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Paving the road towards automated homogeneous catalyst
design
Adarsh V. Kalikadien,[a] Adrian Mirza,[a] Aydin Najl Hossaini,[a] Avadakkam Sreenithya,[a] and
Evgeny A. Pidko*[a]

In the past decade, computational tools have become integral
to catalyst design. They continue to offer significant support to
experimental organic synthesis and catalysis researchers aiming
for optimal reaction outcomes. More recently, data-driven
approaches utilizing machine learning have garnered consid-
erable attention for their expansive capabilities. This Perspective
provides an overview of diverse initiatives in the realm of
computational catalyst design and introduces our automated

tools tailored for high-throughput in silico exploration of the
chemical space. While valuable insights are gained through
methods for high-throughput in silico exploration and analysis
of chemical space, their degree of automation and modularity
are key. We argue that the integration of data-driven,
automated and modular workflows is key to enhancing
homogeneous catalyst design on an unprecedented scale,
contributing to the advancement of catalysis research.

1. Introduction

Numerous vital industrial processes rely on homogeneous
catalysts. Their efficiency in steering a wide array of chemical
transformations gives them a distinct status.[1] They are
employed in the synthesis of pharmaceuticals, agrochemicals,
bulk chemicals and fine chemicals.[1–6] Metal-ligand complexes
are integral to modern chemistry, forming the cornerstone of
homogeneous catalysis.[1,6] Despite their ubiquity and versatility,
the field of homogeneous catalysis confronts an inherent
challenge: the quest for the optimal catalyst.

The vast chemical and reaction space in catalysis poses a
challenge to exploration.[7,8] It becomes evident that there are
no singular candidates exhibiting unique catalytic performance
for our applications. How to find the best performing homoge-
neous catalyst? The opportunity to perform brute-force explora-
tion of potential candidates is always open. Fortunately,
guidance by simple models such as the Bronsted–Evans–Polanyi
(BEP) relationship, Hammett parameters and linear scaling
relationships were established.[9–13] Together with chemical
intuition and heuristics, these principles are often used to guide
the screening process. They were originally developed to
elucidate the correlation between the rate of a chemical
reaction and the thermodynamic properties of the reaction
constituents.[14,15] However, catalytic activity/selectivity is not
straightforward and origins of high or low performance are

often not easily explainable by conventional chemical princi-
ples.

In contrast to heterogeneous catalysts, homogeneous
catalysts have a better defined structure that can be optimized
for performance more easily. For example, a wide range of
ligands that induce enantioselectivity have been developed for
organometallic metal-ligand complexes, enabling high rates
and selectivities.[16] Ligand engineering is the common strategy
to optimize performance of the catalyst.[17] The modular
architecture of transition-metal (TM) coordination complexes
paves the way for larger-scale screening, achieved through
methods such as fragment-based library construction and
subsequent performance optimization.[18–20] Although often
guided by mechanistic hypotheses and expert knowledge,
ligand engineering has been a primary driver of reaction
discovery and catalyst design. Identification of an optimal
ligand and subsequent catalyst design is essential to achieve
high performance for a desired reaction. However, beyond a
specific application, the usability of ligand engineering ap-
proaches becomes contentious. Can they be employed on out-
of-sample datasets, e.g. on a new chemical reaction?

Despite the potential of the many automated tools for
catalyst design,[21] most use cases have been limited to
retrospective analyses of experimental results.[22] Recently,
successful examples of computational design directly contribu-
ting to experimentally validated catalyst discoveries started
emerging. Relevant examples include: selective oligo-/polymer-
ization, cross-coupling catalysis, and enantioselective Pauson-
Khand reactions.[22–24] Generally, the aim is to optimize exper-
imental targets condensed into a single metric, such as turnover
frequency, turnover number, regioselectivity, product selectiv-
ity, yield, or enantioselectivity.[24] Rooted in classic principles,
computational catalyst design approaches usually involve
featurizing the catalyst structure using chemical descriptors. In
a reactivity model it is assumed that an experimental objective
(e.g., yield or enantioselectivity) is a function of both the
experimental parameters and computational descriptors of the
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catalyst structure. This function can then be learned by a
statistical model to enable predictions. The success of this
approach relies strongly on accurate representations of the
catalytic structure.[22,25]

Descriptors are chemically intuitive features of the catalyst
structures that are known to be relevant for the catalytic
activity. Two classical examples from organometallic chemistry
are Tolman’s electronic parameter (TEP) and the Tolman cone
angle.[26] This cone angle was further adapted into White’s solid
angle which also takes the ligand’s flexbility into account. Later,
the derived concept of percent buried volume was
introduced.[27,28] Many descriptors can be envisioned and the
development of new descriptors, as well as derivatives of
classical approaches and rapid calculation methods remains an
ongoing endeavor.[29–31] Individual descriptor classes are usually
categorized as being electronic, steric, geometric or thermody-
namic. For a comprehensive overview of descriptors used in
catalyst design, we refer the reader to a review by Durand
et al.[29] These descriptors have played a pivotal role in
homogeneous catalyst design since its inception. Remarkably,
the buried volume, a fundamental descriptor, were already
employed back in the 80s to gain insights and enable the
prediction of enantiomeric excesses.[32] Another noteworthy
example is the bite angle, used to describe the angle between
two donor atoms and the metal (L-M-L, in the case of bidentate
ligands). It was reported that the bite angle has a large impact
on metal-centered reactivity in 1999.[30,33,34] More and more,
individual descriptors of the chemical structures have pro-
gressed into refined representations of chemical properties,
which can be used to optimize particular objective(s).[25,35] For
example, several libraries such as ReaLigands and the Ligand
Knowledge Bases have been developed to elucidate ligand
effects across a range of representative coordination
environments.[29,36] The mapping of these descriptors provides
an overview of the ligand space and a direction for more
design, possibly within different ligand classes.[37] Additionally,
less chemically intuitive descriptors such as graph-based
representations[38] or derivations thereof[39] have also been
applied in TM-based catalysis.

Present day statistical methods used in catalyst design
range in complexity from linear explainable models to
advanced natural language processing (NLP) models for
chemistry.[40,41] The former category is the traditional way
automated catalyst design was tackled, while the latter
emerged as a powerful tool only in the recent years. NLP
models became feasible by the introduction of the transformer
architecture for neural networks, which allowed processing of
inputs of different sizes and interpretation of chemical
languages (e.g. SMILES,[42] DeepSMILES[43] or SELFIES[44]) in a
similar way to human languages.

In the pursuit of understanding complex phenomena,
human intuition has often led to the development of simplified
and interpretable representations. In the domain of chemistry
and cheminformatics, descriptors serve as static and com-
pressed representations of specific chemical structures. Within
the realm of catalysis however, every stage involved in
constructing such a digital representation of a catalyst complex

is susceptible to introducing significant deviations.[22,45] This
process typically encompasses various steps, such as the
extraction or creation of the initial complex, density functional
theory (DFT) optimization, and descriptor calculation. Together,
these constitute the workflow utilized for the creation of a
computational and condensed structure representation. Thus,
in predictive approaches, the catalyst structure, computational
representation, and modeling space are deeply intertwined.[19] It
is important to acknowledge that these representations are
often still influenced by expert bias, mainly due to the manual
generation of the initial chemical structure. This inherent bias
can limit the generalizability of published approaches. In
addition, this enhances the streetlight effect. This phenomenon
refers to the tendency to focus on areas that are well-
illuminated, or well-understood, while neglecting less-explored
regions, potentially hindering a comprehensive understanding
of the chemical space.

To address and mitigate the biases and constraints inherent
in the manual structure generation process, the integration of
automated structure generation tools is critical in advancing
the field of rational catalyst design. Numerous tools have
emerged, facilitating the reliable generation of 3D structures.
Notable examples include DENOPTIM, Aarontools, MolSimplify,
MolAssembler, and the more recent addition of Architector.[46–50]

However, the pursuit of an universally applicable computational
approach that streamlines all aspects, ranging from structure
generation to descriptor computation for organometallic com-
plexes, remains a highly coveted goal within the research
community. Such a tool would significantly enhance the
efficiency and effectiveness of catalyst design endeavors. This is
the philosophy behind our in-development Python package
called Open Bidentate Ligand eXplorer (OBeLiX).

In this Perspective, we aim to critically discuss approaches
for automated catalyst design and highlight the path that we
have followed. We will start by introducing a historic timeline of
several fields that majorly contributed to modern catalyst
design approaches. Further, we include a brief review of the
current frameworks for catalyst design and present several
challenges accompanying it. We will conclude by proposing a
workflow for automating insight extraction, both about
chemistry and mechanistic pathways, and how it can be
coupled with machine learning for a full picture of a catalyst’s
behaviour. We believe that high-throughput automated knowl-
edge extraction is a major step for propelling future endeavours
of the catalysis community and that first principles of chemistry
and catalysis should be incorporated into modern workflows for
successful cross-disciplinary integration.

2. The foundation of the road

The current advances in computational homogeneous catalyst
design primarily stem from the integration of four scientific
disciplines: experimental organometallic chemistry and cataly-
sis, quantum chemistry (QC), artificial intelligence (AI), and
cheminformatics. These are at the core of current state-of-the-
art approaches. Their historical evolution has significantly
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influenced and shaped the modern landscape of this field.
Figure 1 presents a timeline of selected seminal works and tools
across this multidisciplinary field, highlighting the parallel
development of key methodologies and tools alongside
experimental discoveries in homogeneous catalysis. Within this
graphical representation, the progress in structure optimization
methods is denoted by a red star, while experimental works are
represented by a blue square. The integration of cheminfor-
matics, which is crucial for data analysis and modeling, is
symbolized by a yellow circle. Lastly, the emergence and
growing influence of artificial intelligence and machine learning
(AI/ML) techniques in catalyst design are depicted by a purple
hexagon. In this section, we will delve into the progress and
advancements made in each field, shedding light on their
respective developmental journeys.

Electronic structure calculations play an important role in
computational materials identification, characterization and
optimization. For calculating properties of systems from first
principles, DFT provides a powerful compromise between
predictive power and computational cost.[52] Theoretical meth-
ods for studying catalysis have undergone significant develop-
ment, with computational chemistry now regarded as an
essential tool in the catalysis toolbox alongside laboratory
techniques.[53–55] The origins of QC can be traced back to the
pioneering work of Slater in 1951, marked by a red star on the
left side of Figure 1. Slater’s development of the Hartree-Fock
method[56] marked the beginning of computational quantum
mechanical (QM) methods by enabling feasible calculations for

determining the energy minima of molecules.[51] The subse-
quent Kohn-Sham framework for approximating the electronic
kinetic energy contribution proved especially useful.[57] A
plethora of exchange-correlation potentials are currently ad-
vancing the frontier in accurate simulations.[58–64] For larger
organometallic complexes, these methods became particularly
powerful after the introduction of Grimme’s dispersion
corrections.[65]

Theoretical frameworks and computational tools, must meet
several criteria: (a) yielding reasonable outcomes, (b) operating
efficiently within short timeframes, and (c) being applicable to a
wide range of systems and physical-chemical properties.[66] The
traditional DFT calculations are known to exhibit cubic scaling
in computational time due to the diagonalization of the 3D
Hamiltonian. This renders them inefficient for large molecular
systems with a high number of electrons. Conventional force-
field (FF) methods are frequently employed as a starting point,
mainly for initial conformation searches.[67] These methods are
not generally applicable since they lack parameterization for
numerous elements, especially metals.[68,69] This has impeded
the progression of the field.[66] In addressing this issue, low-level
QC methods step in, offering an alternative to FFs, especially for
systems of modest size, typically ranging from 500 to 1,000
atoms. For example, the GFNn-xTB methods are parameterized
for applications to a wide range of chemical systems, including
(organo)metallic systems[66,67,70] and polymers.[71] Grimme’s Con-
former-Rotamer Ensemble Sampling Tool (CREST), utilizes the
GFNn-xTB methods for the creation and analysis of structure

Figure 1. A timeline showing the evolution of major fields contributing to the modern multidisciplinary research in homogeneous catalyst design.[51]
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ensembles.[72] Conformational sampling via meta-dynamics
simulations, regular MD simulations and genetic Z-matrix cross-
ing have been implemented.[73] While exploring avenues to
address the challenges in modeling organometallic systems, it
is worth noting that the focus of this Perspective does not
encompass machine learning potentials for electronic structure
calculations, which is discussed extensively by others.[74–78]

After the modelling step and eventual conformer search,
the discrete chemical structures need to be transformed into
continuous representations for usage in statistical methods.
This transformation is done by the calculation of chemical
descriptors, as outlined in the introduction. These aim to
capture the essential features of the catalyst for further analysis
and design. Calculation of descriptors in a high-throughput
manner was made possible by the invention of cheminfor-
matics. Established in 1998,[79] cheminformatics is an emerging
domain of information technology. It focuses on the acquisition,
organization, analysis, and management of chemical data. This
discipline plays a crucial role in facilitating data-driven research
and decision-making processes in chemistry. The advancement
of cheminformatics is represented by a yellow circle in Figure 1.
It has progressed in parallel with the field of machine learning
in catalysis. Over the past two decades, continuous advance-
ment of cheminformatics has significantly contributed to the
progress achieved in the design and screening of homogeneous
catalysts.[21,80] By leveraging the theoretical interpretation of
chemical structures rather than relying solely on empirical
measures, cheminformatics has enabled the derivation of mean-
ingful relationships and the exploration of the vast chemical
space.[81] This progress was mainly fueled by the invention of
the Python programming language.[82] It allowed the creation of
the OpenBabel[83] and RDKit[84] packages, which are the back-
bone of many modern cheminformatics workflows. Additionally,
the invention and widespread sharing of code via version
control platforms such as Github, has catalyzed the develop-
ment of numerous innovative tools and workflows. These newly
developed tools have empowered chemists with the capability
to gather, analyze, and interpret chemical data in an efficient
and systematic manner. Researchers have harnessed this power-
ful combination to build sophisticated algorithms for molecular
descriptor calculation,[17,85,86] virtual screening,[87] reaction
prediction[88–90] and many other aspects of catalyst design. The
availability and integration of AI methods, represented by the
purple hexagon in Figure 1, has further propelled the field by
substantially enhancing the predictive power of these ap-
proaches. In its broadest definition, AI encompasses the theory
and development of computer systems capable of performing
tasks that traditionally require human intellect, such as speech
recognition. As a prominent subset of computer science, AI has
found significant applications in catalyst design, leveraging
numerical methods and machine learning techniques to drive
advancements in the field. While this Perspective will primarily
focus on machine learning, it is important to acknowledge the
vital role that numerical methods have played in enabling the
development of DFT in the 1970s. These combined advance-
ments have revolutionized catalyst design by augmenting the

capabilities of computational models and enabling more
sophisticated analyses and predictions.

The field of homogeneous catalysis has experienced a
remarkable increase in the utilization and integration of AI
techniques, driven by advancements in multi-variate statistics,
quantitative structure-activity relationships (QSAR), and data
science methodologies.[89,91,92] In recent years, there has been a
notable transition within these modern machine learning
approaches, as they have evolved from traditional white-box
models to more sophisticated black-box models, where the
emphasis is placed on the quality and size of the training data.
White-box models are based on traditional statistics where
causal effects are sought after and finding the most “correct”
model is the goal. On the other hand, black-box models
prioritize predictive accuracy, aiming to find a highly perform-
ing model. Explainable models, such as QSARs, exemplify white-
box models, where the model’s performance is determined by
the accuracy of physico-chemical parameters. Classic examples
of explainable models include the Hammett equation, the
Bronsted–Evans–Polanyi relationship, molecular volcano
plots,[93,94] and other linear free scaling relationships (LFERs). In
contrast, black-box models often employ deep learning techni-
ques, where descriptors derived from the molecular graph are
utilized.[41,90,95] These black-box models focus on prediction
quality and may lack explicit interpretability due to their
complex internal representations. The exploration of both
white-box and black-box models in automated catalyst design
demonstrates the diverse strategies employed within the field,
encompassing various approaches to predictive capability and
performance. While white-box models provide interpretability
and insights into causal relationships, black-box models offer
greater predictive capabilities, leveraging vast amounts of data
to make accurate predictions. The balance between white-box
and black-box models in automated catalyst design represents
a spectrum rather than a strict dichotomy.

Figure 2 provides a visual representation of the data science
continuum, showcasing various modeling techniques employed
in catalyst design. These models encompass a range of method-
ologies, from explainable white-box models that prioritize
interpretability, to more complex black-box models focused on
predictability. Skilled scientists are capable of extracting
valuable insights even from models traditionally classified as
black box, such as when employing non-linear dimensionality
reduction techniques. This continuous nature of modeling

Figure 2. The spectrum of data science techniques ranging from traditional
white-box models that allow for explainability to black-box models that do
not provide estimations on the importance of each feature or feature
interactions.[96]
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approaches highlights the interconnectedness and complemen-
tarity of different methodologies for catalyst design.

3. Computational catalyst design

We described the four integrated fields forming the foundation
of modern computational catalyst design: experimental homo-
geneous catalysis, QC, cheminformatics, and AI/ML. In this
section, we discuss the state-of-the-art computational catalyst
design frameworks and their inherent challenges. It is known
that at the core of catalyst design, a relationship between the
catalytic system and the experimental properties of interest
must be established. But how do computational design
endeavors work? And what are the challenges in automating
them?

Foscato et al. categorized catalyst design into two primary
classifications: direct and inverse design.[21] In direct catalyst
design, a direct causal relationship is established between a
defined catalytic system and the observed experimental
performance. The catalyst performance typically consists of
measures related to reactivity or selectivity. Since catalyst
design is predominantly viewed as a nonlinear optimization
problem, this endeavor often employs a diverse array of
(non-) linear statistical methods.[21,97] On the other hand, inverse
design starts from a known optimal performance and searches
for systems with properties that match this performance.[97–99]

Most inverse design strategies are still aimed at small organic
molecules.[99,100] Only recently has the inverse strategy been
applied to a subset of TM-based catalysts.[101] Since the focus of
this Perspective lies on TM-based catalysts, our primary focus is
on exploring direct catalyst design strategies. These can
generally be classified into two categories: mechanism-based
and mechanism-agnostic approaches.

The distinguishing factor among these approaches lies in
their reliance on mechanistic understanding. While our objec-
tive is to understand the reactivity and selectivity of the
catalysts, the necessity of the mechanistic understanding
remains a matter of ongoing inquiry.

This difference is best illustrated by the example of an
enantioselective reaction modeling as shown in Figure 3. In
mechanism-agnostic approaches, a form of the precatalyst
structure as shown in (a) ,which does not carry any mechanistic
information, can be utilized. The correlation of 3D descriptors
calculated on this structure with selectivity has been utilized for
the design and optimization of chiral ligands.[102] For mecha-
nism-based approaches, TS structures of the selectivity deter-
mining step (b) or (c) are used. Small energy differences of 1—
3 kcal/mol can significantly impact the preferred reaction path-
way in enantioselective reactions, introducing additional
complexities.[103] Achieving mechanistic insights thus entails the
calculation of complex transition states from competing
reaction pathways, followed by rigorous analysis. This makes
the mechanism-based approach extremely problem-specific. In
addition to these mechanistic insights, targeted DFT calcula-
tions are necessary for each new catalyst-substrate combina-
tion. On the contrary, the mechanism-agnostic approach is

aimed to be more general. However, a deep understanding of
the dataset and selected chemical descriptors for predictive
modeling is necessary.[104] Despite these inherent disadvantages,
both approaches have had successful applications in TM-based
homogeneous catalyst design.[21,105]

In the subsequent discussion, we provide a summary of a
selection of state-of-the-art computational catalyst design
approaches. These are presented in Figure 4.

3.1. Mechanism-based approaches

As mentioned, mechanism-based catalyst design approaches
rely on mechanistic insights and are computationally intensive.
However, they have been proven to predict the experimental
enantioselectivity of TM-based catalysts well. As a first step in
these approaches, the transition state structures connecting
two energy minima need to be found. Generally, most
approaches first generate an approximate TS structure and
optimize towards a saddle point on the potential energy
surface.[47] Automated and high-throughput localization of
transition state structures has been enabled by tools such as
AutoTST and AutoTS.[110–112] The need to sample for configura-
tional and conformational freedom is particularly important in
asymmetric catalysis. This sampling is, as far as we know, not
implemented yet in these methods.[47] Separate tools enabling
the sampling of transition state conformers are available, e.g.
AARON,[47,113] Mason[114] and MolAssembler.[49] These can be used
to expedite and streamline the automated in silico TS screening.
These modules facilitate the conformational sampling, and
transition state optimization for new catalyst-substrate variants.
Combined with FF methods for transition states,[115,116] these
automated workflows contribute to faster and more efficient
sampling of transition states. This is exemplified in several
studies. A graph-based HT screening study was conducted by
Laplaza et al.[107] An automated workflow was created to

Figure 3. A representative reaction profile diagram for an enantioselective
reaction showing the structures used in mechanism-agnostic and mecha-
nism-based computational catalyst design approaches. (a) Represents the
precatalyst structure utilized in mechanism-agnostic approaches, while (b)
and (c) depict competing prochiral transition state (TS) structures employed
in the mechanism-based approach.
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investigate multiple reaction pathways in a Rh-catalyzed
asymmetric C� H functionalization and predict enantioselectiv-
ity. This was done on a set of 12 catalytic systems by sampling
around 20 transition states per catalyst through unbiased
conformational exploration with minimal human
intervention.[107] The comparison of these computational pre-
dictions with experimental results shows that this workflow
might be beneficial in the screening of new selective catalysts.
Unfortunately, the computational cost of such an approach can
run high due to the amount of transition states and DFT
refinements needed. Alternatively, FF-based screening ap-
proaches aim to combine a QM treatment of a small core of
atoms involved in the reaction, e.g. metal centers and donors
of the ligands, with a force field treatment of the remaining
molecule.[116–119] Virtual chemist, an approach by Patrascu et al.,
was specifically designed to empower experimental chemists
with minimal computational chemistry knowledge.[106] This
method combines Quantum-guided Molecular Mechanics

(Q2MM) and molecular mechanics force field (MM3 FF) methods
to model the transition states.[120,121] This approach enables
bench chemists to virtually screen asymmetric reactions and
make predictions about potential catalysts before conducting
laboratory experiments. The study presents a significant
advancement in the field of computational catalyst design
through the development of a comprehensive virtual laboratory
framework. This framework incorporates several modules,
including Finders, React2D, Quemist, and Ace, each serving a
specific function in the virtual design and evaluation of
catalysts. However, Virtual Chemist does rely on a parametrized
FF per reaction type. For example, the MM3 force field does not
include parameterization for metals. To overcome this limita-
tion, the force field parameters are automated using Hartree-
Fock methods.[122,123] These Hartree-Fock methods are subopti-
mal for exploring TM-based catalysts.[106] Additionally, based on
the flexibility of the catalyst, results can deteriorate since TSs
are approximated as an energy minimum in Q2MM.[116] Shifts in

Figure 4. A summary of the methodology, target applications, inherent advantages and disadvantages of several computational workflows for catalyst design.
Mechanism-based approaches are indicated by a brown square. Selected examples are: FF-based[106] and graph-based high-throughput (HT) screening.[107]

Mechanism-agnostic approaches are indicated by a purple square, selected examples are: Molecular volcano plots,[108] system-specific linear regression/multi-
linear regression (LR/MLR),[35] mapping the descriptor space[17] and bayesian optimization (BO).[109]
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the position of the transition state along the reaction
coordinate, such as while facing significant steric hindrance,
remain unaccounted for in an energy minimum model.[116]

To study the activity of homogeneous catalysts, a well-
established technique known as the volcano plot has been
adopted from heterogeneous catalysis. This approach originates
from Sabatier’s principle, which states that an ideal catalyst
should exhibit an optimal level of bond strength with the
substrate: neither too weak nor too strong.[93] The energies of
reaction intermediates binding to the catalyst are intercon-
nected through scaling relations, creating empirical mathemat-
ical relationships. These relationships allow the energies of all
reaction intermediate and transition states to be expressed in
terms of one or a few specific intermediates, forming linear free
energy scaling relationships (LFSERs) based on a descriptor
intermediate.[124] By analyzing the computationally calculated
energy of the descriptor intermediate, the reaction rate can be
estimated, resulting in the characteristic volcano shape. These
plots have been used to define thermodynamic and kinetic
profiles, aligning with experimental trends, both for smaller and
large datasets.[94,125–128] The goal of quickly assessing the
performance of prospective catalysts makes volcano plots well
suited for big data analytics.[128] Meyer et al. employed a kernel
ridge regression-based machine learning model to screen over
25,000 catalyst structures for the Suzuki-Miyaura C� C cross-
coupling reaction.[108] They relied on a simplified thermodynam-
ic profile, by using ML to learn the DFT-based reaction energy
associated with oxidative addition which had been proven to
be a descriptor variable in this catalytic cycle.[108] This approach
allowed for rapid discrimination between catalysts with promis-
ing or inadequate energy profiles. Although this approach
utilizing volcano plots yielded valuable insights into broad
trends in catalyst behavior, it was only limited to screening of
the catalyst activity. The application of volcano plots to a
computational screening of enantioselectivity for TM-based
homogeneous catalysts is still limited.[128]

3.2. Mechanism-agnostic approaches

Mechanism-agnostic approaches do not necessitate an under-
standing of the mechanism or the stereodetermining step for
making reactivity or selectivity predictions.[129] For example, a
promising approach in homogeneous catalyst design lies in
various applications of quantitative structure-selectivity/activity
relationships (QSSR/QSAR). A combination of quantum mechan-
ical (QM) and statistical methods is the modern version of the
QSAR approaches. In essence, QM-derived descriptors of the
molecules are used to identify relationships between the
catalyst structure and the observed experimental performance.
Often, a general simplified catalyst structure with a “dummy”
substrate is used to derive these descriptors. Non-linear black-
box models such as random forest, support vector machines,
neural networks etc. have found to be successful in the
prediction of target values such as reaction yield or
enantioselectivity.[130–132] More interpretable white-box univari-
ate or multivariate linear regression have been successfully

used in these applications as well.[17,102,129,133–137] A recently
reported approach by Dotson et al. showcased an extensive
workflow combining ML and HTE for multi-objective
optimization.[35] The study focused on catalyst design and
optimization, specifically targeting the yield and regioselectivity
of chiral bisphosphine ligands. An extensive computational
database consisting of 550 ligands was established, where
diverse descriptors were computed for each ligand. The study
was conducted on a Pd-catalyzed Hayashi–Heck reaction and a
Rh-catalyzed alkene hydroformylation reaction. Their method-
ology was shown to identify ligands with improved regioselec-
tivity by ~1 kcal/mol compared to the previous best ligand. This
novel methodology demonstrates the application of ML in
addressing the simultaneous improvement of both yield and
selectivity.[35] Unfortunately, although the results from the
predictive model are readily interpretable, the construction of
such a model requires a deep understanding of the calculated
descriptors in relation to the reaction at hand. These descriptors
depend on the computational catalyst structures, yet a detailed
description of the process involved in their selection is often
lacking. In addition, if the domain of applicability is limited and
automation is minimal, the whole approach needs to be
repeated for every addition of new catalysts.

It is well known that the chemical space is too large to be
explored without automation. New avenues for understanding
the catalytic chemical space were opened by the development
of Kraken, a comprehensive platform for mapping and predict-
ing ligand properties.[17] Kraken contains a collection of 300,000
monodentate organophosphorus ligands, accompanied by 190
chemical descriptors that capture their conformational depend-
ence. This mapping endeavor covered a broad range of
conceivable structures relevant to organo(transition)metal reac-
tions, providing valuable insights for catalyst design and
optimization. The Kraken platform offers researchers access to
computed data at different theoretical levels: semi-empirical
QM, DFT, and ML. The database includes detailed information
on 1,558 organophosphorus compounds, featuring semi-empiri-
cal QM and DFT data, computed descriptors and properties, as
well as coordinates information for the conformers. Two
versions of the compound were simulated, the free ligand and
the ligand coordinated to the metal. To digitally represent
structures, molecular descriptors are used. Additionally, the
platform incorporates ML data, comprising 331,776 entries
generated through combinatorial exploration of organophos-
phorus ligands with up to two distinct substituents. ML models
are trained on the DFT dataset, enabling the on-the-fly
prediction of properties for an extensive dataset of approx-
imately 191 million distinct organophosphorus compounds. By
utilizing the dataset and computational tools provided by
Kraken, researchers can optimize reaction process parameters,
inspire new ligand choices, and drive the synthesis of novel
organophosphorus compounds.[87,134–136] The open-source nature
of the Kraken platform and the accessibility of its extensive
database facilitate collaboration and encourage contributions
from the scientific community. Although this platform fosters
ongoing advancements in the field of fully automated homoge-
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neous catalyst design, it is currently limited to only mono-
dentate organophosphorus ligands.

3.3. Reaction conditions & real-world data

In the realm of automated homogeneous catalyst design, it is
crucial to optimize towards reaction conditions which allow for
maximum experimental productivity and efficiency of the
catalyst.[138,139] This endeavor can be influenced by several
factors such as the experimental error, the number of measured
metrics, dataset size and data resolution.[140] Showcased by
Shields et al, bayesian optimization (BO) in combination with a
mechanism-agnostic approach enables optimization of reaction
conditions.[109] The objective was to optimize the yield of the
desired product by exploring a combinatorial space of reaction
conditions. The performance of their open-source BO frame-
work could then be compared to a selected group of expert
chemist. The framework employed different representations of
reaction components, such as chemically descriptive fingerprint
encodings based on quantum chemical properties computed
via DFT, cheminformatics descriptors, and binary one-hot-
encoded (OHE) representations generated using the Mordred
package.[85] These reaction components were represented as a
SMILES string and transformed into different representations
using the Auto-Qchem Python package.[141] Remarkably, the BO
framework incorporating DFT-derived features outperformed
the chemists’ expertise. Within the first 15 experiments, the
framework consistently achieved higher average performance,
yielding over 99% in all cases. The chemists, on the other hand,
either prematurely terminated the optimization process or
failed to identify the conditions that yielded the highest
product yield.

While all the aforementioned approaches serve as exem-
plary methods, the utilization of non-structured real-world data,
e.g. from electronic lab notebooks, for predictive endeavors
raises concerns.[142] Determining whether the predictive value
obtained is attributed to an inherent structure within the
dataset presents a challenge. Additionally, biases can inadver-
tently manifest during the initial stages of data generation, such
as when drawing catalyst structures for subsequent feature
extraction or when making assumptions regarding reaction
mechanisms. The discussed state-of-the-art approaches are
automated to some extent. However, automating all steps from
structure representation to prediction could make our work
faster, more reproducible, and less prone to human error. The
concept of modularity from the field of computer science can
be useful here. The modular design of the workflows would
mean that there is a logical partitioning of the steps that allows
the separate parts to be integrated with easier implementation
and maintenance. Though such an integrated workflow is more
efficient, it is unfortunately not widely implemented yet in TM-
based homogeneous catalyst design.

4. Roadblocks

As introduced in the previous section, a direct catalyst design
workflow usually consists of four components: structure gen-
eration, QC optimization, descriptor calculation, and a statistical
method to relate these descriptors to properties of interest.
Integrating these steps into a universally applicable computa-
tional workflow that streamlines all aspects, ranging from
structure generation to descriptor computation, seems trivial.
Nevertheless, the challenge lies in dealing with the interdiscipli-
nary nature of these steps and modeling the variables
influencing experimental catalytic performance.

This section will delve into some challenges that encompass
key aspects of automation tasks in TM-based homogeneous
catalyst design: the representation of catalyst structures in
computational workflows, the generation of reliable and diverse
descriptors, and the inherent complexity of dynamics in
catalysis. We attempt to address these challenges with our in-
development tool focused on monodentate and bidentate
ligand-containing structures, Open Bidentate Ligand eXplorer
(OBeLiX). Various of our in-house developed Python tools are
currently integrated into OBeLiX, including stand-alone mod-
ules for automated structure generation and subsequent
descriptor calculation. With this Python package, we aim to
automate and streamline the direct catalyst design workflow.

4.1. Structure representation

Regardless of the QSAR/QSSR approaches being implemented,
there are three key parameters central to these workflows, as
depicted in Figure 5. These are: 1) the amount of data that is
available, both computationally and experimentally, for the
objective to be predicted, 2) the interpretability of the predic-
tion model, and the associated computational cost and
expertise required, 3) the dimensionality of the computational
representation of the catalyst structure.[143]

These components are coupled and ever-changing, but
more importantly, they can be a limiting factor. As an example,
consider representation dimensionality. A 1D representation
can be a SMILES string or one-hot encoded vector, a 2D
representation is usually topology-based, in a 3D representation
(QM-based) descriptors are derived from a 3D structure, while a
4D representation would also take the conformer ensembles
into account. In TM-based complexes, spin, oxidation state,
coordinative bonds, and chirality can also be of importance to
catalytic performance. Depending on the experimental objec-
tive to model, precise structural information from DFT-opti-
mized 3D structures is required in a computational catalyst
design workflow.[144] Since the catalyst structure, computational
representation, and modeling space are deeply intertwined, it is
critical to address and mitigate the biases that could be
introduced in a manual structure generation approach.[19,145]

The automation of structure generation from string repre-
sentations for TM complexes remains an active area of research,
highlighting the ongoing efforts to overcome the challenges
specific to these systems.[146] Computational packages have
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played a pivotal role in enabling various cheminformatics
functions, including format conversion and other useful oper-
ations. Two widely recognized and extensively utilized tools in
this domain are RDKit[84] and OpenBabel,[83] which were
introduced in 2013 and 2011 respectively. It is important to
note that these tools primarily cater to organic molecules,
reflecting the current focus of cheminformatics. However, as
the field evolves, it is anticipated that future cheminformatics
packages will expand their capabilities to handle more complex
molecules and incorporate coordination bonds to cover the
broader inorganic and organometallic chemistry landscape.
Figure 6 visually presents the challenges of representing
transition-metal (TM) complexes in three distinct formats:
SMILES conversion, Morgan fingerprint, and graph representa-
tions. SMILES, or Simplified Molecular Input Line Entry System,
is a concise notation for expressing chemical structures as text
strings, offering a human-readable format. Morgan fingerprints,
known as circular fingerprints, are a cheminformatics technique
encoding molecular features based on substructures within a
defined radius, producing a fixed-length binary vector. Graph
representations in cheminformatics involve depicting molecules
as graphs, portraying atoms as nodes and bonds as edges,
capturing connectivity and topology.

These representations have varying degrees of accuracy in
capturing the intricate structure of TM complexes, as they have
been successfully applied to organic molecules but often fail
when applied to coordination complexes. When two coordina-
tive bonds are formed with the metal center as shown in
Figure 6, SMILES conversion and Morgan fingerprint representa-

tions fail to adequately represent the complex structure
(indicated by crosses in both rows). The work of Sobez et al.[49]

has demonstrated the effectiveness of graph representations in
accurately encoding the 3D structure of TM complexes. While
string representations have become commonplace in chem-
informatics, they are not yet well-suited for predicting a delicate
objective such as enantioselectivity in TM complexes, which is
highly sensitive to structural variations.[107] Therefore, utilizing
3D representations for predictive models is desirable.

Building 3D representations of TM complexes is not always
straightforward due to the possibility of multiple geometrical
isomers, and coordination environment around the metal.
Manual generation of these structures can introduce expert-
bias by considering the chemical space partly. Utilizing the
SMILES representation of components such as substrate, and
ligand of the TM-based catalyst complex, a 3D structure can be
built and configurationally explored. Two approaches are
commonly employed for the automated generation of catalyst
structures: 1) an exhaustive search aided by heuristics and
2) searching algorithms aided by computational intelligence.
However, neither method can generate perfect structures, and
each has its own limitations. While machine learning algorithms
may not achieve perfect or near-perfect accuracy, they are

Figure 5. An illustration of three critical parameters in computational catalyst
design: the size of the dataset, quantified by the number of available data
points; the model complexity, encompassing variations from simple linear
regression (LR) to more complex non-linear models such as random forest
regression (RFR), neural networks (NN), and other deep learning (DL)
approaches; and lastly, the dimensionality of the computational structure
representation, indicative of the level of detail captured by the representa-
tion. The shaded blue region signifies the size and complexity within which
current computational catalyst design studies are mainly conducted.[143]

Figure 6. Comparison of structure representations for TM Complexes. The
Figure illustrates the challenges of representing TM complexes using
different file formats. While SMILES conversion and Morgan fingerprint
representations are inadequate for capturing the geometric complexity, the
graph representation accurately encodes the 3D structure.
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usually well-suited for designing small-scale systems, offering
the advantage of speed. The molSimplify package is a notable
example of a tool implementing an ML-based optimization
tailored towards larger metal-ligand complexes. It employs a
DFT-based pre-trained model to determine the skeleton
structure, followed by selective force field optimization.[48] This
approach allows for user-defined or program-determined ligand
positioning on the metal center. DENOPTIM is an additional
illustration of a computational intelligence-guided approach
that combines fragment-building and genetic algorithms to
construct hypothetical complexes with optimized fitness
functions.[46] Examples of exhaustive algorithms are the Molas-
sembler and Architector code.[49,50] Molassembler is a software
tool that utilizes graph enumeration, stereopermuters, and the
distance geometry algorithm to analyze and explore molecular
structures, providing insights into connectivity, stereochemistry,
and spatial arrangement.[49] It facilitates the generation of
isomers and conformers, considers stereoisomeric configura-
tions, and ensures physically realistic structures based on
tabulated bond lengths. Architector leverages metal-center
symmetry analysis, distance geometry, fragment assembly, and
ranking of conformers based on GFN2-xTB energies to capture
the diversity of known experimental chemical space and design
new complexes.[50]

Our approach to developing a platform for direct design of
homogeneous catalysts is centered around enabling chemists
to provide drawings of ligands and substrates in a chemically
intuitive manner, from which the chemical space is automati-
cally explored. The combined use of our in-house developed
tools, MACE and ChemSpaX, facilitates this process as depicted
in Figure 7.

MACE is used for generating 3D structures of TM-based
metal-ligand scaffolds, starting from a 2D input. It is specifically
aimed at conducting exhaustive searches of configurations and
stereoisomers in square planar and octahedral complexes.
MACE offers the advantage of generating a diverse range of
stereoisomers, including those involving configurational iso-
mers where ligands are swapped, while also providing
computed energies through force-field calculations to rank
these isomers. By incorporating the MACE protocol into
computational workflows for organometallic complexes, we
enable the expert-bias-free exploration of stereoisomers.[147–149]

The introduction of structural variations at an early stage aligns
with the complexity observed in real systems, allowing for the
identification of likely stereoisomers in a high-throughput
manner. When 3D scaffold generation is done, the local
chemical space of this structure can be explored by systemati-
cally placing substituent groups on the ligand. This approach
creates close variations of the ligand structure. In OBeLiX, this is
done by utilizing the ChemSpaX package.[150] Overall, these
methodologies facilitate the exploration of an extensive chem-
ical space for the screening of potential catalyst structures.
Subsequent structural refinement can be achieved through
geometry optimization, utilizing methods such as QC at any
level of precision.

It is essential to note that current automated 3D structure
generation methods do not inherently consider synthesizability
or automatically adhere to chemical rules. Typically, manual
error checking based on a random sampling is performed.
Examples of automated error-checking workflows exist for small
organic molecules cheminformatics, where SMILES and synthe-
sizability scores can easily be generated. Such methodologies

Figure 7. An illustrative example of chemical space exploration of a TM-complex containing a bidentate ligand using MACE and ChemSpaX. The process
begins with chemists providing 2D drawings of ligands and substrates. MACE generates 3D structures of TM-based metal-ligand scaffolds, conducting
exhaustive searches of stereoisomers. This method, integrated into OBeLiX, enables expert-bias-free exploration of stereoisomers. ChemSpaX further explores
the local chemical space by systematically placing substituent groups on the ligand. Together, these tools facilitate 3D structure generation and subsequent
high-throughput screening for potential catalyst structures.
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could involve 1) a blend of de novo design and synthesis
planning or 2) a combination of biased generation with a
synthesizability heuristic.[151] In the first approach, the structure
generation method undergoes training on the existing data to
incorporate knowledge of the synthetic steps involved in
compound creation. This approach relies on reactivity rules
encoded in a discrete action space of reaction templates,
trained on artificial pathways generated from a pool of
purchasable compounds and a list of expert-curated
templates.[152] The second approach proposes the use of
heuristics based on synthesizability to effectively bias gener-
ation towards synthetically tractable chemical space.[153] How-
ever, it has been observed that this may divert the generative
model from its primary optimization objective.[153] In both cases,
it is important to note that these automated error-checking
methods are still in the development phase and have seen
limited application even for small organic molecules. Looking
forward, as our understanding of the inorganic chemical space
advances, coupled with the availability of more experimental
data and enhanced computational representations, automated
error-checking approaches may find application in the domain
of TM-based homogeneous catalyst design.

4.2. Generation of descriptors

After geometry optimization, relevant electronic, steric, geo-
metric, thermodynamic or combined descriptors can be
extracted from the results of computations. Some classic
examples such as the TEP, Tolman cone angle, and buried
volume were mentioned in the introduction. It is possible that
descriptors require manual input, e.g. when defining quad-
rants/octants of the buried volume for the prediction of
enantioselectivity.[154]

An example of a typical buried volume orientation is shown
in Figure 8. The direction of axes here is defined with respect to
the two donor phosphorus (P) atoms attached to the metal
center. The relevance of this directional definition becomes
apparent when there is a need to distinguish the quadrant
occupied by “P1” from the quadrant occupied by “P2”. In the
mechanism-agnostic multi-objective optimization approach dis-
cussed in the previous section, all atoms of the generated
scaffold are manually mapped to define the orientation of this
descriptor.[35] The indices of “P1”, “P2” and the metal center,
among others, are saved in an Excel file. If a new ligand is
added to the dataset, this mapping has to be redone. To
address this challenge, we employ a graph-based method to
identify the ligand donor atoms using interatomic distances in
the OBeLiX platform. These donor atoms are then numbered
based on their charge and this definition is used in subsequent
descriptor calculation. By leveraging this automated approach,
we aim to reduce manual input in the calculation of descriptors,
ensuring a more objective and efficient exploration of struc-
tures in catalyst design. This becomes especially relevant for
smaller datasets, where the sensitivity of descriptors can impact
the performance of predictive models.[25,39,155]

In addition to addressing biases within the descriptor
generation part of catalyst design, it is important to acknowl-
edge the challenges faced in the experimental domain which
influence any predictive capabilities. While the use of AI has
gained significant attention in various fields, its implementation
in chemistry is still evolving.[156] Glorius et al. have highlighted
the impact of systematic errors on dataset balance and
completeness, which can severely limit the reliability of ML-
based predictions.[157] In the context of direct design of catalysts,
the objective is to create structures with desired properties.
However, the accuracy of predictive models heavily relies on
the quality of the training data.[158] If the experimentally
measured target property is prone to significant errors or bias,
it can introduce difficulties.[158] To address these limitations, it
has been suggested that systematic reporting, including the
documentation of underperforming reactions, can mitigate
errors and improve dataset quality.[158,159] Additionally, due to
the rapid advancements in ML, it may be more efficient to
develop new algorithms that can overcome the challenges
associated with unbalanced and missing data, facilitating
accurate predictions of quantitative properties.[160]

4.3. The complexity of catalysis

A computer sees the catalytic system through the prism of the
models and methods designed by humans, which are usually
far from mimicking the complex chemical interactions in a real
system. Based on the chosen settings and methods, DFT-based
modeling might lack certain crucial aspects that are relevant at

Figure 8. Illustration depicting a representative orientation of a buried
volume, defined with respect to the metal center and bidentate ligand
donors. Typically, the buried volume is quantified at a designated radius and
expressed as a percentage relative to the ligand occupying the encompass-
ing sphere. Furthermore, the contributions of distinct quadrants and octants
can be assessed by establishing a 3D axis and subdividing the sphere into
discrete sections.
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both micro and macro scales.[53] Real catalytic systems exhibit
complexity arising from various factors, including solvent
effects, conformational variations, and catalyst deactivation.[139]

Modelling these complex phenomena might necessitate a
combination of mechanism-agnostic and mechanism-based
approaches. For example, in addition to the descriptors
calculated on a general simplified catalyst structure, as is often
done in the mechanism-agnostic approaches, those derived
from specific TSs or reaction intermediates would make the
model more realistic.[116,161] Mechanistic studies in catalysis are
usually conducted using DFT methods,[162] but the computa-
tional cost of exploring all possible reaction paths considering
the aforementioned factors can be prohibitively high. Hence, a
form of conformer searching or reaction network exploration
based on semi-empirical methods might prove useful.[67,72,163–165]

In such a conformer search, the presence of multiple conforma-
tions may itself be an important descriptor relating to the
catalytic performance.[25,166] To enable such a high-throughput
4D-QSAR/QSSR approach, automated descriptor calculation
should be facilitated on a conformer ensemble. In that context,
OBeLiX workflow uses the cclib and Morfeus packages to
calculate descriptors on DFT outputs, CREST conformer ensem-
bles or XYZ files of TM complexes with monodentate and
bidentate ligands.[17,167]

5. Summary

The scientific landscape has undergone a paradigmatic trans-
formation with the emergence of powerful large language
models such as GPT-3. These models showcase unprecedented
capabilities, demonstrating proficiency in tasks ranging from
crafting poetry to programming, rivaling and even surpassing
human performance. In chemistry and catalysis however, AI
approaches are not as successful for the understanding of the
principles underlying molecular design. Computational homo-
geneous catalyst design is limited by the scarcity of high-quality
data, the complexity of catalytic reactions and minimal
automation. Despite the faced challenges, there are vast
opportunities for catalyst discovery by combining computa-
tional chemistry, automation and AI.

The definition of descriptors in catalytic reactions is
complex, requiring a thorough understanding of the involved
dynamics and mechanisms. While high-throughput in silico
chemical space exploration and analysis provides valuable
insights, the key lies in automated and modular workflows.
Through the creation of OBeLiX, our aim is to democratize the
endeavors of the data-driven catalysis community, paving the
way for a future marked by in silico high-throughput explora-
tion of the catalytic chemical space, particularly in the realm of
TM-based homogeneous catalysis.
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PERSPECTIVE

Computational tools have become
integral to catalyst design, providing
crucial support for experimental
synthesis. This Perspective explores
diverse initiatives in computational
catalyst design, emphasizing the rise
of data-driven methods and machine
learning. Additionally, we introduce
our automated tools tailored for high-
throughput in silico exploration, high-
lighting the pivotal role of integrated
data-driven, automated workflows in
advancing homogeneous catalyst
design and catalysis research.
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