction steps
covers all the situations that may occur in PM, namely all the transaction patterns
can be achieved based on the structure introduced in MPM.

In the schema for PM, we define the transaction pattern as the global element,
since it includes the transaction phases and transaction steps. Listing 5.6 shows

14th April 2009

Process Model schema 71

the definition of element <TransactionPattern>in XML schema. This global ele-
ment is defined as a sequence of <Transaction>element. There must be at least
one <Transaction>element in <TransactionPattern>, and there is no constraint
for the occurrence of <Transaction>. Thus the attributes minOccurs and maxOc-
curs of <Transaction>are set to one and unbounded respectively.
The element <Transaction>is composed a sequence of <TransactionPhase>element,
and two attributes “TransactionID” and “name”. The element <TransactionPhase>is
with complex type content, “TRANSACTION PHASE”. For every transaction, it
is not necessary to have a transaction phase, regarding to the MPM. But the maxi-
mal number of occurrenc of transaction phase in one transaction can not be greater
than 3. So we set zero for attribute minOccurs, and three for attribute maxOc-
curs. The attribute “TransactionID” for <Transaction>is required. A unique value
should be assigned to this attribute in simple type <xsd:string>. The attribute
“name” for <Transaction>is used to present the description of the transaction, in
simple type <xsd:string>.

Listing 5.6: XML schema for global element <TransactionPattern>

<xsd : e l e m e n t name=” T r a n s a c t i o n P a t t e r n ”>
<xsd : complexType>

<xsd : sequence>
<xsd : e l e m e n t name=” T r a n s a c t i o n ” minOccurs =”1”

maxOccurs =” unbounded”>
<xsd : complexType>

<xsd : sequence>
<xsd : e l e m e n t name=”

T r a n s a c t i o n P h a s e ” t y p e
=”TRANSACTION PHASE”
minOccurs =”0”
maxOccurs =”3”/>

</ xsd : sequence>
<xsd : a t t r i b u t e name=” T r a n s a c t i o n I D

” t y p e =” xsd : s t r i n g ” use =”
r e q u i r e d ”/>

<xsd : a t t r i b u t e name=”name” t y p e =”
xsd : s t r i n g ”/>

</ xsd : complexType>
</ xsd : e lement>

</ xsd : sequence>
</ xsd : complexType>

</ xsd : e lement>

The schema for complex type “TRANSACTION PHASE” is showed in Listing
5.7. This <xsd:complexType>element contains a sequence of unlimited child el-
ement <step>, which presents the transaction step in PM. A required attribute is
used to assign the name of the transaction phase.
It is possible that there is no transaction step in some transaction phase, regarding
to the fact that a transaction may be terminated in early transaction phase. The
reason to the unlimited occurrence of transaction step in one transaction phase is
that it is unknown which transaction pattern is being followed; the acts performed
by actor roles are different regarding to various situations. So the attributes minOc-
curs and maxOccurs are set with zero and unbounded respectively. The content of

14th April 2009

72 Process Model schema

<step>is defined in complex type “TRANSACTION STEP”.
The name of the transaction phase is restricted to Order, Execution or Result, which
is done by the element <xsd:restriction>in attribute “name”. The values of these
three options are in simple type <xsd:string>.

Listing 5.7: XML schema for complex type named TRANSACTION PHASE
<xsd : complexType name=”TRANSACTION PHASE”>

<xsd : sequence>
<xsd : e l e m e n t name=” s t e p ” t y p e =”TRANSACTION STEP” minOccurs

=”0” maxOccurs =” unbounded ”/>
</ xsd : sequence>
<xsd : a t t r i b u t e name=”name” use =” r e q u i r e d ”>

<xsd : s impleType>
<xsd : r e s t r i c t i o n base =” xsd : s t r i n g ”>

<xsd : e n u m e r a t i o n v a l u e =” Order ”/>
<xsd : e n u m e r a t i o n v a l u e =” E x e c u t i o n ”/>
<xsd : e n u m e r a t i o n v a l u e =” R e s u l t ”/>

</ xsd : r e s t r i c t i o n >
</ xsd : s impleType>

</ xsd : a t t r i b u t e >
</ xsd : complexType>

The schema of the last complex type content in MPM, “TRANSACTION STEP”,
is defined in Listing 5.8. This complex type presents the structure of the trans-
action step. The content of this complex type element includes a sequence of
elements, which are <Name>, <InitiatedFrom>, <InitiationTo>, <IsWaitCon-
ditionOf>and <WaitingFor>. In addition, an attribute “TransactionID” is given to
“TRANSACTION STEP”.
<Name>is used to denote which transaction step it is. It is expressed in simple
type <xsd:string>. And there is only one name for one transaction step, thus the
attributes minOccurs and maxOccurs are set with one.
<InitiatedFrom>and <InitiationTo>describe the initiation condition between trans-
action steps. Note that the conditions we mean here is among different transac-
tions, the one within the same transactions is not taken into account. <Inititi-
atedFrom>is needed when the parent element <step>is initiated from a step in
another transaction. The content of <InitiatedFrom>is in complex type “TRANS-
ACTION STEP”, which means the initiation of one transaction step is another
transaction step. This element is only necessary when there is such activation from
another transaction, and it is possible that the activation is from more than one
transaction. Thus zero is set to attribtue minOccurs and unbounded is set to at-
tribute maxOccurs.
Contrary to <InitiatedFrom>, <InitiationTo>is used when the parent transaction
step initiates some transaction steps in other transactions. Similar with <Initiated-
From>, the content of <InitiationTo>is in complex type “TRANSACTION STEP”;
its attributes minOccurs and maxOccurs are set with zero and unbounded, since not
every transaction step initiates steps in other transactions, but once it does, it can
activate the start of more than one step in different transactions.
<IsWaitConditionOf>and <WaitingFor>are two elements used to describe the
wait condition between transaction steps. As same as <InitiatedFrom>and <Ini-

14th April 2009

Action Model schema 73

tiationTo>, it only applies to conditions between different transactions. When the
start of one transaction step needs to wait for the completion of another trans-
action’s step, the awaiting transaction step needs to be marked by using <Wait-
ingFor>element, with noting which transaction step it is waiting for. The element
<IsWaitConditionOf>is denoted in the other transaction step, with noting of which
transaction step it is the wait condition. For both of these two elements, there is no
constraint for either attribute minOccurs or attribute maxOccurs.
Note that the occurrence of elements <InitiatedFrom>and <InitiationTo>in in-
stance PM should be consistent, so do the elements <IsWaitingConditionOf>and
<WaitingFor>. Because these two pairs of elements specify the same interrela-
tionship respectively. Once transaction step s1 initiates transaction step s2, s2 is
initiated from s1. Once transaction step s1 is the waiting condition of transaction
step s2, s2 waits for the completion of s1.
The attribute, “TransactionID”, is optional for the complex type “TRANSAC-
TION STEP”. Only when one of the child elements in this complex type content
refers to a transaction step of another transaction, does the value of the transaction
ID need to be declared in this attribute. If a transaction step does not have any
connection with another transaction, this attribute does not make any sense, since
the ID for the step’s belonged transaction is already given in its ancestor element
<Transaction>.

Listing 5.8: XML schema for complex type named TRANSACTION STEP
<xsd : complexType name=”TRANSACTION STEP”>

<xsd : sequence>
<xsd : e l e m e n t name=”Name” t y p e =” xsd : s t r i n g ” minOccurs =”1”

maxOccurs =”1”/>
<xsd : e l e m e n t name=” I n i t i a t e d F r o m ” t y p e =”TRANSACTION STEP”

minOccurs =”0” maxOccurs =” unbounded ”/>
<xsd : e l e m e n t name=” I n i t i a t i o n T o ” t y p e =”TRANSACTION STEP”

minOccurs =”0” maxOccurs =” unbounded ”/>
<xsd : e l e m e n t name=” I s W a i t C o n d i t i o n O f ” t y p e =”

TRANSACTION STEP” minOccurs =”0” maxOccurs =” unbounded
”/>

<xsd : e l e m e n t name=” W a i t i n g F o r ” t y p e =”TRANSACTION STEP”
minOccurs =”0” maxOccurs =” unbounded ”/>

</ xsd : sequence>
<xsd : a t t r i b u t e name=” T r a n s a c t i o n I D ” t y p e =” xsd : s t r i n g ” use =”

o p t i o n a l ”/>
</ xsd : complexType>

5.3 Action Model schema

The Action Model (AM) contains a set of action rules of an organization. The
global element in the schema for AM is the action rules, which includes the specific
rules. Listing 5.9 defines the element <ActionRules>in XML schema.
The content of this global element is a sequence of <Rule>element, with complex
type content “ACTION RULE”. The numbers of the rules are not limited, so the
attribute minOccurs is set with zero, and the attribute maxOccurs is set unbounded.

14th April 2009

74 State Model schema

Listing 5.9: XML schema for global element <ActionRules>
<xsd : e l e m e n t name=” A c t i o n R u l e s”>

<xsd : complexType>
<xsd : sequence>

<xsd : e l e m e n t name=” Rule ” t y p e =”ACTION RULE”
minOccurs =”0” maxOccurs =” unbounded ”/>

</ xsd : sequence>
</ xsd : complexType>

</ xsd : e lement>

The content of complex type “ACTION RULE” is defined in Listing 5.10. This
complex type contains simple content with two attributes. Based on the simple type
<xsd:string>, this simple content is extended by adding attributes “TransactionID”
and “step”. These two attributes are required to be used, for indicating to which
transaction step in which transaction the action rule is concerning about.

Listing 5.10: XML schema for complex type named ACTION RULE
<xsd : complexType name=”ACTION RULE”>

<xsd : s i m p l e C o n t e n t >
<xsd : e x t e n s i o n base =” xsd : s t r i n g ”>

<xsd : a t t r i b u t e name=” T r a n s a c t i o n I D ” t y p e =” xsd :
s t r i n g ” use =” r e q u i r e d ”/>

<xsd : a t t r i b u t e name=” s t e p ” t y p e =” xsd : s t r i n g ” use =”
r e q u i r e d ”/>

</ xsd : e x t e n s i o n >
</ xsd : s i m p l e C o n t e n t >

</ xsd : complexType>

5.4 State Model schema

In the light of the two roles the MSM has (illustrated in Chapter 3.5), the meta-
model for SM and the meta schema for the whole DEMO metamodel, a filtration
needs to be made before we design the schema for SM, by distinguishing the def-
initions for basic concepts and the ones for basic constructs. The basic constructs
are the ones directly used to structure the instance SM, such as a binary fact type.
The basic concepts are the ones used to form up the basic construct, such as the
fact types, object classes, and existence laws. It is advisable to bear in mind that
SM is made up of a set of basic constructs, which are made of object classes, fact
types, and existence laws.

The global element set for SM in instance document is <ObjectFact>. Its content
is performed by a set of basic constructs which are contained in the global element
as element <BasicConstruct>. The content of <BasicConstruct>is in complex
type “BasicConstruct”, which will be discussed later in this chapter. There is no
constraint about the occurrence of this element, attributes minOccurs and maxOc-
curs are set with zero and unbounded respectively. Listing 5.11 shows the schema
of the global element <ObjectFact>.

14th April 2009

State Model schema 75

Listing 5.11: XML schema for global element <ObjectFact>
<xsd : e l e m e n t name=” O b j e c t F a c t ”>

<xsd : complexType>
<xsd : sequence>

<xsd : e l e m e n t name=” B a s i c C o n s t r u c t ” t y p e =”
B a s i c C o n s t r u c t ” minOccurs =”0” maxOccurs =”
unbounded ”/>

</ xsd : sequence>
</ xsd : complexType>

</ xsd : e lement>

Being aware with that the definitions of basic concepts, such as definitions for ob-
ject class, fact type and existence laws, are not considered in the schema for basic
construct in SM, the issues taken into account are the roles of a fact type, the do-
mains or scales of those roles and the types of the existence laws held in the basic
construct. It is going to explain how these issues are structured in the schema for
SM.

There might be different approaches to proceed the design for the schema of ba-
sic construct. Here we choose the instance of FACT TYPE as the fundamental
composition in the basic construct, since the fact type includes one or more roles
regarding to the arity of the certain fact type. In the <xsd:complexType>element
in Listing 5.12, the content of “BasicConstruct” is a sequence of element <role>,
with comlex type content “FACT TYPE”. The attributes minOccurs and maxOc-
curs of <role>is set with zero and unbounded respectively, which means the basic
construct is allowed to be empty and without constraint on the maximal number
of <role>in one basic construct. A formulation is set to the basic construct by
attribute “formulation” in simple type <xsd:string>. Another attribute of the com-
plex type “BasicConstruct” is “FactTypeID”, which is used to assign a unique iden-
tification to the construct. This attribute is required and with value in simple type
<xsd:string>.

Listing 5.12: XML schema for complex type named BsicConstruct
<xsd : complexType name=” B a s i c C o n s t r u c t ”>

<xsd : sequence>
<xsd : e l e m e n t name=” r o l e ” t y p e =”FACT TYPE”

minOccurs =”0” maxOccurs =” unbounded ”/>
</ xsd : sequence>
<xsd : a t t r i b u t e name=” F o r m u l a t i o n ” t y p e =” xsd : s t r i n g ”/>
<xsd : a t t r i b u t e name=” FactTypeID ” t y p e =” xsd : s t r i n g ” use =”

r e q u i r e d ”/>
</ xsd : complexType>

The conditions that a fact type can have are the issues need to be declared next.
According to the basic construct discussed in Chapter 3.5.3, the role of a fact type
can have an object class as its domain, or have a type of scale as its range1. It can
also hold a unicity law to constrain its appearance in the same instance fact type
if necessarily. Another condition that need to be concerned is the extension of the

1Scale is chosen when object property is the case. Object property is a binary fact type.

14th April 2009

76 State Model schema

fact type. Some role of a fact type can be extended to a new type of object class.
In Listing 5.13, these conditions are defined as below:
The conditions of having a domain or having a range, and being extended to a new
object class are defined in a sequence of elements. <HasDomain>and <IsExtend-
edTo>are with complex type content “OBJECT CLASS”, while <HasRange>is
with complex type content “Scale”. Regarding to the constraint that the same
role of a fact type cannot have a domain and a range at the same time, the el-
ements <HasDomain>and <HasRange>are made as child elements of element
<xsd:choice>. <xsd:choice>enables only one of its child elements to appear in
the instance document, which means either <HasDomain>or <HasRange>will
be chose in the instance fact type at one time. Not every fact type can be extended
to a new object class, thus the attribute minOccurs of <IsExtendedTo>is set with
zero.
The unicity law is defined as an attribute of the <xsd:complexType>element,
“HoldUnicity”. The choice of this attribute is restricted to “Yes” and “No”, in-
dicating the unicity law is held or not. This restriction is accomplished by using
the element <xsd:restriction>, with two values of “Yes” and “No” in simple type
<xsd:string>.
Another attribute of the complex type “FACT TYPE” is “name”, which is used to
assign a unique name to each role in the fact type. This attribute is required and
with value in simple type <xsd:string>.

Listing 5.13: XML schema for complex type named FACT TYPE
<xsd : complexType name=”FACT TYPE”>

<xsd : sequence>
<xsd : cho i ce>

<xsd : e l e m e n t name=” HasDomain ” t y p e =”
OBJECT CLASS”/>

<xsd : e l e m e n t name=” HasRange ” t y p e =” S c a l e
”/>

</ xsd : cho i ce>
<xsd : e l e m e n t name=” I sEx tendedTo ” t y p e =”

OBJECT CLASS” minOccurs =”0” maxOccurs =”
unbounded ”/>

</ xsd : sequence>
<xsd : a t t r i b u t e name=” H o l d U n i c i t y ” d e f a u l t =” Yes”>

<xsd : s impleType>
<xsd : r e s t r i c t i o n base =” xsd : s t r i n g ”>

<xsd : e n u m e r a t i o n v a l u e =” Yes”/>
<xsd : e n u m e r a t i o n v a l u e =”No”/>

</ xsd : r e s t r i c t i o n >
</ xsd : s impleType>

</ xsd : a t t r i b u t e >
<xsd : a t t r i b u t e name=”name” t y p e =” xsd : s t r i n g ” use =” r e q u i r e d

”/>
</ xsd : complexType>

In the next Listing 5.14, the schema of the complex type “OBJECT CLASS” is
described. There is only simple content in this complex type, and three attributes
are nested in the simple content within <xsd:extension>element.
It is necessary to state that what kind of existence law is connecting the object

14th April 2009

State Model schema 77

class and the fact type. This task is accomplished by the attribute “LawType”.
The available existence laws for this attribute are reference law and dependency
law. Actually the reference law must be obtained, otherwise there is no connec-
tion between the fact type and its corresponding domain2. The difference is only
with or without dependency law due to different instance conditions. The element
<xsd:restriction>constrains the values of the attribute to “Reference” and “De-
pendency”. By “Reference” it means the reference law is held between this object
class and the fact type, by “Dependency” it means besides the referent law is held,
a dependency law is also held for this object class.
Like fact type, every object class must has its own identification to be distinguished
from each other. The attribute “ObjectClassID” presents this value in simple type
<xsd:string>. The usage of this attribute is required.

On some occasions, there are result types declared on object classes. An addi-
tion attribute “ResultID” is used to denote the ID of the result type, which corre-
sponding result type can be found in the relevant CM. The usage of this attribute is
optional.

Listing 5.14: XML schema for complex type named OBJECT CLASS
<xsd : complexType name=”OBJECT CLASS”>

<xsd : s i m p l e C o n t e n t >
<xsd : e x t e n s i o n base =” xsd : s t r i n g ”>
<xsd : a t t r i b u t e name=”LawType” use =” o p t i o n a l ” d e f a u l t =”

R e f e r e n c e”>
<xsd : s impleType>

<xsd : r e s t r i c t i o n base =” xsd : s t r i n g ”>
<xsd : e n u m e r a t i o n v a l u e =” R e f e r e n c e ”/>
<xsd : e n u m e r a t i o n v a l u e =” Dependency ”/>

</ xsd : r e s t r i c t i o n >
</ xsd : s impleType>
</ xsd : a t t r i b u t e >
<xsd : a t t r i b u t e name=” O b j e c t C l a s s I D ” t y p e =” xsd : s t r i n g ” use

=” r e q u i r e d ”/>
<xsd : a t t r i b u t e name=” R e s u l t I D ” t y p e =” xsd : s t r i n g ” use =”

o p t i o n a l ”/>
</ xsd : e x t e n s i o n >

</ xsd : s i m p l e C o n t e n t >
</ xsd : complexType>

The last schema design is for the complex type content “Scale” (Listing 5.15).
There is no need to specify the type of existence law held for the scale, according
to the basic construct of object property in Figure 3.14, the reference law is the
only type of connection between the object property and its corresponding scale.
The variety in this <xsd:complexType>element is the types of the scale. There are
five types of scale: absolute, ratio, interval, ordinal and categorial. The choice is
realised by element <xsd:attribute>, the values of thses five types are represented
by capital letters A, R, I, O and C in simple type <xsd:string>. As an absolutely
necessary attribute, “ScaleID” is given in the content of this complex type “Scale”.

2Examples of the basic construct with different laws are discussed in Chapter 3.5.3

14th April 2009

78 Cross-model tables schema

Listing 5.15: XML schema for complex type named Scale
<xsd : complexType name=” S c a l e”>

<xsd : s i m p l e C o n t e n t >
<xsd : e x t e n s i o n base =” xsd : s t r i n g ”>
<xsd : a t t r i b u t e name=” Sca leType ” use =” o p t i o n a l ” d e f a u l t =”A

”>
<xsd : s impleType>

<xsd : r e s t r i c t i o n base =” xsd : s t r i n g ”>
<xsd : e n u m e r a t i o n v a l u e =”A”/>
<xsd : e n u m e r a t i o n v a l u e =”R”/>
<xsd : e n u m e r a t i o n v a l u e =” I ”/>
<xsd : e n u m e r a t i o n v a l u e =”O”/>
<xsd : e n u m e r a t i o n v a l u e =”C”/>

</ xsd : r e s t r i c t i o n >
</ xsd : s impleType>
</ xsd : a t t r i b u t e >
<xsd : a t t r i b u t e name=” Sca le ID ” t y p e =” xsd : s t r i n g ” use =”

r e q u i r e d ”/>
</ xsd : e x t e n s i o n >

</ xsd : s i m p l e C o n t e n t >
</ xsd : complexType>

5.5 Cross-model tables schema

In cross-model tables, the TRT, BCT and IUT, the information is in terms of tabular
data. In each instance table, there are two columns listing the information, which
is from different DEMO aspect models. In every row of the table, the information
from different columns is associated with each other, due to the different relation-
ships titled in these three tables. As already seen in Chapter 3.6, the metamodels
for these cross-model tables are with similar structures, namely a binary fact type,
however the information objects and existence laws in those binary fact types are
different from each other. Regarding their simple structures and the transformation
rules 4.2, we design the XML schema for them in a similar way.

Listing 5.16 shows the schema for the TRT. The global element <Transaction-
Results>is with complex type content, which is performed by a set of transaction
results. The information of a transaction result is contained in the element <Trans-
actionResult>, which has the complex type content “TRT”. We do not restrict the
occurrence of <TransactionResult>, since a table can be empty or has numerous
rows. So we set zero and unbounded to its attribute “minOccurs” and “maxOccurs”
respectively.
The content of the complex type “TRT” is performed by a sequence of elements
<TransactionType>and <ResultType>, which are in simple type <xsd:string>.
Regarding the existence laws they hold in the metamodel, shown in Figure ??, we
set the attribute “maxOccurs” with one for each of them, since they both hold a
unicity law in the lawful binary fact type. We set the attribute “minOccurs” with
one for <TransactionType>, and the attribute “minOccurs” with zero for <Result-
Type>, because a dependency law holds on the transaction type, but not on the

14th April 2009

Cross-model tables schema 79

result type.

Listing 5.16: XML schema for Transaction Result Table
<xsd : e l e m e n t name=” T r a n s a c t i o n R e s u l t s ”>

<xsd : complexType>
<xsd : sequence>

<xsd : e l e m e n t name=” T r a n s a c t i o n R e s u l t ” t y p e =”TRT”
minOccurs =”0” maxOccurs =” unbounded ”/>

</ xsd : sequence>
</ xsd : complexType>

</ xsd : e lement>
<xsd : complexType name=”TRT”>

<xsd : sequence>
<xsd : e l e m e n t name=” T r a n s a c t i o n T y p e ” t y p e =” xsd : s t r i n g ”

minOccurs =”1” maxOccurs =”1”/>
<xsd : e l e m e n t name=” R e s u l t T y p e ” t y p e =” xsd : s t r i n g ” minOccurs

=”0” maxOccurs =”1”/>
</ xsd : sequence>

</ xsd : complexType>

In Listing 5.17 and 5.18, we present the schema for the BCT and IUT respectively.
As mentioned at the beginning of this section, the only differences in the metamod-
els of these tables are the information objects and the existence laws.

In the schema for the BCT (Listing 5.17), the global element is <BankContents>,
which is made up of a sequence of <BankContent>. In the complex type content
of element <BankContent>, two elements are <InformationBank>and <Fact-
Type>. There are dependency laws hold for both the information bank and the fact
type in the metamodel of the BCT, so we set the attribute “minOccurs” with one
for them. There is a unicity law holds to restrict the occurrence of the fact type in
the binary fact type. Note that, in the metamodel of the BCT, holding the unicity
law means that every fact type is not allowed to belong to more than one informa-
tion bank, and every information bank can includes more than one fact types. The
attributes “minOccurs” and “maxOccurs” restrict the occurrence of the element in
the BCT, so we set the attributes “maxOccurs” with one for <InformationBank>,
and the attribute “maxOccurs” with unbounded for <FactType>.

Listing 5.17: XML schema for Bank Contents Table
<xsd : e l e m e n t name=” BankConten t s”>

<xsd : complexType>
<xsd : sequence>

<xsd : e l e m e n t name=” BankContent ” t y p e =”BCT”
minOccurs =”0” maxOccurs =” unbounded ”/>

</ xsd : sequence>
</ xsd : complexType>

</ xsd : e lement>
<xsd : complexType name=”BCT”>

<xsd : sequence>
<xsd : e l e m e n t name=” I n f o r m a t i o n B a n k ” t y p e =” xsd : s t r i n g ”

minOccurs =”1” maxOccurs =”1”/>
<xsd : e l e m e n t name=” Fac tType ” t y p e =” xsd : s t r i n g ” minOccurs

=”1” maxOccurs =” unbounded ”/>
</ xsd : sequence>

</ xsd : complexType>

14th April 2009

80 Conclusion

In the schema for the IUT (Listing 5.18), the global element is <InformationUsage>,
which is made up of a sequence of <InformationUse>. The content of <In-
formationUse>is performed by two elements, namely <InformationObject>and
<TransactionStep>. Note that, in the metamodel of the IUT, there is no unicity
law and dependency law hold for neither the information object nor the transaction
step. We set unbounded to the attribute “maxOccurs”, and set zero to the attribute
“minOccurs” for both <InformationObject>and <TransactionStep>.

Listing 5.18: XML schema for Information Use Table
<xsd : e l e m e n t name=” I n f o r m a t i o n U s a g e”>

<xsd : complexType>
<xsd : sequence>

<xsd : e l e m e n t name=” I n f o r m a t i o n U s e ” t y p e =”IUT”
minOccurs =”0” maxOccurs =” unbounded ”/>

</ xsd : sequence>
</ xsd : complexType>

</ xsd : e lement>
<xsd : complexType name=”IUT”>

<xsd : sequence>
<xsd : e l e m e n t name=” I n f o r m a t i o n O b j e c t ” t y p e =” xsd : s t r i n g ”

minOccurs =”0” maxOccurs =” unbounded ”/>
<xsd : e l e m e n t name=” T r a n s a c t i o n S t e p ” t y p e =” xsd : s t r i n g ”

minOccurs =”0” maxOccurs =” unbounded ”/>
</ xsd : sequence>

</ xsd : complexType>

5.6 Conclusion

Schema design summary
On the basis of analyzing the DEMO metamodel, this chapter presents the schema
for DEMO models in XSD. The schema design is elaborated in seven separate
XSD files, which comprehend the structures for all possible conditions in instance
DEMO models, including the four graphical DEMO diagrams and three cross-
model tables. We follow the structuring rules defined in Chapter 4.2 during the
whole design procedure.

The schema for CM is transaction-center designed. It emphasizes the importance
of business transactions in an organization’s construction, and its core position in
the whole DEMO metamodel. Different actor roles are played around the trans-
actions and the usage of information banks also depends on the demands from
specific transactions.
The essential interrelationships in the PM, especially interrelationships among the
transaction steps, constitute the schema for PM. It focuses on the internal sequence
of a transaction, in terms of three transaction phases. Transaction steps are con-
tained in transaction phase, with specification about the the four possible connec-
tions with step in other transactions. Transaction phases and transaction steps be-
long to the same transaction are associated with each other, and identified by the
transaction ID, which also demonstrates the central position of transaction kind in

14th April 2009

Conclusion 81

the structure of DEMO metamodel.
The schema for AM is the simplest one, only with one basic construct, namely
action rules. Every action rule does not have any constraints about its content, but
is strictly connected with a transaction step.
In the schema for SM, fact type is chosen as the starting point to proceed the basic
construct of SM. It covers unlimited roles to constitute unary fact type, binary fact
type, property or other possible constructs in SM. The specification about associa-
tions with object classes and scales are declared clearly, so are the existence laws
held between them. Some object classes may have result types declared on them,
that the result is from relevant transactions in CM.
We also provide the schema for three cross-model tables, the TRT, BCT, and IUT.
Regarding their metamodels (Chapter 3.6), which are binary fact types, the schema
for those models is in a similar structure. The differences between their schema are
the elements, which represent the information objects in the metamodel, and the
allowed occurrence of those elements, which represent the existence laws in the
metamodel.

The XML schema for DEMO models may be various. The one we proposed in
this chapter interpret the graphical DEMO metamodel into XSD in a concise, co-
herent and comprehensive way. We tried to reduce the duplication of the modeling
information in the schema as much as possible, while maintained necessary con-
nections with other relevant information. The instance XML documents based on
the designed schema are intended to carry all the modeling information from the
instance DEMO models. And those graphical modeling information is transformed
into the XML based format, and stored in a structural way in terms of XML docu-
ments.

During the schema design procedure, we applied the transformation rules that have
been defined in Chapter 4.2, to guide the transformation from DEMO metamodel
to XML schema.

Completeness of the DEMO model schema
In compliance with the DEMO metamodel, which is introduced in Chapter 3, we
provide the XML schema for the MCM, MPM, MAM, MSM, and metamodels
of cross-model tables (TRT, BCT, and IUT). The designed XML schema is the
interpretation of the DEMO metamodel. Even the three cross-model tables are dis-
played in tabular format, which is already an exchangeable format, we still present
the XML schema for them, so that the DEMO metamodel interpretation is com-
plete.

Answers to research question
In this chapter, research question “How can we transform the graphical model in-
formation into a syntax-based format?” has been answered. Looking back at the
transformation approach in Figure 2.4, the model transformation is done at the level

14th April 2009

82 Conclusion

of metamodel due to applying the metamodeling. WOSL is the source language
used by DEMO metamodel, and XML Schema has been chosen as the model-
ing language of the target model. The transformation is conducted by specifying
the DEMO metamodel in terms of XSD. Referring to each information object in
the DEMO metamodel, there is corresponding XML specification in the designed
schema. Those information objects are transformed into either elements or com-
plex types, according to the transformation rules (Chapter 4.2). The mapping be-
tween those information objects and elements or complex types guarantees the
completeness of the transformation.

Next Task
Now we have the XML schema for CM, PM, AM, SM and cross-model tables
TRT, BCT and IUT, which are the structures of the instance XML documents. In
the following chapter, we will provide some instance XML documents against the
designed schema. Those instance XML documents have the model information
from the library case in [9], and are considered as the transformed DEMO models.

14th April 2009

Chapter 6

Producing XML Documents

The XML documents for CM, PM, AM, SM and three cross-model tables (the TRT,
BCT, and IUT) are produced separately in this chapter. We built an application to
collect the model information, and create the XML files for each DEMO aspect
model and cross-model table. The core information of each DEMO aspect model
and cross-model table is required to be filled in different forms, each of which
corresponds to different DEMO aspect models and cross-model tables. The XML
documents are made by structuring those information items against the designed
schema. In this chapter we separately provide the specification about the core
information items required in our application, and the exemplary XML documents
for each DEMO aspect model and cross-model table. For more information about
this application, please see the manual in Appendix E. The screenshots of the
information forms in the application for each DEMO aspect model can be found in
Appendix C. The complete exemplary XML documents are attached in Appendix
D.

6.1 Construction Model

As already mentioned in Chapter 3.2, the construction of CM is made up of the
transaction types, the associated actor roles, and the information links between the
actor roles and the information banks. Therefore the information items that need
to be provided to construct the CM should include the transaction, the initiator
and executor of the transaction, and the relevant information banks, as well as the
interrelationships among them. Applying the selection rules, the mentioned infor-
mation items for constructing CM have all been included in Table 4.1.

Figure C.1 shows a screenshot of the form of collecting the information for pro-
ducing the XML document for CM. One transaction is produced by filling in the
required information items, which includes the transaction name, its initiator and
the information banks used by the initiator, its executor and the information banks
used by the executor, and its transaction result. Note that compared with the se-

14th April 2009 83

84 Process Model

lected information items in Table 4.1, in this form, we do not ask for the informa-
tion bank that belong to the transaction. Since according to the MCM (Chapter
3.2), for every transaction kind its coordination bank and production bank are nec-
essarily produced, our application automatically creates the information bank that
belongs to the transaction for each transaction.

The XML document for CM is produced with the input information items. Fig-
ure C.2 is one exemplary XML file with only one transaction from the library
case1. Each input items is displayed as either an element attribute or element con-
tent. The elements and their content in this XML document are structured against
the designed XML schema, which has already been described in Chapter 5.1. The
complete XML schema for CM could be found in Appendix B.1.

6.2 Process Model

The PM XML document should provide the same information as the PM does. PM
details the business process steps of each transaction that turns out to be a sequence
of process steps and responsibility areas ([9] and Chapter 3.3). Selected from the
MPM (Table 4.1), the information items for constructing the PM XML document
include the transaction steps, the transaction phases that those steps belong to, the
interrelationships between transaction steps, and those between transaction steps
and the transaction kind. We did not directly provide the information about the
responsibility areas in MPM, since it could be generated from MCM that states
which actor role performs which process steps.

For one transaction step, the interrelationship with the transaction kind and an-
other transaction step could be interpreted into four kinds of conditions: it is initi-
ated from another transaction step, it initiates another transaction step, it is the wait
condition of another transaction step, it waits for the completion of another trans-
action step. There are three transaction phases, namely order phase (O-phase),
execution phase (E-phase) and result phase (R-phase). Every transaction step must
belong to one and only one of these transaction phases.
We provide the screenshot for the form, which collect the information items for
creating PM XML document, in Figure C.3. Since the basic transaction pattern2

is the common one that we often have, the button “Basic Pattern” provides a di-
rect way to produce the XML document with just the basic transaction steps. The
only required information is the transaction information, and the steps in the basic
pattern are added to the transaction automatically in our application. However, for
any other additional condition in the transaction process, the rest of the items in this
form take care of that. In this form, we do not ask for input the information about
the transaction phases, because as we already mentioned in Chapter 3.3 that every

1The description of the library case can be found in the appendix of the book [9].
2See chapter 10 of [9].

14th April 2009

Action Model 85

specific transaction step belongs to one of the three transaction phases, we set the
transaction steps to their corresponding transaction phase automatically. Thus we
only ask for the information about the transaction steps. In Appendix E, there is
more about this application.

Figure C.4 presents one exemplary transaction process from the library case. It
lists all the basic transaction steps of T04 that the steps request and promise be-
long to the O-phase; the step execute belongs to the E-phase; the steps state and
accept belong to the R-phase. In addition, it also indicates the interrelationship
with another transaction T05, that T04/pm initiates T05/re and T04/ex wait for the
completion of T05/pm. The designed XML schema is assigned to the instance doc-
ument. The complete XML schema for PM can be found in Appendix B.2, and has
been described in Chapter 5.2.

6.3 Action Model

The content in the AM is the specification of the action rules for the entire orga-
nization. The rules are the main information items required for constructing the
XML document for AM, denoting the specific transaction steps the rules are de-
fined for. As seen in Table 4.2, we created the corresponding form in Figure C.5.
The rule content is considered as one single entity; a specific transaction step is
assigned to every rule. Figure C.6 shows one simple instance XML document for
the AM, which is against the designed schema for AM (Chapter 5.3).

6.4 State Model

The SM specifies the object classes, fact types and result types, as well as the ex-
istential laws that hold. [9] The MSM generates the basic construct of the SM
and provides the essential information items for building the SM. Following the
selection rule and the structuring rules in Chapter 4.2, we pick up the information
items that are directly used in the basic constructs, and structure them in the form
of Figure C.7.

Every basic construct has the formulation to state the meaning of the certain fact
type, while an unique fact type ID is set for identification. The information about
the roles in the fact type is required to be input individually, specifying its name, its
domain or scale, the relevant information regarding its domain or scale, the existen-
tial laws hold on this role, and the extension information of this role if necessary.
In this way, the SM diagram is displayed in the XML documents in terms of a set
of the basic constructs.

In the XML document shown in Figure C.8, part of the SM of the library case
is represented in a few basic constructs, and semantically described with the input

14th April 2009

86 Cross-Model Table

information. The structure of this XML document is against the designed schema
for SM, which is specified in Chapter 5.4 and the complete version could be found
in Appendix B.4.

6.5 Cross-Model Table

Transaction Result Table
TRT lists the transaction types and their corresponding transaction results, which
are also required in producing the XML document for CM in Figure C.1. For
convenience, our application automatically produces the XML document for TRT
when the information is filled in the form for producing the XML document for
the CM. The exemplary XML document for TRT is shown in Figure C.13. The
complete XML schema for TRT XML document is in Listing B.5, in Appendix
B.5.

Bank Contents Table
The information items required for producing the XML document for BCT are the
information bank and the fact type, regarding the selected items in Table 4.3. The
fact types are from the instance SM, which are instantiated into object classes, fact
types or result types. In the form (Figure C.10) for producing the XML document
for BCT, we ask for the name of the information bank, and the information objects.
Figure C.11 shows an exemplary XML document for BCT, and the complete XML
schema for this XML document is in Listing B.6, in Appendix B.5.

Information Use Table
The information items required for producing the XML document for IUT are the
transaction step and the fact type, including object classes, fact types or result
types, regarding the selected items in Table 4.3. In the form shown in Figure C.12,
we import the information objects from the XML document for SM, the transaction
steps from the XML document for PM. An exemplary XML document for IUT can
be seen in Figure C.13. The complete XML schema for IUT is in Listing B.7, in
Appendix B.5.

6.6 Conclusion

We present the instance XML documents of the library case for CM, PM, AM, SM,
TRT, BCT, and IUT in this chapter. The structures of these XML documents are
the schema which has been designed in Chapter 5. A simple application is built for
collecting the model information and creating the XML files.

The required information items for creating the XML files are selected from the
DEMO metamodel following the selection rules which are defined in Chapter 4.2.

14th April 2009

Conclusion 87

In our application, the idea of producing the XML documents involves first col-
lecting the required information items with concrete model information and then
structuring them in the XML documents against our designed schema for each
DEMO aspect model.
However, not all the information items are required to be filled in our application
forms, for instance, the coordination bank and the production bank that belong to
the transaction in CM, and the process steps within a transaction when it follows
the basic pattern in PM. This information will be automatically created in the in-
stance XML documents according to the transaction information.
In addition, most information for producing cross-model tables is from the DEMO
aspect models, which does not need to be provided repeatedly. For instance, the
TRT is automatically produced when the transaction type and result type is pro-
vided in the CM. The information objects used in the BCT and IUT are imported
from the SM.

The exemplary XML documents are shown in Appendix D, from which we can
see all the model information is included and structured in an XML based format.
As we know from the background information (Chapter 2.4), the XML data can be
accessed by other platform specific applications. Therefore the information in the
DEMO models is transformed into an exchangeable format, and these exemplary
XML documents are the transformation results, namely the expected platform spe-
cific models.

Answers to the research question
The research question “What would the transformed model look like?” has been
answered by showing the exemplary XML documents in this chapter. These in-
stance XML documents are the transformation model, in which the model informa-
tion of the library case is structured in XML based format. Differentiated from the
original DEMO diagrams, the aspect models are stored in terms of a set of elements
in the XML documents respectively. The unit elements in the XML documents of
CM, PM, AM and SM are <Transaction>, <Transaction>, <Rule>and <Bas-
icConstruct>. The unit elements in the XML documents of TRT, BCT and IUT
are <TransactionResult>, <BankContent>and <InformationUse>. Note that the
<Transaction>in the XML documents for CM and PM has different contents. In
the CM file the <Transaction>contains the information about the transaction, the
actor roles and the information banks used by the actor roles. In the PM file, it
contains the process steps within the transaction. Every <Rule>in the XML file of
AM contains one action rule in the AM. The information in the SM is stored in a set
of <BasicConstruct>in the XML file of SM. The information in three cross-model
tables is stored in a set of elements, which contains a pair of elements representing
the tabular data, in the XML documents for each table.

Next task
Till this chapter, we analyzed the DEMO metamodel (Chapter 3) and the demands

14th April 2009

88 Conclusion

to transform the DEMO models (Chapter 4.1), defined the transformation rules
(Chapter 4.2), designed the XML schema for the metamodel (Chapter 5), and
transformed the original DEMO models into an XML based format (Chapter 6).
In chapter 7, we will evaluate the whole transformation by verifying the transfor-
mation results and discussing the utilization of the transformation results.

14th April 2009

Chapter 7

Transformation Evaluation

The instance XML documents that have been produced in Chapter 6 are the ex-
pected results of the DEMO models transformation, which is from a graphical for-
mat to an XML based format. Till now the DEMO models have been transformed
from graphical diagrams into the XML based syntax. In this chapter, we will eval-
uate this transformation from two aspects. Firstly, the transformation has to be
verified to see if the information is completely and correctly maintained during the
transformation procedure. We provide a comparison between the XML documents
and the original DEMO diagrams in Chapter 7.1 as the verification. Secondly, there
should be some added value from the transformation result. We introduce an ap-
plication of building the Create / Use Table in Chapter 7.2, as an example of the
utilization of the transformation result in simplifying the information generation
for Business Component Identification (BCI) from the DEMO models.

7.1 Transformation Verification

The exemplary XML documents provided in Chapter 6 are the target Platform Spe-
cific Models (PSMs) which are the results of the proposed DEMO transformation.
In order to achieve such result in the transformation, we take the steps of specifying
the metamodel of the original DEMO aspect models (Chapter 3), interpreting the
metamodel into an XML based schema format (Chapter 5), and constructing the
XML documents based on the schema files (Chapter 6). Next, verifying the trans-
formation results is of significant importance to the feasibility of this proposed
transformation approach. In the rest of this section, we will present a comparison
of the XML documents and their corresponding original DEMO models.

We take the XML documents of the library case as the transformed models for
comparison. The original DEMO models are provided in [9]. The comparison
aims to map the information contained in the XML documents with that in the
original models, to see if the information is completely and precisely maintained
during the transformation. The comparison is conducted with the four aspect mod-

14th April 2009 89

90 Transformation Verification

els respectively.

7.1.1 Construction Model

The comparison between the XML document and the original diagram of CM is
carried out in the unit of the business transaction. We will take the first three out
of ten transactions from the library case for detailed comparison (Figure 7.1). The
comparison contents include the actor roles that participate in the transaction and
the information banks belonging to or used by particular transaction (Figure 3.3).
The complete XML documents can be found in Appendix D.1. Reading from these
diagrams, the semantic description of the first three transactions is obtained as be-
low:
T01 membership registration
CA02 (aspirant member) initiates T01 (membership registration), of which the ex-
ecutor is numbered A01 (register). The result type of T01 is that R01 membership
M has been started. The coordination and production bank that belong to T01 are
combined in the information bank PB01. In addition, internal actor role A01 gets
to know some general information from CPB14, the personal information about
the aspirant member from CPB11.
T02 membership fee payment
The initiator of T02 (membership fee payment) is A01 (register) and A10 (annual
fee controller). This transaction is executed by CA02 (aspirant member), and the
result R02 indicate that the fee membership M in year Y has been paid. The com-
bination of the coordination bank and the production bank that belong to T02 is the
information bank PB02. Internal actor role A01 and A10 get some general infor-
mation from CPB14.
T03 reduced fee approval
A01 (register) and A10 (annual fee controller) initiate T03 (reduced fee approval);
the reduced fee is approved by CA01 (board). The result R03 that the reduced fee
for M in year Y is approved. Information bank PB03 is the combination of the
coordination bank and the production bank that belong to the transaction T03. The
general information is known by A01 and A10 from CPB14. A01 also uses library
data from the information bank CPB12 in this transaction.

The core information in the above description can be precisely mapped with the
elements and the complex types in the corresponding XML documents. We present
the mapping in Table 7.1, Table 7.2 and Table 7.3.

7.1.2 Process Model

In order to be coherent and consistent with the comparison we did for the CM, we
still choose the PM diagrams of the first three transactions of the library case.

As seen in the Figure 7.2, the process steps in a transaction are connected to each

14th April 2009

Transformation Verification 91

Figure 7.1: First part of the detailed ATD of the Library

Table 7.1: Mapping of T01 membership registration
T01 membership registration <Transaction TransactionID=”T01”>

<Tname>membership registration</Tname>
CA02 (aspirant member) initiates T01 <Initiator ActorID=”CA02”>

<name>aspirant member</name>
information bank PB01 belong to transaction
T01

<UseInformation BankID=”PB01”>PB01</UseInformation>

</Initiator>
the executor is A01 (register) <Executor ActorID=”A01”>

<name>registrar</name>
information bank PB01 belong to transaction
T01

<UseInformation BankID=”PB01”>PB01</UseInformation>

A01 gets general information from CPB14 <UseInformation BankID=”CPB14” BankType=”Production”>general
data</UseInformation>

A01 gets personal information from CPB11 <UseInformation BankID=”CPB11” BankType=”Production”>personal
data</UseInformation>
</Executor>

information bank PB01 belong to transaction
T01

<UseInformation BankID=”PB01”>PB01</UseInformation>

result type of T01 is R01 <Result ResultID=”R01”>membership M has been started</Result>
</Transaction>

other in a basic consequence by causal links. The causal link to T01/rq is an ex-
ternal one; the ones to T02/rq and T03/rq are internal, initiated from the C-result
T01/pm. The conditional link from T03/ac to T02/rq means that dealing with the
C-result T02/rq has to wait until the C-result T03/ac has been created, if there is
a corresponding T03. A similar conditional link holds for T01/ex, the action of
T01/ex can be taken until T02 is successfully completed. The responsibility areas
are in compliance with the actor roles that participate in each transaction in the CM.

We present the XML document of the described process in Appendix D.2. For
each transaction, the basic pattern is specified in a standard structure in an XML
based format. Figure 7.3 shows the comparison of the basic pattern in the DEMO

14th April 2009

92 Transformation Verification

Table 7.2: Mapping of T02 membership fee payment
T02 membership fee payment <Transaction TransactionID=”T02”>

<Tname>membership fee payment</Tname>
The initiator of T02 is A01 and A10 <Initiator ActorID=”A01”>

<name>register</name>
information bank PB02 belong to T02 <UseInformation BankID=”PB02”>PB02</UseInformation>
A01 gets general information from CPB14 <UseInformation BankID=”CPB14” BankType=”Production”>general

data</UseInformation>
</Initiator>
<Initiator ActorID=”A10”>
<name>annual fee controller</name>

information bank PB02 belong to T02 <UseInformation BankID=”PB02”>PB02</UseInformation>
A10 gets general information from CPB14 <UseInformation BankID=”CPB14” BankType=”Production”>general

data</UseInformation>
</Initiator>

T02 is executed by CA02 <Executor ActorID=”CA02”>
<name>aspirant member</name>

information bank PB02 belong to T02 <UseInformation BankID=”PB02”>PB02</UseInformation>
</Executor>

information bank PB02 belong to T02 <UseInformation BankID=”PB02”>PB02</UseInformation>
T02 results R02 <Result ResultID=”R02”>the fee for membership M in year Y has been

paid</Result>
</Transaction>

Table 7.3: Mapping of T03 reduced fee approval
T03 reduced fee approval <Transaction TransactionID=”T03”>

<Tname>reduced fee approval</Tname>
A01 initiates T03 <Initiator ActorID=”A01”>

<name>register</name>
information bank PB03 belong to T03 <UseInformation BankID=”PB03”>PB03</UseInformation>
A01 uses library data from CPB12 <UseInformation BankID=”CPB12” BankType=”Production”>library

data</UseInformation>
A01 gets general information from CPB14 <UseInformation BankID=”CPB14” BankType=”Production”>general

data</UseInformation>
</Initiator>

A10 also initiates T03 <Initiator ActorID=”A10”>
<name>annual fee controller</name>

information bank PB03 belong to T03 <UseInformation BankID=”PB03”>PB03</UseInformation>
A10 gets general information from CPB14 <UseInformation BankID=”CPB14” BankType=”Production”>general

data</UseInformation>
</Initiator>

the reduced fee is approved by CA01 <Executor ActorID=”CA01”>
<name>board</name>

information bank PB03 belong to T03 <UseInformation BankID=”PB03”>PB03</UseInformation>
</Executor>

information bank PB03 belong to T03 <UseInformation BankID=”PB03”>PB03</UseInformation>
T03 results R03 <Result ResultID=”R03”>the reduced fee for M in year Y is ap-

proved</Result>
</Transaction>

diagram and in the XML based format.
The specification about the causal link from T01/pm to T03/rq is added to both
T01/pm and T03/rq, the one from T01/pm to T02/rq is added to both T01/pm and
T02/rq, the one about the conditional link from T03/ac to T02/rq is added to both
T03/ac and T02/rq, the one from T02/ac to T01/ex is added to both T02/ac and

14th April 2009

Transformation Verification 93

T01/ex. The XML specification about the mentioned special causal and condi-
tional link is particularly picked up in Listings 7.1, 7.2, and 7.3.

Figure 7.2: PSD of business process 1 of the Library

Figure 7.3: The basic pattern in diagram and XML

14th April 2009

94 Transformation Verification

Listing 7.1: The causal/conditional link in T01
<T r a n s a c t i o n T r a n s a c t i o n I D =”T01 ” name=” membership r e g i s t r a t i o n ”>

<T r a n s a c t i o n P h a s e name=” Order”>
.

<s t e p >
<Name>Promise </Name>
< I n i t i a t i o n T o T r a n s a c t i o n I D =”T03”>

<Name>Reques t </Name>
</ I n i t i a t i o n T o >
< I n i t i a t i o n T o T r a n s a c t i o n I D =”T02”>

<Name>Reques t </Name>
</ I n i t i a t i o n T o >

</ s t e p >
</ T r a n s a c t i o n P h a s e >
<T r a n s a c t i o n P h a s e name=” E x e c u t i o n”>

<s t e p >
<Name>Execute </Name>
<W a i t i n g F o r T r a n s a c t i o n I D =”T02”>

<Name>Accept </Name>
</ Wai t ingFor>

</ s t e p >
</ T r a n s a c t i o n P h a s e >
.

</ T r a n s a c t i o n >

Listing 7.2: The causal/conditional link in T02
<T r a n s a c t i o n T r a n s a c t i o n I D =”T02 ” name=” membership f e e payment”>

<T r a n s a c t i o n P h a s e name=” Order”>
<s t e p >

<Name>Reques t </Name>
<I n i t i a t e d F r o m T r a n s a c t i o n I D =”T01”>

<Name>Promise </Name>
</ I n i t i a t e d F r o m >

</ s t e p >
.

</ T r a n s a c t i o n P h a s e >
.

<T r a n s a c t i o n P h a s e name=” R e s u l t ”>
.

<s t e p >
<Name>Accept </Name>
<I s W a i t C o n d i t i o n O f T r a n s a c t i o n I D =”T01”>

<Name>Execute </Name>
</ I s W a i t C o n d i t i o n O f >

</ s t e p >
</ T r a n s a c t i o n P h a s e >

</ T r a n s a c t i o n >

Listing 7.3: The causal/conditional link in T03
<T r a n s a c t i o n T r a n s a c t i o n I D =”T03 ” name=” r e d u c e d f e e a p p r o v a l ”>

<T r a n s a c t i o n P h a s e name=” Order”>
<s t e p >

<Name>Reques t </Name>
<I n i t i a t e d F r o m T r a n s a c t i o n I D =”T01”>

<Name>Promise </Name>
</ I n i t i a t e d F r o m >

</ s t e p >
.

</ T r a n s a c t i o n P h a s e >

14th April 2009

Transformation Verification 95

.
<T r a n s a c t i o n P h a s e name=” R e s u l t ”>

.
<s t e p >

<Name>Accept </Name>
<I s W a i t C o n d i t i o n O f T r a n s a c t i o n I D =”T02”>

<Name>Reques t </Name>
</ I s W a i t C o n d i t i o n O f >

</ s t e p >
</ T r a n s a c t i o n P h a s e >

</ T r a n s a c t i o n >

7.1.3 Action Model

Because the single construct in the MAM is the action rules, the expression of the
action rule in the XML documents is semantically the same as the original ones
in [9]; the comparison of the XML document and the original AM is abbreviated
here.

7.1.4 State Model

As explained in Chapter 6.4, the XML documents for SM contain a set of basic
constructs in the instance SM. Taking the library case for instance, we divide the
whole OFD into several basic constructs for comparison with the XML documents.

The XML document of the SM is attached in Appendix D.4. The content of the
first <BasicConstruct>element in this XML file is mapped to the original OFD
in Figure 7.4. The fact type states that the membership of L is M. The domain of
role M of this fact type is object class MEMBERSHIP. The domain of role L of
this fact type is object class LOAN. There is a unicity law and a dependency law
for role L, which indicates that every loan L must appear once and only once in a
population of this fact type. The result type R01 M has been started is declared on
MEMBERSHIP.

The correspondence of this fact type in the XML document declares the formu-
lation of this fact type as an attribute of element <BasicConstruct>, and assigns a
unique identification to it. The two roles in this fact type are described separately.
For each role, the unicity law is set as an attribute “HoldUnicity” of the role; its
domain information is contained in the element <Hasdomain>, which is nested in
element <role>. Thus for role M, the attribute “HoldUnicity” is set with “No”;
its domain, MEMBERSHIP, is set in its child element <Hasdomain>, specifying
the reference law that holds between role M and object class MEMBERSHIP, as
well as the result type R01 that is declared on this object class. Note that here we
only mention the unique ID of the result type, it is because this result type ID is
consistent with the result type ID in the CM, where the content of the specific result
type is described. The information about role L is stored in the same way within

14th April 2009

96 Transformation Verification

the same element <BasicConstruct>. The attribute “ObjectClassID” is an addi-
tional bit of information in the XML document, which is just used for managing
the structured model information but has nothing to do with the content of the OFD.

Another condition in OFD is shown in Figure 7.5 together with its correspond-
ing XML codes. In this fact type, copies of B are delivered in S, the domain of role
S is object class SHIPMENT, which holds a dependency law and has the result type
R08 S has been performed declared on itself; the domain of role B is object class
BOOK. For the books that are delivered in S, a new derived object class LIBRARY
BOOK is defined as the set.
In the XML codes, the indication of this fact type is stored in the attribute “Formu-
lation”. The information concerning the role S, including the name of this role, the
unicity law condition, the domain of this role, the type of law holds on its domain
and the result type declared on its domain, is stored within the element <role>.
The relevant information about role B in this fact type is specified in the other
<role>element. Note that the new condition, that there is a derived object class
defined on role B, is described in element <IsExtendedTo>. The name of the new
object class LIBRARY BOOK is the content of this element within role B.

Figure 7.4: The comparison of the basic construct in SM - 1

7.1.5 Cross-Model Tables

The information items contained in three cross-model tables, namely the TRT, BCT
and IUT, are in terms of the tabular data, which implies that they are easily acces-
sible. The XML documents for these cross-model tables are in Appendix D.5, in
which the information from the Library case is taken again.

Table 7.4 shows the mapping of the TRT, between the original tabular format and
the XML based format. Each row in TRT is interpreted as an element <Transac-
tionResult>in the XML document for TRT. The columns “transaction type” and
“result type” are interpreted as elements <TransactionType>and <ResultType>,

14th April 2009

Transformation Verification 97

Figure 7.5: The comparison of the basic construct in SM - 2

which are nested in the element <TransactionResult>. The information items con-
tained in these two columns in TRT are stored in the corresponding elements in the
XML document.
We also provide mappings for BCT and IUT in Tables 7.5 and 7.6 respectively.

Table 7.4: Mapping of TRT
transaction type result type
T01 membership registration R01 membership M has been started
<TransactionResult>
<TransactionType>T01membership registration</TransactionType>
<ResultType>R01membership M has been started</ResultType>
</TransactionResult>

Table 7.5: Mapping of BCT
object class, fact type, or result type P-bank
MEMBERSHIP PB01
P is the member in M
membership M has been started
<BankContent>
<InformationBank>PB01</InformationBank>
<FactType>MEMBERSHIP,P is the member in M,membership M has been started,</FactType>
</BankContent>

Table 7.6: Mapping of IUT
object class, fact type, or result type proces steps
MEMBERSHIP T01/rq T01/pm T04/rq
<InformationUse>
<InformationObject>MEMBERSHIP</InformationObject>
<TransactionStep>T01request,T01promise,T04request</TransactionStep>
</InformationUse>

14th April 2009

98 Transformation Result Utilization

7.2 Transformation Result Utilization

The transformation result, the instance XML documents of the DEMO aspect mod-
els, should have some added value to the current Business Component Modeling
Process (BCMP). As expected in Chapter 4.1, it should help ease the complex-
ity in generating the information for BCI. In this section, we will show a simple
application built with the transformation result, which is in order to simplify the in-
formation generation procedure and create the required Create / Use Table for BCI.

Business Component Identification (BCI) requires diverse model information from
DEMO aspect models. According to the contents of the information tables used by
the BCI, the information objects are generated from the XML document of SM,
and the process steps are from the XML document of PM. A Create / Use Table is
needed to specify the classified relationship between the information objects and
the process steps. [4]
Since there is no automatic way to produce the Create / Use Table solely based on
the PM and SM, as already explained in chapter 4.1, the results of the proposed
DEMO transformation should solve the indirection problem during information
generation. Thus we build this simple application to show how the information
generation for BCI benefits from the transformation results. The screenshot of the
application is shown in Figure C.14.

In order to ease the problems of information resource diversity and information
indirection that are mentioned in Chapter 4.1, the transformed information should
be easily accessed and clearly displayed in the required forms for the BCI appli-
cation. Having all the model information structured in the XML based format, we
can find the required information by its tags in different XML documents.
In the column “IO-Fun”, all the information objects are imported from the XML
document of the SM. They are selected by the tags “Formulation” and “Object-
Class”, which denote all the information items of object classes, fact types and
result type in SM. The column “Create” lists all the transaction steps stored in the
XML document of the PM, so do the transaction steps in the column “Use”.

Therefore the information recourse diversity problem that all the required infor-
mation for the BCI be imported into this form automatically from the XML doc-
uments is solved. Though the creation of the Create / Use Table still relies on our
own knowledge of specific relationships between the information objects and their
associated transaction process steps, it saves us effort when read the models, and it
also organizes the complete model information in a structured way for easy access.
The DEMO models are transformed into a format that can be read directly by the
third party application.

14th April 2009

Conclusion 99

7.3 Conclusion

With the purpose of evaluating the DEMO transformation achieved in previous
chapters, we start the evaluation from two perspectives, which are the transforma-
tion verification and the utilization of the transformation result.

The transformation result is verified by comparing the transformed models, the
instance XML documents, with the original DEMO models. The comparison is
done for each aspect model separately, and the information in the original DEMO
diagrams is mapped with the information items in the XML documents. Thus the
information is completely and correctly maintained during the transformation pro-
cedure.

The construction of the Create / Use Table is one example that shows how the
transformation result can be used for other applications. The structured informa-
tion in the XML documents can be accessed and imported into our application,
which is for building the Create / Use table. Our application provides an easier
way to generate the model information required by BCI from the diverse DEMO
aspect models, and saves the effort of analyzing the model information.

Answers to the research question
In this chapter, we answered two research questions. The first one is how to verify
the transformation result, which is answered in Chapter 7.1. The verification of
the transformation result is done by comparing the produced instance XML docu-
ments with the original DEMO models. By mapping the information items in the
XML documents and the original diagram information, we conclude that the model
information is completely and correctly maintained during the transformation pro-
cedure.

The second research question, answered in Chapter 7.2 is how the transformed
model could be used by other applications. In order to answer this question, we
build an application to construct the Create / Use Table for BCI. The required model
information for building the Create / Use Table is automatically imported from the
produced XML documents. It shows that the transformed model, which is in XML
based format, is easily accessed, and can be adopted by the BCI-3D tool directly.

14th April 2009

100 Conclusion

14th April 2009

Chapter 8

Conclusion and Discussion

This chapter aims to conclude the entire graduation project and discuss some rel-
evant issues for future work. It includes, in Chapter 8.1, a recap of the research
work that has been done in this project, which will emphasize the main focus of
this research and the core steps during the project elaboration.
Following the project reflection, in Chapter 8.2, it will discuss the scientific founda-
tion on which the research is based, including the metamodeling and MDA model
transformation. In Chapter 8.2, we conclude that our adoption of metamodeling in
our proposed DEMO model transformation is successful, and the transformation
satisfies the requirements for generating the information from DEMO models for
BCI.
An evaluation of the outcome of the project is concluded in Chapter 8.3. The items
under evaluation include the to-be transformed model contents, DEMO metamodel
interpretation, information completeness during transformation and utilization of
the transformed model. Overall, it judges the quality of the research work.
In Chapter 8.4, some future work regarding the relevant issues in this project is
discussed.

8.1 Project Reflection

This graduation project is conducted with the goal of transforming graphical DEMO
models into an exchangeable format, in order to make them usable by other appli-
cations. This idea is inspired by the demands to bridge the gap between DEMO
graphical diagrams and platform specific models. The expected result of this re-
search is a successful storage of DEMO models in an exchangeable format, which
can be used by third party applications, for instance BCI-3D tool.

In compliance with the mentioned research goal, the main tasks in this project in-
volve a grasp of the DEMO metamodel, the definition of the transformation rules,
the design of the XML schema for the DEMO metamodel, the instantiation of the
designed XML schema, a comparison of the produced XML documents and the

14th April 2009 101

102 Project Reflection

original DEMO models, and the construction of Create / Use Table.

Before elaborating the research work, background information is gained (Chapter
2) on the Business Component Modeling Process (BCMP), DEMO methodology,
the concepts of metamodeling and model transformation, and the characteristics of
the XML Schema (XSD).
Using business components has been proved valuable in the development of infor-
mation systems. The identification of business components is a crucial factor in
the BCMP. The three dimensional method for business components identification
(BCI-3D) is one of the methods for identifying the business components. Informa-
tion used for BCI should be generated from a well-defined model in the business
domain.
DEMO methodology provides a holistic picture of enterprises. It includes four
models which represent the essence of an enterprise, from the aspects of organiza-
tional construction, interrelation within and between the transactions, action rules
and allowable states of information objects. DEMO methodology is a well defined
business domain modeling.
Model transformation bridges the gap between a high-level Platform Independent
Model (PIM) and a machine-readable Platform Specific Model (PSM). Metamod-
eling moves the focus of software development from coding to model building and
proposes an approach to proceed with the model transformation.
XSD is the schema language chosen as the target language for the platform inde-
pendent metamodel in our proposed DEMO model transformation. XSD shows a
good ability in building block, data type, structural capacity and compatibility, as
the result of our previous research in [27].

The DEMO metamodel (Chapter 3), as the main research material, specifies the es-
sential structure of DEMO aspect models, including the Meta Construction Model
(MCM), the Meta Process Model (MPM), the Meta Action Model (MAM), the
Meta State Model (MSM) and the metamodel for the cross-model tables in Chap-
ter 3. The MCM states the relationship between the transaction kind and the el-
ementary actor role, the relationship between the elementary actor role and the
information bank, and the relationship between the transaction kind and the infor-
mation bank.
The MPM specifies the pure relationship between transaction steps, the relation-
ship between transaction steps and transaction phases, as well as the interrelation-
ships between transaction kind, transaction phases and transaction steps respec-
tively. This metamodel does not take into account any constraints on the bound-
ary of the responsibility area, since the corresponding instance information in PM
could be generated from CM, which structure could be instantiated via the connec-
tion between the MCM and MPM.
The MAM provides the construct of action rules, and associates them with the
transaction steps from MPM.
The MSM is the core of the whole DEMO metamodel. It is not only the metamodel

14th April 2009

Project Reflection 103

for SM, but also plays the role of being the meta schema for the entire DEMO meta-
model. Besides defining the basic constructs used in SM, it also gives definitions
to the symbols adopted in the metamodel. Thus SM defines the concepts used in
the metamodel and itself, which implies that the whole DEMO metamodel is self-
defined.
We also present the metamodel for the three cross-model tables such that the
DEMO metamodel completely includes the structures of both diagrams and cross-
model tables in DEMO.

The demands to transform DEMO graphical models are raised by the complex
procedure of information generation from DEMO to BCI (Chapter 4.1). The com-
plexities come from the diverse information sources and the indirect information.
The expected transformation should be able to relieve us of the massive informa-
tion generation procedure and save model information in an exchangeable format
without any information loss.
Three transformation rules are defined regarding the demands for DEMO transfor-
mation and our knowledge of the DEMO metamodel (Chapter 4.2). They are:

Selection rules: all the information of object class,and fact type in the DEMO
metamodel, which is used directly for defining the structure of DEMO aspect
models, should be selected.

Structuring rules: the information item which has the central position is de-
fined as the root element in the XML schema; the other information items are
defined as complex types, the existential constraints are defined as attributes
of either elements or complex types.

Mapping rules: each information object in the original DEMO metamodel
has a corresponding interpretation in the XML schema files in terms of an
element or a complex type; every necessary constraint in the original DEMO
metamodel has an equivalent part in the schema files in terms of an attribute
of either an element or a complex type.

XML Schema has been chosen as the schema language in the design for theDEMO
metamodel. The XSD files display the structure of the MCM, MPM, MAM,MSM
and the three cross-model tables in the XML-based format (Chapter 5). The de-
signed schema is mapped exactly and compactly with the metamodel structure. It
comprehends all the information objects, the interrelationships and constraints in
the metamodel, while avoiding information duplication and redundancy as much
as possible.

The designed XML schema for the DEMO metamodel is instantiated into a set of
XML documents with concrete model information from an exemplary case (Chap-
ter 6). These XML documents are the transformation result, which means they are
the expected platform specific models.

14th April 2009

104 Scientific foundation

The complete DEMO metamodel transformation process is depicted in Figure 8.1.
This is the instance model transformation applying the metamodeling approach,
compared with the one in Figure 2.5. The transformation from DEMO models
to XML documents is realized via the transformation from DEMO metamodel to
XML schema. In order to guarantee transformation quality, the DEMO metamodel
and XML schema are exactly mapped by the transformation specification.

DEMO

models

XML

documents

DEMO

metamodel

XML schema

Transformation

Specification

Language used

Language used

Source language

Target language

Figure 8.1: DEMO metamodel transformation

There might be more than one solution to the schema design for DEMO meta-
model. However we verified the XML documents in Chapter 7.1, which are pro-
duced against our designed schema. The transformation rules guide and steer the
transformation so that the right contents have been chosen and interpreted in the
correct way. The mapping between the original DEMO diagrams and the XML
documents verifies information completeness during the transformation process.
With the transformation results, a Create / Use Table is built based on the informa-
tion generated from the XML documents (Chapter 7.2). It provides an easier way
to generate information for BCI, which is an example to show the utilization of the
DEMO model transformation result.

8.2 Scientific foundation

Regarding the purpose of this project, to transform graphical DEMO models into
an exchangeable format, two main theoretical foundations have been chosen and
applied, which are the concept of metamodeling and the methodology of model
transformation.

In recent years, metamodeling has been widely used in software engineering. Model
transformation is a effective way to generating the source code from high-level
models. Metamodeling provides an approach to proceed model transformation via

14th April 2009

Project Evaluation 105

metamodel at a higher level of information abstraction. In this specific project,
we applied metamodeling to model transformation with our concrete research con-
tents. As a result, the DEMO model transformation is accomplished under the
direction of this chosen approach.

With the knowledge of model transformation and metamodeling (Figure 2.5), in
Figure 8.1, high-level PIM is denoted as DEMO models, while PSM is denoted
as XML documents. The metamodel transformation is carried out between the
DEMO metamodel (Chapter 3) and the XML schema (Chapter 5). The rules we
applied (Chapter 4.2) during the transformation align the contents of the DEMO
metamodel and XML schema in consistent mappings, and adjust the transformed
content in a reasonable structure. This leads the transformation to the result that
the DEMO models are successfully transformed into an exchangeable format.

8.3 Project Evaluation

In order to evaluate the work that has been done in this project, we have four criteria
to assess it, which are: the to-be transformed contents, interpretation of the DEMO
metamodel, information completeness during transformation, and utilization of the
transformed model. The first criterion is about what we need to transform in this
project. The next two criteria focus on how we transformed the chosen contents
from two aspects, one is the interpretation of the DEMO metamodel that was done
during the transformation procedure, the other is the verification of the transforma-
tion result. The last criterion is about the added value of the transformation result.

To-be transformed contents
According to the main research question in Chapter 1.2, the source transformation
contents are DEMO aspect models. The actual ones that have been transformed in
this project are the diagrams in CM, PM, AM and SM, as well as three cross-model
tables, namely the TRT, BCT and IUT. The essential structure of these aspect mod-
els is diagrammed in the DEMO metamodel (Figure 3.1 and Figure 3.18), and
transformed into an exchangeable XML schema. In the instance XML documents,
information that is contained in those diagrams is displayed in terms of XML based
format.

DEMO metamodel interpretation
The designed schema files are the interpretation of the DEMO metamodel. During
the procedure of constructing the XML schema, we apply the transformation rules
(Chapter 4.2) to control the quality of the interpretation. The interpretation quality
is guaranteed in aspects of the contents selection, the data structure and the infor-
mation completeness. The object classes in the DEMO metamodel are precisely
transformed into either elements or complex types in the schema file; the interre-
lationships between those object classes, as well as the constraints, are interpreted

14th April 2009

106 To Be Discussed

as attributes of those elements or complex types. Therefore we can say that the
interpretation of the DEMO metamodel is complete and correct.

Information completeness
Information loss must be avoided or reduced to the minimum in a successful model
transformation. Our attention to information completeness is given throughout the
entire transformation procedure. The DEMO metamodel comprehends exactly all
the possible conditions in the instance aspect models. The interpretation of the
DEMO metamodel is under the guidance of the selection rules and the structuring
rules, to make sure the XML schema and the graphical metamodel are mapped
with each other. The instance XML documents are built against the XML schema,
which indicates that the structure and the allowed constraints in the instance doc-
uments are fully in compliance with the metamodel. Finally, the comparison of
the transformed model (the instance XML documents for DEMO models) with the
original model (the instance DEMO aspect models) semantically maps the infor-
mation items. Thus the information completeness is guaranteed during the trans-
formation.

Transformation utilization
Building the Create / Use Table is a requisite step for BCI. The application of
building this table directly and automatically accesses the model information in
the transformed DEMO models, the instance XML documents. The result of this
project is a simplification of the procedure of generating the information from the
DEMO models for BCI, and easing the existing problems, such as information
resource diversity. Now the model information is structured completely in XML
based format and can be read and used easily by the third party application.

8.4 To Be Discussed

Question 1: Is there a more specific way of describing the action rules in an ex-
changeable format?
Discussion: In DEMO, the action rules are specified in a pseudo-algorithmic lan-
guage1 in AM, such that the structure of those rules is quite expressive and difficult
to merge into a structural format. What we have done in this project is to name
an object class, ACTION RULE, that contains all the action rules for performing
transaction steps, without considering the concrete structure of rule content. In the
produced XML document for AM, we did not provide specific tags to the informa-
tion objects or constraints mentioned in certain action rule, so that the rule content
may only be used as a whole by other applications.
Nowadays, there is a growing interest in specifying business rules in an extensi-
ble format. For instance, in the development of business components, the required
interrelationship between the information objects and the process steps is all con-

1The Action Model is explained in chapter 18 of [9].

14th April 2009

To Be Discussed 107

tained in the action rules. Achieving the ultimate automation of the information
generation from DEMO to business components relies on a detailed transforma-
tion of the action rules.
Therefore, describing the rules in an exchangeable format, in which the content of
the rules can be used directly by other applications, is of significant usefulness. It
may be one subject for future work.

Question 2: How can we optimize the XML schema for the DEMO metamodel?
Discussion: In this project, we designed an XML schema for the DEMO meta-
model in XSD. The instance XML document based on the designed schema is
mapped with the original DEMO models. The verification that has been done is
mainly about information completeness during the transformation. However, there
is lack of assessment about the efficiency of the schema design.
An item can be declared as an element or defined as a type, which are all valid
building blocks in XSD. In addition, either elements or types can be declared global
or local. “Global” means it is an immediate child of <schema>, “local” means it
is nested within other elements or types [2]. There is no fixed principle about when
it should be an element or a type, and when it should be declared global or local. It
depends on the purpose and usage of the expected schema.
In order to achieve the minimal information redundant and maximal compactness
in the XML interpretation of the DEMO metamodel, one of the relevant works
could be constructing an assessment framework for the XML schema design.

Question 3: Regarding different specific purpose with DEMO models, whether
our proposed DEMO metamodel is suitable for all of them?
Discussion: The application we introduced in this project that uses the transforma-
tion result is for BCI, which requires the information objects and the transaction
process steps, as well as the numerous interrelationships among them. However,
there may be other applications using the DEMO model information. Every third
party application varies from every other, and different kinds of functions or infor-
mation requirements to DEMO models may arise.
For instance, the application Xemod 2 supports the DEMO methodology and sets
up DEMO models. Diagrams produced by Xemod can be mutually related. Re-
garding the specific requirements from Xemod, some alternative information ob-
jects or more detailed interrelationships are demanded, for instance composite actor
roles, besides the ones already mentioned in our proposed DEMO metamodel.

The DEMO metamodel presented in this project illustrates the essential concepts
that are used for constructing DEMO aspect models. However, this metamodel
is concise and generic. More detailed specification about the DEMO metamodel
could be possible.

2Xemod, stands for Xprise Enterprise Engineering Modeler, is a tool for modelling organizations
and business processes, provided by Xprise. http://www.xprise.com/

14th April 2009

108 To Be Discussed

Question 4: Is there an easy way to reproduce the DEMO diagram from the XML
documents of the aspect models?
Discussion: In this report, we present a semantic mapping of the produced in-
stance XML documents and the original DEMO diagrams in order to verify the
transformation results. The semantic mapping successfully mapped the informa-
tion contained in the instance XML documents and the original DEMO diagrams.
However it would be a more direct verification if we could reproduce the DEMO
diagrams from the instance XML documents.
In this project, we tried to reproduce the diagrams in Graphviz3. Two exemplary
reproduced diagrams are shown in Figure 8.2 and Figure 8.3. Graphviz uses DOT
language to generate the graph with a minimum of effort. Therefore, in order to re-
produce the DEMO diagrams in Graphviz, we have to transform the original XML
documents into DOT language.
We did not present the reproduction of the DEMO diagrams in the thesis as the
verification of the transaction results, because the procedure of transforming the
diagrams from the produced XML documents to the DOT files cannot be automat-
ically done at the moment, but requires several steps to manually transform the
information items from the XML documents, which arise another requirement for
verifying the manual translation.
Even though we did not have enough time and knowledge to implement the repro-
duction of the DEMO diagrams, we can provide one possible approach of generat-
ing the graph from XML documents for further relevant research.
Firstly, transform the original XML documents into DotML documents by using
XSLT. DotML is a XML based syntax for the input language of the ’Dot’ graph
drawing tool from Graphviz. It can be transformed to the native syntax of the “Dot”
tool using XSLT4 [1]. XSLT [26] is used to transform XML documents into other
format.
Secondly, use the DotML package to generate the graph from the XML documents,
which are in DotML syntax from previous step. [1]

An automatic reproduction of the DEMO diagrams from the XML documents
would be very helpful for verifying the XML based format specification of the
DEMO models.

3Graphviz, short for Graph Visualization Software, is a package of open source tools for drawing
graphs specified in DOT language. http://www.graphviz.org/

4XSLT stands for Extensible Stylesheet Language Transformations.

14th April 2009

To Be Discussed 109

Figure 8.2: Exemplary reproduced CM diagram

14th April 2009

110 To Be Discussed

Figure 8.3: Exemplary reproduced PM diagram

Figure 8.4: Legend of the reproduced diagrams

14th April 2009

Abbreviations

AM - Action Model
BCI - Business Component Identification
BCI-3D - Three dimensional method for business components identification
BCM - Business Component Modeling
BCMP - Business Component Modeling Process
BCT - Bank Contents Table
CM - Construction Model
DEMO - Design and Engineering Methodology for Organizations
IUT - Information Use Table
MAM - Meta Action Model
MCM - Meta Construction Model
MDA - Model Driven Architecture
MPM - Meta Process Model
MSM - Meta State Model
OCD - Organization Construction Diagram
OFD - Object Fact Diagram
OMG - Object Management Group
ORM - Object-Role Modeling
OPL - Object Property List
PM - Process Model
PSD - Process Structure Diagram
SM - State Model
TRT - Transaction Result Table
XML - eXtensible Markup Language
XSD - XML Schema language (W3C)
XSLT - Extensible Stylesheet Language Transformation
W3C - World Wide Web Consortium
WOSL - World Ontology Specification Language

14th April 2009 111

112 To Be Discussed

14th April 2009

Bibliography

[1] The dot markup language. http://www.martin-loetzsch.de/DOTML/.

[2] Xml schemas: Best practices. http://www.xfront.com/BestPracticesHomepage.html.

[3] Antonia Albani. Enterprise ontology and business component. Course mate-
rial, 2006.

[4] Jan L. G. Dietz Antonia Albani. The benefit of enterprise ontology in iden-
tifying business components. IFIP World Computer Congress (WCC 2006),
2006.

[5] Johannes Maria Zaha Antonia Albani, Jan L. G. Dietz. Identifying business
components on the basis of an enterprise ontology. Interoperability of Enter-
prise Software and Applications, July 2006.

[6] F. Barbier and C. Atkinson. Business components. 2003.

[7] G. Hamel C. K. Prahalad. The Core Competence of the Corporation, pages
79–91. Springer Berlin Heidelberg, 2006.

[8] Brian Henderson-Sellers. Cesar Gonzalez-Perez. Metamodelling for software
engineering. John Wiley and Sons, Ltd, 2008.

[9] Prof. Dr. Ir. J.L.G Dietz. Enterprise Ontology Theory and Methodology.
Springer, 2006.

[10] Object Management Group. Mda specification.
http://www.omg.org/mda/specs.htm.

[11] Object-Management Group. Mda guide. http://www.omg.org/docs/omg/03-
06-01.pdf., 2003.

[12] Sjir Nijssen Inge Lemmens, Maurice Nijssen. A niam2007 conceptual anal-
ysis of the iso and omg mof four layer metadata architectures. On the
Move to Meaningful Internet Systems 2007: OTM 2007 Workshops, Volume
4805/2007:613–623, 2007.

14th April 2009 113

114 BIBLIOGRAPHY

[13] ISO/IEC. Softerware engineering - metamodel for development method-
ologies. International Organization for standardization / International Elec-
trotechnical Commission, 2007.

[14] Klaas van den Berg Ivan Kurtev and Mehmet Aksit. Uml to xml-schema
transformation: a case study in managing alternative model transformations
in mda. 2003.

[15] Michael Jervis. Xml dtds vs xml schema.
http://www.sitepoint.com/print/xml-dtds-xml-schema.

[16] kenneth L.Kraemer John G.Mooney, Vijay Gurbaxani. A process oriented
framework for assessing the business value of information technology. The
Sixteenth Annual Intemational Conference on Information Systems, Decem-
ber 1995.

[17] Anneke G. Kleppe, Jos Warmer, and Wim Bast. MDA Explained: The Model
Driven Architecture: Practice and Promise. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 2003.

[18] Microsoft Developer Network. Xml standards reference.
http://msdn.microsoft.com/en-us/library/ms256177.aspx.

[19] ORM. The orm foundation. http://www.ormfoundation.org/.

[20] Bran Selic. The pragmatics of model-driven development. IEEE Softw.,
20(5):19–25, 2003.

[21] DAVID O. STEPHENS. The globalization of information technology in
multinational corporations. Information Management Journal, 1999.

[22] Zoran Stojanovic and Ajantha Dahanayake. Service-oriented Software Sys-
tem Engineering Challenges And Practices. IGI Publishing, Hershey, PA,
USA, 2005.

[23] Robert J. Laubacher Thomas W. Malone. The dawn of the e-lance economy.
Harvard Business Review Article, pages 151–152, Sep 1, 1998.

[24] W3C. W3c xml schema definition language 1.1 part 1: Structures.
http://www.w3.org/TR/xmlschema11-1/.

[25] W3C. Xml schema data type. http://www.w3.org/TR/xmlschema-
0/#simpleTypesTable.

[26] W3C. Xsl transformations (xslt) version 1.0. http://www.w3.org/TR/xslt.

[27] Yan Wang. The exploration of a proper demo model storage format for busi-
ness component identification. Research Assignment, August 2008.

14th April 2009

Appendices

14th April 2009 115

116 BIBLIOGRAPHY

14th April 2009

Appendix A

XML Schema Quick Reference
[18]

A.1 XML Schema Elements

XML Schema elements are grouped by their function: top level elements, particles,
multiple XML documents and namespaces, identity constraints, attributes, named
attributes, complex type definitions, and simple type definitions.

Top Level Elements
The elements in table A.1 appear at the top level of a schema document.

Particles
The elements in table A.2 can have minOccurs and maxOccurs attributes. Such
elements always appear as part of a complex type definition or as part of a named
model group.

Multiple XML Documents and Namespaces
The elements in table A.3 bring in schema elements from other namespaces or re-
define schema elements in the same namespace.

Identity Constraints
The elements in table A.4 are related to identity constraints.

Attributes
The elements in table A.5 that define attributes in schemas.

Named Schema Objects
The elements in table A.6 define named constructs in schemas. Named constructs
are referred to with a QName by other schema elements.

14th April 2009 117

118 Attribute

Complex Type Definitions
The elements in table A.7 create complex type definitions.

Simple Type Definitions
The elements in table A.8 create simple type definitions.

A.2 Attribute

The attribute element defines an attribute. Table A.9 shows the content of this
element.

A.3 XML Schema Data Types

The World Wide Web Consortium (W3C) XML Schema Part 2: DataTypes is the
specification for defining data types used in XML Schemas. This specification de-
fines built-in primitive data types, derived data types, and facets.

Figure A.1 shows the type hierarchy.

Figure A.1: XML Schema Data Type Hierarchy

14th April 2009

XML Schema Data Types 119

Table A.1: Top Level Element
Element Description
<xsd:annotation> Defines an annotation.
<xsd:attribute> Declares an attribute.
<xsd:attributeGroup> Groups a set of attribute declarations so that they can be

incorporated as a group for complex type definitions.
<xsd:complexType> Defines a complex type, which determines the set of at-

tributes and the content of an element.
<xsd:element> Declares an element.
<xsd:group> Groups a set of element declarations so that they can be

incorporated as a group into complex type definitions.
<xsd:import> Identifies a namespace whose schema components are ref-

erenced by the containing schema.
<xsd:include> Includes the specified schema document in the target

namespace of the containing schema.
<xsd:notation> Contains the definition of a notation to describe the format

of non-XML data within an XML document. An XML
Schema notation declaration is a reconstruction of XML
1.0 NOTATION declarations.

<xsd:redefine> Allows simple and complex types, groups, and attribute
groups that are obtained from external schema files to be
redefined in the current schema.

<xsd:simpleType> Defines a simple type, which determines the constraints on
and information about the values of attributes or elements
with text-only content.

Table A.2: Particles
Element Description
<xsd:all> Allows the elements in the group to appear (or not appear)

in any order in the containing element.
<xsd:any> Enables any element from the specified namespace(s) to

appear in the containing sequence or choice element.
<xsd:choice> Allows one and only one of the elements contained in the

selected group to be present within the containing element.
<xsd:element> Declares an element.
<xsd:group> Groups a set of element declarations so that they can be

incorporated as a group into complex type definitions.
<xsd:sequence> Requires the elements in the group to appear in the speci-

fied sequence within the containing element.

14th April 2009

120 XML Schema Data Types

Table A.3: Multiple XML Documents and Namespaces
Element Description
<xsd:import> Identifies a namespace whose schema components are ref-

erenced by the containing schema.
<xsd:include> Includes the specified schema document in the target

namespace of the containing schema.
<xsd:redefine> Allows simple and complex types, groups, and attribute

groups that are obtained from external schema files to be
redefined in the current schema.

Table A.4: Identity Constraints
Element Description
<xsd:field> Specifies an XML Path Language (XPath) expression that

specifies the value (or one of the values) used to define an
identity constraint (unique, key, and keyref elements).

<xsd:key> Specifies that an attribute or element value (or set of values)
must be a key within the specified scope. The scope of a
key is the containing element in an instance document. A
key must be unique, non-nillable, and always present.

<xsd:keyref> Specifies that an attribute or element value (or set of values)
correspond to those of the specified key or unique element.

<xsd:selector> Specifies an XPath expression that selects a set of ele-
ments for an identity constraint (unique, key, and keyref
elements).

<xsd:unique> Specifies that an attribute or element value (or a combina-
tion of attribute or element values) must be unique within
the specified scope. The value must be unique or nil.

Table A.5: Attributes
Element Description
<xsd:anyAttribute> Enables any attribute from the specified namespace(s) to

appear in the containing complexType element or in the
containing attributeGroup element.

<xsd:attribute> Declares an attribute.
<xsd:attributeGroup> Groups a set of attribute declarations so that they can be

incorporated as a group for complex type definitions.

14th April 2009

XML Schema Data Types 121

Table A.6: Named Schema Objects
Element Description
<xsd:attribute> Declares an attribute.
<xsd:attributeGroup> Groups a set of attribute declarations so that they can be

incorporated as a group for complex type definitions.
<xsd:complexType> Defines a complex type, which determines the set of at-

tributes and the content of an element.
<xsd:element> Declares an element.
<xsd:group> Groups a set of element declarations so that they can be

incorporated as a group into complex type definitions.
<xsd:key> Specifies that an attribute or element value (or set of values)

must be a key within the specified scope. The scope of a
key is the containing element in an instance document. A
key must be unique, non-nillable, and always present.

<xsd:keyref> Specifies that an attribute or element value (or set of values)
correspond to those of the specified key or unique element.

<xsd:notation> Contains the definition of a notation to describe the format
of non-XML data within an XML document. An XML
Schema notation declaration is a reconstruction of XML
1.0 NOTATION declarations.

<xsd:simpleType> Defines a simple type, which determines the constraints on
and information about the values of attributes or elements
with text-only content.

<xsd:unique> Specifies that an attribute or element value (or a combina-
tion of attribute or element values) must be unique within
the specified scope. The value must be unique or nil.

14th April 2009

122 XML Schema Data Types

Table A.7: Complex Type Definitions
Element Description
<xsd:all> Allows the elements in the group to appear (or not appear)

in any order in the containing element.
<xsd:annotation> Defines an annotation.
<xsd:any> Enables any element from the specified namespace(s) to

appear in the containing sequence or choice element.
<xsd:anyAttribute> Enables any attribute from the specified namespace(s) to

appear in the containing complexType element or in the
containing attributeGroup element.

<xsd:appinfo> Specifies information to be used by applications within an
annotation element.

<xsd:attribute> Declares an attribute.
<xsd:attributeGroup> Groups a set of attribute declarations so that they can be

incorporated as a group for complex type definitions.
<xsd:choice> Allows one and only one of the elements contained in the

selected group to be present within the containing element.
<xsd:complexContent> Contains extensions or restrictions on a complex type that

contains mixed content or elements only.
<xsd:documentation> Specifies information to be read or used by users within an

annotation element.
<xsd:element> Declares an element.
<xsd:extension>
(simpleContent) Contains extensions on simpleContent. This extends a sim-

ple type or a complex type that has simple content by
adding specified attribute(s), attribute groups(s) or anyAt-
tribute.

<xsd:extension>
(complexContent) Contains extensions on complexContent.
<xsd:group> Groups a set of element declarations so that they can be

incorporated as a group into complex type definitions.
<xsd:restriction>
(simpleContent) Defines constraints on a simpleContent definition.
<xsd:restriction>
(complexContent) Defines constraints on a complexContent definition.
<xsd:sequence> Requires the elements in the group to appear in the speci-

fied sequence within the containing element.
<xsd:simpleContent> Contains extensions or restrictions on a complexType ele-

ment with character data or a simpleType element as con-
tent and contains no elements.

14th April 2009

XML Schema Data Types 123

Table A.8: Simple Type Definitions
Element Description
<xsd:annotation> Defines an annotation.
<xsd:appinfo> Specifies information to be used by applications within an

annotation element.
<xsd:documentation> Specifies information to be read or used by users within an

annotation element.
<xsd:element> Declares an element.
<xsd:list> Defines a collection of a single simpleType definition.
<xsd:restriction> Defines constraints on a simpleType definition
<xsd:union> Defines a collection of multiple simpleType definitions.

Table A.9: Attribute
Atribute Description
default Optional. Specifies a default value for the attribute. Default and

fixed attributes cannot both be present
fixed Optional. Specifies a fixed value for the attribute. Default and

fixed attributes cannot both be present
form Optional. Specifies the form for the attribute. The default value

is the value of the attributeFormDefault attribute of the element
containing the attribute. Can be set to one of the following:

id
name ”qualified” - indicates that this attribute must be qualified with

the namespace prefix and the no-colon-name (NCName) of the
attribute

ref unqualified - indicates that this attribute is not required to be qual-
ified with the namespace prefix and is matched against the (NC-
Name) of the attribute

type Optional. Specifies a built-in data type or a simple type. The type
attribute can only be present when the content does not contain a
simpleType element

use Optional. Specifies how the attribute is used. Can be one of the
following values:

14th April 2009

124 XML Schema Data Types

14th April 2009

Appendix B

XML schema for DEMO
metamodel

B.1 Meta Construction Model

Listing B.1: Schema code for Meta Construction Model
<xsd : schema xmlns : xsd =” h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema”>
<xsd : e l e m e n t name=” T r a n s a c t i o n s ”>

<xsd : complexType>
<xsd : sequence>

<xsd : e l e m e n t name=” T r a n s a c t i o n ” t y p e =”
TRANSACTION KIND” maxOccurs =” unbounded ”/>

</ xsd : sequence>
</ xsd : complexType>

</ xsd : e lement>
<xsd : complexType name=”TRANSACTION KIND”>

<xsd : sequence>
<xsd : e l e m e n t name=”Tname” t y p e =” xsd : s t r i n g ”/>
<xsd : e l e m e n t name=” I n i t i a t o r ” t y p e =”ELEMENTARY ACTOR ROLE”

minOccurs =”1” maxOccurs =” unbounded ”/>
<xsd : e l e m e n t name=” E x e c u t o r ” t y p e =”ELEMENTARY ACTOR ROLE”

minOccurs =”1” maxOccurs =”1”/>
<xsd : e l e m e n t name=” U s e I n f o r m a t i o n ” t y p e =”INFORMATION BANK”

minOccurs =”1” maxOccurs =”1”/>
<xsd : e l e m e n t name=” R e s u l t ” t y p e =” D e c l a r e d F a c t T y p e ”

minOccurs =”1” maxOccurs =”1”/>
</ xsd : sequence>
<xsd : a t t r i b u t e name=” T r a n s a c t i o n I D ” t y p e =” xsd : s t r i n g ” use =”

r e q u i r e d ”/>
</ xsd : complexType>
<xsd : complexType name=”ELEMENTARY ACTOR ROLE”>

<xsd : sequence>
<xsd : e l e m e n t name=”name” t y p e =” xsd : s t r i n g ”/>
<xsd : e l e m e n t name=” U s e I n f o r m a t i o n ” t y p e =”INFORMATION BANK”

minOccurs =”0” maxOccurs =” unbounded ”/>
</ xsd : sequence>
<xsd : a t t r i b u t e name=” ActorID ” t y p e =” xsd : s t r i n g ” use =” r e q u i r e d ”/>

</ xsd : complexType>
<xsd : complexType name=”INFORMATION BANK”>

<xsd : s i m p l e C o n t e n t >
<xsd : e x t e n s i o n base =” xsd : s t r i n g ”>

14th April 2009 125

126 Meta Process Model

<xsd : a t t r i b u t e name=” BankType ” use =” o p t i o n a l ”>
<xsd : s impleType>

<xsd : r e s t r i c t i o n base =” xsd : s t r i n g
”>

<xsd : e n u m e r a t i o n v a l u e =”
P r o d u c t i o n ”/>

<xsd : e n u m e r a t i o n v a l u e =”
C o o r d i n a t i o n ”/>

</ xsd : r e s t r i c t i o n >
</ xsd : s impleType>

</ xsd : a t t r i b u t e >
<xsd : a t t r i b u t e name=” BankID ” t y p e =” xsd : s t r i n g ” use

=” r e q u i r e d ”/>
</ xsd : e x t e n s i o n >

</ xsd : s i m p l e C o n t e n t >
</ xsd : complexType>
<xsd : complexType name=” D e c l a r e d F a c t T y p e”>

<xsd : s i m p l e C o n t e n t >
<xsd : e x t e n s i o n base =” xsd : s t r i n g ”>

<xsd : a t t r i b u t e name=” R e s u l t I D ” t y p e =” xsd : s t r i n g ”
use =” r e q u i r e d ”/>

</ xsd : e x t e n s i o n >
</ xsd : s i m p l e C o n t e n t >

</ xsd : complexType>
</ xsd : schema>

B.2 Meta Process Model

Listing B.2: Schema code for Meta Process Model
<?xml v e r s i o n = ” 1 . 0 ” e n c o d i n g =”UTF−8”?>
<xsd : e l e m e n t name=” T r a n s a c t i o n P a t t e r n ”>

<xsd : complexType>
<xsd : sequence>

<xsd : e l e m e n t name=” T r a n s a c t i o n ” minOccurs =”1”
maxOccurs =” unbounded”>

<xsd : complexType>
<xsd : sequence>

<xsd : e l e m e n t name=”
T r a n s a c t i o n P h a s e ” t y p e
=”TRANSACTION PHASE”
minOccurs =”0”
maxOccurs =”3”/>

</ xsd : sequence>
<xsd : a t t r i b u t e name=” T r a n s a c t i o n I D

” t y p e =” xsd : s t r i n g ” use =”
r e q u i r e d ”/>

<xsd : a t t r i b u t e name=”name” t y p e =”
xsd : s t r i n g ”/>

</ xsd : complexType>
</ xsd : e lement>

</ xsd : sequence>
</ xsd : complexType>
<xsd : complexType name=”TRANSACTION PHASE”>
<xsd : sequence>

<xsd : e l e m e n t name=” s t e p ” t y p e =”TRANSACTION STEP” minOccurs
=”0” maxOccurs =” unbounded ”/>

</ xsd : sequence>
<xsd : a t t r i b u t e name=”name” use =” r e q u i r e d ”>

14th April 2009

Meta Action Model 127

<xsd : s impleType>
<xsd : r e s t r i c t i o n base =” xsd : s t r i n g ”>

<xsd : e n u m e r a t i o n v a l u e =” Order ”/>
<xsd : e n u m e r a t i o n v a l u e =” E x e c u t i o n ”/>
<xsd : e n u m e r a t i o n v a l u e =” R e s u l t ”/>

</ xsd : r e s t r i c t i o n >
</ xsd : s impleType>

</ xsd : a t t r i b u t e >
</ xsd : complexType>
<xsd : complexType name=”TRANSACTION STEP”>

<xsd : sequence>
<xsd : e l e m e n t name=”Name” t y p e =” xsd : s t r i n g ” minOccurs =”1”

maxOccurs =”1”/>
<xsd : e l e m e n t name=” I n i t i a t e d F r o m ” t y p e =”TRANSACTION STEP”

minOccurs =”0” maxOccurs =” unbounded ”/>
<xsd : e l e m e n t name=” I n i t i a t i o n T o ” t y p e =”TRANSACTION STEP”

minOccurs =”0” maxOccurs =” unbounded ”/>
<xsd : e l e m e n t name=” I s W a i t C o n d i t i o n O f ” t y p e =”

TRANSACTION STEP” minOccurs =”0” maxOccurs =” unbounded
”/>

<xsd : e l e m e n t name=” W a i t i n g F o r ” t y p e =”TRANSACTION STEP”
minOccurs =”0” maxOccurs =” unbounded ”/>

</ xsd : sequence>
<xsd : a t t r i b u t e name=” T r a n s a c t i o n I D ” t y p e =” xsd : s t r i n g ” use =”

o p t i o n a l ”/>
</ xsd : complexType>

</ xsd : e lement>

B.3 Meta Action Model

Listing B.3: Schema code for Meta Action Model
<?xml v e r s i o n = ” 1 . 0 ” e n c o d i n g =”UTF−8”?>
<xsd : schema xmlns : xsd =” h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema”>
<xsd : e l e m e n t name=” A c t i o n R u l e s”>

<xsd : complexType>
<xsd : sequence>

<xsd : e l e m e n t name=” Rule ” t y p e =”ACTION RULE”
minOccurs =”0” maxOccurs =” unbounded ”/>

</ xsd : sequence>
</ xsd : complexType>

</ xsd : e lement>
<xsd : complexType name=”ACTION RULE”>

<xsd : s i m p l e C o n t e n t >
<xsd : e x t e n s i o n base =” xsd : s t r i n g ”>

<xsd : a t t r i b u t e name=” T r a n s a c t i o n I D ” t y p e =” xsd :
s t r i n g ” use =” r e q u i r e d ”/>

<xsd : a t t r i b u t e name=” s t e p ” t y p e =” xsd : s t r i n g ” use =”
r e q u i r e d ”/>

</ xsd : e x t e n s i o n >
</ xsd : s i m p l e C o n t e n t >

</ xsd : complexType>
</ xsd : schema>

B.4 Meta State Model

14th April 2009

128 Meta State Model

Listing B.4: Schema code for Meta State Model
<?xml v e r s i o n = ” 1 . 0 ” e n c o d i n g =”UTF−8”?>
<xsd : schema xmlns : xsd =” h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema”>
<xsd : e l e m e n t name=” O b j e c t F a c t ”>

<xsd : complexType>
<xsd : sequence>

<xsd : e l e m e n t name=” B a s i c C o n s t r u c t ” t y p e =”
B a s i c C o n s t r u c t ” minOccurs =”0” maxOccurs =”
unbounded ”/>

</ xsd : sequence>
</ xsd : complexType>

</ xsd : e lement>
<xsd : complexType name=” B a s i c C o n s t r u c t ”>

<xsd : sequence>
<xsd : e l e m e n t name=” r o l e ” t y p e =”FACT TYPE” minOccurs =”0”

maxOccurs =” unbounded ”/>
</ xsd : sequence>
<xsd : a t t r i b u t e name=” F o r m u l a t i o n ” t y p e =” xsd : s t r i n g ”/>
<xsd : a t t r i b u t e name=” FactTypeID ” t y p e =” xsd : s t r i n g ” use =” r e q u i r e d

”/>
</ xsd : complexType>
<xsd : complexType name=”FACT TYPE”>

<xsd : sequence>
<xsd : cho i ce>

<xsd : e l e m e n t name=” HasDomain ” t y p e =”OBJECT CLASS
”/>

<xsd : e l e m e n t name=” HasRange ” t y p e =” S c a l e ”/>
</ xsd : cho i ce>
<xsd : e l e m e n t name=” I sEx tendedTo ” t y p e =”OBJECT CLASS”

minOccurs =”0” maxOccurs =” unbounded ”/>
</ xsd : sequence>
<xsd : a t t r i b u t e name=” H o l d U n i c i t y ” use =” o p t i o n a l ” d e f a u l t =”Yes”>

<xsd : s impleType>
<xsd : r e s t r i c t i o n base =” xsd : s t r i n g ”>

<xsd : e n u m e r a t i o n v a l u e =” Yes”/>
<xsd : e n u m e r a t i o n v a l u e =”No”/>

</ xsd : r e s t r i c t i o n >
</ xsd : s impleType>

</ xsd : a t t r i b u t e >
<xsd : a t t r i b u t e name=”name” t y p e =” xsd : s t r i n g ” use =” r e q u i r e d ”/>

</ xsd : complexType>
<xsd : complexType name=”OBJECT CLASS”>

<xsd : s i m p l e C o n t e n t >
<xsd : e x t e n s i o n base =” xsd : s t r i n g ”>

<xsd : a t t r i b u t e name=”LawType” use =” o p t i o n a l ”
d e f a u l t =” R e f e r e n c e”>

<xsd : s impleType>
<xsd : r e s t r i c t i o n base =” xsd : s t r i n g

”>
<xsd : e n u m e r a t i o n v a l u e =”

R e f e r e n c e ”/>
<xsd : e n u m e r a t i o n v a l u e =”

Dependency ”/>
</ xsd : r e s t r i c t i o n >

</ xsd : s impleType>
</ xsd : a t t r i b u t e >
<xsd : a t t r i b u t e name=” O b j e c t C l a s s I D ” t y p e =” xsd :

s t r i n g ” use =” r e q u i r e d ”/>
<xsd : a t t r i b u t e name=” R e s u l t I D ” t y p e =” xsd : s t r i n g ”

use =” o p t i o n a l ”/>
</ xsd : e x t e n s i o n >

</ xsd : s i m p l e C o n t e n t >

14th April 2009

Metamodel of Cross-Model Tables 129

</ xsd : complexType>
<xsd : complexType name=” S c a l e”>

<xsd : s i m p l e C o n t e n t >
<xsd : e x t e n s i o n base =” xsd : s t r i n g ”>

<xsd : a t t r i b u t e name=” Sca leType ” use =” o p t i o n a l ”
d e f a u l t =”A”>

<xsd : s impleType>
<xsd : r e s t r i c t i o n base =” xsd : s t r i n g

”>
<xsd : e n u m e r a t i o n v a l u e =”A

”/>
<xsd : e n u m e r a t i o n v a l u e =”R

”/>
<xsd : e n u m e r a t i o n v a l u e =” I

”/>
<xsd : e n u m e r a t i o n v a l u e =”O

”/>
<xsd : e n u m e r a t i o n v a l u e =”C

”/>
</ xsd : r e s t r i c t i o n >

</ xsd : s impleType>
</ xsd : a t t r i b u t e >
<xsd : a t t r i b u t e name=” Sca le ID ” t y p e =” xsd : s t r i n g ”

use =” r e q u i r e d ”/>
</ xsd : e x t e n s i o n >

</ xsd : s i m p l e C o n t e n t >
</ xsd : complexType>
</ xsd : schema>

B.5 Metamodel of Cross-Model Tables

Listing B.5: XML schema for Transaction Result Table
<?xml v e r s i o n = ” 1 . 0 ” e n c o d i n g =”UTF−8”?>
<xsd : schema xmlns : xsd =” h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema”>
<xsd : e l e m e n t name=” T r a n s a c t i o n R e s u l t s ”>

<xsd : complexType>
<xsd : sequence>

<xsd : e l e m e n t name=” T r a n s a c t i o n R e s u l t ” t y p e =”TRT”
minOccurs =”0” maxOccurs =” unbounded ”/>

</ xsd : sequence>
</ xsd : complexType>

</ xsd : e lement>
<xsd : complexType name=”TRT”>

<xsd : sequence>
<xsd : e l e m e n t name=” T r a n s a c t i o n T y p e ” t y p e =” xsd : s t r i n g ”

minOccurs =”1” maxOccurs =”1”/>
<xsd : e l e m e n t name=” R e s u l t T y p e ” t y p e =” xsd : s t r i n g ” minOccurs

=”0” maxOccurs =”1”/>
</ xsd : sequence>

</ xsd : complexType>
</ xsd : schema>

Listing B.6: XML schema for Bank Contents Table
<?xml v e r s i o n = ” 1 . 0 ” e n c o d i n g =”UTF−8”?>
<xsd : schema xmlns : xsd =” h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema”>
<xsd : e l e m e n t name=” BankConten t s”>

14th April 2009

130 Graphical Representation of the schema

<xsd : complexType>
<xsd : sequence>

<xsd : e l e m e n t name=” BankContent ” t y p e =”BCT”
minOccurs =”0” maxOccurs =” unbounded ”/>

</ xsd : sequence>
</ xsd : complexType>

</ xsd : e lement>
<xsd : complexType name=”BCT”>

<xsd : sequence>
<xsd : e l e m e n t name=” I n f o r m a t i o n B a n k ” t y p e =” xsd : s t r i n g ”

minOccurs =”1” maxOccurs =”1”/>
<xsd : e l e m e n t name=” Fac tType ” t y p e =” xsd : s t r i n g ” minOccurs

=”1” maxOccurs =” unbounded ”/>
</ xsd : sequence>

</ xsd : complexType>
</ xsd : schema>

Listing B.7: XML schema for Information Use Table
<?xml v e r s i o n = ” 1 . 0 ” e n c o d i n g =”UTF−8”?>
<xsd : schema xmlns : xsd =” h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema”>
<xsd : e l e m e n t name=” I n f o r m a t i o n U s a g e”>

<xsd : complexType>
<xsd : sequence>

<xsd : e l e m e n t name=” I n f o r m a t i o n U s e ” t y p e =”IUT”
minOccurs =”0” maxOccurs =” unbounded ”/>

</ xsd : sequence>
</ xsd : complexType>

</ xsd : e lement>
<xsd : complexType name=”IUT”>

<xsd : sequence>
<xsd : e l e m e n t name=” I n f o r m a t i o n O b j e c t ” t y p e =” xsd : s t r i n g ”

minOccurs =”0” maxOccurs =” unbounded ”/>
<xsd : e l e m e n t name=” T r a n s a c t i o n S t e p ” t y p e =” xsd : s t r i n g ”

minOccurs =”0” maxOccurs =” unbounded ”/>
</ xsd : sequence>

</ xsd : complexType>
</ xsd : schema>

B.6 Graphical Representation of the schema

14th April 2009

Graphical Representation of the schema 131

Figure B.1: The graphical representation of the schema for CM

14th April 2009

132 Graphical Representation of the schema

Figure B.2: The graphical representation of the schema for PM

14th April 2009

Graphical Representation of the schema 133

Figure B.3: The graphical representation of the schema for AM

14th April 2009

134 Graphical Representation of the schema

Figure B.4: The graphical representation of the schema for SM

14th April 2009

Graphical Representation of the schema 135

Figure B.5: The graphical representation of the schema for TRT, BCT and IUT (in
order)

14th April 2009

136 Graphical Representation of the schema

14th April 2009

Appendix C

Application Screenshot

Figure C.1: The information items required for CM

14th April 2009 137

138

Figure C.2: The exemplary XML document for CM

Figure C.3: The information items required for PM

14th April 2009

139

Figure C.4: The exemplary XML document for PM

14th April 2009

140

Figure C.5: The information items required for AM

Figure C.6: The exemplary XML document for AM

Figure C.7: The information items required for SM

14th April 2009

141

Figure C.8: The exemplary XML document for SM

Figure C.9: The exemplary XML document for TRT

14th April 2009

142

Figure C.10: The Construction of the BCT

Figure C.11: The exemplary XML document for BCT

Figure C.12: The Construction of the IUT

14th April 2009

143

Figure C.13: The exemplary XML document for IUT

Figure C.14: The Construction of the Create / Use Table

14th April 2009

144

14th April 2009

Appendix D

Exemplary XML Documents of
the Library Case

D.1 XML documents for CM

Listing D.1: The exemplary XML document of CM
<?xml v e r s i o n = ” 1 . 0 ” e n c o d i n g =”UTF−8” s t a n d a l o n e =” no”?>
<T r a n s a c t i o n s xmlns : x s i =” h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema−i n s t a n c e ” x s i :

noNamespaceSchemaLocat ion =”C:\ Tomcat\webapps\ROOT\demo\CM. xsd”>

<T r a n s a c t i o n T r a n s a c t i o n I D =”T01”>
<Tname>membership r e g i s t r a t i o n </Tname>
< I n i t i a t o r ActorID =”CA02”>

<name>a s p i r a n t member</name>
<U s e I n f o r m a t i o n BankID =”PB01”>PB01</ U s e I n f o r m a t i o n >

</ I n i t i a t o r >
<E x e c u t o r Actor ID =”A01”>

<name>r e g i s t r a r </name>
<U s e I n f o r m a t i o n BankID =”PB01”>PB01</ U s e I n f o r m a t i o n >
<U s e I n f o r m a t i o n BankID =”CPB14” BankType =” P r o d u c t i o n ”>g e n e r a l

da t a </ U s e I n f o r m a t i o n >
<U s e I n f o r m a t i o n BankID =”CPB11” BankType =” P r o d u c t i o n ”>p e r s o n a l

da t a </ U s e I n f o r m a t i o n >
</ Execu to r>
<U s e I n f o r m a t i o n BankID =”PB01”>PB01</ U s e I n f o r m a t i o n >
<R e s u l t R e s u l t I D =”R01”>membership M has been s t a r t e d </ R e s u l t >

</ T r a n s a c t i o n >
<T r a n s a c t i o n T r a n s a c t i o n I D =”T02”>

<Tname>membership f e e payment </Tname>
< I n i t i a t o r ActorID =”A01”>

<name>r e g i s t e r </name>
<U s e I n f o r m a t i o n BankID =”PB02”>PB02</ U s e I n f o r m a t i o n >
<U s e I n f o r m a t i o n BankID =”CPB14” BankType =” P r o d u c t i o n ”>g e n e r a l

da t a </ U s e I n f o r m a t i o n >
</ I n i t i a t o r >
< I n i t i a t o r ActorID =”A10”>

<name>a n n u a l f e e c o n t r o l l e r </name>
<U s e I n f o r m a t i o n BankID =”PB02”>PB02</ U s e I n f o r m a t i o n >
<U s e I n f o r m a t i o n BankID =”CPB14” BankType =” P r o d u c t i o n ”>g e n e r a l

da t a </ U s e I n f o r m a t i o n >
</ I n i t i a t o r >

14th April 2009 145

146 XML documents for PM

<E x e c u t o r Actor ID =”CA02”>
<name>a s p i r a n t member</name>
<U s e I n f o r m a t i o n BankID =”PB02”>PB02</ U s e I n f o r m a t i o n >

</ Execu to r>
<U s e I n f o r m a t i o n BankID =”PB02”>PB02</ U s e I n f o r m a t i o n >
<R e s u l t R e s u l t I D =”R02”> t h e f e e f o r membership M i n y e a r Y has been

pa id </ R e s u l t >
</ T r a n s a c t i o n >

<T r a n s a c t i o n T r a n s a c t i o n I D =”T03”>
<Tname>r e d u c e d f e e a p p r o v a l </Tname>
< I n i t i a t o r ActorID =”A01”>

<name>r e g i s t e r </name>
<U s e I n f o r m a t i o n BankID =”PB03”>PB03</ U s e I n f o r m a t i o n >
<U s e I n f o r m a t i o n BankID =”CPB12” BankType =” P r o d u c t i o n ”> l i b r a r y

da t a </ U s e I n f o r m a t i o n >
<U s e I n f o r m a t i o n BankID =”CPB14” BankType =” P r o d u c t i o n ”>g e n e r a l

da t a </ U s e I n f o r m a t i o n >
</ I n i t i a t o r >
< I n i t i a t o r ActorID =”A10”>

<name>a n n u a l f e e c o n t r o l l e r </name>
<U s e I n f o r m a t i o n BankID =”PB02”>PB02</ U s e I n f o r m a t i o n >
<U s e I n f o r m a t i o n BankID =”CPB14” BankType =” P r o d u c t i o n ”>g e n e r a l

da t a </ U s e I n f o r m a t i o n >
</ I n i t i a t o r >
<E x e c u t o r Actor ID =”CA01”>

<name>board </name>
<U s e I n f o r m a t i o n BankID =”PB03”>PB03</ U s e I n f o r m a t i o n >

</ Execu to r>
<U s e I n f o r m a t i o n BankID =”PB03”>PB03</ U s e I n f o r m a t i o n >
<R e s u l t R e s u l t I D =”R03”> t h e r e d u c e d f e e f o r M i n y e a r Y i s approved

</ R e s u l t >
</ T r a n s a c t i o n >

<T r a n s a c t i o n T r a n s a c t i o n I D =”T04”>
<Tname>l o a n s t a r t </Tname>
< I n i t i a t o r ActorID =”CA04”>

<name>member</name>
<U s e I n f o r m a t i o n BankID =”PB04”>PB04</ U s e I n f o r m a t i o n >

</ I n i t i a t o r >
<E x e c u t o r Actor ID =”A04”>

<name>l o a n c r e a t o r </name>
<U s e I n f o r m a t i o n BankID =”PB04”>PB04</ U s e I n f o r m a t i o n >
<U s e I n f o r m a t i o n BankID =”PB01”>PB01</ U s e I n f o r m a t i o n >
<U s e I n f o r m a t i o n BankID =”CPB12” BankType =” P r o d u c t i o n ”> l i b r a r y

da t a </ U s e I n f o r m a t i o n >
<U s e I n f o r m a t i o n BankID =”CPB14” BankType =” P r o d u c t i o n ”>g e n e r a l

da t a </ U s e I n f o r m a t i o n >
</ Execu to r>
<U s e I n f o r m a t i o n BankID =”PB04”>PB04</ U s e I n f o r m a t i o n >
<R e s u l t R e s u l t I D =”R04”> l o a n L has been s t a r t e d </ R e s u l t >

</ T r a n s a c t i o n >
</ T r a n s a c t i o n s >

D.2 XML documents for PM

Listing D.2: The exemplary XML document of PM
<?xml v e r s i o n = ” 1 . 0 ” e n c o d i n g =”UTF−8” s t a n d a l o n e =” no”?>
<T r a n s a c t i o n P a t t e r n xmlns : x s i =” h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema−i n s t a n c e ”

x s i : noNamespaceSchemaLocat ion =”C:\ Tomcat\webapps\ROOT\demo\PM. xsd”>

14th April 2009

XML documents for PM 147

<T r a n s a c t i o n T r a n s a c t i o n I D =”T01 ” name=” membership r e g i s t r a t i o n ”>
<T r a n s a c t i o n P h a s e name=” Order”>

<s t e p >
<Name>Reques t </Name>

</ s t e p >
<s t e p >

<Name>Promise </Name>
< I n i t i a t i o n T o T r a n s a c t i o n I D =”T03”>

<Name>Reques t </Name>
</ I n i t i a t i o n T o >
< I n i t i a t i o n T o T r a n s a c t i o n I D =”T02”>

<Name>Reques t </Name>
</ I n i t i a t i o n T o >

</ s t e p >
</ T r a n s a c t i o n P h a s e >
<T r a n s a c t i o n P h a s e name=” E x e c u t i o n”>

<s t e p >
<Name>Execute </Name>
<W a i t i n g F o r T r a n s a c t i o n I D =”T02”>

<Name>Accept </Name>
</ Wai t ingFor>

</ s t e p >
</ T r a n s a c t i o n P h a s e >
<T r a n s a c t i o n P h a s e name=” R e s u l t ”>

<s t e p >
<Name>S t a t e </Name>

</ s t e p >
<s t e p >

<Name>Accept </Name>
</ s t e p >

</ T r a n s a c t i o n P h a s e >
</ T r a n s a c t i o n >

<T r a n s a c t i o n T r a n s a c t i o n I D =”T03 ” name=” r e d u c e d f e e a p p r o v a l ”>
<T r a n s a c t i o n P h a s e name=” Order”>

<s t e p >
<Name>Reques t </Name>
<I n i t i a t e d F r o m T r a n s a c t i o n I D =”T01”>

<Name>Promise </Name>
</ I n i t i a t e d F r o m >

</ s t e p >
<s t e p >

<Name>Promise </Name>
</ s t e p >

</ T r a n s a c t i o n P h a s e >
<T r a n s a c t i o n P h a s e name=” E x e c u t i o n”>

<s t e p >
<Name>Execute </Name>

</ s t e p >
</ T r a n s a c t i o n P h a s e >
<T r a n s a c t i o n P h a s e name=” R e s u l t ”>

<s t e p >
<Name>S t a t e </Name>

</ s t e p >
<s t e p >

<Name>Accept </Name>
<I s W a i t C o n d i t i o n O f T r a n s a c t i o n I D =”T02”>

<Name>Reques t </Name>
</ I s W a i t C o n d i t i o n O f >

</ s t e p >
</ T r a n s a c t i o n P h a s e >

</ T r a n s a c t i o n >

14th April 2009

148 XML documents for AM

<T r a n s a c t i o n T r a n s a c t i o n I D =”T02 ” name=” membership f e e payment”>
<T r a n s a c t i o n P h a s e name=” Order”>

<s t e p >
<Name>Reques t </Name>
<I n i t i a t e d F r o m T r a n s a c t i o n I D =”T01”>

<Name>Promise </Name>
</ I n i t i a t e d F r o m >

</ s t e p >
<s t e p >

<Name>Promise </Name>
</ s t e p >

</ T r a n s a c t i o n P h a s e >
<T r a n s a c t i o n P h a s e name=” E x e c u t i o n”>

<s t e p >
<Name>Execute </Name>

</ s t e p >
</ T r a n s a c t i o n P h a s e >
<T r a n s a c t i o n P h a s e name=” R e s u l t ”>

<s t e p >
<Name>S t a t e </Name>

</ s t e p >
<s t e p >

<Name>Accept </Name>
<I s W a i t C o n d i t i o n O f T r a n s a c t i o n I D =”T01”>

<Name>Execute </Name>
</ I s W a i t C o n d i t i o n O f >

</ s t e p >
</ T r a n s a c t i o n P h a s e >

</ T r a n s a c t i o n >
</ T r a n s a c t i o n P a t t e r n >

D.3 XML documents for AM

Listing D.3: The exemplary XML document of AM
<?xml v e r s i o n = ” 1 . 0 ” e n c o d i n g =”UTF−8” s t a n d a l o n e =” no”?>
<A c t i o n R u l e s x s i : noNamespaceSchemaLocat ion =”C:\ Tomcat\webapps\ROOT\demo\AM

. xsd”>
<Rule T r a n s a c t i o n I D =”T01” s t e p =” r e q u e s t ”>

on r e q u e s t T01 (M) wi th member (new M) =P
i f age (P)<minimal age−−>d e c l i n e T01 (M)

<> age (P)>=min imal age−−>promise T01 (M)
f i

no
</Rule>
</ Ac t ionRu le s>

D.4 XML documents of SM

Listing D.4: The exemplary XML document of SM
<?xml v e r s i o n = ” 1 . 0 ” e n c o d i n g =”UTF−8” s t a n d a l o n e =” no”?>
<O b j e c t F a c t xmlns : x s i =” h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema−i n s t a n c e ” x s i :

noNamespaceSchemaLocat ion =”C:\ Tomcat\webapps\ROOT\demo\SM. xsd”>
<B a s i c C o n s t r u c t FactTypeID =”F01 ” F o r m u l a t i o n =” t h e membership o f L i s M”>

14th April 2009

XML documents for Cross-Model Tables 149

<r o l e H o l d U n i c i t y =”No” name=”M”>
<HasDomain LawType=” R e f e r e n c e ” O b j e c t C l a s s I D =”OB01”

R e s u l t I D =”R01”>MEMBERSHIP</HasDomain>
</ r o l e >
<r o l e H o l d U n i c i t y =”Yes ” name=”L”>

<HasDomain LawType=” Dependency ” O b j e c t C l a s s I D =”OB02”>LOAN
</HasDomain>

</ r o l e >
</ B a s i c C o n s t r u c t >
<B a s i c C o n s t r u c t FactTypeID =”F02 ” F o r m u l a t i o n =” t h e book copy of L i s C”>

<r o l e H o l d U n i c i t y =”Yes ” name=”L”>
<HasDomain LawType=” Dependency ” O b j e c t C l a s s I D =”OB02”

R e s u l t I D =”R04 , R06”>LOAN</HasDomain>
</ r o l e >
<r o l e H o l d U n i c i t y =”No” name=”C”>

<HasDomain LawType=” R e f e r e n c e ” O b j e c t C l a s s I D =”OB03”>BOOK
COPY</HasDomain>

</ r o l e >
</ B a s i c C o n s t r u c t >
<B a s i c C o n s t r u c t FactTypeID =”F03 ” F o r m u l a t i o n =” c o p i e s o f B a r e d e l i v e r e d i n

S”>
<r o l e H o l d U n i c i t y =”No” name=”S”>

<HasDomain LawType=” Dependency ” O b j e c t C l a s s I D =”OB04”
R e s u l t I D =”R08”>SHIPMENT</HasDomain>

</ r o l e >
<r o l e H o l d U n i c i t y =”No” name=”B”>

<HasDomain LawType=” R e f e r e n c e ” O b j e c t C l a s s I D =”OB05”>BOOK</
HasDomain>

<I sEx tendedTo O b j e c t C l a s s I D =”OB06”>LIBRARY BOOK</
I sExtendedTo>

</ r o l e >
</ B a s i c C o n s t r u c t >

</ O b j e c t F a c t >

D.5 XML documents for Cross-Model Tables

Listing D.5: The exemplary XML document for TRT
<?xml v e r s i o n = ” 1 . 0 ” e n c o d i n g =”UTF−8” s t a n d a l o n e =” no”?>
<T r a n s a c t i o n R e s u l t s xmlns : x s i =” h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema−i n s t a n c e ”
x s i : noNamespaceSchemaLocat ion =”C:\ Tomcat\webapps\ROOT\demo\TRT . xsd”>
<T r a n s a c t i o n R e s u l t >

<T r a n s a c t i o n T y p e >T01membership r e g i s t r a t i o n </ T r a n s a c t i o n T y p e >
<Resu l tType>R01membership M has been s t a r t e d </ Resu l tType>

</ T r a n s a c t i o n R e s u l t >
<T r a n s a c t i o n R e s u l t >

<T r a n s a c t i o n T y p e >T02membership f e e payment </ T r a n s a c t i o n T y p e >
<Resu l tType>R02the f e e f o r membership M i n y e a r Y has been pa id

</ Resu l tType>
</ T r a n s a c t i o n R e s u l t >
<T r a n s a c t i o n R e s u l t >

<T r a n s a c t i o n T y p e >T03reduced f e e a p p r o v a l </ T r a n s a c t i o n T y p e >
<Resu l tType>R03the r e d u c e d f e e f o r M i n y e a r Y i s approved </

Resu l tType>
</ T r a n s a c t i o n R e s u l t >
<T r a n s a c t i o n R e s u l t >

<T r a n s a c t i o n T y p e >T04loan s t a r t </ T r a n s a c t i o n T y p e >
<Resu l tType>R04loan L has been s t a r t e d </ Resu l tType>

14th April 2009

150 XML documents for Cross-Model Tables

</ T r a n s a c t i o n R e s u l t >

</ T r a n s a c t i o n R e s u l t s >

Listing D.6: The exemplary XML document for BCT
<?xml v e r s i o n = ” 1 . 0 ” e n c o d i n g =”UTF−8” s t a n d a l o n e =” no”?>
<BankConten t s xmlns : x s i =” h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema−i n s t a n c e ” x s i :

noNamespaceSchemaLocat ion =”C:\ Tomcat\webapps\ROOT\demo\BCT . xsd”>
<BankContent>

<In fo rma t ionBank>PB01</ I n fo rma t ionBank>
<FactType>MEMBERSHIP, P i s t h e member i n M, membership M has been

s t a r t e d , < / FactType>
</ BankContent>
<BankContent>

<In fo rma t ionBank>PB02</ I n fo rma t ionBank>
<FactType>t h e f e e f o r membership M i n y e a r Y has been pa id , < / FactType>

</ BankContent>
<BankContent>

<In fo rma t ionBank>PB03</ I n fo rma t ionBank>
<FactType>t h e r e d u c e d f e e f o r membership M i n y e a r Y has been approved

, < / FactType>
</ BankContent>
<BankContent>

<In fo rma t ionBank>PB04</ I n fo rma t ionBank>
<FactType>LOAN, l o a n L has been s t a r t e d , t h e membership o f L i s M, t h e

book copy of L i s C, < / FactType>
</ BankContent>
</ BankContents>

Listing D.7: The exemplary XML document for IUT
<?xml v e r s i o n = ” 1 . 0 ” e n c o d i n g =”UTF−8” s t a n d a l o n e =” no”?>
<I n f o r m a t i o n U s a g e xmlns : x s i =” h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema−i n s t a n c e ”

x s i : noNamespaceSchemaLocat ion =”C:\ Tomcat\webapps\ROOT\demo\IUT . xsd”>
<I n f o r m a t i o n U s e>

<I n f o r m a t i o n O b j e c t >MEMBERSHIP</ I n f o r m a t i o n O b j e c t >
<T r a n s a c t i o n S t e p >T01requ es t , T01promise , T04 re ques t </

T r a n s a c t i o n S t e p >
</ I n f o r m a t i o n U s e >
<I n f o r m a t i o n U s e>

<I n f o r m a t i o n O b j e c t >P i s t h e member i n M</ I n f o r m a t i o n O b j e c t
>

<T r a n s a c t i o n S t e p >T01requ es t </ T r a n s a c t i o n S t e p >
</ I n f o r m a t i o n U s e >
<I n f o r m a t i o n U s e>

<I n f o r m a t i o n O b j e c t >LOAN</ I n f o r m a t i o n O b j e c t >
<T r a n s a c t i o n S t e p >T04requ es t , T06promise </ T r a n s a c t i o n S t e p >

</ I n f o r m a t i o n U s e >
<I n f o r m a t i o n U s e>

<I n f o r m a t i o n O b j e c t >t h e membership o f L i s M</
I n f o r m a t i o n O b j e c t >

<T r a n s a c t i o n S t e p >T04requ es t </ T r a n s a c t i o n S t e p >
</ I n f o r m a t i o n U s e >
</ I n f o r m a t i o n U s a g e>

14th April 2009

Appendix E

Manual

14th April 2009 151

152

14th April 2009

153

Manual

This is the application for supporting the DEMO model transformation, which is proposed in

the master thesis “Transformation of DEMO models into exchangeable format”. It has five

functions, which are building the Construction Model, building the Process Model, building

the Action model, building the State Model, and building the Create / Use Table. This

application is built in web pages by using the Hyper Text Markup Language (HTML)1, and

uses Java Server Page (JSP) 2technology and JavaScript3 to create and access the dynamic

web content. The server for running the JSP files is the TOMCAT 6.0.

1
 http://www.w3schools.com/html/DEFAULT.asp

2
 http://java.sun.com/products/jsp/

3
 http://www.w3schools.com/JS/default.asp

154

155

Construction Model

1. To start constructing the CM, please click the CM diagram on the left side in the

home page, as shown in Figure 1. Go to 2.

To view the exemplary XML document for CM, please click “View Construction

Model” on the right side. Go to 9.

To view the XML schema of the CM, please click “View Schema” on the right side. Go

to 10.

Figure 1 CM Home Page

2. The page for creating the XML document for CM is shown in Figure 2. The CM is

constructed by adding transactions one by one. Information that required as input

for one transaction is listed in the form below. You can always click button “View

File” to check what you create in the XML document for CM.

Figure 2 Complete form for Adding one transaction

156

3. Please fill in the transaction kind information as shown in Figure 3.

Figure 3 Exemplary transaction kind information

4. Please fill in the information related to the initiator, as shown in Figure 4, including

the information about the initiator, the information banks used by the initiator.

You can choose the information bank type in the select list, but it is not necessary to

give the type of the information bank when it comes to the information bank that

belongs to the transaction.

Leave the text area blank, if there is no more used information bank.

Figure 4 Exemplary initiator information

5. Please fill in the information related to the executor, as shown in Figure 5, including

the information about executor, the information banks used by the executor.

Choose the information bank type from the select list, if it is necessary.

Figure 5 Exemplary executor information

157

6. Please fill in the transaction result information, as shown in Figure 6.

Figure 6 Exemplary transaction result information

7. Click button “Add” to add a new transaction with the given information into the

CM.xml file. You will see the confirmation message, as shown in Figure 7. The

transaction has been saved in the XML document for CM.

Figure 7 Confirmation message

8. Click “ok”, the page returns back to the same form as shown in Figure 2. Repeat step

2-8 if you need to add more transactions, or click button “Back” to return to the

home page.

158

9. After clicking “View Construction Model” on the home page or the button “View

File” on the page of constructing the CM, you will see the XML document for CM

which you create as shown in Figure 8.

Figure 8 Exemplary XML document for CM

159

10. After clicking “View Schema”, you will see the XML schema of the CM as shown in

Figure 9.

Figure 9 XML schema of the CM

160

161

Process Model

1. To start constructing the PM, please click the PM diagram on the right side in the

home page, as shown in Figure 10. Go to 2.

To view the exemplary XML document for PM, please click “View Process Model” on

the left side. Go to 10.

To view the XML schema of the PM, please click “View Schema” on the left side. Go

to 11.

Figure 10 PM Home Page

2. In Figure 11, the page for creating the XML document for PM is shown. The PM is

constructed by adding the transaction steps for each transaction. All the information

regarding to a process step can be filled in the form below, in Figure 11. You can

always click button “View File” to check what you create in the XML document for

PM.

Figure 11 Complete form for adding information about a process step

162

3. In the form of Transaction Pattern, as shown in Figure 12, it lists all the transaction id

and names from the XML document for CM. Choose the transaction kind

information from the select lists, to which you want to add transaction steps. Click

button “Basic Pattern” to add the basic transaction steps to the transaction.

Figure 12 Exemplary transaction kind information

4. After clicking button “Basic Pattern”, you will see the confirmation message as

shown in Figure 13. One basic pattern of transaction steps are added to the certain

transaction in the XML document for PM.

Figure 13 Confirmation message

163

5. Click “OK” to return to the complete form as shown in Figure 11. Repeat step 2-5, if

you need to add transaction steps for more transactions, or click the button “Back”

to return to the home page. If there is any additional condition within the

transaction steps other than the basic pattern, go to 6.

6. If there are more interrelationships among the transaction steps other than a basic

pattern in a transaction. Please fill the relevant information in the form as shown in

Figure 14.

Figure 14 Form for additional information in a transaction step

7. Fill the additional information in the form as shown in Figure 15. Specify to which

transaction step, the additional information will be added. The select list

“TransactionID” shows all the existing transactions in the XML document for PM.

Choose the transaction ID, and choose the transaction step. Fill in the additional

information, the related step type and the transaction kind, in the relevant area.

Figure 15 Exemplary additional information to a transaction step

164

8. Click the button “Add”, you will see the confirmation message as shown in Figure 16.

The additional information has been added to the certain transaction step in the

XML document for PM.

Figure 16 Confirmation message

9. Click “OK” to return to the complete form as shown in Figure 11. Repeat step 6-9 if

you need to add more information to the transaction steps, or click the button

“Back” to return to the home page.

165

10. After clicking “View Process Model”, you will see the exemplary XML document for

PM as shown in Figure 17.

Figure 17 Exemplary XML document for PM

166

11. After clicking “View schema”, you will see the XML schema of the PM as shown in

Figure 18.

Figure 18 XML schema of the PM

167

Action Model

1. To start constructing the AM, please click the action rule on the left side in the home

page, as shown in Figure 19. Go to 2.

To view the exemplary XML document for AM, please click “View Action Model” on

the right side. Go to 6.

To view the XML schema of the AM, please click “View Schema” on the right side. Go

to 7.

Figure 19 AM home page

2. Now it is the page of adding action rules. Figure 20 shows the page with the

complete form for adding a new action rule. Information needed to be filled in this

form includes the action rule and a specific transaction step, to which the action rule

is assigned. You can always click button “View File” to check what you create in the

XML document for AM.

Figure 20 Complete form for adding action rules

168

3. Click the button “Add” when all the necessary information is given and ready to be

saved, as shown in Figure 21.

Figure 21 Exemplary action rule information

4. After clicking the button “Add”, you will see the confirmation message as shown in

Figure 22. The action rule has been saved in the XML document for AM.

Figure 22 Confirmation message

5. Click “OK” to return to the form as shown in Figure 20. Repeat step 2-5 if you need

to add more action rules, or click the button “Back” to return to the home page.

6. After clicking “View Action Model”, you will see the exemplary XML document for

AM as shown in Figure 23.

169

Figure 23 Exemplary XML document for AM

7. After clicking “View Schema”, you will see the XML schema of the AM as show in

Figure 24.

Figure 24 XML schema of the AM

170

171

State Model

1. To start constructing the SM, please click the SM diagram on the right side in the

home page, as shown in Figure 25. Go to 2.

To view the exemplary XML document for SM, please click “View State Model” on

the left side. Go to 8.

To view the XML schema of the SM, please click “View Schema” on the left side. Go

to 9.

Figure 25 SM home page

2. Now it is the page of adding one basic construct. The complete form including all the

required information for adding one basic construct is shown in Figure 26. The

required information includes the general information about the basic construct, the

information about the two roles within the basic construct. You can always click

button “View File” to check what you create in the XML document for SM.

Figure 26 Complete form of adding one basic construct

172

3. First please give the general information about the basic construct, which includes

the formulation of the basic construct and a fact type ID, as shown in Figure 27.

Figure 27 Exemplary general information about the basic construct

4. For each role within the basic construct, give a letter as its initial.

Select “Yes” in the select list “Hold Unicity” if the role holds a unicity law, and select

“No” if not.

If the role has an object class as its domain, select “HasDomain”, otherwise select

“HasScale”.

If “HasDomain” is selected, give the ID and the name of the object class. Depends on

what kind of law hold between the role and its domain, choose dependency law or

reference law from the select list.

If there is any result type declared on the object class, give the result type ID.

If “HasScale” is selected, give the ID and the name of the range. Choose the scale

type from the select list.

If the role is extended to another object class, tick the checkbox “IsExtendedTo”,

give the ID and the name of the new object class.

An exemplary role information is shown in Figure 28.

Figure 28 Exemplary role information

5. Fill in the role information for another role following the same way as explained in 4.

173

6. After filling all the necessary information, click button “Add” to save the information

in the XML document for SM. You will see the confirmation message as shown in

Figure 29.

Figure 29 Confirmation message

7. Click “OK” to return to the complete form as shown in Figure 26. Repeat step 2-7 if

you need to add more basic constructs, or click button “Back” to return to the home

page.

174

8. After clicking “View State Model”, you will see the exemplary XML document for SM

as shown in Figure 30.

Figure 30 Exemplary XML document for SM

175

9. After clicking “View Schema”, you will see the XML schema of the SM as shown in

Figure 31.

Figure 31 XML schema of the SM

176

177

Cross-Model Table

1. To start constructing the BCT, please click “Build Bank Contents Table” on the left

side in the home page, as shown in Figure 32. Go to 2.

To view the produced XML document for BCT, please click “View Bank Contents

Table” on the right side in the home page. Go to 8.

To start constructing the IUT, please click “Build Information Use Table” on the left

side in the home page. Go to 9.

To view the produced XML document for IUT, please click “View Information Use

Table” on the right side in the home page. Go to 15.

The XML document for TRT is automatically produced when CM is produced. To view

the produced XML document for TRT, please click “View Transaction Result Table”

on the right side in the home page. Go to 16.

Figure 32 Cross-Model Table Home Page

178

2. In Figure 33, the page for creating the BCT is shown. This form adds one row to the

BCT every time. You can always click button “View File” to check what you create in

the XML document for BCT.

Figure 33 Complete form for making BCT

3. Give a name to the information bank in the column “Information Bank”, as shown in

Figure 34.

Figure 34 Name the information bank

179

4. The column “object class, fact type, or result type” has two select lists. The left one

lists all the information objects which are imported from the XML document for SM.

Select the information objects which belong to the named information bank, as

shown in Figure 35.

Figure 35 Select the information objects from the left select list

5. Click button “>>” to move the selected information objects in the left select list into

the right select list, as shown in Figure 36. Click button “<<” to move the information

objects from the right select list to the left select list, if you need to change the

chosen information objects.

Figure 36 Move the chosen information objects to the right select list

180

6. First select the information objects in the right select list in the column “object class,

fact type, or result type”. Then click button “Add” to add the given information into

a new row in the BCT. You will see the confirmation message, as shown in Figure 37.

Figure 37 Confirmation message

7. Click “OK” to return to the form as shown in Figure 33. Repeat step 2-7 if you need

to add more rows in the BCT, or click button “Back” to return to the home page.

8. After clicking “View Bank Contents Table”, you will see the exemplary XML

document for BCT as shown in Figure 38.

Figure 38 Exemplary XML document for BCT

181

9. Figure 39 shows the form for making IUT. This form adds one row to the IUT every

time. You can always click button “View File” to check what you create in the XML

document for IUT.

Figure 39 Complete form for making IUT

10. The column “object class, fact type, or result type” lists all the information objects

which are imported from the XML document for SM. Select the information object

from the select list, as shown in Figure 40.

Figure 40 Select information object from select list

182

11. The column “process steps” has two select lists. The left one lists all the transaction

steps which are imported from the XML document for PM. Select the transaction

steps in which the selected information object is used, as shown in Figure 41.

Figure 41 Select the transaction steps from the left select list "process steps"

12. Click button “>>” to move the selected transaction steps in the left select list into

the right select list, as shown in Figure 42. Click button “<<” to move the transaction

steps from the right select list to the left select list, if you need to change the chosen

transaction steps.

Figure 42 Move the chosen transaction steps to the right select list "process steps"

183

13. First select the transaction steps in the right select list in the column “process steps”.

Then click button “Add” to add the given information into a new row in the IUT. You

will see the confirmation message, as shown in Figure 43.

Figure 43 Confirmation message

14. Click “OK” to return to the form as shown in Figure 39. Repeat step 9-14 if you need

to add more rows in the IUT, or click button “Back” to return to the home page.

15. After clicking “View Information Use Table”, you will see the exemplary XML

document for IUT as shown in Figure 44.

Figure 44 Exemplary XML document for IUT

16. After clicking “View Transaction Result Table”, you will see the exemplary XML

documents for TRT as shown in Figure 45.

Figure 45 Exemplary XML document for TRT

184

185

Create / Use Table

1. To start constructing the Create / Use Table, please click the diagram on the left side

in the home page, as shown in Figure 46. Go to 2.

To view the created Create / Use Table, click “Create / Use Table”. Go to 9.

Figure 46 Create / Use Table home page

2. The form for creating the Create / Use Table is shown in Figure 47. This form adds

one row to the Create / Use Table every time.

Figure 47 Complete form of making create / use table

186

3. The column “IO-Fun” lists all the information objects which are imported from the

XML document for SM. Select the information object from the select list, as shown in

Figure 48.

Figure 48 Select information object from the select list “IO-Fun”

4. The column “Create” lists all the transaction steps which are imported from the XML

document for PM. Select the transaction step in which the chosen information

object in column “IO-Fun” is created from the select list “Create”, as shown in Figure

49.

Figure 49 Select the transaction step from the select list “Create”

187

5. The column “Use” has two select lists. The left one lists all the transaction steps

which are imported from the XML document for PM. Select the transaction steps in

which the selected information object is used, as shown in Figure 50.

Figure 50 Select the transaction steps from the left select list “Use”

6. Click button “>>” to move the selected transaction steps in the left select list into

the right select list, as shown in Figure 51. Click button “<<” to move the transaction

steps from the right select list to the left select list, if you need to change the chosen

transaction step.

Figure 51 Move the chosen transaction steps to the right select list “Use”

188

7. First select the transaction steps in the right select list “Use”. Then click button

“Add” to add the given information into a new row in the Create / Use Table. You

will see the confirmation message, as shown in Figure 52.

Figure 52 Confirmation message

8. Click “OK” to return to the form as shown in Figure 47. Repeat step 2-8 if you need

to add more rows in the Create / Use Table, or click button “Back” to return to the

home page.

189

9. After clicking “Create / Use Table”, you will see the produced create / use table.

Click “ok” to open the csv file for view.

Figure 53 View the Create / Use Table

10. An exemplary create / use table is shown in Figure 54.

Figure 54 An Exemplary create / use table

