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VREM-FL: Mobility-Aware
Computation-Scheduling Co-Design

for Vehicular Federated Learning
Luca Ballotta , Nicolò Dal Fabbro , Giovanni Perin , Member, IEEE, Luca Schenato , Fellow, IEEE,

Michele Rossi , Senior Member, IEEE, and Giuseppe Piro , Member, IEEE

Abstract—Assisted and autonomous driving are rapidly gaining
momentum and will soon become a reality. Artificial intelligence
and machine learning are regarded as key enablers thanks to
the massive amount of data that smart vehicles will collect from
onboard sensors. Federated learning is one of the most promis-
ing techniques for training global machine learning models while
preserving data privacy of vehicles and optimizing communica-
tions resource usage. In this article, we propose vehicular radio
environment map federated learning (VREM-FL), a computation-
scheduling co-design for vehicular federated learning that com-
bines mobility of vehicles with 5G radio environment maps. VREM-
FL jointly optimizes learning performance of the global model and
wisely allocates communication and computation resources. This
is achieved by orchestrating local computations at the vehicles in
conjunction with transmission of their local models in an adaptive
and predictive fashion, by exploiting radio channel maps. The
proposed algorithm can be tuned to trade training time for radio
resource usage. Experimental results demonstrate that VREM-FL
outperforms literature benchmarks for both a linear regression
model (learning time reduced by 28%) and a deep neural network
for semantic image segmentation (doubling the number of model
updates within the same time window).
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I. INTRODUCTION

V EHICULAR communications are expected to grow dramat-
ically in the next few years according to the 5G Automotive

Association, with applications requiring data rates of several tens of
Gbit/s [1]. Siemens estimated that the data generated by autonomous
vehicles will range from 3 to 40 Gbit/s depending on the autonomy
level [2], which amounts to up to 19 TB every hour.

The huge availability of data in modern vehicular networks
paves the way to training, possibly at runtime, large deep learning
models [3]. Nowadays, this is mostly accomplished via federated
learning (FL), which is the leading solution to train neural networks
from decentralized datasets. FL offers several advantages, such as
a simple and flexible aggregation phase, and it preserves privacy
because end-user data are never transmitted, but only the model
weights are sent from the end-users to the central aggregator.

Remarkably, despite the extensive amount of work available on
communication-constrained [4], [5] and channel-aware [6], [7] FL
algorithms, scheduling policies for vehicular networks that jointly
consider mobility, communication/channel resources, and learning
aspects are currently lacking.

In the present article, these aspects are jointly tackled for the
first time, proposing vehicular radio environment map (REM) fed-
erated learning (VREM-FL), an FL scheduler that orchestrates the
computation and the transmission of local models from the end
users (the vehicles) to the central model aggregator (at the roadside
network). VREM-FL exploits the availability of REMs to pick the
best instants for the vehicles’ local model transmission. This is
possible because REMs are stable over time [8], [9] as they depend
on static obstacles, such as buildings in urban environments. Hence,
their knowledge can be combined with information on the planned
user routes to improve FL transmission schedules. The optimization
criteria correspond to minimizing the channel resources that are
wasted due to transmitting when the channel conditions are poor,
and to meeting a deadline for the global model update.

VREM-FL organizes resource allocation into the three stages
shown in Fig. 1: (top box) the central orchestrator, based on channel
and computation resources, decides how many vehicles participate
in the current round, proposes an initial number of steps to update
their local models, and sets a maximal round latency (deadline);
(middle box) all vehicles, based on their private planned routes,
learning metrics, and available REMs, independently estimate the
channel quality they will experience in the near future, adjust the
number of local steps, and decide when to transmit their own
models. Then, they communicate to the aggregator an estimated
participation cost that encompasses the usage of communication
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Fig. 1. Illustration of the main phases of VREM-FL, a mobility-aware co-
design for allocation of communication and computation resources in vehicular
FL.

and training resources; (bottom box) the orchestrator combines
the received vehicles’ costs with centrally available information
about fairness of participation across vehicles, scheduling those
with the highest priority. The scheduled vehicles send their updated
local models to the orchestrator, which finally refines the global
model.

Contributions: Our contributions are summarized as follows.
� We propose a novel computation-scheduling co-design tai-

lored to vehicular FL, VREM-FL. The knowledge of vehicles’
routes and REMs is leveraged to optimize the communication
resources used by vehicles, ensuring high learning perfor-
mance while balancing training time and network resources.
To the best of our knowledge, this is the first co-design of
resource allocation in vehicular federated learning that ex-
ploits mobility and channel information supplied by REMs to
account for time-varying channel quality, as typically experi-
enced by traveling vehicles.

� We simulate a realistic environment using the street map of
the city of Padova, Italy, and the popular simulator of urban

environment (SUMO) [10]. We also evaluate the performance
of VREM-FL on a real-world mobility dataset of taxi cabs in
Rome, Italy [11]. On these maps, base stations (BSs) are de-
ployed according to typical parameters of fifth generation (5G)
cellular systems [12], to provide communications services
to the vehicles. To capture realistic settings where channel
quality measures are available at a limited number of locations,
REMs are obtained via Gaussian process regression [9], [13].

� VREM-FL is evaluated via an extensive simulation campaign
comprising (1) controlled experiments with a least squares
(LS) toy example and (2) a realistic scenario on deep learning
for a real-world semantic segmentation task with the popular
dataset ApolloScape [14]. Also, we compare VREM-FL
with literature benchmarks such as federated averaging (Fe-
dAvg) [15] and the algorithms in [16], where clients are
selected based on a fairness metric, and in [17], where client
selection is based on channel gain estimates at the beginning
of learning rounds.

Organization of the Article: In Section II, the state-of-the-art is
presented. Section III provides a general overview of VREM-FL.
In Section IV, the system model is presented, including the FL
setup and the radio environment settings. The problem is defined
in Section V, while VREM-FL is detailed in Section VI. Numerical
simulation results demonstrating the effectiveness of VREM-FL are
presented in Section VII. Finally, conclusions are drawn in Section
VIII along with future research directions.

II. RELATED WORK

In this section, we review the state-of-the-art on FL over wire-
less networks, focusing on existing computation-communication
co-design methods and vehicular FL. We also discuss relevant
approaches leveraging REMs for wireless resource management,
underlining the novelty of our work.

A. User Scheduling for FL in Wireless Networks

In the last few years, many research works have investigated
scheduling techniques for FL over wireless networks [18], [19],
[20], [21], [22]. In [23], scheduling policies were experimented
with by simulating users connected to different access points to-
gether with different signal-to-interference-plus-noise ratio (SINR)
thresholds. Recent work [24] proposed PALORA, a scheduling
method jointly considering fairness with respect to local models,
signal-to-noise ratio (SNR) levels, and resource blocks utilization.
Along the same lines, paper [16] considered asynchronous updates
and a computation-communication tradeoff, and proposed schedul-
ing strategies based on age-of-information (AoI) and a fairness
metric in wireless networks. In [25], scheduling was performed
based on data quality metrics to jointly solve a user selection and
bandwidth allocation problem. A scheduling approach based on
data selection was proposed in [26], where the gradient norm was
used to compute a metric that relates learning efficiency with data
selected by users for local training. The authors of [27] proposed
a scheduling policy for FL over an orthogonal frequency-division
multiple access (OFDMA) scheme where scheduling decisions are
based on learning accuracy and channel quality. Reference [28]
addressed scheduling for over-the-air FL based on local gradient,
channel conditions, and energy consumption to improve learning
accuracy and convergence.

B. FL in Vehicular Networks

There is a growing interest in machine learning solutions
for problems related to vehicular networks, given the increasing
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need for data-driven algorithms in intelligent transportation sys-
tems [29]. Applications examples include wireless resource man-
agement [30], traffic flow prediction [31], vehicle-based perception
for autonomous driving [32], [33], to name a few.

With respect to the federated training setup, some works have
focused on static vehicular federated learning [34], [35], with
emphasis on scenarios involving parking lots [36] and related issues,
like parking space estimation.

Conversely, cooperative training of machine learning models in
scenarios involving user mobility, such as vehicular networks, is a
key open research topic [37], [38]. In this context, relevant works
have considered vehicular FL for, e.g., image classification [39],
proactive caching [40], and object detection [41].

Other recent works have investigated the allocation and optimiza-
tion of network resources in vehicular FL [42], [43], [44], [45],
[46]. Specifically, [44] analyzed the impact of vehicular mobility
on wireless transmissions, proposing wireless network optimization
techniques. The authors of [46] considered cache queue optimiza-
tion at the edge server, while other related scheduling techniques
were proposed in [42], [43]. Reference [45] focused on tuning the
number of local iterations based on mobility awareness in relation to
short-lived connections with the base stations. The authors of [47]
studied the adoption of FL in an IoV scenario where vehicles com-
municate with 5G base stations, exploiting context information such
as cell association and mobility prediction together with the related
channel quality for users’ scheduling. The authors of [48] jointly
scheduled participating vehicles and optimized computational re-
sources. While this approach addresses both learning accuracy and
latency/energy restrictions, the decision-making is centralized and
may violate the privacy of vehicles. A similar centralized approach
was proposed in [17], where the authors select vehicles based on
a minimum latency criterion by considering the CPU frequency
and the latest known/estimated channel gain. In this work, model
compression was also used to further reduce latency and energy
consumption.

Despite these efforts, the recent survey [49] remarks that open
challenges such as efficient allocation of communication and com-
putational resources, learning-based selection of participating vehi-
cles to enhance training, privacy and security issues, and robustness
to noisy training samples are still to be addressed. In fact, none of
the works mentioned above combines mobility patterns and radio
environmental awareness to optimize the learning performance of
FL, while at the same time optimizing wireless network resources.
Our work is the first to jointly consider these aspects under pri-
vate vehicular mobility which, as we shall see, leads to sizeable
advantages over previous solutions and tackles the challenges men-
tioned in [49] on resource optimization, vehicle selection, and
privacy.

C. REMs for Wireless Resource Management

A radio environment map (REM) is a geographic database of
average communication quality metrics. In recent years, REMs have
been proposed as an effective tool to manage wireless resources [8],
and advocated for predictive resource allocation in [50] and for
handover management in 5G networks in [51]. In 5G systems
with massive multiple-input multiple-output (mMIMO) transmis-
sion, REMs have been adopted for energy-efficient design [52],
inter-cell interference coordination [53], beam management [54],
and cell-edge users throughput improvement via dynamic point
blanking [55]. Although REMs have been used for several resource
management applications in wireless communications, the present
work is the first to exploit them for network resources optimization
in FL and, specifically, in vehicular FL.

III. VREM-FL IN A NUTSHELL

In this article, we are concerned with the optimal resource
allocation for FL tasks executed by vehicles that travel within an
urban environment and by an edge server that acts as the centralized
aggregator of their models. In what follows, we interchangeably use
the terms “vehicle” and “client” depending on the role that we would
like to emphasize.

A. The Problem: Resource Allocation for Vehicular FL

We aim to minimize the objective cost associated with FL

cost = costloss + costlatency + costchannel (OBJ)

where costloss measures performance of the global model, costlatency
is the training time, and costchannel refers to network resources used
by the clients to upload their local models.

We consider a threefold space of intervention. The first aspect is
scheduling clients during training. Due to limited communication
resources, all clients cannot transmit their local models at every
learning round. Hence, at each round, a subset of clients is selected
to update the global model, and a scheduling strategy is utilized to
choose which ones.

The second aspect is the local computation performed by the
scheduled clients. To ensure convergence of an FL algorithm to an
accurate global model, the clients must carefully choose the number
of descent steps to update their local models.

The third aspect of our design is the transmission of local models
from the vehicles to the edge server. Sending the local models as
soon as the local updates are done (greedy transmission behavior)
yields the fastest training. However, this strategy ignores the channel
status, which depends on mobility and radio channel. It descends
that a greedy behavior need not make the best use of the available
channel resources. The proposed policy is mobility and channel
aware and allows for a more profitable usage of channel resources.
It leads to reduced transmission energy and channe usage, thus
releasing resources for other users that also need to exploit wireless
transmissions.

B. The Solution: VREM-FL

To minimize the cost (OBJ) in a vehicular scenario, we pro-
pose Vehicular REM-based Federated Learning (VREM-FL), a
co-design that jointly optimizes the threefold decision-making in-
troduced above. An intuitive description of our co-design algorithm
is illustrated in Fig. 1. In this section, we provide a high-level
overview of how VREM-FL works and defer the detailed expla-
nation to Section VI.

VREM-FL runs before each learning round and consists of three
phases, which correspond to the boxes in Fig. 1.

During the centralized optimization phase (top box), the edge
server (i.e., the orchestrator) computes and broadcasts the number
of local steps that all the vehicles should perform to achieve the
fastest training convergence. This computation uses a proxy for
global convergence assuming that all the scheduled vehicles run the
same number of local steps [56]. For this, the server does not need
to know the vehicles’ local cost functions. This phase is formalized
in Section VI-A.

In the local customization phase (middle box), each vehicle
adjusts the number of local steps based on a local convergence
criterion, to trade local training speed for global accuracy. Hence,
the vehicle optimizes the communication of the local model by op-
portunistically delaying its transmission, seeking the best trade-off
between the components costlatency and costchannel in the cost (OBJ).
To perform this optimization, the vehicle leverages knowledge of
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(1) the channel quality via the availability of an estimated REM and
(2) its planned trajectory, as explained in Section VI-B. No training
is performed at this stage. Instead, the choice of computation and
communication is used in the following phase to discern which
vehicles are the best candidates to be scheduled at the current round.

In the centralized scheduling phase (bottom box), the edge server
receives the estimated costs for participating in the round from
all the vehicles. These costs depend on the local decision-making
performed during the previous phase and are combined with global
information available at the server that measures fairness of updates
among the vehicles. This, in the form of a combination of AoI and
scheduling frequency metrics, ensures appropriate participation of
all the vehicles throughout the training. The algorithm executed
at the server to make scheduling decisions is described in Section
VI-C.

IV. SYSTEM MODEL

In this section, we present the setup considered throughout the
article. In Sections IV-A, and IV-B, we introduce an FL task solved
by vehicles that move within an urban environment served by BSs.
In Section IV-C, we describe the channel model that vehicles use
to assess whether they should join a round and optimize their next
transmissions to the server.

A. Vehicular Federated Learning

We consider a setV .
= {1, . . . , N}ofN vehicles that move within

an urban environment. The mobility area is served by Nbs 5G BSs.
As vehicles travel, they collect data to improve tasks of interest
for assisted or autonomous driving, such as semantic segmentation
for local navigation, pedestrian detection to enhance safety of road
users, route optimization based on real-time traffic information, or
allocation of wireless resources used by other tasks or vehicles
that share the network. Each vehicle v ∈ V collects a local, private
dataset denoted as Dv .

To efficiently learn complex tasks from locally gathered data,
vehicles in V are connected to an edge server running an FL
algorithm. This allows the vehicles to cooperatively learn a common
machine learning (ML) model without uploading their collected
data to the server, which may be impractical through high data
volume or undesirable because of privacy concerns.

In principle, the vehicles may learn a model while they are
static, e.g., parked. This would ease resource management for
FL, such as scheduling of updates that could be performed un-
der constant channel conditions. However, recent work [2], [57]
remarked that the sensing capabilities of autonomous vehicles may
generate GBs of sensory data per second. The cost for storing
such a massive amount of data is high in terms of both energy
consumption and storage capacity, and it would be impractical and
expensive for the vehicles to run FL tasks after one or multiple
trips. This issue urges to run FL tasks on traveling vehicles [38],
[41], which could destroy training data right after using them
and save on storage and energy consumption. However, including
mobility into resource management is nontrivial. The aggregator
may not know routes of vehicles, which affect the experienced
channel quality. On the other hand, the vehicles may not know
channel conditions across the whole environment (e.g., a city)
and share limited computation resources with other driving-related
jobs.

B. Preliminaries on Federated Learning

An FL task is described by the optimization problem

minimize
θ∈Θ

L(θ) .
= �

(
θ; {Dv}v∈V

)
+ λ ‖θ‖2 (FL)

Algorithm 1: Vanilla FedAvg [15].

where θ is the model parameter, � is the loss function that depends
on the dataset, ‖θ‖2 is a regularization term that, in words, penal-
izes “complex” models, and λ is the regularization weight. In the
following, we refer to the total cost L(θ) as (regularized) loss. The
size of the parameter θ amounts to B [bit]. Problem (FL) is tackled
in an iterative fashion that alternates between 1) vehicles updating
their local models (local update) and 2) the server aggregating all
or some local models and sending the updated global model to all
vehicles.

We highlight up-front that our proposed co-design algorithms
can be tailored to any choice of algorithm used to solve (FL).
For instance, VREM-FL can accommodate both synchronous and
asynchronous aggregations as explained in Remark 3. Nonetheless,
for the sake of exposition and to ground the discussion, in the rest of
this article we will assume that the vehicles train their local models
via gradient descent (GD) or stochastic gradient descent (SGD) and
that the edge server runs FedAvg [15]. This choice is motivated by
the simplicity and the popularity of this FL algorithm. Other learn-
ing and aggregation schemes, such as FedDrop [58] or FedLin [5],
require to minimally adjust our algorithms as described in Remark 4.
A high-level snippet of vanilla FedAvg (without client scheduling)
is provided in Algorithm 1, where all clients perform H SGD steps
for each local update. We refer to a cycle composed of local updates
and global aggregation (Lines 2 to 6) as (learning) iteration or
(learning) round, whose duration coincides with the time interval
between two consecutive updates of the global model, and the edge
server runs FedAvg for T rounds. We denote by θ[t] the global
parameter at iteration t, and by θ[t][t+H][v] the locally updated
parameter of vehicle v during round t (before transmission to the
aggregator).

As commonly assumed in the literature [23], [24], each learn-
ing round has a deadline after which global aggregation is exe-
cuted, regardless of the status of local updates, and a new round
begins afterward. Time is slotted into slots of duration τ [s],
which we consider the finest granularity to allocate resources in
a time-varying fashion. Among the steps of Algorithm 1, our
present work addresses local training (Line 4) and transmission
of local models from vehicles to the server (Line 5). Hence,
we further assume that at every round the vehicles have a deadline
of Kmax [s] to update their local models and to upload them to the
server, corresponding to �Kmax/τ� time slots. The set of time slots
available during iteration t, when we allocate resources for training
and transmission of each vehicle, is denoted byKt. In the following,
we will refer to the local training performed by the vehicles as
computation to highlight the allocation of computational resources.

C. Radio Environment and Bitrate

The area served by the BSs features a heterogeneous chan-
nel quality depending on the network coverage at different
geographical locations. To assess channel quality across the urban
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environment, we use an REM. This is a database that links a
(quantized) geographical location to the (estimated) value of some
channel quality metric. In this work, we are interested in the average
bitrate associated with a location x ∈ R2. As so, we consider an
REM that contains information about the SINR experienced on
average at each location. Given a wireless transmission setting
and a geographical location x, the value of the SINR associated
with x contained in the REM can be used to infer the expected
average bitrate experienced by a user located at x. This information
is crucially used for resource orchestration by VREM-FL. In fact,
vehicles may experience different channel quality depending on
their real-time location. Formally, we express the location-to-bitrate
map as follows. Given a vehicle v located at xvt at time t, the
corresponding estimated average bitrate hvt is

hvt = β(γ(xvt ), η
v
t ), (1)

where γ(·) is the location-to-SINR map encoded by the REM, β(·)
is the SINR-to-bitrate map, and ηvt is the bandwidth used by vehicle
v at time t.

In practice, we assume that an REM γ of the environment
is computed a priori via some estimation technique [59], [60],
[61] and is stored at the BS, which broadcasts this information
to the vehicles taking part in FL. Because REMs are approxi-
mately constant across time [8], [9], they are sent to the vehicles
only once during FL training. When a handover occurs and a
vehicle enters coverage area of a new BS, the latter sends its
corresponding REM to the vehicle, updating the channel infor-
mation that the vehicle uses to allocate computation and trans-
mission resources. We assume that the routes traversed by the
vehicles are planned in advance (at least partially) so that they
know their respective trajectories in the near future. Specifically,
at time t, vehicle v knows the locations it is about to traverse over
the next D time instants, denoted by xvt , . . . , x

v
t+D , for some time

horizon D. This information is converted to estimated bitrate values
hvt , . . . , h

v
t+D for a vehicle’s trajectory, where hvk = β(γ(xvk), η

v
t )

as per (1). This information is used in our resource-allocation
algorithms as detailed in Section V.

V. PROBLEM FORMULATION

We now formalize the computation-scheduling co-design prob-
lem at the core of our contribution. We first define the design
parameters for the considered decision-making (Section V-A), and
then formally write the objective function (OBJ) along with the
overall optimization problem (Section V-B).

A. Design Parameters

Given problem (FL) and an algorithm to solve it (FedAvg), our
space of intervention is the threefold decision-making associated
with the algorithm workflow discussed in Section III-A.

1) Scheduling: First, we design a scheduling strategy to select
the vehicles that participate in each learning iteration. Scheduling
is needed because the total amount of vehicles involved in an FL
task is typically large and cannot be handled at once due to the
limited communication resources available at the BSs. It descends
that only a (small) fraction of the vehicles can be simultaneously
served through the available bandwidth to ensure an acceptable
quality of service. We denote the subset of vehicles that participate
in round t by VS

t ⊂ V and the maximum number of vehicles that
can be scheduled in round t by MS

t < N , with |VS
t | ≤ MS

t .
2) Computation: For each vehicle scheduled in a learning

round, we consider two aspects for co-design. First, we allocate the
amount of computation at the vehicle, that is, the number of descent
steps (of GD or SGD) that the vehicle performs during that round
to train the local model. Through a careful choice of the number of

local steps, we can effectively trade convergence speed of FedAvg
for the quality of the final global model. For each time slot k ∈ Kt

available during learning iteration t, we denote by avk ∈ {0, 1} the
computation decision of vehicle v for slot k: if avk = 1, it means
that v performs a batch of local steps during slot k, otherwise no
computation is carried out in that slot. The total number of time slots
used by vehicle v for local model update during learning round t is
denoted by T v

cpu,t
.
=

∑
k∈Kt

avk. To make the training meaningful,
we allocate at least Tmin

cpu ≥ 1 slots for computation at every round.
3) Communication: After a vehicle has updated its local model,

we optimize the transmission from vehicle to server. Although
the training time for FL is trivially minimized if local models are
immediately transmitted, in this work we are additionally interested
in an efficient allocation of network resources. This allows us to
reduce both channel bandwidth occupancy and transmission energy
needed for FL. We assume that all vehicles have constant trans-
mission power, so that optimizing for communication resources
is equivalent to transmitting where the SINR is high. We denote
by bvk ∈ {0, 1} the transmission decision of vehicle v in slot k. If
bvk = 1, then v uses time slot k to transmit its local model to the
server; otherwise, no transmission occurs during slot k. The total
time vehicle v takes to upload its local model during round t is
denoted by T v

tx,t
.
=

∑
k∈Kt

bvk. Further, we denote by Kv
t the total

time elapsed from the beginning of local training to reception of the
updated local model at the server, which we name round latency of
vehicle v in learning round t.

B. Optimization Problem

We aim to jointly optimize the three costs in (OBJ). As discussed
above, optimizing computation and scheduling resources reduces
training loss costloss and latency costlatency of the FL task, while op-
timizing communication resources translates into efficient channel
usage costchannel during training.

With a slight abuse of notation, we express costloss as a function
of both computation and scheduling (note that it also depends on
the final parameters learned by FedAvg, θ[T ]):

costloss = L
({

VS
t , {avt }v∈VS

t

}
t∈T

; θ[T ]
)
, (TL)

where avt
.
= {avk}k∈Kt

denotes all computation decisions of vehicle
v throughout round t and T .

= {1, . . . , T} gathers all learning
rounds. The term costlatency is upper bounded by TKmax but varies
depending on 1) allocation of computation and communication
resources, and 2) the channel quality experienced by the scheduled
vehicles. We formalize this as

costlatency = K
({

{avt , bvt ;hvt }v∈VS
t

}
t∈T

)
, (OL)

where bvt
.
= {bvk}k∈Kt

and hvt
.
= {hvk}k∈Kt

denote all transmission
decisions of vehicle v and bitrate values experienced by v during
round t, respectively. Finally, we quantify the channel usage as
the total time (number of time slots) the vehicles reserve channel
bandwidth to upload their local models to the server. This quantity
amounts to summing transmission times T v

tx,t across all scheduled
vehicles and all learning rounds. Because the transmission timeT v

tx,t

is defined by transmission decisions btt, which in turn depend on the
bitrate hvt experienced by vehicle v at round t, we express costchannel
as

costchannel =
∑
t∈T

∑
v∈VS

t

T v
tx,t (b

v
t ;h

v
t ) . (CU)

The total cost (OBJ) addressed in our co-design amounts to

cost
(
VS , a, b;h, θT

)
= L

(
VS , a; θT

)
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TABLE I
LIST OF SYMBOLS USED IN THIS ARTICLE

+ (1 − wtx)K (a, b;h)

+ wtx

∑
t∈T

∑
v∈VS

t

T v
tx,tb

v
t ;h

v
t (2)

where VS .
= {VS

t }t∈T denotes the full client schedule, a
.
=

{avt }v∈VS
t ,t∈T , b .

= {bvt }v∈VS
t .t∈T , andh .

= {hvk}k∈Kt,t∈T gather all
computation and transmission decisions, and bitrate values associ-
ated with scheduled vehicles across rounds. The weight wtx ∈ [0, 1]
trades costlatency (OL) for costchannel (CU). If wtx = 0, only the
training time is penalized in (2); if wtx = 1, latency is neglected and
usage of network resources is discouraged. The learning cost (TL)
and latency cost (OL) jointly depend on all scheduled clients, while
the resource cost (CU) decomposes linearly across those.

Equipped with the mathematical definition (2) of (OBJ), we
are now ready to formalize the computation-scheduling co-design
problem tackled in the rest of this work.

Problem 1 (Optimal computation-scheduling co-design for ve-
hicular FL): Given i) a set of vehiclesV, ii) an REM of the environ-
ment γ, iii) an FL algorithm, iv) model parameters B,Kmax, T

min
cpu ,

find 1) a vehicle schedule VS , 2) computation decisions a, 3) trans-
mission decisions b, so as to optimize FL training and transmission
resources:

(P) arg min
VS ,a,b

cost
(
VS , a, b;h, θ[T ]

)
(Pa)

subject to Kv
t ≤ Kmax ∀v ∈ VS

t ,∀t ∈ T (Pb)

T v
cpu,t≥ Tmin

cpu ∀v ∈ VS
t , ∀t ∈ T . (Pc)

In words, constraint (Pa) ensures that each round ends within the
pre-assigned deadline, and constraint (Pc) requires the scheduled
vehicles to perform a minimal number of descent steps. The mean-
ing of all symbols is provided in Table I. In the next section, we
propose co-design algorithms to solve Problem 1 that crucially rely
on vehicular mobility and the REM to estimate the channel quality
experienced by vehicles.

VI. ALGORITHMS FOR CO-DESIGN

The computation-scheduling co-design problem (P) requires de-
signing both local operations performed by vehicles (computation
and transmission) and global scheduling decisions the edge server
makes. To efficiently tackle it, we propose a cascade procedure
executed at the beginning of each round t, involving three phases
(split between edge server and vehicles).

Centralized optimization: the edge server computes the optimal
number of local steps H∗

t to be performed by the vehicles in round
t and broadcasts them this value.

Local customization: each vehicle refines its local steps and
transmission (time slots to send the local model update), and sends
its cost Cv

t to participate in round t to the server.
Centralized scheduling: the server receives all the costs Cv

t and
uses both such local information and global knowledge about the
fairness of updates to select the subset of vehicles that will actually
take part in the model update at round t.

Fig. 2 provides a schematic representation of the workflow of
VREM-FL with the three phases summarized above. In the follow-
ing, the operations of VREM-FL are described in detail.

A. Centralized Optimization

In this phase, the edge server first sets the maximum number MS
t

of vehicles that are allowed to participate in round t. Then, the server
computes an approximate number of local steps to be performed
by the scheduled vehicles in order to speed up the training. To
evaluate at runtime the relation between the number of local steps
at the vehicles and the training time, we use the proxy for global FL
convergence proposed in [56]. This proxy assumes that M clients
are scheduled at every round, and that each of them performs H
local steps at every local update. The proxy is expressed in [56,
Eq. (1)] as

Tε � Γ(H,M)
.
=

C

H
+

(
1 +

1
M

)
H (GP)

where ε is the estimated accuracy in T rounds, i.e., L(θ[T ]) ≤ ε,
and C is a constant that depends on the data distribution.

The server homogeneously chooses H∗
t as the minimizer of the

proxy (GP) with respect to H , setting M = MS
t and assuming that

all vehicles run H∗
t local steps at all iterations:

H∗
t = arg min

H
Γ(MS

t , H). (3)

This first subproblem is unconstrained and convex. Its solution is

H∗
t =

√
C

(
1 +

1

MS
t

)−1

. (4)

This reveals how the optimal number of local steps H∗
t depends on

the scheduled clients. It is a strictly increasing and concave function
of M (M ≥ 1) that saturates to

√
C for M → +∞.

After computing H∗
t , the server broadcasts this value to all the

vehicles for the second phase.

B. Local Customization

In this phase, each vehicle independently executes a local sub-
routine to allocate slots for computation and communication. This
allocation attempts to optimize i) convergence of local training and
ii) channel utilization. The resulting number of local steps is tem-
porarily stored by the vehicles, which use it later to perform the local
model update in case they are actually scheduled. If a vehicle has a
means to (efficiently) estimate the loss gradient, it first refines the
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Fig. 2. Workflow of VREM-FL. At the beginning of learning iteration t, the server runs centralized optimization and transmits the globally optimal local steps
to the clients. Then, each vehicle locally runs local customization to fine-tune computation and communication resources to be used in the round. Finally, the server
performs centralized scheduling taking into account both feedback from the vehicles and global participation information.

number of local stepsH∗
t communicated by the server (computation

refinement) based on a proxy for local convergence, obtaining a new
number of local steps Hv

t , and then it optimizes for transmission
(communication optimization). Instead, if evaluating the gradient is
expensive, the vehicle skips the computation refinement at this stage
and sets the number of local steps as Hv

t = max{H∗
t , svT

min
cpu }.

1) Computation Refinement: To optimize the local updates
of the vehicle, we consider a local proxy that jointly keeps into
account the individual client convergence properties and the global
recommendation H∗

t indicated by the server. As such, the proxy
is obtained as the sum of multiple terms. First, we consider a
“convergence” proxy Θv

t (H
v
t ) related to the local optimality gap,

which bounds the client deterministic gradient norm after Hv
t local

steps of gradient descent starting from the global parameter θ[t]:

‖∇�v(θ[t][t+Hv
t ][v])‖ ≤ Θv

t (H
v
t )

.
= ‖∇�v(θ[t])‖

(
1 − κ−1

v

)Hv
t −1

. (LP)

The constant κv > 0 is the condition number associated with the
local loss �v . The proxy (LP) is based on quadratic cost functions
and we derive it explicitly in the technical report [62, Appendix A],
using results from [63]. The proxy (LP) is motivated by the fact
that the optimality gap ‖θ − θ∗‖ is in general proportional to the
gradient norm, but we have only access to the gradient, while θ∗ is
unknown. It can be computed by each client based on their local
cost only and does not take into account the distributed nature of
the FL problem. Hence, during this step, the vehicle v refines its
computation by solving the optimization problem

Hv
t = arg min

H∈N
Θv

t (H) +
ρ1H

‖∇�v (θ[t]))‖ + ρ2 (H −H∗
t )

2

(5a)

subject to H≥ svT
min
cpu . (5b)

The second addend in (5a) accounts for how close the vehicle is
to a local minimum, forcing a few steps if the vehicle has (locally)
almost converged and many steps if it is still far from convergence.
The third addend encourages the chosen local steps Hv

t to be close
to the target H∗

t computed by the server. The cost (5a) is convex
and grows unbounded as H → +∞, so that problem (5) can be
efficiently solved by a linear search. The number of computation
slots is then set as T v

cpu,t = �Hv
t/sv�. For the sake of simplicity,

we require that the vehicle allocates all slots for computation at
the beginning of the round. Formally, this means avk = 1 for k =
1, . . . , T v

cpu,t and avk = 0 for k > T v
cpu,t for all time slots k ∈ Kt.

The slots with avk = 1 are the leftmost “computation” slots in Fig.
3.

2) Communication Optimization: In this step, the vehicle
chooses the time slots to transmit its local model to the server,
adjusting the computation slots if needed. For simplicity, we require

Fig. 3. Behavior of a selected client at each round. If a client v is selected
by the server, it goes through the following steps. Each slot has duration τ [s].
At first, the client performs some local (S)GD steps (computation) according
to its computation allocation. Eventually, it transmits its updated local model
(transmission) after time Kv

t and within the maximum allowed latency Kmax,
possibly waiting for some time slots (idle) to enjoy a better channel quality.

the vehicle to allocate a batch of consecutive slots also for transmis-
sion. Formally, the communication decisions for round t are bvk = 0
for k = 1, . . . , k̄1, and bvk = 1 for k = k̄1 + 1, . . . , k̄2, for some
k̄1 ≥ T v

cpu,t and k̄2 > k̄1. We denote the set of such transmission
patterns by Bv

t (T
v
cpu,t). The allocation of slots for computation and

communication is depicted in Fig. 3, where the slots with bvk = 1
are the rightmost “transmission” slots. The vehicle considers an
allocation feasible if it estimates that its local model (B [bit]) can
be uploaded before the deadline Kmax using the transmission slots.
To choose the communication pattern, given T v

cpu,t slots of com-
putation, the vehicle attempts to solve the following optimization
problem:

bvt = arg min
b∈Bv

t (T
v
cpu,t)

Cv
t

.
= (1 − wtx)K

v
t + wtxT

v
tx,t (6a)

subject to Kv
t ≤ Kmax (6b)

Bv
t ≥ B. (6c)

The cost Cv
t in (6a) is designed to trade round latency Kv

t for
channel occupancy T v

tx,t, according to the overall objective cost (2).
To solve (6), vehicular mobility in conjunction with the REM plays
a crucial role. Each vehicle v inspects the REM to estimate the
available bitrate hvk in each slot k ∈ Kt of round t according to (1)
and, in turn, the number of time slots needed to upload the model
in round t. For example, suppose the vehicle is about to travel close
to a well-served area (e.g., a main urban road). In that case, it will
likely experience a high channel quality and thus take a short time
for the upload, whereas, if it approaches a weakly served area (e.g.,
a tunnel), it will predict poor channel conditions. It might even
declare (6) infeasible, giving up on joining the learning round. Fig.
4 pictorially represents the mobility-aware REM-based evaluation
of the cost (6a). In this figure, for case 1, transmission slots are
allocated in a greedy fashion, whereas for case 2, the vehicle defers
the transmission of the local model, waiting for the channel quality
to improve. This trades some extra delay (higher round latency Kv

t )
for a better usage of channel resources (shorter upload time T v

tx,t).
Computation and communication decisions for the round are

set by first solving (5) – if possible – to fine-tune the number
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Fig. 4. REM-based solution for communication optimization. Two eval-
uations of the objective cost (6a). In Case 1, transmission occurs under poor
channel conditions (low bitrate) and takes long time. On the contrary, in Case 2,
idle slots delay communication until when the vehicle travels through a well
served area (high bitrate), so that transmission time is shorter.

Algorithm 2: Subroutine customize_local.

of computation slots, and then (6) until a feasible computation-
communication pattern is found or the whole allocation is declared
infeasible. Algorithm 2 summarizes the workflow of this phase.
Eventually, each vehicle v transmits its estimated cost Cv

t for
participation in round t to the server, to inform the latter on the
expected benefit of scheduling v for the present round. We use
the convention that, if vehicle v cannot find a feasible allocation
for round t (i.e., problem (6) turns out to be infeasible), it will
communicate an infinite cost Cv

t , see Line 6.
Remark 1 (Computation refinement for scheduled vehicle): If a

vehicle cannot evaluate the cost (5a) in reasonable time and skips
the refinement (5), scheduled vehicles may refine their local steps
after they have been scheduled. To this aim, they can compute or
approximate the gradient ∇�v(θ[t]) at the beginning of the round,
e.g., by running a few descent steps, and then solve forHv

t according
to (5) with the (approximate) gradient just computed. Then, they
complete the local update by running SGD until they reach Hv

t
total steps.

Remark 2 (Reducing latency. vs. network resources): Optimiza-
tion (6) makes both the vehicles reduce their respective latency Kv

t
for round t concerning the deadline Kmax and the server aware of

their expected latency. This favors those vehicles that are likely to
send their local models in short time and in turn speeds up the whole
training. We experimentally demonstrate this via ablation studies
and comparisons against scheduling benchmarks in Section VII. In
particular, by tuning the weight wtx in (6a), a system designer can
encourage a short training (small wtx) or a frugal usage of network
resources (large wtx).

C. Centralized Scheduling

After the server receives information from all vehicles about their
(predicted) cost for the round, the vehicles are scheduled based on
both this cost, that measures the training performance, and on fair-
ness metrics such as the AoI and scheduling frequency, accounting
for the learning accuracy of the global model. In particular, drawing
inspiration from [16], we define the fairness F v

t for vehicle v at
round t as

F v
t

.
=

1
φv
t

+ Av
t (7)

where φv
t is the scheduling frequency of vehicle v before round t

and Av
t is its AoI at the server.

To schedule the participating vehicles, the server assigns a pri-
ority score pvt to each vehicle v for round t:

pvt
.
=

⎧⎨
⎩

1
Cv
t

+ wAF v
t if Cv

t < +∞

−1 if Cv
t = +∞.

(8)

The weight wA in (8) should be chosen so as to strike a balance
between high-performing vehicles, which may significantly reduce
the objective cost (2) in the short run, and overall training in the long
run that needs to gather information from all vehicles to eventually
learn an accurate global model.

Formally, the vehicles with the highest priority scores are sched-
uled, according to the following optimization problem:

VS
t = argmax

VS⊆V

∑
v∈VS

pvt (9a)

subject to
∣∣VS

∣∣≤ MS
t . (9b)

According to our convention described in Section VI-B, the clients
that communicate infeasible participation are assigned a negative
priority score as per (8), which automatically excludes them from
the round according to maximization of (9a).

The set VS
t contains the vehicles that the server schedules for

transmitting their local updates in the current round t. The workflow
of VREM-FL is provided in Algorithm 3.

Remark 3 (VREM-FL supports asynchronous aggregation):
VREM-FL assumes that the aggregator updates the global model
after all scheduled vehicles have transmitted their updates or the
deadline Kmax expires. This means that the aggregation scheme can
be asynchronous. In fact, if vehicles train and upload local models
with the settings output by customize_local (respectively avt
and bvt ), the timing of training and transmission will be in general
different for each vehicle, yielding asynchronous reception of local
models at the aggregator. For this, using knowledge of the REM and
mobility pattern at the vehicle, as we propose, is essential; broadly
speaking, transmitting when the channel is good is advantageous
regardless of aggregation schemes. This behavior is observed in our
experiments, where moreover not all scheduled vehicles transmit
their local models in time. However, while this happens rarely when
using VREM-FL, which leverages knowledge of the channel quality
experienced by vehicles, other scheduling strategies incur several
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Algorithm 3: VREM-FL.

missed updates that contribute to degrading learning and wasting
resources. See Fig. 8(c) for our experimental comparison.

Remark 4 (Extension to other FL algorithms): The convergence
proxies (GP) and (LP) are the only elements that depend on the
algorithms used to solve (FL) and they can be adjusted to use
VREM-FL with other local training or aggregation schemes.

D. Complexity Analysis of VREM-FL

A strength of VREM-FL is its light computational and commu-
nication requirements, which can accommodate a large number of
vehicles with modest computational power onboard.

1) Centralized Optimization: During this phase, the edge
server computes the target global local steps H∗

t as (4), which
has complexity O(1). The required communication corresponds to
broadcasting this value once to all vehicles.

2) Local Customization:
a) Computation refinement: The first part of the second

phase, if executed, requires each vehicle to solve problem (5), which
is the minimization of a scalar submodular function on N and can
be solved via linear search.

b) Communication optimization: In the second part of the
second phase, each vehicle solves problem (6) that requires the
evaluation of the cost function (6a) at least |Kt| − T v

cpu,t times,
where T v

cpu,t is the number of slots allocated for local training from
either problem (5) or the received H∗

t . In the worst case, when (6)
is infeasible, the vehicle performs about (T v

cpu,t + 1)|Kt| − Tv
cpu,t/2

evaluations of (6a), which is linear with |Kt|. In our realistic
experiments, the vehicles almost always solved (6) in a few at-
tempts, resulting in a low computational requirement. Each vehicle
transmits to the server its cost Cv

t .
3) Centralized Scheduling: The edge server computes one

priority score per vehicle and selects the participating ones via
problem (9). Both operations are linear with the number of vehicles.
A fast implementation computes the priority (8) of each vehicle v
as soon as its cost Cv

t is received, and keeps the vehicles ordered
by priority with InsertionSort. In this case, the computational
complexity to solve (9) is O(1).

VII. NUMERICAL RESULTS

We perform FL experiments with both synthetic and real-world
data. We address vehicular mobility by both generating trajectories
of vehicles with a realistic simulator and using real-world mobil-
ity data. Without loss of generality, we set a constant bandwidth
ηvt ≡ η, identical for all vehicles and learning iterations. In Section
VII-A, we describe the urban environment, mobility data, and REM
generation. In Section VII-B, we present the benchmarks compared
with VREM-FL. In Section VII-C, we showcase results for a
linear regression model on a least-squares problem with synthetic
data. This allows us to conduct ablation studies that isolate the
effects of several features of VREM-FL and highlight their benefits.
In Section VII-D, we use VREM-FL to train a deep neural network
model for semantic segmentation, a task of interest for assisted and
autonomous driving. For this experiment, we use the real-world
dataset ApolloScape [14] and both simulated and real-world
mobility data1.

A. Mobility and Urban Radio Environment Generation

We implement the simulations in Python. We use the map of
Padova, Italy, from OpenStreetMap [64] and use SUMO [10]
to simulate 1,000 vehicles that move across the city for one hour,
discarding the first ten minutes of simulation to let the road map
populate with a sufficiently large number of vehicles. For the second
experiment, we use a real-world mobility dataset that we describe
in Section VII-D-4.

On top of the city map, BSs are deployed with an inter-site
distance of 600 m, according to typical 5G deployment criteria.
Average SINR values and the corresponding bitrates have been
obtained through the Matlab 5G NR link-level simulation tool [65].
SINR values are calculated considering i) the transmission power of
vehicles, ii) physical settings of the 5G NR, iii) propagation models,
and iv) interference and noise power. We set the transmission power
of vehicles to 23 dBm. Without loss of generality, we assume to
allocate (in the frequency domain) a fixed number of 10 resource
blocks for data transmission. The carrier frequency is set to 3.5 GHz.
The sub-carrier space and the resulting size (in the frequency
domain) of each single radio resource block are respectively set
to 30 kHz and 360 kHz. Hence, the per-client bandwidth for 10
resource blocks is η = 3.6 MHz (see (1)). The antenna height of
BSs and vehicles is set to 25 m and 1.5 m, respectively. Path loss
parameters are set according to the urban microcell scenario, as
defined in the TR 38.901 specification of 3GPP. The slow-fading
(shadowing) is added to the coverage area of each BS following
the 3GPP guidelines [66], with a de-correlation distance of 25 m
and standard deviation of 6 dB, which are common values for urban
environments [67]. Finally, the noise figure, used to derive the noise
power, is set to 6 dB. The bitrate corresponding to a given SINR
average value – i.e., the map β(·) in (1) – is obtained according
to the physical uplink shared channel (namely 5G NR PUSCH)
throughput experienced in a 5G New Radio link [68], [69], [70] for
that value of SINR. The average throughput is calculated through the
Matlab 5G NR link-level simulation tool implementing the 3GPP
NR standard [65], assuming that vehicles experience a given average
SINR value during the time slot τ of 1 s.

B. Scheduling Benchmarks

We compare VREM-FL against four scheduling benchmarks:
Round robin: Vehicles are chosen by the scheduler based on a

round robin policy, i.e., in a cyclic order.

1Code for simulations available at https://github.com/lucaballotta/vrem-fl.

https://github.com/lucaballotta/vrem-fl
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FedAvg [15]: Vehicles are chosen by sampling them randomly
with equal probability (uniform random variable).

Fairness [16]: This scheme optimizes the metric proposed in [16]
and is equivalent to computing scheduling priority as pvt = F v

t .
A crucial difference between this method and VREM-FL is that
the cost Cv

t is not used and thus the two cases in (8) are indis-
tinguishable. That is, even if a vehicle could communicate that its
participation is infeasible, “Fairness” neglects this information and
uses only fairness-related information F v

t known to the scheduler.
Centr-SNR [17]: This algorithm is adapted from [17], where

clients are scheduled in a centralized way based on the uplink chan-
nel gain (SNR) reported to the server. To draw a fair comparison, we
select the vehicles with the best estimated bitrate at the beginning of
each learning round. We use this scheme for the second experiment
in Section VII-D.

C. First Experiment: Linear Regression on Synthetic Data

We first address a least squares problem with a linear re-
gression model to illustrate the functioning of our proposed al-
gorithm. In Section VII-C-1, we describe the synthetic dataset
used for this experiment. In Section VII-C-2, we study how
performance of VREM-FL varies with the precision of the
REM, considering both perfect channel knowledge and esti-
mated REMs that may differ from actual channel conditions. In
Section VII-C-3, we compare VREM-FL against literature bench-
marks and demonstrate its superiority in reducing training time
while more sparingly allocating channel resources. In Section VI-
I-C-4, we perform several ablations to inspect how the metrics
included in (2) are affected by different design choices of VREM-FL
parameters.

1) Synthetic Dataset Generation: We generate S synthetic
data samples x1, . . ., xS , each obtained as a random linear com-
bination of the form x =

∑n
j=1 zj ũj , where z1, . . ., zn are i.i.d.

Gaussian random variables, and {ũ1, . . ., ũn} = {σ1u1, . . ., σnun},
with σ1, . . ., σn constants between 10−2 and 1, while {u1, . . ., un}
aren linearly independent basis vectors. Response values y1, . . ., yS
are generated from the data samples as yi = xTi θ

∗, i = 1, . . ., S,
where the generating parameter θ∗ is also obtained as a random
linear combination of {ũ1, . . ., ũn}.

The least squares loss in (FL) is �(θ) =
∑S

i=1(θ
�xi − yi)

2. We
show here the results obtained with regularization parameter λ =
10−4. We obtained similar results with λ ∈ {10−3, 10−5} that are
illustrated in the technical report [62, Appendix B]. For the purpose
of the ablation study with synthetic data, we set a small parameter
dimension n = 25. Accordingly, to get meaningful results with
respect to the scheduling design, we rescale the bitrate values by a
factor 2 × 10−5.

2) Performance Using Estimated REMs: We show the perfor-
mance of VREM-FL on the synthetic dataset described in Section
VII-C-1 when the REM is estimated via Gaussian Process Regres-
sion (GPR) [9], [13] performed on a limited number of measure-
ments. We consider the cases where 100, 150, or 250 measurements
are available in each BS cellular sector. For each sector, we select
the measuring locations uniformly at random. To perform GPR, we
assume that the standard deviation and the de-correlation distance
of the shadowing process are known a priori2. The parameters for
FL and VREM-FL are reported in the first column of Table II.

In Fig. 5, we show the distance from the optimal parameter
θ∗ of the least squares problem as a function of the simulation
time, where different lines denote a different number of measures
available to generate the REM maps through GPR. Markers denote

2If this is not the case, they can be estimated via standard techniques [9].

TABLE II
PARAMETERS USED IN THE TWO EXPERIMENTS ON LINEAR REGRESSION

(SECTION VII-C) AND DEEP LEARNING (SECTION VII-D)

Fig. 5. Model convergence with VREM-FL and varying REM quality for
linear regression experiment. The curves correspond to different estimates of
the REM obtained by varying granularity of available measures.

the simulation slot where the server has received all the updates from
the clients and computes the average, i.e., the end of a learning
round. Triangular blue markers correspond to the ground truth,
namely, the real REM is available at the scheduler. We can see
that the more points are available to generate the REM estimation,
the more likely it is to avoid stragglers. Stragglers are those nodes
that slow down the learning process because they do not have
sufficient computational or communication resources. The presence
of scheduled nodes that had an estimated channel quality superior
to the real one makes the learning round last longer, hence the total
latency increases. The estimated map obtained using 100 points
produces a total learning duration approximately 5 minutes longer
than the ground truth and 2 minutes longer than the estimated map
with 250 points. For the rest of the experiments, we used the REM
estimated with 250 points.

3) Comparison With Other Scheduling Policies: We show the
comparison of VREM-FL against scheduling benchmarks in Fig.
6. “FedAvg” and “Round robin” perform similarly. The learning
accuracy converges, but it takes longer than the other two scheduling
algorithms. The target of 30 rounds is not even reached after the
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Fig. 6. Model convergence with VREM-FL vs. scheduling benchmarks for
linear regression experiment. All algorithms achieve comparable accuracy, but
VREM-FL significantly reduces training latency (33 min vs. 50 min).

simulation horizon of 50 minutes. Also, “Fairness” uses the whole
simulation horizon. Nonetheless, it yields a slight advantage in
learning performance at early stages because it integrates informa-
tion in a smarter way, ensuring that all vehicles contribute evenly.
Under the given settings, VREM-FL reduces the total latency by
at least 28% while providing the same model accuracy. This is
achieved by wisely using the network resources through estimated
channel conditions.

4) Ablation Study: We propose an ablation study to isolate the
effects of the proposed local steps adaptation strategy (Fig. 7(a)) and
transmission policy (Fig. 7(b)). Fig. 7(a) shows that performing the
minimum number of GD steps (label “min steps”, i.e., only one
step) locally at each round makes convergence steady but slow.
The policy labeled “max steps” is obtained by filling all idle slots
between computation and transmission (see Fig. 3) with additional
GD steps. In this way, the total latency is the same of our optimized
solution and local models are transmitted during the same time slots,
but the total number of local iterations is higher than the proposed
VREM-FL (label “adjusted steps”). Indeed, the latter version may
limit the number of local steps based on convergence proxies (LP)
and (GP). Although “max steps” is initially faster than “adjusted
steps”, both solutions converge after 40 minutes (i.e., approximately
25 rounds). Fig. 7(c) shows the GD steps normalized with respect to
the strategy “max steps” on the right. Strategy “min steps” uses only
6% of the total steps and its convergence is too slow. Noteworthy,
“adjusted steps” reduces the GD steps by 28%, which directly
translates into higher energy efficiency and better usage of compu-
tation resources while reaching the same accuracy in a comparable
time.

In Fig. 7(b), the results relative to varying the weight wtx in
the optimization problem (6a) are shown. Specifically, tuning wtx
between 0 and 1 makes the solution move along the Pareto front
between the two extremes wtx = 1 (orange circles), which corre-
sponds to minimizing the number of slots where the channel is
filled with communication, and wtx = 0 (green diamonds), which
corresponds to minimizing the total latency. Setting wtx = 0 cor-
responds to transmitting the local models as soon as the GD steps
are completed, while the policy wtx = 1 uses the REM and waits
for the available transmission window with the highest bitrate. Any
coefficients in between correspond to a weighted solution between
these two criteria. For example, we show the results for wtx = 0.5
(blue triangles). As wtx → 0, convergence is faster because this
solution minimizes the total latency. The scenario with wtx = 0.5 is
reasonably close and it takes 2 minute longer to complete the given

30 rounds. Conversely, setting wtx = 1 penalizes only the usage of
transmission resources and uses all the available 50 minutes. By
looking at the resource usage (Fig. 7(c), leftmost bars), we see that,
in this context, it is possible to reduce the number of slots used for
communications by at most 21% (i.e., from wtx = 0 to wtx = 1).
Interestingly, by setting wtx = 0.5, we reduce the resource usage by
11%, hence significantly improving the efficiency while performing
very close to wtx = 0 in terms of overall training latency.

D. Second Experiment: Deep Learning for Real-World
Semantic Segmentation

In this section, we address a vision-based semantic segmentation
task by training a deep neural network model. This experiment
allows us to validate the effectiveness of VREM-FL for real-world
applications. In Section VII-D-1, we describe the real-world seman-
tic segmentation dataset Apollo, while in Section VII-D-2 we report
details on the learning model and VREM-FL parameters. Then, we
perform two sets of experiments with different mobility patterns.
For both experiments, we use the bitrate obtained through the
estimation method of Section VII-C2 with 250 samples. In Section
VII-D-3, we use the vehicular mobility simulated with SUMO for
the first experiment. In Section VII-D-4, we use a real-world dataset
with taxi trips in Rome, Italy.

1) Real-World Dataset ApolloScape and Learning Perfor-
mance: We use the real-world ApolloScape lane segmentation
dataset [14] to show the performance of VREM-FL on a realistic
task. It consists of more than 110 thousand annotated frames from
73 street scene videos recorded in China with various weather
conditions. We realistically split the dataset by assigning one record
to each available vehicle, so that data are correlated in time and space
within the same client and are non-iid across clients. In words, we
simulate video streams independently acquired by vehicles with
onboard cameras while traveling. We downsampled the frames to
make the training compatible with limited computing resources of
vehicles.

To measure the learning performance, we use the mean inter-
section over union (mIoU) score, a popular evaluation metric for
segmentation tasks. The mIoU is obtained by first computing the
ratio of the area of the intersection between predicted and ground
truth regions to the area of their union, and then taking their average.
Formally, let R denote the set of semantic regions and |R| denote
its cardinality, then it holds

mIoU
.
=

1

|R|
∑
r∈R

rpred ∩ rtrue

rpred ∪ rtrue
. (10)

2) Training and VREM-FL Settings: We train the deep net-
work deeplabv3 [71], a state-of-the-art model for semantic
image segmentation, choosing mobilenetv3-large [72] as a
backbone. The initial local learning rate is set to lr = 2.5 × 10−4

with a cosine annealing scheduler and the local optimizer is SGD.
We train the model with minibatches of size 32, and the vehicles run
sv = 3 local steps of SGD per time slot (measured on an NVIDIA
GeForce RTX 2080 GPU).

We modify the VREM-FL parameters to reflect the different
nature of the problem; see the second column of Table II. These
choices increase the local SGD steps and induce vehicles to wait
for the best transmission window in the given time.

3) Simulated Mobility: In Fig. 8(a), the mIoU score of VREM-
FL is plotted against the learning round as the number of scheduled
clientsMS varies. Selecting a few clients, e.g.,MS = 5, the system
performs many rounds within the simulation horizon (one hour)
because each round is completed in short time. However, the learn-
ing quality is poor as witnessed by frequent spikes because a low
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Fig. 7. Ablation study on VREM-FL with linear regression experiment. For computation policies, we vary the number of local GD steps with fixed transmission
weight wtx = 0.5. For transmission policies, we vary the number of slots when vehicles occupy the channel while using the adjusted steps computation policy.
(a) Model convergence varying computation policy. (b) Model convergence varying transmission policy. (c) Resource usage under different policies.

Fig. 8. Performance of VREM-FL on the real-world semantic segmentation experiment with simulated vehicular mobility. (a) Learning performance (mIoU
score) with VREM-FL as the number of scheduled vehicles varies. Few scheduled vehicles make learning unstable; many vehicles increase the total latency.
(b) Learning performance with VREM-FL vs. scheduling benchmarks (MS

t = 15). VREM-FL doubles the learning rounds as compared to the benchmarks given
the same time horizon. (c) Successful transmissions of scheduled clients. By smartly leveraging mobility patterns and REM, VREM-FL achieves the fewest missed
updates and the most efficient usage of channel resources.

number of clients is not representative of the full dataset, which
may vary a lot across rounds. On the other hand, increasing the
number of clients results in smoother learning curves. However, for
e.g., MS = 25, we trade enhanced learning stability for a longer
round duration because scheduling more clients means increasing
the chance that at least one of them has a poor channel and takes
a long time to transmit the parameters. The zoomed area in Fig.
8(a) reveals that the learning curves stabilize for MS ≥ 15. For
the following results, we set MS = 15 as the best tradeoff between
learning quality and latency.

Fig. 8(b) compares VREM-FL with the benchmark scheduling
algorithms. There is no significant difference w.r.t. the learning
quality and even “Fairness” does not provide advantages con-
cerning “FedAvg”. However, using VREM-FL, the server ag-
gregates the parameters at a double rate than the benchmarks.
Leveraging the REM, the scheduler chooses the fastest clients to
transmit their local model weights, and the system performs 49
learning rounds instead of the 24-26 performed by the bench-
marks within the same time horizon. This directly translates
to a higher mIoU for the same training time – about 9.3%
higher than the best benchmark strategy. The detailed compari-
son with respect to the three performance metrics addressed in
Problem 1 is provided in Table III.

TABLE III
PERFORMANCE OF VREM-FL VS. THE BENCHMARKS IN THE REAL-WORLD

SEMANTIC SEGMENTATION EXPERIMENT WITH SIMULATED MOBILITY W.R.T.
THE PERFORMANCE METRICS ADDRESSED THROUGH THE COST FUNCTION (2)

Clients that overestimate the channel quality may fail to send
their model parameters update within the learning round deadline,
wasting computation and communication resources. To assess how
VREM-FL prevents resources from being wasted, we evaluate the
fraction of scheduled clients uploading the model to the server
within the deadline. Formally, we compute

txrate
.
=

1
T

∑
t∈T

∣∣{v ∈ VS
t : v uploads update in round t}

∣∣
MS

t

. (11)
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Fig. 9. Learning performance (mIoU score) with VREM-FL vs. scheduling
benchmarks on the real-world semantic segmentation experiment with real-
world vehicular mobility. VREM-FL (wA = 0) outperforms the benchmarks as
it uses the REM information to effectively schedule fastest transmitting vehicles.
In this way, it performs more learning rounds in the same time horizon.

Fig. 8(c) shows txrate as the number of scheduled clients MS

varies. Compared to other algorithms, the channel quality maps
allow VREM-FL and “Centr-SNR” to select only those clients
who send their weights in time. This result is consistent since
the variance is relatively small. VREM-FL performs slightly better
than “Centr-SNR” as the channel quality is evaluated locally at the
vehicles estimating the location at transmission time. On the other
hand, a drop in the share of clients transmitting their weights is
observed without REM availability, with a worst-case scenario of
85% in the simulated settings. The average value of the benchmark
algorithms is around 94%, while for VREM-FL is close to 100%.
This demonstrates that not only VREM-FL outperforms the bench-
mark strategies in terms of learning performance, but it also does so
with a more economical and efficient usage of computing resources
at vehicles and communication resources at the network edge.

4) Real-World Mobility: We now apply VREM-FL to the
dataset roma/taxi [11] that gathers traces of taxi trips recorded in
Rome, Italy, between February and March 2014. For training, we
selected the recordings from 7:30 pm to 8:30 pm on February 15,
comprising 92 different taxis in total. In the original recordings, each
taxi independently and asynchronously transmitted its real-time
location every 15 s. We linearly interpolate the recorded traces
and obtain synchronous trajectories at 1 Hz to allocate resources
in a granular fashion. The REM varies a little at a few meter
distance, hence we expect the bitrate at interpolated locations to
be very similar to the one the taxis would experience along the true
routes.

In Fig. 9, the mIoU of VREM-FL with two values of the fairness
weight wA is compared with the benchmarks. Setting wA = 10−2

allows us to combine the REM with fairness information; cf. (8).
However, since at least 11% of the vehicles are scheduled in
each round, fairness has a marginal impact because each vehicle
is frequently selected in any case. The effect on learning is thus
negligible, and VREM-FL with wA = 10−2 performs only 1 to 3
learning rounds more than the benchmarks within the given time
horizon. On the other hand, setting wA = 0 means scheduling
the vehicles based on the sole REM and mobility information,
and VREM-FL performs about 40 learning rounds more than the
benchmarks, reaching a mIoU score of 0.43 as opposed to 0.37

Fig. 10. Resource usage comparison between VREM-FL and scheduling
benchmarks on the semantic segmentation experiment with real-world mobility.
VREM-FL (wA = 0) reduces the bandwidth for transmissions of updates (left)
and increases the fraction of scheduled vehicles that upload the updates within
the deadline (right), significantly improving resource efficiency.

achieved by “Centr-SNR” and VREM-FL with wA = 10−2. Fig. 10
shows the number of communications slots used by the vehicles to
upload the local models (left) and the fraction of successful uploads
txrate (right). VREM-FL with wA = 0 significantly outperforms
the benchmarks, reducing the channel usage by 45% concerning
the best benchmark “Centr-SNR”. This highlights the need for
online, distributed, and predictive scheduling in vehicular contexts
as the channel quality experienced both across learning rounds
and during each round can vary a lot depending on the vehicle
speed and the environment geometry. VREM-FL with wA = 10−2

is still better than “FedAvg” and “Fairness” because it incorporates
channel quality information to schedule vehicles. The successful
update rate txrate confirms the trends just discussed. VREM-FL with
wA = 0 ensures almost total participation of the scheduled clients
(99.9%), although the centralized approximation “Centr-SNR” per-
forms close (99%), suggesting that in this case the bitrate at the
beginning of a round is a good proxy for that experienced during the
round.

VIII. CONCLUSION AND FUTURE WORK

Motivated by the need of efficient solutions for FL tasks in
vehicular networks, we have proposed VREM-FL, a computation-
scheduling co-design algorithm that jointly optimizes a learning-
related performance metric and network-related communication
resources. Specifically, VREM-FL orchestrates local computa-
tions at the vehicles, transmission of their local models to
the edge server, and schedules clients at each learning itera-
tion to strike a good balance between learning accuracy, train-
ing time, and wireless channel usage. Experimental results on
a synthetic LS problem and on a real-world semantic segmen-
tation task demonstrate that VREM-FL provides superior learn-
ing performance as compared to common scheduling strategies
by promoting a frugal use of computation and communication
resources.

The present study focuses on the FL algorithm, client mobility is
assumed to be given and non-controllable. However, future smart
and autonomous vehicles may be in the position of changing their
planned route to favor ancillary tasks, such as the execution of an
FL algorithm or the transmission of data to roadside servers. Hence,
we foresee scenarios where decision-making can be augmented
via trajectory steering of (some of) the participating vehicles, to
optimize even further the vehicle learning performance and their
resource utilization.
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