
Domain-Specific Abstractions for
Algorithmic Graph Processing

Master’s Thesis

G

M

I
R

Johannes Hendrik (Jochem) Broekhoff

Domain-Specific Abstractions for
Algorithmic Graph Processing

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER AND EMBEDDED SYSTEMS ENGINEERING

by

Johannes Hendrik (Jochem) Broekhoff
born in Krimpen aan den IJssel, the Netherlands

Programming Languages Group
Department of Software Technology

Faculty EEMCS, Delft University of Technology
Delft, the Netherlands
www.ewi.tudelft.nl

www.ewi.tudelft.nl

© 2025 Johannes Hendrik (Jochem) Broekhoff.

Cover picture: a directed graph with letters as a play on the GMIR abbreviation.

Domain-Specific Abstractions for
Algorithmic Graph Processing

Author: Johannes Hendrik (Jochem) Broekhoff
Student id: 5076218

Abstract

Graphs and richer property graphs are common models for real-world data. We typ-
ically run algorithms on such data to extract meaningful information. Using domain-
specific programming languages (DSLs) is a common approach to expressing such algo-
rithms, contrasting to general-purpose programming languages and declarative graph
query languages. On one hand, algorithms in general-purpose languages are verbose
and conceptually far removed from from the algorithm theory, as is the case for some
community detection algorithms in DSLs. On the other hand, the DSLs that are available
are insufficient to express all common graph analysis algorithms. The Green-Marl Inter-
mediate Representation (GMIR) is such a graph algorithmDSL. As it has been built from
the ground up, it only provides a minimal feature to support the algorithms it initially
needed to support, similar to how other DSLs are developed. This specifically prevents
frontier exploration algorithms and community detection algorithms to be expressed,
such as Dijkstra’s shortest path and the Louvain clustering method. We use GMIR as a
vehicle to introduce new domain-specific abstractions for algorithmic graph processing,
targeting those algorithms. We evaluate our abstractions by implementing them in the
commercial GMIR compiler, which we then use to compile various new algorithms to
existing commercial graph processing platforms. This shows that we have successfully
enabled more graph algorithms to be expressed in GMIR, even though there are still
many algorithms that remain inexpressible.

Thesis Committee:

Chair: dr. J.G.H. Cockx, Faculty EEMCS, TU Delft
Committee Member: dr. E. Demirović, Faculty EEMCS, TU Delft
University Supervisor: dr. C. Bach, Faculty EEMCS, TU Delft
External Advisor: G.H. Wachsmuth, Oracle Labs

https://orcid.org/0000-0003-4186-0560

Preface

After having worked at Oracle Labs in Zürich for 8 months, this thesis concludes my journey
through the master’s programme of Computer & Embedded Systems Engineering (CESE).
I started this degree as the first experimental shift in 2023, as the Embedded Systems and
Computer Engineering programmes were fused into CESE.

While programming languages are not necessarily central to either the embedded sys-
tems or computer engineering disciplines, I am glad I have pursued my thesis in the field.
Starting all the way in the final years of high school, I started my fascination for compilers.
Being somewhat bored during computer science class, I got permission from the teacher to
search for some alternative projects to challenge myself. This started my fascination for com-
pilers. I wrote a small but working compiler using ANTLR, compiling my own high-level
language into Minecraft game commands.

During my bachelor’s in Computer Science, I participated in the Honours Programme. I
reached out to Eelco Visser, proposing to further develop my high school project into a more
mature solution. With that project I slowly got to know the Spoofax Language Workbench
and its inner workings. Due to Eelco’s unexpected passing, Jesper took over the supervision
of that project. For my bachelor’s thesis, I also worked under his supervision to develop an
LLVM backend for the Agda compiler [16].

The hands-on experience with Spoofax proved invaluable when I moved on to my mas-
ter’s. I was planning on doing a thesis in PL, but was unsure what to specialize in and was
debating between different many different projects. As a prerequisite, I participated in the
PL seminar course where we had to pick a paper to do a small project on. I happened to
choose the 2022 SLE paper on Green-Marl IR [11], supervised by Guido Wachsmuth. A few
months later, I found myself in Zürich where he became my manager.

I especially want to thank Guido and Vasileios, who provided invaluable feedback on
my ideas, guided me through the patent writing process and always sparked my mind. Spe-
cial thanks go to Arnaud, Riccardo and Calin for their general involvement, suggestions and
enjoyable cooperation. I would also like to thank Jesper, Casper, Arno and Rutger for pro-
viding critical feedback on my text. Being at the office almost daily, I cannot have imagined
what it would have been like without my excellent peers Hugo, Alexander, all Martins, Vlad,
Antonio, Enrico and all other interns. I wish the graph teams at Oracle the best of luck.

Johannes Hendrik (Jochem) Broekhoff
Rotterdam, the Netherlands

March 4, 2025

iii

Contents

Preface iii

Contents v

List of Figures vii

List of Tables ix

List of Listings xi

1 Introduction 1
1.1 Contributions . 3
1.2 Design Methodology . 3

2 Initial Domain Exploration 5
2.1 Graphs and Property Graphs . 5
2.2 Concrete Practical Use-Cases . 6
2.3 Analyzing Algorithms . 7

3 Design Overview 13
3.1 Design Approach & Guidelines . 13
3.2 Introducing New Abstractions in GMIR . 14

4 Current State of GMIR 19
4.1 Brief History . 19
4.2 Syntax . 19
4.3 Static Semantics . 20

5 Deep Dive: Fixed-Point Iteration 27
5.1 Algorithm Overview . 27
5.2 Conceptual Design . 28
5.3 Syntax Design . 30
5.4 Static Semantics . 32
5.5 Integration with Top-Level Iterators Normal Form 33

6 Deep Dive: Frontier Exploration 35
6.1 Algorithm Overview . 35
6.2 Essential Summary . 36
6.3 Conceptual Design . 37

v

CONTENTS

6.4 Syntax Design . 45
6.5 Static Semantics . 47
6.6 Integration with Normal Forms . 48

7 Deep Dive: Community Detection 49
7.1 Algorithm Overview . 49
7.2 Essential Summary . 50
7.3 Conceptual Design . 51
7.4 Syntax Design . 58
7.5 Static Semantics . 60
7.6 Normal Form Integration . 60

8 Evaluation 63
8.1 Voelter’s Seven Design Dimensions . 63
8.2 Expressing Algorithms . 65
8.3 Operational Semantics by Lowering . 67

9 Related work 71
9.1 Graph Analysis Landscape . 71
9.2 Other Domain-Specific Languages . 72

10 Conclusions & Future Work 75
10.1 Conclusions . 75
10.2 Future Work . 75

Bibliography 79

Acronyms 87

A Eenvoudige Samenvatting 89
A.1 Samenvatting per gebied . 90

vi

List of Figures

1.1 A small property graph with edge-bound properties. 1

2.1 A small computer network interaction graph. 6
2.2 Suspicious money laundering activity. 7
2.3 PageRank in action. 7
2.4 Two weakly connected components. 8
2.5 Propagation of the WCC component ID in action. 8
2.6 Different approaches to solving s–t-connectivity. 9
2.7 Dijkstra’s algorithm in action. 10
2.8 Label propagation in action. 11
2.9 Result of running the Louvain algorithm. 11

4.1 Modernized syntax of GMIR. 20
4.2 Some code and its corresponding scope graph . 21
4.3 Statix rules and the corresponding inference rules 22
4.4 Key static semantics rules for core constructs . 23
4.5 Key static semantics rules for graph constructs . 24

5.1 Syntax of fixed-point extension to GMIR. 31
5.2 Static semantics of the fixed-point iteration construct 32
5.3 Fixed-point stable convergence under Top-Level Iterators normal form (NF) . . . 33

6.1 Gradual exploration of a graph through a frontier 37
6.3 Frontier ordering policies in action . 39
6.4 Block diagram of frontier exploration basics . 40
6.5 Block diagram of frontier exploration with default filters 40
6.6 Classification of neighboring elements: parents and children 41
6.8 Infeasible tree fusion in a forest . 44
6.9 Gradual tree and path construction under a min-weighted treelike exploration . 44
6.11 Syntax of frontier exploration extension to Green-Marl intermediate representa-

tion (IR) (GMIR). 46
6.12 Static semantics of the frontier exploration construct 47

7.1 Phases of community detection . 52
7.2 Variations of possible vertex and edge aggregation policies 53
7.3 Direct versus incremental community property aggregation 54
7.4 Classification of edges affected by moving and merging 56
7.5 Community graph collapse . 57
7.6 Syntax of community detection extension to GMIR. 58

vii

LIST OF FIGURES

7.7 Key static semantics of the community detection construct 61

viii

List of Tables

6.2 Provided frontier ordering policies . 38
6.7 Exploration policies, their features and the constraints they impose 43
6.10 Projectable information of a frontier . 45

8.1 Lower iterators for edge effect classification . 69
8.2 Gradual community projection across hierarchy 70

ix

List of Listings

1.1 PageRank in classic GMIR. 2
2.1 Dijkstra’s algorithm in classic pseudo-GMIR 10
3.1 Main PageRank loop using the fix operator. 14
3.2 Dijkstra’s algorithm using the visit block. 15
3.3 The Louvain method using the agglomerate block. 16
5.1 PageRank using the fix operator . 30

xi

Chapter 1

Introduction

amount: 100

Alice

amount: 20

Bob

Charlie

Figure 1.1: A small property
graph with edge-bound prop-
erties.

Graphs are a fundamental mathematical structure which is
well-suited for modeling information about the real world.
For example, a road network can be modeled as a graph,
where roads are represented by edges and traffic junctions
by vertices. In practice, we need to store more detailed facts
to make the graph interesting. Enriching a graph is done us-
ing properties, key-value pairs attached to vertices and/or
edges. Figure 1.1 shows this by modeling people as vertices
and monetary exchange directed edges, with an edge prop-
erty representing the amount transferred.

Like any data, graphs that merely exist are not useful,
especially not when they get larger. We want to run algo-

rithms on these graphs to extract meaningful information.
Graphs can also be stored in databases and queried similar to relational data with SQL-

like dialects such as PGQL [62]. Such graph query languages are only intended to be used
for relatively simple queries. Although it is theoretically possible to construct convoluted
queries that implement some algorithm, this is not commonly done.

Queries are insufficient, but we still want graph algorithms to be executed close to the
data source. This comes from the the key principle of SQL, letting database engines handle
the data-intensive tasks they are intended for as they sit directly on top of the data. For this
reason, some vendors provide imperative extensions to their SQL dialects or define functions
that abstract away some much more complex functionalities [5, 6, 21, 30].

Domain-specific languages (DSLs) are a different approach to enhancing database en-
gines with more imperative analytical capabilities. They can still build on the same princi-
ples as SQL, but are more imperative than declarative instead. This aligns more with how
algorithms are typically thought of and implemented. Gremlin [4] is most well-known and
is used extensively in industry [7, 31, 71]. However, it focuses more on graph traversal pat-
terns and less on supporting arbitrary algorithms. Academically, graph analytics DSLs have
also gained some attention [18, 35, 82]. Green-Marl [35] in particular, one of the earliest in
the field, has been used extensively by Oracle to express graph algorithms.

Green-Marl has a monolithic design and is limited in modularity. This poses difficul-
ties in portability and compatibility with multiple targets. Recently, Oracle has introduced
two new languages that address these flaws: PGX Algorithm [58] as a high-level language
and a highly modular intermediate representation (IR) called Green-Marl IR (GMIR) [11].
Both can be and are actively being used to implement useful algorithms. An example of the
PageRank algorithm in GMIR can be found in Listing 1.1. However, both have drawbacks
that currently make it infeasible for neither non-expert customers nor experts to write main-
tainable and efficient implementations. The issues are as follows.

1

1. INTRODUCTION

1 procedure void pageRank(
2 in graph G, in int maxIter, in double epsilon,
3 out property<vertex(G), double> rank
4) {
5 long N;
6 double x;
7 double diff;
8 property<vertex(G), double> newRank;
9 int i;

10
11 N = numNodes(G);
12 foreach ((v): vertices(G)) (true) {
13 v.rank = 1d / (double)N;
14 }
15 x = 0.15d / (double)N;
16
17 i = 0;
18 do {
19 diff = 0.0;
20 foreach ((v): vertices(G)) (true) {
21 double inSum =
22 sum (() <- (w): neighbors(G, v)) (true) {
23 let long outDeg = outDegree(G, w);
24 in w.rank / (double)outDeg
25 };
26 double newRankVal = x + 0.85d * inSum;
27 double oldRankVal = v.rank;
28 diff += |newRankVal - oldRankVal|;
29 v.newRank = newRankVal;
30 }
31 swapVertexDoubleProperties(rank, newRank);
32 i = i + 1;
33 } while (diff > epsilon && i < maxIter);
34 }

Listing 1.1: PageRank in classic GMIR.

• PGX Algorithm is a Java-based DSL, aiming to provide a Java-native way of express-
ing graph algorithms. The fundamental problem is that it remains too generic and not
graph specific enough. It supports most of Java’s flow control and provides some read-
ily importable application programming interfaces (APIs) for graph traversal. Addi-
tionally, it provides implementations of some of Java’s collections, such as lists, maps,
queues. Graph-specific concepts, such as properties, are also only modeled through
APIs and are thus second-class citizens. There are only few restrictions on the usage
of general-purpose data structures, opening the door for unintended inefficient and
longwinded algorithm implementations. This, in combination with an overall lack of
graph-specific abstract data structures leads to cumbersome implementations that are
hard to read.

• GMIR, being developed more recently, has been designed from first principles, result-
ing in a small and modular multi-target IR. Its lower-level design relieves some issues
that PGXAlgorithm has in being too general purpose. However, several classes of algo-
rithms simply cannot be expressed in GMIR at all. This is due to the lack of higher-level
abstractions and an effect of the intentional removal of general purpose features.

None of the other graph algorithm DSLs we cited earlier offer feature sets comparable to
GMIR. Moreover, none actively receive contributions and most appear to be one-off works
that have not been iterated on in many years. Considering this and the fact that PGX Al-

2

1.1. Contributions

gorithm is effectively superseded by GMIR, we use GMIR as our target language. To sum-
marize, in this thesis we address the lack of domain-specific abstractions for algorithmic graph
processing.

1.1 Contributions
The primary goal of this thesis is to close the feature gap that arises from the lack of domain-
specific abstractions for algorithmic graph processing. We achieve this by providing new
language constructs for the GMIR DSL in order to be able to express more algorithms. We
arrive at this by providing the following contributions:

• A domain analysis to determine which fundamental concepts are missing and worth
abstracting (Chapter 2). For more information about why we did not abstract certain
concepts, please refer to the future work (Section 10.2).

• Syntax and semantics for abstractions in three subdomains. First summarized in Chap-
ter 3 for a global overview and further refined in individual deep dive chapters (Chap-
ters 5 to 7) in the context of the current state of GMIR (Chapter 4). These are estab-
lished as a result from the domain exploration. During our employment at Oracle, we
submitted the latter two abstractions as U.S. patent applications.

– Fixed-point iteration: a fundamental building block for controlled repetition in
many algorithms. We provide a single new control flow statement that repeats
its body until a predefined number of iterations passed, some arbitrary boolean
condition holds or until none of some configured variables changes anymore.

– Frontier exploration: the core of algorithms that gradually but systematically ex-
plore part of a graph. We model such algorithms by a new frontier data structure
and instructions to expand it and process elements from it. We further allow these
algorithms to concisely extract information from the frontier by observing which
elements pass through it. Example: Dijkstra’s shortest path algorithm [22].

– Community detection: a broad class of algorithms that try to reveal some struc-
ture in unstructured graphs. We specifically focus on algorithms that gradually
group vertices together. We provide means to construct these structured com-
munities in the form of community graphs, a special type of graph that repre-
sents relationships between vertices and their groupings. Example: Leiden algo-
rithm [47].

• An evaluation of the designs on the design dimensions byVoelter [77] and a demonstra-
tion that more algorithms can be expressed in GMIR, partially by lowering to existing
constructs (Chapter 8).

1.2 Design Methodology
DSL design needs to be done systematically. The entire domain of all algorithms that could
ever be expressed is infinite and it is unpredictable what will be relevant in the future. There-
fore, the main deciding factor for including a certain feature is whether or not there exists an
algorithm that uses it.

Other than this, we rely on the seven design dimensions byVoelter [77]. In the evaluation
(Chapter 8), we elaborate on what exactly they are and how they impact the design. Most
importantly, they provide a framework for important areas to consider when designing a
DSL based on a domain exploration.

3

1. INTRODUCTION

Voelter also defines many other guidelines for systematic DSL design. Most applicable
to our scenario are ‘iterative development’ and the ‘co-evolution of concepts and language’.
Iterative development refers to the process where the language is gradually refined from
some initial rough proposal. The co-evolution of concepts and language means that we start
the iterative language design process during the domain analysis.

In the remaining chapters, we discuss related work (Chapter 9) and finally draw the overall
conclusion in Chapter 10 that our proposed extensions to GMIR do indeed result in more
algorithms being expressible.

4

Chapter 2

Initial Domain Exploration

In this chapter, we start from the basics and take a look at a handful of practical algorithms
and analyze their essential behavior. From this, we distill the three primary aspects that we
are interested in abstracting. In that context, we take a look at existing DSLs and determine
their level of support. Seeing that there are no satisfactory solutions out there, we start to
build our own new abstractions. We do not yet cover the intricate details and all trade-offs
of different approaches, continue to Chapters 5 to 7 for that.

2.1 Graphs and Property Graphs

Before we can analyze graph algorithms, we need to establish the definitions of graphs and
property graphs. As terminology varies slightly across literature, we provide our own defi-
nitions as follows which we adhere to throughout the thesis.

A graph G = (V,E) consists of vertices V and edges E, which are both sets. Without
any edges, the graph is a null graph. Edges connect two endpoints, which are vertices. If
the endpoints are the same vertex, the edge is a self-edge. If the edges indicate a direction,
the graph is considered directed and undirected otherwise. The number of edges connected
(incident) to a vertex is its degree, which can be further refined in an in-degree and out-degree
in the context of directed graphs.

A path describes a sequence of edges joining a sequence of vertices. It is simple if no vertex
is included more than once. If it is possible to construct a path in a graph such that the start
and end vertex are the same, the graph is cyclic and acyclic otherwise.

Graphs can have various connectivity properties. If any path can constructed to and from
any other vertex it is strongly connected, or strong. If this is only possible when directionality
is ignored, it is weakly connected or just connected. If all vertices share edges with all other
vertices, the graph is fully connected or complete.

A graph consists of one or more components, sets of vertices that do not share any edges
(i.e., are disjoint). The connectivity properties from the previous paragraph are by extension
also applicable to these components. For example, a graph as a whole may not be connected,
but each of its components is (by definition of a component).

Trees and forests are useful specializations of graphs; both are graphs but with additional
constraints. Trees are connected acyclic graphs. A forest is a set of disjoint trees.

Most algorithms we will be working with operate on property graphs. A property is a key-
value pair of a label and some arbitrary value that can be associated to vertices or edges. In
practice, labels are typically strings and values are scalar values or references to other graph
elements. In Figure 1.1 an example of a small property graph can be seen. Here, the property
amount is attached to the edges and associates a numeric value.

5

2. INITIAL DOMAIN EXPLORATION

B

C

SSH/22
2024-08-09 12:12:04

SSH/22
2024-08-09 12:12:05

SSH/22
2024-08-09 12:12:06

A

D

HTTP
2024-08-09 12:11:34 E

Figure 2.1: A small computer network interaction graph.

2.2 Concrete Practical Use-Cases

To give an impression of the broad applications of graph algorithms, we first take a look at
how they are used in practice. Typically, just a single graph algorithm is not a product by
itself. The combination of various algorithms with the necessary data wiring and further
processing is what makes a product. In the following paragraphs, we describe some high-
level use-cases from various disciplines to show that it is a broad landscape.

Route Planning Perhaps the graph application that people are most familiar with: navi-
gating from A to B. A natural way of representing information about the street map is by
modeling streets as edges and intersections, crossroads, roundabouts and any other infras-
tructure key points as vertices. The roads or edges bear properties, such as distance and typ-
ical throughput across the day to account for differences between peak and off-peak times.
Addresses and in general any place of interest, can be modeled as vertices too. A request
for a route from point A to B can be answered by traversing the graph starting at the vertex
corresponding to point A and following the path that leads to B.

CybersecurityThreatDetection Most software keeps activity logs, often processed in plain
text format. Gathering such information from a system as a whole and representing the in-
formation as a graph allows for easier correlation of events. Consider the example drawn in
Figure 2.1, where vertices represent network-connected machines and edges represent com-
munication events between those. Properties on vertices contain meta-data such as the IP
address and risk flags. Properties on edges contain information such as data, time and the
communication protocol used. If the average vertex out-degree is 2, the out-degree of 3 from
vertex A might signal suspicious behavior, especially because the connections were estab-
lished very closely together in time. Products such as the Oracle SaaS Security Advanced
Detection Platform are capable of performing such analysis.

Money Laundering Detection Banks are also highly interested in revealing patterns in
graphs. By law, most banks are required to perform money laundering detection and pre-
vention. In products such as Oracle Financial Crime and Compliance Studio, bank accounts
are modeled by vertices and transactions as edges. Consider the case from Figure 2.2, where
we want to detect a potentially suspicious relationship between Alice and Dave. Alice trans-
fers some money to Bob, who transfers the same amount to Charlie, who in turn transfers
it to Dave. This may indicate that Alice and Dave are controlled by the same person, while
Bob and Charlie are ‘mules’ who may have fallen victim to becoming intermediaries in the
process.

6

2.3. Analyzing Algorithms

amount: 100
date/time: 2024-09-09 12:22

SimilarAlice

amount: 100
date/time: 2024-09-09 12:35Bob

amount: 100
date/time: 2024-09-09 12:41

Charlie

Dave

Figure 2.2: Suspicious money laundering activity.

A

B

C

D

(a) Before.

A

B

C

D

(b) After convergence.

Figure 2.3: PageRank in action.

2.3 Analyzing Algorithms
In this section, we analyze a select few algorithms to get a general understanding of the
variety of graph algorithms andwhat distinguishes one from the other. We intentionally stay
at surface level here and do not go into more details. There are also many more algorithms
each with their unique behavior. In the next chapter (Chapter 2), we will spendmore on this
and go into more detail.

2.3.1 PageRank
One of the most well-known graph algorithms is Google’s PageRank [14, 55]. The algorithm
basically considers the entirety of the web as a graph where vertices are the pages and edges
the hyperlinks between those. The goal is to associate each vertex (web page) with an ap-
propriate rank value that corresponds to its global popularity.

Initially, all vertices get a uniform rank value (Figure 2.3a). Then, each page linking to
another gives up a small fraction of its rank value to the link destination. This process needs
to be repeated several times to propagate the values until pages converge on their rank values
(Figure 2.3b). While theoretically the rank values become exactly stable in the limit, we
usually cut off the process once the values converge below some predetermined threshold.
Even though this results in the ranking being an approximation, it is sufficient in practice.
Additionally, to prevent edge cases where convergence does not occur fast enough, we may
limit the amount of times the rank value is recomputed.

We can characterize this algorithm by its iterative approximate convergence: the algorithm
modifies vertex properties and is reapplied to the same graph, but terminates when a suffi-
ciently approximate convergence is established. Another key property of this algorithm is
that in each iteration only the previous rank value is used to calculate the next, which is more
generally known as a ‘memoryless’ or Markov property, found in many other algorithms.
Keeping track of Normally, this takes some additional bookkeeping logic: at the end of one
round of computation, the previous values have to be discarded, the new values become the
next previous values and room has to be made for the new values.

7

2. INITIAL DOMAIN EXPLORATION

Figure 2.4: Two weakly connected components.

2

3
1

0

(a) Initial assignment.

1

1
0

0

(b) After first iteration.

0

0
0

0

(c) Convergence.

Figure 2.5: Propagation of the WCC component ID in action.

In Listing 1.1, we showed what the PageRank algorithm implementation looks like in
classic GMIR, adapted from Boukham et al. [11]. Core to the implementation is the do-while
loop, guarded by two conditions: the convergence condition and an iteration safeguard limit.
Throughout the algorithm a temporary property newRank is used, which is only internal to the
algorithm. It is used in combination with the builtin function swapVertexDoubleProperties
which is assumed to be implemented by the runtime platform. The two key inefficiencies in
this code are the relative verbosity of the temporary property and the suboptimal choice of
the swapping builtin. Ideally when swapping, we want to forget about newRank as soon as it
is swapped into rank, but that cannot be expressed, causing the memory to remain allocated.

2.3.2 Weakly Connected Components – Deterministic Variant

Another conceptually much simpler algorithm is the calculation of weakly connected com-
ponents. This algorithm assigns common identifiers to vertices that can reach each other,
ignoring edge directions. In Figure 2.4 a graph with two weakly connected components is
drawn. While visually it is obvious that there are two components, algorithmically it is not.

One approach to solving this problem is by initializing all vertices with an arbitrary but
unique value (Figure 2.5a). Each vertex then iteratively propagates theminimumvalue from
its neighborhood, again, ignoring edge directions (Figure 2.5b). Since everybody always
takes the minimum, all vertices belonging to the same weakly connected components recog-
nize the same value at some point. This may take some time, because worst-case the value
has to propagate along the entire span of the graph. As soon as no vertex finds any neighbor
with a lower value, the algorithm terminates (Figure 2.5c).

This algorithm also reaches converges at some point similar to PageRank, but with inte-
gral values instead. Instead of an approximation, it reaches exact convergence on the condi-
tion that no property value changes anymore. So, we can characterize this algorithm by its
exactly stable convergence, contrasting to PageRank.

8

2.3. Analyzing Algorithms

s

t

(a) Breadth-first search.

s

t

(b) Depth-first search.

Figure 2.6: Different approaches to solving s–t-connectivity.

2.3.3 General Search in Breadth-First and Depth-First Order
Breadth-first search (BFS) and depth-first search (DFS) may very well be among the most
well-known graph algorithms. Both are essentially approaches to the general search or s–t-
connectivity problem. We primarily care about finding some vertex, an additionally may care
about how. This is where BFS and DFS differentiate. Starting from an arbitrary vertex, BFS
discovers neighbors and only visits them when all other earlier pending vertices have been
visited. DFS on the other hand visits neighbors eagerly. Both also keep track ofwhich vertices
have already been visited. This is necessary since we are dealing with arbitrary graphs that
may contain cycles. By keeping track we can simply ignore vertices that would lead to a cycle
when we are about to add them.

Either way, these building blocks cover the concept of exploring a graph from a single
starting node in different ways. The different iteration orders are demonstrated in Figure 2.6.
The key takeaway here is that for such a general problem, the iteration order does in fact not
matter. Ideally, if we were to write this down as an algorithm, we would not have to make
a choice. While in practice a choice is always made, it is typically done by the programmer
and not left up to the compiler.

2.3.4 Directed Search with Dijkstra
Knowing the answer to the s–t-connectivity of vertices s and t is often not a satisfactory an-
swer to practical queries. Oftenwe have some information available aboutweights associated
with edges. Based on this information, we then may want to optimize taking the path from s
to t such that the sum of weights associated with the traversed edges is minimized. We refer
to this as the general single-source shortest path (SSSP) problem.

The most well-known solution to this problem is Dijkstra’s algorithm [22]. Instead of
using DFS or BFS to traverse the graph, we intelligently choose which vertex to proceed
with based on a heuristic. Specifically, the vertex with the shortest distance so far is selected.
When visiting a vertex, we consider the direct outgoing neighborhood and ensure it is up-to-
date with the fact that there may be a shorter path through the current vertex. This process
effectively starts with an underestimation and slowly relaxes the solution until it becomes
exact.

Key to Dijkstra’s way of efficiently finding the shortest path is that the order occurs based
on dynamic weights associated to vertices. Generalized, this is a priority-based selection
scheme that functions as a generic algorithm building block just as DFS and BFS do. In
fact, if the distances between vertices are all equal, Dijkstra’s order is equivalent to BFS. In
Figure 2.7, an intermediate state and the final found shortest path are drawn. Notice that the
tentative distance of the vertex having distance 9 in Figure 2.7a is relaxed to 7 in Figure 2.7b.

Both Dijkstra’s algorithm and the earlier discussed s–t-connectivity problem gradually
explore the graph. While they differ in the order in which this occurs, they share two com-
mon patterns. Primarily, all have a notion of vertices pending to be processed, to which we

9

2. INITIAL DOMAIN EXPLORATION

1s
0

t
∞

2
8

1

5
3

2

1
9

∞

(a) Second iteration. Tentative distances are
greyed, undiscovered vertices dashed.

1s
0

t
9

2
8

1

5
3

2

1
7

8

(b) Shortest path found with distance 9 to t. Fat
edges indicate the shortest path.

Figure 2.7: Dijkstra’s algorithm in action.

refer as the frontier. In BFS and DFS vertices are put into the frontier and retrieved by a tem-
poral order, whereas in Dijkstra’s algorithm they are retrieved based on an associated ‘best’
value. More similarity can be seen in how all prevent a visited vertex from being visited
again. This is achieved by rejecting such vertices from being placed into the frontier.

1 procedure boolean dijkstra(
2 in graph G,
3 in property<edge(G), double> weight,
4 in vertex(G) root,
5 in vertex(G) dest,
6 out property<vertex(G), vertex(G)> parent,
7 out property<vertex(G), edge(G)> parentEdge
8) {
9 property<vertex(G), boolean> reached;

10 map<vertex(G), double> reachable;
11 bool found;
12
13 foreach ((v): vertices(G)) (true) {
14 v.parent = none;
15 v.parentEdge = none;
16 v.reached = false;
17 }
18
19 reachable[root] = 0.0;
20 found = false;
21 while (!found && reachable.size() > 0) {
22 vertex(G) next = reachable.getKeyForMinValue();
23 if (next == dest) {
24 found = true;
25 } else {
26 v.reached = true;
27 double dist = reachable[v];
28 reachable.remove(v);
29 foreach (() -[e]-> (w): neighbors(G, v)) (!v.reached) {
30 if (w !in reachable || reachable[w] > dist + e.weight) {
31 reachable[w] = dist + e.weight;
32 w.parent = v;
33 w.parentEdge = e;
34 }
35 }
36 }
37 }
38 }

Listing 2.1: Dijkstra’s algorithm in classic pseudo-GMIR

In Listing 2.1 we show what an implementation of Dijkstra’s algorithm could look like in
classic GMIR. The data structures and access patterns that are used do not exist, they are
merely copied from a similar implementation in Green-Marl. This implementation uses the

10

2.3. Analyzing Algorithms

1

3

4
5

2

6

7

1

3

6
3

1

4

7

3

3

4
1

3

4

6

3

3

4
3

3

4

4

Figure 2.8: Label propagation in action.

1

2
1 1

4

3

2

1

4
2

5
3 8

2

3

6

7

8

3

4

12

26

Figure 2.9: Result of running the Louvain algorithm.

general-purpose map data structure to emulate a priority queue. A vertex property is insuf-
ficient because we need to retrieve the vertex for which the value is the smallest. There exists
no operator for that.

2.3.5 Detecting Community Structures in Unstructured Graphs

Another different but common algorithmic task is detecting structure in unstructured data.
Doing this on graphs may reveal hidden structures of interest. While for small graphs this is
a more or less trivial task for a human, it is nontrivial to automate this and scale it to graphs
with millions of vertices and billions of edges. Earlier we have seen a weakly-connected
components (WCC) algorithm that slowly propagated information about membership to a
particular graph component. While this reveals the structure of weakly-connected compo-
nents, that structure is not terribly useful. We are interested in finding structure on a much
more fine-grained level, dependent on much more information hidden in the graph.

With a seemingly minor modification we can extend WCC to do so. Instead of selecting
the minimal value of all neighbors, we instead select the most frequent value. This is better
known as the label propagation algorithm (LPA) [60], which asynchronously propagates
labels, or communities, and terminates when the assignment stabilizes. In Figure 2.8 a po-
tential iteration of such an algorithm can be seen. Note that due to the asynchrony the result
is not deterministic and the number of iterations required for convergence is neither.

From now on, we will refer to any form of vertex and/or edge grouping based on some
similarity, relatedness or membership metric as communities. There exists no universally
agreed upon definition of what communities are as most literature relies on the intuitive
definition of what a community within a graph is.

While LPA was an innovative algorithm at its time in 2007, it only took about a year for
Blondel et al. [10] to publish their highly influential Louvain algorithm. Although this algo-
rithm attempts to solve the same problem, it uses a significantly different approach. Instead
of continuous and asynchronously propagating some information, the Louvainmethod grad-
ually builds communities by joining previous ones together, starting off with each vertex
being a unique community. It does this by using an earlier proposed metric called modular-
ity [54], a single number in range [´1, 1] that describes how strongly communities are sepa-
rated relative to an average random assignment. This metric considers relative importance
of relations between edges too, based on weight values on the edges between.

Optimizing for modularity is not as simple as selecting the neighbor with the best value.
Instead, selection is done by checking all neighbors and determining whether joining their

11

2. INITIAL DOMAIN EXPLORATION

community would result in a positive modularity increase and then picking the best one. If
for all vertices none does, the algorithm terminates.

We characterize these community detection algorithms by their need tomodify the graph.
This is done with the intention of superimposing structure on an underlying unstructured
graph. Some do this by gradually converging to a stable assignment, while others follow
a strict hierarchical approach. The hierarchical algorithms specifically can be subdivided
further into agglomerative and divisive algorithms. The Louvain method is agglomerative,
in the sense that each in each iteration it only causes agglomeration of communities. Divisive
algorithms, those which work in the opposite way, cutting global community into smaller
and smaller ones, exist too but are not covered in this thesis.

12

Chapter 3

Design Overview

This chapter serves as a summary of all our work without elaborate justifications for why cer-
tain choices were made the way they were. Before proposing the solutions, we first explain
our general design procedure that we applied across all areas. Following this, we reiterate
and elaborate on key insights from the domain exploration from the previous chapter, re-
volving around a few important algorithms. Finally, we demonstrate our proposed solution
with some concrete code snippets and accompanying explanation.

In the following chapters, we go into more detail. Starting with Chapter 4, we describe
the current state of GMIR. Then in Chapters 5 to 7 we cover each of the three key domain
areas in more detail.

As mentioned briefly in the introduction, we chose to extend GMIR primarily due to its
modularity and relative maturity. Alternatives we considered are classic Green-Marl [35]
and Java-based PGX Algorithm [58]. Both are more mature and used every day in produc-
tion systems, while GMIR is more experimental. Green-Marl has not received any academic
nor much commercial attention besides regular maintenance and gradual introduction of
minor features. In fact, it has effectively been phased out in favor of PGX Algorithm which
caters towards programmers more familiar with Java’s syntax. GMIR on the other hand was
only introduced recently (2022) and is actively maintained, experimentedwith and has been
extended with new backends, adapting to changing business needs.

3.1 Design Approach & Guidelines
Designing a DSL needs to be done systematically. Our goals are ambitious and try to cover
different large independent domain areas. At first glance, the sheer amount of algorithms in
existence and their subtle variations seems overwhelming. There can be a gut feeling that cer-
tain topics are related, but this needs to be formalized and most importantly communicated
clearly. For this reason we adhere to principles set forth by Voelter [77], as we mentioned in
the introduction.

The work we present in this thesis is the final version, even though many iterations have
gone by before we reached this point. We achieved this by doing it in the following way. Be-
fore all, we startedwith the overall domain analysis, understanding the high-level differences
of various algorithms. Having discussed and agreed upon this with the team, we started a
design cycle for each of the identified aspects. First, we start analyzing the domain by discov-
ering many algorithms that we intend to cover. Based on the original publications, public
and internal implementations we inform about the common patterns. Then, we make an
initial attempt at constructing DSL syntax to express these patterns concisely and construct
the corresponding semantics. Some aspects rely on the conceptual presence of domain spe-
cific data structures. While these may be lowered to primitive data structures in practice,
we simultaneously have to develop the interface of the conceptual data structures for some

13

3. DESIGN OVERVIEW

aspects. From this point, we gather feedback from the team and iterate. Each iteration we
express several algorithms in the proposed design to verify its expressiveness.

While Voelter’s book covers DSL design in general, we are working with a commercial
solution that has some additional requirements. In summary, this project was also under the
following additional constraints, in no particular order:

• Although we should focus on increasing expressiveness, we should not necessarily be
discouraged from using more general-purpose constructs in internal representations.
However, we should prevent or certainly discourage users fromusing this in algorithms
directly. That is more the responsibility of a higher-level language.

• One exception where general-purpose collection data structures do not have to be dis-
couraged is in the algorithm parameters. This is more efficient for integration reasons
with other products. It can also be used to intentionally hide certain implementation
details of an algorithm. However, it is usually preferred to use more generic input and
more specific output parameters.

• GMIR is an IR and is hence not meant to be user-facing. Although user-friendliness is
not the first priority, we should not needlessly sacrifice readability. Writability however
may be compromised for faster parsing.

• Existing algorithms cannot be broken. Backward compatibility must be guaranteed.

• New constructs should aim to conform to the style of existing constructs.

• Newly introduced normal forms must be checked for compatibility with existing nor-
mal forms and vice-versa.

• New features must retain the composable nature of the language, this relates to Voel-
ter’s language modularity dimension.

3.2 Introducing New Abstractions in GMIR
Having seen and analyzed various algorithms in more detail, we can go back to the drawing
board. In summary, there are four major areas that we want to abstract into new language
constructs: fixed-point iteration, frontier exploration, community detection and stochasticity.
In the following subsections we discuss each aspect in more detail. We stay at an informal
level and do not yet cover the full domain analysis, design considerations, edge cases and
potential further improvements. For the full details of each aspect, refer to Chapters 5 to 7.

3.2.1 Fixed-Point Iteration

1 double sumValue;
2 fix (rank) [int[0..maxIter) i] {
3 foreach ((v): vertices(G)) (true) {
4 double inSum = sum (() <- (w): neighbors(G, v)) (true) {
5 let long outDeg = outDegree(G, w);
6 in current(w.rank) / (double)outDeg
7 };
8 deferred(v.rank) = x + 0.85d * inSum;
9 }

10 sumValue =
11 sum((v): vertices(G)) (true) { |current(v.rank) - deferred(v.rank)| };
12 } until (sumValue < epsilon)

Listing 3.1: Main PageRank loop using the fix operator.

14

3.2. Introducing New Abstractions in GMIR

In Listing 3.1 we introduce a new fix operator by example. This is a snippet from the
PageRank algorithm earlier seen in Listing 1.1. The main body of the algorithm is rewritten
here into a new construct, but expresses the same meaning. In fact, it is possible to construct
a transformation the produces the same code as the original.

Bounds on the number of iterations are specified as [int[0..maxIter) i], where all parts
are user-defined. The type must be integral, i.e. int or long and the interval be left-bounded,
i.e., either [¨,8) or [¨, ¨). While it is possible to hard code the iteration limit by providing a
literal value instead of maxIter, it is best practice tomake at least the upper limit an algorithm
parameter.

Note that the convergence condition is expressed significantly differently. The intention
is to converge when the rank value becomes more-or-less stable, which we now express as a
fully separate expression. For the purposes of introducing new abstractions, we prefer clear
expressive algorithms and assume optimizations are performed by the compiler.

Notice that we calculate the variables necessary for the convergence condition in the body
already. Since fix is a core block, so has to be the expression in until. While this may write
slightly unnaturally, this is fine because GMIR is not intended to be written by hand.

For the full details, refer to Chapter 5.

3.2.2 Frontier Exploration

1 found = false;
2 min frontier<vertex(G), double> distance;
3 init distance (src, priority: 0.0);
4 visit distance ((v)) [priority: double vDistance] terminate if (v == dst) {
5 found = true;
6 } process {
7 foreach (() -[e]-> (w): neighbors(G, v)) {
8 double eWeight = e.weight;
9 expand distance (w, priority: vDistance + eWeight);

10 }
11 }

Listing 3.2: Dijkstra’s algorithm using the visit block.

To express algorithms that perform a frontier exploration, we introduce a new block state-
ment visit as demonstrated in Listing 3.2. This block takes the frontier to be visited, a pattern
bywhich to extract elements from it, context variables, an optional termination condition and
a mandatory body from which the frontier can be further expanded.

We initialize the exploration by first declaring which type of elements we want to pro-
cess and by what policy. In this example, a min-weighted vertex frontier is selected. Other
variations are possible to account for different usage patterns.

Once an initial set of elements has been placed into the frontier, the visit block and its
content will be executed for each element leaving the frontier. First, if provided, the termi-
nation condition is checked. If it holds, no further action is taken and the optional block
associated with it gets executed. In this Dijkstra implementation, we use that to record the
fact that we terminated early due to finding the destination. Next, if present, a block of arbi-
trary processing is executed. Finally, expansion happens similar to the initialization.

For more in-depth details, refer to Chapter 6.

3.2.3 Community Detection
To express algorithms that perform community detection, we introduce a new block state-
ment agglomerate, as extensively demonstrated based on the Louvain method in Listing 3.3.
This block captures all the operations related to grouping vertices into communities. We
need to step through this code snippet to understand what is going on.

15

3. DESIGN OVERVIEW

1 procedure void louvain(
2 in directed graph G, in property<edge(G), double> weight, in int maxIter, in int nbrPass, in double tol,
3 out property<vertex(G), long> com
4) {
5 community graph(G) CG;
6 community property<vertex(CG), double> degIn;
7 community property<vertex(CG), double> degOut;
8 community property<edge(CG), double> cgWeight;
9 double m; double modularity; double overall_mod_delta;

10
11 m = sum (() -[e]-> (): edges(G)) (true) { let double eWeight = e.weight; in eWeight };
12 project communities of CG into com;
13
14 build initial (CG as G => Aggr, weight -> cgWeight) {
15 foreach ((v): vertices(G)) (true) {
16 vertex(Aggr) c = community of v in Aggr;
17 // calculate selfSum, inSum and outSum by aggregation over neighbors
18 c.containedWeight = /* selfSum */;
19 c.degIn = /* inSum */;
20 c.degOut = /* outSum */;
21 }
22 }
23
24 modularity = globalModularity(G, weight, m); // implemented in a helper procedure
25 fix (modularity) [int[0..nbrPass) p] {
26 agglomerate (CG as Base => Aggr) arrange {
27 fix (inplace Aggr) [int[0..maxIter) i] {
28 for ((baseVertex): vertices(Base)) (true) { // must be sequential
29 vertex(Aggr) currentCommunity;
30 vertex(Aggr) bestCommunity;
31 double bestModularityDelta;
32 // (snip: more declarations)
33 foreach (() - (neighbor): neighbors(Base, baseVertex)) (true)
34 group by (vertex(Aggr) candidateCommunity = community of neighbor in Aggr;) (
35 let bool candidateIsCurrent = verticesEqual(Aggr, candidateCommunity, currentCommunity);
36 in !candidateIsCurrent
37) {
38 // (snip: local helper declarations)
39 simulate (Base => Aggr, move baseVertex from currentCommunity to candidateCommunity) {
40 foreach (() -[eb]- (): neighbors(Base, baseVertex)) (true) case { /* (snip: update locals) */ }
41 }
42 bestModularityDelta <bestCommunity> max=
43 (/* snip: modularity delta formula */) <candidateCommunity>;
44 }
45
46 deferred(modularity) = deferred(modularity) + bestModularityDelta;
47
48 execute (Base => Aggr, move baseVertex from currentCommunity to bestCommunity) {
49 // (snip: side-effects)
50 }
51 }
52 }
53 } aggregate (() -[baseInterEdge]-> (): edges(Base)) into (() -[newCommunityEdge]-> (): edges(Aggr)) {
54 double baseCgWeight = baseInterEdge.cgWeight;
55 newCommunityEdge.cgWeight += baseCgWeight;
56 }
57
58 overall_mod_delta = |current(modularity) - deferred(modularity)|;
59 } until (overall_mod_delta < tol)
60 }

Listing 3.3: The Louvain method using the agglomerate block.

Looking at the signature (1–4), we receive as in-params (2) a weight vertex property and

16

3.2. Introducing New Abstractions in GMIR

several configuration parameters to constrain the algorithm runtime and accuracy. As out-
param (3), we see a single out vertex property, intended to be populated such that vertices
with equal values belong to the same community.

Within the algorithm, we first declare the community data structures (5–8) and set up
some helper variables (9, 11). The takeaway here is that we can locally declare a new instance
of a community graph and let it be bound to the underlying graph G (5). On this community
graphwedeclare properties (6, 7)which are only visible to elements of the community graph
and do not back-propagate to the underlying graph.

Before we can start arranging vertices into communities, the community graph needs to
be initialized once to create vertices, edges and populate the community properties (14–22).
As we are performing agglomerative community detection, each vertex will initially be as-
signed to a unique singleton community. This initial community is represented as a vertex
in the graph that we name Aggr and is retrieved using the community of expression. On this
representative community vertex, we initialize the relevant vertex-bound community prop-
erties (18–20). The edge-bound community property cgWeight is initialized by a shorthand
notation (weight -> cgWeight) which indicates a one-to-one copy of values.

Now we arrive at the main algorithm body (24–59) which is wrapped in a fix block
(25) which repeats until the modularity variable, Louvain’s main objective, converges. The
agglomerate block itself (26–56) is split into twoparts: arrangement and aggregation (aggregate
).

In the arrangement block (27–52), the algorithm attempts to find a vertex-to-community
association that is optimal and stable. This is what the inner fix block signifies: inplace Aggr
means to observe the Aggr graph and terminate the repetition if none of its vertices–which
represent communities–are modified.

Mildly nested, we finally arrive at the logic that actually optimizes the community assign-
ment (28–50). Summarizing from Section 2.3.5, Louvain sequentially considers each vertex
(28) and determines which neighbor’s community (33–37) is most optimal to be associated
with. The quality of such a move is determined by a simulated or dry-run move, while ob-
serving side effects (39–41). After all neighbors are considered, we actually move the vertex
according to what is best (48) and apply the relevant side-effects to the community vertices
(49, omitted).

Finally, once a stable arrangement has been reached, we enter the aggregate block (53–
55). This creates the new community graph which represents the aggregated form of the
vertex-to-community assignment created during the arrangement phase. Vertices belonging
to the same community are represented by a single vertex, which are effectively the same as
the vertices from the graph we named Aggr. Edges between communities, however, are only
constructed during the aggregation. The pattern (53) and body (54, 55) of the aggregate
block essentially define the rule to reduce one or more edges from the Base graph into a
single edge in the Aggregate graph.

Once the agglomerate block ends, the community graph CG is ready to be refined in a
second pass. This happens whenever the modularity has not converged enough. For further
details and more elaborate reasoning for the design choices, please refer to Chapter 7.

17

Chapter 4

Current State of GMIR

In this chapter, we provide the necessary background information about the GMIR lan-
guage [11] in order to contextualize the content of the following chapters. We first cover
a more in-depth history of GMIR, followed by the existing syntax and static semantics, in-
cluding conventions used in other chapters. This prepares for Chapters 5 to 7, where we
gradually build up the language concepts for the three key domain areas.

4.1 Brief History
More than a decade before GMIR was even conceptualized, Hong et al. [35] published the
Green-Marl DSLwhich had already been in development for several years at that time. Mean-
while, the language continued to evolve as it is part of a commercial product [12, 37]. Only
in 2022, Boukham et al. [11] introduced GMIR to simplify and increase reusability of the
compilation pipeline. The classic Green-Marl language maps to it, as does the more recently
introduced PGX Algorithm [58], a Java-based DSL. Effectively, GMIR serves as the common
ground for these languages, but with support for other front-end languages in the future too.
Most importantly, it enables compilation of all of these languages to all the backends that the
GMIR compiler supports.

What sets GMIR apart from Green-Marl is not only that Green-Marl is intended to be a
general-purpose language and GMIR an IR. Modularity and composability are its primary
selling points, providing a solid basis which can be adapted to various needs. This allows
the coexistence of multiple lean backends that pick and choose from optimizations, normal
forms and lowerings for their need. Similarly, this leaves room for flexibility in the front-ends:
new language features can be added without breaking backwards compatibility, provided a
lowering transformation is implemented. However, as soon as a new backend is added or an
existing backend gains first-class support for such a new feature, the lowering can be opted
out of and compiled natively.

4.2 Syntax
In Figure 4.1, the full GMIR syntax is summarized in Backus–Naur form (BNF). For complete
explanation of all constructs, refer to the original paper [11]. It sets forth some conventions
and guidelines by the way it is designed. As stated in the design principles above, we aim to
adhere to these. The following is a selection of these ideas:

• Separation between core and graph operations. Generally, graph operations are syn-
tactically invalid to use as core operations and vice versa. Consider the foreach loop
for example, this is one of the statements that is necessary to use to be able to enter a

19

4. CURRENT STATE OF GMIR

p = td td∗
td = procedure rt id (pd∗) b
pd = pt id
pt = a t
a = in | out | in´ out
t = int | long | float | double | number

| bool | string
m = mutable
rt = void | t
ft = pt∗ Ñ rt
b = t vd∗ s∗ r u

vd = t id ;
s = if (e) b else b

| while (e) b | do b while (e) ;
| lr = e ;
| lr = tr (e∗) ; | tr (e∗) ;

r = return e ; | return; | ε
e = i | l | d | s

| e + e | e ´ e | e ∗ e | e / e | e % e | e ∗∗ e | ´ e | |e|
| (t) e
| e ă e | e ď e | e ą e | e ě e | e = e | e ‰ e
| true | false | e ^ e | e _ e | e | ␣ e
| exp (e) | log2 (e) | ln (e)
| lr

lr = [a param t] id | [m local t] id | id
tr = [procedure ft] id | [builtin ft] id | id
id names
i integer literals
l long integer literals
d double literals
s string literals

(a) Imperative core constructs.

t = . . .
| graph | directed graph | undirected graph
| et
| property ă et , t ą
| set ă et ą | sequence ă et ą
| order ă et ą | stack ă et ą
| queue ă et ą

et = vertex (id) | edge (id)
m = . . . | immutable
b = . . . | t vd∗ am∗ s∗ fm∗ r u

am = allocate lr ;
fm = free lr ;
s = . . . | pr = e ; | lr = ge ; | gi
pr = [a param t] id.id | [m local t] id.id | id.id
ge = pr

| [t] op ce t le u | op ce t le u
op = sum | product |max |min | average | any | all
ce = (ee) (le)

| (ee) (le) group by (ld) (le)
ee = id : vertices (id) | id id

ÝÑ id : edges (id)

| _ id
ÝÑ id : neighbors (id , id)

| _ id
ÐÝ id : neighbors (id , id)

le = let ld∗ in e
ld = t id = e ; | t id = tr (e∗); | t id = ge ;
gi = foreach ce t ld∗ is∗ u

| inBFS ce t ld∗ is∗ u inReverse (le) t ld∗ is∗ u
is = pr = e ; | pr aop e ; | lr aop e ; | gi

| if (le) t ld∗ is∗ u else t ld∗ is∗ u
aop = + = | ∗ = |min = |max = | ^ = | _ =
td = . . .

| iterator id (pd∗) t gi u
| aggregator rt id (pd∗) t return ge; u

tr = . . . | [iterator ft] id | [aggregator ft] id

(b) Graph constructs.

Figure 4.1: Modernized syntax of GMIR. Adapted from [11].

graph context. This is partially a side effect of the modularity of the language, but it is
intentionally achieved by using distinct syntax which is lexically similar.

• Syntactic enforcement of the placement of declarations at the start of a block. While
in general-purpose languages (GPLs) this may be considered a code smell, it signif-
icantly simplifies compilation. The meaning of a program does not change, it is just
constrained to one specific form of expressing declarations.

• Syntactic enforcement of memory consistency models. Core constructs are by default
accessed in sequential memory consistency, but the body of a foreach loop is parallel
in nature, as it is not a core construct, but graph-specific. It is syntactically impossible
to accidentally mix sequential with parallel memory consistency.

4.3 Static Semantics
The GMIR paper does not provide any rules for static semantics, so we use the commercial
implementation as the reference. The implementation is done in Statix [3, 68]. which is part
of Spoofax. The basic Statix specification is about 1,200 source lines of code (SLOC), even

20

4.3. Static Semantics

1 procedure double example(
2 in graph G,
3 in vertex(G) v,
4 in property<vertex(G), double> myProp
5) {
6 double value;
7 value = v.myProp;
8 return value;
9 }

(a) Some arbitrary GMIR code

1

0

P

example : procedure, [in, . . .],
[GRAPH(g), . . .],doubletld

(g), Ggraph g

T

G : in param, GRAPH(g)

local

myProp : in param,

PROPERTY(VERTEX(g)),double)

local

v : in param,

GRAPH_ELEM(VERTEX(g))

local

2

P

(b) Corresponding scope graph

Figure 4.2: Some code and its corresponding scope graph

though GMIR is not a complex language. The features we introduce in this thesis have also
been implemented and consist of almost 1,300 SLOC, more than doubling the implementa-
tion size. Unfortunately, this is too much to cover in any paper, thesis or appendix. That
means we have to select and condense the semantics to some key aspects and use concise
notation. In the remainder of this section, we briefly describe some key concepts of Statix
specifications, the notation we use and list some key rules that we refer to in the other topic
sections.

4.3.1 Statix Specifications

Fundamentally, Statix is a constraint solver for graph representations of programs. It has
a few convenience features, but remains a relatively low-level and verbose language. How
exactly this graph is constructed and queried and how the constraints are composed is what
a Statix specification describes.

In Figure 4.2, a small program with its corresponding scope graph is shown. Circles
denote scopes, in this case 0 is the global scope, 1 is the scope for the procedure as a whole
and 2 the scope of the statements within the procedure. A special scope g represents a graph
instance for the G parameter. Referred to in text, they are prefixed with #.

Filled arrowhead edges, P and T , represent hierarchical relationships between scopes.
In our context, P indicates the parent scope and T the scope in which a type was declared
(used for g). Notice thatweuse scopes for a unifying representation of twodifferent concepts:
lexical scope and type information. Because of that, we need to distinguish edges by labels.

Box-head edges, graph and local , represent a datum declared on some scope. For example,
#1 local G : in param, GRAPH(g) states that a local declaration with key G is associated to scope
#1 with additional information about the kind (in param) and computed type (GRAPH(g)).

Finally, harpoon-shaped edges () indicate scope indirection, essentially the resolution
of a scope ‘pointer’. In the example, these edges are inserted to represent the fact that all other
datums reference scope #g, either directly or somewhere nested in the data.

21

4. CURRENT STATE OF GMIR

1 signature
2 sorts TYPE
3 constructors DOUBLE : TYPE
4
5 typeOfExpr : scope * GMIR-Expr -> TYPE
6 typeOfExpr(_, DoubleLit(_)) = DOUBLE().
7 typeOfExpr(s, Mul(e1, e2)) = DOUBLE() :-
8 typeOfExpr(s, e1) == DOUBLE(),
9 typeOfExpr(s, e2) == DOUBLE().

10
11 stmtOk : scope * GMIR-Stmt
12 stmtOk(s, GMIR-Assign(ref, e)) :-
13 {refK refT} infoOfLocalRef(s, ref)
14 == LOCAL_INFO(refK, refT),
15 try { accessOk(refK, WRITE()) },
16 {eT} eT == typeOfExpr(s, e),
17 try { eT == refT }.

(a) Statix specification, without syntax signatures

Expressions Γ $ e : t

$ d : double

Γ $ e1 : double Γ $ e2 : double
Γ $ e1 ∗ e2 : double

Statements Γ $ s OK

Γ $ lr : T Γ $ e : T
Γ $ lr = e; OK

(b) Rewritten as inference rules

Figure 4.3: Statix rules and the corresponding inference rules

4.3.2 Inference Rule Notation
Since the native Statix notation is too verbose for this thesis, we use some shorthand nota-
tion partially inspired by the original paper [3], modified to account for some GMIR-specific
convenience features. An introductory example is provided in Figure 4.3, where some Statix
rules are compared to their counterparts in the notation of inference rules. We briefly de-
scribe each element seen in the example and describe additional constructs that are not
demonstrated.

The inference rule notation is less specific than the actual Statix implementation. The
actual implementation has many additional constraints that are much stricter. For example,
enforcement of not writing to read-only (in) variables. We describe only a minimal set of
rules that are primarily intended to support understanding the syntax.

Additionally, the inference rule notation does not use scope graphs. We only use a simple
context Γ to store name-type pairs.

• Expressions indicates that the rules following are related to expressions and that the
conclusions are shaped like Γ $ e : t. This reads “in the context Γ, the expression e
is typed as t. Similarly, so does Statements for statements. Since statements do not
have an associated result type, the inference rules only describe which statements are
accepted (i.e., OK). This corresponds tho the Statix rule signatures, such as stmtOk :
scope * GMIR-Stmt.

• Italic text style style refers to a symbol from the BNF grammar. An optional subscript
may be used to distinguish different instances. For example, e1 and e2 refer to two
distinct instances of an expression (e) symbol. Similarly, bold text refers to keywords
from the grammar.

• BNF symbols with a Kleene star (such as ld∗) are not written as such, but with an over-
line instead: lr. Premises containing ranged symbols without a corresponding conclu-
sion that supports a ranged match are matched element-by-element. In other words,
Γ $ e : t ” @

ePe
e : t. More specific sequence matches are written in cons notation, such as

[x|x] tomatch x on the head element and x as the tail. [x] is used for singleton sequences,
a shorthand for [x|[]], where [] is the empty sequence.

22

4.3. Static Semantics

Classifications t NUMERIC t CORE

int NUMERIC double NUMERIC

t NUMERIC
t CORE bool CORE string CORE

Expressions Γ $ e : t

$ i : int $ l : long $ d : double $ s : string $ true : bool

$ false : bool
Γ $ e1 : t Γ $ e2 : t t NUMERIC

Γ $ e1 + e2 : t

Γ $ e1 : t Γ $ e2 : t t NUMERIC
Γ $ e1 ´ e2 : t

(id : t) P Γ
Γ $ id : t

Blocks Γ, t $ b OK

ΓY t(id : t)u, t $ s OK
Γ, t $ tt id ; su OK

ΓY t(id : t)u, t $ s OK
Γ, void $ tt id ; s return;u OK

∆ = ΓY t(id : t)u ∆, t $ s OK ∆ $ e : t
Γ, t $ tt id ; s return e;u OK

Statements Γ, t $ s OK

Γ $ e : bool Γ, t $ bT OK Γ, t $ bF OK
Γ, t $ if (e) bT else bF OK

Γ $ e : bool Γ, t $ b OK
Γ, t $ do b while (e); OK

Γ $ lr : T Γ $ e : T
Γ, _ $ lr = e; OK

Figure 4.4: Key static semantics rules for core constructs

4.3.3 Key Static Semantics Rules

Wedescribe various important static semantics of GMIR necessary to understand the context
in which we will introduce new features later. For brevity sake, we only state and explain
some essential rules.

Core Constructs

Figure 4.4 defines some rules related to the core constructs. Numeric literals, strings and
booleans are typed directly. Binary arithmetic operations such as + and ´ must have left
(e1) and right (e2) expressions typed equivalently to a numeric type. Local references (lr)
are typed as the type associated to the declaration that is resolved in the current scope.

Blocks are typed in three different ways. Without a return statement or with a void-

23

4. CURRENT STATE OF GMIR

Expressions Γ $ ge : t ΓÑ ∆ $ ee OK op $ t : t

ΓÑ ∆ $ ee OK ∆ $ lefilter : bool ∆ $ lebody : tbody op $ tbody : taggr

Γ $ op (ee) (lefilter) tlebodyu : taggr

Γ $ idG : graph
ΓÑ ΓY t(idv : vertex(idG))u $ idv : vertices(idG) OK

t NUMERIC
sum $ t : t

t NUMERIC
average $ t : double any $ bool : bool

Let Expressions Γ $ le : t ΓÑ ∆ $ ld OK

ΓÑ ∆ $ ld OK ∆ $ e : t
Γ $ let ld in e : t

Γ $ ge : t ΓY t(id : t)u Ñ ∆ $ ld OK
ΓÑ ∆ $ [t id = ge; | ld] OK ΓÑ Γ $ [] OK

Statements and Iterators Γ, t $ s OK Γ $ gi OK Γ $ is OK

Γ $ gi OK
Γ, _ $ gi OK

Γ $ pr : t Γ $ e : t
Γ $ pr = e; OK

ΓÑ Γi $ ee OK Γi $ lefilter : bool Γi Ñ Γb $ ld OK Γb $ is OK
Γ $ foreach (ee) (lefilter) tld isu

Figure 4.5: Key static semantics rules for graph constructs

returning statement, all contained statements must be OK. If an expression is returned, the
expressionmust be typed according to the expected return type. These conditions guarantee
that returns happen according to the type, but they do not enforce that a return happens at
all if the type is not void.

The notation ΓY t(id : t), . . . umeans that a new type context is constructed, based on Γ,
with the fact that identifier id has type t. If id already exists in Γ as a pair key, the premise
does not hold (no lexical shadowing).

Statements are typed plainly by verifying that the involved subexpressions are typed con-
sistently. The control flow statements propagate the context type to their nested blocks for
the purposes of return checking.

Graph Constructs

Figure 4.5 definesmore rules specific to graph constructs. Expressions fromgraph constructs
(ge) are syntactically distinct from core expressions (e). There are two graph expressions,
property references (pr) and aggregations (op ce tleu). Property references are typed like
local references from the core (lr). Aggregations organize the elements expression (ee) and
filter (lefilter) such that the pattern variables are visible only in the body (lebody). Depending
on the chosen aggregation operator (op), there are different constraints on the type of the
aggregation body which dictates the resulting graph expression type. For example, sums
can be performed on any numeric type, preserving its variant, while averages always gen-
erate a double. Element expressions exist in many variations, we only show the vertices
iterator here, which verifies the existence of the referenced graph and declares the name of

24

4.3. Static Semantics

the variable for the matched vertices in the output environment ∆, the union of Γ and the
declaration of idv.

Let expressions combine other named graph expressions sequentially. A let expression
(le) is typed to the type of the core expression (e) it encapsulates, which is checked under OK
of all let declarations (ld). The let declarations are chained sequentially, such that earlier let
declarations cannot see later declarations.

Finally, graph-specific statements and iterators. The first rule states that graph iterators
(gi) are valid core statements (s), but that they ignore the context type. These iterators do not
have core body blocks, but iterator-specific ones (tld∗ is∗u). These blocks reuse the rules for
the let declarations from earlier, but specify new rules for iterator statements. Note that ac-
cording to the grammar of Figure 4.1, any graph iterator (gi) is also a valid iterator statement
(is). The property assignment statement checks similar to the local reference assignment, but
uses the property reference info query instead. The foreach graph iterator behaves similarly
to the aggregators explained above, but has an iterator body block instead. Note that the let
declarations in the iterator body are also declared sequentially.

25

Chapter 5

Deep Dive: Fixed-Point Iteration

Based on our initial exploration in Chapter 2, we aim to further understand the domain of
fixed-point iteration. We consider some additional algorithms and use the result of that do-
main exploration to propose a new operator. This is subsequently implemented in GMIR,
supported by various auxiliary constructs.

This chapter and the two following deep dive chapters are structured similarly. First,
we introduce the particular aspect by a more in-depth domain analysis than in Chapter 2.
Based on this information, we propose the new abstractions and describe them in detail, in
terms of abstract data structures and instructions. The remainder of the feature section is
dedicated to the realized implementation, in terms of both syntax and static semantics. We
wrap the chapter up with some notes about backward compatibility and integration with
existing normal forms.

5.1 Algorithm Overview
PageRank [14, 55] One of the classical and most well-known graph algorithms. The goal
is to associate each vertex with a rank value that represents its relative importance. Each
vertex is initialized with a uniform value. Iteratively, the score of each vertex is updated by
summing and weighting the rank values of neighboring vertices along incoming edges.

In the limit, the ranks associated to each vertex converge to a stable value, but for practical
purposes an approximation is sufficient. This is typical for digital floating point operations.
However, in case the structure of the graph is suboptimal and the ranks only converge just
faster than the cut-off rate, we would still want the algorithm to terminate within some rea-
sonable time. For this purpose, implementations typically limit the number of convergence
attempts to a fixed number. If no convergence is reached by that point, the algorithm will be
terminated early with inaccurate rank values. Decreasing the maximum allowed number of
iterations can also be done for other reasons, such as performance.

Personalized PageRank (PPR) [34] Whereas classical PageRank calculates rank values
from an initial uniform distribution, PPR initializes the ranks differently. Due to classical
PageRank’s uniform initialization, all vertices can be compared among each other to create a
global ranking. Personalized PageRank (PPR) enables the usage of PageRank for personalized
recommendations. By only initializing select vertices related to a certain topic to nonzero
rank values, all rank values become relative to this topic. The intuition is that due to zero-
initialization of most vertices, most stay at or close to zero if they are unrelated.

Hyperlink-induced topic search (HITS) [45] This algorithm performs a task similar to
PageRank, as it was originally developed around the same time to help scoring web search
results. Each vertex in the graph receives two values: an authority score and a hub score. The

27

5. DEEP DIVE: FIXED-POINT ITERATION

intuition is that some web pages (vertices) contain authoritative content on a certain topic,
whereas others do less or not, but function as a hub leading to authoritative content. The
higher the score, the more authoritative a source or the better of an index a hub is. Iteratively,
authority scores are updated based on scores of hubs linking to it and vice-versa. Scores in
HITS do not necessarily converge, hence an iteration cutoff is always used.

Weakly-connected components (WCC) One approach to determining weakly connected
components in a graph is by an iterative approach. Initially, each vertex is assigned a unique
value, signifying a component identifier. Repeatedly, each vertex checks the values of itself
and its direct neighbors and assigns to itself theminimumout of these. At some point, repeat-
ing this step another time does not affect any values. In other words, then we have reached
a fixed point, fixed on the component identifier. This also means there is no need for any
safeguard on the maximum number of iterations as convergence is guaranteed to be reached
in at most |V | iterations.

OtherAlgorithms In the next feature aspect sections, it will become clear that other aspects
also benefit from the ideas of fixed-point iteration for concise notation. We will refine the
meaning of what it means to ‘fix’ on a value where necessary. The algorithms mentioned so
far are inherently related to this repetitive operation and only define few other statements to
achieve their goal. Other algorithms use these ideas just as a building block.

5.2 Conceptual Design
We can essentially capture any bounded iterative operation under fixed-point iteration. What
exactly it means to reach convergence in a fixed point is up to the algorithm, but it must
be known in advance that this point will be reached. Infinite repetitions are therefore not
intentionally considered.

Limiting iterations Explicit bound on a fixed-point iteration have two clear use-case. First,
preventing algorithms from running too long, due to implementation errors or unexpected
or suboptimal input data. Second, if there is knowledge that a certain amount of iterations
is sufficient, there is no point in refining the results even further.

We expose this iteration index as a variable to the iteration body for convenience. If the
algorithm does not need it, it simply does not reference it or alternatively marks it explicitly
as ignored. Exposing this value may raise expectations from algorithms to be able to start
the iteration index at a custom offset, for example when a loop is manually split.

This common pattern can concisely be modeled by placing an interval constraint on an
integral number that is designated for the limit.

Expressing convergence conditions The algorithm needs to express when to terminate.
While we have observed various different ways that can indicate termination, we limit our-
selves to only two cases. We could abstract convergence conditions further into separate
domain abstractions, but this can also be done easily in a revision of the language if this ap-
pears beneficial. Needlessly abstracting this in advance without a clear reason only makes it
harder to adapt later.

The most generic case is by requiring the algorithm to express this as a boolean value,
leaving full control to the algorithm. Alternatively, if the algorithm does not provide such a
boolean value, the assumption is that the fixed-point is reached when all variables in a given
list do not change their values across one iteration. This is particularly useful for discrete
values, which we see in the WCC algorithm for example.

28

5.2. Conceptual Design

Note that in amanually optimized implementation of PageRank the∆value is aggregated
during iteration. Ifwe specify the convergence condition separately through a sum aggregator,
it appears less efficient. Even though some target platforms would not be able to handle the
hand-optimized version natively, for those who do, the compiler should be able to optimize
this as a loop fusion.

Split Versioning and Subjects We refer to the list of variables that would be given if the
algorithm uses stable convergence as subjects. These mark variables that are to be managed
by the fixed-point operator, as conceptually both the value at the start of the iteration and
at the end of the iteration need to be tracked to be able to determine whether there was any
change.

Considering PageRank again, we see that the rank values that are being calculated in one
iteration are derived from the rank values thatwere either assigned initially or in the previous
iteration. Exposing the internal state of the subject variables used for stable convergence
reveals a similar configuration where the ‘current’ and ‘next’ (or ‘old’ and ‘new’) value are
both stored. Therefore, we see opportunities to combine this notation for usage under the
more generic boolean value convergence.

In our design, any variable provided as a subject is hence made accessible in both its
current and next form. We refer to this means of accessing such variables as done through
either the current or next accessor. Being a subject variable disables the conventional variable
access to prevent accidental confusion.

This expressive notation for what we refer to as ‘split versioning’ also makes some com-
piler optimizations more feasible. In the original PageRank example, one iteration of the al-
gorithm concludes with swapping the rank and next-rank properties, but this does not clean
up the existing rank value. Some runtimes may use this to their advantage to prevent mem-
ory reallocation, while others can optimize better by opting to use move semantics instead
and actually discard the previous values including memory altogether.

Inplace Versioning There are situations where it is not necessary, inefficient or simply un-
desired for subject values to be versioned. Concrete use-cases are presented under the com-
munity detection concepts, where we are only interested in observing a derived value with
is not modified directly by the algorithm.

As long as the memory consistency model permit this, it is possible to both perform
change detection for stability and simultaneously not need to use the versioned accessors.
Another perspective on this is that it is a shorthand notation for always accessing the deferred
values, under the assumption that deferred values are both read- and writable. This holds
some truth because the runtime still needs to maintain some state and/or insert additional
logic to perform the change detection successfully.

There is one strict requirement for inplace subjects to be accepted: there must be no
boolean convergence condition. In other words, inplace subjects can only be used under
stable convergence. This is necessary to prevent scenarios where all subjects are configured
inplace, meaning that the until clause would be pointless as the boolean value provided
could not possibly have been calculated referencing the old value to compare with, unless
kept track of intentionally through a local copy or other tracking means.

Subject Modification under Propagation to Lifted Iterators We place no constraints on
the body of the fixed-point iteration. This means that it may be subject to GMIR’s “Top-Level
Iterations” normalization [11]. If the fixed-point construct is erased by lowering before the
Top-Level Iterations normalization is applied, no conflict arises. In the opposite situation, it
implies that lifted subject variable access needs to happen under the same conditions as it
would before being lifted. Therefore, this must be considered carefully and the lifted subject

29

5. DEEP DIVE: FIXED-POINT ITERATION

1 procedure void pageRank(
2 in graph G, in int maxIter, in double epsilon,
3 out property<vertex(G), double> rank
4) {
5 long Ndl;
6 double Nd;
7 double x;
8 property<vertex(G), string> strProp;
9 double sumValue;

10
11 Ndl = numNodes(G);
12 Nd = (double) Ndl;
13 foreach ((v): vertices(G)) (true) {
14 v.rank = 1d/Nd;
15 }
16 x = 0.15d / Nd;
17
18 fix (rank) [int[0..maxIter) i] {
19 foreach ((v): vertices(G)) (true) {
20 double inSum = sum (() <- (w): neighbors(G, v)) (true) {
21 let long outDeg = outDegree(G, w);
22 double wRank = current(w.rank);
23 in wRank / (double)outDeg
24 };
25 deferred(v.rank) = x + 0.85d * inSum;
26 }
27 sumValue = sum((v): vertices(G)) (true) {
28 let double currentVRank = current(v.rank);
29 double deferredVRank = deferred(v.rank);
30 in |currentVRank-deferredVRank|
31 };
32 } until (sumValue < epsilon)
33 }

Listing 5.1: PageRank using the fix operator

variables should receive an appropriate annotation such that both callee and caller agree on
the contract.

Initialization Guarantees Subject variables must have in-out access to guarantee that ini-
tial values are never undefined. This also simplifies memory management and removes the
need for complex data flow analysis.

Nesting Fixed-point iterations can be nested as long as a nested iteration does not use the
same variable as a subject. By extension, it is also not possible to fix on a variable accessed
through either the current or deferred accessor.

5.3 Syntax Design
See Listing 5.1 for a full example of the operator in action. The keywords highlighted blue

relate to the new features. In this example, the variable rank is provided as the only subject.
The iteration is bound to a maximum of maxIter iterations (exclusive upper bound), made
configurable by exposing this through a procedure parameter.

See Figure 5.1 for the extension GMIR’s imperative core and graph processing constructs,
extending the base grammar from Figure 4.1.
(1,2) We extend integral types with support to suffix an interval. Integers and longs are
the only discrete numeric types, so other numeric types have no relevancy to the fixed-point

30

5.3. Syntax Design

(1) t = . . . | int iv | long iv
(2) iv = [e .. e) | [e .. e] | [e ..8)
(3) a = . . . | versioned

s = . . .
(4) | fix (fs∗) [t id] b until (e)
(5) | fix (fs∗) [t id] b
(6) fs = lr | inplace lr
(7) td = . . . | updater rt id (pd∗) t gi u
(8) va = current | deferred
(9) lr = . . . | [a param t] va (id) | [m local t] va (id) | va (id)
(10) pr = . . . | [a param t] va (id.id) | [m local t] va (id.id) | va (id.id)
(11) tr = . . . | [updater ft] id

Figure 5.1: Syntax of fixed-point extension to GMIR.

operator. We also only support a select three intervals: offset with exclusive limit, offset and
inclusive limit and lastly offset-only. Other variations, while mathematically valid, are not
applicable to iteration indices.

(3) A new access type for versioned parameters to be used in conjunction with the Top-
Level Iterators normal form (NF). This means that it replaces other access types, such as
in-out. We do this intentionally as the semantics of in-out are incompatible with versioned
variables and it would syntactically be inconsistent to use a modifier instead. This forces
separation of concerns related to compatibility and integration with the Top-Level Iterators
NF. See also (7, 11).

(4, 5, 6) We add a new statement which comes in two variations, with a boolean conver-
gence condition (4) and without one for stable convergence (5). The fix statement mimics
the shape of other control flow blocks. The list of local references declares the subjects, which
can each optionally be decorated with a keyword to indicate ‘inplace’ behavior.

Even though at least one subject should be specified, wedonot enforce this in syntax. This
intentional relaxation of the syntax is compensated for by stricter static semantics. Even if
semantically invalid code is supplied, it is still parsed properly and can thus still be analyzed
to some degree. If wewould catch these errorswhile parsing, any subsequent analysiswould
be completely blocked.

The fixed-form declaration and initialization of the iteration index variable in square
brackets is mandatory. As GMIR is intended to be generated, it is trivial for a code generator
to provide default values. Since arbitrary expressions (e) are allowed for both the offset and
limit, constant values can be provided. By default, the offset should be 0 and the limit +INF.

Additionally, we also allow the index variable type to be customized. By allowing integral
numeric types to be specified, this can lead to a reduced number of cast operations in the
body. Since any integral number has well-defined increment and comparison behavior, any
such type suffices.

Since fix itself is not inherently graph-related, the body block is a core block (b).
The placement of the convergence condition is intentionally at the end. Although this no-

tation is unconventional, it is the most natural way to express the condition. Inside the body
new deferred values are assigned and the condition is onlymeant to be evaluated afterwards.
This is comparable to a do-while loop.

If no condition is supplied, stable convergence is used.

(7, 11) A top-level updater, a specialization of an iteratorwith a additional return type, is
necessary for integrating iterators present within a versioned scope with existing lowerings.
This is intended to be used in conjunction with the versioned access type from (3).

31

5. DEEP DIVE: FIXED-POINT ITERATION

Statements Γ, t $ s OK

ΓÑ ∆ $ fs OK t NUMERIC ∆Y t(id : t)u, t $ b OK
Γ, t $ fix(fs) [t id] b OK

ΓÑ ∆ $ fs OK t NUMERIC ∆Y t(id : t)u, t $ b OK Γ $ e : bool
Γ, t $ fix(fs) [t id] b until(e) OK

Subjects and Versioning ΓÑ ∆ $ fs OK t VERSIONABLE #s $ id VERSIONED

(lr, _) P Γ
Γ $ inplace lr OK

t VERSIONABLE Γ versioned ∆

ΓÑ ∆ $ id OK
t CORE

t VERSIONABLE

t VERSIONABLE
property ă _, t ą VERSIONABLE

Γ $ id versioned _
Γ $ id VERSIONED

Expressions Γ $ e : t Γ $ ge : t

Γ $ id : t Γ $ id VERSIONED
Γ $ va(id) : t

Γ $ idelem : telem
Γ $ idprop : property ă telem, tval ą

Γ $ idprop VERSIONED
Γ $ va(idelem.idprop) : tvar

Figure 5.2: Static semantics of the fixed-point iteration construct

(8, 9, 10) Somehow we need to express which version of a subject we refer to. As terminol-
ogy varies between perspectives, we decide to refer using the current and deferred accessors.
Alternative names are old and new, but especially new is a highly overloaded term.

This deferred assignment has some similarities with classic Green-Marl (GM)’s deferred
assignment operator (<=). However, in GM it is not possible to perform a read of the de-
ferred assignment. Moreover, it is only defined for use in parallel memory consistencymode.
Assigned values only become visible when sequential memory consistency is reached. How-
ever, within the fixed-point operator, we are not necessarily dealing with concurrency: fix
itself is sequential. All of this is especially problematic for the convergence condition: both
the current and deferred values must be accessible, independent of memory consistency.

5.4 Static Semantics
Figure 5.2 defines the static semantics rules for the fixed-point operator. Due to the two
different ways of convergence, both variations of the statement have to be checked separately.
The subjects are checked in a nested scope, which is nested one level deeper for the body
block.

Subjects that are not defined inplace are marked by the versioned relation on the subject
scope. This indicates by name of the variable that it is only accessible through accessors.
Missing from the figure is a rejection rule for local references and property references to
locally-versioned subject variables without the presence of accessors.

All core types are VERSIONABLE, as are properties with VERSIONABLE value types. This ef-
fectively rejects higher-level and more complex types from being versioned, such as general-

32

5.5. Integration with Top-Level Iterators Normal Form

1 procedure void example(
2 in graph G,
3 in-out property<vertex(G), int> myProp
4) {
5 fix (myProp) [int[0..+INF) i] {
6 foreach ((v): vertices(G)) (true) {
7 int neighMax =
8 max (()-(w): neighbors) (true)
9 { let int neighV = current(w.myProp);

10 in neighV };
11 deferred(v.myProp) = neighMax;
12 }
13 }
14 }

(a) Pre-normalization

1 procedure void example(
2 in graph G,
3 in-out property<vertex(G), int> myProp
4) {
5 bool lifted_0_res;
6 lifted_0_res = false;
7 fix (myProp) [int[0..+INF) i] {
8 lifted_0_res = lifted_0(G, myProp);
9 } until (!(lifted_0_res))

10 }
11 updater bool lifted_0(
12 in graph G,
13 versioned property<vertex(G), int> myProp,
14) {
15 foreach ((v): vertices(G)) (true) {
16 int neighMax =
17 max (()-(w): neighbors) (true)
18 { let int neighV = current(w.myProp);
19 in neighV };
20 deferred(v.myProp) = neighMax;
21 }
22 }

(b) Post-normalization

Figure 5.3: Fixed-point stable convergence under Top-Level Iterators NF

purpose data structures or graphs themselves.
Not explicitly defined in the figure, but inplace lr OK has the additional restriction that it

only appears in the first fix variant.
The accessor reference style (va) effectively only adds an additional constraint that the

base identifier must be VERSIONED. This holds for both normal local references and property
references.

5.5 Integration with Top-Level Iterators Normal Form

Iterators are a valid statement to be used within the fix body. One of the NFs of GMIR
lifts iterators to the top-level. Therefore, we need to consider what happens in relation to
versioning and convergence.

With the introduction of the current and deferred accessors, these may now occur in
the lifted iterators too. In scope of a fix block it is obvious that a subject variable or property
must be accessed through such an accessor, but the scope graph structure does not share this
information to callees. To ensure the lifted iterator correctly uses the versioned accessors if
and only if it is legal, we communicate this fact with the versioned access modifier.

Transformations get more complex when we combine lifted iterators with stable conver-
gence. We need to communicate with the lifted iterator that any update that occurs invali-
dates a stop condition. To accommodate for this generically, we introduced the new updater
declaration. By lowering any iterator that occurs within the fix body to an updater instead,
we have only have to combine their return values to see if any update did occur.

Figure 5.3 provides an example where the versioned access type is used to communi-
cate the fact that one of the parameters should be treated as if it were a fix subject. The
lifted updater returns a bool, which indicates whether any change was detected in one of the
versioned parameters. This is then used at the call site and fed into the until clause of the
rewritten fix block. If there would be multiple iterators, each would return a boolean value

33

5. DEEP DIVE: FIXED-POINT ITERATION

and all of them would be combined, causing termination only to occur when none of the
lifted iterators returns true.

34

Chapter 6

Deep Dive: Frontier Exploration

Gradual systematic traversal of graphs is a common task in graph analytics. Perhaps it is
what ismost often associatedwith the field of graph analytics. Algorithms in this subdomain
typically extract information from a graph without necessarily considering the entire graph
at once. For example, search algorithms start from one or several starting vertices and grad-
ually explore the graph along edges until a destination vertex is encountered. Pathfinding
algorithms extend this by recording the path alongwhich the graphwas explored in order to
reach a particular destination vertex. Other algorithms generalize this even further and con-
struct trees which satisfy some specific property, such as being minimum-spanning. Such
algorithms are directly defined in terms of a traversal of a graph, from which the result fol-
lows directly or with minimal post-processing. Other richer and more informed algorithms,
such as the Ford–Fulkerson algorithm (FFA) for the maximum flow problem, can solve one
of their parts by performing a graph traversal to answer a reachability question under some
additional constraints on feasible paths.

6.1 Algorithm Overview
Exploring a graph using a frontier is a very broad concept. In Sections 2.3.3 and 2.3.4, we al-
ready briefly covered some of the major algorithms. In the following paragraphs, we restate
them in a more systematic way and elaborate with minimum spanning tree (MST) construc-
tion algorithms.

S–T connectivity The problem of S–T connectivity entails the question of whether a ver-
tex t can be reached starting at a vertex s. An algorithm for this problem is very basic and
only cares about whether it is possible, independent of the path taken. This means that any
traversal order that considers each possible path is sufficient.

DFSandBFS The classical searchpatternsDFS andBFS exhibitmore typical frontier-oriented
behavior. Given a starting vertex the graph is gradually traversed, but in a more systematic
way compared to S–T connectivity. Typically, the goal is to find some other vertex or to col-
lect information about the graph. Depending on the needs of the algorithm and the expected
structure of the graph, a DFS or BFS traversal pattern would be chosen.

Key to understanding these systematic traversal patterns is that they cause a three-way
separation of elements in the graph. Some elements are already discovered but still pending
to be processed, in the order determined by the choice of DFS or BFS. Other elements have
been processed already and should not be considered again, while another fraction of the
graph has not even been explored yet. We visualize this in Figure 6.1 and later discuss it
more in-depth.

35

6. DEEP DIVE: FRONTIER EXPLORATION

Pathfinding The basic traversal patterns are insufficient for more advanced applications
such as pathfinding with Dijkstra’s algorithm or A*. Contrasting to DFS and BFS, these
pathfinding algorithms are more dynamic and need the traversal order to adapt to informa-
tion discovered during the exploration. For example, Dijkstra’s algorithm prioritizes check-
ing vertices that have the shortest partial path so far. In other words, the graph exploration
gradually discovers more and more vertices, but the order of this discovery is disconnected
from the order in which they are consequently checked.

Minimum Spanning Tree Construction A completely different problem is the construc-
tion of MSTs. There are various approaches to building them, some of which use patterns
similar to other frontier exploration algorithms.

Prim’s algorithm can be modeled using a frontier of edges, instead of vertices as we saw
until now. From a random starting vertex, all incident edges are initially added to the frontier.
Edges prioritized by the longest one first form the MST. Edges that would break the tree
structure are ignored.

Kruskal’s algorithm can also be modeled onto a frontier of edges, but differently. Instead
of gradually exploring the graph, the frontier is initialized with all edges. The algorithm
logic that runs for each selected edge still considers the graph gradually, but no new edges
are ever discovered after initialization. Similar to Prim’s algorithm, the selected edges form
the MST. The difference is that Kruskal’s algorithm builds partial trees all over the graph at
the same time, effectively creating a forest. By selecting more and more edges, the trees in
the forest grow and may need to merge. Eventually, this results in a single MST if the graph
is connected and in a forest of MSTs otherwise.

Guaranteeing this ‘treeness’ of the resultingMST can be done by an auxiliary property on
the endpoints of vertices to mark if they are in the tree or not. This also generalizes to forests
present in Kruskal’s algorithm. We believe this is a key characteristic of these algorithms that
lends itself for abstraction as we discuss further on.

6.2 Essential Summary
The frontier exploration abstraction revolves around a single abstract data type, the frontier.
This encapsulates all information, such as the part of the graph which is already explored,
which elements are pending and any data potentially associated to this. In the remainder of
this section, we gradually refine the features of a frontier in terms of the data type itself and
operations on it.

Starting from the basics, the question of reachability from one vertex to another is the
simplest question that cannot be answered by a plain vertex iteration. In this problem (’s-t
connectivity’), we are given two vertices, a source and a destination. The question can be
answered by considering the source vertex and its neighbors. If none of these are the desti-
nation, the neighbors of the neighbors are considered and so on. Effectively, the entire graph
that is connected to the source vertex can potentially be considered. When the destination
is not found after all reachable vertices have been considered, the conclusion must be drawn
that the destination vertex is not reachable from the source. Every time that we consider a
vertex and mark all its neighboring vertices as to-be-considered, we are operating on a data
structure that keeps track of which vertices specifically are to be considered next, i.e. what
is still pending. Representing this collection of elements is the primary responsibility of the
frontier and it is what literature typically defines to be a frontier.

Kicking off the exploration, we place the source vertex in the frontier. Generalizing this,
we can place any number of vertices into the frontier. For example, we may want to test
whether a destination vertex is reachable from at least one of various starting vertices with-
out explicitly computing this for each vertex. From the frontier, we repeatedly take one el-

36

6.3. Conceptual Design

unexplored

frontier

frontier

s
b

a
c

d

e

t

unexplored

s
b

a
c

d

e

t

explored

s
b

a
c

d

e

t

explored frontier

Figure 6.1: Gradual exploration of a graph through a frontier with an arbitrary ordering
policy. Elements were visited in order [s, b, a, c, t]. A potential source-destination path is
highlighted. Not all intermediate states are drawn.

ement to process further (visiting). This may happen arbitrarily if the algorithm does not
care about the order in which the graph is explored. If the algorithm desires a specific or-
der, this is specified by the ordering policy, which dictates the input-output relationship of
graph elements. Upon visiting, the algorithm is free to perform arbitrary operations on the
element (current element) from the frontier. We specifically provide two operations to inter-
act with the frontier. First, the algorithm can specify a termination condition which causes
the repeated visit to stop. Second, to make progress with a frontier that was not initialized
by all elements of the graph, the algorithm also needs to specify which elements should be
added to the frontier once the visit completes (expansion). Important is that we constrain
algorithms to only expand the by elements in the direct neighborhood of the visited element.
Allowing multiple-hop expansions would be redundant. This basic process is summarized
in Figure 6.1. The frontier initially only contains the source (blue vertex ’s’), but gradually
moves towards the destination (green vertex ’t’). The dotted edges and vertices indicate
unexplored elements in the graph. Notice that this frontier only contains vertices: edges be-
tween vertices in the frontier are dotted, which means that they cannot have been discovered
yet.

Frontiers can contain either vertices or edges, but not both. There are some subtle dif-
ferences between the two, which become more important later on. Both vertex and edge
frontiers can be initialized with a single, some or all vertices or edges, respectively. When
visiting a vertex from a vertex frontier, that frontier can only be expanded with vertices that
are neighbors of the current vertex, independent of the edge direction. When visiting an edge
from an edge frontier, the situation is slightly different but captures the same idea adapted
to edges: an edge frontier can only be expanded by edges incident to either endpoint of the
current edge. Both vertex and edge frontiers can be used to search for a particular vertex or
edge in the graph, but one pattern may lend itself better to the problem at hand.

6.3 Conceptual Design
Beforewe provide a concrete instantiation of our abstractions in terms of syntax, we first need
to reiterate and clarify our interpretation, models, views and ideas of frontier exploration.
Frontier exploration is an umbrella term for various strategies to gradually explore a graph.
The goal of algorithms that perform a frontier exploration is to extract information from a
graph, contextualized by the information gathered from the explored fraction of the graph.
This section elaborates on the essentials described earlier.

6.3.1 Ordering Policies and Default Filters

37

6.
D
EEPD

IVE:FRONTIER
EXPLORATION

Ordering Policy Accepted input
(from initialization or expansion)

Produced output per visit Remark

Unordered/none

A single element.

An arbitrary element from the frontier.

Last-In-First-Out
(LIFO)

The element that was most
recently added to the frontier.

Also known as pre-orderdepth-first search (DFS).

First-In-First-Out
(FIFO)

The element that was least
recently added to the frontier.

Also known as breadth-first search (BFS).

Max-weighted

A single element with
an associated priority (or weight).

The element in the frontier with
the highest associated priority,
ties broken arbitrarily.

If the element already existed with a worse priority,
it is reinserted with the better priority (relaxation).

Min-weighted The element in the frontier with
the lowest associated priority,
ties broken arbitrarily.

Table 6.2: Provided frontier ordering policies

38

6.3. Conceptual Design

FIFO order policy

s

t

LIFO order policy

s

t

Min-weighted order policy

s
0

2

1
2

t

5

3

Legend

traversal order

edge

vertex
weight

other
vertex

Figure 6.3: Various frontier ordering policies in action: FIFO, LIFO, Min-Weighted

As briefly mentioned earlier, the order in which elements from the frontier are visited
is specified by the ordering policy. We specifically provide five different ordering policies
that cover basic use cases: unordered (i.e., no ordering policy in place). These different
policies are described in Table 6.2 and exemplified in Figure 6.3. An ordering policy de-
fines the relation between elements presented at initialization or by expansion during vis-
iting (input) and the thereafter following next visited elements (output). The trivial or-
dering (unordered/none) has an undefined relation between input and output. The basic
orderings LIFO and FIFO define the relationship based on the input order. Min- and max-
weighted ordering require the elements to be paired with an additional value, a priority. We
observe that various graph traversal techniques that aim to improve on the basic ordering
fit into this model without making assumptions about their implementation details (e.g.,
∆-Stepping [52], Near-Far piling [20]). The initialization, ordering policy, termination and
expansion logic together form the very basics of frontier exploration, visualized in Figure 6.4.
In the remainder of this section, we expand on our invention by building more features on
this basic framework.

So far, we have not clarified what exactly happens after an element has been visited. As
drawn in Figure 6.1, the elements that were once in the frontier end up in the ‘already ex-
plored’ fraction of the graph. This is the default behavior of our frontier abstraction: once
an element has been processed by the visit logic, it is marked as ‘visited’ (i.e., moved to the
explored fraction). Elements bywhich the frontier is attempted to be expanded but that have
already been visited are silently dropped. Effectively, a filter is placed on the ‘expansion’ →
‘ordering policy’ relation in Figure 6.4, populated by elements outputted by the ordering pol-
icy. Similarly, we equip the ordering policy with a filter for pending elements: elements that
are already added to the frontier should not be added again. However, the ordering policy

39

6. DEEP DIVE: FRONTIER EXPLORATION

elements (+ additional required data)

initial elements

element
ordering policy algorithm visit

logic

exit

termination

side effects

expansion

expanded elements
(+ additional required data)

Figure 6.4: Block diagram of frontier exploration basics

frontier
elements (+ additional required data)

initial elements

element
 ordering policy algorithm visit

logic

exit

termination

side effects

expansionexpanded elements
(+ additional required data) pendingvisited

Figure 6.5: Block diagram of frontier exploration with default filters

has control over this filter to allow some elements to pass through. For example, a weighted
ordering allows the priority of an element to be improved: an element with a better prior-
ity is not filtered out. Both filters are illustrated in Figure 6.5. The visited (first) filter can
be ignored when the algorithm forces expansion into a certain element (revisiting), but the
pending (second) filter cannot as it is tied to the definition of the ordering policy.

6.3.2 Element Enrichment by Automatic Tracking
Depth Tracking Under the concepts introduced so far, when an element is visited, there
is no context provided to the algorithm in terms of where the element is positioned in the
graph relative to the previously visited or pending elements. Under the concepts introduced
so far, no additional information is provided to elements flowing out of the frontier. Some
algorithms need to know how the element is positioned relative to previously seen elements.
Common applications are depth or breadth limiting.

When requested by the algorithm, the frontier is equipped with a depth tracker which
associates a depth value with each element that expands the frontier. Elements from ini-
tialization receive depth zero by definition. Elements from expansion during visit receive a
depth value one greater than the current element. The depth information is passed along
with the output of the frontier to the visit logic and may be used arbitrarily by the algorithm.
The depth tracker only works when expansion is never forced: only without cycles can a
depth value be uniquely assigned to each element in a meaningful way.

Reversing Visits The order in which we visit elements is specified by the ordering policy.
Once an element is visited, it is never revisited unless expanded by force. Essentially, any
visited element only has access to the information collected from elements already visited.
However, some algorithms rely on information collected from elements that would be visited
after itself. To accommodate for this, we provide a secondary variant of the visit block: the
reverse visit.

40

6.3. Conceptual Design

parent
neighbor

root
d=0

d=1 d=?

d=2 v
d=2

d=3

d=3 d=3

child neighbors

FIFO LIFO

parent neighbors

root
d=0

d=1 d=1

d=2 v
d=2

d=2

d=3 d=3

child neighbors

Figure 6.6: Classification of neighboring elements: parents and children

If the algorithm desires to, this is executed with the elements in the reverse order or more
specifically when all elements that were caused to be visited by some element were visited.
For example, if ‘a’ causes expansion to ‘b’ and ‘c’, ‘a’ is reverse-visited when ‘b’ and ‘c’ have
been visited. The visiting of elements that we described earlier we refer to as the forward
visit. Note that in the reverse visit, it is not possible to expand the frontier anymore. Unless
specified, we continue to refer to the forward visit as ‘the visit’. It is only possible to make
this distinction when expansion is never forced.

Parents–Children Tracking We extend the visit duality with an extra introspection feature:
parents–children tracking. Specifically, the algorithm can request which elements led or
could have led to the current element (parents) and into which elements the current element
actually expanded (children). These questions can only be answered respectively during the
forward and reverse visit. The degree to which this information is complete depends on the
ordering policy and expansion. As the elements selected by these questions relate to the as-
sociated depths, only elements of which the depth has been established yet will be included.
In Figure 6.6, the classifications are marked for a vertex in some graph where only a fraction
of the graph has been explored (under a FIFO policy) and where the entire graph has been
explored (under a LIFO policy). Note that if the left graph were explored further, the vertex
with “d=?” would receive depth 1 too and it would appear in the parent neighbors of ‘v’.

6.3.3 Exploration Policies: Paths, Trees and Forests
To simplify pathfinding algorithms, we will now introduce several new concepts that allow
for a tight integration with frontier exploration algorithms. Pathfinding algorithms, such as
Dijkstra’s Algorithm, A* or any other best-first search algorithms are designed to answer the
question ‘how to navigate from source (s) to destination (t), in the best way according to
some metric (distance)?’. By using a weighted ordering policy, we can optimize the met-
ric, but we cannot yet find out how to actually get there. When the destination has been
found, the algorithm is tasked with finding out the path from source to destination. That is
eventually the most important result that the algorithm should provide.

While it may seem possible to extract this information from the reverse visit, this is ob-
trusive, potentially inefficient and not always correct. Therefore, we introduce the concept

41

6. DEEP DIVE: FRONTIER EXPLORATION

of automatic path tracking. At each visit, the algorithm can request the path that would
lead from one of the root elements to the current element. The critical difference with path
tracking compared to parents–children tracking is that there is always one unique parent,
independent of the ordering policy. With parents-children tracking, we query the neighbor-
ing elements that were or could have been parents, whereas in path tracking we only select
the ultimately responsible parent. Note that the constructed path may not necessarily corre-
spond with the order in which elements were visited. Another interpretation of this is that
the frontier keeps track of a tree structure and is able to return a path from the root of the tree
(tree tracking), assuming there is one initial element. Multiple initial elements generalize to
keeping track of a forest (forest tracking).

We combine these ideas into the idea of an exploration policy which imposes new behav-
ior on a frontier in order to guarantee some invariant. This is then used to provide infor-
mation derived from the exploration. The different exploration policies with their features
and behavior are listed in Table 6.7. Note that the None-policy is effectively the frontier con-
figuration as drawn in Figure 6.4 and that the Setlike-policy is what is drawn in Figure 6.5.
This implies that the remaining policies (Pathlike, Treelike and Forestlike) introduce new
specialized behavior not seen before. Notice that the Pathlike-policy is trivially able to pro-
vide a path due to its constraints, for which it is not useful in practice. On the other hand, the
Forestlike-policy is unable to provide paths due to tree fusion resulting on a potential loss of
path from either root to any element (illustrated in Figure 6.8).

42

6.3.
ConceptualD

esign

Exploration
Policy

Features Construction
Mechanism

Initialization
Filter/Behavior

Pre-Visit Filter/Behavior Expansion Fil-
ter/Behavior

None None
N/A

Any number
of vertices or
edges.

None
Element has not
been visited.
Can be forced.Setlike Preventing revisits by default.

Pathlike Provide a single path for the en-
tire exploration, from the first to
the last visited element.

By gradual extension
along the explored ele-
ments.

Single vertex.
Single edge.

None Element has not
been visited.
At most one ele-
ment.

Treelike Provide a path on each visit
from the global root.
Provide a tree of the entire ex-
ploration.

By gradual extension
along the element that
caused expansion.

Single vertex.
Any edges inci-
dent to a single
vertex.

Edge: one endpoint not in tree
yet.

Vertex: not in tree
yet.
Edge: one end-
point not in tree
yet.

Forestlike Provide a forest of the entire ex-
ploration.

Any number of
vertices.
Any edges that
do not form a
cycle.

Edge: one endpoint not in any
tree OR both endpoint in dis-
tinct trees.
→ In the latter case, the trees
are fused (a.k.a. merged or
unioned).

Vertex: not in any
tree yet.
Edge: one end-
point not in the
current tree.

Table 6.7: Exploration policies, their features and the constraints they impose

43

6. DEEP DIVE: FRONTIER EXPLORATION

tree 2tree 1

a

b c

u

v w

input forest

tree 1

a

b c

u

v w

output forest

 fuse along c→v

'u' and 'w' are
unreachable

from 'a'

Figure 6.8: Infeasible scenario of tree fusion in a forest under directed edges, leading to loss
of paths to some vertices

We make no further claims yet about how these exploration policies provide their infor-
mation and how they enforce their filters and invariant. This is an implementation detail
which we will cover later. The conceptual behavior, corresponding to ‘Construction Mech-
anism’ from Table 6.7 is illustrated in Figure 6.9. There, it is demonstrated that the frontier
is initially expanded by vertex ‘a’ and ‘b’, causing an initial tree to be constructed over the
edges incident to ‘v’ that caused this expansion. However, vertex ‘a’ is visited next and it
discovers a new edge which provides a better priority for vertex ‘b’, by which the frontier
is expanded. Although ‘b’ was already pending, due to the fact that a better priority was
provided, the tracked tree is updated to reflect this fact. Next, ‘b’ is visited and if the path
would be requested from ‘v’ to ‘b’, the path along the ‘3’ and ‘1’ edges would be provided as
intended.

6.3.4 Parallelism
So far, we have only considered visiting elements from the frontier sequentially. At each visit
iteration, one element is received from the frontier and the frontier is expanded by zero or
more elements, repeating until the frontier is empty or the algorithm explicitly terminates.
Our design allows for some frontier configurations to leverage parallelism by visiting mul-
tiple elements simultaneously. Processing elements in parallel improves overall algorithm
throughput, insofar as the executing machine provides parallelism. We define parallel vis-

visited

pending

pending visitedvisited

v a

b

v a

b

v v a b

 a

Ordering Policy:
Min-Weighted

constructed tree (at start of step)

frontier
a@3 (picked)

b@5

paths
a: [v,a]
b: [v,b]

Explor. Policy:
Treelike

frontier
b@4 (picked)

paths
a: [v,a]

b: [v,a,b]

v a

b

 b

frontier
empty (term.)

paths
a: [v,a]

b: [v,a,b]

v a b

Figure 6.9: Gradual tree and path construction under a min-weighted treelike exploration

44

6.4. Syntax Design

Projection Aspect Value
visited tracking set of elements that were visited
depth tracking mapping from element to final associated depth, undefined/infinite

for non-visited elements
path/tree/forest
tracking

path/tree/forest data structure representing the exploration

Table 6.10: Projectable information of a frontier

its only for frontiers with an unordered or LIFO ordering policy. We cannot parallelize the
FIFO order in general due to intrinsic limitations of DFS [61]. Weighted order is similarly
not parallelizable in general, as the order of elements in the frontier can be arbitrarily and
globally influenced by the elements and associated values by which the visit block expands
the frontier.

6.3.5 Information Projection and Explicit Memory Management

Most of the information that is stored in the frontier so far is for internal purposes only, to
enable certain behavior. While this leaves complete freedom of implementation up to the
compiler, this information is not accessible to the algorithm except through the dedicated
constructs that use this information indirectly. For example, most frontier configurations
keep track of which elements have been visited for revisit deduplication purposes, yet the
algorithm cannot directly access this information to inquire if a given arbitrary element has
been visited. Similarly, another pattern we recognize in algorithms is the need to possess of
this information after execution of the frontier exploration.

To some degree, it is possible to keep track of thismanually by updating a set on each visit.
However, this essentially leads to information duplication inside and outside the frontier.
For this reason, we introduce the concept of information projection: a mechanism to extract
internal information from the frontier without exposing any of the internal working of the
frontier itself.

Table 6.10 lists what information is projectable.
Projection is closely tied to memory management. An implementation could reuse mem-

ory allocated to the projection destination for its internal purpose. This relates to the goal of
reducing information duplication.

Consider the scenariowhere an algorithm that searches for a destination vertex in a graph
from a starting vertex. Besides knowing whether or not the destination is reachable from the
source, the algorithm also wants to know post-exploration which vertices were visited. Sup-
pose the algorithm has allocated a boolean vertex property for this information. By request-
ing the frontier to project this information into this boolean vertex property, the runtime
may decide to directly use this property for its own tasks involving access to a set of visited
elements (to perform revisit deduplication).

6.4 Syntax Design
Figure 6.11 formalizes the grammar of all frontier exploration-related constructs.

(1, 3–6) We introduce a single complex type for frontiers, which captures all policy config-
uration options and element types.

45

6. DEEP DIVE: FRONTIER EXPLORATION

(1) t = . . . | fe f
(2) | path (id) | tree (id) | forest (id)
(3) fe = none | treelike | forestlike | ε
(4) f = unordered frontier ă et ą
(5) | lifo frontier ă et ą | fifo frontier ă et ą
(6) | min frontier ă et , t ą |max frontier ă et , t ą

is = . . .
(7) | init lr ft ;
(8) | expand lr ft fp ;
(9) ft = (lr) | (lr , priority : e)
(10) fp = force | then b | ε

s = . . .
(11) | bind visited of lr to lr | bind depth of lr to lr | bind tree of lr to lr | bind forest of lr to lr
(12) | visit fv∗ fx b
(13) | visit fv∗ fx parallel t le∗ is∗ u
(14) fv = lr (fm) [fc∗]
(15) fm = id | id id

ÝÑ id
(16) fc = depth : t id | priority : t id | path : t id
(17) fx = terminate if (le) b process | ε

Figure 6.11: Syntax of frontier exploration extension to GMIR.

(2) In order to support additional features, we also introduce new graph data types for
paths, trees and forests. Although these are not specific to frontier exploration, they are
currently not found in GMIR.

(7, 9) Before a frontier can be used to explore a graph, it must be initialized first. The init
statement allows initial elements to be placed into the frontier. There are two variants, one
for initializing with just an element and one for initializing an element with an associated
priority value, used when the min or max weighted ordering policy is configured.

(8–10) The expand instruction uses a similar notation, but it is more flexible. Depending
on the configured policies, an attempt to expand into a certain element can be prevented, for
example if it has already been visited before. To override this, this instruction can be suffixed
with force to ignore such checks. Otherwise, if not forced, a then block can be attachedwhich
is executed if the expansion was not prevented.

(11) An algorithm needs to be able to opt-in to the projection feature, which ties into mem-
ory management. These statements make the connection explicit by letting the algorithm
pick what to bind. Doing so must be done carefully, as it can place strong constraints on
the viability of compiler optimizations. For example, some ordering policies can provide
the depth of any element by only keeping track of depth values in a single variable without
the need for a full property. Explicitly binding to a property makes the depth values appear
in this property, but without the presence of this property the code could have run more
efficiently.

(12, 13) Once the frontier has been initialized and projections have been configured, the
frontier can be repeatedly visited. The visit statement abstracts this and executes is body
for each element flowing out of the frontier. This can be done sequentially (11) or in parallel
(12), affecting the content of the body block. Parallel visits are only possible for unordered
and LIFO frontiers.

46

6.5. Static Semantics

Statements Γ, t $ s OK Γ $ is OK

Γ $ lrfr : fe f Γ $ lrbind : property ă etOf f,boolean ą
Γ, _ $ bind visited of lrfr to lrbind; OK

Γ $ lr : fe f etOf f = vertex(G)
∆ = ΓY t(idv : vertex(G))u ∆Ñ E $ fc OK E $ fx OK E, t $ b OK

Γ, t $ visit lr (idv)[fc] fx b

Γ $ lr : fe f
etOf f = edge(G) ∆ = ΓY t(idu : vertex(G)), (ide : edge(G)), (idv : vertex(G))u

∆Ñ E $ fc OK E $ fx OK E, t $ b OK

Γ, t $ visit lr (idu
ide
Ñ idv)[fc] fx b

Γ $ lrf : _ frontier ă et, t ą
Γ $ lrel : et Γ $ e : t

Γ $ expand lrf (lrel, priority : e);

Γ $ lrf : _ frontier ă et ą
Γ $ lrel : et

Γ $ expand lrf (lrel);

Context Variables and Termination ΓÑ ∆ $ fc OK Γ $ fx OK

t INTEGRAL
ΓÑ ΓY t(t : id)u $ depth : t id OK Γ $ ϵ OK

Γ $ le : boolean Γ, void $ b OK
Γ $ terminate if (le) b

Figure 6.12: Static semantics of the frontier exploration construct

(14–16) The frontier that is to be visited is expressed in the visit pattern, which consists of
a reference to the frontier itself (lr), a match pattern (15, either a vertex or an edge) and zero
or more context variables (16). The available context variables depend on the policies and
projections configured.

(17) By default, the repeated visit stops once the frontier is completely drained. If for any
reason termination needs to occur earlier, for example when the destination vertex has been
identified, a boolean condition can be provided. When this condition holds, the associated
block will be executed instead of the regular visit body.

6.5 Static Semantics
Figure 6.12 defines the static semantics rules for the frontier exploration operators. Before the
frontier is visited, binds can be issued. We show the rule for binding the depth to a boolean
property. This rule makes use of a convenience notation etOf, which extracts the element
type et given a frontier type f.

For visiting the frontier, we show two rules for both vertex and edge frontiers, for the
scenario where a single frontier is visited in sequential order. The referenced frontier lrmust
have its et match for the respective rule. From that, we extract the graph name G which we
then use to introduce new variables according to the vertex or edge matching pattern. Any
context variables fc may contribute to variables visible in the termination condition fx and
the body block b. That is why we refine the context twice from ΓÑ ∆Ñ E.

47

6. DEEP DIVE: FRONTIER EXPLORATION

For the frontier expansion, we provide rules for both weighted and unweighted frontier
configurations. Rules for initialization (init) are essentially identical, given that we omit the
force-or-then postfix term fp. The takeaway here is that weighted frontiers must always be
expanded or initialized with a corresponding priority value and that non-weighted frontiers
cannot be.

Finally we show a rule for one of the context variables, depth. This is the most basic one
which provides the depth as either an int or long as requested. The other context variables
work similarly, but have additional constraints on the type of frontier in which they are used.
For example, binding priority is only possible in the context of weighted frontiers.

6.6 Integration with Normal Forms
The features introduced in this chapter do not interfere with GMIR’s normal forms.

While the visit block iterates over elements, it is not strictly speaking a graph iterator.
Graph iterators cannot be broken out of, which the termination condition basically can do.
If we would mold the block into an iterator (e.g., foreach (...: front(frontierRef)) ...),
there is no place for the termination condition. Therefore, the Top-Level Iterators NF does
not apply to our additions to the language.

48

Chapter 7

Deep Dive: Community Detection

Community detection is an important problem in graph analytics. Typically, this is done by
gradually grouping vertices that belong together according to somemetric into communities.
This process effectively builds larger structures from smaller substructures, i.e., it is agglom-
erative. These algorithms mostly operate in the following steps: they gradually associate
similar vertices to the same cluster, starting from each vertex being associated to a unique
community. This is repeated until a local stopping criterion is met. The formed communities
can be interpreted as a new graph on which the process can be performed iteratively, until a
global stopping criterion is met. This forms a hierarchical structure of communities, where
communities consist of smaller and smaller communities until the original graph is reached.

Doing this in reverse is also possible. That is a divisive approach, the opposive of agglom-
erative. In this chapter, we only focus on agglomerative community detection. Please refer
to the future work (Section 10.2) for more information about this.

7.1 Algorithm Overview
Key algorithms that currently dominate the commercial and academic community detection
landscape are the Louvain method [10], Leiden [74] and Infomap [65]. Other popular algo-
rithms are the label propagation algorithm (LPA) [8] and its more commonly used descen-
dant speaker-listener label propagation algorithm (SLPA) [79].

Louvain Fundamentals The Louvain method of community detection [10] has been fun-
damental for other algorithms. Still to this day, it is a widely recognized and supported al-
gorithm in commercial and open-source products. What sets Louvain apart from the earlier
algorithms that it formed a highly flexible basis for many other innovations to follow. Sum-
marizing from Chapter 2, the key to understanding the operation of the original Louvain
algorithm is the concept of a hierarchy of communities and the modularity metric.

Consider an arbitrary graph in which we want to detect communities. Take this graph
and associate each vertex to a distinct community, for example by using a property which
is initialized to unique values. Each vertex is then checked to determine if it is beneficial to
be associated to one of the communities to which the neighboring vertices are associated, ac-
cording to the modularity metric. This process is repeated until the metric does not improve.
This results in a graphwhere some vertices are associated to the same community andwhere
some communities that initially represented one vertex now represent many or none at all.

Louvain does not stop there. In fact, it is key to the algorithm to use the previously
gathered vertex-to-community assignment information and aggregate it into a new ordinary
graph on which the aforementioned modularity improvement is run again. This effectively
forms a hierarchy of graphs, where each vertex represents one ormore vertices from the layer
below.

49

7. DEEP DIVE: COMMUNITY DETECTION

Evolution to Leiden Many years later, the Leiden algorithm was proposed as the culmi-
nation of many incremental improvements from the Louvain method. The basic principles
from Louvain remain, but some fundamental adaptations have been made.

The main problem Louvain provably suffered from, was its potential to construct dis-
connected communities. Moreover, there are also some graphs which the Leiden authors
proved to be impossible to be detected correctly by Louvain, independent of the starting con-
figuration. Leiden essentially performs Louvain first in a slightly weaker fashion, followed
by a second refinement phase which guarantees connected communities. They also adapted
a different metric than modularity to overcome the resolution limit issue [23], but remark
that Leiden can be used with any arbitrary measure of quality.

Infomap Similarly, Infomap also takes significant inspiration fromLouvain but approaches
it in holistically from the viewpoint of information compression of the behavior of a random
graph surfer, represented by the ‘Map Equation’ [64]. In practice, a basic implementation
of the Infomap can be achieve by taking Louvain and using the Map Equation as the metric.
Contrary to Louvain and Leiden, intermediate levels in the Infomap hierarchy have a clearly
defined meaning.

DivisiveAnalysis Another early observation in 1990wasmade byKaufmann andRosseeuw
[43] that academic work essentially ignored divisive community detection, the opposite of
agglomerative methods. Their proposed algorithm remains one of the few documented di-
visive algorithms to this day.

7.2 Essential Summary
We represent the communities that are detected by an algorithm in a graph-native way, as
a community graph, containing community vertices and community edges. Such a commu-
nity graph is related to the graph in which communities were detected (the base graph):
vertices in a community graph represent one or more vertices from the base graph; edges
between community vertices essentially summarize information from edges between base
vertices that are associated to different communities.

This relationship between some ordinary graph and its community graph can be gen-
eralized to a hierarchy of communities. By considering a community graph as an ordinary
property graphwith vertices and edges and feeding it into the algorithm again, we get a com-
munity graph of another community graph. The result of this iterative community detection
procedure is stored in a specialized hierarchical community detection structure.

The community association for each vertex is established by agglomeration. This occurs
in three phases: initialization, arrangement and aggregation. First, the output, a community
graph, needs to be initialized; typically each vertex starts off associated to a unique commu-
nity only containing itself. Second, in the arrangement phase the algorithm is given control
to optimize the vertex-to-community association. Finally, the aggregation phase takes the ar-
ranged association and aggregates information into the community graph, particularly edges
and edge properties. In the arrangement phase, we provide two operations that modify the
vertex-to-community association. (1) Move: one particular vertex is removed from one com-
munity and added to another. (2) Merge: two communities are merged into one, effectively
moving all vertices associated to one community into the other.

Since community graphs extend the concept of property graphs, properties can also be de-
fined on communities. In the initialization and arrangement phase, we allowmodification of
community vertex properties, but we delay the modification of community edge properties
to the aggregation phase as the community edges are not yet final during the arrangement

50

7.3. Conceptual Design

phase. Property updates during arrangement can only be caused by a vertex-community as-
sociation being updated. Any updates unrelated to an arrangement could instead have been
made during the initialization.

We provide a new abstraction for expressing these property updates in terms of effects
causes by a move or merge. Moving or merging first of all causes the related vertex(es) to be
removed fromone community and captured in another, by definition. However, it also subtly
affects edges incident to themoving vertex(es). For example, an edge could for example have
both endpoints being associated to the same community, but due to a move one endpoint is
associated to a different community, and so on.

We provide classifications for each way an edge may be affected and allow the algorithm
to express side-effects based on this. Effectively, this allows for an arrangement-centric way
of incrementally calculating statistics and other information that an algorithm may need for
its optimization metric. This effect classification mechanism can be applied in both an effec-
tive (executing) and non-effective (simulating) way, committing to a change and observing
effects for a ‘dry-run’, respectively.

We also define the concept of collapsing a community graph. This feature can be used to
effectively reset the agglomerated community structure while retaining the formed commu-
nities. This operation models

In the concrete implementation, we introduce data types for each of the aforementioned
graphs: (non-hierarchical) community graphs and hierarchical community graphs. Addi-
tionally, we define a special type for the community graph when it is under construction
in the arrangement phase: the tentative community graph. We also offer additional helper
constructs, such as the ability to declare multiple tentative community graphs. The agglom-
eration with three phases is captured in a block with three nested blocks, each representing
one of the phases. Additionally, to set up the community detection data structures for the
very first iteration, we also introduce a necessary global initialization phase that is only ex-
ecuted once at the beginning of the algorithm. Then, we model the collapse operation as a
standalone statement. Finally, we introduce a ‘projection’ statement which instructs to con-
tinuously reflect the community structure into an ordinary vertex property. This is necessary
for compatibility with other logic that does not use community detection constructs and as
a potential lowering target.

7.3 Conceptual Design
From the algorithms we explored, it appears there are at least three distinct approaches to
the problem of community detection. We only focus on agglomerative community detection
where a strict and transitive hierarchy is formed.

All other abstractions that we introduce in the remainder of this section are related to
the key concept of the community graph. This is a graph-native way of representing the re-
lationship between ordinary vertices and the communities to which they belong and vice-
versa. Vertices in a community graph are therefore synonymous with communities them-
selves. Edges represent relationships between communities, essentially in aggregated form
of the edges between vertices from the represented graph belonging to different communi-
ties. This view on communities is what we continue working with on a conceptual level, but
in practice this can be realized in different ways.

Themost basic community detection algorithms sufficewith a single agglomeration. How-
ever, more powerful algorithms run repeatedly to iteratively refine the community graph.
The community graph constructed in one iteration is fed to the algorithm again as if it were
an ordinary graph, which the algorithm arranges into a new community graph. This results
in a hierarchy of community graphs, which we represent in a dedicated hierarchical com-
munity graph data structure, an ordered collection of community graphs. Algorithms that

51

7. DEEP DIVE: COMMUNITY DETECTION

Base Graph

arrange arrangeinitialize aggregate

Tentative Community Graph Aggregate Community
Graph

initialization arrangement aggregation

agglomeration

Figure 7.1: Base graph, tentative community graph and aggregate community graph under
the three phases of agglomeration: initialization, arrangement, aggregation

construct such a hierarchy only need to work on a base graph. From this, we observe that
such hierarchical algorithms are not truly hierarchical in nature as they present themselves.
Both single-pass algorithms and hierarchically optimizing algorithms can therefore essen-
tially be expressed in a uniform way. The only distinguishing factor is whether or not the
optimization logic is reapplied. This observation is critical to enabling execution of these
algorithms on runtimes that do not have any support for multi-level graphs.

We observe that the process of agglomeration, although gradual, is always separable in
three major phases: initialization, arrangement and aggregation. Figure 7.1 describes the
behavior. We take the base graph and assign each vertex a unique community, indicated
by the fill of the vertices (initialization). The optimization logic of the algorithm is then
free to perform zero or more arrangements (two are performed in Figure 7.1), changing the
vertex-community association, indicated by the changing fill of the vertices (arrangement).
As is demonstrated by the crosses over the community vertices, arrangement of vertices may
cause loss of reference to a community. At the end, the base graph is aggregated into the
final community graph, where each vertex represents one community, indicated by the cor-
respondence in vertex fill (aggregation). Figure 7.1 shows how this aggregated community
graph naturally follows. Any agglomerative algorithm can be modeled onto this under our
community graph model, as long as the arrangement phase is not specified any further.

For hierarchical algorithms, the repeated execution of the optimization logic naturally
extends the relation between base graph and aggregate graph into a hierarchy of graphs, as
represented by the aforementioned community graph. At first, we have a base graph Base0
from which we derive the aggregate community graph Aggr0. The next time we apply the
optimization, the base graph will be Base1 = Aggr0. Essentially, the aggregate graph of

52

7.3. Conceptual Design

1

34

5

2

1

4+3=7 2

1

34

0

0

5

0

2

0

1

4+3=7

0

5

2

0

5

1

4

6

27 3

1

5
4+7=11 2 3

5

1

0

4

6

2

0

7

8

0

3

0

1

5

0

4+7=11

6+8=14

0

2 3

Undirected Graphs Directed Graph

Edge
Copy

Aggregate
kept

edges into
community

edges

Aggregate
kept

edges into
community

edges
+

Aggregate
deleted

edges into
community
properties

Figure 7.2: Variations of possible vertex and edge aggregation policies

one agglomeration becomes the base graph of the next aggregation, and so forth. Any level
taken out from the hierarchy is a proper graph where each vertex has an indication to which
community it belongs.

So far, we considered ordinary graphs without properties. We now continue to elabo-
rate our concepts to proper property graphs. Since we decided to represent communities
as vertices, these community-vertices can also be associated with properties, which we refer
to as community-bound properties. As properties can also be defined on edges, similarly
we also speak of community edge properties in the aggregate graph. Note that community
edge properties are intentionally not made available in the tentative community graph as
their values are not clearly defined until after aggregation.

Any state kept by agglomerative community detection algorithms is fully representable
using such properties. The onlyway to preserve information between the base and aggregate
graph is by having the algorithm provide some computation that reduces information from
relevant elements of the base graph into information that can be expressed on a single vertex.
This applies to both non-hierarchical and hierarchical construction; by similar reasoning as
above, this concept applies similarly to both.

An algorithm needs to provide reduction rules separately for vertices and edges. As can
be seen from Figure 7.1, the final community vertex represents both vertices and edges from
the base graph, with at least one vertex. When it represents more than one vertex, it also
represents the base edges between those base vertices. From this, it follows that the edges
in the community graph represent the remaining edges, i.e. the edges from the base graph
between vertices assigned to differing communities. Hence, we determine that there should
be two distinct aggregations, each ofwhichmay be arbitrarily specific in terms of information
complexity and number of properties. In Figure 7.2, various different approaches are shown.

53

7. DEEP DIVE: COMMUNITY DETECTION

Intermediate Graph

Aggregate Graphs

Base Graph

1

2

5

43

6

87

4

24

8

1

3
5+7+2
=14

4

6

8

7

4

6+14+1+3
=24

8

14

Incremental

Direct

(1+2+3)+(5+6+7)=

Figure 7.3: Direct versus incremental community property aggregation

The agglomerative nature allows the information aggregation of community vertices can
be done incrementally, synchronous with how the arrangement steps gradually refine the
vertex-community assignment. In fact, by providing incrementally computed community-
bound property values, we enable algorithms that want to make well-informed decisions
about their next arrangement to do so based on readily available information on the tenta-
tively formed communities. In Figure 7.3, we show an example where a community vertex
property is calculated as a direct reduction versus an incremental reduction. The result is
the same, but the incremental form is able to provide information intermediately.

Consider again the example from Figure 7.3, where we sum arbitrary values defined on
both vertices and edges. Not limited to summing aggregations, we observe that the terms
involved in the incremental aggregation directly relate to the involved vertices and and edges.
For example, in 5+7+2 = 14, 5 originates from the property value of the initial community
of the blue vertex, 7 from the property value of the orange community that is merged into
the blue community, and 2 from the edge that would be deleted. Similarly, 6+14+1+3 = 24
can be related to property values on related edges and vertices.

Due to our earlier assumption that the tentative community graph does not contain edges,
we cannot directly apply this to the agglomeration. Moreover, assigning a vertex to a com-
munity during the arrangement phase is non-final; a follow-up arrangement may cause the
vertex to leave that community and be assigned to another (already existing) community.
The tentative community graph does contain vertices, which we should leverage to store
properties on intermediately. In fact, once the aggregate graph is constructed, even if it were
through a direct aggregation from the base graph, these properties will be defined anyway.

KEY IDEA: only edges need to be carefully classified. From the context of the arrange-
ment, it is always directly clear which vertices are involved: Merge involves all vertices

54

7.3. Conceptual Design

assigned to either the source or the destination community, Move involves only the base
vertex that is being moved. Additionally, both under Merge and Move, the source and
destination community vertices are involved. All edges incident to the involved base ver-
tices are involved too, but this is exactlywhatwe just classified further. This classification
is exemplified in Figure 7.4.

As demonstrated in Figure 7.4, we classify each edge that is involved in the arrangement
in one of five classes. Notice that by the nature of the Merge arrangement, no edges will be
captured between the source and destination community, as the source community disap-
pears. Alternatively, we propose a second equally powerful classification which classifies
such edges into four classes. The two perspectives are as follows:

Five-class model (as seen in Figure 7.4)

• Edges released between the source and destination community. (Purple)

• Edges captured between the source and destination community. Not applicable under
Merge. (Yellow)

• Edges released from source community. (Red)

• Edges captured in the destination community. (Green)

• Edges of which one endpoint’s community association changes from the source to des-
tination community, but of which the other endpoint remains the same (relink). (Blue)

Four-class model

• Internal-to-internal edges: edges fully contained in the source community, which end
up being fully contained in the destination community too.

• Internal-to-external edges: edges fully contained in the source community, which end
up becoming edges between the source and destination community.

• External-to-internal edges: edges between the source and destination community.

• External-to-external edges: edges ofwhich one endpoint’s community association changes
from the source to destination community, but of which the other endpoint remains
the same (equivalent to relink edges).

OBSERVATION: aggregate graphs will never contain self-edges. Edges in the aggregate
graph represent edges in the base graph that have endpoints belonging to different com-
munity. By definition, this excludes self-edges. Self-edges, or any edge which is cap-
tured by both its endpoints being in the same community, are meant to be aggregated
into community-bound properties, as partially shown in Figure 7.2. In hierarchical com-
munity detection, thismeans that the next base graphwill not contain self-edges because
it is directly derived from the previous aggregate graph.

Any algorithm expressed in our abstraction needs to provide logic to aggregate captured
edges, unless it intentionally wants to discard this information. Therefore, any self-edge can
be removed at any time by passing it through that aggregation. Any self-edgewill eventually
be passed through this aggregation anyway; because both endpoints are the same vertex, a
self-edge will never be between two different communities. Therefore, we require any base

55

7. DEEP DIVE: COMMUNITY DETECTION

community C
2*6+5+7=24

community B
(2+9+10)+2(1+2+3+4)=41

community C
24+2+2(4+5)+8+1+3=56

community C
6+(9+10+2)+2(1+3+4+5)+8=61

comm. D
7

comm. D
0

comm. D
7

comm. D
7

comm. A
8

comm. A
8

comm. A
0

Legend

community C
2*6+5+7=24

community B
(2+9+10)+2(1+2+3+4)+5+8=54

1

2

b
9

3
c

10

5

8

6

d
0

e
0

a
0

7

f
0

4

v
2

Move 'v' from 'B' to 'C' Merge 'B' into 'C'

1

2

3

5

8

6

d
0

e
0

a
0

7

f
0

4

comm. A
8

1

2

b
9

3
c
10

5

8

6

d
0

e
0

a
0

7

f
0

4

v
2

comm. B

comm. B
54-2(1+3+4)

-2-5-8+1+3=27

1

2

b
9

3
c

10

5

8

6

d
0

e
0

a
0

7

f
0

4

v
2

Released Between Source-Dest.

Captured Between Source-Dest.

Released From Source

Relinked from Source to Dest.

Captured Within Destination

source:
destination:

community B
community C

comm. ?empty community:

a
123

base vertex:

named 'a'
having value 123

community: comm. X
456

a
0

named 'X'
having value 456

b
9

c
10

v
2

Figure 7.4: Classification of edges affected by moving and merging

56

7.3. Conceptual Design

a

b

c

d

a

b

c

d

a

b

c

d

a

b

c

d

Legend

well-
connected
community

badly-
connected
community

tentative
community

Base Graph
First Layer Aggregate Graph
Second Layer Base Graph

collapse

Second Layer Aggregate Graph

base
vertex

base edge

base
vertex

base
vertex

base edge

base
vertex

represented
in aggregate

Figure 7.5: Community graph collapse

graph to be free of self-edges. This allows for runtime optimizations which for this reason
do not have to care about self-edges beyond the initial construction of the base graph, which
is non-specific to community detection.

Finally, we introduce the last concept: graph collapse. So far, we have only considered
how we gradually group vertices tentatively into communities, which we then represent in
an aggregate graph, which in turn may be fed to the algorithm again to construct a hierar-
chy. One disadvantage of this approach is that, once a vertex is aggregated into a community
vertex, it is not possible to move it out of there. While this is inherent to the agglomerative
construction model, it prevents some obvious optimizations from being expressible. Con-
sider the first row of graphs drawn in Figure 7.5. In the aggregate graph, two communities
exist (a singleton for vertex ’a’ and a one composed of vertices ’b’,’c’,’d’). However, it is obvi-
ous from the graph structure that vertices ’b’ and ’c’,’d’ are unrelated unless ’a’ is in the same
community. While this is an intentionally exaggerated example, this is the problem that
classic Louvain suffers from, as it only makes locally-informed decisions. To some degree
the severity is ameliorated by hierarchical construction, but that is certainly no guarantee.
To accommodate for algorithms that we provide the collapse operation.

Collapsing an aggregate graph essentially takes the community vertices from the ag-
gregate graph and configures a tentative community graph from it, given an instance of a
base graph which was previously used to reach the aggregate graph that is being collapsed.
Community-bound properties are transferred to the newly formed tentative communities.
This works both across a single agglomeration and a hierarchy of agglomerations. Effectively,
this gives the algorithm a second chance and a different perspective to its community assign-
ment, while retaining previous state. This is shown in the second row of graphs in Figure 7.5:

57

7. DEEP DIVE: COMMUNITY DETECTION

t = . . .
(1) | community graph (lr)
(2) | hierarchical community graph (lr)
(3) | tentative community graph (lr)
(4) | community property ă et , t ą

s = . . .
(5) | build initial (lr as id ñ id∗ pc∗) b
(6) | agglomerate (lr as id ñ id∗) ci∗ arrange b ca
(7) | collapse lr ;
(8) | move graph lr ă lr∗ ą into lr ă lr∗ ą ;
(9) | lr = community of lr in lr ;
(10) pc = lr Ñ lr
(11) ci = init id by singletons b
(12) | init id by reflect lr b
(13) ca = ε | aggregate id id

ÝÑ id into id id
ÝÑ id

(14) ld = . . . | t id = community of lr in lr ;
is = . . .

(15) | simulate (lr ñ lr , m) t is∗ u
(16) | execute (lr ñ lr , m) t is∗ u
(17) m = move lr from lr to lr
(18) | merge lr into lr

gi = . . .
(19) | foreach ce case t cec∗ u
(20) cec = cem : t ld∗ is∗ u
(21) cem = released between | captured between | captured between id and id

| released from | captured in | captured in id
| relinked

lr = . . .
(22) | [derived (a param t) t] id | [derived (m local t) t] id
(23) | [a param t] lr :: id | [m local t] lr :: id

ee = . . .
(24) | id : communityVertices (lr)
(25) | id : verticesOfCommunity (lr ñ lr , lr)
(26) | id id

ÝÑ id : communityEdges (lr)
(27) | id id

ÝÑ id : edgesOfCommunity (lr ñ lr , lr)
(28) | id id

ÝÑ id : edgesBetweenCommunities (lr ñ lr , lr , lr)
(29) | id id

ÝÑ id : communityNeighbors (lr , lr)
(30) | id id

ÝÑ id : neighborsInCommunity (lr ñ lr , lr , lr)
(31) | id id

ÝÑ id : neighborsOutCommunities (lr ñ lr , lr , lr)

Figure 7.6: Syntax of community detection extension to GMIR.

with the tentative community assignment being primed to ’a’,’b’,’c’,’d’, the algorithm moves
’b’ into a new community. The resulting communities are thus no longer badly-connected.

7.4 Syntax Design
Figure 7.6 formalizes the grammar of all community detection related constructs.

(1, 2) Two distinct types intended for usage by algorithm writers to distinguish between
non-hierarchical and hierarchical community graphs. Both reference the underlying graph.

(3) A type for internal purposes only, which is never expected to be written explicitly by a
programmer. This is the type used for the tentative community graph (TCG) within a single

58

7.4. Syntax Design

agglomeration step.

(4, 22, 23) Properties on community graphs are distinct fromproperties on ordinary graphs.
This is necessary to easily distinguish between the significantly different behavior. In fact,
community properties can and are often split into several ordinary properties upon lower-
ing.

In order for community properties and their derived ordinary properties to be referenced
correctly, we extend the reference annotation syntax. The derived keyword provides the
connection to the community property from which it originated.

Community properties can also be passed to other functions. We provide the ascription
operator (::) to disambiguate, as the derived properties are declared on the base graph and
all TCGs.

(5, 10) Mandatory global initialization. This statements makes the connection between the
underlying graph and the community graph explicit. The left-hand side of the fat arrow
refers to the underlying graph and the right-hand side to the initial base graph. The base
graph needs to have its declared community properties set up in the body, either by manual
initialization or by copy (using 10).

(6, 11–13) The main agglomeration building block which performs a single arrange-and-
aggregate step on a given community graph. The fat arrow denotes the names of the base
graph and TCGs.

The concrete syntax notation works slightly differently from the conceptual description,
but it captures the same meaning. At the start of each agglomeration, the TCGs need to be
prepared. Most frequently, communities in the next TCG are formed for each vertex of the
base graph (singletons, 11).

Alternatively, given a community-bound vertex property, base vertices that have the same
value for that property can be initialized to be associated to the same community (12). This
is useful for hierarchical algorithms that precompute some structure in a previous iteration
that directly and efficiently needs to be reflected in the next.

After the main arrangement body block has run, the elements in the primary TCG are
finalized by aggregation (13) into an aggregate graph which will serve as a base graph in
the next iteration. If any community-bound edge properties exist, it is mandatory to match
on edges from the base graph and the selected TCG. In the body of this match, aggregation
logic must be provided to reduce one or more base edges into an aggregate edge.

(7) The complex collapse operation is captured in a single short statement. This statement
does not perform the collapse operation immediately, it only signals that the next agglomer-
ation of the give community graph should happen on the collapsed graph. It is only possible
to execute this statement with

(8) For internal use only. This statement describes a variable rename-and-discard opera-
tion between graphs.

(9, 14) The community resolution expressions are used to retrieve the community vertex
in the TCG to which the vertex is currently associated.

(15–18) These statements are the key to modifying the TCG. Move (17) and Merge (18)
operations can either be simulated (15) for information gathering purposes or actually exe-
cuted (16).

59

7. DEEP DIVE: COMMUNITY DETECTION

(19–21) Themain purpose of placing statements in the body associated to aMove orMerge
operation is to observe effects on edges. We introduce this specialization of the for-each loop
specifically for the purpose of matching on those involved edges.

(24–31) Lastly, weprovide a handful of element iterators to inspect the vertex-to-community
association at any time. The iterators with a fat arrow are intended to be used during agglom-
eration, while the others are intended to be used in the normal scope instead.

7.5 Static Semantics
Figure 7.7 defines the static semantics rules for the community detection constructs.

The initial build requires the left-hand side of the fat arrow (ñ) to match the name of
the underlying graph on which the community graph is defined. This also means that we
only need to introduce idaggr in the body b. The property copies are checked to only apply to
edges and be symmetrical on the underlying and community graphs.

The main agglomerate block introduces the base graph as an ordinary non-hierarchical
community graph and the aggregate graph as a TCG. The optional community initializers
(ci) must belong to one of the available aggregate graphs. In this figure, we only provide the
case for a single aggregate graph, but the rule generalizes naturally.

The execute statement, which is typed identical to the simulate statement, is shownwith
themove operation. The involved local references must all match their types symmetrical to
the fat arrow pattern. This is further propagated to the iterator statements of the associated
body (is).

Those other iterator statements are treated differently due to their additional context
(lr ñ lr). In fact, only the foreach with case-matching is accepted. Case matching is only
defined for edges in the neighborhood of the moving vertex. Excluded from this figure is a
constraint to enforce the moving vertex to be equal to the reference used in the neighbors
iterator.

7.6 Normal Form Integration
Similar to the other subdomains we dived into, community detection also interferes with
GMIR’s Top-Level Iterators NF. In this case, we encounter problems with the foreach case-
matching which is expected to be placed in the body of an arrangement statement (i.e.,
simulate or execute).

An arrangement statement itself is not an iterator, but its body consists only of iterator
statements. These can be lifted to the top-level, which loses the lexical scope information that
casematching is possible in the first place. Outside of the body of a rearrangement statement,
the effect case matching is not allowed. This means that the top-level declaration needs to be
annotated that it only can be used from the scope of an arrangement statement.

In practice, this is not a problem. Weprovide transformations that transformarrangement
statements and their effect-matching inner loops into existing statements and aggregation
expressions. After this, the Top-Level Iterators NF can be applied without problems, as no
constructs specific to community detection remain.

60

7.6. Normal Form Integration

Statements Γ, t $ s OK Γ $ pc OK Γ, id $ ci OK

Γ $ lr : _ community graph (idbase)
Γ $ pc OK ΓY t((idaggr : tentative community graph(idbase))u, t $ b OK

Γ, t $ build initial (lr as idbase ñ idaggr pc) b

Γ $ lrunderlying : property ă edge(G), t ą
Γ $ lrbase : community property ă edge(idCG), t ą Γ $ idCG : _ community graph (G)

Γ $ lrunderlying Ñ lrcom OK

Γ $ lr : _ community graph (G)
∆ = ΓY t((idbase : community graph(G)), ((idaggr : tentative community graph(lr))u

∆, [idaggr] $ ci OK ∆, t $ b OK
Γ, t $ agglomerate (lr as idbase ñ idaggr) ci b

id P id Γ $ id : tentative community graph (idCG)
Γ $ lr : community property ă vertex(idCG), long ą Γ, void $ b OK

Γ, id $ init id by reflect lr b

Expressions Γ $ e : t

Γ $ lrv : vertex(idcg)
Γ $ idcg : community graph (_) Γ $ lrcg : tentative community graph (idcg)

Γ $ community of lrv in lrcg : t

Iterator Statements Γ $ is OK Γ, (lrñ lr) $ is OK Γ, (lrñ lr) $ cec OK

Γ $ lrv : vertex (lrbase)
Γ $ lrsrc : vertex (lraggr) Γ $ lrdst : vertex (lraggr) Γ, (lrbase ñ lraggr) $ is OK

Γ $ execute (lrbase ñ lraggr , move lrv from lrsrc to lrdst) t is u

ΓY t(idu : vertex(lrbase)), . . . u, (lrbase ñ lraggr) $ cec OK

Γ, (lrbase ñ lraggr) $ foreach (idu
ide
Ñ idv : neighbors (lrbase, . . .)) case t cec u

ΓY t(idc : vertex(lraggr)), (idd : vertex(lraggr))u Ñ ∆ $ ld OK ∆ $ is OK
Γ, (lrbase ñ lraggr) $ captured between idc and idd : tld isu

Figure 7.7: Key static semantics of the community detection construct

61

Chapter 8

Evaluation

In this chapter, we evaluate our proposed abstractions in three different ways. First, we
discuss the general language design on a high level according to ‘design dimensions’ from
Voelter [77]. Secondly, we showwhich common algorithms are and are not expressible, with
explanations as to why. Finally, we demonstrate how our domain-specific abstractions oper-
ate in practice by explaining how they map onto existing constructs.

For general context, we implemented all these features as independent modular exten-
sions in the existing GMIR compiler. This is a commercial product built on the Spoofax
Language Workbench [12, 42, 68].

8.1 Voelter’s Seven Design Dimensions
One of our primary sources for designing domain-specific abstractions is the well-known
DSL Engineering book by Voelter [77]. In a chapter co-authored by Eelco Visser, seven design
dimensions are given which DSLs should use as guidance. The authors note that design is
inherently subjective to some degree, which provides reason for having a more objective
evaluation framework.

The design dimensions are seven:

1. Expressivity: conciseness of programs in the related domain.

2. Coverage: what fraction of domain problems can be expressed.

3. Semantics and Execution: separable in static semantics and execution semantics, de-
scribing the statically observable behavior and runtime behavior of programs, achieved
through transformations.

4. Separation of Concerns: clear division between different areas of the domain as a
whole.

5. Completeness: ability of the abstraction to capture all necessary context without rely-
ing on external sources such as configuration files or on hand-written auxiliary code.

6. Language Modularity: reusability and integration with the existing DSL and poten-
tially other languages.

7. Concrete Syntax: writability, readability, learnability and effectiveness.

As the goal of this thesis is to close the feature gap that arises from the lack of domain-
specific abstractions in GMIR, we do not evaluate expressivity and concrete syntax. More-
over, GMIR is an IR which does not inherently benefit by being concise. In fact, the normal-
ization features of GMIR intentionally explicate a lot of information in a very verbose and
redundant way.

63

8. EVALUATION

8.1.1 Coverage

The coverage of the DSL at hand and improving that is essentially the primary goal of this
thesis. Most broadly speaking, GMIR is intended to cover the domain of algorithmic graph
processing. In the state that it was at the start of this thesis project, it clearly lacked coverage
in some areas. This is exactly what we addressed by introducing new abstraction in the three
key areas—fixed-point iteration, frontier exploration and community detection.

To be precise, only our abstractions in the areas of frontier exploration and community
increase coverage. The fixed-point iteration features do not as any fix loop can also be –albeit
inefficiently– rewritten into a do-while construct and some helper variables. This contrasts
with the other two areas that provide new data types and operations over those.

Frontier exploration allows primitive traversals such as BFS and DFS to be expressed. It
also enables priority-based traversal for Dijkstra and similar algorithms. Additionally, MST
algorithms such as those from Prim and Kruskal can be expressed. None of this was previ-
ously possible. To some extent, this was possible in Green-Marl, but not with the flexibility
that we introduced.

Community detection was previously entirely not covered at all. While there are many
different approaches to this problem that each have their unique requirements, we decided
to introduce support for themost prominent ones. With support for the Louvainmethod and
the derivatives Infomap and Leiden, we believe to cover the majority of current use cases.

These three aspects increase coverage, but certainly do not cover the entire domain. Dur-
ing our domain exploration, we already became aware of certain concepts that would be
useful but infeasible to cover in this thesis. In FutureWork (Section 10.2) we discuss in more
detail which features specifically we believe are missing and how this could be addressed.

8.1.2 Semantics and Execution

For each of the three key areas of interest, we provided static semantics. Because GMIR lacks
a formal static semantics specification, our static semantics are also not formally verified. We
believe the static semantics rules are complete enough for practical purposes. We have ver-
ified them by using the Spoofax Testing Framework [41]. Furthermore, any transformation
on the abstract syntax tree (AST) that uses explicated semantic information also implicitly
performs consistency checks.

8.1.3 Separation of Concerns

As Voelter [77] states: “A domain may be composed from different concerns. Each concern
covers a different aspect of the overall domain.” We believe the three main areas of interest
are sufficiently independent to be covering completely separate concerns. While it can be
convenient to use abstractions from one in the other, it is not strictly necessary. For example,
determining whether a local community assignment is stable and ready for aggregation can
be done concisely with a fixed-point iteration, but need not be.

8.1.4 Completeness

GMIR programs are mostly self-contained. Our modifications have not made any changes to
the degree to which this was the case. In practice, this means GMIR still relies on an external
configuration of the Parallel Graph AnalytiX (PGX) server to perform housekeeping tasks,
such as loading and persisting graphs.

64

8.2. Expressing Algorithms

8.1.5 Language Modularity
One of the main selling points of GMIR is its high degree of modularity. The clear separation
between core and graph constructs allows for building out new features in an isolated way.
Projects such asMLIR [46] have recently proven this fact once again. That iswhywedesigned
and implemented our extensions to GMIR in a similarly modular way. Similar to how we
separated three main concerns, we also implemented them independently.

8.2 Expressing Algorithms
In the second part of our evaluation, we try to express various algorithms that would benefit
from our abstractions. Although the algorithms covered here are not exhaustive, we believe
they paint a representative picture of the algorithms that are typically used nowadays in the
respective domains.

For each of the three subdomainswe investigatedwe list various algorithms. We annotate
the problems we faced while expressing them. Some algorithms are also simply not possible
to express, but still very relevant to the subdomain; those we briefly list as well.

8.2.1 Fixed-Point Iteration
In the content chapters we have extensively covered both PageRank and the iterative WCC
algorithms. Both work well and they were the main source of inspiration for the abstractions.
PageRank is also sometimes used in a ‘personalized’ setting, where the calculated ranks are
relative to one or more select vertices. This can be achieved by initializing the rank values
leaningmore towards those chosen vertices, which is independent of the fixed-point iteration
itself.

We also briefly mentioned the HITS algorithm [45]. It appears that it does not benefit
from the fixed-point operator, as it always iterates for a preconfigured amount of times. The
‘authority’ and ‘hub’ values are also intentionally updated within the loop itself and need to
be directly visible.

8.2.2 Frontier Exploration
Basics Frontier exploration algorithms are more diverse. The essential graph traversals
DFS and BFS are possible to express, including additional features such as reverse iteration.
Due to the way we model the frontier data structure, the elements are always visited in pre-
order, i.e., the element itself is visited before any of its descendants. The reverse visit effec-
tively offers post-order traversal, but in-order traversal is impossible.

Dijkstra’s algorithm [22] and related best-first search algorithms are equally expressible.
In essence, Dijkstra’s algorithm is a best-first search algorithm that minimizes the total dis-
tance so far. Alternative metrics can be used just as well by tuning the frontier configuration
parameters. The typical application of such best-first search algorithms is path finding. This
is fully supported and concisely achievable by enabling the path tracking feature.

The Bellman–Ford algorithm initially seemed relevant to this discussion too because it
calculates shortest paths. Even though it is a path finding algorithm, it does not find these
paths using a frontier, because it essentially considers the entire graph at once. Therefore, it
is irrelevant to our discussion.

Heuristics A* [33] is often mentioned in discussions of Dijkstra’s algorithm. It provides an
extension with a heuristic to potentially decrease the overall search space. We successfully
implemented A* using a consistent heuristic, but were unable to do so for any admissible
heuristic. The problem we faced is that inconsistent heuristics do not guarantee optimality

65

8. EVALUATION

when a vertex is visited. This interferes with the termination condition, which can only con-
tain a simple boolean expression. It is therefore impossible to indicate to the visit block that
termination needs to be averted or delayed.

Optimizing Ordering Policies For the basic algorithms we discussed we provide ordering
policies that cover their ordering requirements. Recent research has focused significantly
on optimizing the ordering itself, separate from the rest of the algorithm logic. Although
we believe this supports our claim that separating this into its own concern is beneficial,
it is currently impossible to express custom/optimizing ordering policies. For example, ∆-
stepping [52] is a common technique applied to achieve significant reductions in memory
pressure.

Multiple Frontiers We laid some groundwork for frontier exploration with multiple fron-
tiers, but did not include this in the final design. There are clearly some algorithms that
benefit from exploring a graph concurrently from multiple starting points [1, 24, 70]. For
example, bidirectional Dijkstra [73, 75] is a natural extension which explores the graph from
both the source and destination. The main concerns with these multi-frontier algorithm are
termination, synchronization and balancing.

When the frontiers ‘meet’, it is not necessarily a guarantee that any path that can then
be constructed is actually optimal. Although the correctness is the concern of the algorithm
itself, it impacts the progress that can be made in other frontiers. Ideally, we do not halt
progress in other frontiers, but on the other hand it is wasteful to keep progressing if termi-
nation is imminent.

As long as termination is not applicable, the frontiers may or may not want to progress
independently. Situations where frontiers become lopsided are the most important to avoid,
as that defeats the purpose of having multiple in the first place. In our proposed design this
cannot be captured, but we believe it to be necessary for successful support of this feature.

Minimum Spanning Trees Both Prim’s and Kruskal’s algorithms to compute MSTs can be
expressed concisely. The only difficulty is with Prim’s algorithm where we need to select
a random starting vertex to use as the initial edge source. This is currently not possible in
GMIR, but we can make the algorithm work by assuming a random vertex is passed in.

Prim’s algorithm uses a treelike min-weighted frontier and is initialized by a set of edges
incident to a random starting vertex. The priority values on the edges in the frontier are
taken from a read-only weight property. Expansion happens in the edges incident to both
endpoints of each visited edges. The treelike exploration policy automatically ensures only
edges that extend the tree are visited. Therefore, theMST follows directly from the algorithm
by projection and can be bound to an output parameter.

Kruskal’s algorithm can be expressed even more concisely and does not require any ex-
pansion. The frontier is a forestlike min-weighted edge frontier, comparable to Prim’s sit-
uation. The frontier is initialized by all edges and priorities corresponding to their weight.
Then, the visit block is just let to run without any body (visit kruskalFrontier (()-()) []
{}). By nature of the forestlike exploration and the min-weight ordering policies, it follows

that an MST is constructed.
We also considered Borůvka’s or Sollin’s MST algorithm and Chu–Liu/Edmonds’ algo-

rithm forminimum spanning arborescences (MSAs). While both appear to be not far related
from the other MST algorithms, we can unfortunately not express either.

8.2.3 Community Detection
Community detection is inherently the most complex subdomain we covered. We only eval-
uate the our design against a few large algorithms and use-cases.

66

8.3. Operational Semantics by Lowering

Already from the initial domain exploration, we have continuously mentioned the three
most important agglomerative algorithms Louvain, Infomap and Leiden. In practice, we
successfully implemented Louvain completely and Leiden partially. Due to time constraints,
we did not implement Infomap, but we believe it is completely feasible to do so. We verified
our Louvain implementation by cross-checking results with a commercial implementation.
We also worked together with other teams at Oracle to get our implementation working in
other products, such as natively on PGX.D.

The major blocking issue we faced with Leiden is the implementation of the probability
mass function. In Louvain, vertices are moved between communities based on which move
is best. However, in Leiden, this happens with a probability relative to the exponential of
their quality. The current state of GMIR is not expressive enough to capture this.

Second to that is the lack of random iteration. The original Louvain algorithm onlyworks
with sequential deterministic iteration, but Leiden explicitly requires random iteration for
accuracy reasons. We considered enriching the for-each loop and aggregator forms with a
random keyword, but this only opened up new challenges that we were not ready to face.

As we focus only on agglomerative algorithms, other well-known community detection
algorithms such as SLPA are not strictly relevant to this evaluation. During the domain ex-
ploration and later experimental phase, we still attempted to implement both LPA and SLPA
to see if there was a common ground to build upon. The main reason why these algorithms
do not work in GMIR as of now is due to the lack of random iteration, just as we see in Leiden.

8.3 Operational Semantics by Lowering
As we described earlier, part of our realized implementation are transformations that allow
running the new features with onlyminimal changes on existing platforms. Inevitably, some
features are missing from the existing platforms, which is partially what this thesis tries to
uncover. Disregarding what is missing, these lowering transformation essentially define the
operational semantics of the new constructs in terms of existing operational semantics.

Similar to the static semantics, there are no formal operational semantics defined for
GMIR. Therefore, we only highlight some key transformations to support a general under-
standing of the constructs. Moreover, our actual implementation in the Stratego language
comprises of more than 1,000 SLOC, which is too much to cover here.

8.3.1 Fixed-Point Iteration
Basics The basic usage of the fixed-point loop can bemodeled as a do-while loopwith some
extra features. A do-while loop checks the loop guard at the end of the body, similar to how
the fixed-point body is always executed at least once.

Wemodel the safeguard iteration limit as a local variable which is initialized by the lower
bound. At the end of every iteration, the value is incremented by 1. The loop guard is then
implemented as a condition which verifies that the upper bound has not been reached yet.
If there is no upper bound, the condition is always true. The loop guard is combined in a
logical conjunction with the result of the user-provided until clause.

Variable Versioning The key feature of the fixed-point loop is the automatic variable ver-
sioning and related accessors for those subject variables. Depending on the type of subjects,
versioning implementations are lowered differently. If a subject is marked inplace, this low-
ering is not applicable.

We implement scalar variables by introducing a temporary variable which holds the new
value. After the body and termination condition are completed, the deferred value is as-
signed to the current value.

67

8. EVALUATION

A nontrivial implementation is required for properties and more complex data types.
Properties cannot simply be reassigned, but need to be copied instead. Different platforms
have significantly different ways of representing properties at runtime. This is abstracted
through a builtin function, which we use instead of a simple reassignment.

The same logic applies to other complex data types. For example, this feature integrates
with community detection.

Explicit Boolean Change Tracker Another key feature is the automatic termination upon
subject stabilization in the absence of a termination condition. Some platforms, such as an
SQL database, can report whether a variable was touched, but usually not whether it was
actually modified to a meaningfully different value. However, that is exactly the information
we need to determine when all subject variables have stabilized.

To achieve this, we introduce some additional helper local variables for each subject: a
flag and a reference value. The flag indicates whether we detected a change so far and the
reference value is what we compare to. In practice, this reference value can be the same
variable that holds the current value.

Both for scalars and properties, the functionality is more or less the same. We insert
statements around each place where the variable is written. These compare the value that is
about to be written with the current value. If there is a meaningful difference, the flag is set.

At the end of the body, we collect all flags and incorporate this into the do-while loop
guard.

8.3.2 Frontier Exploration
Explicit API The first step in lowering frontier exploration constructs is tomake all domain-
specific statements and expressions explicit. We do this by introducing a broad range of new
builtin functions, which essentially represent the same functionality. This is less accessible
for a user, but internally more convenient to work with, especially because the initial statics
analysis already proved that the structure is acceptable.

Still, we need to introduce somenew syntactical features to support this lower formwhich
mainly uses builtin functions. The visit block repeats bydefault. We lower this into a foreach
loop using new element iterators such as frontVertices and frontEdges.

General-Purpose Data Structures Platforms that support general-purpose data structures
can be leveraged for implementations of frontiers. This second lowering is effectively a follow-
up which specializes the intermediate API. The corresponding lowerings look similar to
how frontier explorations are traditionally implemented in general-purpose programming
languages.

Becausewe have full control over the initial lowering, we can expect certain fixed patterns
in the API form. This significantly simplifies the implementation of this secondary lowering,
which only has to be able to support program shapes emitted by the first.

8.3.3 Community Detection
Affected Edges The first step in lowering commnuity detection constructs is the lowering
of case-matching on affected edges. This lowering removes the foreach with case body and
replaces it with conventional foreach loops. These foreach loops use the iterator patterns that
are reserved for internal use, such as neighborsInCommunity and neighborsOutCommunities.

Depending on the configuration of the community graph element type and the specific
arrangement operation used (Move or Merge), some case branches can be combined. The
different scenarios are described in Table 8.1.

68

8.3.
O
perationalSem

anticsby
Low

ering

Effect Move Merge
released
between

neighborsInCommunity(Base =>Aggr, movingVer-
tex, targetCommunity)

edgesBetweenCommunities(Base => Aggr, sourceCommunity, target-
Community)

captured be-
tween neighborsInCommunity(Base =>Aggr, movingVer-

tex, sourceCommunity)

N/A

released
from

edgesOfCommunity(Base => Aggr, sourceCommunity)

captured in neighborsInCommunity(Base =>Aggr, movingVer-
tex, targetCommunity)

edgesOfCommunity(Base =>Aggr, sourceCommunity) + edgesBetween-
Communities(Base => Aggr, sourceCommunity, targetCommunity)

relinked neighborsOutCommunities(Base => Aggr, mov-
ingVertex, sourceCommunity, targetCommunity)

edgesOutCommunity(Base => Aggr, sourceCommunity, targetCommu-
nity)

Table 8.1: Overview of which lower iterators should be used to cover which effects under both Move and Merge, disregarding self-edges

69

8. EVALUATION

G v.com (before) Base ⇒ Aggr v.com (after)
v#0 5L v#0 v#0 5L
v#1 4L v#1 v#2 8L
v#2 4L v#1 v#2 8L
v#3 8L v#2 v#2 8L

Table 8.2: Gradual community projection across hierarchy

CommunityGraph to Property After the first lowering, all remaining domain-specific syn-
tax is related to managing the community graphs. There are many small constructs, which
make this lowering particularly hard to implement. In summary, what we do is we get rid
of all community types and operators. The result is a program where communities are rep-
resented by long vertex properties.

The ‘heavy lifting’ of constructing the initial graph and consecutive aggregation is still
handed off to builtin functions, as follows.

• procedure void createMappedNullCommunityGraph(in graph Base, out graph Tent, out
property<vertex(Base), vertex(Tent)> belongsTo)

– Initializes an ordinary graph Tent with as many vertices as in Base, each of which
is assigned to a unique vertex from Base in the belongsTo property.

• procedure void createPreMappedNullCommunityGraph(in graph Base, in property<vertex
(Base), long > primer, out graph Tent, out property<vertex(Base), vertex(Tent)>
belongsTo)

– Special case of createMappedNullCommunityGraph where the belongsTo mapping is
initialized differently. Each vertex from Base that has the same value for primer is
instead associated with the same vertex from Tent.

– This is intended to be used with the collapse instruction. Typically, com from
finalizeCommunityGraph is fed into primer.

– This is also used for init ... by reflect

• procedure void finalizeCommunityGraph(in graph G, in graph Base, in-out graph TentAggr
, in property<vertex(Base), vertex(TentAggr)> belongsTo, in-out property<vertex
(G), long > com)

– Takes a base graph Base, another graph TentAggr and a belongsTo property, which
were initialized by one of the previous functions.

– Constructs aggregate edges in the graph TentAggr based on edges from Base, in
accordance with the belongsTo mapping.

– Updates the projection property com in accordance with belongsTo, respecting the
previous values in com to support hierarchical projection too. Table 8.2 demon-
strates this.

70

Chapter 9

Related work

In this chapter we cover several different areas in which academic and commercial work has
progressed, related to our topic. We briefly outline the differences and similarities and point
out where our ideas could be applied.

9.1 Graph Analysis Landscape
While this thesis focuses on imperative algorithmic graph processing, the full landscape of
graph analysis is much broader. We can classify at least four different approaches, each of
which have their unique strengths andweaknesses. In the following subsections, we compare
each with their respective pros and cons.

9.1.1 SQL-like languages
Graphs are typically stored in some form of database geared towards representing graphs.
For all intents and purposes of graph processing, it is not necessarily relevant how exactly
this data is represented but only thatwe can analyze it. Amajor advantage of using databases
is their ability to performwork close to the source of data before transmitting a subset of data
to the requester.

Traditionally, the intent of the data to be requested is declaratively modeled using SQL.
By extension, graph databases have evolved SQL to support graph-native operations. Cur-
rently most used are openCypher [25] and PGQL [62]. PGQL is used exclusively in Oracle
products, while openCypher is derived from Neo4j’s proprietary Cypher and supported in
other vendors’ graph databases [50, 72]. Other vendors develop their own competing SQL-
like languages [27, 30]. Recently, ISO/IEC have published GQL, a standard [38] which takes
ideas from PGQl, openCypher and G-CORE [2]. Separately a few months earlier, ISO/IEC
also extended SQL with property graph syntax through SQL/PGQ [39].

The clear advantage of querying graphs this way is that there is only a small learning
curve. Many programmers are already familiar with some SQL dialect and should be able
to to quickly learn how to query graphs.

The major disadvantage of an SQL-like approach is the declarative nature of SQL and
the non-graph specific baggage that comes with it. Queries alone are insufficient to imple-
ment arbitrary algorithms. This is partially resolved with imperative extensions such as the
standardized SQL/PSM [40] or other more strongly deviating dialects such as GSQL [30]
or AQL [6]. However, this only makes sense in a context where the usage of SQL is manda-
tory or where this is the only feasible interface to the desired database. DSLs are particularly
suited for this situation if some of these requirements are loosened up.

To overcome some of these limitations, some vendors compromise by implementing pop-
ular graph algorithms as built-in functions [5]. Those are implemented directly in the data-

71

9. RELATED WORK

base runtime itself with an opaque implementation in a different programming language.
The algorithm implementations may be modified or extended by a database administrator,
but it is not a first-class feature.

9.1.2 Machine-local processing libraries
Another approach to graph processing is locally without the use of a database, or only in-
directly for long-term persistence. This is achieved through graph processing libraries for
general-purpose languages. Such libraries typically abstract thememory lay-out of the graph
and provide various read and write access points to efficiently iterate or filter elements. It is
then mostly up to the programmer itself to build arbitrary algorithms around such a library.
Well-known libraries include Boost Graph Library [67] and NetworkX [32, 53]. Over the last
years, significant efforts have been made to optimize the performance of algorithms using
these libraries [15, 44, 69].

Advantages of these local implementations are simplicity, convenience and predictability.
While their implementations may still be complex, their usage is usually intentionally not.
Particularly NetworkX, which has been around for almost 20 years and is implemented in
Python tends to scripting use cases, which is less often seen in other approaches.

The main disadvantage is scalability. Such libraries are only intended to be used on a
single machine. While they attempt to exploit local parallelism, CPU and memory limits are
guaranteed to be hit when dealing with massive graphs.

9.1.3 Graph-parallel systems
This is where graph-parallel systems come into play, being able to handle graphs with mil-
lions or billions of vertices and edges. In 1990, Valiant published the bulk-synchronous par-
allel (BSP) model [76], long before distributed graph processing became more relevant in
the last 10-20 years. This formed the basis for Google’s highly-influential Pregel model [49,
81], which extends BSP with graph-specific abstractions. This was used in their proprietary
implementations, but has also been picked up by major vendors such as Neo4j and Apache
Spark [80]. Over the last 10 years, more and more frameworks targeting large-scale paral-
lel graph processing have been developed [17, 19, 26, 29, 36]. While less popular, similar
research has been done into running graph analysis on GPUs with a focus of integrating
machine learning (ML) [51, 57, 78].

The primary benefit of these graph-parallel systems or frameworks is their scalability.
They are designed to handle very large graphs that span many machines to run logic in par-
allel. To be able to efficiently leverage such systems, it is necessary to know more about its
implementation details compared to any other approach. On the contrary, without being in-
formed about how the systemworks, it is easier to misuse the system unintentionally. While
that also poses a risk for the previously covered library approach, the detriment of improper
use is amplified due to the risk of nullifying the benefits gained by the near-horizontal scaling
that this approach operates on.

9.2 Other Domain-Specific Languages
As mentioned in the introduction, several DSLs other than GMIR have been developed that
target graph analytics: Gremlin [4], Falcon [18] and GraphIt [82]. We compare all and dis-
cuss their relation to GMIR and our three aspects of new abstraction.

Gremlin [4] (2009) Gremlin can be considered both a query language and an algorithm
language. It is a fluentAPI designed to be used fromGroovy, so it is neither SQL-like or aDSL.
Repetition, somewhat similar to our fixed-point abstraction is already present. Full frontier

72

9.2. Other Domain-Specific Languages

exploration as we introduced is currently impossible without supplementary Groovy code.
The same problem can be seen when attempting to perform nontrivial community detection.

The Gremlin API appears to be flexible and adaptable enough to potentially support the
constructs to support our abstractions. It has many use-case-specific feature already and is
still evolving. More configurable bookkeeping or the introduction of a frontier data type
is sufficient to support frontier exploration. Similarly, community detection can be directly
implemented by extending Gremlin with APIs similar to our proposal.

Falcon [18] (2015) Falcon’s primary focus was providing a tunable high-level abstraction
for parallel graph algorithms to be compiled to heterogeneous hardware configurations, some-
thing the authors critique Green-Marl for not supporting. For its time, it was also novel in
supporting algorithms that work on a changing graph.

The FalconDSL is implemented as a graph extension to theC language, providing various
new data types and syntax constructs for both structure and tuning. Only primitive data
structures (point, edge, graph, set, collection) are provided. Therefore, implementing either
frontier exploration or community detection suffers from exactly the same problems as in
PGX Algorithm and Green-Marl: it is not abstract enough. However, this does also mean
that the missing features can be implemented relatively straightforwardly in a similar way
to how we extended GMIR.

GraphIt [82] (2018) and GraphIR [13] (2021) The GraphIt DSL and its successor IR en-
capsulation GraphIR are a standalone languages, similar to Falcon and GMIR in many ways.
Unique to GraphIt is its split-DSL approach, an explicit separation between an algorithm lan-
guage and a scheduling language. Due to the focus on developing such scheduling language
for tuning purposes, due algorithm language itself is rather simple and therefore suffers from
the same lack of higher-level algorithmic data types as Falcon and Green-Marl. Similarly, the
missing features can be implemented as in Falcon, but consideration needs to be taken with
respect to the scheduling language which needs to be kept in sync.

73

Chapter 10

Conclusions & Future Work

Expressing graph algorithms concisely, efficiently and correctly is and remains a broad and
open-ended problem. The main problem we found with current approaches is the existence
of a large conceptual gap between algorithm theory and realized implementations. Domain-
specific language (DSL) are a proven tool for helping close this gap, which is why the Green-
Marl intermediate representation (IR) (GMIR) language was introduced a few years ago.
Because GMIR was intentionally been developed to counter the rigidness of Green-Marl, its
expressiveness is limited. Our goal was to close the gap by identifying areas of improvement
to broaden the algorithm support or expressiveness in GMIR.

In this chapter, we briefly summarize the work we did and draw our final conclusions
on that based on the preceding evaluation. Following this, we discuss our work to provide
input for future work.

10.1 Conclusions
• We performed an initial broad domain analysis. Based on the outcome of that, we

selected three subdomains which we focused on: fixed-point iteration, frontier explo-
ration and community detection.

• We performed more extensive domain analysis for each of these subdomains to distill
the essence of these algorithms. This formed the basis for the syntax and static seman-
tics which we introduced to abstract these concepts.

• We implemented all syntax and static semantics in the commercial Oracle GMIR com-
piler using the Spoofax Language Framework, following the footsteps of Voelter’s seven
design dimensions [77].

• We successfully implemented many algorithms using our extended syntax, directly
showing that GMIR has become more expressive.

• By means of lowerings, we further demonstrated that these abstractions narrow the
conceptual gap and can be meaningfully compiled to different existing commercial
graph processing frameworks, such s PGX.D [36, 66] and the Oracle RDBMS.

• We filed U.S. patent applications for our abstractions for frontier exploration and com-
munity detection.

10.2 Future Work
This still leaves work to be done in various areas and opens doors for other future work in
adjacent areas. We identify at least four clear areas based on the experience gathered during

75

10. CONCLUSIONS & FUTURE WORK

the execution of this project and based on the conclusions drawn above. We cover each in no
particular order in limited detail, as that is far our of this thesis’ scope.

10.2.1 User-Defined Exploration Policies
We proposed several different exploration policies to configure frontiers with. Some opti-
mizations such as ∆-stepping [52] can currently not be implemented. It seems that optimiza-
tions that would be opaque to the processing block itself can be fully implemented as a user-
defined exploration policy.

10.2.2 Divisive Community Detection
The opposite of this is divisive community detection, which seems similar but appears to
be fundamentally different; moving and merging are no longer applicable. We intentionally
only covered agglomerative community detection, as we realized early on that these differ-
ences are significant. Even though there appear to be less algorithms that perform divisive
community detection, it does come with some unique benefits that are worth exploring.

One potential advantage over agglomerative community detection parallelization. Such
an algorithm starts off with one large community, representing all vertices from the under-
lying graph. Once the first layer is finalized and several new communities are created, each
community can be considered independently.

10.2.3 Multiple Membership & Fuzzy Logic
In our community detection design, a vertex is always associated to exactly one commu-
nity, which in turn, represents one or more vertices. This is far from a perfect model of how
real-world communities are formed. Consider for example a person (vertex) being part of
a tight social circle with family and friends, but simultaneously being less strongly part of
a community of colleagues at work. This information can only be captured if a vertex can
be associated to more than one community at a time. Alternative algorithms such as clique
percolation method (CPM) partially address this [56], but DSL support is currently lacking.

As already hinted at, not all community memberships are equal. Moreover, not all mem-
bership is certain. We only considered algorithms where the resulting community structure
does not capture any of this multiplicity or uncertainty. Ideally, this information is propa-
gated throughout the algorithm itself and to the caller. While separate, these two aspects
both seem to involve probabilities. Supporting this correctly likely requires usage of fuzzy
logic, for which some algorithms have been designed [9, 28, 48].

10.2.4 RandomWalks and Sampling
In community detection, many algorithms run deterministically or at least behave correctly
under deterministic execution. Some benefit from nondeterminism to reach convergence
faster. However, some algorithms explicitly rely on randomness to ensure correct results [79].
First-class support for this currently exists to some degree, as a modifier on iterators.

During development, we also observed a common pattern in several scientific and propri-
etary algorithms that perform randomwalks to gather information from a neighborhood [59,
63]. This was performed by a relatively lengthy manual process. There seem to be some
opportunities here, as a randomwalk can be seen as a controlled form of local frontier explo-
ration. Such a frontier would be sequential/linear and have an exploration policy that selects
the next hop either arbitrarily or based on some relative probability value. Additional con-
siderations need to bemade for features such as random restarts andmechanics to aggregate
collected information.

76

10.2. Future Work

10.2.5 Higher-Level Abstractions and Syntactic Sugar
The new abstractions described in this thesis were evaluated on GMIR, an IR-level language.
Despite this, out abstractions are general in nature. We only used GMIR as it was the most
suitable vehicle to performourwork on. Moreover, having performed ourwork in the context
of an IR provided some degree of worry-free design as users typically do not interact with
IRs. For example, we did not introduce any syntactic sugar, but there were some occasions
arose where some syntactic sugar would have been convenient.

An IR is typically mapped to from a higher-level language in which users functionally
express algorithms. For any of our new abstractions to be accessible from a higher-level
language, corresponding abstractions need to be devised. It is likely that most if not all can
be ported directly into a higher-level language. Still, there are opportunities for even higher-
level features or syntactic sugar features, which is what we discuss in this subsection.

Automatic Priority Values Weighted frontiers need to have each element associated with
some priority value. Sometimes, these values are static to algorithm and correspond directly
to values of some property bound to the frontier elements. Both during initialization and
expansion, these values are looked up by performing a property access to the same property.
This could be captured by syntactic sugar where the name of the property in question is
provided at the declaration site of the frontier. This makes the code more concise, less bug-
prone and friendlier to refactoring.

Size Tracking For example, in agglomerative community detection, some algorithms keep
track of the ‘size’ of communities. This term is very ambiguous, but one potential meaning
given to it is the amount of vertices that are recursively a member of a given community. In
other words, any community starts off with size 1, as they are all singletons by definition on
the first layer. A move affects the source community by´1 and the target community by+1,
whereas a merge nullifies the source community and adds all to the target community. The
value upon aggregation is propagated to the next layer, effectively causing a move of one
second-layer vertex to change the ‘size’ of the communities between which it moves to be
modified by the amount of first-layer vertices are represented by that vertex. More precisely,
this can be referred to as the recursive size of communities.

Performing this recursive size tracking manually is trivial but requires a handful of lines
of code. While easy, it is typically an auxiliary value that algorithms need to keep track of
and therefore secondary priority. Still, it is critical that this information is updated correctly
at every location where vertices are rearranged.

Centralized Hooks In the proposed design, effects can be specified on a rearrangement
instruction only. Taking the example of size tracking from above, this means that the size
update instructions need to be placed on each rearrangement instruction. By allowing the ef-
fects to be specified global to the agglomeration, this redundancy can be resolved. A desugar-
ing pass would simply copy the agglomeration-global effects to each related rearrangement.

Community Property Inheritance In community detection, communities can have prop-
erties associated. Our proposed design separates such properties from those on ‘ordinary’
vertices or edges. Even though in a hierarchical community construction communities from
base layers are represented by ordinary vertices, they are defined on a graph distinct from
the input graph and therefore do not share any properties.

A typical use-case is a distance property on edges, used to calculate how similar vertices
are. Under community detection, the values of that property are used one-to-one in the first
layer. On consecutive layers, aggregated values are used, which are calculated by summing
the property values of related edges. For both cases together, the proposed design forces a

77

10. CONCLUSIONS & FUTURE WORK

separate community-bound property to be declared and initialized with copied values. This
effectively results in a problem related to the Automatic Priority Values, but more generalized.

Default Aggregation Values of community-bound properties need to be aggregated to re-
flect the structural agglomeration. In practice, values are often summed. The design at hand
always requires all aggregations to be provided explicitly. It may be feasible to assume that
properties are aggregated by sum by default. This would reduce the code size even further,
especially when combined with Automatic Priority Values or Community Property Inheritance.

Extended Projection: Spanning Trees of Communities Both in frontier exploration and
community detection, we have the concept of projection to concisely expose certain derived
information in more generic data structures. Currently, under community detection it is
only possible to project the cross-hierarchy vertex-community assignment into a long prop-
erty. The way that communities are formed under agglomeration appears to be related to
spanning trees. It is unclear what this information would be relevant for, but the projections
of community structures can be extended.

78

Bibliography

[1] Takuya Akiba, Yoichi Iwata, and Yuichi Yoshida. “Fast exact shortest-path distance
queries on large networks by pruned landmark labeling”. In: Proceedings of the 2013
ACMSIGMOD International Conference onManagement of Data. SIGMOD ’13. NewYork,
NY, USA: Association for Computing Machinery, June 22, 2013, pp. 349–360. ISBN: 978-
1-4503-2037-5. DOI: 10.1145/2463676.2465315. URL: https://dl.acm.org/doi/10.1145/
2463676.2465315 (visited on June 21, 2024).

[2] Renzo Angles et al. “G-CORE: A Core for Future Graph Query Languages”. In: Pro-
ceedings of the 2018 International Conference on Management of Data. SIGMOD ’18. New
York, NY, USA: Association for Computing Machinery, May 27, 2018, pp. 1421–1432.
ISBN: 978-1-4503-4703-7. DOI: 10.1145/3183713.3190654. URL: https://dl.acm.org/doi/
10.1145/3183713.3190654 (visited on June 4, 2024).

[3] Hendrik van Antwerpen et al. “Scopes as types”. In: Proceedings of the ACM on Pro-
gramming Languages 2 (OOPSLA Oct. 24, 2018), 114:1–114:30. DOI: 10.1145/3276484.
URL: https://dl.acm.org/doi/10.1145/3276484 (visited on May 30, 2024).

[4] Apache TinkerPop: Gremlin. URL: https://tinkerpop.apache.org/gremlin.html (visited
on May 14, 2024).

[5] APOC user guide for Neo4j 5 - APOC Documentation. Neo4j Graph Data Platform. URL:
https://neo4j.com/docs/apoc/5/ (visited on Nov. 4, 2024).

[6] AQL Documentation. URL: https://docs.arangodb.com/3.12/aql/ (visited on May 31,
2024).

[7] B. Bebee et al. “Amazon Neptune: Graph Data Management in the Cloud”. In: In-
ternational Workshop on the Semantic Web. 2018. URL: https://ceur-ws.org/Vol-
2180/paper-79.pdf (visited on May 31, 2024).

[8] Kamal Berahmand and Asgarali Bouyer. “LP-LPA: A link influence-based label propa-
gation algorithm for discovering community structures in networks”. In: International
Journal of Modern Physics B 32.06 (Mar. 2018). Publisher: World Scientific Publishing
Co., p. 1850062. ISSN: 0217-9792. DOI: 10.1142/S0217979218500625. URL: https://www.
worldscientific.com/doi/abs/10.1142/S0217979218500625 (visited on July 17, 2024).

[9] James C. Bezdek, Robert Ehrlich, and William Full. “FCM: The fuzzy c-means cluster-
ing algorithm”. In: Computers & Geosciences 10.2 (1984), pp. 191–203. ISSN: 0098-3004.
DOI: 10.1016/0098-3004(84)90020-7. URL: https://www.sciencedirect.com/science/
article/pii/0098300484900207 (visited on Aug. 7, 2024).

[10] Vincent D. Blondel et al. “Fast unfolding of communities in large networks”. In: Journal
of Statistical Mechanics: Theory and Experiment 2008.10 (Oct. 2008), P10008. ISSN: 1742-
5468. DOI: 10.1088/1742-5468/2008/10/P10008. URL: https://dx.doi.org/10.1088/1742-
5468/2008/10/P10008 (visited on May 9, 2024).

79

https://doi.org/10.1145/2463676.2465315
https://dl.acm.org/doi/10.1145/2463676.2465315
https://dl.acm.org/doi/10.1145/2463676.2465315
https://doi.org/10.1145/3183713.3190654
https://dl.acm.org/doi/10.1145/3183713.3190654
https://dl.acm.org/doi/10.1145/3183713.3190654
https://doi.org/10.1145/3276484
https://dl.acm.org/doi/10.1145/3276484
https://tinkerpop.apache.org/gremlin.html
https://neo4j.com/docs/apoc/5/
https://docs.arangodb.com/3.12/aql/
https://ceur-ws.org/Vol-2180/paper-79.pdf
https://ceur-ws.org/Vol-2180/paper-79.pdf
https://doi.org/10.1142/S0217979218500625
https://www.worldscientific.com/doi/abs/10.1142/S0217979218500625
https://www.worldscientific.com/doi/abs/10.1142/S0217979218500625
https://doi.org/10.1016/0098-3004(84)90020-7
https://www.sciencedirect.com/science/article/pii/0098300484900207
https://www.sciencedirect.com/science/article/pii/0098300484900207
https://doi.org/10.1088/1742-5468/2008/10/P10008
https://dx.doi.org/10.1088/1742-5468/2008/10/P10008
https://dx.doi.org/10.1088/1742-5468/2008/10/P10008

BIBLIOGRAPHY

[11] Houda Boukham et al. “A Multi-target, Multi-paradigm DSL Compiler for Algorith-
mic Graph Processing”. In: Proceedings of the 15th ACM SIGPLAN International Confer-
ence on Software Language Engineering. SLE 2022. New York, NY, USA: Association for
Computing Machinery, Dec. 1, 2022, pp. 2–15. ISBN: 978-1-4503-9919-7. DOI: 10.1145/
3567512.3567513. URL: https://dl.acm.org/doi/10.1145/3567512.3567513 (visited on
May 7, 2024).

[12] Houda Boukham et al. “Spoofax at Oracle: Domain-Specific Language Engineering
for Large-Scale Graph Analytics”. In: Eelco Visser Commemorative Symposium (EVCS
2023). Ed. by Ralf Lämmel, Peter D. Mosses, and Friedrich Steimann. Vol. 109. Open
Access Series in Informatics (OASIcs). ISSN: 2190-6807. Dagstuhl, Germany: Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2023, 5:1–5:8. ISBN: 978-3-95977-267-9. DOI:
10.4230/OASIcs.EVCS.2023.5. URL: https://drops.dagstuhl.de/entities/document/10.
4230/OASIcs.EVCS.2023.5 (visited on Dec. 14, 2024).

[13] Ajay Brahmakshatriya et al. “Taming the Zoo: The Unified GraphIt Compiler Frame-
work for Novel Architectures”. In: 2021 ACM/IEEE 48th Annual International Sympo-
sium onComputer Architecture (ISCA). 2021ACM/IEEE 48thAnnual International Sym-
posium on Computer Architecture (ISCA). ISSN: 2575-713X. June 2021, pp. 429–442.
DOI: 10.1109/ISCA52012.2021.00041. URL: https://ieeexplore.ieee.org/abstract/
document/9499863 (visited on June 17, 2024).

[14] SergeyBrin andLawrence Page. “The anatomyof a large-scale hypertextualWeb search
engine”. In: Computer Networks and ISDN Systems 30.1 (Apr. 1998), pp. 107–117. ISSN:
01697552. DOI: 10.1016/S0169-7552(98)00110-X. URL: https://linkinghub.elsevier.
com/retrieve/pii/S016975529800110X (visited on May 9, 2024).

[15] Benjamin Brock et al. The GraphBLAS C API Specification: Version 2.0.0. Nov. 15, 2021.
URL: https://graphblas.org/docs/GraphBLAS_API_C_v2.0.0.pdf.

[16] Jochem Broekhoff. “Extracting LLVM Intermediate Representation from Agda”. PhD
thesis. Delft: DelftUniversity of Technology, June 27, 2022. 20 pp. URL: https://repository.
tudelft.nl/record/uuid:6ed6ad26-18c3-4427-b99a-c6241f7102c7 (visited on Feb. 24,
2025).

[17] Rong Chen et al. “PowerLyra: Differentiated Graph Computation and Partitioning on
Skewed Graphs”. In: ACM Transactions on Parallel Computing 5.3 (Jan. 22, 2019), 13:1–
13:39. ISSN: 2329-4949. DOI: 10.1145/3298989. URL: https://dl.acm.org/doi/10.1145/
3298989 (visited on June 4, 2024).

[18] Unnikrishnan Cheramangalath, Rupesh Nasre, and Y. N. Srikant. “Falcon: A Graph
Manipulation Language for Heterogeneous Systems”. In: ACM Transactions on Archi-
tecture and Code Optimization 12.4 (Dec. 22, 2015), 54:1–54:27. ISSN: 1544-3566. DOI: 10.
1145/2842618. URL: https://dl.acm.org/doi/10.1145/2842618 (visited on May 17,
2024).

[19] Pengjie Cui et al. “CGgraph: An Ultra-Fast Graph Processing System onModern Com-
modity CPU-GPU Co-processor”. In: Proceedings of the VLDB Endowment 17.6 (May 3,
2024), pp. 1405–1417. ISSN: 2150-8097. DOI: 10 . 14778 / 3648160 . 3648179. URL: https :
//dl.acm.org/doi/10.14778/3648160.3648179 (visited on June 18, 2024).

[20] AndrewDavidson et al. “Work-Efficient ParallelGPUMethods for Single-Source Short-
est Paths”. In: 2014 IEEE 28th International Parallel and Distributed Processing Sympo-
sium. 2014 IEEE 28th International Parallel and Distributed Processing Symposium.
ISSN: 1530-2075. May 2014, pp. 349–359. DOI: 10. 1109/ IPDPS .2014 .45. URL: https:
//ieeexplore.ieee.org/abstract/document/6877269 (visited on June 21, 2024).

80

https://doi.org/10.1145/3567512.3567513
https://doi.org/10.1145/3567512.3567513
https://dl.acm.org/doi/10.1145/3567512.3567513
https://doi.org/10.4230/OASIcs.EVCS.2023.5
https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.EVCS.2023.5
https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.EVCS.2023.5
https://doi.org/10.1109/ISCA52012.2021.00041
https://ieeexplore.ieee.org/abstract/document/9499863
https://ieeexplore.ieee.org/abstract/document/9499863
https://doi.org/10.1016/S0169-7552(98)00110-X
https://linkinghub.elsevier.com/retrieve/pii/S016975529800110X
https://linkinghub.elsevier.com/retrieve/pii/S016975529800110X
https://graphblas.org/docs/GraphBLAS_API_C_v2.0.0.pdf
https://repository.tudelft.nl/record/uuid:6ed6ad26-18c3-4427-b99a-c6241f7102c7
https://repository.tudelft.nl/record/uuid:6ed6ad26-18c3-4427-b99a-c6241f7102c7
https://doi.org/10.1145/3298989
https://dl.acm.org/doi/10.1145/3298989
https://dl.acm.org/doi/10.1145/3298989
https://doi.org/10.1145/2842618
https://doi.org/10.1145/2842618
https://dl.acm.org/doi/10.1145/2842618
https://doi.org/10.14778/3648160.3648179
https://dl.acm.org/doi/10.14778/3648160.3648179
https://dl.acm.org/doi/10.14778/3648160.3648179
https://doi.org/10.1109/IPDPS.2014.45
https://ieeexplore.ieee.org/abstract/document/6877269
https://ieeexplore.ieee.org/abstract/document/6877269

Bibliography

[21] Alin Deutsch et al. TigerGraph: A Native MPP Graph Database. Jan. 24, 2019. DOI: 10.
48550/arXiv.1901.08248. arXiv: 1901.08248[cs]. URL: http://arxiv.org/abs/1901.
08248 (visited on June 3, 2024).

[22] EdsgerW.Dijkstra. “Anote on twoproblems in connexionwith graphs”. In:Numerische
Mathematik 1.1 (Dec. 1, 1959), pp. 269–271. ISSN: 0945-3245. DOI: 10.1007/BF01386390.
URL: https://doi.org/10.1007/BF01386390 (visited on June 24, 2024).

[23] Santo Fortunato and Marc Barthélemy. “Resolution limit in community detection”. In:
Proceedings of the National Academy of Sciences 104.1 (Jan. 2, 2007). Publisher: Proceed-
ings of the National Academy of Sciences, pp. 36–41. DOI: 10.1073/pnas.0605965104.
URL: https://www.pnas.org/doi/full/10.1073/pnas.0605965104 (visited on Sept. 23,
2024).

[24] Leonardo Fraccaroli et al. “FAST-CON: aMulti-source Approach for Efficient S- T Con-
nectivity on Sparse Graphs”. In: 2023 IEEE High Performance Extreme Computing Confer-
ence (HPEC). 2023 IEEE High Performance Extreme Computing Conference (HPEC).
ISSN: 2643-1971. Sept. 2023, pp. 1–6. DOI: 10 . 1109 / HPEC58863 . 2023 . 10363544. URL:
https://ieeexplore.ieee.org/document/10363544 (visited on June 21, 2024).

[25] Nadime Francis et al. “Cypher: An Evolving Query Language for Property Graphs”.
In: Proceedings of the 2018 International Conference on Management of Data. SIGMOD ’18.
New York, NY, USA: Association for Computing Machinery, May 27, 2018, pp. 1433–
1445. ISBN: 978-1-4503-4703-7. DOI: 10.1145/3183713.3190657. URL: https://dl.acm.org/
doi/10.1145/3183713.3190657 (visited on May 31, 2024).

[26] Xinbiao Gan et al. “GraphCube: Interconnection Hierarchy-aware Graph Processing”.
In: Proceedings of the 29th ACM SIGPLAN Annual Symposium on Principles and Practice
of Parallel Programming. PPoPP ’24. New York, NY, USA: Association for Computing
Machinery, Feb. 20, 2024, pp. 160–174. ISBN: 9798400704352. DOI: 10 . 1145 / 3627535 .
3638498. URL: https://dl.acm.org/doi/10.1145/3627535.3638498 (visited on June 10,
2024).

[27] Graphs in AQL | ArangoDB Documentation. URL: https://docs.arangodb.com/stable/
aql/graphs/ (visited on May 15, 2024).

[28] Steve Gregory. “Fuzzy overlapping communities in networks”. In: Journal of Statistical
Mechanics: Theory and Experiment 2011.2 (Feb. 2011), P02017. ISSN: 1742-5468. DOI: 10.
1088/1742-5468/2011/02/P02017. URL: https://dx.doi.org/10.1088/1742-5468/2011/
02/P02017 (visited on July 16, 2024).

[29] Samuel Grossman, Heiner Litz, and Christos Kozyrakis. “Making pull-based graph
processing performant”. In: ACM SIGPLAN Notices 53.1 (Feb. 10, 2018), pp. 246–260.
ISSN: 0362-1340. DOI: 10.1145/3200691.3178506. URL: https://dl.acm.org/doi/10.1145/
3200691.3178506 (visited on June 10, 2024).

[30] GSQL Language Reference - GSQL Language Reference. TigerGraph Documentation. URL:
https://docs.tigergraph.com/gsql-ref/current/intro/ (visited on May 14, 2024).

[31] José Rolando Guay Paz. “Introduction to Azure Cosmos DB”. In: Microsoft Azure Cos-
mos DB Revealed: A Multi-Model Database Designed for the Cloud. Ed. by José Rolando
Guay Paz. Berkeley, CA: Apress, 2018, pp. 1–23. ISBN: 978-1-4842-3351-1. DOI: 10.1007/
978-1-4842-3351-1_1. URL: https://doi.org/10.1007/978-1-4842-3351-1_1 (visited on
May 31, 2024).

[32] Aric Hagberg. NetworkX first public release (NX-0.2). E-mail. Apr. 12, 2005. URL: https:
/ / mail . python . org / pipermail / python - announce - list / 2005 - April / 003924 . html
(visited on June 17, 2024).

81

https://doi.org/10.48550/arXiv.1901.08248
https://doi.org/10.48550/arXiv.1901.08248
https://arxiv.org/abs/1901.08248 [cs]
http://arxiv.org/abs/1901.08248
http://arxiv.org/abs/1901.08248
https://doi.org/10.1007/BF01386390
https://doi.org/10.1007/BF01386390
https://doi.org/10.1073/pnas.0605965104
https://www.pnas.org/doi/full/10.1073/pnas.0605965104
https://doi.org/10.1109/HPEC58863.2023.10363544
https://ieeexplore.ieee.org/document/10363544
https://doi.org/10.1145/3183713.3190657
https://dl.acm.org/doi/10.1145/3183713.3190657
https://dl.acm.org/doi/10.1145/3183713.3190657
https://doi.org/10.1145/3627535.3638498
https://doi.org/10.1145/3627535.3638498
https://dl.acm.org/doi/10.1145/3627535.3638498
https://docs.arangodb.com/stable/aql/graphs/
https://docs.arangodb.com/stable/aql/graphs/
https://doi.org/10.1088/1742-5468/2011/02/P02017
https://doi.org/10.1088/1742-5468/2011/02/P02017
https://dx.doi.org/10.1088/1742-5468/2011/02/P02017
https://dx.doi.org/10.1088/1742-5468/2011/02/P02017
https://doi.org/10.1145/3200691.3178506
https://dl.acm.org/doi/10.1145/3200691.3178506
https://dl.acm.org/doi/10.1145/3200691.3178506
https://docs.tigergraph.com/gsql-ref/current/intro/
https://doi.org/10.1007/978-1-4842-3351-1_1
https://doi.org/10.1007/978-1-4842-3351-1_1
https://doi.org/10.1007/978-1-4842-3351-1_1
https://mail.python.org/pipermail/python-announce-list/2005-April/003924.html
https://mail.python.org/pipermail/python-announce-list/2005-April/003924.html

BIBLIOGRAPHY

[33] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. “A Formal Basis for the Heuristic
Determination of Minimum Cost Paths”. In: IEEE Transactions on Systems Science and
Cybernetics 4.2 (July 1968). Conference Name: IEEE Transactions on Systems Science
and Cybernetics, pp. 100–107. ISSN: 2168-2887. DOI: 10.1109/TSSC.1968.300136. URL:
https://ieeexplore.ieee.org/document/4082128 (visited on Feb. 25, 2025).

[34] Taher H. Haveliwala. “Topic-sensitive PageRank”. In: Proceedings of the 11th interna-
tional conference on World Wide Web. WWW ’02. New York, NY, USA: Association for
Computing Machinery, May 7, 2002, pp. 517–526. ISBN: 978-1-58113-449-0. DOI: 10 .
1145/511446.511513. URL: https://dl.acm.org/doi/10.1145/511446.511513 (visited on
Aug. 16, 2024).

[35] Sungpack Hong et al. “Green-Marl: a DSL for easy and efficient graph analysis”. In:
Proceedings of the seventeenth international conference on Architectural Support for Program-
ming Languages and Operating Systems. ASPLOS XVII. New York, NY, USA: Associa-
tion for Computing Machinery, Mar. 3, 2012, pp. 349–362. ISBN: 978-1-4503-0759-8. DOI:
10.1145/2150976.2151013. URL: https://dl.acm.org/doi/10.1145/2150976.2151013
(visited on May 9, 2024).

[36] Sungpack Hong et al. “PGX.D: a fast distributed graph processing engine”. In: Pro-
ceedings of the International Conference for High Performance Computing, Networking, Stor-
age and Analysis. SC ’15. New York, NY, USA: Association for Computing Machinery,
Nov. 15, 2015, pp. 1–12. ISBN: 978-1-4503-3723-6. DOI: 10.1145/2807591.2807620. URL:
https://dl.acm.org/doi/10.1145/2807591.2807620 (visited on June 10, 2024).

[37] Sungpack Hong et al. The Green-Marl Language Specification. Mar. 1, 2024. URL: https:
//pgx.us.oracle.com/releases/stable/otn/odocs/latest/specification.pdf (visited
on June 10, 2024).

[38] ISO/IEC 39075:2024. Information technology — Database languages — GQL. Version 1.
Geneva, CH, Apr. 2024. URL: https://www.iso.org/standard/76120.html (visited on
June 28, 2024).

[39] ISO/IEC 9075-16:2023. Information technology — Database languages SQL - Part 16: Prop-
erty Graph Queries (SQL/PGQ). Version 1. Geneva, CH, June 2023. URL: https://www.
iso.org/standard/79473.html (visited on Oct. 28, 2024).

[40] ISO/IEC 9075-4:2023. Information technology — Database languages SQL - Part 4: Persis-
tent stored modules (SQL/PSM). Version 7. Geneva, CH, June 2023. URL: https://www.
iso.org/standard/76585.html (visited on Jan. 10, 2025).

[41] Lennart C.L. Kats, Rob Vermaas, and Eelco Visser. “Integrated language definition
testing: enabling test-driven language development”. In: Proceedings of the 2011 ACM
international conference on Object oriented programming systems languages and applications.
OOPSLA ’11. New York, NY, USA: Association for Computing Machinery, Oct. 22,
2011, pp. 139–154. ISBN: 978-1-4503-0940-0. DOI: 10.1145/2048066.2048080. URL: https:
//dl.acm.org/doi/10.1145/2048066.2048080 (visited on Feb. 21, 2025).

[42] Lennart C.L. Kats and Eelco Visser. “The Spoofax language workbench”. In: Proceed-
ings of the ACM international conference companion on Object oriented programming sys-
tems languages and applications companion. OOPSLA ’10. New York, NY, USA: Associa-
tion for ComputingMachinery, Oct. 17, 2010, pp. 237–238. ISBN: 978-1-4503-0240-1. DOI:
10.1145/1869542.1869592. URL: https://dl.acm.org/doi/10.1145/1869542.1869592
(visited on May 30, 2024).

[43] Leonard Kaufmann and Peter J. Rosseeuw. “Divisive Analysis (ProgramDIANA)”. In:
FindingGroups inData. Section: 6. JohnWiley&Sons, Ltd, 1990, pp. 253–279. ISBN: 978-0-
470-31680-1. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470316801.
ch6 (visited on Aug. 21, 2024).

82

https://doi.org/10.1109/TSSC.1968.300136
https://ieeexplore.ieee.org/document/4082128
https://doi.org/10.1145/511446.511513
https://doi.org/10.1145/511446.511513
https://dl.acm.org/doi/10.1145/511446.511513
https://doi.org/10.1145/2150976.2151013
https://dl.acm.org/doi/10.1145/2150976.2151013
https://doi.org/10.1145/2807591.2807620
https://dl.acm.org/doi/10.1145/2807591.2807620
https://pgx.us.oracle.com/releases/stable/otn/odocs/latest/specification.pdf
https://pgx.us.oracle.com/releases/stable/otn/odocs/latest/specification.pdf
https://www.iso.org/standard/76120.html
https://www.iso.org/standard/79473.html
https://www.iso.org/standard/79473.html
https://www.iso.org/standard/76585.html
https://www.iso.org/standard/76585.html
https://doi.org/10.1145/2048066.2048080
https://dl.acm.org/doi/10.1145/2048066.2048080
https://dl.acm.org/doi/10.1145/2048066.2048080
https://doi.org/10.1145/1869542.1869592
https://dl.acm.org/doi/10.1145/1869542.1869592
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470316801.ch6
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470316801.ch6

Bibliography

[44] Jeremy Kepner et al. “Mathematical foundations of the GraphBLAS”. In: 2016 IEEE
High Performance Extreme Computing Conference (HPEC). 2016 IEEE High Performance
Extreme Computing Conference (HPEC). Sept. 2016, pp. 1–9. DOI: 10.1109/HPEC.2016.
7761646. URL: https://ieeexplore.ieee.org/abstract/document/7761646 (visited on
June 10, 2024).

[45] Jon M. Kleinberg. “Authoritative sources in a hyperlinked environment”. In: J. ACM
46.5 (Sept. 1, 1999), pp. 604–632. ISSN: 0004-5411. DOI: 10.1145/324133.324140. URL:
https://dl.acm.org/doi/10.1145/324133.324140 (visited on Aug. 16, 2024).

[46] Chris Lattner et al. “MLIR: Scaling Compiler Infrastructure for Domain Specific Com-
putation”. In: 2021 IEEE/ACM International Symposium on Code Generation and Opti-
mization (CGO). 2021 IEEE/ACM International Symposium on Code Generation and
Optimization (CGO). Feb. 2021, pp. 2–14. DOI: 10.1109/CGO51591.2021.9370308. URL:
https://ieeexplore.ieee.org/abstract/document/9370308 (visited on May 14, 2024).

[47] Leiden algorithm. In: Wikipedia. Page Version ID: 1221225623. Apr. 28, 2024. URL: https:
//en.wikipedia.org/w/index.php?title=Leiden_algorithm&oldid=1221225623 (visited
on May 9, 2024).

[48] Wenjian Luo et al. “Community Detection by Fuzzy Relations”. In: IEEE Transactions
on Emerging Topics in Computing 8.2 (Apr. 2020), pp. 478–492. ISSN: 2168-6750. DOI: 10.
1109/TETC.2017.2751101. URL: https://ieeexplore.ieee.org/abstract/document/
8031356 (visited on June 18, 2024).

[49] Grzegorz Malewicz et al. “Pregel: a system for large-scale graph processing”. In: Pro-
ceedings of the 2010 ACM SIGMOD International Conference on Management of data. SIG-
MOD ’10. New York, NY, USA: Association for Computing Machinery, June 6, 2010,
pp. 135–146. ISBN: 978-1-4503-0032-2. DOI: 10.1145/1807167.1807184. URL: https://dl.
acm.org/doi/10.1145/1807167.1807184 (visited on May 13, 2024).

[50] Managed Graph Database - Amazon Neptune - AWS. Amazon Web Services, Inc. URL:
https://aws.amazon.com/neptune/ (visited on May 14, 2024).

[51] KeMeng et al. “A pattern based algorithmic autotuner for graph processing onGPUs”.
In: Proceedings of the 24th Symposium on Principles and Practice of Parallel Programming.
PPoPP ’19. New York, NY, USA: Association for Computing Machinery, Feb. 16, 2019,
pp. 201–213. ISBN: 978-1-4503-6225-2. DOI: 10.1145/3293883.3295716. URL: https://dl.
acm.org/doi/10.1145/3293883.3295716 (visited on June 17, 2024).

[52] U. Meyer and P. Sanders. “Δ-stepping: a parallelizable shortest path algorithm”. In:
Journal of Algorithms. 1998 European Symposium on Algorithms 49.1 (Oct. 1, 2003),
pp. 114–152. ISSN: 0196-6774. DOI: 10.1016/S0196-6774(03)00076-2. URL: https://
www.sciencedirect.com/science/article/pii/S0196677403000762 (visited on June 10,
2024).

[53] NetworkX — NetworkX documentation. URL: https://networkx.org/ (visited on June 17,
2024).

[54] M. E. J. Newman and M. Girvan. “Finding and evaluating community structure in
networks”. In: Physical Review E 69.2 (Feb. 26, 2004). Publisher: American Physical
Society, p. 026113. DOI: 10.1103/PhysRevE.69.026113. URL: https://link.aps.org/doi/
10.1103/PhysRevE.69.026113 (visited on May 24, 2024).

[55] Lawrence Page et al. “The PageRank Citation Ranking : Bringing Order to the Web”.
In: The Web Conference. Nov. 11, 1999. (Visited on May 31, 2024).

83

https://doi.org/10.1109/HPEC.2016.7761646
https://doi.org/10.1109/HPEC.2016.7761646
https://ieeexplore.ieee.org/abstract/document/7761646
https://doi.org/10.1145/324133.324140
https://dl.acm.org/doi/10.1145/324133.324140
https://doi.org/10.1109/CGO51591.2021.9370308
https://ieeexplore.ieee.org/abstract/document/9370308
https://en.wikipedia.org/w/index.php?title=Leiden_algorithm&oldid=1221225623
https://en.wikipedia.org/w/index.php?title=Leiden_algorithm&oldid=1221225623
https://doi.org/10.1109/TETC.2017.2751101
https://doi.org/10.1109/TETC.2017.2751101
https://ieeexplore.ieee.org/abstract/document/8031356
https://ieeexplore.ieee.org/abstract/document/8031356
https://doi.org/10.1145/1807167.1807184
https://dl.acm.org/doi/10.1145/1807167.1807184
https://dl.acm.org/doi/10.1145/1807167.1807184
https://aws.amazon.com/neptune/
https://doi.org/10.1145/3293883.3295716
https://dl.acm.org/doi/10.1145/3293883.3295716
https://dl.acm.org/doi/10.1145/3293883.3295716
https://doi.org/10.1016/S0196-6774(03)00076-2
https://www.sciencedirect.com/science/article/pii/S0196677403000762
https://www.sciencedirect.com/science/article/pii/S0196677403000762
https://networkx.org/
https://doi.org/10.1103/PhysRevE.69.026113
https://link.aps.org/doi/10.1103/PhysRevE.69.026113
https://link.aps.org/doi/10.1103/PhysRevE.69.026113

BIBLIOGRAPHY

[56] Gergely Palla et al. “Uncovering the overlapping community structure of complex net-
works in nature and society”. In: Nature 435.7043 (June 2005). Publisher: Nature Pub-
lishing Group, pp. 814–818. ISSN: 1476-4687. DOI: 10 . 1038 / nature03607. URL: https :
//www.nature.com/articles/nature03607 (visited on July 25, 2024).

[57] Sungwoo Park, Seyeon Oh, andMin-Soo Kim. “INFINEL: An efficient GPU-based pro-
cessing method for unpredictable large output graph queries”. In: Proceedings of the
29th ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel Program-
ming. PPoPP ’24. New York, NY, USA: Association for Computing Machinery, Feb. 20,
2024, pp. 147–159. ISBN: 9798400704352. DOI: 10.1145/3627535.3638490. URL: https:
//dl.acm.org/doi/10.1145/3627535.3638490 (visited on June 10, 2024).

[58] PGX Algorithm Specification. May 2, 2019. URL: https://docs.oracle.com/cd/E56133_
01/24.2.2/PGX_Algorithm_Language_Specification.pdf (visited on May 31, 2024).

[59] Pascal Pons and Matthieu Latapy. Computing communities in large networks using ran-
dom walks (long version). Dec. 12, 2005. DOI: 10.48550/arXiv.physics/0512106. arXiv:
physics/0512106. URL: http://arxiv.org/abs/physics/0512106 (visited on Sept. 26,
2024).

[60] Usha Nandini Raghavan, Réka Albert, and Soundar Kumara. “Near linear time algo-
rithm to detect community structures in large-scale networks”. In: Physical Review E
76.3 (Sept. 11, 2007). Publisher: American Physical Society, p. 036106. DOI: 10.1103/
PhysRevE.76.036106. URL: https://link.aps.org/doi/10.1103/PhysRevE.76.036106
(visited on July 16, 2024).

[61] John H. Reif. “Depth-first search is inherently sequential”. In: Information Processing
Letters 20.5 (June 12, 1985), pp. 229–234. ISSN: 0020-0190. DOI: 10.1016/0020-0190(85)
90024-9. URL: https://www.sciencedirect.com/science/article/pii/0020019085900249
(visited on Dec. 10, 2024).

[62] Oskar van Rest et al. “PGQL: a property graph query language”. In: Proceedings of
the Fourth International Workshop on Graph Data Management Experiences and Systems.
GRADES ’16. New York, NY, USA: Association for Computing Machinery, June 24,
2016, pp. 1–6. ISBN: 978-1-4503-4780-8. DOI: 10.1145/2960414.2960421. URL: https://dl.
acm.org/doi/10.1145/2960414.2960421 (visited on May 31, 2024).

[63] Alejandro Pérez Riascos and José L. Mateos. “Random walks on weighted networks:
a survey of local and non-local dynamics”. In: Journal of Complex Networks 9.5 (Oct. 1,
2021), cnab032. ISSN: 2051-1329. DOI: 10.1093/comnet/cnab032. URL: https://doi.org/
10.1093/comnet/cnab032 (visited on May 8, 2024).

[64] M. Rosvall, D. Axelsson, and C. T. Bergstrom. “The map equation”. In: The European
Physical Journal Special Topics 178.1 (Nov. 1, 2009), pp. 13–23. ISSN: 1951-6401. DOI: 10.
1140/epjst/e2010-01179-1. URL: https://doi.org/10.1140/epjst/e2010-01179-1
(visited on Aug. 22, 2024).

[65] Martin Rosvall and Carl T. Bergstrom. “Maps of random walks on complex networks
reveal community structure”. In: Proceedings of the National Academy of Sciences 105.4
(Jan. 29, 2008). Publisher: Proceedings of the National Academy of Sciences, pp. 1118–
1123. DOI: 10.1073/pnas.0706851105. URL: https://www.pnas.org/doi/full/10.1073/
pnas.0706851105 (visited on May 9, 2024).

[66] Nicholas P. Roth et al. “PGX.D/Async: A Scalable Distributed Graph PatternMatching
Engine”. In: Proceedings of the Fifth International Workshop on Graph Data-management Ex-
periences & Systems. GRADES’17. New York, NY, USA: Association for ComputingMa-
chinery, May 19, 2017, pp. 1–6. ISBN: 978-1-4503-5038-9. DOI: 10.1145/3078447.3078454.
URL: https://dl.acm.org/doi/10.1145/3078447.3078454 (visited on June 10, 2024).

84

https://doi.org/10.1038/nature03607
https://www.nature.com/articles/nature03607
https://www.nature.com/articles/nature03607
https://doi.org/10.1145/3627535.3638490
https://dl.acm.org/doi/10.1145/3627535.3638490
https://dl.acm.org/doi/10.1145/3627535.3638490
https://docs.oracle.com/cd/E56133_01/24.2.2/PGX_Algorithm_Language_Specification.pdf
https://docs.oracle.com/cd/E56133_01/24.2.2/PGX_Algorithm_Language_Specification.pdf
https://doi.org/10.48550/arXiv.physics/0512106
https://arxiv.org/abs/physics/0512106
http://arxiv.org/abs/physics/0512106
https://doi.org/10.1103/PhysRevE.76.036106
https://doi.org/10.1103/PhysRevE.76.036106
https://link.aps.org/doi/10.1103/PhysRevE.76.036106
https://doi.org/10.1016/0020-0190(85)90024-9
https://doi.org/10.1016/0020-0190(85)90024-9
https://www.sciencedirect.com/science/article/pii/0020019085900249
https://doi.org/10.1145/2960414.2960421
https://dl.acm.org/doi/10.1145/2960414.2960421
https://dl.acm.org/doi/10.1145/2960414.2960421
https://doi.org/10.1093/comnet/cnab032
https://doi.org/10.1093/comnet/cnab032
https://doi.org/10.1093/comnet/cnab032
https://doi.org/10.1140/epjst/e2010-01179-1
https://doi.org/10.1140/epjst/e2010-01179-1
https://doi.org/10.1140/epjst/e2010-01179-1
https://doi.org/10.1073/pnas.0706851105
https://www.pnas.org/doi/full/10.1073/pnas.0706851105
https://www.pnas.org/doi/full/10.1073/pnas.0706851105
https://doi.org/10.1145/3078447.3078454
https://dl.acm.org/doi/10.1145/3078447.3078454

Bibliography

[67] Jeremy Siek, Lie-Quan Lee, and Andrew Lumsdaine. The Boost Graph Library. Boost
C++ Libraries. Sept. 27, 2000. URL: https://www.boost.org/doc/libs/1_85_0/libs/
graph/doc/ (visited on June 17, 2024).

[68] Spoofax Team. Spoofax - Reference. URL: https://www.spoofax.dev/references/ (visited
on Jan. 17, 2025).

[69] Jiawen Sun, Hans Vandierendonck, and Dimitrios S. Nikolopoulos. “GraphGrind: ad-
dressing load imbalance of graph partitioning”. In: Proceedings of the International Con-
ference on Supercomputing. ICS ’17. New York, NY, USA: Association for Computing
Machinery, June 14, 2017, pp. 1–10. ISBN: 978-1-4503-5020-4. DOI: 10 . 1145 / 3079079 .
3079097. URL: https://dl.acm.org/doi/10.1145/3079079.3079097 (visited on June 10,
2024).

[70] Manuel Then et al. “The more the merrier: efficient multi-source graph traversal”. In:
Proceedings of the VLDB Endowment 8.4 (Dec. 1, 2014), pp. 449–460. ISSN: 2150-8097. DOI:
10.14778/2735496.2735507. URL: https://dl.acm.org/doi/10.14778/2735496.2735507
(visited on May 30, 2024).

[71] Yuanyuan Tian et al. “IBMDb2Graph: Supporting Synergistic andRetrofittable Graph
Queries Inside IBM Db2”. In: Proceedings of the 2020 ACM SIGMOD International Con-
ference onManagement of Data. SIGMOD ’20. New York, NY, USA: Association for Com-
puting Machinery, May 31, 2020, pp. 345–359. ISBN: 978-1-4503-6735-6. DOI: 10.1145/
3318464.3386138. URL: https://dl.acm.org/doi/10.1145/3318464.3386138 (visited on
May 21, 2024).

[72] TigerGraph. TigerGraph Announces Commitment to Support openCypher in GSQL. Tiger-
Graph Press Releases. Oct. 19, 2022. URL: https://www.tigergraph.com/press-article/
tigergraph - announces - commitment - to - support - opencypher - in - gsql/ (visited on
Jan. 10, 2025).

[73] Matthew Towers. Bidirectional Dijkstra. Matthew Towers’ homepage. May 30, 2020. URL:
https://www.homepages.ucl.ac.uk/~ucahmto/math/2020/05/30/bidirectional-
dijkstra.html (visited on May 15, 2024).

[74] V. A. Traag, L. Waltman, and N. J. van Eck. “From Louvain to Leiden: guaranteeing
well-connected communities”. In: Scientific Reports 9.1 (Mar. 26, 2019). Publisher: Na-
ture Publishing Group, p. 5233. ISSN: 2045-2322. DOI: 10.1038/s41598-019-41695-z. URL:
https://www.nature.com/articles/s41598-019-41695-z (visited on May 9, 2024).

[75] Gintaras Vaira and Olga Kurasova. “Parallel Bidirectional Dijkstra’s Shortest Path Al-
gorithm”. In: Databases and Information Systems VI. IOS Press, 2011, pp. 422–435. DOI:
10.3233/978-1-60750-688-1-422. URL: https://ebooks.iospress.nl/doi/10.3233/978-
1-60750-688-1-422 (visited on June 17, 2024).

[76] Leslie G. Valiant. “A bridging model for parallel computation”. In: Communications of
the ACM 33.8 (Aug. 1, 1990), pp. 103–111. ISSN: 0001-0782. DOI: 10.1145/79173.79181.
URL: https://dl.acm.org/doi/10.1145/79173.79181 (visited on May 24, 2024).

[77] Markus Voelter. DSL Engineering - Designing, Implementing and Using Domain-Specific
Languages. In collab. with Sebastian Benz et al. 2013. 558 pp. URL: https://voelter.de/
data/books/markusvoelter-dslengineering-1.0.pdf (visited on June 18, 2024).

[78] Yangzihao Wang et al. “Gunrock: GPU Graph Analytics”. In: ACM Transactions on Par-
allel Computing 4.1 (Aug. 23, 2017), 3:1–3:49. ISSN: 2329-4949. DOI: 10.1145/3108140. URL:
https://dl.acm.org/doi/10.1145/3108140 (visited on June 17, 2024).

85

https://www.boost.org/doc/libs/1_85_0/libs/graph/doc/
https://www.boost.org/doc/libs/1_85_0/libs/graph/doc/
https://www.spoofax.dev/references/
https://doi.org/10.1145/3079079.3079097
https://doi.org/10.1145/3079079.3079097
https://dl.acm.org/doi/10.1145/3079079.3079097
https://doi.org/10.14778/2735496.2735507
https://dl.acm.org/doi/10.14778/2735496.2735507
https://doi.org/10.1145/3318464.3386138
https://doi.org/10.1145/3318464.3386138
https://dl.acm.org/doi/10.1145/3318464.3386138
https://www.tigergraph.com/press-article/tigergraph-announces-commitment-to-support-opencypher-in-gsql/
https://www.tigergraph.com/press-article/tigergraph-announces-commitment-to-support-opencypher-in-gsql/
https://www.homepages.ucl.ac.uk/~ucahmto/math/2020/05/30/bidirectional-dijkstra.html
https://www.homepages.ucl.ac.uk/~ucahmto/math/2020/05/30/bidirectional-dijkstra.html
https://doi.org/10.1038/s41598-019-41695-z
https://www.nature.com/articles/s41598-019-41695-z
https://doi.org/10.3233/978-1-60750-688-1-422
https://ebooks.iospress.nl/doi/10.3233/978-1-60750-688-1-422
https://ebooks.iospress.nl/doi/10.3233/978-1-60750-688-1-422
https://doi.org/10.1145/79173.79181
https://dl.acm.org/doi/10.1145/79173.79181
https://voelter.de/data/books/markusvoelter-dslengineering-1.0.pdf
https://voelter.de/data/books/markusvoelter-dslengineering-1.0.pdf
https://doi.org/10.1145/3108140
https://dl.acm.org/doi/10.1145/3108140

BIBLIOGRAPHY

[79] Jierui Xie, Boleslaw K. Szymanski, and Xiaoming Liu. “SLPA: Uncovering Overlap-
ping Communities in Social Networks via a Speaker-Listener Interaction Dynamic
Process”. In: 2011 IEEE 11th International Conference on Data Mining Workshops. 2011
IEEE 11th International Conference on DataMiningWorkshops. ISSN: 2375-9259. Dec.
2011, pp. 344–349. DOI: 10.1109/ICDMW.2011.154. URL: https://ieeexplore.ieee.org/
document/6137400 (visited on May 9, 2024).

[80] Reynold S. Xin et al. “GraphX: a resilient distributed graph system on Spark”. In: First
International Workshop on Graph Data Management Experiences and Systems. GRADES
’13. New York, NY, USA: Association for ComputingMachinery, June 23, 2013, pp. 1–6.
ISBN: 978-1-4503-2188-4. DOI: 10.1145/2484425.2484427. URL: https://dl.acm.org/doi/
10.1145/2484425.2484427 (visited on June 4, 2024).

[81] Da Yan et al. “Pregel algorithms for graph connectivity problems with performance
guarantees”. In: Proceedings of the VLDB Endowment 7.14 (Oct. 1, 2014), pp. 1821–1832.
ISSN: 2150-8097. DOI: 10.14778/2733085.2733089. URL: https://dl.acm.org/doi/10.
14778/2733085.2733089 (visited on May 24, 2024).

[82] Yunming Zhang et al. “GraphIt: a high-performance graph DSL”. In: Proceedings of the
ACM on Programming Languages 2 (OOPSLAOct. 24, 2018), 121:1–121:30. DOI: 10.1145/
3276491. URL: https://dl.acm.org/doi/10.1145/3276491 (visited on May 17, 2024).

86

https://doi.org/10.1109/ICDMW.2011.154
https://ieeexplore.ieee.org/document/6137400
https://ieeexplore.ieee.org/document/6137400
https://doi.org/10.1145/2484425.2484427
https://dl.acm.org/doi/10.1145/2484425.2484427
https://dl.acm.org/doi/10.1145/2484425.2484427
https://doi.org/10.14778/2733085.2733089
https://dl.acm.org/doi/10.14778/2733085.2733089
https://dl.acm.org/doi/10.14778/2733085.2733089
https://doi.org/10.1145/3276491
https://doi.org/10.1145/3276491
https://dl.acm.org/doi/10.1145/3276491

Acronyms

API application programming interface

AST abstract syntax tree

BFS breadth-first search

BNF Backus–Naur form

BSP bulk-synchronous parallel

CPM clique percolation method

DFS depth-first search

DSL domain-specific language

GM Green-Marl

GPL general-purpose language

GMIR Green-Marl IR

HITS hyperlink-induced topic search

IR intermediate representation

LPA label propagation algorithm

ML machine learning

MSA minimum spanning arborescence

MST minimum spanning tree

NF normal form

PGX Parallel Graph AnalytiX

PPR personalized PageRank

SLOC source lines of code

SLPA speaker-listener label propagation al-
gorithm

SSSP single-source shortest path

TCG tentative community graph

WCC weakly-connected components

87

Appendix A

Eenvoudige Samenvatting

Grafen zijn fundamentele wiskundige structuren die in de praktijk erg geschikt zijn om mee
te modelleren. Een graaf bestaat uit knopen die die onderling met lijnen zijn verbonden.
Eenwegennetwerk kan bijvoorbeeldworden gemodelleerd doorwegen als lijnen en verkeers-
knooppunten (kruispunten, rotondes, etc.) als knopen te zien. Als een weg eenrichtingsver-
keer is, of als beide rijrichtingen los vastgelegd moeten worden, kunnen pijlen in plaats van
lijnen gebruikt worden. Dit noemen we dan een gerichte graaf.

In de praktijk zijn lijnen en knopen niet voldoende om de werkelijkheid te beschrijven.
Daarom kennen we vaak eigenschappen toe aan lijnen en/of knopen, in de vorm van een
label met bijbehorende informatie. In Figuur 1.1 is een kleine gerichte graaf getekend met
eigenschappen op de pijlen. Dit is een eenvoudig model waar de knopen personen repre-
senteren en de pijlen banktransacties tussen die personen. De pijlen hebben een eigenschap
‘amount’ (hoeveelheid) die beschrijft hoeveel geld er met een transactie (pijl) gemoeid is.

Grafen met eigenschappen zijn handig om informatie in op te slaan, maar dit doen we
niet zonder reden. Het doel van informatie zo systematisch vastleggen is uiteindelijk om het
programmatisch te analyseren. algoritmes die hiervoor ontworpen zijn zijn talrijk, zoals we
verderop zullen zien. Om zulk soort algoritmes in de praktijk te brengen, zijn er grofweg
twee hoofdzaken waar men mee te maken krijgt. Allereerst moet het algoritme uitgedrukt
worden, waar meestal een programmeertaal voor gebruikt wordt. Vervolgens moet het ook
daadwerkelijk uitgevoerd worden met de opgeslagen grafen. Hoewel de werking van de
uitvoerende systemen invloed heeft op wat überhaupt mogelijk is, is dit niet relevant voor
deze samenvatting. In deze scriptie houden we ons voornamelijk bezig met het uitdrukken
van zulk soort algoritmes, los van beperkingen van dit soort systemen.

De focus ligt op GMIR, een zgn. domein-specifieke programmeertaal voor graafalgorit-
mes [11]. Dat een programmeertaal domein-specifiek is wil zeggen dat het ontworpen is
om binnen een bepaald domein, in dit geval graafalgoritmes, gebruikt te worden. Waar alge-
mene programmeertalen zich op diverse gebruiksdoeleinden richten, zijn domein-specifieke
talen voor afgebakende doelen binnen hun domein bedoeld. Zodoende is het niet mogelijk
om iets anders met GMIR te doen dan algoritmes voor grafen te schrijven.

Het probleem met GMIR is echter dat het te strikt afgebakend is. GMIR is oorspronke-
lijk door Oracle van de grond af opgebouwd als vervanger van de voorganger Green-Marl.
Als tegenreactie op het feit dat Green-Marl te algemeen bleek te zijn, is GMIR bewust ui-
terst doelgericht ontwikkeld, wat tot een relatief beperkte taal leidde. De mate waarin GMIR
gebrekkig is hebben wij alleereerst onderzocht.

In drie verschillende gebieden hebben we gebreken gevonden. De tweede stap van ons
onderzoek was om hier een zinvolle invulling voor te geven. Per gebied hebben we GMIR
uitgebreid met nieuwe grammatica en semantiek om meer algoritmes in dat gebied uit te
kunnen drukken. Tegelijkertijd hebben we rekening gehouden om deze nieuwe toevoegin-
gen in de geest van GMIR te houden. Dat betekent bijvoorbeeld dat de grammatica dezelfde

89

A. EENVOUDIGE SAMENVATTING

stijl aanhoudt en dat de mate van complexiteit op een gelijk niveau blijft.
Samenvattingen per gebied zijn hieronder in Appendix A.1 te vinden.
De ideeën van het tweede en het derde gebied zijn in de loop van onze aanstelling bij

Oracle ingediend als patentaanvraag in de V.S.
Uiteindelijk hebben we alles ook daadwerkelijk geïmplementeerd in een Oracle-interne

compiler met behulp van het Spoofax-framework [12, 42]. Om het tot op zekere hoogte
mogelijk te maken om algoritmes die nu wel in GMIR uitgedrukt worden ook uit te voe-
ren, hebben we ook bepaalde transformaties geïmplementeerd die dit realiseren. Let wel dat
deze transformaties die de nieuwe syntax naar bestaande syntax normaliseren veelal werken
door gebruik te maken van functies waarvan aangenomenwordt dat deze een platformspeci-
fieke implementatie hebben (zgn. ingebouwd gedrag). Daarmee wordt in principe afbraak
gedaan aan de domeinspecificiteit, maar dat is acceptabel omdat dit exclusief voor intern
gebruik is.

A.1 Samenvatting per gebied
Gebied 1: herhalingen Het was al mogelijk om herhalingen uit de drukken, maar niet op
een idiomatische1 manier. Een typische toepassing van herhalingen in de context van grafen
is het bepalen van de PageRank-score2 [55]. In Figuur 2.3 wordt dit visueel weergegeven
door grootte van de knopen te relateren aan de score. Aanvankelijk is de score voor alle
knopen gelijk, maar door een deel van de score als het ware door de pijlen te laten ‘stromen’
krijgen knopen met meer inwaartse pijlen een hogere score. Geleidelijk stabiliseert de score,
afhankelijk van de grootte van de graaf.

In elke herhalingworden zo dus nieuwe scores bepaald op basis van de voorgaande score.
Ervan uitgaande dat de score als knoopeigenschap is vastgelegd, betekent dat in een naïeve
oplossing dat er twee eigenschappen nodig zijn die bij elke herhaling omgewisseld moeten
worden. Om dit te voorkomen, hebben wij een speciale herhalingslus geïntroduceerd die be-
wust is van eigenschappen die betrokken zijn bij de herhaling. Globaal bestaat er slechts een
eigenschap, de score, maar binnen de herhaling kunnen beiden de huidige en opvolgende
eigenschappen benaderd worden. Daarmee wordt effectief de verantwoordelijkheid van het
beheren van de twee eigenschappen en het omwisselen daarvan uit handen gegeven.

Gebied 2: grensvlakverkenning Een manier om een (grote) graaf te benaderen in behap-
bare stukken is door elk element – knoop, lijn of pijl – los te bekijken. Gangbaarder en nutti-
ger is om dit systematischer te doen door rekening te houden met de omgeving waarin zich
de elementen bevinden. Neem bijvoorbeeld een willekeurige knoop om mee te beginnen
om vervolgens alle verbonden knopen te nemen en zo door. Afhankelijk van de keuze van
dit startpunt in combinatie met de structuur van de graaf volgt hieruit ook een volgorde in
alle knopen. Dit staat in sterk contrast met een willekeurige volgorde; de gestructureerde
volgorde bevat namelijk ook informatie an sich.

Een praktischere toepassing kunnen we zien in Dijkstra’s algoritme [22], het meest be-
kende algoritme om het kortste pad tussen twee knopen te bepalen. In Figuur 2.7 zijn een
tussentijdse situatie en het uiteindelijk bepaalde kortste pad getekend. In deze voorbeeldsi-
tuatie is de verkenning bij knoop ‘s’ gestart en is ‘t’ het doel. In Figuur 2.7a is te zien dat een
deel van de graaf verkend is, maar een ander deel niet (gestippeld). Op elke knoop is met
een cijfer aangeduid wat de kortste afstand is tot daar vanaf de start (‘s’). Gaandeweg meer
mogelijke paden ontdekt worden, kan de afstand soms ingekort worden. De knopen waar-
voor dit nog mogelijk is zijn grijs gearceerd, die zijn dus nog niet ‘definitief’; niet-gearceerde

1D.w.z. op een manier die gebruikelijk is voor het domein; in termen van het vakgebied
2Typisch gebruikt door Google om webpagina’s te rangschikken

90

A.1. Samenvatting per gebied

knopen zijn dat dus wel. Dijkstra’s strategie is om de meestbelovende knoop te kiezen om
mee verder te gaan, dat is dus die met de korste afstand.

Hoewel het voorbeeld hier slechtsmet een kleine graafwerkt, is het duidelijk te zien dat er
een driedeling is: afgehandelde, te bezoeken en nog niet ontdekte knopen. De knopen die al
ontdekt zijn in de buurt van eerder bezochte knopen, maar nog niet behandeld zijn, vormen
als het ware een grensvlak tussen een bekende en een onbekende fractie van de algehele
graaf.

Als we de ontwikkeling van dit grensvlak gedurende de verkenning volgen, observeren
we dat dit gedrag uitgedrukt kan worden in twee parameters: een rangschikkingsbeleid en
een verkenningsbeleid. Het rangschikkingsbeleid van een algoritme schrijft voor hoe ont-
dekte elementen gerangschikt worden. In het geval van Dijkstra’s algoritme gebeurt dit op
basis van de waarde van een eigenschap – afstand hier. Andere algoritmes hebben geen
speciale wens, of doen dit simpelweg op basis van de volgorde van ontdekking. Voor meer
details over het verkenningsbeleid, zie Hoofdstuk 6; voor eenvoudige grensvlakerkenning is
dit meestal niet relevant.

Deze ideeën hebben wij onder een paar bouwblokken samengevoegd. Zodoende is het
mogelijk om in GMIR het grensvlak te configureren met het rangschikkingsbeleid. Om de
verkenning af te trappen,moet eenmalig tenminste een element opgegevenworden. Voor elk
element dat daarna volgens het rangschikkingsbeleid uit het grensvlak geselecteerd wordt,
kan verdere logica gespecificeerd worden. Dit is normaliter waar een algoritme de relevante
informatie verzamelt en ook besluit welke aangelegen knopen verder verkend zouden moe-
ten worden.

Gebied 3: gemeenschapsstructuurbepaling Netwerkstructuren die vaak als grafen vast-
gelegd worden bevatten vaak verborgen structuren. Neem bijvoorbeeld een graaf van een
sociaal netwerk waarmee interacties tussen mensen zijn gemodelleerd. Als een groep men-
sen vaakmet elkaar omgaat, is dat een aanwijzing dat zemogelijk een bepaalde gemeenschap
vormen. Hoewel dit voor een mens relatief eenvoudig te bepalen is, is dit algoritmisch niet
zo. Dit kan op allerlei manieren worden aangepakt en uitgelegd, wat er ook toe leidt dat
algoritmes die dit soort structuren in een graaf kunnen detecteren relatief complex zijn en
altijd een zekere foutmarge hebben.

De meest bekende techniek om algemene gemeenschapsstructuren in grafen te ontdek-
ken is de Louvain-methode [10], vernoemd naar de locatie van de auteurs. Dit algoritme
neemt de graaf zoals deze is en wijst initieel aan elke knoop een unieke identificatie toe waar-
mee eigenlijk aangeduid wordt dat elke knoop een losse gemeenschap is. Vervolgens wordt
elke knoop afzonderlijk bekeken. Door elke knoop met aangelegen knopen te vergelijken
wordt besloten of het aannemelijk is dat de knoop niet bij een van die gemeenschappen be-
hoort. Zo ja, danwordt unieke identificatie gewijzigd. Dit proces wordt herhaald totdat geen
enkele knoop meer tussen gemeenschappen schuift.

Zodoende worden gemeenschappen gevormd die elk een of meerdere knopen bevatten.
Dit kan een nuttig eindresultaat zijn, maar in de praktijk zien we dat gemeenschappen vaak
een zekere hierarchie hebben. Alle sociale interacties wereldwijd zouden bijvoorbeeld al-
leereerst opgedeeld kunnen worden per land, om vervolgens per taal of dialect gesplitst te
worden. Deze verfijning in de geemeenschapsstructuur kan nog veel verder gaan tot op het
niveau van vriendengroepen bijvoorbeeld.

Het algoritme zover beschreven levert doorgaans een relatief fijnmazige gemeenschaps-
structuur – het niveau van vriendengroepen. Louvain schrijft ook de techniek voor om hier
een hierarchie in aan te brengen. Dit gebeurt door de gevormde gemeenschappen in een
nieuwe graaf als knopen te modelleren, waarop het eerder beschreven algoritme opnieuw
uitgevoerd wordt. Belangrijk hiervoor is dat de informatie van de originele graaf correct
samengevat wordt om de hogere hierarchie zinvol te informeren.

91

A. EENVOUDIGE SAMENVATTING

In de praktijk levert Louvain redelijke resultaten op, maar er zijn scenario’s waarin het
fundementeel incorrecte resultaten oplevert. In de loop der tijd zijn er andere algoritmes
zoals Infomap [63] en Leiden [74] gepubliceerd die deze problemen aanpakken. Beiden
bouwen op de fundamentele structuur van Louvain, maar breiden het uit met uiteenlopende
verbeteringen.

Om al deze nuances die we in Hoofdstuk 6 uitgebreider behandelen vast te leggen in
GMIR hebben we uiteindelijk een resultaat geleverd vergelijkbaar met gebied 2. We wijden
een gespecialiseerde veriant van de gewone graaf aan de graaf die de gemeenschappsstruc-
tuur omvat. Dit doen we bewust om onderscheid te maken en om de andere onderdelen
eenvoudig toepasbaar te maken. Vervolgens maken we de aanname dat dat elke knoop ini-
tieel een losse gemeenschap vormt. Waar nodig kan het algoritme hierin sturen en een an-
dere bron opgeven waarmee voorgevormde gemeenschappen overgenomen worden. Dan
hebben we het hoofdbouwblok waarmee een niveau van de hierarchie geconstruëerd kan
worden door gebruik te maken van de twee gemeenschapsbewerkingen ‘samenvoegen’ (van
twee gemeenschappen) en ‘verplaatsen’ (van een knoop van de ene naar een andere gemeen-
schap). Ter ondersteuning van het bepalen van de kwaliteit van zo’n bewerking is het ook
mogelijk om dit de simuleren en de effecten te observeren alvorens het daadwerkelijk toe
te passen. Dit hoofdbouwblok abstraheert alle verdere boekhouding die plaatsvindt om de
groeperingen en verschuivingen daadwerkelijk te realiseren. Wanneer een volledige hierar-
chie wenselijk is, kan dit blok in een herhalingslus geplaatst worden (zie gebied 1).

92

	Preface
	Contents
	List of Figures
	List of Tables
	List of Listings
	Introduction
	Contributions
	Design Methodology

	Initial Domain Exploration
	Graphs and Property Graphs
	Concrete Practical Use-Cases
	Analyzing Algorithms

	Design Overview
	Design Approach & Guidelines
	Introducing New Abstractions in GMIR

	Current State of GMIR
	Brief History
	Syntax
	Static Semantics

	Deep Dive: Fixed-Point Iteration
	Algorithm Overview
	Conceptual Design
	Syntax Design
	Static Semantics
	Integration with Top-Level Iterators Normal Form

	Deep Dive: Frontier Exploration
	Algorithm Overview
	Essential Summary
	Conceptual Design
	Syntax Design
	Static Semantics
	Integration with Normal Forms

	Deep Dive: Community Detection
	Algorithm Overview
	Essential Summary
	Conceptual Design
	Syntax Design
	Static Semantics
	Normal Form Integration

	Evaluation
	Voelter's Seven Design Dimensions
	Expressing Algorithms
	Operational Semantics by Lowering

	Related work
	Graph Analysis Landscape
	Other Domain-Specific Languages

	Conclusions & Future Work
	Conclusions
	Future Work

	Bibliography
	Acronyms
	Eenvoudige Samenvatting
	Samenvatting per gebied

