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Thesis Summary

The infrastructure networks, including the Internet, telecommunication networks, elec-
trical power grids, transportation networks (road, railway, waterway, and airway net-
works), gas networks and water networks, are becoming more and more complex. The
complex infrastructure networks are crucial to our human society, and it has been a hot
research �eld to make our complex infrastructure networks more robust and optimize
the performance of them. Besides man-designed infrastructure networks, complex net-
works also cover many natural networks, such as social networks, ecological networks,
and biological networks. In order to tackle some of the di¢ cult social issues, ecological
problems, and unsolved medical problems, we must learn how these natural complex
networks organize, operate, and function.
Complex networks can be represented by graphs. A graph consists of a collection of

nodes and a collection of links that connect the nodes. A graph is uniquely described by
its adjacency matrix, of which the entry on row i and column j is one only if node i and
node j in the graph is connected by a link, otherwise the entry is zero. Each adjacency
matrix is associated to a unique set of eigenvalues and corresponding eigenvectors. The
eigenvalues and corresponding eigenvectors of a graph, also called the spectrum of the
graph, contains all the information of the graph, and the topological/physical meanings
of some eigenvalues and eigenvectors are already known. The knowledge on the spectra
of networks is of crucial importance to the many aspects of the researches on complex
network, such as connectivity of networks and virus spreading in networks. The line
graph l (G) of a graph G has a set of nodes mapping the set of links in G, and two
nodes in l (G) are adjacent if and only if the corresponding links in G have a node
in common. Some problems of graphs can be transformed to much easier ones in the
domain of line graphs. For example, partitioning the nodes to �nd the overlapping
communities in a graph can be done by partitioning the links in the line graph of the
concerned graph. Moreover, the line graphs often share common features with real-
world complex networks, like highly clustered and assortative mixing. Hence, the line
graphs are considered by many to model real-world complex networks.
The robustness and optimization of complex network is a rather broad research

�eld. We focus on the reconstruction of complex networks from the spectral domain
and the line graph domain. This thesis is organized as follows. We �rst study the

xi



xii SUMMARY

reconstruction of networks from their eigenvalues and eigenvectors and the spectral
properties of networks. In the second part of this thesis, we present two algorithms
which reconstruct networks from the line graph domain, the properties of the line
graphs, and a random line graph model. We at last give the research results on two
types of real-world networks.
The adjacency matrix of a graph can be computed with its eigenvalues and eigen-

vectors. When some of the eigenvalues are set to zero, the adjacency matrix can still be
correctly computed. We propose a measure, the reconstructability coe¢ cient, de�ned
as the maximum number of eigenvalues that can be removed. We �nd that the recon-
structability coe¢ cient is linear function of the size of the network for all networks that
we have studied. We give some results on the spectral metric, the energy of a graph,
which is de�ned by the sum of the absolute value of all the eigenvalues. We also explore
the relations between graph energy and the topological metric, assortativity, for many
di¤erent types of networks.
For the reconstruction of networks from the line graph domain, we propose two al-

gorithms Marinlinga and Iligra. While all previous algorithms rely on Whitney�s
theorem, Marinlinga is based on the principle of link relabeling and endnode recog-
nition. Iligra reconstructs the graphs from the line graph domain with the linear time
complexity. This thesis extends the researches in the line graph domain. We �nd that
the number of links in a line graph with a �xed number of nodes can not take some
consecutive natural numbers, and these numbers are called a bandgap of the line graph.
We present the exact expressions of the bands and bandgaps of the number of links in
line graphs. In order to facilitate the researches in the line graph domain, we propose a
model which randomly generates line graphs. The essence of our model is to merge step
by step a pair of nodes in cliques, subjecting to some rules to ensure that the resulting
graphs are line graphs. Thanks to the random line model, a method to generate a serial
of graphs of which the assortativity increases linearly has been invented.
This thesis studies two types of real-world networks: social networks and human

brain networks. We characterize the overlapping community structure of the social
networks of ArXiv coauthorship, IMDB actors collaboration and SourceForge collab-
oration, and propose a growing hypergraph model, based on preferential attachment.
The proposed hypergraph model captures the fundamental properties including the
power-law distributions of group size, group degree, overlapping depth, individual de-
gree and interest-sharing number of real-world a¢ liation networks, and reproduces the
properties of high clustering, assortative mixing and short average path length of so-
cial networks. To study brain networks, we propose a spectral randomness metric to
quantize the randomness of networks. Based on the randomness measuring method, we
have found that the brain networks of Alzheimer�s disease are statistically more random
than the healthy brain networks.



Chapter 1

Introduction

Complex networks, as an interdisciplinary subject, lie at the intersection between graph
theory and statistical mechanics. The research of complex networks originated from the
pioneering works [1][2][3][4][5][6][7] on percolation and random graphs in the middle of
last century. However, complex networks have not been a focus of attention until the
end of 20th century. The last decade has witnessed a rapid advancement in the stud-
ies of complex networks which help to understand dynamic behavior of real systems
coming from di¤erent �elds such as biology [8][9][10] (food-web, nervous system, cellu-
lar metabolism, protein-protein interaction network, gene regulatory networks), social
systems [11] (scienti�c collaboration, citation, linguistic networks, and technological
systems), Internet [12], World Wide Web [13], power-grid [14] etc. These real-world
complex networks appear to possess many features that random graph model fails to
capture, such as highly clustering, assortativendisassortative mixing, power law degree
distribution, and community structure. Among many fruitful results, Watts and Stro-
gatz�s investigation of small-world networks [15], Barabási and Albert�s scale-free graph
model [16], Newman�s mixing patterns [17][18], and Girvan and Newman�s community
structure in networks [19][20] are mostly known to the research community. Investiga-
tions on complex networks help us understand and predict the behavior of real-world
complex systems and infrastructures, also enable us to make complex systems more
robust and heighten the performance of the complex networks of infrastructures.
In this chapter, we give the outline of the main course of this thesis. There are many

hot aspects in the research �eld of robustness and optimization of complex networks.
In the �rst part, we �rst study the reconstructability of networks from their eigenvalues
and eigenvectors when partial information of the spectra is lost. We �nd that the
reconstructability is linear with the sizes of networks. Then, we give some empirical
results on the spectral metric, energy of networks. In the second part of this thesis, we
�rst present two algorithms which reconstruct networks from the line graph domain.
Then, we show some properties of the line graphs, and we particularly �nd that the
number of links of line graphs cannot take some sets of consecutive natural numbers.

1



2 CHAPTER 1. INTRODUCTION

At last, we propose a random line graph model. In the third part, we �rst study
the overlapping community structure of some real-world social network and propose
a growing hypergraph model which reproduces the overlapping community structure.
Then, we propose a spectral randomness measure, and based on the spectral randomness
measure, we statistically di¤erentiate the brain networks of Alzheimer�s disease and the
healthy brain networks.

1.1 Network reconstruction from spectra

�Robustness�or �resilience�properties of complex networks are commonly analyzed by
perturbing the network [21][22]. The simplest perturbations, that we call elementary
changes, are the omission/addition of a link and/or a node or the rewiring of links.
Any topological perturbation can be constructed as a sequence of elementary changes.
The degree of degradation of the network performance, measured in terms of some sets
of graph metrics, under a certain topological perturbation is commonly regarded as a
measure of the robustness of that network. Service perturbations are usually much more
complex to de�ne and to analyse, because they consist of changes in tra¢ c, latency,
availability, and many other unknown processes. Spectral graph theory has been applied
to understand properties of networks[23][24]. Meanwhile, the eigenvalue perturbation
method has been well developed and applied in quantum mechanics [25][26]. Another
spectral operation, the Karhunen Loéve transform (KLT), is widely used in the area of
image data compression [27].
We explore the e¤ect of perturbating the spectra of complex networks. The eigen-

values of most complex graphs are nondegenerate, and their corresponding eigenvectors
are unique. As explained in Section 2.1.1 and provided all eigenvectors are known, we
remove eigenvalues from the spectrum of a graph and check whether the graph can still
be exactly reconstructed, by exploiting the zero-one nature of the elements of the adja-
cency matrix. The requirement of exact reconstruction is unique and in contrast to, for
example, image compression, where some image information is lost. Removing eigenval-
ues can be regarded as a particular type of spectral perturbation. On the other hand,
the eigenvectors can also be perturbed by, for example, adding noise to each component
of the eigenvectors. One could as well consider a metric such as the connectivity, hop-
count, diameter, clustering coe¢ cient etc., and investigate its degradation under such
spectral perturbation (eigenvalue removal and noise addition to eigenvectors).
A large number of topological measures have been derived (see e.g. [28]) from

the adjacency matrix and Laplacian to capture di¤erent features of a network as well
as to classify networks. Examples are the distribution of the nodal degree, which is
the number of links incident to a node, and the average clustering coe¢ cient, which
describes the link density among the direct neighbors of a node. These measures can
be highly correlated, pointing to a certain level of redundancy among them. It is highly
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desirable to determine a speci�c small set of independent measures that is su¢ cient to
characterize the network structure. However, the questions, �which measures possess
more information regarding to the topology�and �what is the level of redundancy or
correlation between measures�, is far from understood.
We examine the maximal number of eigenvalues that can be removed from the

spectrum given the set of eigenvectors. The method and related theory are explained in
Section 2.1. We de�ne the reconstructability coe¢ cient � of a network as the maximum
number of eigenvalues that can be set to zero, given that the adjacency matrix can be
reconstructed exactly. Via extensive simulations on di¤erent classes of graph, presented
in Section 2.2 and 2.3, we found the remarkable linear scaling law

E[�] = aN (1.1)

where the real number a 2 [0; 1] depends on the graph G. Moreover, the variance
Var[�] was su¢ ciently smaller than the mean E [�] such that E [�] serves as an excellent
estimate for �. For su¢ ciently large N , the law (1.1) tells us that a portion a of the
smallest eigenvalues (in absolute value) can be ignored or removed from the spectrum
and that the adjacency matrix is still reconstructable (provided we have the exact
eigenvectors). Section 2.4 investigates the sensitivity of the reconstructability coe¢ cient
� under random perturbation of the eigenvectors in the class of Erd½os-Rényi random
graphs and concludes that the perturbation can be as high as 10% (the norm of an
eigenvector is 1). The reconstructability coe¢ cient � (or the scaled one coe¢ cient
a = E[�]

N
in (1.1)) can be regarded as a spectral metrics of the graph, that expresses how

many dimensions of the N -dimensional space are needed to represent or reconstruct the
graph. Roughly, a high reconstructability coe¢ cient � re�ects a �geometrically simple�
graph that only needs a few orthogonal dimensions to be described. The precise physical
or topological meaning of the reconstructability coe¢ cient � is not yet entirely clear.

1.2 Graph energy

The energy of a simple graph has been studied by various authors [29][30][31][32]. The

energy EG of a graph G, is de�ned as EG =
NP
j=1

j�jj, where �j is the jth eigenvalue of

the adjacency matrix A of the graph G. The energy EG of a graph G (N;L) with N
nodes and L links is bounded [33] byq

2L+N (N � 1) jdetAj2=N � EG �
p
2NL

The multiplicity of zero eigenvalues of adjacency matrix is denoted by m0, and the
multiplicity of �1 eigenvalues of adjacency matrix is denoted by m�1. Assortativity is
a graph metric which measures how strong the tendency is that the nodes connect to
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Figure 1.1: The molecualr graphs introduced by Gutman et al. [29]. The graphs are
constructed by adding 19 nodes X1; X2; � � � ; X19, to a long path graph and connecting
by a link node Xk and node jk, where node jk is the (25k)th node on the path, for
example, j1 = 25 and j2 = 50. (a) There are 499 nodes on the path. By shifting
the nodes Xk; k = 1; 2; � � � ; 19 one step leftward or rightward, the graphs with m0 =
0; 2; 4; � � � ; 20 can be obtained. (b) There are 500 nodes on the path. By shifting
the nodes Xk; k = 1; 2; � � � ; 19 one step leftward or rightward, the graphs with m0 =
1; 3; 5; � � � ; 19 can be obtained.

other nodes with similar degree. The assortativity coe¢ cient of a graph is denoted by
�D. When �D > 0, the nodes of the graph connect preferentially to other nodes with
similar degree, and the graph is said to be assortative; When �D < 0, the pair of adjacent
nodes tend to have di¤erent degrees, and the graph is said to be disassortative. This
report studies the relations between the energy EG of a graph and the just mentioned
three metrics, m0, m�1, and �D, under the constraint that the number N of nodes and
the number L of links are constant.

As shown in Figure 1.1, Gutman et al. [29] constructed two groups of molecular
graphs: (a) The �rst group of graphs Gk, k = 1; 2; � � � ; 11, have 518 nodes and 497
links, and the graphs were constructed in such a way that m0 (Gk) = 2(k� 1); (b) The
second group of graphs Gk, k = 1; 2; � � � ; 10, have 519 nodes and 498 links and satisfy
that m0 (Gk) = 2k� 1. It was shown by computations that the graph energy decreases
almost linearly in k for both groups of graphs.
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1.3 Inverse line graph algorithms

A simple graph1 with N nodes and L links is denoted by G (N;L). The line graph
H = l (G) of a graph G is a graph [34] in which every node in H corresponds to a
link in G and two nodes are adjacent if and only if their corresponding links have a
common node in G. The graph G is called the root graph of H. The complete graph
with three nodes K3 is a line graph, which has two di¤erent root graphs, K3 and K1;3.
Except for K3, Whitney�s theorem [35] states that, all line graphs have only one root
graph (isomorphic graphs are considered as the same graph). Clearly, the number NH
of nodes in H equals the number L of links in G. The theoretical basis for the line
graph was given by Whitney�s theorem on the link isomorphism of two graphs [35][36]:
if connected graphs G1 and G2 have isomorphic line graphs, G1 and G2 are isomorphic
unless one is K3 and the other is K1;3. Cvetkovíc et al. [37] reviewed the state-of-the-art
knowledge about line graphs.
There exist plenty of real-world networks that can be modeled by line graphs [38][39].

Given M clubs and N students at an university, every student joins two clubs. Each
student has di¤erent choices (we assume that there are enough clubs). We de�ne two
networks G1 and G2. TheM clubs are the nodes of G1 and two nodes are adjacent if two
clubs have the same student as their member. The N students are the nodes of G2 and
two nodes are adjacent if two students belong to the same club Clearly, G2 is the line
graph of G1. Such pairs (G1; G2) are common in on-line social networks like Facebook,
Twitter and etc., where users join the special groups where they share the same interest
with others. A graph is assortative if its low-degree nodes tend to be adjacent with
other low-degree nodes and its high-degree nodes tend to be adjacent with other high-
degree nodes. Line graphs are assortative and clustered [40][41][38][42]. Instead of
partitioning the links of the root graph for the overlapping communities detection, it
has been suggested to equivalently detect the communities in the line graph of the
concerned network [43][44][45]. Computing the line graph of a graph and constructing
the root graph of a line graph also play an important role in bond percolation threshold
predictions [46], and it enables us to compare the properties of a random line graph
and its root graph.
The following formula [34] can be used to compute the adjacency matrix of the line

graph l (G) of a graph G,
Al(G) =

�
RTR

�
L�L � 2I (1.2)

where R is the incidence matrix of the undirected graph G. If link j is incident to node
i, the entry rij of R is 1, otherwise 0. In each column there are exactly two 1-entries. To
facilitate the applications of line graphs, the construction of a line graph H from a root
graph G and the inverse construction from the line graph H = l(G) to the root graph

1A simple graph is an unweighted, undirected graph containing no self-loops (links starting and
ending at the same node) nor multiple links between the same pair of nodes.
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G are necessary. Constructing the root graph is far more complex than computing the
line graph. Before constructing the root graph from a given graph, it is important to
know whether the graph is a line graph. Up till now, the following criteria for a graph
to be a line graph exist in the literature:

� A graph is a line graph if and only if it is possible to �nd a collection of cliques in
the graph, partitioning all the links, such that each node belongs to at most two
of the cliques (some of the cliques can be a single node) and two cliques share at
most one node [36]. If the graph is not K3, there can be only one partition of this
type.

� A graph is a line graph if and only if it does not have the complete bipartite graph
K1;3 as an induced subgraph, and if two odd triangles 2 have a common link, the
subgraph induced by their nodes is the complete graph K4 [47].

� A graph is a line graph if and only if none of the nine forbidden subgraphs (see
Figure 1.2) is an induced subgraph of it [48].

� A graph is not a line graph [34] if the smallest eigenvalue of the adjacency matrix
(1:2) is smaller than �2.

Figure 1.2: The nine forbidden subgraphs for line graphs [48].

Based on the above criteria and Whitney�s theorem, several algorithms for con-
structing the root graph have been proposed. Two algorithms for line-to-root graph

2If every node is adjacent to two or zero nodes of a triangle, it is an even triangle.
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construction were proposed simultaneously by Roussopoulos [49] and Lehot [50]. The
algorithm of Roussopoulos is based on the theorem of Krausz [51]: A graph is a line
graph if and only if it is possible to �nd a collection of cliques in the graph, partitioning
all the links, such that each node belongs to at most two of the cliques (some of the
cliques can be a single node) and two cliques share at most one node. Roussopoulos�
algorithm starts with choosing an arbitrary link in the input graph and calculating the
number of triangles containing this link. Depending on this value the starting cell is
determined. The starting cell is a complete graph Km; if m = 2 it is a link; if m = 3
a triangle that contains the starting link. Having a starting cell of the input graph,
the algorithm of Roussopoulos continues to �nd a clique, which is deleted. In addition,
in each step the vertices of the clique are labeled by a group number. One node in
a line graph cannot be assigned to more than two groups (otherwise it is not a line
graph). The nodes of the root graph are those partitions and all nodes are assigned to
exactly one partition. In the constructed graph there is a link between two nodes, if
the nodes are assigned to partitions that have a non-empty intersection. The approach
of Roussopoulos is based on �nding the largest cliques and sequentially the number of
triangles that contain this link. Theoretically �nding the largest connected component
is, however, an NP -complete problem [52]. Lehot�s algorithm employs the principles
of Van Rooij and Wilf [47]: A graph is a line graph if and only if it does not have the
complete bipartite graph K1;3 as an induced sub-graph, and if two odd triangles3 have a
common link, the sub-graph induced by their nodes is the complete graph K4. Lehot�s
algorithm �rst constructs a root graph G from the given graph H, and then compares
l (G) and H to determine whether the given H is a line graph, unlike Roussopoulos�
algorithm, which determines whether the given graph H is a line graph during the con-
struction of the root graph G. Naor and Novick [53] proposed a parallel algorithm for
line-to-root graph construction based on a divide-and-conquer scheme. Motivated by
eigenvectors, Simíc [54] proposed an algorithm for recognizing generalized line graphs.
Simíc�s algorithm searches for the maximum degree node in each loop. Degiorgi and
Simon [55] proposed a constructive algorithm that bases on the Ore�s proof [56] of
Whitney�s theorem [35], which states that two connected edge isomorphic graphs with
more than four nodes are also node isomorphic and there exists exactly one node iso-
morphism which generates the given edge isomorphism. The root graph construction
examines 2-coloring classes in the input graph components. They showed that their
algorithm is more time e¢ cient than algorithms of Roussopoulos and Lehot for sparse
line graphs and non-line graphs.
We propose two algorithms,Marinlinga and Iligra. The �rst algorithm,Marin-

linga, is based on relabeling the adjacency matrix of the line graphs. Marinlinga
does not explicitly rely on Whitney�s theorem, as all previous companion algorithms,
but uses link relabeling and endnode recognition. The second algorithm, Iligra checks

3If every node is adjacent to two or zero nodes of a triangle then it is an even triangle.
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the connectivity locally. The root graph G is constructed based on the correspondence
between a node in the line graph H and a link in its root graph G. Due to the choice
of an arbitrary node in the line graph H and checking the connectivity of its neighbors
during the algorithm�s execution. Besides being conceptually simple, Iligra has been
shown through simulations to be the most e¢ cient inverse line graph algorithm so far
proposed.

1.4 Random line graphs

A simple graph 4 with N nodes and L links is denoted by G (N;L). The line graph
H of a simple graph G is a graph in which every node corresponds to a link in G and
two nodes in H are adjacent if and only if their corresponding links in G share a node.
The graph G is called the root graph or the root graph of H. The number NH of nodes
in H equals the number L of links in G. Whitney�s Theorem [35][36] states that, if
connected graphs G1 and G2 have isomorphic line graphs, G1 and G2 themselves must
be isomorphic unless one is K3 and the other is K1;3. Cvetkovíc et al. [37] surveyed the
literature on line graphs.
Line graphs can model many real-world networks. For instance, a network of tennis

players is formed when we connect two players who have played in the same game and a
network of tennis games is a graph where two games are linked if the same competitors
have played in both of them. The network of tennis games is the line graph of the
network of tennis players [40]. In metabolisms, the chemical reaction network in which
the nodes are the reactions and two nodes are linked if they have the same chemical
compound, is the line graph of the chemical compound network in which the nodes
are the compounds and two nodes are linked if they are involved in the same chemical
reaction [38][39]. Line graphs can also model social networks as they are highly clustered
and assortative [40][41][38][42]. Moreover, line graphs have been used in detecting and
modeling the overlapping community structure in social networks [43][44].
Despite of the signi�cance of line graphs in the �eld of graph theory and complex

networks, a model to generate random line graphs is still lacking. In Chapter 6, we
propose a model to randomly generate line graphs with prescribed number of nodes
and number of links. Before introducing the model, we discuss some preliminaries and
various properties of random line graphs. Especially, we show that, given the �xed
number of nodes, the number L of links in line graphs possesses forbidden gaps in
the set N of integers. Without generating the root graphs �rst, our model is capable
of generating line graphs with speci�c link density and assortativity. Our model also
enables us to generate a group of root graphs whose assortativity coe¢ cient strictly
follows a linear law. Our model constructs line graphs by merging step by step a pair

4A simple graph is an unweighted, undirected graph containing no self-loops nor multiple links
between the same pair of nodes.
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of nodes in a group of separate cliques. The nodal merging at each step must be
implemented following certain rules which ensure that the constructed graphs are line
graphs. Two nodes, which are merged at each step, are randomly chosen. Given the
cliques of the same size, the assortativity [17][18] of the line graphs in each step is close
to 0, and the assortativity of the corresponding root graphs has a linear relationship with
the steps of the merging process. If a relatively smaller number of cliques of di¤erent size
are added to the majority cliques of the same size, the characteristics of the assortativity
of the line graphs become largely di¤erent. The line graphs are also constructed with
the cliques whose sizes follow a binomial distribution. The corresponding root graphs
appear equivalent to Erd½os-Rényi random graphs with binomial degree distributions,
zero assortativity and semicircle eigenvalue distributions.

1.5 Social networks with community structure

Social networks are currently widely studied [14][57][19]. Social networks are often
de�ned as networks where nodes are individuals and links are relations between indi-
viduals, re�ecting acquaintances, friendships, sexual relations, collaboration, common
a¢ liation, etc. Most social networks possess common properties of the real-world net-
works, such as high clustering coe¢ cient, short characteristic path length and power
law degree distribution [16][15]. Particularly, they possess some special properties like
assortative mixture, community and hierarchical structure [19][43][18][58]. The com-
munities are the subnets, which exhibit relatively higher levels of internal connections.
Community structures feature important topological properties that have catalyzed re-
searches on community detection algorithms and on modularity analysis [59][20][58].
The communities overlap with each other when nodes belong to multiple communities.
The overlap of di¤erent communities exists widely in real-world complex networks, par-
ticularly in social and biological networks [60][44][61]. Human beings have multiple
roles in the society, and these roles make people members of multiple communities at
the same time, such as companies, universities, families or relationships, hobby clubs,
etc.
In the movie actor network, where nodes are the actors and two actors are connected

if they have been casted together in one or more movie, we could regard the set of actors
in one movie as a community. According to the de�nition of movie actor network, the
communities of all the movies are cliques. These communities overlap with each other
if they have actors in common. The similar networks are the science coauthorship
networks (nodes represent the scientists and two nodes are connected if they have
coauthored one or more articles and the articles are communities), the journal editor
networks (nodes as the editors and two editors are adjacent if they serve on the same
editorial boards of journals) and sports player networks (nodes as players and two
players who played in the same games are connected).



10 CHAPTER 1. INTRODUCTION

These types of social networks are known as a¢ liation networks. The a¢ liation
networks, an important and large type of social networks, are the focus of this article.
The communities in a¢ liation networks are called groups. In the rest of this chapter,
the terms �community�and �group�will be interchangeably used. A¢ liation networks
naturally contain many fully connected subnetworks which are called cliques or complete
subgraphs in the language of graph theory, since the nodes of the same group, such as
a movie cast, are all connected with each other. The clique structure of social networks
increases largely the percentage of triangles among the three hops walks, consequently
resulting in high clustering coe¢ cient. Besides the statistics of individuals such as
clustering coe¢ cient, characteristic path length and nodal degree, we are also interested
to answer the following questions: the number of groups, the number of individuals each
group has, the groups each individual belongs to, the number of individuals every pair
of groups have in common, the number of groups every pair of individuals join together,
and the number of groups each group is adjacent to (two groups are adjacent if they
have individuals in common).
Palla et al. [60] de�ned four metrics to describe how the communities of networks

overlap with each other: the membership number of an individual, the overlapping
depth of two communities, the community degree and the community size. Palla et
al. [60] showed that the communities of real-world networks overlap with each other
signi�cantly. They reported that the membership number of an individual and the
overlapping depth of two communities and the community size all follow a power law
distribution, except that the community degree features a peculiar distribution that
consists of two distinct parts: an exponential distribution in the beginning and a power
law tail. Poller et al. [62] proposed a toy model of which both the community size and
the community degree follow a power law distribution, by applying preferential attach-
ment to community growth. There have been many e¤orts devoted to the modeling of
social networks [11][63][64]. The growing networking model proposed by Toivonen et al.
[64] succeeds in reproducing the common characteristics of social networks: community
structure, high clustering coe¢ cient and positive assortativity. The degree distribu-
tion of this model is somewhat deviating from a power law distribution despite being
heavy-tailed.
In Chapter 7, we propose a complete set of metrics which can fully characterize

the overlapping community structure of networks. The social networks are represented
by hypergraphs. The hypergraph representation of networks facilitates the computa-
tions of the characterizing metrics. We establish a hypergraph-based social network
model which exhibits innate tunable overlapping community structure. By compar-
ing simulation results of our model with results of real-world networks, we show that
our hypergraph model exhibits the common properties of large social networks: the
community (group) size, the community (group) degree and the community (group)
overlapping depth all follow a power law distribution, and our model possesses high
clustering coe¢ cient, positive assortativity, short average path length. By tuning the
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input individual membership number to follow a power law distribution, the individual
degree and the interest-sharing number also follow a power law distribution.

1.6 Randomness of brain networks

The interconnection pattern of a network can be represented [23] by a graph G (N;L)
with N nodes and L links. Various model networks have been introduced to study
the behavior of complex systems having underlying network structures. These model
networks are based on simple principles, still they capture essential features of the un-
derlying systems. In the random graph model of Erd½os and Rényi (ER) any two nodes
are randomly connected with probability [5][6][7][65]. This model assumes that inter-
actions between nodes are random. Recently, with the availability of large maps of real
world networks, it has been observed that the random graph model is not appropri-
ate for studying the behavior of real world networks. Hence, many new models have
been introduced. Chung and Lu [66][67] proposed a random graph with given degree
sequences, which has been later named con�guration model. Con�guration model has
deterministic degree sequence, hence, is less random. Watts and Strogatz [15] pro-
posed a model, popularly known as the �small-world network,�which has properties
of small diameter and high clustering. Moreover, this model network is very sparse: a
network with a very few number of edges, another property shown by many real-world
networks. In addition to the above mentioned properties, Barabási and Albert [16]
show that degree distributions of many real-world networks have a power law. This
implies that some nodes are much more connected than the others. Barabási-Albert�s
scale-free model and Watts-Strogatz�s small-world model have contributed immensely
in understanding evolution and behavior of the real systems having network structures.
These two models led to an outbreak in the �eld of networks, in which of randomness
and regularity coexist [14][68].
Real-world networks have several universal features, like small diameter, large clus-

tering coe¢ cient, scale-free degree distribution, assortative or disassortative mixing of
the nodes, module structures [14], etc. Irrespective of real-world networks having one or
more of the above-mentioned features, one thing common to all of them, is the existence
of some amount of randomness or disorder in the link structure. According to many
recent studies [69][70], randomness in links is one of the most important and desirable
ingredient for the proper functionality or the e¢ cient performance of complex networks.
For instance, information processing in brain is considered to be highly in�uenced by
random links among di¤erent modular structures [71]. The question arises whether one
can identify or characterize the level of randomness in the complex networks. Some au-
thors have proposed methods to assess randomness of complex networks qualitatively
[72][73].
De Haan et al. [74] has shown that the large-scale functional brain network organi-
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zation in Alzheimer patients deviates from the optimal "small-world" network structure
towards a more random type. This studies in Chapter 8 aims to present network spec-
tra based methods which measure randomness of networks in a quantitative way. With
the proposed randomness measure we di¤erentiate the brains of Alzheimer patients and
brains of non-Alzheimer patients.
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Chapter 2

Spectral Perturbation and
Reconstructability

In recent years, many network perturbation techniques, such as topological perturba-
tions and service perturbations, were employed to study and improve the robustness of
complex networks. However, there is no general way to evaluate the network robustness.
In this chapter, we propose a new global measure for a network, the reconstructabil-
ity coe¢ cient �, de�ned as the maximum number of eigenvalues that can be removed,
subject to the condition that the adjacency matrix can be reconstructed exactly. Our
main �nding is that a linear scaling law, E [�] = aN , seems universal, in that it holds
for all networks that we have studied.

2.1 Spectral Perturbation

2.1.1 Description and de�nition of reconstructability

The topology of a network G consisting of N nodes and L links can be described by the
adjacency matrix A, a N �N zero-one matrix, where the element aij = 1 if there is a
link between node i and node j, else aij = 0. Assuming that the graph is undirected, the
adjacency matrix A is symmetric. All eigenvalues are real and A possesses an eigenvalue
decomposition [23, art. 9, p. 443]

A = X�XT

where X =
�
x1 x2 � � � xN

�
is an orthogonal matrix (such that XTX = XXT = I)

with as columns the real and normalized eigenvectors x1; x2 ; : : : ; xN of A, correspond-
ing to the eigenvalues �1 � �2 � � � � � �N�1 � �N in descending order and the
diagonal matrix � = diag(�1; �2; � � � ; �N�1; �N). We are interested to know how many

15
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eigenvalues of A are needed to be able to reconstruct A exactly, given the set of eigen-
vectors x1; x2 ; : : : ; xN . In order words, we perturb the spectrum, the set of eigen-
values �1; �2; � � � ; �N�1; �N , of the adjacency matrix A by omitting the j smallest
eigenvalues in absolute value. Since

PN
j=0 �j = 0, on average half of the eigenval-

ues of the adjacency matrix A are negative. Therefore, we reorder the eigenvalues as���(1)�� � ���(2)�� � � � � � ���(n)�� such that �(j) is the j-th smallest (in absolute value)
eigenvalue corresponding to the eigenvector x(j). Let us de�ne the N �N matrices

�(j) = diag
�
0; : : : ; 0; �(j+1); �(j+2); � � � ; �(N)

�
and

A(j) = ~X�(j) ~X
T

where ~X =
�
x(1) x(2) � � � x(N)

�
is the reordered version of X corresponding to the

eigenvalues ranked in absolute value. Thus, �(j) is the diagonal matrix where the j
smallest (in absolute value) eigenvalues are put equal to zero, or equivalently, they are
removed from the spectrum of A. The spectral perturbation here considered consists
of consecutively removing more eigenvalues from the spectrum until we can no longer
reconstruct the adjacency matrix A. Clearly, when j = 0, we have that A(0) = A and
that, for any other j > 0, A(j) 6= A. Moreover, when j > 0, A(j) is not a zero-one
matrix. In Figure 2.1, we show the histograms of the entries of A(5), A(10), A(15) and
A(20) for an Erd½os-Rényi random graph with N = 36 nodes and link density of p = 0:5.
The removal of a part of the eigenvalues impacts the distribution of entries around 1
and the distribution of entries around 0 similarly, as shown in Figure. 2.1. This means
that the deviation of entries around 1 and the deviation of entries around 0 are almost
the same, and that the distribution of values around 1 and 0 will reach 1/2 roughly
simultaneously, when the number of removed eigenvalues increases gradually.
Using Heavyside�s step function h (x),

h (x) =

8<:
0 if x < 0
1
2
if x = 0

1 if x > 0

we truncate the elements of A(j) as h
��
A(j)

�
ij
� 1

2

�
. If we now de�ne the operator H

applied to a matrix A(j) that replaces each element of A(j) by h
��
A(j)

�
ij
� 1

2

�
, then

fAj = H �A(j)�
is a zero-one matrix, with the possible exception of elements 1

2
. The interesting obser-

vation from extensive simulation is that there seems to exist a maximal number �, such
that fAj = A�if j � �fAj 6= A�if j > �
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Figure 2.1: The histograms of the entries of A(5), A(10), A(15) and A(20). The matrix A
(A = A(0)) is the adjacency matrix of an Erd½os-Rényi random graph with 36 nodes and
link density of 0:5.

In other words, � is the maximum number of eigenvalues that can be removed from the
spectrum of the graph such that the graph can still be reconstructed precisely, given
the matrix X. We therefore call � the Reconstructability Coe¢ cient.

2.1.2 Theory

The eigenvalue decomposition A = X�XT of a symmetric matrix can be rewritten in
vector notation as,

A =

NX
k=1

�kxkx
T
k =

NX
k=1

�kEk (2.1)

where the matrix Ek = xkx
T
k is the outer product of xk by itself. Any element of A

can be written, with the above relabelling of the eigenvectors according to a ranking in
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absolute values of the eigenvalues
���(1)�� � ���(2)�� � � � � � ���(N)�� as

aij =
mX
k=1

�(k)
�
E(k)

�
ij
+

NX
k=m+1

�(k)
�
E(k)

�
ij

(2.2)

where m 2 [1; N ] is, for the time being, an integer. As shown in Appendix A, the 2-
norm of Ek is not larger than 1, so that

����E(k)�ij��� � 1 for any 1 � k � N , which implies

that �1 �
�
E(k)

�
ij
� 1. Relation (2.1) also explains why an ordering in absolute value

is most appropriate for our spectral perturbation: the usual ordering �1 � �2 � � � � �
�N�1 � �N in algebraic graph theory would �rst remove �N < 0, then �N�1 and so on.
However, j�N j can be large and its omission from the spectrum is likely to cause too
big an impact.
The reconstructability of a graph as described in Section 2.1.1 is now reformulated

as follows. Since aij is either zero or 1, it follows from (2.2) that, if�����aij �
NX

k=m+1

�(k)
�
E(k)

�
ij

����� < 1

2
(2.3)

we can reconstruct the element aij as

aij =

(
1 if

PN
k=m+1 �(k)

�
E(k)

�
ij
> 1

2

0 if
PN

k=m+1 �(k)
�
E(k)

�
ij
< 1

2

The reconstructability requirement (2.3) determines the values of m that satisfy the
inequality. The largest value of m obeying (2.3) is denoted by �, called the recon-
structability coe¢ cient of a graph.
Using (2.2), the reconstructability requirement (2.3) is equivalent to�����

�X
k=1

�(k)
�
E(k)

�
ij

����� < 1

2

A further analysis is di¢ cult due to the appearance of the matrix elements
�
E(k)

�
ij
, of

which, in general, is not much known. Since
����E(k)�ij��� � 1, we can bound the sum �

� =

�����
�X
k=1

�(k)
�
E(k)

�
ij

����� �
�X
k=1

���(k)�� ����E(k)�ij��� � �X
k=1

���(k)�� (2.4)

In many cases, this bound is conservative because, on average, half of the eigenvalues of
the adjacency matrix A is negative. Moreover, the matrix element

�
E(k)

�
ij
can also be

negative. We show in Appendix B for the class of Erd½os-Rényi random graph Gp (N)
that the bound (2.4) is, indeed, too conservative and that only extensive simulations
seem appropriate to determine the reconstructability coe¢ cient �.
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2.2 The Reconstructability of random graphs

Traditionally, complex networks have been modeled as Erd½os-Rényi (ER) random
graphs Gp(N), which can be generated from a set of N nodes by randomly assign-
ing a link with probability p to each pair of nodes. Besides their analytic tractability
[65], the ER random graphs have also served as idealized structures for peer-to-peer
networks, ad-hoc networks, gene networks, ecosystems and the spread of diseases or
computer viruses. If a graph problem cannot be solved analytically for Gp (N), expe-
rience teaches that chances are high that the problem is analytically intractable for all
graphs with at least one parameter that can be changed (such as N). For this reason,
ample attention is devoted to analyse the behavior of the reconstructability coe¢ cient
�p (N) for the random graph Gp (N).
According to the Wigner�s Semicircle Law [75][76][77] and the fact that the com-

plement of (Gp (N))
c = G1�p (N), for su¢ ciently large N , the spectrum of Gp (N) is

symmetric around p = 1
2
. Therefore, we expect that �p (N) = �1�p (N) for su¢ ciently

large N , which is con�rmed by simulations below.

2.2.1 Weibullian probability distribution of �p (N)

We explore three classes of ER random graphs: G0:2 (200) ; G0:5 (200) and G0:8 (200) :
For each class, 5000 random graphs are generated and we compute the reconstructabil-
ity coe¢ cient �p (N) of each graph. Figure 2.2 illustrates the probability distribution
of the reconstructability coe¢ cient �p (N) of ER random graphs, �tted by a Weibull
distribution. The probability density function of Weibull distribution is,

fWeibull (x;�; ') =

(
'
�

�
x
�

�'�1
e�(

x
�)

'

if x � 0
0 if x < 0

where � is the scale parameter and ' is the shape parameter [78].

2.2.2 E[�p (N)] as a function of N and p

Here, we investigate the average reconstructability coe¢ cient E[�p (N)] as a function of
N and p, for ER random graphs. First, we consider the ER random graphs G0:5 (N),
where the graph size N is increased from N = 50 to N = 2500 with a step of 50. Within
each class G0:5 (N), the realizations of � for 10000 graphs are computed. The mean E[�]
as well as the standard deviation of � are depicted in Figure 2.3.E [�] appears to be
linear with N , as �tted in Figure 2.3. The linear �tting function of E [�] as a function
of N , for G0:5 (N), is

E [�0:5(N)] = 0:36N
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Figure 2.2: The probability density function f (�) for N = 200, and p = 0:2; 0:5; 0:8.
For each p, 5000 samples of � are computed, and the histograms are �tted by Weibull
distribution.

Table 2.1: The parameter a of the general scaling law for ER random graphs.

p 0:1 0:2 0:3 0:4 0:5 0:6 0:7 0:8 0:9
a 0:50 0:46 0:42 0:40 0:39 0:40 0:41 0:45 0:47

Furthermore, Figure 2.4 (a) shows the scaling law of E[�p(N)] as a function of N
for random graphs with link density p from 0:1 to 0:9. These extensive simulations
suggest the linear scaling law (1.1). The magnitude of a for the ER random graphs
is surprisingly large. In G0:5 (N), about 40% of the spectrum is redundant from the
point of view of reconstructability de�ned above.For Gp (N) with p = 0:1; 0:2; � � � ; 0:9,
the parameter a of the general linear scaling law (1:1) are shown in Table 2.1. Thus,
we further examine the slope a(p) as a function of the link density p in Figure 2.4 (b).
From Table 2.1 we observe the approximate symmetry of the slope a(p). The slope a(p)
as a function of p is �tted with a parabola

a (p) = 0:39 (p� 0:5)2 (2.5)

as shown in Figure 2.4 (b).
Let E (�(p;N)) be the function E [�] as a function of p when there are N number of

nodes. We consider the ER random graphs Gp (200) with N = 200 nodes and p ranging
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Figure 2.3: The mean of reconstructability coe¢ cient E [�] of ER random graphs
G0:5 (N) with standard deviation �� shown as Y-error bar. E [�], which is �tted linearly
in the �gure, is cumputed from 10000 samples for each N .

from p = 0:01 to 1 with a step of 0:01. Similarly, 10000 graphs are generated for each
class Gp (200). As depicted in Figure 2.5, the E [�] as a function of the link density p
follows a similar parabola

E[�(p; 200)] = 77 (p� 0:5)2 (2.6)

E [�] appears to be symmetric around p = 0:5 within the range p 2 [0:09; 0:91]. It
seems that, when N ! +1, E[�(p; 200)] = 77 (p� 0:5)2, holds generally for the ER
random graphs. The parabola �tting only works well in the region p 2 [0:09; 0:91],
where the graph is well connected, and so is its complementary graph, which means
that the graph is not too sparse and not too dense. For very sparse/dense graphs, the
analysis of the reconstructability coe¢ cient is complicated because many degenerate
eigenvalues appear.

2.3 The Reconstructability of Other Networks

In this section, we will examine whether the linear scaling law (1.1) between the average
reconstructability coe¢ cient E[�] and the size N of a network is generally true for other
types of networks.
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Figure 2.4: (a) The scaling law for random graphs with p = 0:1; 0:2; � � � ; 0:9. We
compute 10000 samples of � to get the mean E [�]. (b) The curve �tting of the slope
a (p).

Table 2.2: The parameter a of the general scaling law for scale-free networks.

m 3 5 7
a 0:39 0:42 0:46

2.3.1 Scale-free networks

Power law graphs are random graphs speci�ed by a power law degree distribution
Pr[D = k] = L (k) k�� , where L (k) is a slowly varying function of k [79]. The power
law degree distribution is followed by many natural and arti�cial networks such as the
scienti�c collaborations, the world-wide web and the Internet. Speci�cally, we inves-
tigate the Barabási-Albert power law graph [16][80][14], which starts with m0 nodes.
At every time step, we add a new node with m links that connect the new node to m
di¤erent nodes already present in the graph. The probability that a new node will be
connected to node i in step t is proportional to the degree di(t) of that node.
We consider the Barabási-Albert graphs with N ranging from 500 to 2500 with a

step of 100 and m = 3; 5; 7. Large network sizes N are selected because a power law
degree distribution can be observed only when the network size is large. Within each
class of the BA graphs with a speci�c N and m; 10000 graphs are generated.
In Figure 2.6 (a), we observe that the linear scaling law (1:1) seem to hold for
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Figure 2.5: E [�] of Erd½os-Rényi random graphs Gp (200) for p. E [�] is computed
by 10000 smaples of �. The function E [�] of p, where p 2 [0:09; 0:91], is �tted by a
parabola.

Barabási-Albert networks as well. The slope a of the corresponding linear �tting are
shown in Table 2.2.

2.3.2 Small-world networks

The small-world model proposed by Watts and Strogatz [15] encompasses the following
two structural features as observed in real-world networks. Any two nodes can be
reached within a small number of links despite the large size of networks. Nodes are
well clustered in the sense that two direct neighbors of a node are more likely to be
connected compared to those in random graphs. The small-world model starts by
building a ring with N nodes and by joining each node with k nearest neighbors (k=2
on either side of the ring). Upon the resulted ring lattice, each link connected to a
clockwise neighbor is rewired to a randomly chosen node with a probability pr, and
is preserved with a probability 1 � pr. The small-world graph interpolates between a
ring or lattice (pr = 0) and a random graph with the constraint that each node has the
minimal degree k=2 (pr = 1).
The linear scaling law (1:1) of E[�] as a function of N is also observed in Watts-

Strogatz networks with di¤erent k and pr, as shown in Figure 2.6 (b). Table 2.3 shows
the parameters of the linear scaling law obtained from the curve �tting in Figure 2.6
(b). The slope a, or the proportion of eigenvalues that can be removed while the adja-
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Figure 2.6: (a) The linear scaling law for E[�] of Barabási-Albert networks. E[�] is
obtained by 10000 samples. m0 is the number of nodes of the initial graph, and for
each time step, the coming node can add m links to the current graph. (b) The linear
scaling law for E[�] of Watts-Strogatz networks. E[�] is obtained by 10000 samples.
For the initial ring lattice graph, every node has links with its k nearest nodes, and pr,
de�ned as the randomness, is the probability with which each link is rewired.

Table 2.3: The parameter a of the general scaling law for small-world networks.

k 10 10 10 10 20 20 20 20
p 0:2 0:4 0:6 0:8 0:2 0:4 0:6 0:8
a 0:44 0:47 0:56 0:55 0:48 0:50 0:57 0:56

cency matrix is still reconstructable, depends on the average degree k and the rewiring
probability pr.

2.3.3 Deterministic graphs

Finally, we explore the average reconstructability coe¢ cient E[�] as a function of N in a
set of deterministic graphs: a) a path; b) a ring where each node on a circle is connected
to its previous and subsequent neighbor on the ring; c) a wheel where a node locates in
the wheel center while the other nodes are on a circle around the wheel center and the
wheel center is connected to every node on the outer circle while each node on the outer
circle connects to its previous and subsequent neighbor. d) D-lattice or D-dimensional
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Figure 2.7: The linear scaling law for E [�] of six special deterministic types of graphs.
For path graph, ring graph and wheel graphs, N = 100; 200; 300; � � � ; 800. We take N =
25; 100; 225; 400; 625; 900, N = 8; 27; 64; 125; 216; 343; 512; 729, N = 16; 81; 256; 625 for
grid graphs, cubic graphs, and 4-dimensional lattice graphs, respectively.

Table 2.4: The parameter a of the general scaling law for deterministic graphs.

Graph Type Path Cycle Wheel Grid Cube 4-dimensional lattice
a 0:73 0:73 0:73 0:67 0:73 0:76

lattices where all interior nodes have the same degree 2D and D is the dimension. For
the �rst three types of graphs, we increase the number of nodes N from 100 to 800
with a step of 100. Here, we con�ne ourselves to the hyper-cube D-lattices in which
each edge is of equal size. In this case, a 2D-lattice becomes a grid and a 3D-lattice
equals a cubic lattice. For grid graphs, we take N = (5k)2 ; k = 1; 2; � � � ; 6, for cubic
graphs, N = k3; k = 2; 3; � � � ; 9. The 4D-lattices with N = k4 where k = 2; 3; 4; 5 are
considered. Figure 2.7 shows the reconstructability coe¢ cient � of each graph, which
seems always a linear function of the network size N: The corresponding linear curve
�ttings are described in Table 2.4. The paths, ring graphs and wheel graphs follows a
similar linear relation between � and N , because of similarity among their topologies.
As the dimension D of a lattice increases, the slope a is larger. In other words, more
eigenvalues can be removed without in�uencing the reconstruction of the adjacency
matrix.
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The complete bipartite graph Km;n consists of two sets M and N with m = jMj
and n = jN j nodes respectively, where each node of one set is connected to all other
nodes of the other set. There are no connection between nodes of a same set. The
eigenvalues of the adjacency matrix AKnm are �1 = ��N =

p
mn =

p
m (N �m)

and all others are zero. Hence, only two eigenvalues contribute in (2.1) such that
� � N � 2. For large N , the general observed law (1.1) then shows that aKnm =
E[�Knm ]

N
! 1. In other words, the maximum possible limit value of a can be attained in

very large complete bipartite graphs. However, this example shows that some graphs
may have intrinsic zero eigenvalues, that should be distinguished from zero eigenvalues
introduced by perturbations. Fortunately, for large complex networks, the probability
that intrinsic zero eigenvalues occur tends to zero, such that the reconstructability
coe¢ cient � mostly measures a resilient property of a large complex networks against
a spectral perturbation.

2.3.4 Summary

Surprisingly, a linear scaling law between the average reconstructability E[�] and the
network size N have been observed in ER random graphs, power law graphs, small-
world graphs and various deterministic graphs. This suggests that the linear relation
E[�] = aN may be a generic feature possessed by various complex networks.

2.4 The Linear Scaling Law With Eigenvector Per-
turbation

Besides the perturbation on eigenvalues, the eigenvector matrix can be perturbed. Re-
call that X =

�
x1 x2 � � � xN

�
denotes the eigenvector matrix of the graph with N

nodes. We generate a perturbation matrix R, which is an N by N matrix with random
entries, chosen independently from a normal distribution with mean of 0 and variance
of 1.
The Euclidean norm of a square matrix is identical to its largest singular value.

SincekXk2 = 1 for all the graph size N , we normalize the perturbation matrix as
R = R

2
p
N
such that the norm of the new perturbation matrix

R
2
� 1 for all the

graph size N . The perturbed eigenvector matrix is de�ned as

X
0
= X + " �R (2.7)

where the constant " is called the perturbation factor. Under such perturbation on the
eigenvector matrix, we re-examine the reconstructability coe¢ cient.
In this section, we investigate the linear scaling law with normalized eigenvector

perturbation de�ned by (2:7), con�ned to the ER random graphs. Intuitively, with



2.5. CHAPTER CONCLUSION 27

Table 2.5: The parameter a of the general scaling law for ER random graphs under
eigenvector perturbation.

" 0 0:01 0:05 0:1 0:2 0:3 0:4 0:5
a 0:38 0:38 0:37 0:36 0:31 0:13 0 0

strong perturbation in the eigenvector matrix (large "), the reconstructability coe¢ cient
is expected to be small. Figure 2.8 shows the linear scaling law for Erd½os-Rényi random
graphs. With normalized eigenvector perturbation, the linear scaling law (1:1) still holds
for Erd½os-Rényi random graphs, when " � 0:2.

Figure 2.8: The linear scaling law with normalized eigenvector perturbation for Erd½os-
Rényi random graphs. E [�] is the mean of 10000 samples of �. The scaling factor " are
shown in the legend. The link density p = 0:5.

2.5 Chapter conclusion

In this chapter, we have studied the spectral reconstructability of complex networks,
and de�ned a new metric of networks: the reconstructability coe¢ cient �. Through
extensive simulations, we investigated the properties of the reconstructability coe¢ cient
� for several important types of complex networks, such as ER random graphs, scale-
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Table 2.6: The summary of the parameter a for di¤erent types of graphs/networks.

a
min max

ER random graphs 0:39 0:5
Barabási-Albert power law graphs 0:39 0:46
Watts-Strogatz small-world graphs 0:44 0:57

Deterministic graphs 0:67 0:76

free networks and small-world networks, and also other special deterministic types of
graphs. A general linear scaling law (1:1), E [�] = aN , was found. For su¢ ciently large
N , a portion a of the smallest eigenvalues (in absolute value) can be removed from the
spectrum and the adjacency matrix is still reconstructable with its original eigenvectors.
The magnitude of a for di¤erent types of complex networks with di¤erent parameters,
varies from 39% to 76%, as shown in Table 2.6.
The properties of the mean of the reconstructability coe¢ cient E [�] was also studied

under eigenvector perturbation for ER random graphs. The normalized Gaussian dis-
tributed noise matrix, scaled by the perturbation factor ", was added to the eigenvector
matrix X. Simulations show that the linear scaling law E [�] = aN still holds for ER
random graphs until the perturbation factor " exceeds 0:2.
The basic eigenvalue relation (2:1) shows that the set of orthogonal eigenvectors are

weighted by their corresponding eigenvalues. Any eigenvector speci�es an orthogonal
direction in the N -dimensional space. The eigenvector with an eigenvalue in absolute
value close to 0 contains redundant information about the topology of the graph, in the
sense that after the removal of this eigenvalue the network can still be reconstructed
from the remaining spectrum. We observe that when the graphs have more constraints
to be generated, the parameter a is higher. Those deterministic graphs, like path,
ring and grid graphs, have more constraints to be generated, than ER random graphs,
power law graphs and small-world graphs. In the spectral domain, the more generating
constraints the graphs have, the less that N -dimensional space is �sampled�, or in other
words, the less spectral bases (eigenvectors) we need to reconstruct the graphs. One
may also say that the embedding of the graph structure in the N -dimensional space
does not need those orthogonal dimensions (that act similarly as a kernel of a linear
transformation).



Chapter 3

Graph Energy

This chapter reveals that graph energy has a linear relation with the multiplicity of
zero adjacency eigenvalues, not only for the molecular graphs coined by Ivan Gut-
man, but also for graphs with random structure. We further show that the energy of
a graph decreases linearly with the multiplicity of �1 adjacency eigenvalues for the
graphs constructed by combining Erd½os-Rényi random graphs and triangles. Last, we
use the degree-preserving rewiring to increase/decrease the assortativity of an Erd½os-
Rényi random graph step by step to 1/�1, and show that the energy decreases roughly
linearly with the rewiring steps, and the energy is at its maximumwhen the graph is non-
assortative, and the energy decreases when the graph becomes assortative/disassortative.

3.1 Graph energy vs. m0

In this section, we studies the relation between the energy EG and the multiplicitym0 of
zero eigenvalues for graph G (N;L). By adjusting the structure of the graph G (N;L),
we increasem0 by 1 at each step. We have two di¤erent G (N;L): one has deterministic
structure and the other is generated randomly at each step.
Our method to increase m0 is due to Van Mieghem [34]: Adjusting the structure of

the graph to have one more pair of non-adjacent nodes which have the same neighbors.
This pair of nodes correspond to two same rows/columns in adjacency matrix, of which
the rank hence decreases by 1. Therefore, there becomes one more zero eigenvalue.

3.1.1 Deterministic graphs

As shown in Figure 3.1 (a), Gk consists of three connected subgraphs, K1;k, P199�k and
K100, k = 1; 2; 3; � � � ; 198. The multiplicity m0 of zero eigenvalues of adjacency matrix
of Gk equals,

m0 (Gk) = k � 1

29
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The energy EG of Gk; k = 1; 2; 3; � � � ; 198, has been numerically computed. Figure 3.1
(b) depicts the energy EG as a function of m0, �tted by a line EG = 458:47�1:1648m0.

3.1.2 Random graphs

The graphGk at step k is illustrated in Figure 3.2 (a). The graphGk; k = 1; 2; 3; � � � ; 30,
is generated by the following procedures:

1. Generate an Erd½os-Rényi random graph GER (N;L) with N = 200 � 2k and
L = 3000� 2k.

2. Randomly choose k nodes from 200�2k nodes; And for each chosen node, attach
two extra nodes to it.

The multiplicity m0 of zero eigenvalues of adjacency matrix of Gk equals,

m0 (Gk) = k

The energy EG of Gk; k = 1; 2; 3; � � � ; 30, has been computed. Figure 3.2 (b) depicts
the energy EG as a function of m0, �tted by a line EG = 886:22� 5:7254m0.

3.2 Graph energy vs. m�1
The section studies the relation between the energy EG and the multiplicity m�1 of �1
eigenvalues for the graph G (N;L). By proper design, at each step k, there are k pairs
of adjacent nodes which have the same neighbors in the graph G (N;L). These k pairs
of nodes lead to m�1 = k. The graph Gk at step k is illustrated in Figure (a). The
graph Gk; k = 1; 2; 3; � � � ; 30, is generated by the following procedures:

1. Generate an Erd½os-Rényi random graph GER (N;L) with N = 200 � 2k and
L = 3000� 3k.

2. Randomly choose k nodes from 200�2k nodes; And for each chosen node, attach
two extra nodes to it and connect the two extra nodes with a link.

The multiplicity m�1 of �1 eigenvalues of adjacency matrix of Gk equals,

m0 (Gk) = k

The energy EG of Gk; k = 1; 2; 3; � � � ; 30, has been computed. Figure 3.3 (b) depicts
the energy EG as a function of m�1, �tted by a line EG = 885:81� 4:2316m�1.
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Figure 3.1: (a) The group of graphs Gk, k = 1; 2; 3; � � � ; 198, with m0 (Gk) = k� 1. (b)
The energy EG of the graph Gk, �tted by a linear function EG = 458:47� 1:1648m0.
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3.3 In�uence of assortativity on graph energy

In this section, we study the relation between the energy EG and the assortativity �D
of a graph. Van Mieghem et al. [81] showed that the spectral radius �1 increases when
the assortativity increases. Van Mieghem et al. [81] introduced a link rewiring method,
the degree-preserving rewiring, which can gradually raise or decrease the assortativity
�D of a graph.
In degree-preserving rewiring, the degree of all the nodes remain unchanged. In each

step, we randomly choose two links which do not share a node. The four nodes which
are incident to the selected two links are denoted by n1, n2, n3, and n4, and the degrees
of them satisfy dn1 � dn2 �.dn3 � dn4.

� Degree-preserving assortative rewiring: rewire the two links such that node n1 is
adjacent with node n2 and node n3 is adjacent with node n4. If any of the new
links exists before rewiring, do nothing in this step. After each rewiring step, the
assortativity �D becomes larger or unchanged.

� Degree-preserving disassortative rewiring: rewire the two links such that node n1
is adjacent with node n4 and node n2 is adjacent with node n3. If any of the new
links exists before rewiring, do nothing in this step. After each rewiring step, the
assortativity �D becomes smaller or unchanged.

3.3.1 Random graphs

We generate an Erd½os-Rényi random graph GER (N;L) with N = 60 nodes and L = 350
links, and the initial assortativity �D = 0:010872, which is very close to zero, and it is
in accordance with theory, since the degrees of two adjacent nodes in random graphs
are completely uncorrelated. We then use the degree-preserving assortative rewiring
for 10L = 3500 steps to increase the assortativity of the graph, as shown in the left
diagram of Figure 3.4 (a). At each rewiring step, the energy EG is also computed, as
shown in the right diagram of Figure 3.4 (a). The energy EG decreases roughly linearly
with the rewiring steps r and is �tted by a line function EG = 164:33 � 0:0054928r.
With the degree-preserving disassortative rewiring, we rewire the graph GER (N;L) for
10L = 3500 steps and �D decreases from 0:010872 to �0:87605, as illustrated in the
left diagram of Figure 3.4 (b). Surprisingly, as shown in the right diagram of Figure
3.4 (b), the energy EG decreases again roughly linearly with the rewiring steps r, and
is �tted by a line function EG = 164:43� 0:0062606r.
In Figure 3.4 (c), we show by numerical computations that the energy EG is at

its maximum when the graph is approximately non-assortative, and the energy EG
decreases when the graph becomes more assortative/disassortative.
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Figure 3.4: The degree-preserving rewiring is applied to an ER random graph with
60 nodes and 350 links. (a) The degree-preserving assortative rewiring increases the
assortativity �D of the graph (left) and decreases the graph energy EG roughly lin-
early (right), �tted by a linear function EG = 164:33 � 0:0054928r. (b) The degree-
preserving disassortative rewiring decreases the assortativity �D of the graph (left) and
also decreases the graph energy EG roughly linearly (right), �tted by a linear function
EG = 164:43� 0:0062606r. (c) The energy EG as a function of the assortativity �D.
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3.3.2 Grid graph

A m � n grid graph is the graph whose nodes correspond to the points in the m � n
rectangle with integer coordinates, x-coordinates being in the range 1; 2; � � � ; n, y-
coordinates being in the range 1; 2; � � � ;m, and two nodes are connected by a link
whenever the corresponding points are at distance 1. The grid graphs are fully deter-
ministic graphs. We generate a 10� 15 grid graph with 150 nodes and 275 links. The
degree-preserving rewiring is applied to the grid 10�15 graph. The initial assortativity
coe¢ cient �D = 0:5879. The grid graphs are not regular graphs, but they are very
close to regular graphs with degree 4, since most of nodes have degree 4 except those
nodes locating at four edges and four corners. This explains why the initial assortativ-
ity coe¢ cient of the grid graphs are high. When the disassortative degree-preserving
rewiring is applied, the assortativity can decrease down to �0:30215. Although there
is no much space for the assortativity to grow, �D still increases up to 0:85165 when we
use the assortative degree-preserving rewiring. The top plot of Figure 3.5 shows that
the energy EG of the grid graph is at its minimum before rewiring. The energy EG
start to increase when either of degree-preserving rewirings is employed.

3.3.3 Random trees

A tree is an undirected graph where there is only one path between each pair of nodes.
A random tree with N nodes is a tree uniformly chosen from the space of the trees with
N nodes. According to the de�nition of trees, any random tree with N nodes has only
N � 1 links, and thus has a very low link density. The random tree we study in this
section has 200 nodes and 199 links, with initial assortativity coe¢ cient �D = �0:0727,
close to zero. The second top plot of Figure 3.5 shows the relation of the graph energy
EG and the assortativity �D for trees. We observe that the graph energy EG and the
assortativity �D are highly correlated for trees. The energy EG of grid graphs increases
roughly linearly with the assortativity coe¢ cient �D.

3.3.4 Small-world graphs

The concept of the Watts-Strogatz small-world graph model has been introduced in
Section 2.3.2, Chapter 2. The Watts-Strogatz small-world graph we study here has
100 nodes, and each nodes initially is connected to 8 neighboring nodes (400 links in
total), and the rewiring probability is 0:1. The initial assortativity coe¢ cient of the
Watts-Strogatz small-world graph �D = 0:006, which is almost zero, suggesting that
the graph is very random and the degrees of adjacent nodes are uncorrelated. When
the degree-preserving rewiring is applied to the small-world graph, the assortativity can
reach from �0:77 to 0:78. As shown in the third plot (counting from the top) of Figure
3.5, the graph energy EG appears to increase with the absolute value of assortativity
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Figure 3.5: The relations of the graph energy EG and the assortativity coe¢ cient �D
for a 10 � 15 grid graph (pink circle), a random tree with 200 nodes (blue square), a
Watts-Strogatz small-world graph with 100 nodes, 400 nodes, and rewiring proability
0:1 (brown triangle), and a Barabasi-Albert scale-free graph with 600 nodes and 1196
links (red cross).
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j�Dj in the range from �0:4 to 0:4. In the other range, the relation of energy EG and
the assortativity coe¢ cient �D seems to be very fuzzy.

3.3.5 Scale-free graphs

The Barabási-Albert scale-free graph model has been introduced in Section 2.3.1, Chap-
ter 2. The Barabási-Albert scale-free graph has a power law degree distribution, which
is followed by many natural and arti�cial real-world complex networks. The Barabási-
Albert scale-free graph we consider here was generated from a seed graph of two isolated
nodes. One node is added at one step. Each new node has two links connecting to ex-
isting nodes in the graph. For each new link, the existing node is chosen with the
probability proportional to its degree plus 1. The �nally generated scale-free graph
has 600 nodes and 1196 links. The scale-free graph before degree-preserving rewiring is
disassortative, with �D = �0:12, since most low-degree nodes (the new coming nodes
at later steps) are preferably connected to the high-degree nodes. When the degree-
preserving rewiring is applied to the scale-free graph, the assortativity can only reach
from �0:44 to 0:55, because of the heterogeneous degree distribution. As shown in the
bottom plot of Figure 3.5, the graph energy EG and the assortativity �D are positively
correlated.

3.4 Chapter conclusion

We have studied the relations between the energy EG and three other metrics, the
multiplicity m0 of zero adjacency eigenvalues, the multiplicity m�1 of �1 adjacency
eigenvalues, and the assortativity coe¢ cient �D of graph G with constant number of
nodes and constant number of links. We show that the energy EG has a linear re-
lation with m0, not only for the molecular graphs coined by Ivan Gutman, but also
for quite general graphs: deterministic graphs and random graphs. We also show that
the energy EG decreases linearly with m�1 for the graphs constructed by combining
Erd½os-Rényi random graphs and triangles. We use the degree-preserving rewiring to in-
crease/decrease the assortativity of an Erd½os-Rényi random graph step by step towards
1/�1, and show that the energy decreases roughly linearly with the rewiring steps, and
the energy is at its maximum when the graph is non-assortative, and the energy de-
creases when the graph becomes assortative/disassortative. The claims of linearity for
graph energy are supported by extensive simulations. However, the analytical results
or proofs are still waiting to be found.
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Chapter 4

MARINLINGA

We propose a new algorithm Marinlinga for reverse line graph computation, i.e.,
constructing the original graph from a given line graph. Based on the completely new
and simpler principle of link relabeling and endnode recognition,Marinlinga does not
rely on Whitney�s theorem while all previous algorithms do. Marinlinga has a worst
case complexity of O(N2), where N denotes the number of nodes of the line graph.

4.1 Link adjacency matrix (LAM) and line graph

Two nodes of a graph are said to be adjacent if there is a link directly connecting them.
The adjacency matrix A of a graph contains all information of node adjacency: if node
i and node j are adjacent, the entry aij = 1, otherwise aij = 0. Similarly, two links are
adjacent if they are incident to the same node.

De�nition 1 The link adjacency matrix (LAM) C of a graph G with NG nodes and
LG links is the LG � LG symmetric matrix with the entry cij = 1 if link i and link j of
G are adjacent, else cij = 0.

The line graph l (G) of the graphG hasNl(G) nodes and Ll(G) links, and consequently
we have LG = Nl(G). According to the de�nitions of the line graph and the LAM,
evidently, the LAM C of G is equal to the adjacency matrix Al(G) of l (G),

C = Al(G) (4.1)

Due to Whitney�s theorem and ignoring isomorphisms, for any graph except K3 and
K1;3, one can construct the graph exclusively from its LAM. Usually, the (node) adja-
cency matrix is used to represent a graph. Here we use the LAM to specify any graph,
except for K3 and K1;3. Constructing the original graph of a line graph is equivalent
to converting a graph representation from the LAM to the adjacency matrix. By con-
structing the original graph directly from the line graph, confusion will arise concerning

41
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the links in the original graph and the nodes in the line graph. By introducing the
concept of LAM, we can avoid confusion and facilitate the description of our algorithm
Marinlinga.

4.2 Properties of the LAM

For a simple (undirected, unweighted and without self-loops) graphG (NG; LG) withNG
nodes and LG links, the LAM C has more constraints than the corresponding adjacency
matrix A, besides being symmetric and containing only 0 and 1 entries.
A link i has two endnodes, the endnode i+ and the endnode i�. Link j also has

endnodes j+ and j�. There are four con�gurations where link i is adjacent to link j, as
shown in Figure 4.1. For each single pair of links, the LAM only indicates whether they
are adjacent. If they are adjacent, we still do not know in which of the four possible
con�gurations this pair of links is adjacent. Fortunately, by combining the adjacency
relation of 3 or more links, we can determine the con�guration of those links.

i

j

i

j

i j iji + i +

i +i +

i − j+

j−

j+

j+ j−

i −

j−

i −

i −

j−

j+

Figure 4.1: The four possible con�gurations in which link i is adjacent to link j.

De�nition 2 If m links (m � 2) are adjacent to link i and incident to the same
endnode of link i, these m links are pairwise adjacent.

De�nition 3 The links, which are adjacent to link i, are de�ned as the neighboring
links of link i.

De�nition 4 The links incident to the endnode i+ of a link i are de�ned as the left-
neighboring links of i, and the links incident to the endnode i� are de�ned as the right-
neighboring links of i.

If we can recognize the link adjacency pattern of a link and its neighboring links,
we can specify the graph entirely.
Figure 4.2 (a) depicts an example of a link and its neighboring links. The link i

has 5 left neighboring links at its left endnode i+, denoted as i+1; � � � ; i+5, and 4 right
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neighboring links at its endnode i�, denoted as i�1; � � � ; i�4. The link adjacency pattern
of these 10 links is shown in Figure 4.2 (b). In the link adjacency pattern, the labels
of the left-neighboring links i+1; � � � ; i+5 are larger than link i, and smaller than the
right-neighboring links i�1; � � � ; i�4.
Given the con�guration of link i and its neighboring links, the corresponding link

adjacency pattern conforms to the following rules:

1. the left-neighboring links (such as i+1; � � � ; i+5 in the example of Figure 4.2 (a))
are incident to the same endnode i+, and are said (De�nition 2) to be pairwise ad-
jacent. Similarly, the right-neighboring links (such as i�1; � � � ; i�4 in the example
of Figure 4.2 (a)) are also pairwise adjacent. This explains the two all-1-triangles
(surrounded by the dashed lines) in Figure 4.2 (b), the upper one corresponding to
i+ and the second triangle corresponding to pairwise adjacent links i�1; � � � ; i�4.

2. Since there is at most one link between two nodes (multi-links are forbidden),
each of the left-neighboring links can be adjacent to at most one right neigh-
boring link and vice versa. Hence in Figure 4.2 (b), there exists at most one
1-entry in each row/column of the submatrix in yellow.

We summarize this observation:

Criterion 5 If the given link adjacency pattern has the following features, it is the link
adjacency pattern of a link i and its neighboring links (the labels of the left-neighboring
links are larger than link i, and smaller than the right-neighboring links),

� All entries of the �rst row are 1-entries;

� The triangle bounded by the (ni+ + 1)th column (including the (ni+ + 1)th column)
is an all-1-triangle, where ni+ denotes the number of the left-neighboring links of
link i and ni+ � 3;

� There is at most one 1-entry in each row/column of the submatrix, which is from
the 2nd to the (ni+ + 1)th row and from the (ni+ + 2)th to the (ni+ + ni� + 2)th
column, where ni� denotes the number of the right-neighboring links;

� The triangle bounded by the (ni+ + 2)th row (including the (ni+ + 2)th row) is an
all-1-triangle.

Theorem 6 Consider three links i, j and k are pairwise adjacent. If each of the other
m links is adjacent to all the three links i, j and k, then all the m+3 links are pairwise
adjacent.
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Figure 4.2: (a) The con�guration of a link i and its neighboring links. (b) The cor-
responding link adjacency pattern. there is at most one 1-entry in each row/column
of the submatrix in yellow. If all the entries in green and magenta are 1-entries, the
entries of the triangle in white must be also 1-entries.

Proof. The three links i, j and k are pairwise adjacent and the con�guration of i, j
and k can be K3 or K1;3, as shown in Figure C.1 (b). If the con�guration is K3, other
links can be adjacent to at most two of i, j and k. However, if the other m links are
adjacent to i, j and k, the con�guration of i, j and k must be K1;3, and i, j and k have
a common endnode. Since each of the m links is adjacent to i, j and k, the common
endnode of i, j and k must be also an endnode of each of the m links. According to
De�nition 2, all these m+ 3 links are pairwise adjacent.
In Figure 4.2 (b), links i, i+1 and i+2 are pairwise adjacent, as shown by entries

in green. Links i+3, i+4 and i+5 are adjacent to i, i+1 and i+2, as shown by entries in
magenta. By Theorem 6, links i, i+1, i+2, i+3, i+4 and i+5 are pairwise adjacent.

4.2.1 The basic forbidden link adjacency patterns in a LAM

Figure 4.3 (a) depicts the smallest forbidden link adjacency pattern in a LAM. The
con�guration of links i, j and k is a path on four nodes. Since link i has neighboring
links at both of its two endnodes, and if link r is adjacent with link i, then link r must
be also adjacent with link j or k. Hence, the pattern in Figure 4.3 (a) will not appear
in a LAM.
There are 6 forbidden link adjacency patterns of links i, j, k, r and t, as shown in

Figure 4.5. Since the number of the left-neighboring links of link i is smaller than 3,
we cannot use Criterion 5 to prove that the 6 link adjacency patterns are forbidden.
However, Figure 4.4, which exhibits the possible con�gurations of the link adjacency
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Figure 4.3: The smallest forbidden link adjacency pattern.

patterns of links i, j, k and r, will facilitate the proof that the 6 link adjacency patterns
in Figure 4.5 are forbidden.

The link adjacency pattern of links i, j, k and r in Figure 4.5 (a), (b) and (c) are
the same as the link adjacency pattern of links i, j, k and r in Figure 4.4 (a). There
are only two possible con�gurations of this link adjacency pattern. As we can observe
in Figure 4.4 (a), it is impossible to have a new link t which is only adjacent with link
i, or only adjacent with links i and j, or adjacent with all of i, j, k and r. Hence, the
patterns in Figure 4.5 (a), (b) and (c) are forbidden. In the same way, we observe that
the patterns in Figure 4.5 (d), (e) and (f) are also forbidden.
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Figure 4.4: The possible con�gurations for two link adjacency patterns of 4 links. This
�gure helps to prove that the patterns of 5 links in Figure 4.5 are forbidden.

When the number of the left-neighboring links of link i is not smaller than 3 (which
implies that the number of 1-entries in the �rst all-1-triangle is not smaller than 6), we
can use Criterion 5 to determine whether a link adjacency pattern is forbidden.
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Figure 4.5: The forbidden link adjacency patterns of 5 links.

4.3 MARINLINGA

Marinlinga is the algorithm that we designed to compute the original graph of a
line graph, given the adjacency matrix of that line graph. Although Marinlinga
is designed for connected line graphs, it is also convenient to compute the original
graph of a disconnected line graph component by component. In the description of
Marinlinga, the connectedness of the concerned graph is always assumed.
As explained in Section 4.1, the adjacency matrix Al(G) of l (G) is equal to the LAM

CG of G. Constructing the original graph of a line graph, is equivalent to constructing
a graph given the LAM of that graph. Marinlinga only deals with the upper triangle
of the given LAM C.

4.3.1 Matrix relabeling

The matrix relabeling algorithm rearranges the LAM C in such a way that the left
and right neighboring links of the �rst link can be recognized via Theorem 6 and the
construction algorithm can work e¢ ciently. In each column there are some 1-entries
(red dots). If after relabeling the top 1-entries of all the columns are connected by a
curve, the curve should be non-increasing. For example, by the LAM C of a graph with
50 links in Figure 4.6 (a), we can only determine which links are adjacent to the �rst
link, without any information about which endnode of the �rst link that the neighboring
links are incident to. Fortunately, according to Theorem 6, the relabeled LAM C in
Figure 4.6 (b) tells that links 2-5 are the left-neighboring links of the �rst link and links
6-10 are the right-neighboring links.
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Figure 4.6: Matrix relabelling on the LAM C of a graph with 50 links. The red dots
represent 1-entries. (a) Before relabelling; (b) After relabelling.

Let us �rst introduce the meaning of swapping the labels of two links in a LAM
CLG�LG. The entry cij indicates whether links i and j are adjacent. Swapping the
labels of links j and k (j < k) implies that links which are previously adjacent to link
j are now adjacent to link k, and links which are previously adjacent to link k, are
now adjacent to link j, but the adjacency relation between links j and k is the same
as before, namely the entry cjk of CLG�LG is unchanged. Hence, swapping the labels of
links j and k (j < k) means to swap the entries cij and cik for i = 1; 2; � � � ; j�1 (shown
in the example of Figure 4.8 in green), the entries cji and cik for i = j + 1; � � � ; k � 1
(in magenta), the entries cji and cki, i = k + 1; � � � ; LG � 1; LG (in yellow).

C  SwapLabel(C; j; k)
1 for i = 1 to j � 1 do
2 swap(cij; cik)
3 for i = j + 1 to k � 1 do
4 swap(cji; cik)
5 for i = k + 1 to LG do
6 swap(cji; cki)

Figure 4.7: Meta-code for SwapLabel.
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Lines 1-3 of the metacode of Algorithm 4.7 swap the entries cji and cik, i = j +
1; � � � ; k � 1, and lines 4-6 swap the entries cji and cik, i = j + 1; � � � ; k � 1, and lines
7-9 swap the entries cji and cki, i = k + 1; � � � ; LG � 1; LG. The code swap (cij; cik) of
line 2 is equivalent to the codes: t = cij; cij = cik; cik = t.
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Figure 4.8: The illustration of swapping the labels of link 5 and 8. The entries in green,
magenta and yellow ought to be swapped respectively.

Next, we will explain the matrix relabeling algorithm. We will �rst give an example
showing how the matrix relabeling algorithm relabels the LAM C in Figure 4.6 (a) into
the matrix in Figure 4.6 (b). In the �rst row of the matrix in Figure 4.6 (a) there are
9 1-entries in total. There are 6 0-entries from c1;2 to c1;10 and 6 1-entries from c1;11
to c1;50: c1;3 = c1;5 = c1;6 = c1;8 = c1;9 = c1;10 = 0 and c1;13 = c1;15 = c1;18 = c1;19 =
c1;24 = c1;40 = 1. We swap the labels of links 3 and 13, links 5 and 15, links 6 and
18, links 8 and 19, links 9 and 24, links 10 and 40 by Algorithm 4.10 and the LAM
C is shown in Figure 4.9. In the second row, there are 3 1-entries from c2;3 to c2;10.
There are 2 0-entries from c2;3 to c2;5 and 2 1-entries from c2;6 to c2;10: c2;4 = c2;5 = 0
and c2;6 = c2;9 = 1. We swap the labels of links 4 and 6, links 5 and 9. By similar
operations, we relabel the LAM C into the order shown in Figure 4.6 (b).
Now we give the general description of the matrix relabeling algorithm. In the kth

row of C, Lines 1-7 of Algorithm 4.10 store the value of i in X when the entry cki is
0, i = u + 1; � � � ; a + u. Lines 8-14 store the value of i in Y when the entry cki is 1,

i = a + u + 1; � � � ; b. If a =
bP

i=u+1

cki, X and Y have the same number of elements.

Lines 15-17 swap the labels of Xi and Yi, where Xi and Yi are the ith element of X
and Y respectively. For instance in Figure 4.8 (b), if we take u = 2, k = 2, b = 10 and

a =
10P
i=3

c2i = 5, by Algorithm 4.10, X =
�
5 7

�T
; Y =

�
8 10

�T
, the labels of links
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Figure 4.9: The LAM C after the relabeling of the �rst row.

5 and 8, 7 and 10 are swapped respectively.
Lines 1-2 of Algorithm 4.11 make the neighboring links of link 1 have the smaller

labels than the other links. By lines 3-4, the labels of the links which are adjacent to
both link 1 and 2 are smaller than those of the remaining links. Further, lines 5-6 let
the labels of the links which are adjacent to all of links 1, 2 and 3 are smaller than those
of the remaining links. Lines 7-14 make that the labels of the links which are adjacent
to link i but not adjacent to links 1; � � � ; i� 1, are smaller than the labels of the links
which are not adjacent to link 1; � � � ; i, for i = 2; � � � ; LG. Figure 4.6 and 4.12 show
examples of C before and after matrix relabeling.

Let s1 =
LGP
i=2

c1i, s2 =
s1+1P
i=3

c2i and s3 =
s2+2P
i=4

c3i. After relabeling by Algorithm 4.11,

the given LAM C satis�es:

� For i = 2; � � � ; s1 + 1, c1i = 1; and for i = s1 + 2; � � � ; LG, c1i = 0.

� For i = 3; � � � ; s2 + 2, c2i = 1 if s2 � 1; and for i = s2 + 3; � � � ; s1 + 1, c2i = 0 if
s1 � s2 + 2.

� For i = 4; � � � ; s3 + 3, c3i = 1 if s3 � 1; and for i = s3 + 4; � � � ; s2 + 2, c3i = 0 if
s2 � s3 + 2.

� If link j (j � s1+1) is adjacent to link i but not adjacent to links 1; 2; � � � ; i � 1
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C  GroupLabelSwapping(C; u; k; a; b)
1 m 0
2 for i = u+ 1 to a+ u do
3 if cki = 0 then
4 m m+ 1
5 Xm  i
6 m 0
7 for i = a+ u+ 1 to b do
8 if cki = 1 then
9 m m+ 1
10 Ym  i
11 for i = 1 to m do
12 C  SwapLabel(C;Xi; Yi)

Figure 4.10: Meta-code for GroupLabelSwapping.

(i � 2), and link k (k � s1+1) is not adjacent to all of links 1; 2; � � � ; i (i � 2),
then j < k.

If s3 � 1 (which implies that s2 � 2 and s1 � 3), according to Theorem 6, links
2; 3; � � � ; s3 + 3 are the left-neighboring links of links 1 and the links s3 + 4; � � � ; s1 + 1
are the right-neighboring links of link 1, as illustrated in the example of Figure 4.13
where s1 = 9 and s3 = 3.

4.3.2 Construction algorithm

The construction algorithm converts the relabeled C into the matrix E2�LG, where the
entries e1i and e2i denotes the two endnodes of link i. During the process of the con-
struction, the zero entries of E2�LG mean that the endnodes have not been determined
yet. We will �rst show an example of graph construction, and then describe the general
construction algorithm.

An example of graph construction from C

From the given LAM C in Figure 4.6 (b), we deduce that the graph has 50 links. Based
on the LAM C, we will determine the endnodes of the 50 links. The construction
consists of the following steps:

1. Let nodes 1 and 2 be the endnodes of link 1. According to Theorem 6, node 1
is also the endnode of links 2-5 and node 2 is also the endnode of links 6-10, as
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(C; s1; s2; s3) MatrixRelabeling(C)
1 s1  the sum of c1i, where i = 2 to LG
2 C  GroupLabelSwapping(C; 1; 1; s1; LG)
3 E s2  the sum of c2i, where i = 3 to s1 + 1
4 C  GroupLabelSwapping(C; 2; 2; s2; s1 + 1)
5 s3  the sum of c3i, where i = 4 to s2 + 2
6 C  GroupLabelSwapping(C; 3; 3; s3; s2 + 2)
7 �s s1 + 1
8 k  2
9 while �s < LG and k � LG do
10 s the sum of cki, where i = �s+ 1 to LG
11 C  GroupLabelSwapping(C; �s; k; s; LG)
12 k  k + 1
13 �s �s+ s

Figure 4.11: Meta-code for MatrixRelabeling.

shown in Figure 4.14 (a) and equation (4:2) below, where the numbers above the
matrix are the link numbers.

E =

� 1 2 3 4 5 6 7 8 9 10 11 � � � 50
1 1 1 1 1 2 2 2 2 2 0 � � � 0
2 0 0 0 0 0 0 0 0 0 0 � � � 0

�
(4.2)

Let node 3 be the other endnode of link 2. The 2nd row of the LAM C shows
that links 11-14 are adjacent to link 2. Hence, node 3 is also the endnode of links
11-14, as shown in Figure 4.14 (b) and equation (4:3).

E =

� 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 � � � 50
1 1 1 1 1 2 2 2 2 2 3 3 3 3 0 � � � 0
2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 � � � 0

�
(4.3)

Similarly, let node 4 be the endnode of link 3, 6 and 15-18 as shown in Figure
4.14 (c) and equation (4:4),

E =

� 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 1 1 1 1 2 2 2 2 2 3 3 3 3
2 3 4 0 0 4 0 0 0 0 0 0 0 0
15 16 17 18 19 � � � 50
4 4 4 4 0 � � � 0
0 0 0 0 0 � � � 0

�
(4.4)
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Figure 4.12: The relabeled C of four ER random graphs G (N; p): (a) N = 350, p =
log(N)
2N

; (b) N = 200, p = log(N)
N
; (c) N = 100, p = 2 log(N)

N
; (d) N = 32, p = 1, where

p = log(N)
N

is the threshold probability for the connectivity of the graph.

and let node 5 be the endnode of link 4, 8 and 19 as shown in Figure 4.14 (d) and
equation (4:5),

E =

� 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 1 1 1 1 2 2 2 2 2 3 3 3 3
2 3 4 5 0 4 0 5 0 0 0 0 0 0
15 16 17 18 19 20 � � � 50
4 4 4 4 5 0 � � � 0
0 0 0 0 0 0 � � � 0

�
(4.5)

and let node 6 be the endnode of link 5, 16 and 20-23 as shown in Figure 4.14 (e)
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Figure 4.13: The LAM (a) relabeled by Algorithm 4.11 and its corresponding graph
(b).

and equation (4:6).

E =

� 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 1 1 1 1 2 2 2 2 2 3 3 3 3
2 3 4 5 6 4 0 5 0 0 0 0 0 0
15 16 17 18 19 20 21 22 23 24 � � � 50
4 4 4 4 5 6 6 6 6 0 � � � 0
0 6 0 0 0 0 0 0 0 0 � � � 0

�
(4.6)

Then compute the LAM of the constructed part of the graph as shown in Figure
4.14 (f). The red dots are 1-entries which are from the given LAM in Figure 4.6
(b). The green dots are 1-entries which are determined by the red 1-entries. If
the corresponding entries in the given matrix are not 1, then the matrix is not a
LAM.

2. In the second step, we scan rows 6 to 10 of the LAM, since links 6 to 10 are
incident to the same endnode. Let node 7 be the endnode of link 7, 21 and 24-25,
and let node 8 be the endnode of link 9 and 20, and let node 9 be the endnode of
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Figure 4.14: (a) The example of construction. The initialization is done in (a). Both or
one of the two endnodes of links 1-23 are determined. (b) The LAM of the constructed
part (links 1-23) of graph are computed. The green 1-entries are determined by the red
1-entries.

link 10, 14 and 26-27, as shown in Equation (4:7) and Figure 4.15.

E =

� 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 1 1 1 1 2 2 2 2 2 3 3 3 3
2 3 4 5 6 4 7 5 8 9 0 0 0 9
15 16 17 18 19 20 21 22 23 24 25 26 27 28
4 4 4 4 5 6 6 6 6 7 7 9 9 0
0 6 0 0 0 8 7 0 0 0 0 0 0 0
29 � � � 50
0 � � � 0
0 � � � 0

�
(4.7)

3. Similarly, let node 10 be the endnode of link 11, 19 and 28-30, and let node 11 be
the endnode of link 12, 18 and 31-35, and let node 12 be the endnode of link 13
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Figure 4.15: (a) The example of construction. Both or one of the two endnodes of links
1-27 are determined. (b) The LAM of the constructed part (links 1-27) of graph are
computed. The green 1-entries are determined by the red 1-entries.

and 36, as shown in Equation (4:8) and Figure 4.16 (a).

E =

� 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 1 1 1 1 2 2 2 2 2 3 3 3 3
2 3 4 5 6 4 7 5 8 9 10 11 12 9
15 16 17 18 19 20 21 22 23 24 25 26 27 28
4 4 4 4 5 6 6 6 6 7 7 9 9 10
0 6 0 11 10 8 7 0 0 0 0 0 0 0
29 30 31 32 33 34 35 36 37 � � � 50
10 10 11 11 11 11 11 12 0 � � � 0
0 0 0 0 0 0 0 0 0 � � � 0

�
(4.8)

4. Constructing in this way, the two endnodes of all the links are eventually deter-
mined, as shown in Equation (4:9) and Figure 4.17 (a). The �nal structure of
the matrix E exhibits the link list of the original graph G which consists of 30
nodes and 50 links. For example, link 36 connects node 12 and node 15 in G. The



56 CHAPTER 4. MARINLINGA

36

(a) (b)

20

26
27

10

11
12

13

14
1
2

3

4

5

8

1 2

3

1817 15

16 4

6

5

22

23

6

721

24
257

9

8

9

19

2829
3010

31
32333435

11

12

Figure 4.16: (a) The example of construction. Both or one of the two endnodes of links
1-36 are determined. (b) The LAM of the constructed part (links 1-36) of graph are
computed. The green 1-entries are determined by the red 1-entries.

matrix E is readily transformed into the adjacency matrix of G.

E =

� 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 1 1 1 1 2 2 2 2 2 3 3 3 3
2 3 4 5 6 4 7 5 8 9 10 11 12 9
15 16 17 18 19 20 21 22 23 24 25 26 27 28
4 4 4 4 5 6 6 6 6 7 7 9 9 10
13 6 14 11 10 8 7 15 16 13 17 18 19 19
29 30 31 32 33 34 35 36 37 38 39 40 41 42
10 10 11 11 11 11 11 12 13 14 15 15 16 17
20 21 22 23 24 21 16 25 23 26 17 26 24 24
43 44 45 46 47 48 49 50
17 17 18 23 23 23 27 27
27 28 21 26 25 28 29 30

�
(4.9)

Initialization (The recognition of the endnodes of the �rst link and its neigh-
boring links)

When s3 � 1, Theorem 6 implies that s2 � 2, s1 � 3 and links 2; 3; � � � ; s3 + 3 are
incident to the endnode i+1 of link 1 and links s3 + 4; � � � ; s1 + 1 are incident to the
endnode i�1 of link 1. Therefore, line 1-2 of Algorithm 4.18 initialize E by E . The
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Figure 4.17: (a) The example of construction. The two endnodes of all links are deter-
mined. (b) The LAM of the constructed graph is computed. The green 1-entries are
determined by the red 1-entries.

numbers above the matrix E in (4:10) are the column numbers, which indicate the link
numbers, and E has the following structure,

E =
� 1 2 � � � s3 + 3 s3 + 4 � � � s1 + 1 s1 + 2 � � � LG

1 1 � � � 1 2 � � � 2 0 � � � 0
2 0 � � � 0 0 � � � 0 0 � � � 0

�
(4.10)

When s3 = 0, Theorem 6 cannot be used. However, the limited number of cases
of s3 = 0 enables us to accomplish the initialization with the detailed analysis in the
Appendix C.

The recognition of the endnodes of the whole graph

Lines 1-2 of Algorithm 4.19 relabel the given LAM C and determine the initial state.
In the initial state, link 1 is always incident to node 1 and 2. Some of the neighboring
links of link 1 are incident to node 1, and the other neighboring links are incident to
node 2. The second endnodes of the neighboring links of link 1 have not decided yet in
the initial state.
Line 3 initiates the number of nodes NG to 2. The two endnodes of link 1 are

already determined. Starting with link 2 until link LG (line 4), the number of nodes
NG increases by 1 (line 6) if the second endnode of link i is not determined (line 5).



58 CHAPTER 4. MARINLINGA

E2�LG  Initialization(C; s1; s2; s3)
1 if s3 � 1 then
2 E  E
3 else if s1 = 1 then
4 E  E1
5 else ifs1 = 2 then
6 E2�LG  Initialization2(C; s2; s3)
7 else if s1 = 3 then
8 E2�LG  Initialization3(C; s2; s3)
9 else if s1 � 4 then
10 E2�LG  Initialization4(C; s1; s2; s3)

Figure 4.18: Meta-code for Initialization.

Let the second endnode of link i be NG (line 7). When link i is adjacent to link j,
j = i + 1; � � � ; LG (lines 8-9), let the �rst endnode of link j be NG (line 11) if the
�rst endnode of link j is not determined (line 10). If the �rst endnode of link j is
determined but the second endnode is not determined and links i and j do not share
the �rst endnode (line 12), let the second endnode of link j be NG (line 13).

4.3.3 Worst case complexity of MARINLINGA

Algorithm 4.7 has a complexity of O (LG). The complexity of Algorithm 4.11 can be
computed as follows. Line 1 has a complexity of O (LG). In the worst case, the function
of line 2, Algorithm 4.10 has a complexity of O (L2G), if m in line 15 of Algorithm 4.10
is proportional to LG. The worst case complexity of lines 3-6 is also O (L2G). Hence,
lines 1-6 have a complexity of O (L2G). Neglect O (1) operations of lines 7-8. The times
that lines 9-14 are executed is stored in k. If k is proportional to LG, m in line 15
of Algorithm 4.10 must be bounded by a constant, then the complexity of line 11 is
O (LG). If k is bounded, the complexity of line 11 will be O (L2G). Therefore, lines 9-14
have a worst case complexity of O (L2G). Hence, the complexity of Algorithm 4.11 is
O (L2G).
Algorithm C.2, C.4 and C.6 have a worst case complexity of O (1), hence the com-

plexity of Algorithm 4.18 is also O (1). Lines 4-18 of the main Algorithm 4.19 have a
worst case complexity of O (L2G). In summary, the worst case complexity of theMarin-
linga is O (L2G). Since the number of links of the original graph G and the number of
nodes of the line graph l (G) are equal, LG = Nl(G), the worst case complexity of the

Marinlinga is written as O
�
N2
l(G)

�
.
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E2�LG  Marinlinga(C)
1 (C; s1; s2; s3) Matrixrelabeling(C)
2 E2�LG  Initialization(C; s1; s2; s3)
3 N  2
4 for i = 2 to LG do
5 if e2i = 0 then
6 N  N + 1
7 e2i  N
8 for j = i+ 1 to LG do
9 if cij = 1 then
10 if e1j = 0 then
11 e1j  N
12 else if e2j = 0 and e1i 6= e1j then
13 e2j  N

Figure 4.19: Meta-code for Marinlinga.

4.4 Chapter conclusion

We have presented a new algorithm Marinlinga for reverse line graph construction.
By introducing the concept of LAM, we transformed the problem of reverse line graph
construction into the problem of constructing a graph from the LAM. Marinlinga
consists of two sub-algorithms: the matrix relabeling algorithm and the construction
algorithm. The matrix relabeling algorithm preprocesses the LAM into the special or-
der by which we can determine the neighboring links of the �rst link and the endnodes
of the �rst link incident to the neighboring links. The construction algorithm makes
the �rst two nodes be the endnodes of the �rst link by default, and thereafter, deter-
mines the endnodes of the remaining links. Marinlinga has a worst case complexity
of O(N2

l(G)), where Nl(G) denotes the number of nodes of the line graph. The complexity
of Roussopoulos�algorithm mentioned in [49] is O(Nl(G)+Ll(G)), where Nl(G) and Ll(G)
are number of nodes and links of the line graph. Since Ll(G) = O

�
N2
l(G)

�
in worst

case, the complexity of Roussopoulos�algorithm is also O(N2
l(G)) in worst case. How-

ever, this analysis neglects the computational time of a sub-algorithm that determines
the maximal connected common subgraph in each iteration. Finding a maximally con-
nected common subgraph is anNP -complete problem [52], implying that Roussopoulos�
algorithm is, in fact, not polynomial in worst case.
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Chapter 5

ILIGRA

This chapter presents a new and e¢ cient algorithm, Iligra, for inverse line graph
construction. Given a line graph H, Iligra constructs its root graph G with the time
complexity being linear in the number of nodes in H. If Iligra does not know whether
the given graph H is a line graph, it �rstly assumes that H is a line graph and starts its
root graph construction. During the root graph construction, Iligra checks whether
the given graph H is a line graph and Iligra stops once it �nds H is not a line graph.
The time complexity of Iligra with line graph checking is linear in the number of
links in the given graph H. For sparse line graphs of any size and for dense line graphs
of small size, numerical results of the running time show that Iligra outweighs all
currently available algorithms.
This chapter is organized as follows. Iligra is presented in Section 5.1. Section 5.6

demonstrates how Iligra works on a descriptive example. Numerical comparisons
of Iligra with the algorithms of Lehot, Roussopoulos, and Degiorgi and Simon for
di¤erent types of line graphs and non-line graphs are presented in Section 5.7. Finally,
we conclude in Section 5.8.

5.1 Notation

Table 5.1 summarizes the notation, which is used in the presentation of Iligra. Accord-
ing to the de�nition of the line graph, each node in a line graphH (NH ; LH) corresponds
to a link in its root graph G (N;L). Hence, the number of nodes NH in the line graph
H and the number of links L in the root graph G are equal, NH = L. We always use
n (or n with subscript) to denote a node in H. The link in G corresponding to node n
in H is denoted by ln. In the remainder of the paper, we use v (or v with subscript) to
denote a node in G. Denote by Nb (n) the set of the nodes in H which are adjacent to
node n, which are also called the neighbors1 of node n. Denote by Lb (ln) the set of the

1A node is the neighbor of another node if they are adjacent with each other.

61
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Table 5.1: Notation

G (N;L) The root graph with N nodes and L links
H (NH ; LH) The line graph of G with NH nodes and LH links
n The node n in H
N The set of all the nodes in H
Nw The set of the nodes in H, corresponding to the

links in G whose incident nodes are not yet determined
Nh The set of the nodes in H, corresponding to the

links in G of which one incident node is determined
Nb (n) The set of the neighbors of node n in H
ln The link in G which corresponds to node n in H
Lb (ln) The set of the links in G which correspond to

the nodes in Nb (n)
vln The �rst identi�ed incident node of link ln in G
Addnode(G; v) The function which adds a node v to G
Addlink(G; v1; v2) The function which adds a link v1 � v2 to G

links in G which correspond to the nodes in Nb (n). Every link in the root graph G has
two incident nodes2. In order to construct the root graph G from a given line graph
H, we have to determine the two incident nodes of every link in G. In the root graph
G, we denote by vln the incident node of link ln which is �rstly determined during the
algorithm�s execution. The set of the nodes in H, which correspond to the links in G
whose incident nodes are not yet determined, is denoted by Nw. The set of the nodes
in H, which correspond to the links in G of which one incident node is determined, is
denoted by Nh.

5.2 Concept

The nodes in a line graphH (NH ; LH) are denoted by n1; n2; n3; � � � ; nNH , and the corre-
sponding links in the root graph G are denoted by ln1 ; ln2 ; ln3 ; � � � ; lnNH . Before reading
the information from H, it is unknown how the links ln1 ; ln2 ; ln3 ; � � � ; lnNH connect the
nodes in G, and even the number of nodes N in G is unknown.
Suppose that link ln1 is incident to v1 and v2 in G. From the line graph H, the

set Nb (n1) of the neighbors of node n1 in H is known, and the set Lb (ln1) of the links
in G, which correspond to the nodes in Nb (n1), is also known. By the de�nition of a
line graph, the links in Lb (ln1) are the neighboring links of link ln1, hence, the links in
Lb (ln1) should be incident to either v1 or v2. If the links in Lb (ln1) which are incident

2A node is an incident node of a link if it is incident to that link.
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to v1 are known, the rest of links in Lb (ln1) must be incident to v2. Unfortunately, it is
unknown which links in Lb (ln1) are incident to v1.
When considering links ln2 ; ln3 ; � � � ; lnNH , the same problem appears. The di¢ culty

in constructing the root graph G lies in partitioning the set of the neighboring links into
two complementary subsets of links: the links which are incident to the �rst incident
node of the concerned link, and the other links which are incident to the second incident
node of that link.
Without loss of generality, suppose that Lb (ln1) = fln2 ; ln3 ; � � � ; ln10g. Suppose that

the set Lb (ln1) of the neighboring links of ln1 are partitioned successfully into two sub-
sets: Lb;v1 (ln1) = fln2 ; ln3 ; ln4g where the links are incident to v1, and Lb;v2 (ln1) =
fln5 ; ln6 ; � � � ; ln10g where the links are incident to v2. Then, the set Lb (ln2) of the neigh-
boring links of ln2 is automatically partitioned: the links ln2 ; ln3 ; ln4 are incident to v1,
and the rest of links in Lb (ln2) are incident to the second incident node of ln2. Simi-
larly, the sets of the neighboring links of links ln3 ; ln4 ; � � � ; ln10, are also automatically
partitioned. Assuming H is a connected line graph, the sets of the neighboring links of
all the links in G can be partitioned by iterating the described process. This is he basic
idea of Iligra.
Partitioning the set Lb (ln1) of the neighboring links of ln1 becomes a crucial task in

the root graph construction. The theorems in Section 5.3 provide the theoretical basis
for this task.

5.3 Theoretical preliminaries

Theorem 7 Suppose that two adjacent nodes n1 and n2 in H correspond to links ln1
and ln2, respectively in G, where ln1 is incident to v1 and v2 and where v1 is also incident
to ln2, as shown in Figure 5.1 (a). Then, for each n 2 Nb(n1)nNb(n2), the corresponding
link ln in G must be incident to v2, and the nodes in Nb(n1)nNb(n2) must form a clique
in H.

Proof. For each n 2 Nb(n1)nNb(n2), the corresponding link ln inG has to be incident to
either v1 or v2, since n is adjacent to n1 inH. Because n is not adjacent to n2, ln inG can
only be incident to v2. Since the corresponding links of all the nodes 2 Nb(n1) nNb(n2)
are incident to v2, the nodes in Nb(n1)nNb(n2) must be fully connected with each other
and form a clique in H.
Using Theorem 7, Iligra determines the �rst incident node of the links correspond-

ing to the nodes in Nb(n1) n Nb(n2). The nodes in Nb(n1) \ Nb(n2) may form a clique
in H with the corresponding links being incident to v1 in G, as shown in Figure 5.1
(a). There may also exist a node nu 2 Nb(n1) \ Nb(n2) which is not adjacent to any
other node in Nb(n1) \ Nb(n2) and whose corresponding link is incident to v2 and v3,
as shown in Figure 5.1 (b) where ln1, ln2 and lnu form a triangle in G. Using Theorem
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7, Iligra determines the �rst incident node of the links corresponding to the nodes
in Nb(n1) n Nb(n2). The nodes in Nb(n1) \ Nb(n2) may form a clique in H with the
corresponding links being incident to v1 in G, as shown in Figure 5.1 (a). There may
also exist a node nu 2 Nb(n1) \ Nb(n2) which is not adjacent to any other node in
Nb(n1) \ Nb(n2) and whose corresponding link is incident to v2 and v3, as shown in
Figure 5.1 (b) where ln1, ln2 and lnu form a triangle in G. If there are three or more
nodes in the set Nb(n1) \ Nb(n2), we can identify this special node nu from the set
Nb(n1) \Nb(n2) by Theorem 8.

(a)

1nl

line graph H root graph G

2nl

1n

2n

1v
2v

3v

1nl

unl

line graph H root graph G

2nl

1n

2n
un

1v
2v

3v

(b)

Figure 5.1: Scenarios in Theorem 7 and 8. Each node (red) in H corresponds to a link
(red) in G.

Theorem 8 Suppose that two adjacent nodes n1 and n2 in H correspond to links ln1
and ln2 respectively in G, where ln1 is incident to v1 and v2 and where ln2 is incident
to v1 and v3. Suppose that jNb(n1) \Nb(n2)j � 3. If there exists nu 2 Nb(n1) \Nb(n2)
such that nu is not adjacent to any other node in Nb(n1) \ Nb(n2), then link lnu must
be incident to v2 and v3 in G.

Proof. Since nu 2 Nb(n1) \ Nb(n2), lnu can be incident to v1 or be incident to both
v2 and v3. If lnu is incident to v1, nu should be adjacent to at least one other node in
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Nb(n1) \ Nb(n2), since jNb(n1) \ Nb(n2)j � 3. Because nu is not adjacent to any other
node in Nb(n1) \ Nb(n2), lnu can only be incident to v2 and v3, as shown in Figure 5.1
(b).
If there are only one or two nodes in the set Nb(n1) \ Nb(n2), we can identify this

special node nu from the set Nb(n1) \ Nb(n2) by Theorem 11, which can be proved by
the combination of Lemma 9 and 10.

Lemma 9 Suppose that two adjacent nodes n1 and n2 in H correspond to links ln1 and
ln2 respectively in G, where ln1 is incident to v1 and v2 and where ln2 is incident to v1
and v3. Suppose that there are more than 3 nodes in H and jNb(n1) \ Nb(n2)j � 2. If
there exists nu 2 Nb(n1) \ Nb(n2) such that Nb(nu) � Nb(n1) [ Nb(n2), then link lnu
must be incident to v2 and v3 in G, unless H is one of the line graphs in Figure 5.2.

Proof. Since nu 2 Nb(n1) \ Nb(n2), lnu can be incident to v1 or be incident to both
v2 and v3. Given that there are more than 3 nodes in H, if lnu is incident to v1 and
H is not one of the line graphs in Figure 5.2, there must be at least one neighbor of
nu which is adjacent to neither n1 nor n2. Because Nb(nu) � Nb(n1) [ Nb(n2), lnu can
only be incident to v2 and v3.

Lemma 10 Suppose that two adjacent nodes n1 and n2 in H correspond to links ln1 and
ln2 respectively in G, where ln1 is incident to v1 and v2 and where ln2 is incident to v1
and v3. Suppose that H is one of the line graphs in Figure 5.2, then lnu can be incident
to v1 or be incident to both v2 and v3 and the resulting root graphs are isomorphic.

Theorem 11 Suppose that two adjacent nodes n1 and n2 in H correspond to links ln1
and ln2 respectively in G, where ln1 is incident to v1 and v2 and where ln2 is incident to
v1 and v3. Suppose that there are more than 3 nodes in H and jNb(n1) \ Nb(n2)j � 2.
If there exists nu 2 Nb(n1) \ Nb(n2) such that Nb(nu) � Nb(n1) [ Nb(n2), then we can
let link lnu be incident to v2 and v3 and obtain the correct root graph G.

Proof. Theorem 11 is proved by combining the Lemma 9 and 10.
Iligra uses Theorem 7, 8 and 11 to determine which links in Lb (ln1) are incident

to v1 and which else are incident to v2. Then, for each link in Lb (ln1), the �rst incident
node has been determined.

5.4 Algorithm description

Iligra starts by setting G to an empty graph (line 1). Initially, nothing in G is
determined, hence Nw = N and Nh = ; (line 2), where Nw and Nh are de�ned in
Table 5.1. Then Iligra picks an arbitrary node n1 in the set Nw and picks an arbitrary
neighbor n2 of n1 in the set Nb (n1) (lines 3-4). Two nodes v1 and v2 are added to the
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Figure 5.2: Scenarios in Lemma 9 and 10. (a) jNb(n1) \ Nb(n2)j = 1 and L = 4.
(b) jNb(n1) \ Nb(n2)j = 1 and L = 5. (c) jNb(n1) \ Nb(n2)j = 2 and L = 5. (d)
jNb(n1) \Nb(n2)j = 2 and L = 6.

root graph G (line 5), and link ln1 = v1 � v2 is added to the root graph G (line 6).
Since the incident nodes of link ln1 have been determined in G, node n1 is removed
from Nw (line 6). Then v1 is chosen3 to be incident to link ln2 (line 7). Since the �rst
incident node of link ln2 is determined, node n2 is moved from Nw to Nh (line 7).
According to the de�nition of the line graph, the links in Lb (ln1) have a node in

common with link ln1 in G. Since ln1 is incident to v1 and v2, the links in Lb (ln1) should
also be incident to either v1 or v2. By Theorem 7, Iligra determines that the links in
Lb(ln1) n Lb(ln2), corresponding to the nodes in n 2 Nb(n1) nNb(n2), are incident to v2.
For each node n in Nb(n1) nNb(n2), Iligra sets the �rst identi�ed incident node vln of
the corresponding link ln to v2, and moves n from Nw to Nh (lines 8-9).

3Iligra arbitrarily chooses a node from v1 and v2 and lets it be incident to ln2 .
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G Iligra(H)
1 G an empty graph;
2 N  the set of nodes in H;Nw  N ; Nh  ;;
3 n1  an arbitrary node 2 Nw;
4 n2  an arbitrary node 2 Nb(n1);
5 Addnode(G; v1); Addnode(G; v2);
6 Addlink(G; v1; v2); Nw  Nw n fn1g;
7 vln2  v1; Nh  Nh [ fn2g; Nw  Nw n fn2g;
8 for each n 2 Nb(n1) n Nb(n2) do
9 vln  v2; Nh  Nh [ fng; Nw  Nw n fng;
10 J  Nb(n1) \Nb(n2);
11 if 1 � jJ j � 2 then
12 if L = 3 then
13 G is K1;3 or K3. Exit.
14 else if 9nu 2 J such that Nb(nu) � Nb(n1) [Nb(n2) then
15 vlnu  v2; Nh  Nh [ fnug;
16 Nw  Nw n fnug; J  J n fnug;
17 else if jJ j � 3 and 9nu 2 J such that nu is not adjacent to
any other node in J then

18 vlnu  v2; Nh  Nh [ fnug;
19 Nw  Nw n fnug; J  J n fnug;

Figure 5.3: Iligra: part I.

Iligra sets J to the intersection of Nb(n1) and Nb(n2) (line 10). If there are only
1 or 2 nodes in J , and if there are only 3 nodes in H (namely 3 links in G), the root
graph G can be K1;3 or K3 (lines 11-13). If 1 � jJ j � 2 and if there exists nu 2 J such
that any neighbor of nu is also a neighbor of either n1 or n2, according to Theorem 11,
link lnu should be incident to v2. Iligra sets vlnu to v2, and adds nu to Nh and removes
nu from Nw and removes nu from J (lines 14-16). If jJ j � 3 and if there exists nu 2 J
such that nu is not adjacent to any other node in J , according to Theorem 8, link lnu
should be incident to v2. Iligra sets vlnu to v2, and adds nu to Nh and removes nu
from Nw and removes nu from J (lines 17-19).

Since node nu has been removed from J , the rest of links in J should be incident
to v1. For each n in J which are adjacent with both n1 and n2, Iligra sets vln to v1,
and adds n to Nh and removes n from Nw (lines 20-21). The nodes in J should be
fully connected to each other, since the corresponding links are all incident to v1. If the
nodes in J do not form a clique in H, then H is not a line graph (lines 22-23). The
nodes inNb(n1)nJ should also be fully connected to each other, since the corresponding
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G Iligra(H)
20 for each n 2 J do
21 vln  v1; Nh  Nh [ fng; Nw  Nw n fng;
22 if J 6= ; and J is not a clique in H then
23 H is not a line graph. Exit.
24 if jNb(n1)nJ j 6= ; and Nb(n1)nJ is not a clique then
25 H is not a line graph. Exit.
26 while Nh 6= ; do
27 n an arbitrary node in Nh;
28 Addnode(G; v);Addlink(G; vln ; v);
29 Nh  Nh n fng; C  ;;
30 for each nr 2 Nb(n) do
31 if nr 2 Nh and vln 6= vlnr do
32 C  C [ fnrg;
33 Addlink(G; vlnr ; v); Nh  Nh n fnrg;
34 else if nr 2 Nw then
35 C  C [ fnrg;vlnr  v;
36 Nh  Nh [ fnrg; Nw  Nwnfnrg;
37 if C 6= ; and C is not a clique in H then
38 H is not a line graph. Exit.

Figure 5.4: Iligra: part II.

links are all incident to v2. If the nodes in Nb(n1) n J do not form a clique in H, then
H is not a line graph (lines 24-25).

The loop (lines 26-38) runs until Nh is an empty set. Iligra picks an arbitrary
node n in Nh (line 27). Iligra adds a node v and a link ln between vln and v to G (line
28), and removes n from Nh (line 29). Iligra sets C to an empty set (line 29). For
each neighbor nr of n, if nr 2 Nh and vln 6= vlnr , Iligra adds link lnr between vlnr and v
to G, and removes nr from Nh, and adds nr to C (lines 30-33); If nr 2 Nw, Iligra sets
vlnr to v, and moves nr from Nw to Nh, and adds nr to C (lines 34-36). The nodes in C
should be fully connected with each other, since the corresponding links are all incident
to v. If the nodes in C do not form a clique in H, H is not a line graph (lines 37-38).
If H is a connected graph, Nw should be an empty set when Nh becomes an empty
set. While Nw 6= ;, repeat lines 3-38. For each component of a given disconnected line
graph, lines 3-38 will be executed once. If the input graphs are line graphs, lines 22-25
and 37-38 can be skipped, which are used to check whether the given graph is a line
graph.
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5.5 Complexity

The lines 1-21 of Iligra examines all the neighbors of the n1 in H, with the complexity
O(NH), where NH is the number of nodes in H. The lines 22-25, which check whether
H is a line graph, have the complexity O(NL), where NL is the number of links in H.
The lines 26-36 have the complexity O(NH). The lines 37-38 check whether H is a line
graph and have the complexity O(NL). Hence, the overall complexity of Iligra with
checking if H is a line graph is O(NL), and the complexity of Iligra without checking
is O(NH).

5.6 An example
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Figure 5.5: An example shows how Iligra constructs G from a given H.
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In this section, we use an example depicted in Figure 5.5 to show how Iligra
works. Given a line graph H shown in Figure 5.5 (a), Iligra constructs its root graph
G incrementally as shown in Figure 5.5 (b) to (i).

Initially, set G to an empty graph. We have Nw = fn1; n2; � � � ; n11g and Nh = ;.
Add nodes v1 and v2 to G, and add link ln1 between v1 and v2 to G as shown in
Figure 5.5 (b), and Nw = fn2; n3; � � � ; n11g. Set vln2 to v1, Nw = fn3; n4; � � � ; n11g and
Nh = fn2g. SinceNb(n1)nNb(n2) = fn5; n6g, according to Theorem 7, set vln5 to v2 and
also set vln6 to v2. We have Nw = fn3; n4; n7; n8; � � � ; n11g and Nh = fn2; n5; n6g. Since
Nb(n1)\Nb(n2) = fn3; n4; n7g and none of n3 and n4 is not adjacent to n7, according to
Theorem 8, set vln7 to v2. Now Nw = fn3; n4; n8; n9; n10; n11g and Nh = fn2; n5; n6; n7g.
For the two nodes n3 and n4 in Nb(n1) \Nb(n2) n fn7g, the corresponding links should
be incident to v1. Hence, set both vln3 and vln4 to v1. Now Nw = fn8; n9; n10; n11g and
Nh = fn2; n3; n4; n5; n6; n7g.

Take n2 from Nh. Add a node v3 to G and add link ln2 between v3 and vln2
(vln2 has been found to be v1 previously), as shown in Figure 5.5 (c). Now Nh =
fn3; n4; n5; n6; n7g. We have Nb(n2) = fn1; n3; n4; n7; n8; n9; n10g. Since n7 2 Nh and
vln7 = v2 6= vln2 = v1, add ln7 between v2 and v3 to G. Now Nh = fn3; n4; n5; n6g.
Since n8; n9 and n10 belong to Nw, set vln8 ; vln9 and vln10 to v3. Now Nw = fn11g and
Nh = fn3; n4; n5; n6; n8; n9; n10g.

Take n3 from Nh. Add a node v4 to G and add link ln3 between v4 and vln3 , which
is namely v1, as shown in Figure 5.5 (d). Now Nh = fn4; n5; n6; n8; n9; n10g.

Take n4 from Nh. Add a node v5 to G and add link ln4 between v5 and vln4 ,
which is also v1, as shown in Figure 5.5 (e). Now Nh = fn5; n6; n8; n9; n10g. We have
Nb(n4) = fn1; n2; n3; n8; n11g. Since n8 2 Nh and vln8 = v3 6= vln4 = v1, add ln8 between
v5 and v3 to G. Now Nh = fn5; n6; n9; n10g. Since n11 2 Nw, set vln11 to v5. Now
Nw = ; and Nh = fn5; n6; n9; n10; n11g.

Take n5 from Nh. Add a node v6 to G and add link ln5 between v6 and vln5 , which
is also v2, as shown in Figure 5.5 (f). Now Nh = fn6; n9; n10; n11g.

Take n6 from Nh. Add a node v7 to G and add link ln6 between v7 and vln6 ,
which is also v2, as shown in Figure 5.5 (g). Now Nh = fn9; n10; n11g. We have
Nb(n6) = fn1; n5; n7; n10g. Since n10 2 Nh and vln10 = v3 6= vln6 = v2, add ln10 between
v7 and v3 to G. Now Nh = fn9; n11g.

Take n9 from Nh. Add a node v8 to G and add link ln9 between v8 and vln9 , which
is also v3, as shown in Figure 5.5 (h). Now Nh = fn11g.

Take the only node n9 from Nh. Add a node v9 to G and add link ln11 between v9
and vln11 , which is also v5, as shown in Figure 5.5 (i). Now Nh = ;. Since Nw is also
an empty set, the construction of G is accomplished.
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5.7 Evaluation

We compare Iligra�s running time with the running times of three published line graph
reconstruction algorithms: Roussopouloss�algorithm [49], the Lehot�s algorithm [50]
and the Degiorgi and Simon�s algorithm [55]. All algorithms have been implemented4 in
the same programming language (C++) and the same data structures and libraries [82]
have been used5. The evaluation of all the algorithms has been conducted on the same
machine6.
The performances of the above-mentioned algorithms have been compared using

the same input graphs H. All the algorithms are able to construct the root graph G
if the given graph H is a line graph, and can tell non-line graph when H if is not a
line graph. In the evaluation, both line graphs and non-line graphs have been used
as inputs. The line graphs with link density7 pH = 0:05 and 0:125 are generated by
converting random graphs [5][65] with a �xed link density into line graphs. However,
the line graphs of these random graphs can never have high link densities (explained
with details in Appendix 5.7.1). Therefore, the line graphs with pH = 0:5 and 0:65 have
been generated by converting the scale-free graphs [16] into line graphs. The non-line
graphs used in simulations are just random graphs with link density pH . In addition,
we have conducted simulations for scale-free graphs that are not line graphs and the
running times are comparable as the presented ones of the random graphs.
Line graph inputs. Figure 5.6 re�ects the trends for the running times of all the

algorithms when the input graphs are line graphs with di¤erent link density pH and
di¤erent number of links LH . Figure 5.6 (a) and Figure 5.6 (b) show the running times
for line graphs with small link density pH = 0:05; 0:125, where Iligra performs faster
than all the other algorithms. Figures 5.6 (c), (d), (e) and (f) illustrate the trends for
the algorithms� running times for line graphs with high link density pH = 0:50 and
pH = 0:65. Iligra is the fastest algorithm for line graphs with small number of links
200 � LH � 500 and Lehot�s algorithm has the shortest running time for line graphs
with high number of links 650 � LH � 18000.
Non-line graph inputs. Figure 5.7 shows the trends of the running times of all

the algorithms when the input graphs H are not line graphs, with link density pH =
0:05; 0:125; 0:5; 0:65 and 200 � LH � 18000. The running times indicate how quickly
an algorithm can tell that the input graph is not a line graph. Iligra is the fastest
algorithm in detecting non-line graphs when pH = 0:5; 0:65 and 200 � LH � 1000, as
shown in Figures 5.7 (a) and (b).

4The implementations are available on the authors�web page:
http://www.nas.ewi.tudelft.nl/people/Stojan/code/ILIGRA.zip

5LEDA: http://www.algorithmic-solutions.com/leda/
6Intel(R) Core(TM) 2 Duo CPU T9600 on 2 x 2:80GHz; 4GB RAM memory
7The link density of a given line graph H(L;LH) is de�ned by pH = LH=

�
L
2

�
, where L is the number

of nodes in H and LH is the number of links in H.
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Figure 5.6: Algorithms�running times for line graphs with di¤erent pH and LH . (a)
pH = 5% and 200 � LH � 18000. (b) pH = 12:5% and 200 � LH � 18000. (c)
pH = 50% and 200 � LH � 1000. (d) pH = 50% and 1000 � LH � 18000. (e)
pH = 65% and 200 � LH � 1000. (f) pH = 65% and 1000 � LH � 18000.
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Figure 5.7: Algorithms� running times for non-line graphs with di¤erent pH and
LH . (a) pH = 5% and 200 � LH � 18000. (b) pH = 12:5% and 200 � LH � 18000.
(c) pH = 50% and 200 � LH � 1000. (d) pH = 50% and 1000 � LH � 18000. (e)
pH = 65% and 200 � LH � 1000. (f) pH = 65% and 1000 � LH � 18000.



74 CHAPTER 5. ILIGRA

Table 5.2: The fastest algorithm for di¤erent input line graphs

graph types line graphs non-line graphs
HHHHHHpH

LH � 500 > 500 � 1000 > 1000

0:05 Iligra Degiorgi & Simon
0:125 Iligra Degiorgi & Simon
0:5 Iligra Lehot Iligra Degiorgi & Simon
0:65 Iligra Lehot Iligra Degiorgi & Simon

The best algorithms, re�ected by the running time for all the cases, are summarized
in Table 5.2.

5.7.1 The link density of line graphs

The link density is an important characteristic for the topology of line graphs. This
section discusses the relation between the link density of line graph H and the number
of nodes N and the number of links L in the root graph G (N;L).
The number of nodes NH in the line graph H is equal to the number of links L in

the root graph G. For the number of links LH in the line graph H, we have,

LH =
1

2

NX
i=1

d2i � L (5.1)

where d = [d1; d2; � � � ; dN ] is the degree sequence of G.
The link density pH of H equals

pH =
LH�
L
2

� = 1
2

PN
i=1 d

2
i � L�

L
2

�
=

PN
i=1 d

2
i � 2L

L2 � L (5.2)

Using the basic law of degrees,
PN

i=1 di = 2L, and the Cauchy inequality [83][84]

NX
i=1

d2i =
(
PN

i=1 di)
2

N
+

1

2N

NX
i=1

NX
j=1

(di � dj)2

�(
PN

i=1 di)
2

N
=
4L2

N
(5.3)



5.8. CHAPTER CONCLUSION 75

Hence,

pH =

PN
i=1 d

2
i � 2L

L2 � L

�
2L(2L

N
� 1)

L2 � L =
2

N

2L�N
L� 1 (5.4)

Equality holds for regular root graphs G, where di = 2L
N
, for i = 1; 2; � � � ; N . When

L� N , the link density pH asymptotically tends to 4
N
. Hence, the line graphs of dense

root graphs with L� N have small link densities.
We derive an upper bound for the link density pH . With L = (

PN
i=1 di)=2 and using

the inequality (
PN

i=1 xi)
2 �

PN
i=1 x

2
i , we obtain

NX
i=1

d2i =

NX
i=1

(di � 1)2 �N + 2

NX
i=1

di

=
NX
i=1

(di � 1)2 �N + 4L

�4L�N +

 
NX
i=1

(di � 1)
!2

=(2L�N + 1)2 +N � 1 (5.5)

Finally, pH is bounded by

4L� 2N
N(L� 1) � pH �

(2L�N + 1)2 +N � 2L� 1
L2 � L (5.6)

Equality in (5:5) is achieved if and only if (di�1)(dj�1) = 0 for all i; j 2 1; 2; � � � ; N .
The star graph K1;N satis�es the condition for equality in (5:5), indicating that the line
graph ofK1;N reaches the upper bound of link density pH . In fact, the line graph ofK1;N

is complete graph KN�1 with maximum link density of 1. The graph with L = N=2,
where the degrees of all the nodes are 1, also satis�es the condition for equality in (5:5),
but its line graph is an graph with N=2 nodes and link density of 0. In conclusion,
dense line graphs can be obtained if the original graph has one node with a high degree
and the other nodes have relatively small degrees. On the other hand, the line graph
of a regular graph has the minimum link density.

5.8 Chapter conclusion

We present Iligra algorithm for inverse line graph construction. Given a line graph
H, Iligra constructs it root graph G and check whether the given graph is a line graph
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during the construction. Iligra also works for disconnected line graphs and �nds the
connected components of input line graphs during their root graph constructions. The
time complexity of Iligra is linear in the number of nodes in the given line graphs H
without checking if the given graph is a line graph. The time complexity of Iligra with
full functionality is linear in the number of links in the given line graphs. Numerical
comparisons with the algorithms of Lehot, Roussopoulos, and Degiorgi and Simon have
been demonstrated. Given line graphs with small link density (i.e. sparse graphs),
Iligra is the fastest algorithm in root graph construction, as shown in Table 5.2.
In addition to the inverse line graph construction, Iligra is the fastest algorithm in
detecting non-line graphs with pH = 0:5; 0:65 and 200 � LH � 1000.



Chapter 6

Random Line Graphs

For a �xed number N of nodes, the number of links L in the line graph H (N;L)
can only appear in consecutive intervals, called a band of L. We prove that some
consecutive integers can never represent the number of links L in H (N;L), and they
are called a bandgap of L. We give the exact expressions of bands and bandgaps of L.
We propose a model which can randomly generate simple graphs which are line graphs
of other simple graphs. The essence of our model is to merge step by step a pair of
nodes in cliques, which we use to construct line graphs. Obeying necessary rules to
ensure that the resulting graphs are line graphs, two nodes to be merged are randomly
chosen at each step. If the cliques are all of the same size, the assortativity of the
line graphs in each step are close to 0, and the assortativity of the corresponding root
graphs increases linearly from �1 to 0 with the steps of the nodal merging process. If
we dope the constructing elements of the line graphs - the cliques of the same size-
with a relatively smaller number of cliques of di¤erent size, the characteristics of the
assortativity of the line graphs is completely altered. We also generate line graphs
with the cliques whose sizes follow a binomial distribution. The corresponding root
graphs, with binomial degree distributions, zero assortativity and semicircle eigenvalue
distributions, are equivalent to Erd½os-Rényi random graphs.

This chapter is organized as follows. Theoretical preliminaries for constructions line
graphs are given in Section 6.1. The random line graph model is presented in Section
6.2. Section 6.3 provides insights of the topological properties of the line graphs during
the merging process. We conclude in Section 6.4.

77
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6.1 Theoretical preliminaries

6.1.1 Formation of line graphs

All the line graphs are simple graphs, but not all simple graphs are line graphs. Krausz�s
Theorem gives the criterion to determine whether a simple graph is a line graph. Ac-
cording to Krausz�s Theorem [23][34][51], line graphs can be partitioned into cliques
which may have nodes in common.

Theorem 12 (Krausz) A graph is a line graph if and only if its sets of links can be
partitioned into nontrivial cliques such that (i) two cliques have at most one node in
common and (ii) each node belongs to at most two cliques.

Our method to construct line graphs consists of combining separate cliques, obeying
certain rules to ensure that the resulting graphs satisfy Krausz�s Theorem. Before
explaining the details of our method, we introduce the concept of �half-node".

De�nition 13 A half-node is the comprising part of a node and two merged half-
nodes form a node. A half-node is the map of a half-link (stub) in the con�guration
model [66][67].

In order to construct a graph of size N where node j has degree dj with the con-
�guration model [66][67], we need N separate nodes where dj half-links (also called
stubs by some authors) are incident to node j. Two combined half-links form a link.
Every half-link has to be combined with another half-link. Inspired by the con�guration
model for the root graphs, we develop a method to construct the line graphs. We need
separate cliques consisting of fully connected half-nodes, as shown in Figure 6.1 (a). A
half-node is the map of a half-link in the con�guration model. Two merged half-nodes
form a node in the line graph. Like a node, a half-node is a abstract concept without
any quantity. When two half-nodes merge into a new node, the links incident to either
of the two half-nodes are attached to the new node, and the link (if any) between the
two half-nodes is deleted, as shown in Figure 6.1 (a).
To construct a line graph, every half-node has to be merged with another half-node.

We randomly choose and merge a pair of half-nodes, under the constraints that ( 1) the
two half-nodes belong to di¤erent cliques and ( 2) the cliques, to which the two half-nodes
belong, have no nodes in common. Once merged, two half-nodes form a node of the line
graph. The construction continues until all half-nodes are merged. The rules assure
that the graphs constructed by merging the half-nodes of cliques satisfy the criteria in
Theorem 12 and thus are line graphs.
The �elements�for construction of line graphs, which are the cliques of half-nodes,

can be regarded as the atoms, hence the formation of line graphs is analogous to the
formation of a molecule. The merging of two half-nodes is analogous to the formation
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of the chemical bond. Interestingly, we never see more than one chemical bond between
two atoms in a molecule or a chemical bond formed with a single atom, which conforms
to our rules of forming line graphs. Figure 6.1 (a) depicts a line graph constructed from
a clique of K8, a clique of K5, a clique of K4, two cliques of K3, and three cliques of
K2. The root graph of the line graph (a) is shown in Figure 6.1 (b).

(a)

(b)

Figure 6.1: (a) The example of constructing a line graph by merging the half-nodes of
cliques, and (b) the example of constructing a simple graph by the con�guration model.
The circles and disks denote the half-nodes and nodes respectively. The lines with slash
ending and the normal lines denote the half-links and links, respectively.

6.1.2 The bandgaps of the number of links L in line graph
H (N;L)

In this section, we investigate which integers can occur as the number of links L in the
line graph H (N;L).
The number of links L in the line graph H (N;L) with N nodes satis�es L � Lmax =�

N
2

�
, and L =

�
N
2

�
only if the line graph H is a complete graph KN . The principal clique

in a line graph H (N;L) is de�ned by the largest clique in H.
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Lemma 14 Suppose that the principal clique KN�k+1, where 2 � k �
�
N+1
2

�
, in the

line graph H (N;L) consists of nodes nk; nk+1; � � � ; nN , as shown in Figure 6.2 (a). The
minimum number of links in H (N;L) is L =

�
N�k+1

2

�
, and the maximum number of

links in H (N;L) is L =
�
N�k+1

2

�
+
�
k
2

�
+ k � 1:

Proof. The number of links in the principal clique KN�k+1 is
�
N�k+1

2

�
. When n1,

n2, � � � , nk�1 are isolated nodes, the number of links in H is minimal and equals L =�
N�k+1

2

�
. According to Theorem 12, each node of n1, n2, � � � , nk�1 belongs to at most

two cliques, each of which contains a node which also belongs to the principal clique.
For instance, node n1 in Figure 6.2 (a) belongs to a clique K2, containing node nk+1,
and a clique Kk, containing node nk. Hence, each node of n1; n2; � � � ; nk�1 can have
at most two links connecting itself and two nodes of the principal clique, contributing
at most in total 2k � 2 links to the line graph. There are at most

�
k�1
2

�
links to fully

connect the nodes n1; n2; � � � ; nk�1, thus, the maximum number of links in H (N;L) is
L =

�
N�k+1

2

�
+
�
k�1
2

�
+ 2k � 2 =

�
N�k+1

2

�
+
�
k
2

�
+ k � 1.

. . .
N
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. . . . . .

N

. . .

1
k+1k+2

k+3

k+4

2k1

2
3

4
k

k1
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. . . . . .
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(a) (b)

(c) (d)

Figure 6.2: The con�guration of H (N;L) for (a) Wk; (b) Wk�1; (c) W2; (d) W1.
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Theorem 15 Let V1 =
��

N
2

�	
. For 2 � k �

�
N+1
2

�
, let Vk =

��
N�k+1

2

�
;
�
N�k+1

2

�
+ 1; � � � ,�

N�k+1
2

�
+
�
k
2

�
+ k � 1

	
. Then L is the number of links in the line graph H (N;L), if

and only if L is a integer and

L 2

0B@b
N+1
2 c[
k=1

Vk

1CA [�0; 1; 2; � � � ;��N+12 �
2

�
+

�
N + 1

2

�
� 1
�

Proof. The only element
�
N
2

�
in V1 is the number of links in the line graph H (N;L)

when the line graph H is a complete graph KN . Next, we prove that L is the number of

links in H (N;L) if L is an integer and L 2
bN+12 cS
k=2

Vk. When H (N;L) contains the prin-

cipal clique KN�k+1 and the clique Kk, sharing node k, as shown in Figure 6.2 (a), the
number of links L can take the consecutive numbers in

��
N�k+1

2

�
+
�
k
2

�
;
�
N�k+1

2

�
+
�
k
2

�
+ 1; � � � ,�

N�k+1
2

�
+
�
k
2

�
+ (k � 1)

	
, since each of the other k � 1 nodes in Kk can be connected

by a link to a node in KN�k+1. Similarly, when H (N;L) is constructed by two cliques
KN�k+1 and Kk�1 and an isolated node, the number of links L can take the consecutive
numbers in

��
N�k+1

2

�
+
�
k�1
2

�
; � � � ;

�
N�k+1

2

�
+
�
k�1
2

�
+ (k � 2)

	
, as shown in Figure 6.2

(b). In general, if H (N;L) is constructed by two cliques KN�k+1 and Kj (2 � j � k),
which have node k in common, and k � j isolated nodes, all the integers in the set
Wj =

��
N�k+1

2

�
+
�
j
2

�
; � � � ;

�
N�k+1

2

�
+
�
j
2

�
+ (j � 1)

	
can occur as the number of links L

in the line graph H (N;L). The case j = 2 is shown in Figure 6.2 (c), while in Figure
6.2 (d), there is only a clique of KN�k+1 and k � 1 isolated nodes in H (N;L), the
number of links can be only L =

�
N�k+1

2

�
. We de�ne W1 =

��
N�k+1

2

�	
. For 3 � j � k,

the smallest element of Wj,
�
N�k+1

2

�
+
�
j
2

�
, equals the largest element of Wj�1 plus 1,�

N�k+1
2

�
+
�
j�1
2

�
+ (j � 2) + 1,

�
N � k + 1

2

�
+

�
j � 1
2

�
+ (j � 2) + 1

=

�
N � k + 1

2

�
+

�
j

2

�

The smallest element of W2 equals the element of W1 plus 1,
�
N�k+1

2

�
+ 1,

�
N � k + 1

2

�
+ 1 =

�
N � k + 1

2

�
+

�
2

2

�
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Hence,

Vk =

��
N � k + 1

2

�
; � � � ;

�
N � k + 1

2

�
+

�
k

2

�
+ (k � 1)

�
=

k[
j=1

Wj

where 2 � k �
�
N+1
2

�
. Thus, all the integers in the sets

bN+12 cS
k=2

Vk can occur as the

number of links L.
Lemma 14 states that, for each k between 2 and

�
N+1
2

�
(the size of the principal

clique is N � k + 1), the set Vk covers the minimum and maximum number of links in
H (N;L). Hence, all the integers in the intervals 	k =

��
N�k
2

�
+
�
k+1
2

�
+ k + 1; � � � ;�

N�k+1
2

�
� 1
	
, which are the gaps between Vk+1 and Vk, 1 � k �

�
N+1
2

�
� 1, cannot

occur as the number of links L in H (N;L).

Next, we prove that all the integers in the set
n
0; 1; 2; � � � ;

�bN+12 c
2

�
+
�
N+1
2

�
� 1
o

can occur as the number of links L. Taking k =
�
N+1
2

�
, we employ the same method

which is used to prove the integers in Vk can occur as L, except deleting all the links in
the principal clique KN�k+1. For 2 � j �

�
N+1
2

�
, suppose that H (N;L) is constructed

by a clique Kj consisting of nodes nk; nk�1; � � � ; nk�j+1, isolated nodes n1; n2; � � � ; nk�j,
and the set of nodes nk+1; nk+2; � � � ; nN , among which any pair of nodes are not adjacent.
The number of links L can take any integer in

��
j
2

�
; � � � ;

�
j
2

�
+ j � 1

	
, since each of nodes

nk; nk�1; � � � ; nk�j+1 can be connected by a link to a node in fnk+1; nk+2; � � � ; nNg, where�
a
b

�
= 0 if a; b 2 N and a < b. We further have

n
0; 1; 2; � � � ;

�bN+12 c
2

�
+
�
N+1
2

�
� 1
o
=

bN+12 cS
j=1

��
j
2

�
; � � � ;

�
j
2

�
+ j � 1

	
. Hence, each integer in

n
0; 1; 2; � � � ;

�bN+12 c
2

�
+
�
N+1
2

�
� 1
o

can occur as the number of links L.
If N is odd,

�bN+12 c
2

�
+
�
N+1
2

�
� 1 =

�N+1
2
2

�
+ N+1

2
� 1 and the smallest element of

VbN+12 c,
�N�bN+12 c+1

2

�
=
�N+1

2
+1
2

�
=
�N+1

2
2

�
+ N+1

2
. If N is even,

�bN+12 c
2

�
+
�
N+1
2

�
� 1 =�N

2
2

�
+ N

2
� 1, and the smallest element of VbN+12 c,

�N�bN+12 c+1
2

�
=
�N
2
+1
2

�
=
�N
2
2

�
+ N

2
.

Hence, there is no gap between the set
n
0; 1; 2; � � � ;

�bN+12 c
2

�
+
�
N+1
2

�
� 1
o
and VbN+12 c.

We have proven that (i) all the integers in
bN+12 cS
k=1

Vk can occur as L, and (ii) all

the integers in
n
0; 1; 2; � � � ;

�bN+12 c
2

�
+
�
N+1
2

�
� 1
o
can occur as L, and (iii) all the

natural numbers in the gaps between VbN+12 c; VbN+12 c+1; � � � ; V1, cannot occur as L, and
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(iv) there is no gap between
n
0; 1; 2; � � � ;

�bN+12 c
2

�
+
�
N+1
2

�
� 1
o
and VbN+12 c. All these

conclusions together prove Theorem 15.

Corollary 16 If
j
�3+

p
17+8N
2

k
� k �

�
N+1
2

�
, there is no gap between Vk and Vk�1.

Proof. When the largest element of Vk plus 1 is not smaller than the smallest element
of Vk�1, there is no gap between Vk and Vk�1.�

N � k + 1
2

�
+

�
k

2

�
+ k � 1 + 1 �

�
N � (k � 1) + 1

2

�
which is equivalent to

k2 + 3k � (2N + 2) � 0
from which Corollary 16 follows.
The width �Vk of the kth band Vk of L for the line graph H (N;L), de�ned by the

number of integers in the band, equals,

�Vk =

�
N � k + 1

2

�
+

�
k

2

�
+ k � 1�

�
N � k + 1

2

�
+ 1

=

�
k

2

�
+ k (6.1)

where 2 � k �
�
N+1
2

�
. The kth bandgap 	k of L for the line graph H (N;L) is

	k =

�
�;� + 1;� + 2; � � � ;

�
N � k + 1

2

�
� 1
�

where � =
�
N�k
2

�
+
�
k+1
2

�
+ k + 1 and 1 � k �

�
N+1
2

�
� 1. The width �	k of the kth

bandgap of L is de�ned by the number of integers in the bandgap,

�	k =

�
N � k + 1

2

�
� 1�

��
N � k
2

�
+

�
k + 1

2

�
+ k

�
= N � k2 + 5k

2
� 1 (6.2)

When �	k = N� k2+5k
2
�1 < 1, or equivalently when 1 � k �

��p
9 + 8N � 5

�
=2
�
,

the kth bandgap of L vanishes. Figure 6.3 shows that there are no bandgaps when
N � 4. We also observe that, for those N making

�p
9 + 8N � 5

�
=2 an integer, the

width of the bandgap 	b(p9+8N�5)=2c is 1. As shown in Figure 6.3, when N = 5; 9; 14,

we have
�p
9 + 8N � 5

�
=2 = 1; 2; 3, and the width of the last bandgap is 1. The line

graphs, whose number L of links falls into the band gaps, do not exist. If we de�ne
the energy of a line graph by the number of links in that line graph, the bands and the
bandgaps of L can be regarded as energy bands and energy bandgaps of the line graph.
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L

Figure 6.3: The bandgaps of L for N = 4; 5; � � � ; 14. The solid (red) dots denote the
forbidden integers, while the hollow (green) circles denote the possible integers as the
number of links L.

6.2 A random line graph model

Based on the theory introduced in Section 6.1, we propose a model which generates
random line graphs. In the description of the model, we do not distinguish half-nodes
and nodes. The model starts with separate cliques and merges two randomly selected
nodes at each step. The merging of two nodes j1 and j2 in H (N;L) is de�ned by
deleting node j2 and the link connecting nodes j1 and j2, and attaching the links, which
are only incident to j2, to j1. The model is presented in Algorithm 6.4. Theorem 17
guarantees that the graphs constructed by Algorithm 6.4 are line graphs. In Theorem
17, lj1;j2 denotes the length of the shortest path between node j1 and node j2.

Theorem 17 The line graph H consisting of separate cliques remains a line graph after
the merging of any pair of nodes j1 and j2 satisfying lj1;j2 > 2.

Proof. The randomly chosen nodes j1 and j2 do not belong to the same clique, oth-
erwise lj1;j2 = 1, contradicting with the fact lj1;j2 > 2. The two cliques, to which
j1 and j2 belong respectively, do not share a node, otherwise there would be a hop
j1 � j0 � j2, where j0 is the node shared by them, and thus lj1;j2 = 2, which contradicts
with lj1;j2 > 2. Therefore, the nodes j1 and j2 are from two di¤erent cliques which have
no nodes in common. After merging of nodes j1 and j2, the graph H satis�es Theorem
12, hence, it remains a line graph.
A sequence of integers s =

�
s1 s2 � � � sC

�T
are designated as the sizes of the

cliques (line 1). All the integers are larger than one, sj � 2; j = 1; 2; � � � ; C. These
numbers are actually the degrees of the nodes in the root graph, that correspond to the
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H  RandomLineGraph(s)
1 Construct a graph H consisting of the separate
cliques whose sizes are the integers in the vector
s =

�
s1 s2 � � � sC

�T
, and all the integers are larger than 1.

2 Nm  the set of nodes in H
3 repeat
4 randomly choose two nodes j1; j2 in Nm, which satisfy lj1;j2 > 2
5 Merge j1 and j2
6 Nm = Nmn fj1; j2g
7 N = N � 1
8 until no nodes j1; j2 in Nm satisfying lj1;j2 > 2

Figure 6.4: Meta-code for RandomLineGraph.

cliques in the line graph. A graph H (N;L) consisting of the separate cliques whose
sizes are the given sequence of numbers is constructed (line 1). The number of nodes
N equals

PC
j=1 sj, and the number of links L equals

PC
j=1

�
sj
2

�
. Initially each of the

nodes in H belongs to only one clique, and hence, are expansive nodes. The set of all
expansive nodes in H is denoted by Nm, which before the �rst merging is the set of
nodes in H (line 2). Two nodes j1 and j2 are uniformly 1 chosen in Nm, between which
the shortest path length lj1;j2 > 2 (line 4). Nodes j1 and j2 are merged (line 5), and
removed from Nm (line 6), and the number of nodes N in the line graph H decreases
by 1 (line 7). Lines 4-7 are repeated until there are no nodes j1; j2 in Nm satisfying
lj1;j2 > 2 (lines 3 and 8). Theorem 17 ensures that H remains a line graph after each
execution of lines 4-7.

Theorem 18 The maximal number � of mergings that are performed in Algorithm 6.4
satis�es � � min

�j
1
2

PC
j=1 sj

k
;
�
C
2

��
.

Proof. In a line graph, each node belongs to at most two cliques, therefore, the
maximal number � � 1

2

PC
j=1 sj if

PC
j=1 sj is an even number, and the maximal number

� � 1
2

PC
j=1 sj � 1

2
if
PC

j=1 sj is an odd number. Hence, � �
j
1
2

PC
j=1 sj

k
. In a line

graph, each pair of cliques can have at most one node in common, therefore, the maximal
number of mergings is also bounded by

�
C
2

�
. Hence, the maximal number of mergings

� � min
�j

1
2

PC
j=1 sj

k
;
�
C
2

��
.

1Instead of uniformly at random choosing two nodes in the set Nm, we can also choose them in
another random way, such as choosing two nodes with higher probability which have similar nodal
degree. Such a model can be called preferential merging line graph model.
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6.3 The assortativity of (H;G) during the merging
process

In the susceptible-infectious-susceptible (SIS) model [85][86] for network epidemics, the
network is infected in the steady-state if the e¤ective infection rate � is larger than the
epidemic threshold � c, and the network is virus free in the steady-state when � < � c.
By the N-Intertwined mean-�eld approximation (NIMFA) [85], the exact SIS epidemic
threshold � c is lower bounded,

� c � � (1)c =
1

�1 (A)

where �1 (A) is the largest eigenvalue of the adjacency matrix A of a network and is
often called the spectral radius of the network. When the lower bound � (1)c for the
epidemic threshold is increased in a network, we are always sure that the real epidemic
threshold (which is in most cases di¢ cult to compute) is on the safe side. The largest
eigenvalue �1 (A) also plays an important role in the phase-transition threshold of a
network of coupled oscillators [87][86].
The largest eigenvalue �1 (A) is closely related to the assortativity coe¢ cient �D:

�1 (A) increases with �D. The minimum and maximum assortativity of a graph is
computed in [88]. Several lower bounds for �1 (A) are given in [58]. The assortativity
coe¢ cient �D can be increased or decreased by the degree-preserving rewiring [58].
However, �D (t) as a function of the step t of rewiring is unknown. Apart from altering
the epidemic threshold by changing the graph�s assortativity, link and node removals
are another way to modify the largest eigenvalue of a networks [86]. In this section, we
show that the assortativity coe¢ cient �D (G; t) of the root graph G of the line graph
at the step t is a linear function of t in the nodal merging process of the random line
graph model described in Algorithm 6.4.

6.3.1 Random line graphs with cliques of the same size sj = S

for j = 1; 2; � � � ; C
We construct line graphs with the random line graph model in Algorithm 6.4. We take
50 cliques of the same size S, and randomly choose and merge two nodes with shortest
path larger than 2 until there are no such pair of nodes. After each step t of merging
two nodes, the assortativity coe¢ cient �D of the line graph H and the corresponding
root graph G are computed. The plots of �D (H; t) and �D (G; t) with S = 2; 3; 4; 5; 6; 7
are shown respectively in Figure 6.5. The numerical results show that the assortativity
of the line graph, �D (H; t), is close to 0 for S = 3; 4; 5; 6; 7, and the assortativity of the
line graph, �D (G; t), increases linear with t for S = 2; 4; 5; 6; 7. We give the analytical
analysis below.



6.3. THE ASSORTATIVITY OF (H;G) DURING THE MERGING PROCESS 87

1.0

0.5

0.0

0.5

1.0

A
ss

or
ta

tiv
ity

ρ D

100806040200 t

1.0

0.5

0.0

0.5

1.0
A

ss
or

ta
tiv

ity
ρ D

120100806040200
t

1.0

0.5

0.0

0.5

1.0

A
ss

or
ta

tiv
ity

ρ D

150100500 t

1.0

0.5

0.0

0.5

1.0

A
ss

or
ta

tiv
ity

ρ D

12080400 t

1.0

0.5

0.0

0.5

1.0

A
ss

or
ta

tiv
ity

ρ D

6040200 t

1.0

0.5

0.0

0.5

1.0

A
ss

or
ta

tiv
ity

ρ D

50403020100 t

S=2 S=3

S=4 S=5

S=6 S=7ρD(H,t)
ρD(G,t)

ρD(H,t)
ρD(G,t)

ρD(H,t)
ρD(G,t)

ρD(H,t)
ρD(G,t)

ρD(H,t)
ρD(G,t)

ρD(H,t)
ρD(G,t)

(a) (b)

(f)(e)

(d)(c)

Figure 6.5: Using the line graph model, we construct line graphs with 50 cliques of the
same size S. The assortativity coe¢ cient of the line graphs and the corresponding root
graphs are drawn as functions of the steps t of the nodal merging process. The root
graphs of the line graphs are computed by Iligra, the inverse line graph construction
algorithm. One can also use other algorithms [49, 50, 53] to compute the root graphs.
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Assortativity of line graphs

In the random line graph model, there are initially C separate cliques of size S. Hence,
H (N;L) has N = CS nodes with degree dj = S � 1 for j = 1; 2; � � � ; N . The number
of links L = C

�
S
2

�
is constant in the process of consecutive merging of two nodes. The

assortativity coe¢ cient �D of a graph is expressed (see Eq. (7) in [58]) as,

�D = 1�
P

i�j(di � dj)2PN
i=1 d

3
i � 1

2L
(
PN

i=1 d
2
i )
2

(6.3)

where
P

i�j denotes the sum over all adjacent pairs of nodes. For simplicity, we de-

note the numerator by A =
P

i�j(di � dj)
2 and the denominator by B =

PN
i=1 d

3
i �

1
2L
(
PN

i=1 d
2
i )
2, hence �D = 1� A

B
.

When t = 1, we have 1 node with degree 2 (S � 1) and CS � 2 nodes with degree
S � 1. Further, when t = 2, we have 2 nodes with degree 2 (S � 1) and CS � 4 with
degree S � 1. After t steps of merging, there are t nodes with degree 2 (S � 1) and
CS � 2t nodes with degree S � 1, and N = CS � t. The denominator B in (6:3) for
�D (H; t) is

B =
NX
i=1

d3i �
1

2L
(
NX
i=1

d2i )
2

= 8t (S � 1)3 + (CS � 2t) (S � 1)3

� 1

CS (S � 1)
�
4t (S � 1)2 + (CS � 2t) (S � 1)2

�2
=
(S � 1)3 2t

CS
(CS � 2t) (6.4)

For the numerator A in (6:3), we consider the following cases:

1. When t � C
2
, each of the t nodes with degree 2 (S � 1), is adjacent with on average

2 (S � 1) nodes with degree S � 1. There is no degree di¤erence among t nodes
with degree 2 (S � 1), and no degree di¤erence among 2 (S � 1) nodes with degree
S � 1. Hence,

A =
X
i�j
(di � dj)2 � 2t (S � 1)3 (6.5)

Substituting (6:4) and (6:5) into (6:3) yields

�D (H; t) � 1�
2t (S � 1)3

(S�1)32t
CS

(CS � 2t)
=

2t
CS

2t
CS
� 1

Since t � C
2
, the inequality 2t

CS
� 1

S
holds. When S is large, �D (H; t) tends to 0.
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2. When t � C, each of the t nodes with degree 2 (S � 1), is adjacent with on average
2 (S � 2) nodes with degree (S � 1). We have

A =
X
i�j
(di � dj)2 � 2t (S � 2) (S � 1)2

Hence,

�D (H; t) � 1�
(S � 2)

(S � 1)
�
1� 2t

CS

�
The condition t � C leads to 2t

CS
� 2

S
. The assortativity �D (H; t) is close to 0 for

large S.

3. When t � N
2
= CS

2
, most of nodes inH have degree 2 (S � 1), therefore,

P
i�j(di�

dj)
2 is close to 0. Since t � CS

2
, the denominator is also close to 0, hence �D (H; t)

is close to 0.

Results obtained in cases 1., 2. and 3. correspond to the simulation results for
�D(H; t) in Figure 6.5. A node with degree 2 (S � 1) is adjacent with on average
2 (S � 1) nodes of degree S � 1 when t � C

2
, and with on average 2 (S � 2) nodes

of degree S � 1 when t � C. Hence, we deduce that a node with degree 2 (S � 1) is
adjacent with on average 2

�
S � 2C

t

�
nodes of degree S � 1 after t steps of mergings.

This provides another method to estimate the numerator in (6:3):

A =
X
i�j
(di � dj)2 � t � 2

�
S � 2t

C

�
(2 (S � 1)� (S � 1))2

=
2t

C
(CS � 2t) (S � 1)3 (6.6)

Hence, the assortativity of the line graph H is approximated by

�D (H; t) � 1�
2t
C
(CS � 2t) (S � 1)2
(S�1)32t
CS

(CS � 2t)
=
1

S

This approximate result also agrees well with the simulations in Figure 6.5: When S
increases, �D becomes closer to 0.
If the selection procedure in line 4 of Algorithm 6.4 is not uniformly at random,

the expression (6:4) of denominator B will be still valid, since the cliques are all of the
same size S. However, the numerator A could be very di¤erent depending on how two
nodes are selected at each step. The assortativity of the line graphs may not be close
to 0. In case 1, t � C

2
, and case 2, t � C, the line graphs could be very assortative

or disassortative. In case 3, t � N
2
= CS

2
, it is still true that most of nodes in H has

been merged, and most nodes have degree 2 (S � 1). Hence, we have the numerator
A =

P
i�j(di � dj)2 � 0 and the assortativity coe¢ cient �D � 0.



90 CHAPTER 6. RANDOM LINE GRAPHS

(a) (b)

line graph root graph

l1

l2

Figure 6.6: (a) The merging of two randomly selected nodes of the cliques in the line
graph. (b) The corresponding root graphs before and after the nodal merging.

Assortativity of root graphs

When t = 0, H consists of C separate cliques with S nodes, and the corresponding root
graph G (NG; LG) consists of C separate complete bipartite graph K1;S, which are star
graphs. Hence, �D (G; t) = �1 (see Eq.(9) in [58]). Each star graph K1;S has 1 node
with degree S, and S nodes with degrees 1. Hence, NG = C (S + 1) and LG = CS,
and there are in total C nodes with degrees S, and CS nodes with degree 1. The root
graph in the step t consists of interconnected star graphs (Figure 6.6), whose structure
models the power law or scale-free structure of general complex networks well.

Theorem 19 In the merging step t in the Algorithm 6.4, the assortativity coe¢ cient
of the root graph G is a linear function of t,

�D (G; t) =
2

CS
t� 1 (6.7)

where C are the number of cliques each with S nodes.

Proof. The merging of two nodes in the line graph H, corresponds to the following
operations in the root graph G (as shown in the Figure. 6.6): (1) choose two links l1
and l2 from two di¤erent complete bipartite graphs which do not share a link; (2) delete
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link l1, and delete the node with degree 1 which is incident to l1; (3) delete the node
with degree 1 which is incident to l2; (4) let l2 be incident to the node with degree S
which was incident to l1. After these operations, the two nodes with degree S from
two di¤erent complete bipartite graphs, are connected with a link. The degree of the
remaining C (S + 1)� 2 nodes keep unchanged.
After t steps of merging in the line graph, we have that the number of nodes in the

root graph NG = C (S + 1) � 2t, and the number of links LG = CS � t. There are
C nodes with degree S and CS � 2t nodes with degree 1 in the root graph G. The
denominator B in (6:3) equals,

B = CS3 + (CS � 2t)� 1

2 (CS � t)
�
CS2 + CS � 2t

�2
=
CS (S � 1)2 (CS � 2t)

2 (CS � t) (6.8)

There is no degree di¤erence among the C nodes with degree S. Each of the (CS � 2t)
nodes with degree 1, is adjacent with a node with degree S, therefore,

A =
X
i�j
(di � dj)2 = (CS � 2t) (S � 1)2 (6.9)

Substituting (6:8) and (6:9) into (6:3) proves Theorem 19.
This analytic result explains the linear increase of �D (G; t) with t, as shown in Figure

6.5, where the root graphs of the line graphs are computed by Iligra, the inverse line
graph construction algorithm, although other algorithms [49, 50, 53] can also be used.
Before the �rst merging, t = 0, �D (G; t) = �1. When t = CS

2
, the root graph G is a

regular graph with degree S, and �D (G; t) = 0.
The only exception from the linear law occurs when S = 3, of which the assortativity

coe¢ cients of the line graphs and corresponding root graphs in the nodal merging
process are shown in Figure 6.5 (b). The line graphs are generated by the Algorithm
6.4. The corresponding root graphs of the line graphs are computed by Iligra. The
root graph ofK3 can beK1;3 orK3 itself. The nonlinearity in Figure 6.5 (b) is originated
from the fact that Iligra picks randomly from K1;3 and K3 as the root graph of line
graph K3. If we modify Iligra and let it always choose K1;3 as the root graph of
line graph K3, the linear law (6:7) would be ful�lled in Fig 4 (b), just like the cases
when S 6= 3. Before the line graph becomes connected in the merging process, there
are always some separate cliques K3 in the line graph. These separate cliques K3 are
translated into K1;3 or K3 randomly by Iligra, when the corresponding root graph is
computed. Hence, the root graphs do not satisfy the linear law, as shown in Figure 6.5
(b). However, after the line graph becomes connected in the nodal merging process,
there are no separate cliques K3 in the line graph, hence, �D (G; t) increases exactly
linearly with t = 58; 59; � � � ; 75, as depicted in Figure 6.5 (b).
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The linear law o¤ers a possibility to construct graphs with a prescribed negative as-
sortativity �D by tuning di¤erent parameters. For an arbitrary small " > 0, it is always
possible to construct graphs with the assortativity in the interval (�"+ �D; "+ �D].
Indeed, for an arbitrary small enough ", it is possible to take large enough C or S (one
could be �xed), such that "CS > 1. For such "; C and S, taking t =

�
"
2
CS + (1 + �D)

CS
2

�
boils down to

� "

2
CS + (1 + �D)

CS

2
< t � "

2
CS + (1 + �D)

CS

2
(6.10)

as the di¤erence of the right-hand and the left-hand sides in (6.10) is "CS. Relation
(6:10) is equivalent to �" + �D < �1 + 2t

CS
� " + �D, hence we have a graph with the

assortativity in the interval (�"+ �D; "+ �D]. Moreover, it is possible to �nd many
graphs with a prescribed assortativity �D: (i) by �xing the size of the clique C in one
case; (ii) by �xing the number of clique S in another; or (iii) by tuning both C and
S. In general, by tuning the slope 2

CS
, the desired negative assortativity �D can be

obtained.
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Figure 6.7: (a) The line graph H with 40 cliques of size 4 and 10 cliques of size 6,
and (b) the line graph H with 60 cliques of size 4 and 20 cliques of size 5 have been
constructed with Algorithm 6.4. The assortativity coe¢ cient �D of the line graphs and
the corresponding root graphs in each merging step t is shown in this �gure.
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6.3.2 Heterogeneous random line graphs with cliques of dif-
ferent sizes

The characteristics of assortativity of the line graphs in Section 6.3.1 and the linear
law of the assortativity presented in Theorem 19 are, however, sensitive to rather small
topological changes as we exemplify in this section.

Random line graphs with cliques of two di¤erent sizes

We construct line graphs with cliques of two di¤erent sizes. The electrical properties of
semiconductor materials can be manipulated by the addition of impurities, known as
doping [89]. Inspired by doping in semiconductor industry, we investigate the assorta-
tivity change of the line graphs after the introducing of cliques of di¤erent size. Among
all the cliques we use to construct line graphs, the majority of them are of size Sm, and
the rest are of size Sd, called doping cliques. As shown in Figure 6.7 (a), for the line
graph H constructed with 40 cliques of size 4 and 10 cliques of size 6, �D (H; t) is very
high when t is small, and �D (H; t) ends at value close to 0:5 when the merging process
�nishes. During the whole merging process, �D (H; t) is positive, and never close to
zero. In Figure 6.7 (b), the line graph H is constructed with 60 cliques of size 4 and 20
cliques of size 5. The assortativity coe¢ cient of the line graph �D (H; t) �rst decreases
rapidly from almost 1 to almost 0, and after remains close to 0 for a long range of t,
�D (H; t) starts to increase quickly and ends at value close to 0:5. The assortativity of
the line graph has been raised by adding a relatively smaller number of doping cliques
to the line graph.

Random line graphs with cliques of binomial distributed size

In this section, we construct line graphs with the cliques of binomial size S. If the size
of clique S follows a binomial distribution S � b (N; p), the probability Pr [S = k] =PN

k=0

�
N
k

�
pk (1� p)N�k. In Figure 6.8 (a), the line graph H is constructed with 30

cliques where S � b (20; 0:3) and
PC

j=1 sj = 176. After 88 steps of merging, H becomes
a line graph of 88 nodes and 490 links, with the corresponding root graph with 30 nodes
and 88 links. In Figure 6.8 (b), the line graph H constructed with 50 cliques whose size
follows a binomial distribution S � b (20; 0:4) and

PC
j=1 sj = 327. The line graph H

has 189 nodes and 1381 links, after 188 steps of merging, and the corresponding root
graph G has 51 nodes and 189 links. For the 50 cliques with size S � b (20; 0:4), the
merging process has been repeated for 1000 times, and 1000 line graphs and their root
graphs were obtained. The adjacency eigenvalues of the root graphs appeared to follow
a semicircle distribution, as shown in Figure 6.8 (c).
Both Figure 6.8 (a) and (b) illustrate that the assortativity of the line graph �D (H; t)

at �rst drops from almost 1 to a certain level above 0, then it starts to increase and
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ends at value close to 0:5. In both numerical experiments, the assortativity coe¢ cient
of the root graph �D (G; t) increases steadily to a value close to 0. The adjacency
eigenvalues of Erd½os-Rényi random graphs follow semicircle distributions [23]. The
spectrum of a graph is the unique �ngerprint of that graph [90]. The root graphs
of the line graphs after the merging process have binomial degree distributions, and
their adjacency eigenvalues follow semicircle distributions. Hence, the root graphs are
believed to be equivalent to the Erd½os-Rényi random graphs.
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Figure 6.8: Using Algorithm 6.4, we construct (a) the line graph H with 30 cliques, the
size of which follows a binomial distribution S Bino (20; 0:3), and (b) the line graph
H with 50 cliques, the size of which follows a binomial distribution S Bino (20; 0:4).
The assortativity coe¢ cient �D of the line graphs and the corresponding root graphs
in each merging step t has been computed. (c) For the 50 cliques in (b), we repeat
the merging process for 1000 times, and computed the probability density function of
adjacency eigenvalues of the root graphs.
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6.4 Chapter conclusion

Inspired by the con�guration model [66][67] and Krausz�s Theorem [34][51], we propose
a model which can randomly generate simple graphs which are line graphs of other
simple graphs. We show that consecutive integers can occur as the number of links L
in the line graph H (N;L). We also prove that there are multiple bands of consecutive
integers, which can never appear as the number of links L in H (N;L). The exact
expressions of bands and bandgaps of L have been derived.
Our model constructs line graphs by merging step by step a pair of nodes of the

cliques, which we use to construct line graphs. Obeying necessary rules to ensure that
the resulting graphs are line graphs, two nodes to be merged are randomly chosen at
each step. If the cliques are all of the same size, the assortativity of the line graphs
are each step are close to 0, and the assortativity of the corresponding root graphs
increases linearly from �1 to 0 with the steps of merging nodes. With the linear
function �D of the step t in Theorem 19, a graph with a prescribed negative assortativity
coe¢ cient can be constructed. The largest eigenvalue �1 (A) of the adjacency matrix
A of a network is the only factor of the lower bound � (1)c of the network�s epidemic
threshold � c, �

(1)
c = 1

�1(A)
� � c. The largest eigenvalue �1 (A) can be adjusted by

tuning the assortativity coe¢ cient �D. The linear law for the assortativity provides a
new method to tune the assortativity besides the method of degree-preserving rewiring.
If we �dope� the constructing elements of the line graphs - the cliques of the same
size- with a relatively smaller number of cliques of di¤erent size, the characteristics of
the assortativity of the line graphs is completely altered. We also generate line graphs
with the cliques whose sizes follow a binomial distribution. The corresponding root
graphs, with binomial degree distributions, zero assortativity and semicircle eigenvalue
distributions, are equivalent to Erd½os-Rényi random graphs.
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Social Networks and Brain
Networks

97





Chapter 7

Social Network Modeling

Social networks, as well as many other real-world networks, exhibit overlapping com-
munity structure. A¢ liation networks, as a large portion of social networks, consist of
cooperative individuals: Two individuals are connected by a link if they belong to the
same organization(s), such as companies, research groups and hobby clubs. A¢ liation
networks naturally contain many fully connected communities/groups. In this chap-
ter, we characterize the structure of the real-world a¢ liation networks, and propose a
growing hypergraph model with preferential attachment for a¢ liation networks which
reproduces the clique structure of a¢ liation networks. By comparing computational
results of our model with measurements of the real-world a¢ liation networks of ArXiv
coauthorship, IMDB actors collaboration and SourceForge collaboration, we show that
our model captures the fundamental properties including the power-law distributions
of group size, group degree, overlapping depth, individual degree and interest-sharing
number of real-world a¢ liation networks, and reproduces the properties of high cluster-
ing, assortative mixing and short average path length of real-world a¢ liation networks.

This chapter is organized as follows: Section 7.1 introduces the hypergraph repre-
sentation of a¢ liation networks. In Section 7.2, we present the analytical properties
on the topology and spectra of the social networks. In Section 7.3, we characterize the
overlapping community structure of social networks in the cases of the ArXiv coau-
thorship networks of subjects of "General Relativity and Quantum Cosmology" and
"High Energy Physics - Theory", the IMDB movie actors collaboration network and
the SourceForge software collaboration network. In Section 7.4, we propose a pref-
erential attachment based growing hypergraph model for social networks. The nodes
of the hypergraph model represent the groups of social networks, and the hyperedges,
connecting multiple nodes, represent the individuals. Numerical analyses show that our
hypergraph model reproduces all the properties of social networks.

99
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7.1 The representation of social networks

7.1.1 Preliminaries

Suppose the network under consideration has N individuals and M groups, where an
individual may belong to multiple groups. The membership numbermj of an individual
j is de�ned by the number of groups of which j is a member. The degree dj of an
individual j equals the number of individuals who have the same membership in one
or more groups. The interest-sharing number �i;j of individuals i and j is de�ned by
the number of groups to which they both belong, which indicates how many common
interests they share. The group size sk of group k is the number of individuals that
belong to group k. The group degree uk of group k equals the number of groups sharing
individual(s) with group k. The overlapping depth �k;l of two groups k and l equals the
number of individuals that they share. An a¢ liation network is linear if �k;l � 1 for all
k; l 2 [1;M ], where M is the number of groups. If the membership number mj = m for
j 2 [1; N ], the a¢ liation network is called a m-uniform a¢ liation network.

(a) (b)

I
II

III

IV

1

2
3

4

5

Figure 7.1: The example graph to illustrate the community structure. The nodes denote
individuals. The communities overlap with each other on one or more nodes.

We use the graphs in Figure 7.1 to exemplify the de�nitions of dj, mj, �i;j, sk,
uk, and �k;l. The graph in Figure 7.1 (a) has labeled �ve nodes which are members
of at least two groups. Obviously, d1 = 24, d2 = 12, d3 = 10, d4 = 8 and d5 = 9.
Nodes 1 � 5 belong to 5, 3, 2, 2 and 2 groups respectively, thus m1 = 5, m2 = 3 and
m3 = m4 = m5 = 2. Individual 1 and 2 belong to only one common group, hence
�i;j = 1. As shown in Figure 7.1 (b), the groups I � IV have 6, 5, 5 and 6 nodes
respectively, hence, sI = sIV = 6 and sII = sIII = 5. Evidently, the overlapping
widths: �I;II = 2, �I;III = 1, �I;IV = 3, �II;III = 2, �II;IV = 0 and �III;IV = 1. The
group degree: uI = uIII = 3, uII = uIV = 2.
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An a¢ liation network is usually described by a graph where the nodes represent the
individuals and two nodes are connected by a link if they both belong to a group or
several groups. If a set CI of individuals belong to group I, the set CI of individuals
comprise a fully connected clique. If a set CII (CII � CI) of individuals also belong to
another group II, we cannot represent the group II by this graph description, because
the set CII of individuals are already fully connected inside the group I. Scott [91] dis-
cussed generating a¢ liation network with simple graphs. Newman et al. [92] suggested
a bipartite graph model with all information preserved by representing a group with one
type of nodes and individuals with the other type of nodes, where links only connect
nodes of di¤erent types, as shown in Figure 7.2. Lattanzi and Sivakumar [93] pro-
posed a bipartite-graph-based generative model for a¢ liation networks. However, the
bipartite-graph-based model does not reproduce all the a¢ liation networks�topological
properties shown in Section 7.2. Hence, we introduce the hypergraph representation of
a¢ liation networks.

7.1.2 Hypergraph representation

A hypergraph is the generalization of a simple graph. A simple graph is an unweighted,
undirected graph containing no self-loops nor multiple links between the same pair of
nodes. A hypergraph H (M;N) has M nodes and N hyperedges. We use the term
�hyperedge�instead of �hyperlinks�in order not to make confusion with hyperlinks of
WWW webs. Its nodes are of the same type as those of a simple graph, as shown in
Figure 7.3 (a). The hyperedges of hypergraphs can connect multiple nodes, like hyper-
edge A in Figure 7.3 (a) connecting nodes I; II; � � � ; V . A hypergraph is linear if each
pair of hyperedges intersects in at most one node. Hypergraphs where all hyperedges
connect the same number m of nodes are de�ned as m-uniform hypergraphs with the
special case that 2-uniform hypergraphs are simple graphs. If an a¢ liation network is
linear, the representing hypergraph is linear; if an a¢ liation network is m-uniform, the
representing hypergraph is also m-uniform.
We propose to describe an a¢ liation network with M groups and N individuals by

a hypergraph H (M;N): M nodes represent the M groups; N hyperedges represent N
individuals; and an hyperedge is incident to a node if the corresponding individual is a
member of the corresponding group.
The line graph of a hypergraph H (M;N) is de�ned as the graph l (H), of which

the node set is the set of the hyperedges of H (M;N) and two nodes are connected by
a link of weight t, when the corresponding hyperedges share t node(s). The degree dj
of an individual j, de�ned in subsection 7.1.1, equals the number of individuals that
connect to j in the line graph l (H). The line graph l (H) is an unweighted graph when
the corresponding hypergraph is linear; otherwise is weighted, and the weight of link
i � j equals the interest-sharing number �i;j.
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Index Names of communities Members (individuals)
I NAS-TU Delft A;B;C;D;E; F
II A research group-MIT A;A1; � � � ; A5
III A research group-Cornell Univ. A;A6; � � � ; A10
IV IEEE/ACM ToN editorial board A;A11; � � � ; A15
V A research group-KSU A;A16; � � � ; A20
V I A research group-Ericsson B;B1; � � � ; B4
V II A research group-KPN C;C1; � � � ; C4
V III Piano club C;C5; � � � ; C8
IX A research group-TNO D;D1; � � � ; D4

X A rock band D;D5; D6; D7; G
XI A soccer team E;E1; E2; E3; G
XII Bioinformatics-TU Delft F; F1; � � � ; F4

Table 7.1: The names and the members of all the communities of the exemplary social
network of NAS.

7.1.3 An illustrative example

In this subsection, we give an exemplary a¢ liation network and then represent it by
a hypergraph. Table 7.1.3 describes an a¢ liation network based on the a¢ liations of
members of the NAS research group (Network Architectures and Services Group at
Delft University of Technology). Individuals A;B;C;D;E; F are members of NAS and
the other individuals are the members of groups which overlap with the NAS group.
Figure 7.2 depicts the bipartite graph representation of the NAS a¢ liation network
with the blue circles representing the groups and the solid blue disks representing the
individuals. Two nodes are linked when the corresponding individual belongs to the
corresponding group.

We represent this network by the hypergraph H (12; 53) shown in Figure 7.3 (a).
The nodes of the hypergraph denote the groups and the individuals are denoted by the
hyperedges. There are 12 groups as described in Table 7.1.3, corresponding to the 12
nodes of the hypergraph in Figure 7.3 (a), and there are 53 individuals among whom
6 NAS members with the membership number mA = 5, mC = mD = 3, mB = mE =
mF = 2. If an individual belongs to multiple groups, the corresponding nodes are
connected by the hyperedge specifying that individual.

Figure 7.3 (b) depicts the line graph l (H) of the hypergraph H (12; 53) in Figure 7.3
(a), which represents the exemplary NAS a¢ liation network. In the line graph l (H),
the individuals are denoted by nodes. The line graph l (H) is unweighted since the NAS
a¢ liation network is linear.
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Figure 7.2: The bipartite graph representation of the network for the NAS group.

7.2 Properties of social networks

7.2.1 Topological properties

The line graph l (H) has N nodes and L links. The topology of l (H) can be described
by its adjacency matrix A, a N�N matrix, where the element aij equals the linkweight
of link i � j if there is a link between node i and node j, else aij = 0. Since l (H) is
undirected, the adjacency matrix A is symmetric.
The following equalities are valid for all a¢ liation networks,

N =
MX
k=1

sk �
MX

k=1;l=1

�k;l (7.1)

L =
1

2

NX
j=1

dj =

MX
k=1

sk (sk � 1)
2

�
MX

k=1;l=1

�k;l
�
�k;l � 1

�
2

(7.2)

NX
j=1

(mj � 1) =
MX

k=1;l=1

�k;l (7.3)

If �k;l � 1 for all k; l 2 [1;M ], where M is the number of groups, which implies that
the a¢ liation networks are linear, we have,

dj =
X

All the groups to
which individual j belongs

(s� 1) (7.4)

where s is the group size; And

uk =
X

All the individuals
that group k contains

(m� 1) (7.5)
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Figure 7.3: (a) The hypergraph representation of the network described in Table 7.1.3.
The hyperedges are the blue ellipse-like closed curves. The nodes are the disks marked
with Roman numerals. A node and a hyperedge are incident if the node is surrounded
by the hyperedge. The hyperedges and nodes represent the individuals and the com-
munities respectively. Individuals participate in multiple communities, implying that
the communities overlap with each other. (b) The line graph of the hypergraph in (a),
which is a simple graph. The nodes here denote the individuals. Note that this graph
is also the line graph of the hypergraph.

where m is the membership number of an individual. When the a¢ liation network
is linear, we also have �i;j � 1.
The adjacency matrix Al(H)N�N of the line graph l (H) of a hypergraphH (M;N) which

represents an a¢ liation network with M groups and N individuals, can be expressed
by the unsigned incidence matrices RM�N of H (M;N)

A
l(H)
N�N =

�
RTR

�
N�N � diag(R

TR) (7.6)

where the entry rij of R is 1 if node i and hyperedge j are incident, otherwise rij = 0.
Basically, the adjacency matrix Al(H) equals the matrix RTR setting all the diagonal
entries to zero. The interest-sharing number �i;j of individual i and j equals the entry
a
l(H)
ij of Al(H)

�i;j = a
l(H)
ij (7.7)

The membership number mj of an individual j equals,

mj =
MX
i=1

rij = (R
TR)jj (7.8)
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The group size sk of group k is

sk =

NX
l=1

rkl = (RR
T )kk (7.9)

Let WM�M =
�
RRT

�
M�M � diag(RR

T ), then the overlapping depth �k;l of two groups
k and l equals,

�k;l = wkl (7.10)

where wkl is an entry of WM�M .
The individual degree dj equals the number of nonzero entries in the jth row/column

of Al(H)N�N , with the special case dj =
NP
i=1

a
l(H)
ij when the a¢ liation network is linear. Sim-

ilarly, the group degree uk equals the number of nonzero entries in the kth row/column
of WM�M .

7.2.2 Spectral properties

The adjacency spectra of the line graph of m-uniform a¢ liation networks

Am-uniform a¢ liation network can be represented bym-uniform hypergraphsHm (M;N),
of which the unsigned incidence matrix R has exactly m one-entries and M �m zero-
entries in each column. Thus, all the diagonal entries of RTR are m. The adjacency
matrix of the line graph of Hm (M;N) can be written as,

A
l(Hm)
N�N = RTR�mI (7.11)

where RTR is a Gram matrix [34][94].

Lemma 20 For all matrices AN�M and BM�N with N � M , it holds that � (AB) =
� (BA) and � (AB) has N �M extra zero eigenvalues

�N�M det (BA� �I) = det (AB � �I)
Lemma 20 and (7:11) yields,

det
�
A
l(Hm)
N�N � (��m) I

�
= �N�M det

��
RRT

�
M�M � �I

�
The adjacency matrix Al(Hm)N�N has at least N �M eigenvalues �m. We have

xT
�
RTR

�
x = (Rx)T Rx = kRxk22 � 0

and
xT
�
RRT

�
x =

�
RTx

�T
RTx =

RTx2
2
� 0

where xL�1 is an arbitrary vector. Hence, both
�
RTR

�
N�N and

�
RRT

�
M�M are positive

semide�nite, hence all eigenvalues of
�
RTR

�
N�N are non-negative. Due to (7:11), the

adjacency eigenvalues of Al(Hm)N�N are not smaller than �m.
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The adjacency spectra of the line graph of non-uniform a¢ liation networks

A non-uniform a¢ liation network with maximum membership number mmax can be
represented by a non-uniform hypergraph H (M;N). The unsigned incidence matrix
R of H (M;N) has at most mmax one-entries in each column. Therefore, the largest
diagonal entry of RTR is mmax. The adjacency matrix of the line graph of non-uniform
hypergraph H (M;N) is,

A
l(H)
N�N = RTR + C �mmaxI (7.12)

where C = diag
�
c11 c22 � � � cLL

�
and cjj = mmax � (RTR)jj � 0 for j 2 [1; N ].

Since

xT
�
RTR + C

�
x = xT

�
RTR

�
x+ xT

�p
C
Tp

C
�
x

= kRxk22 +
pCx2

2
� 0

where xL�1 is an arbitrary vector and
p
C = diag

� p
c11

p
c22 � � �

p
cLL

�
, RTR+C

is also positive semide�nite, thus, the adjacency eigenvalues of Al(Hm)N�N are not smaller
than �mmax.

7.3 Characterizing the real-world social networks

7.3.1 ArXiv coauthorship networks

In this section, we use the terms �community�and �group�interchangeably. We analyze
the arXiv data of subjects of "General Relativity and Quantum Cosmology" (GR-QC)
and "High Energy Physics - Theory" (HEP-TH) in the period from January 1993 to
April 2003, which were collected by [95]. We construct the hypergraph with the papers
as nodes and the authors as hyperedges. A hyperedge is incident to a node if the
corresponding author authors/coauthors the corresponding paper. In this manner we
construct the hypergraph of the arxiv GR-QC coauthorship network with 5855 authors
and 13454 papers, and the hypergraph of the arXiv HEP-TH coauthorship network with
9877 authors and 21568 papers. We �t the data of s, �, m, d and � with the power
function f (x) = x�. The values of  are shown in Table 7.4.2. The group size s follows
a power-law distribution. In this case of coauthorship network, the group size s means
the number of authors a paper has. As shown in Figure 7.4 and 7.5, We see that, in the
coauthorship networks of both subjects, the papers with only one author and with more
than ten authors are very rare. Most of papers have two or three authors. The group
degree u in both Figure 7.4 and 7.5 has a power-law tail. The group overlapping depth
� follows a power-law distribution. Most of the pairs of groups have no overlap. We
only consider the group pairs which overlaps with each other. The membership number
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m of an individual here means the number of papers he or she authors and coauthors.
It also follows a power-law distribution. The interest-sharing number �, denoting the
number of papers in which two individuals participate together, follows a power-law
distribution. Only the individual pairs who have nonzero interest-sharing number are
considered. The ArXiv coauthorship networks of both subjects possess high clustering
coe¢ cient, large assortativity coe¢ cient and short average path length as shown in
Table 7.4.2.
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Figure 7.4: The probability density distribution of group size s, group degree u, group
overlapping depth � (the �rst row from left to right), individual membership numberm,
individual degree d, individual interest-sharing number � (the second row from left to
right) of ArXiv coauthorship networks of "General Relativity and Quantum Cosmology"
category.

7.3.2 IMDB actor collaboration network

The data of IMDB movie actors collaboration network with 127823 movies and 392340
actors, were collected by Hawoong Heong from Internet Movie Database (based on
www.imdb.com). We construct the hypergraph of IMDB movie actors collaboration
network with the movies as nodes and the actors as hyperedges. A hyperedge is incident
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Figure 7.5: The probability density distribution of group size s, group degree u, group
overlapping depth � (the �rst row from left to right), individual membership number
m, individual degree d, individual interest-sharing number � (the second row from left
to right) of ArXiv coauthorship networks of "High Energy Physics - Theory" category.

to a node if the corresponding actor appears in the corresponding movie. We �t the
data of s, u, �, m, d and � with the power function f (x) = x�, as shown in Figure 7.6
and Table 7.4.2. The data of s are �tted with two power functions in di¤erent regions.
The group degree u appears also to follow two power-law distribution in two regions.
All the values of  are shown in Table 7.4.2. The IMDB movie actors collaboration
network also exhibits high clustering, assortative mixing and short average path length
as shown in Table 7.4.2.

7.3.3 The SourceForge software collaboration network

SourceForge is a web-based project repository assisting programmers to develop and
distribute open source software projects. SourceForge facilitates developers by provid-
ing a centralized storage and tools to manage the projects. Each project has multiple
developers. We construct the hypergraph of the SourceForge software collaboration
network by taking software projects as nodes and the developers as hyperedges. A
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Figure 7.6: The probability density distribution of group size s, group degree u, group
overlapping depth � (the �rst row from left to right), individual membership number
m, individual degree d, individual interest-sharing number � (the second row from left
to right) of IMDB movie actors collaboration networks.

hyperedge is incident to a node if the corresponding developer participates in the corre-
sponding software project. The SourceForge software collaboration network has 259252
software projects and 161653 developers. We �t the data of s, u, �, m, d and � with
the power function f (x) = x�. As shown in Figure 7.7, the pdfs of all the six metrics
dj, mj, �i;j, sk, uk, and �k;l are well �tted by power law functions with exponents 
shown in Table 7.4.2. The SourceForge network also has a high clustering coe¢ cient,
a high assortativity coe¢ cient and an small average path length, which are shown in
Table 7.4.2.

7.4 Modeling of social networks

7.4.1 Model description

In this section, we use the terms �community�and �group�interchangeably. As stated
before, we use the nodes of hypergraph to represent the groups and the hyperedges
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Figure 7.7: The probability density distribution of group size s, group degree u, group
overlapping depth � (the �rst row from left to right), individual membership number
m, individual degree d, individual interest-sharing number � (the second row from left
to right) of the SourceForge software collaboration network.

to represent the individuals. In the description of our model, the nodes and groups,
the hyperedges and individuals are used interchangeably. Our model is a growing
hypergraph model, starting with a small hypergraph which represent the initial groups
and individuals. Later on, new individuals and new groups are added to the network
in the growing process.
We notice that the number of groupM is larger than the number of individuals N in

ArXiv networks and Sourceforge network, and M is smaller than N in IMDB network.
Making a movie needs more e¤orts and labor force than writing a paper or developing
an open-source software. In our model, we take M

N
= 1, assuming that each coming

individual start a new group. Note that the group size of real-world a¢ liation network
follow a power-law distribution. We employ preferential attachment of individual to
the existing groups to achieve the power-law distributed group size. The tricky issue
is to determine the membership number of each new coming individuals, namely to
decide how many nodes that a new hyperedge should connect to. The analysis of real-
world a¢ liation networks tells a power-law distribution of the membership number,
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H(N +M0; N +N0) GrowingHypergraph(H0(M0; N0);�)
Input: A seed hypergraph H0(M0; N0) with M0 nodes and N0 hyperedges
The membership numbers for new hyperedges � = [ �m1 �m2 � � � �mN ]
Output: A hypergraph H(N +M0; N +N0)
1 H  H0(M0; N0)
2 for each j 2 f1; 2; 3; � � � ; Ng do
3 add a new hyperedge j to H
4 mj  0
5 add a new node to H and let it be incident to the hyperedge j
6 mj  mj + 1
7 while mj < �mj do
8 k  a random natural number between 1 and j � 1
9 r  a random real number between 0 and 1
10 if r < sk=

Pj�1
i=1 si then

11 let the hyperedge j be incident to the node k
12 mj  mj + 1

Figure 7.8: Meta-code for GrowingHypergraph.

hence we pre-produce a power-law distributed sequence of numbers, taking them as the
membership numbers of new coming individuals.
Our hypergraph model is described by the following procedure:

1. Start with a seed hypergraph H0 (M0; N0) with M0 groups and N0 hyperedges.

2. Suppose that the desired number of individuals (hyperedges) of the network to
be generated is N +N0. Determine the membership numbers for the N new hy-
peredges: � =

�
�m1 �m2 � � � �mN

�
. Note that the membership number vector

� is the input parameter of our hypergraph model.

3. At growing step j, j = 1; 2; � � � ; N , add a new hyperedge j and a new group to
the hypergraph. Make the new hyperedge j and the new group incident, and the
membership number of j becomes 1.

(a) Connect the new hyperedge j to the existing group k with probability pk =
sk=
Pj�1

i=1 si, where sk is the group size of group k and
Pj�1

i=1 si is the sum of
group sizes of all the existing groups.

(b) Repeat 3a) �mj � 1 times so that the membership number of the hyperedge
j increases to the expected membership number �mj.

4. Repeat 3) until the number of hyperedges increases to N +N0.
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The model is also presented with pseudo-codes in Algorithm 7.8. Compute the
metrics dj, mj, �i;j, sj,uj and �i;j using the methods given in Section 7.2.1 including
the formulas (7:6) to (7:10).
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Figure 7.9: The probability density distribution of group size s for H2, H3, H5, H7,
H10, H15, HU [2;121], and Hpow. They all have 5020 groups (nodes) and 5020 hyperedges
(individuals).

7.4.2 Properties of the growing hypergraph model

Simulation settings

We use a hypergraph H (20; 20) with the membership number mj = 1, j = 1; 2; � � � 20,
as the starting seed. We add 5000 new hyperedges (individuals) and 5000 new nodes
(groups) to the starting seed through 5000 growing steps. Hence, all the hypergraphs
we generate have 5020 nodes and 5020 hyperedges.
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Figure 7.10: The probability density distribution of (a) group degree u for H2, H3, H5,
H7, H10, H15, HU [2;121], and Hpow, and (b) group overlapping depth � for H3, H5, H7,
H10, H15, HU [2;121], and Hpow. They all have 5020 groups (nodes) and 5020 hyperedges
(individuals).
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Figure 7.11: The probability density distribution of (a) individual degree d for H2, H3,
H5, H7, H10, H15, HU [2;121], and Hpow, and (b) individual interest-sharing number � for
H5, H7, H10, H15, HU [2;121], and Hpow. They all have 5020 groups (nodes) and 5020
hyperedges (individuals).
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In the growing process, we �rst apply the constant membership number mj = 2,
j = 1; 2; � � � ; 5000, obtaining the uniform hypergraphH2. In the same way, we construct
H3, H5, H7, H10 and H15. Then we construct the hypergraph HU [1;100] with a uniformly
distributed membership number in the interval [1; 100]. We construct these hypergraphs
in order to study by comparison the properties of Hpow which is obtained by applying
the sequence of membership numbers with the pdf Pr [� = m] = m�2:02. We construct
Hpow in this way: generating a sequence of natural numbers following a power-law
distribution with the pdf Pr [� = m] = m�2:02, and applying this sequence of natural
numbers as the membership numbers in the growing process.
We denote the group size and group degree of a random group by S and U , the group

overlapping depth of a random pair of groups by B, the individual degree of a random
individual by D, and the interest-sharing number of a random pair of hyperedges by �.

Network  (s)  (u)  (�)  (m)  (d)  (�) C �D l
arXiv1 5:50 2:14 3:93 1:95 1:84 3:56 0:637 0:584 6:50
arXiv2 6:24 1:63 3:56 1:72 1:68 2:86 0:289 0:382 4:89
IMDB 2:04 0:407 4:80 1:81 1:91 3:62 0:762 0:682 4:29
SF 3:91 2:45 3:76 3:48 2:61 4:60 0:636 0:401 7:06
H2 2:12 2:39 3:38 n.a. 2:35 n.a. 0:616 0:508 6:13
H3 2:55 2:46 3:07 n.a. 2:16 n.a. 0:581 0:576 6:71
H5 2:38 2:09 3:19 n.a. 2:12 n.a. 0:491 0:498 7:85
H7 3:06 2:81 3:11 n.a. 2:59 n.a. 0:613 0:644 7:62
H10 3:22 2:22 3:53 n.a. 2:38 n.a. 0:686 0:519 6:89
H15 2:90 1:95 3:34 n.a. 2:66 n.a. 0:722 0:478 6:56

HU [1;100] 3:66 2:85 3:82 n.a. 3:01 n.a. 0:566 0:422 7:22
Hpow 3:91 2:45 3:76 3:48 2:61 4:60 0:636 0:401 7:06

Table 7.2: The exponents  of power-law �ttings f(x) = x� of s; u; �;m; d and �,
and the clustering coe¢ cients C, the assortativity coe¢ cients �D and the average path
lengths l of the arXiv GR-QC (arXiv1) and HEP-TH (arXiv2) coauthorship networks,
the IMDB actor collaboration network (IMDB), the SourceForge software collaboration
network (SF), and the growing hypergraph model with di¤erent sequences of member-
ship numbers. For the IMDB network, the exponents  of s and u for the second region
are 5:35 and 3:40.

Results and discussion

Due to the principle of preferential attachment [16], we expect that the group size of
all the generated hypergraphs follow power law distributions, which are con�rmed by
Figure 7.9. The exponents of the power laws are shown in Table 7.4.2. The group
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degree of all hypergraphs also follows a power-law distribution, as illustrated in Figure
7.10 (a), where the proper bin size has been used. The exponents are shown in Table
7.4.2. The group degree of Hpow always follow a power law distribution. The group
overlapping depths of all hypergraphs follow power law distributions with exponents
which are relatively larger in absolute values,as depicted in Figure 7.10 (b). All the
exponents are reported in Table 7.4.2. Nacher et al. [39] and Manka-Krason et al. [40]
showed that the nodal degree of line graphs of simple graphs with power law degree
distribution follows a power law distribution. The individual degree distribution of
H2 is just the degree distribution of line graphs of scale-free graphs. The �rst of plot
in Figure 7.11 (a) veri�es the conclusion of [39] and [40]. Figure 7.11 (a) shows that
the individual degree of H3 still can be said to follow a power-law and is quite similar
to that of H2. The distributions of the individual degree of H5, H7 and H10 do not
follow any power law. The individual degree of H15 and HU [1;100] seem to follow power
laws f(x) = x� with negative  (the exponent � would be positive). Above all, the
individual degree of Hpow perfectly follows a power law distribution, as shown in Figure
7.11 (a). The interest-sharing number � of only Hpow follows a power-law distribution,
as illustrated in the 4th plot on the �rst row of Figure 7.11 (b). In H15 and HU [1;100], the
beginning part is linear and the tail is exponential (insets in the two plots on the second
row of Figure 7.11 (b)). The clustering coe¢ cients C, the assortativity coe¢ cients �D
and the average path lengths l of all the generated hypergraphs H2, H3, H5, H7, H10,
H15, HU [1;100] and Hpow are reported in Table 7.4.2. All the generated hypergraphs
exhibit high clustering coe¢ cient, high assortativity coe¢ cient and short average path
lengths as what real-world a¢ liation networks show.

7.5 Chapter conclusion

Many real-world networks, especially social networks, exhibit an overlapping community
structure. A¢ liation networks are an important type of social networks. We propose a
hypergraph representation which reproduces the clique structure of a¢ liation networks.
We give analytically the topological and spectral properties of a¢ liation networks. We
also present formulas which facilitate the computation for characterizing the real-world
a¢ liation networks of ArXiv coauthorship, IMDB actors collaboration and SourceForge
collaboration. We propose a preferential attachment based growing hypergraph model
for a¢ liation networks. Numerical analyses show that our hypergraph model with
power-law distributed membership numbers reproduces the power-law distributions of
group size, group degree, overlapping depth, individual degree and interest-sharing num-
ber of real-world a¢ liation networks, and reproduces the properties of high clustering,
assortative mixing and short average path length of real-world a¢ liation networks.



Chapter 8

Randomness of Brain Networks

Recently, researchers have been curious about the relations between the properties of
complex networks and the amount of randomness and structure in complex networks.
In this chapter, a spectral randomness metric is proposed to quantitatively measure
the randomness of networks. The spectral randomness metric can better capture the
randomness of network, compared to assortativity coe¢ cient and average path length.
A metric measuring the structure, structure coe¢ cient, is proposed. The randomness
and structure of the brain networks of a group of healthy individuals and a groups of
patients with Alzheimer�s disease have been analysed. We that the brain networks of
Alzheimer�s disease are statistically more random than the healthy brain networks.

8.1 Spectral randomness metric

The spectra of complex networks have been widely studied [34][24]. Haemers and van
Dam [90] conjectured that the spectrum of a graph is the unique �ngerprint of that
graph, provided its size N is large enough. The adjacency eigenvalues of Erd½os-Rényi
random graph follow Wigner�s semicircle distribution [23]. If the adjacency eigenvalues
of a given graph also follow the same Wigner�s semicircle distribution of Erd½os-Rényi
random graph model Gp (N), the graph must be a realization of Gp (N).
Wigner�s theorem [75][76][77] states that, the probability distribution of an eigen-

value � of a random N � N real symmetric matrix with independently distributed
elements aij with �2 = V ar [aij], follows a semicircle law,

lim
N!1

f� (x) =

p
4N�2 � x2
2�N�2

; jxj � 2�
p
N

The adjacency matrices of Erd½os-Rényi random graphs satisfy the conditions of
Wigner�s semicircle law with �2 = p (1� p). The probability density function of an
eigenvalue of Gp (N) has two di¤erent features: the largest eigenvalue �1 is beyond

117
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the semicircle law and consequently the center of the semicircle shifts leftward to the

negative values with di¤erent link density p since
NP
j=1

�j = 0.

Theorem 21 Except the largest eigenvalue �1, the probability density function of a
eigenvalue �, of Erd½os-Rényi random graphs with �nite N nodes, follows the shifted
semicircle law,

f� (x) =

q
4Np (1� p)� (x+ p)2

2�Np (1� p) ; jxj � 2
p
Np (1� p)

If we scale the adjacency matrix A of Gp (N) by 1p
N
, AN = Ap

N
, then the probability

density function of a eigenvalue �(AN ) of AN follows,

f
�(AN )

(x) =

r
4p (1� p)�

�
x+ pp

N

�2
2�p (1� p) ; jxj � 2

p
p (1� p) (8.1)

Proof. See the proof in Appendix D.

Denote by hG (k) the probability density function of a random adjacency eigenvalue
of G (N;L), and de�ne �� by

�� =
xmaxR

x=xmin

��hG (x)� f�(AN ) (x)��2 dx (8.2)

The eigenvalues of Erd½os-Rényi random graphs Gp (N) with in�nite N nodes, or of
in�nite numbers of Erd½os-Rényi random graphs Gp (N) with �nite N nodes, strictly
follows the semicircle distribution,de�ned by (8:1). The randomness metric  � (ER) of
an Erd½os-Rényi random graph with �nite size, is not zero,

�� (ER) =
xmaxR

x=xmin

��hER (x)� f�(AN ) (x)��2 dx 6= 0
De�nition 22 The spectral randomness  � is de�ned by,

 � =
��

���(ER)
(8.3)
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Figure 8.1: The �nite variant of semicircle law (8:1) for Gp (N) with link density p.

8.2 Metrics partially indicating randomness

1. Binomial degree distribution. The degree dj of an arbitrary node j of the class of
Erd½os-Rényi random graphs Gp (N) obeys the binomial distribution,

Pr [dj = k] =

�
N � 1
k

�
pk (1� p)N�1�k (8.4)

A graph, which contains as much randomness as Erd½os-Rényi random graph,
must have binomial degree distribution. However, a graph with binomial degree
distribution is not necessarily an Erd½os-Rényi random graph. For example, the
line graph of an Erd½os-Rényi random graph has binomial degree distribution, but
it has high clustering coe¢ cient and assortativity coe¢ cient [40][41]. Hence, the
degree distribution cannot fully capture the randomness of graphs.

2. Assortativity coe¢ cient. If a graph has a positive assortativity coe¢ cient, �D > 0,
its high-degree nodes preferably connect to other high-degree nodes, and if its
assortativity coe¢ cient is negative, �D < 0, the high-degree nodes tend to connect
to low-degree nodes. The nodes of fully random graphs have no preference in their
direct neighbors. Hence, fully random graphs have zero assortativity coe¢ cient.
The absolute value of assortativity coe¢ cient j�Dj indicates how random a graph
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is. The larger j�Dj a graph has, the less random the graph is. However, j�Dj = 0
does not mean a graph is fully random. For example, a random regular graph has
j�Dj = 0, but each node in the random regular graph has the same degree, which
is the deterministic feature, re�ecting that it is not fully random.

3. Average path length. Average path length describes the average length of shortest
path between every pair of nodes in a graph. The small average path length
in random graphs and most real-world networks [15], is called the small-world
properties. In Watts-Strogatz small-world network model [15], the larger the
rewiring probability pr is, the smaller the average path length is. The average
path length in Watts-Strogatz small-world network model indicates how random
the graph is. In broader sense, average path length does not always indicate
randomness. A counter example is the star graph K1;N�1, which has the average
path length of 2, and fully deterministic topology.

The spectral randomness  � can better measure the randomness of graphs, since the
spectrum is the �ngerprint of a graph. If the adjacency eigenvalues of a graph follows
the semicircle distribution (8:1), the graph must be an Erd½os-Rényi random graph, and
vice versa.

8.3 Randomness of small-world graphs

8.3.1 Non-repetitive rewiring

Given a graph G (N;L), we denote the set of links in G as L = fl1; l2; l3; � � � ; lLg, and
the set of nodes in G as N . There are

�
N
2

�
positions where we can place a link, and L

positions are occupied by links, which means there are
�
N
2

�
� L free positions left. A

link rewiring keeps the number of links unchanged, placing links randomly in the free
link positions. After su¢ cient rewiring, a graph G (N;L) will be so randomized that it
approaches the random graph model Gr (N;L).
In non-repetitive rewiring, each link in L is only rewired once. The set of unrewired

links is denoted by L0. Before the �rst step of rewiring, L0 = L = fl1; l2; l3; � � � ; lLg.
In each rewiring step, we choose uniformly at random one link lr from L

0
, then place

it uniformly at random in one of the
�
N
2

�
� L free link positions. The set of unrewired

links is updated, L0 = L0n flrg.

8.3.2 Randomness of small-world graphs

By non-repetitive rewiring, we randomize the Watts-Strogatz small-world graphs with
200 nodes, 800 links, and the rewiring probability pr = 0:05; 0:1; 0:2; 0:4. The spectral
randomness  � appears to decrease exponentially with the percentage of rewired links,
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Figure 8.2: The spectral randomness  � of the Watts-Strogatz small-world graphs under
non-repetitive rewiring. The small-world graphs have 200 nodes and 800 links, and the
rewiring probability pr = 0:05; 0:1; 0:2; 0:4.

as shown in Figure 8.2. The rewiring probability pr of the Watts-Strogatz small-world
graph indicates the amount of randomness in the graph. As shown in Figure 8.2, the
spectral randomness  � re�ects the fact that the small-world graph is more random
when pr is becomes larger. The graph is equivalent to Erd½os-Rényi random graph when
the spectral randomness  � � 1, since  � has been normalized by de�nition (8:3).

De�nition 23 The spectral randomness  � of a graph G decreases when G is random-
ized by non-repetitive rewiring, We de�ne the structure coe¢ cient � by the minimum
percentage of rewired links to randomize G su¢ ciently that  � � 1.

As illustrated in Figure 8.2, the structure coe¢ cient � of the Watts-Strogatz small-
world graphs with di¤erent rewiring probability pr varies: The less random the graph
is (the smaller pr is), the larger the structure coe¢ cient � is.

8.4 Randomness of brain networks

8.4.1 Description of brain networks

The brain network data involved 22 patients with recently diagnosed mild to moderate
Alzheimer�s disease and 22 healthy individuals who were recruited from the Alzheimer
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Group Healthy Alzheimer
Group size 22 22
Age (�SD) 66(�9) 66(�9)
Gender (M/F) 7/11 12/6

Table 8.1: The subject characteristics of brain network data.

Center of the VU University Medical Centre. Healthy subjects were often spouses of
the patients. Alzheimer patients were assessed according to a standard clinical proto-
col, which involved history taking, physical and neurological examination, an interview
with a spouse or close family member, blood tests, magnetic resonance imaging (MRI)
scan of the brain according to a standard protocol, routine electroencephalography
(EEG), and a thorough neuropsychological assessment. The diagnosis was made in a
consensus meeting in which all the available clinical data were considered by a mul-
tidisciplinary team. Controls were screened by a neurologist and underwent the same
neuropsychological tests as the patients. Exclusion criteria for this study were active
psychiatric or neurologic disease. The Local Research Ethics Committee approved the
study and all participants gave written informed consent. Main subject characteristics
are summarized in Table 8.1.
Cerebral electromagnetic �elds were recorded while subjects were seated inside a

magnetically shielded room (Vacuumschmelze GmbH, Hanau, Germany) using a 151-
channel whole-head MEG system (CTF Systems Inc., Port Coquitlam, BC, Canada).
For technical reasons two channels had to be omitted, yielding 149 channels or sensors
for analyses. Fields were measured during a no-task, eyes-closed condition. During the
MEG recording, patients were instructed to close their eyes, stay awake, and reduce eye
movements. For each subject care was taken to select four artifact-free data segments
of about 6.5 seconds by two of the investigators (WDH and CS), who were blinded
to the diagnosis. Typical artifacts were due to (eye) movements, swallowing, dental
prosthetics, or drowsiness.
Since slower and faster frequency ranges have di¤erent neuropsychological meanings,

it is common practice to �lter MEG data in di¤erent frequency bands prior to perform-
ing further analysis. We used all commonly used relevant frequency bands: delta (0.5-4
Hz), theta (4-8 Hz), lower alpha (8-10 Hz), higher alpha (10-13 Hz), beta (13-30 Hz)
and gamma (30-45 Hz). Thus, all graph analyses were performed for these frequency
bands separately.
Correlations between all pair-wise combinations of MEG channels were computed

with the Synchronization Likelihood (SL, mathematical details can be found in [96]).
The end result of computing the SL for all channel combinations is a square matrix
(with 149 rows and columns, equal to the number of MEG channels), where each entry
contains the resulting SL value of the sensor pair. This connectivity matrix is then
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freq. (Hz) A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11
0.5-4 0.17 0.24 0.29 0.22 0.22 0.21 0.30 0.31 0.32 0.22 0.17
4-8 0.49 0.55 0.55 0.58 0.48 0.65 0.50 0.54 0.55 0.54 0.50
8-10 0.36 0.43 0.39 0.29 0.39 0.39 0.33 0.40 0.38 0.40 0.34
10-13 0.43 0.33 0.31 0.34 0.39 0.38 0.37 0.39 0.42 0.34 0.38
13-30 0.58 0.57 0.50 0.51 0.52 0.45 0.55 0.51 0.56 0.51 0.48
30-45 0.81 0.78 0.66 0.81 0.76 0.73 0.67 0.75 0.67 0.73 0.71
freq. (Hz) A12 A13 A14 A15 A16 A17 A18 A19 A20 A21 A22
0.5-4 0.26 0.18 0.17 0.16 0.15 0.16 0.22 0.22 0.17 0.14 0.20
4-8 0.51 0.48 0.43 0.52 0.45 0.65 0.52 0.47 0.49 0.50 0.47
8-10 0.34 0.41 0.32 0.38 0.34 0.26 0.45 0.41 0.37 0.35 0.25
10-13 0.39 0.35 0.31 0.32 0.40 0.38 0.37 0.33 0.37 0.34 0.35
13-30 0.57 0.50 0.59 0.51 0.50 0.45 0.51 0.55 0.53 0.50 0.49
30-45 0.70 0.82 0.77 0.84 0.82 0.73 0.81 0.95 0.80 0.67 0.79

Table 8.2: � for patients with Alzheimer.

used for further graph spectral analysis. The SL values are a measure of the amount
of interaction or communication between two brain regions, and are taken as the edge
weights. However, there are some bad channels which cause disjoint nodes in the brain
networks. We rule out all the disjoint nodes. There are 44 patients half of whom
have Alzheimer. For each band, four measurements have been done and the averaged
network has been taken. We take T = 0:019 to threshold the weighted brain networks
into unweighted networks.

8.4.2 The structure coe¢ cient of brain networks

The brain networks of both groups in Table 8.1 are randomized by non-repetitive
rewiring, and the spectral randomness  � is computed. Figure 8.3 shows the spec-
tral randomness  � of the brain networks of an individual from the group Alzheimer
decrease exponentially with the percentage of rewired links. The structure coe¢ cient �
of all brain networks are computed by the de�nition, as shown in Table 8.2 and 8.3.
Figure 8.4 shows that the structure coe¢ cient � of individuals in both groups �uc-

tuates. There is no threshold of � which we can use to distinguish two groups of brain
networks. Hence, the structure coe¢ cient � has been averaged over the group Alzheimer
and the group Healthy, as shown in Figure 8.5. For �ve out of six frequency bands,
0.5-4 Hz, 4-8 Hz, 8-10 Hz, 10-13 Hz, and 30-45 Hz, the healthy brain networks have
higher average structure coe¢ cient than the brain networks with Alzheimer�s disease.
In other words, all frequency bands except the beta band 13-30 Hz, the healthy brains
have more structure (less randomness) than the brains with Alzheimer�s disease.
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freq. (Hz) C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11
0.5-4 0.31 0.17 0.18 0.23 0.21 0.23 0.22 0.22 0.27 0.32 0.27
4-8 0.48 0.46 0.49 0.46 0.61 0.52 0.53 0.51 0.58 0.53 0.50
8-10 0.38 0.38 0.37 0.37 0.34 0.36 0.39 0.45 0.38 0.27 0.38
10-13 0.36 0.36 0.38 0.36 0.31 0.40 0.37 0.40 0.35 0.39 0.35
13-30 0.48 0.50 0.58 0.51 0.53 0.56 0.45 0.53 0.54 0.58 0.48
30-45 0.76 0.77 0.77 0.76 0.68 0.79 0.68 0.71 0.72 0.71 0.83
freq. (Hz) C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 C22
0.5-4 0.41 0.21 0.27 0.22 0.20 0.19 0.23 0.26 0.24 0.22 0.29
4-8 0.51 0.51 0.53 0.57 0.45 0.51 0.53 0.58 0.51 0.52 0.67
8-10 0.36 0.38 0.37 0.38 0.41 0.38 0.34 0.37 0.41 0.36 0.42
10-13 0.36 0.46 0.37 0.43 0.38 0.37 0.40 0.36 0.36 0.40 0.36
13-30 0.52 0.40 0.53 0.53 0.51 0.51 0.47 0.56 0.48 0.50 0.52
30-45 0.87 0.84 0.99 0.79 0.72 0.78 0.73 0.81 0.72 0.79 0.75

Table 8.3: The structure coe¢ cient � of brain networks of the group Healthy.

In a study using electroencephalography (EEG) recordings, the brain networks of
Alzheimer patients have more random network topology [97]. A functional MRI study
using graph theory showed lower clustering coe¢ cients, suggesting an increase of net-
work randomness in the brain networks of Alzheimer patients [98]. The higher ran-
domness in the brain networks of Alzheimer patients we found in this study is in line
with previous researches, and might be interpreted as re�ecting the loss of structure
and organization in the brain. The gradually spreading damage in dementia disrupts
the balanced brain network structure, impairing optimal information processing, and
leading to progressive cognitive symptoms. For diagnostic purposes, it would be very
useful if brain networks of individuals could be classi�ed with a high level of accuracy.
At present, there is no single test that achieves this, and although the current clinical
diagnostic work-up allows for a diagnosis with a fairly high degree of certainty, the
golden criteria to diagnose Alzheimer is still post-mortem tissue examination.

8.5 Chapter conclusion

In this chapter, we propose a spectral randomness metric to quantitatively measure
the randomness of networks. The spectral randomness metric can better capture the
randomness of network, compared to assortativity coe¢ cient and average path length.
We introduce non-repetitive rewiring to randomize networks, and investigate how the
spectral randomness changes when networks are gradually randomized. We propose a
metric, structure coe¢ cient, to measure the structure of networks. The randomness
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Figure 8.4: The structure coe¢ cient � of the brain networks of both groups of Healthy
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and structure of the brain networks of a group of healthy individuals and a groups
of patients with Alzheimer�s disease have been analysed. We show that the brain
networks of Alzheimer�s disease are statistically more random than the healthy brain
networks. The higher randomness in the brain networks of Alzheimer patients might
be interpreted as re�ecting the loss of structure and organization in the brain. For
diagnostic purposes, it would be very useful if brain networks of individuals could be
classi�ed with a high level of accuracy. At present, there is no single test that achieves
this, and although the current clinical diagnostic work-up allows for a diagnosis with
a fairly high degree of certainty, the golden criteria to diagnose Alzheimer is still post-
mortem tissue examination. The ability of graph spectral analysis to describe unique
network features is promising in this regard, although in our study the group di¤erences
were not strong enough to use the present measure as disease marker. One reason for
this might be that biological data contains much variability (also within individuals)
and noise. However, by adjusting methodological choices like recording conditions or
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Brain networks of the group Healthy

Figure 8.5: The average structure coe¢ cient � of brain networks of group Alzheimer
and Healthy. Except for the frequency band 13-30 Hz, healthy brain networks have
higher average structure coe¢ cient � than brain networks with Alzheimer.

selection of connectivity measure and network analysis parameters, it is conceivable
that better results can be achieved.
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Chapter 9

Conclusions

Various types of complex networks, including man-designed infrastructure networks
(Internet, telecommunication networks, electrical power grids, transportation networks,
gas network and water networks) and natural networks (social networks, ecological
networks, and biological networks), shape our daily life. We depend on diverse complex
networks more and more. We become aware that the complex infrastructure networks
are of crucial importance to our society when the power grid is down, the �nancial
system fails, and communication networks break down. Since the great importance of
robustness of complex networks to us, attentions of many researchers has been drawn to
make our complex infrastructure networks more robust and optimize the performance
of them. This thesis addresses some topics among many aspects of robustness and
optimization of complex networks.
Chapter 2 studies the reconstruction of networks from the spectral domain. We de-

�ne the reconstructability coe¢ cient � of a network as the maximum number of eigenval-
ues that can be set to zero, given that the adjacency matrix can be reconstructed exactly.
We studied relation between the reconstructability coe¢ cient � and the network size N
for various types of networks, including Erd½os-Rényi random graphs, Barabási-Albert
scale-free networks and Watts-Strogatz small-world networks, and some deterministic
graphs. We found that the reconstructability coe¢ cient � obeys a general linear scaling
law (1:1), E [�] = aN . For su¢ ciently large N , a portion a of the smallest eigenval-
ues in absolute value can be removed from the spectrum and the adjacency matrix is
still reconstructable with its original eigenvectors. We also studied the properties of
the mean of the reconstructability coe¢ cient E [�] under eigenvector perturbation for
Erd½os-Rényi random graphs. The normalized Gaussian distributed noise matrix, scaled
by the perturbation factor ", was added to the eigenvector matrix X. We show that
the linear scaling law E [�] = aN still holds for Erd½os-Rényi random graphs until the
perturbation factor " exceeds 0:2. The basic eigenvalue relation (2:1) shows that the set
of orthogonal eigenvectors are weighted by their corresponding eigenvalues. Any eigen-
vector speci�es an orthogonal direction in the N -dimensional space. The eigenvector
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with an eigenvalue in absolute value close to 0 contains redundant information about
the topology of the graph, in the sense that after the removal of this eigenvalue the
network can still be reconstructed from the remaining spectrum. We observe that when
the graphs have more constraints to be generated, the parameter a is higher. Those
deterministic graphs, like path, ring and grid graphs, have more constraints to be gen-
erated, than Erd½os-Rényi random graphs, power law graphs and small-world graphs. In
the spectral domain, the more generating constraints the graphs have, the less that N -
dimensional space is �sampled�, or in other words, the less spectral bases (eigenvectors)
we need to reconstruct the graphs.
Chapter 3 studies some properties of the energy of networks, especially, the relation

between the energy and the assortativity for di¤erent type of network. The relations
between the energy EG and three other metrics, the multiplicity m0 of zero adjacency
eigenvalues, the multiplicity m�1 of �1 adjacency eigenvalues, and the assortativity
coe¢ cient �D of graph G with constant number of nodes and constant number of links
have been studied. We show that the energy EG has a linear relation with m0, not only
for the molecular graphs coined by Ivan Gutman, but also for quite general graphs:
deterministic graphs and random graphs. We also show that the energy EG decreases
linearly with m�1 for the graphs constructed by combining Erd½os-Rényi random graphs
and triangles. We use the degree-preserving rewiring to increase/decrease the assor-
tativity of an Erd½os-Rényi random graph step by step towards 1/�1, and show that
the energy decreases roughly linearly with the rewiring steps, and the energy is at
its maximum when the graph is non-assortative, and the energy decreases when the
graph becomes assortative/disassortative. The claims of linearity for graph energy are
supported by extensive simulations.
Chapter 4 and 5 presents two algorithms, Marinlinga and Iligra, which recon-

structs networks from the line graph domain. For the algorithm Marinlinga, we
transformed the problem of graph reconstruction from the line graph domain into the
problem of constructing a graph from the link adjacency matrix (LAM). Marinlinga
consists of two sub-algorithms: the matrix relabeling algorithm and the construction al-
gorithm. The matrix relabeling algorithm preprocesses the LAM into the special order
by which we can determine the neighboring links of the �rst link and the endnodes of the
�rst link incident to the neighboring links. The construction algorithm makes the �rst
two nodes be the endnodes of the �rst link by default, and thereafter, determines the
endnodes of the remaining links. Marinlinga has a worst case complexity of O(N2

l(G)),
where Nl(G) denotes the number of nodes of the line graph. We have demonstrated that
Marinlinga is more time-e¢ cient compared to Roussopoulos�algorithm for connected
line graphs. The second algorithm, Iligra, constructs it root graph from a given line
graph, and check whether the given line graph is a line graph during the construction.
Iligra also works for disconnected line graphs and �nds the connected components of
input line graphs during their root graph constructions. The time complexity of Iligra
is linear in the number of nodes in the given line graphs without checking if the given
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graph is a line graph. The time complexity of Iligra with full functionality is linear in
the number of links in the given line graphs. We showed numerical comparisons with
the algorithms of Lehot, Roussopoulos, and Degiorgi and Simon. Given line graphs
with small link density (i.e. sparse graphs), Iligra is the fastest algorithm in root
graph construction.
Chapter 6 gives some properties of line graphs and proposes a random line graph

model. We found that there are multiple bands of consecutive positive integers, which
can never appear as the number of links L in H (N;L). The exact expressions of bands
and bandgaps of L have been derived. We proposed a model which can randomly gen-
erate simple graphs which are line graphs of other simple graphs. The model constructs
line graphs by merging step by step a pair of nodes of the cliques, which we use to
construct line graphs. Obeying necessary rules to ensure that the resulting graphs are
line graphs, two nodes to be merged are randomly chosen at each step. If the cliques
are all of the same size, the assortativity of the line graphs are each step are close to
0, and the assortativity of the corresponding root graphs increases linearly from �1
to 0 with the steps of merging nodes. The linear law for the assortativity provides a
new method to tune the assortativity besides the method of degree-preserving rewiring.
We showed that, when we �dope� the constructing elements of the line graphs - the
cliques of the same size- with a relatively smaller number of cliques of di¤erent size, the
characteristics of the assortativity of the line graphs is changed.
Chapter 7 investigates the overlapping community structure of social networks and

propose a growing hypergraph model for social networks which reproduces many prop-
erties of real-world social networks. Social networks exhibit an overlapping community
structure. A¢ liation networks are an important type of social networks. A hyper-
graph representation which reproduces the clique structure of a¢ liation networks was
proposed. We gave analytically the topological and spectral properties of a¢ liation net-
works. The real-world a¢ liation networks of ArXiv coauthorship, IMDB actors collab-
oration and SourceForge collaboration were characterized. We proposed a preferential
attachment based growing hypergraph model for a¢ liation networks. Numerical analy-
ses showed that our hypergraph model with power-law distributed membership numbers
reproduces the power-law distributions of group size, group degree, overlapping depth,
individual degree and interest-sharing number of real-world a¢ liation networks, and
reproduces the properties of high clustering, assortative mixing and short average path
length of real-world a¢ liation networks.
Chapter 8 proposes a spectral randomness metric and studies the randomness di¤er-

ences between the brain networks of Alzheimer�s disease and the healthy brain networks.
In order to quantitatively measure the randomness of networks, we proposed a spec-
tral randomness metric. Compared to assortativity coe¢ cient and average path length,
the spectral randomness metric can better capture the randomness of network. The
non-repetitive rewiring was introduced to randomize networks, and investigate how the
spectral randomness changes when networks are gradually randomized. We proposed
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a metric, structure coe¢ cient, to measure the structure of networks. The randomness
and structure of the brain networks of a group of healthy individuals and a groups of pa-
tients with Alzheimer�s disease have been analysed. We show that the brain networks of
Alzheimer�s disease are statistically more random than the healthy brain networks. The
higher randomness in the brain networks of Alzheimer patients might be interpreted as
re�ecting the loss of structure and organization in the brain.

9.1 Contribution summary

The contributions of this thesis are summarized as follows:

� The reconstructability of complex networks from the spectral domain has been
studied and a general linear law of reconstructability coe¢ cient has been found.

� The energy of networks has found to have linear relationships with the multi-
plicity if 0 eigenvalues and the multiplicity of -1 eigenvalues for di¤erent types of
networks, and the relation between energy and assortativity has been studied for
many types of networks.

� The reconstruction of complex networks from the line graph domain has been
studied, and two e¢ cient algorithms, Marinlinga and Iligra�have been pre-
sented.

� A random line graph model has been proposed. The bandgaps for the number of
links in line graphs have been found. A linear law for the assortativity of the root
graphs of the proposed random line graph model has been found.

� The overlapping community structure of social network has been characterized
and a hypergraph model which reproduces the overlapping community structure
and many other properties of social networks has been proposed.

� A spectral randomness measure of networks has been proposed, and by this mea-
sure, it is found that the brain networks with Alzheimer�s disease are statistically
more random than the healthy brain networks.

9.2 Future work

The research �eld of robustness and optimization of complex networks is much broader
than the topics discussed in this thesis. Due to the time limit of the Ph.D. work and the
complexity of the problems, some aspects of this thesis have not yet been understood
thoroughly or are not solved analytically. In the following, we list some problems we
consider for future work.
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1. Chapter 2 studied the reconstructability of complex networks from the adjacency
spectral domain. It would be interesting to study the reconstructability of complex
networks from the Laplacian spectral domain and the property of the correspond-
ing reconstructability coe¢ cient.

2. Chapter 2 de�ned the reconstructability coe¢ cient by the maximum number of
adjacency eigenvalues that can be removed, subject to the condition that the
adjacency matrix can be reconstructed exactly. A new metric, reducible energy,
can be de�ned by the sum of the absolute values of adjacency eigenvalues that can
be removed, subject to the same condition. We would like to study the property
of the reducible energy.

3. Chapter 3 found some interesting properties of energy, but with numerical meth-
ods. We would like explain the properties of energy in an analytical way, especially
for the relations between energy and assortativity for some typical network mod-
els.

4. Chapter 7 proposed a hypergraph model for social networks. The simulation
results show that the hypergraph model reproduces the properties of real-world
social networks. To analytically solve the model and predicts the properties of
the model with di¤erent parameters, is a challenging and exciting task.

5. The largest eigenvalue �1 of the adjacency matrix of a graph G is a crucial in-
dicator in the dynamic process on the graph, such as virus spread. Besides, �1
also plays an important role in the phase-transition threshold of a network of
coupled oscillators. The largest eigenvalue �1 is much larger than the second
largest eigenvalue �2 for many graphs. For example, the largest eigenvalue �1 of
an Erd½os-Rényi random graph, is much larger than the rest of the eigenvalues
which follow a Wigner�s semicircle distribution. There is a clear gap between the
largest eigenvalue �1 and the other eigenvalues. We de�ne a new adjacency ma-
trix A (�; �) by assigning the value � to the existence of a link and � otherwise,
where � and � 6= � can be any real number. When � = 1 � p and � = �p,
where p = L=

�
N
2

�
is the link density, all the eigenvalues of A (1� p;�p) of an

Erd½os-Rényi random graph follow a Wigner�s semicircle distribution, according
to the Wigner�s Theorem [75][76][77]. There is no clear spectral gap. We would
like to �nd the important eigenvalue of A (1� p;�p) which corresponds to the
largest eigenvalue �1 of A (1; 0). We also would like to answer a more general
question: Is it possible to map the existing theory for the spectrum of A (1; 0) to
the spectrum of A (�; �)?
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Appendix A

Properties of the matrix Ek

The matrix Ek is introduced in (2:1). From the de�nition Ek = xkx
T
k , we deduce that

Ek = ETk , thus, symmetric. The explicit form of the matrix Ek is

Ek = xkx
T
k =

2666664
(xk1)

2 xk1xk2 xk1xk3 � � � xk1xkn
xk2xk1 (xk2)

2 xk2xk3 � � � xk2xkn
xk3xk1 xk3xk2 (xk3)

2 � � � xk3xkn
...

...
...

...
...

xknxk1 xknxk2 xknxk3 � � � (xkn)
2

3777775
which shows that the diagonal element (Ek)ii = (xki)

2 equals the square of the i-th
vector component of the eigenvector xk. Hence,

trace (Ek) =
nX
i=1

(xki)
2 = xTk xk = 1 (A.1)

It follows from the orthogonality property (A.21) in [23, p. 444] of eigenvectors xk
of a symmetric matrix that E2k = Ek and EkEm = 0 for k 6= m. Let us denote the
eigenvalue equation Ekyj = �jyj of the symmetric matrix Ek. After left-multiplication
by Ek, we obtain E2kyj = �2jyj and, since E

2
k = Ek, we arrive at Ekyj = �2jyj. Hence, for

any eigenvalue �j and corresponding eigenvector yj, we have that �jyj = �2jyj, which
implies that �j is either zero or 1. The trace-relation (A.7) in [23, p. 436] and (A.1)
indicates that

Pn
j=1 �j = 1. The eigenvalues of Ek directly follow from the rank-one

update formula because

det
�
xkx

T
x � �I

�
= (��)n det

�
I � 1

�
xkx

T
x

�
= (��)n�1 (�� 1) (A.2)

and are precisely the same as those of the adjacency matrix of the complete graph Kn.
Consequently, we conclude that n � 1 eigenvalues are zero and one eigenvalue equals
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1, such that kEkk2 = 1 that follows from (A.33) in [23, p. 448]. The zero eigenvalues
imply that det (Ek) = 0 and that the inverse of Ek does not exist. Geometrically, this
is understood because, by projecting, information is lost and the inverse cannot create
information.
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Quality of the bound of �

The bound of � is introduced in (2:4). When the graph belongs to the class of Erd½os-
Rényi random graph Gp (N), the spectrum rapidly tends to Wigner�s Semicirle Law
[23, p. 489]. We con�ne ourselves to the class of Erd½os-Rényi random graph Gp (N) to
estimate the quality of the bound (2.4). In particular, we compute the bound (2.4) of
� probabilistically as

Pr

"
�X
k=1

���(k)�� < 1

2

#
= 1� �

meaning that the probability that
P�

k=1

���(k)�� < 1
2
is almost sure, when � > 0 is chosen

arbitrarily small. However, the distribution of the � smallest order statistics is di¢ cult
and we content ourselves to compute the average of the sum of order statistics

r =
�X
k=1

E
����(k)���

First, we compute the absolute value Y of a random variable X. The event that
fY � yg is equivalent to fjXj � yg = f�y � X � yg and nonexistent for y < 0. Hence

Pr [Y � y] = Pr [�y � X � y] = FX (y)� FX (�y)

and, after di¤erentiation with respect to y, we �nd the relation for the probability
density function as

fjXj (y) = fX (y) + fX (�y)

Applied to Wigner�s Semicircle Law,

f����� Ap
N

���� (x) = 1

��2

p
4�2 � x21jxj�2�
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and we �nd the distribution F����� Ap
N

���� (t) = 1
��2

R t
0

p
4�2 � x21jxj�2�dx for t � 2� as

F����� Ap
N

���� (t) = Pr
������� Ap

N

����� � t

�
=
2

�
arcsin

t

2�
+
2

�

t

2�

s
1�

�
t

2�

�2
while F����� Ap

N

���� (t) = 1 for t > 2�. The Taylor expansion is
F����� Ap

N

���� (2�x) = 4

�
x

�
1� 1

6
x2 +O

�
x4
��

which shows that, for small x,

F����� Ap
N

���� (2�x) ' 4

�
x (B.1)

Second, using a similar argument as in [23, p. 377] that approximates the exact
distribution of the k-th order statistics as a Gaussian with mean

� = N:F
�
�

Ap
N

� (x)
and variance

�2 = N:F
�
�

Ap
N

� (x)
�
1� F

�
�

Ap
N

� (x)
�

that tends to a delta function for large N , we can approximate,

E
����(k)��� ' 2�pNF�1

�
�

Ap
N

�
�
k

N

�
Using (B.1) yields

E
����(k)��� ' pN��2� k

N

�
=
��2p
N
k

such that

r =
�X
k=1

E
����(k)��� ' ��2p

N

�X
k=1

k

=
��2

2
p
N
(�) (� + 1) ' ��2

2
p
N
�2

The requirement that r < 1
2
, then implies approximately that

� <
N1=4

�
p
�

The derivation shows that the conservative bound is inappropriate because simulations
show that � = O (N), while the conservative bound points to � = O

�
N1=4

�
.



Appendix C

The Initialization of
MARINLINGA When s3 = 0

Theorem 6 cannot be used when s3 = 0. Since there exists limited number of cases of
s3 = 0, we can still accomplish the initialization.

C.1 When s1 = 1

Link 1 has only one right neighboring link: link 2. Link 1 does not have left neighboring
links. The initial state of E is E1. Lines 3-4 of Algorithm 4.18 initialize E by E1.

E1 =
�
1 2 0 � � � 0
2 0 0 � � � 0

�

C.2 When s1 = 2

There are di¤erent adjacency patterns. The submatrix of C in Figure C.1 (a) implies
that, links 2 and 3 are adjacent to link 1, and link 2 is not not adjacent to link 3. Links
2 and 3 must be incident to two di¤erent endnodes of link 1. The pattern in Figure
C.1 (b) has two possible con�gurations K3 and K1;3. If s1 = 2 and s2 = 0, the initial
state is E2;a, as shown in lines 1-2 of Algorithm C.2. When s1 = 2 and s2 = 1, because
the graph is connected, either c2;4 = c3;4 = 1 or c2;4 = 0; c3;4 = 1 or c2;4 = 1; c3;4 = 0. If
c2;4 = c3;4 = 1, the initial state is E2;b:1, which is K3, otherwise the initial state is E2;b:2,
which is K1;3, as shown in lines 8-12 of Algorithm C.2.

E2;a =
�
1 1 2 0 � � � 0
2 0 0 0 � � � 0

�
E2;b:1 =

�
1 1 2 0 � � � 0
2 0 0 0 � � � 0

�
; E2;b:2 =

�
1 1 1 0 � � � 0
2 0 0 0 � � � 0

�
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1

32
1 1
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1
2

1
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1
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1
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1
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1

23

(b)

(a)

(b.1) (b.2)

1 22, 0s s= =

1 22, 1s s= =

Figure C.1: The adjacency patterns of link 1 and its neighboring links when s1 = 2.
The graphs on the right are the possible con�gurations correspondingly.

E2�LG  Initialization2(C; s2)
1 if s2 = 0 then
2 E  E2;a
3 else
4 if c2;4 = 1 and c3;4 = 1 then
5 E  E2;b:2
6 else
7 E  E2;b:1

Figure C.2: Meta-code for Initialization2.

C.3 When s1 = 3

There are two recognizable adjacency patterns as described in Figure C.3 (b), and (c).
Taking pattern (c) as an example, links 1, 2 and 3 are pairwise adjacent, then the
con�guration of them is K3 or K1;3, as shown in Figure C.1 (b). Link 4 is also adjacent
to link 1, but not adjacent to links 2 and 3, suggesting that the con�guration of links 1,
2 and 3 must be K3, and link 4 is incident to the other endnode of link 1. Figure C.3 (a)
depicts the smallest forbidden link adjacency pattern in a LAM. The adjacency relation
of links 1, 2 and 3 is recognizable, and the con�guration is a path on four nodes, as
shown in Figure C.1 (a). Link 4 is adjacent to link 1, then link 4 must be also adjacent
to links 2 or 3. Hence the pattern is forbidden. If s1 = 3 and s2 = 0, the initial state is
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E3;b (lines 1-2 of Algorithm C.4). If s1 = 3, s2 = 1 and c3;4 = 0, the initial state is E3;c
(lines 3-5 of Algorithm C.4). When s1 = 3, s2 = 1 and c3;4 = 1, due to the connectivity
of the concerned graph, either c2;5 = c3;5 = c4;5 = 1 or c2;5 = c3;5 = 1; c4;5 = 0 or
c2;5 = c3;5 = 0; c4;5 = 1 or c2;5 = 1; c3;5 = c4;5 = 0 or c2;5 = 0; c3;5 = c4;5 = 1. If
c2;5 6= c3;5, the initial state is E3;d:2, else if c2;5 = c3;5 6= c4;5, the initial state is E3;d:1,
else if c2;5 = c3;5 = c4;5 = 1, we need to look further at the relation of c2;6 and c3;6: if
c2;6 6= c3;6, the initial state is E3;d:2, else the initial state is E3;d:1 (lines 11-15 of Algorithm
C.4). If there are only 5 links in total and c2;5 = c3;5 = c4;5 = 1, one can choose any of
E3;d:1 and E3;d:2 as the initial state, and get isomorphic con�gurations. If s1 = 3, s2 = 2
and s3 = 0, the same method is employed (lines 21-26 of Algorithm C.4).

1
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1

2
3 44

1 1 1
1 1

0

2 3 4
1
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3
4
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(e)

(d)

1 1 1
0 0

0

2 3 4
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2
3
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1 1 1
0 0

1
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2 3 41
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(a)

FORBIDDEN

(b)

(c)

1

2 3 4

(d.1) (d.2)

(e.1) (e.2)

1

2 3 4

1

2 3
4

1 1 1
1 0

1

2 3 4
1
2
3
4

1

1 2 3,43, 0, 0s s c= = =

1 2 3,43, 0, 1s s c= = =

1 2 3,43, 1, 0s s c= = =

1 2 3,43, 1, 1s s c= = =

1 2 33, 2, 0s s s= = =

Figure C.3: The adjacency patterns of link 1 and its neighboring links when s1 =
3. Pattern (a) is forbidden, and patterns (b), (c) and (f) correspond to only one
con�guration respectively. Patterns (d) and (e) both have two possible con�gurations.

E3;b =
�
1 1 2 2 0 � � � 0
2 0 0 0 0 � � � 0

�
; E3;c =

�
1 1 1 2 0 � � � 0
2 0 0 0 0 � � � 0

�
E3;d:1 =

�
1 1 2 2 0 � � � 0
2 0 0 0 0 � � � 0

�
; E3;d:2 =

�
1 1 1 2 0 � � � 0
2 0 0 0 0 � � � 0

�
E3;e:1 =

�
1 1 2 1 0 � � � 0
2 0 0 0 0 � � � 0

�
; E3;e:2 =

�
1 1 1 2 0 � � � 0
2 0 0 0 0 � � � 0

�
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E2�LG  Initialization3(C; s2; s3)
1 if s2 = 0 then
2 E  E3;b
3 else if s2 = 1 and c3;4 = 0 then
4 E  E3;c
5 else if s2 = 1 and c3;4 = 1 then
6 if c2;5 6= c3;5 or (c2;5 = c3;5 and c2;5 = c4;5 and LG = 5) then
7 E  E3;d:2
8 else if c2;5 = c3;5 and c2;5 6= c4;5 then
9 E  E3;d:1
10 else if c2;5 = c3;5 and c2;5 = c4;5 and c2;6 = c3;6 then
11 E  E3;d:1
12 else if c2;5 = c3;5 and c2;5 = c4;5 and c2;6 6= c3;6 then
13 E  E3;d:2
14 else if s2 = 2 and s3 = 0 then
15 if c2;5 6= c3;5 or (c2;5 = c3;5 and c2;5 = c4;5 and LG = 5) then
16 E  E3;e:2
17 else if c2;5 = c3;5 and c2;5 6= c4;5 then
18 E  E3;e:1
19 else if c2;5 = c3;5 and c2;5 = c4;5 and c2;6 = c3;6 then
20 E  E3;e:1
21 else if c2;5 = c3;5 and c2;5 = c4;5 and c2;6 6= c3;6 then
22 E  E3;e:2

Figure C.4: Meta-code for Initialization3.

1
2 34

1 1 1 … 1 1 … 1
1 1 … 1 0 0 0

0 … 0 1 … 1

2 3 4
1
2
3

1 2 2s + 1 1s +2 3s + ......

...
2 2s +

2 3s +

1 1s +
...

Figure C.5: The adjacency pattern and the corresponding con�guration when s3 = 0,
s2 � 3 and s1 � 4.
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C.4 When s1 � 4
C.4.1 When s2 � 3
The con�guration is unique. The initial state of E is E4.

E4 =
� 1 2 3 4 � � � s2 + 2 s2 + 3 � � � s1 + 1 s1 + 2 � � � LG

1 1 2 1 � � � 1 2 � � � 2 0 � � � 0
2 0 0 0 � � � 0 0 � � � 0 0 � � � 0

�

E2�LG  Initialization4(C; s1; s2; s3)
1 if s2 � 3 then
2 E  E4
3 else if s2 = 0 or (s2 = 1 and c3;4 = 1 and c3;5 = 1 and c4;5 = 1) then
4 E  E4;a:4
5 else if s2 = 1 and c3;4 = 0 and c4;5 = 1 then
6 E  E4;b:2
7 else if s2 = 1 and c3;4 = 1 and c3;5 = 0 and c4;5 = 1 then
8 E  E4;c:2
9 else if s2 = 2 and c4;5 = 1 then
10 E  E4;d:2
11 else if s2 = 2 and c4;5 = 0 then
12 E  E4;d:3

Figure C.6: Meta-code for Initialization4.

C.4.2 When s2 � 2
There are 13 forbidden patterns, as shown in Figure C.7, where the links with labels
larger than 5 are not displayed. The pattern in Figure C.3 (a) is forbidden, hence the
4 patterns in Figure C.7 (a.1) are also forbidden, where x can be 1 or 0. The pattern
of links 1� 4 in Figure C.7 (a.2-3) is the same as the pattern in Figure C.3 (b), which
has a speci�c con�guration. In Figure C.7 (a.2), link 5 is adjacent to link 1 but not 2,
then link 5 must be adjacent to link 3, which is not true, hence the 2 patterns in Figure
C.7 (a.2) are forbidden. In Figure C.7 (a.3), link 5 is adjacent to link 1 and 3, then
link 5 must be adjacent to link 4, which is not true, hence the pattern in Figure C.7
(a.3) is also forbidden. Similarly, based on the patterns in Figure C.3, we can conclude
that patterns in Figure C.7 (b.1), (b.3), (c.1), (c.3), (d.1) and (d.4) are also forbidden.
Based on the values of entries s2, c3;4, c3;5 and c4;5, Algorithm C.6 decides the initial
state of E.
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(a.1)

FORBIDDEN FORBIDDEN FORBIDDEN

FORBIDDEN

FORBIDDEN

FORBIDDEN
1

2

(a.2) (a.3) (a.4)

(c.1) (c.2) (c.3) (c.4)

1
2 3 4

5

3 4 5
1

2 3 4
5

1 1 1 1
1 0 0

1 0
0

2 3 41 5
1 1 1 1

1 0 0
1 0

1

2 3 41 5
1 1 1 1

1 0 0
1 1

0

2 3 4 51
1 1 1 1

1 0 0
1 1

1

2 3 4 51
1
2
3
4
5

1 1 1 1
0 0 0

0 x
x

2 3 4
1
2
3
4

1 5

5

1 1 1 1
0 0 0

1 0
x

2 3 41 5
1 1 1 1

0 0 0
1 1

0

2 3 4 51
1 1 1 1

0 0 0
1 1

1

2 3 4 51

FORBIDDEN
1

(b.1) (b.2)

2 4 53

1 1 1 1
1 0 0

0 0
0

2 3 4 51
1 1 1 1

1 0 0
0 0

1

2 3 4 51

(b.3) (b.4)

1 1 1 1
1 0 0

0 1
0

2 3 4 51
1 1 1 1

1 0 0
0 1

1

2 3 4 51

1
2 3 5 4

FORBIDDEN

1 1 1 1
1 1 0

0 0
0

2 3 41 5
1 1 1 1

1 1 0
0 0

1

2 3 41 5
1
2
3
4
5

1
2 4 53

(d.1) (d.2)

1 1 1 1
1 1 0

0 1
0

2 3 4 5

1
2 3 54

(d.3)

1 1 1 1
1 1 0

0 1
1

2 3 4 5

(d.4)

1 1

FORBIDDEN

1
2
3
4
5

(a)

(b)

(c)

(d)

Figure C.7: The adjacency patterns of link 1 and its neighboring links when s1 = 4.
There are 16 forbidden patterns. The other 12 possible patterns correspond to only one
con�guration respectively. The entry x can be 1 or 0.
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E4;a:4 = E4;c:4 =
� 1 2 3 4 5 � � � s1 + 1 s1 + 2 � � � LG

1 1 2 2 2 � � � 2 0 � � � 0
2 0 0 0 0 � � � 0 0 � � � 0

�

E4;b:2 = E4;b:4 = E4;c:2 = E4;d:2 =
� 1 2 3 4 5 � � � s1 + 1 s1 + 2 � � � LG

1 1 1 2 2 � � � 2 0 � � � 0
2 0 0 0 0 � � � 0 0 � � � 0

�

E4;d:3 =
� 1 2 3 4 5 � � � s1 + 1 s1 + 2 � � � LG

1 1 2 1 2 � � � 2 0 � � � 0
2 0 0 0 0 � � � 0 0 � � � 0

�
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Appendix D

Proof of the adapted semicircle law

The adapted semicircle law has been presented in Theorem 21.
Proof. For all the graphs,

NP
j=1

�j = 0

which probabilistically means,

E [�] =
1P

k=�1
k Pr [� = k] = 0 (D.1)

and
1P

k=�1
Pr [� = k] = 1 (D.2)

according to Perron-Frobenius Theorem, any connected graph has one eigenvalue �1
that is the largest, and the multiplicity of �1 is 1. Hence, we have,

Pr [� = �1] =
1

N
(D.3)

and (D:1) can be extended to,

E [�] = �1
1

N
+

P
All others

k Pr [� = k] (D.4)

due to (D:2) and (D:3), P
All others

Pr [� = k] = 1� 1

N

Let us write the semicircle law for graphs with �nite N as,

f� (x) =

q
4Np (1� p)� (x+ ")2

2�Np (1� p) ; jxj � 2p (1� p)
p
N (D.5)
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given R = 2p (1� p)
p
N ,

R�"R
�R�"

q
4Np (1� p)� (x+ ")2

2�Np (1� p) dx = 1� 1

N
(D.6)

Thus (D:4) is written as,

�1
1

N
+

R�"R
�R�";
x 6=�1

x

q
4Np (1� p)� (x+ ")2

2�Np (1� p) dx = 0

where the second item on the left is reduced, by using (D:6),

R�"R
�R�";
x 6=�1

(x+ ")

q
4Np (1� p)� (x+ ")2

2�Np (1� p) dx� "
R�"R

�R�";
x 6=�1

q
4Np (1� p)� (x+ ")2

2�Np (1� p) dx

= 0� "
�
1� 1

N

�
Hence we get, for large N ,

�1
1

N
� "

�
1� 1

N

�
= 0

since �1 � (N � 2) p+ 1,

" =
�1

N � 1 =
(N � 2) p+ 1

N � 1 � p (D.7)

Substituting (D:7) into (D:5), the theorem is proved.



Appendix E

Notation

Except that the notation of Iligra has been described in Table 5.1, this thesis follows
the notation outlined below.

G (N;L) : A simple graph with N nodes and L links
N : The set of nodes in a graph
L : The set of links in a graph
A The adjacency matrix of a graph
J All-one matrix
u All-one vector
� A eigenvalue of adjacency matrix A
� = diag (�1; �2; � � � ; �N) : Diagonal matrix of the adjacency eigenvalues
dj Degree of node j
� = diag (d1; d2; � � � ; dN) : Diagonal matrix of the nodal degrees
h (x) Heavyside�s step function
� Reconstructability coe¢ cient
Gp (N) Erd½os-Rényi random graph with N nodes and link probability p
GER (N;L) Erd½os-Rényi random graph with N nodes and L links
KN The complete graph with N nodes
Kn;m The complete bipartite graph with N = n+m
Pr [X] Probability of the event X
E [X] Expectation of the random variable X
fX (x) Probability density function of X

EG =
NP
j=1

j�jj : The energy of a graph G with N nodes
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m0 The multiplicity of adjacency eigenvalue 0
m�1 The multiplicity of adjacency eigenvalue �1
C The link adjacency matrix (LAM) of a graph
l (G) The line graph of graph G
H (N;M) A Hypergraph H with N nodes and M hyperedges
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Samenvatting (Summary in Dutch)

Infrastructuurnetwerken, zoals het internet, telecommunicatienetwerken, energienetwerken,
transportnetwerken (spoor, weg, waterwegen en luchtvaartnetwerken), gasttransport
netwerken en waternetwerken worden steeds complexer. Deze complexe infrastructuur-
netwerken zijn cruciaal voor onze maatschappij. Het robuuster maken en optimaliseren
van de prestaties van complexe infrastructuurnetwerken is een actief onderzoeksgebied.
Naast de door de mens ontworpen infrastructuurnetwerken komen complexe netwerken
ook veel voor in de natuur, voorbeelden hiervan zijn sociale-netwerken, ecologische
netwerken en biologische netwerken. Om vat te krijgen op sociale en ecologische prob-
lemen en onopgeloste medische vragen moeten we begrijpen hoe complexe netwerken
georganiseerd zijn, werken en functioneren.
Complexe netwerken kunnen gerepresenteerd worden als grafen. Een graaf bestaat

uit een verzameling knopen en zijden die de knopen verbinden. Een graaf wordt uniek
beschreven door zijn verbindingsmatrix, waarvan een element in rij i en kolom j een is
als er een zijde bestaat tussen knoop i en j en anders nul. Elke verbindingsmatrix heeft
een unieke set eigenwaarden en bijbehorende eigenvectoren. De eigenwaarden en eigen-
vectoren, ook wel het spectrum van een graaf genoemd, bevat alle informatie over een
graaf. De topologische/fysische betekenis van enkele eigenwaarden en eigenvectoren is al
bekend. Kennis over het spectrum van grafen is van cruciaal belang in de vele facetten
van onderzoek naar complexe netwerken, zoals connectiviteit en de verspreiding van
virussen in een netwerk. De lijngraaf l(G) van graaf G bestaat uit een verzameling
knopen die corresponderen met de zijden in G. Twee knopen in l(G) zijn verbonden
als de corresponderende zijden in G een knoop gemeen hebben. Sommige problemen
op grafen kunnen getransformeerd worden in eenvoudigere problemen in het domein
van lijngrafen. Zo kunnen, bijvoorbeeld, knopen gescheiden worden om overlappende
gemeenschappen te vinden door zijden te scheiden in de lijngraaf van de betre¤ende
graaf. Bovendien hebben lijngrafen vaak eigenschappen gemeen met wereldechte com-
plexe netwerken, zoals een sterke groepering en assortative mixing. Lijngrafen worden
daarom door vele beschouwd als modellen van wereldechte complexe netwerken
Robuustheid en optimalisatie van complexe netwerken is een tamelijke breed onder-

zoeksgebied. Wij beperken ons daarom tot het reconstrueren van complexe netwerken
vanuit het spectrale domein en het domein van lijngrafen. Dit proefschrift is als volgt
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160 SAMENVATTING (SUMMARY IN DUTCH)

georganiseerd. We onderzoeken eerst het reconstrueren van netwerken van eigenwaarden
en eigenvectoren en de spectrale eigenschappen van netwerken. In het tweede deel van
dit proefschrift introduceren we twee algoritmes om een graaf te reconstrueren vanuit
het lijngraaf domein, de eigenschappen van de lijngraaf, en een random lijngraaf model.
Tenslotte presenteren we onze onderzoeksresultaten van twee wereldechte netwerken.
Een verbindingsmatrix kan uit de bijbehorende eigenwaarden en eigenvectoren berek-

end worden. Ook als sommige van de eigenwaarden nul gemaakt worden, kan de
verbindingsmatrix nog correct bekerend worden. We introduceren de reconstructie
coë¢ ciënt, gede�nieerd als het maximum aantal eigenwaarden die verwijderd kunnen
worden. Wij hebben ontdekt dat de reconstructie coë¢ ciënt een lineaire functie is van
de netwerk grootte. Ook onderzoeken we de verhouding tussen de graaf energie en de
assortativiteit in verschillende netwerk types.
Wij introduceren twee algoritmes om een netwerk te reconstrueren van een lijngraaf:

Marinlinga en Iligra. In tegenstelling tot eerdere algoritmes, maakt Marinlinga
geen gebruik van Whitney�s theorema, maar van het hernoemen van zijden en �endnode
recognition�. Iligra reconstrueert grafen met een lineaire tijd complexiteit. Dit proef-
schrift breidt onderzoek in het lijngraaf domein uit. We hebben ontdekt dat het aantal
zijden in een lijngraaf met een vast aantal knopen niet in een bepaald interval kan
liggen. Dit interval is het bandgap van de lijngraaf. We geven de exacte uitdrukking
voor de banden en bandgaps in het aantal zijden in lijngrafen. Om onderzoek in lijn-
grafen te bevorderen stellen we een model voor om willekeurige lijngrafen te genereren.
De kern van ons model is om een paar knopen stapt voor stap tot klieken samen te voe-
gen met inachtneming van enkele regels die ervoor zorgen dat de resulterende graaf een
lijngraaf is. Dankzij dit model hebben we een methode ontdekt om een reeks lijngrafen
te genereren waarvan de assorativiteit lineair toeneemt.
In dit proefschrift worden twee soorten wereldechte grafen onderzocht: sociale netwerken

en menselijke hersen netwerken. We karakteriseren de overlappende gemeenschapsstruc-
tuur in sociale netwerken gevormd door ArXiv coauteurs, medespelers in IMDB en
SourceForge samenwerking, en stellen een op preferential attachment gebaseerd groeiend
hypergraaf model voor. Dit hypergraaf model beschrijft de fundamentele eigenschappen
van wereldechte verwantschapsnetwerken waaronder de power-law verdeling van groeps-
grootte, groepsgraad, overlappingsdiepte, individuele graad en het aantal gedeelde in-
teresses, en reproduceert eigenschappen van sociale netwerken zoals sterke groeper-
ing, assortative mixing en een korte gemiddelde pad lengte. We stellen een spec-
trale willekeurigheidsmaat voor om uitdrukking te geven aan de mate van willekeur
in netwerken in het onderzoek naar hersen netwerken. We hebben door middel van
het meten van de mate van willekeur ontdekt dat de hersen netwerken van mensen die
aan Alzheimer lijden statistisch een grotere mate van willekeur vertonen dan de hersen
netwerken van gezonde mensen.
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