

Delft University of Technology

Dynamic evaluation of airline Crew's flight requests using a neural network

Beulen, M.; Scherp, L.; Santos, B. F.

DOI
10.1016/j.ejtl.2020.100018
Publication date
2020
Document Version
Final published version
Published in
EURO Journal on Transportation and Logistics

Citation (APA)
Beulen, M., Scherp, L., & Santos, B. F. (2020). Dynamic evaluation of airline Crew's flight requests using a
neural network. EURO Journal on Transportation and Logistics, 9(4), Article 100018.
https://doi.org/10.1016/j.ejtl.2020.100018

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.ejtl.2020.100018
https://doi.org/10.1016/j.ejtl.2020.100018

EURO Journal on Transportation and Logistics 9 (2020) 100018
Contents lists available at ScienceDirect

EURO Journal on Transportation and Logistics

journal homepage: www.journals.elsevier.com/euro-journal-on-transportation-and-logistics
Dynamic evaluation of airline Crew’s flight requests using a neural network

M. Beulen, L. Scherp, B.F. Santos *

Air Transport and Operations, Faculty of Aerospace Engineering, Delft University of Technology, the Netherlands
A B S T R A C T

In airline crew rostering, pilots’ requests to operate specific flights need to be evaluated efficiently to avoid inefficient schedules. Despite the relevance of correctly
assessing and granting crew requests, this topic has received very little attention in the literature. In this paper, we address the case this process is a dynamic problem,
in which flight requests are submitted while others have already been granted and pre-assigned. This is the first work to dynamically model flight requests during the
crew rostering process. We propose a simulation-trained neural-network algorithm to evaluate flight requests, providing a systematic way of assessing flight requests
and supporting the definition of a cost-efficient request granting policy. To train and test this algorithm, we developed an innovative rolling rostering framework that
captures the dynamic process in practice. The framework relies on an integer linear programming crew rostering model solved with the help of a column-generation
algorithm. The neural-network algorithm is trained and tested in a case study with a major European airline. The results show that the algorithm is more effective than
the current practice at the airline, granting 22% more requests while using the same workforce to operate the flight schedule.
1. Introduction

Airline crew planning is a complex process that is often divided into
two phases: crew pairing and crew rostering (or assignment) ((Kasirzadeh
et al., 2017)). The crew pairing phase concerns the development of a set
of pairings composed by a sequence of flight segments, such that costs are
minimized and each flight in the schedule is covered by only one pairing.
In the crew rostering phase, individual monthly rosters (or schedules) are
created and assigned to specific crew members. Since the crew rostering
problem is concerned with individual crew members, roster construction
must take into account the pre-assignment of other activities to specific
crew members. These activities are reserve duties, training sessions,
off-duty blocks or granted flight requests that may have been assigned in
an earlier scheduling stage.

At most European airlines, crew members can express their prefer-
ence to operate specific pairings a few weeks before the rostering phase.
For the crew members, these requests are relevant, especially for those
operating long-haul flights. These flights are covered by pairings that
may have a time span of over a week, meaning that the crew will be away
from their crew base for multiple consecutive days. This can be irregular
and challenging from a personal planning point of view and therefore,
the possibility to request flights can be highly valued by crew members.
For the airline, allowing flight requests is one of the possible means for
airlines to accommodate for crew satisfaction. In practice, airlines decide
which request to grant based on estimations of the airline future needs
and rules defined in the collective labour agreements. The majority of the
airlines assess the flight request from all crew members simultaneously,
* Corresponding author.
E-mail address: b.f.santos@tudelft.nl (B.F. Santos).

https://doi.org/10.1016/j.ejtl.2020.100018
Received 12 January 2020; Received in revised form 30 June 2020; Accepted 16 Ju
2192-4376/© 2020 Association of European Operational Research Societies (EURO).
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
at the time the monthly rosters are produced. However, there is an
increasing number of airlines that are adopting a dynamic crew request
approach, in which feedback is given to the crew member shortly after
the request is expressed. This approach necessarily raises challenges in
terms of the future feasibility and productivity of the rosters. However,
there are multiple advantages from this method. Most benefits are on the
crew side. With this dynamic method, crew members have more control
over their rosters, receiving a fast response to their requests and fixing
some of the desired activities in their roster several weeks before oper-
ations. For airlines, this method is a way of improving the social quality
of the rosters and increase crew satisfaction.

To properly assess a-priori the impact of each request is a challenging
problem, given that requests usually refer to pairings that start weeks or
even months after the current rostering planning horizon and implica-
tions cannot yet be determined. Wrong decisions will necessarily lead to
costs to operate the flight schedule. To further illustrate this, Fig. 1 shows
a Gantt chart representation of three example crew schedules for a period
of 10 weeks. Week 1 is the current week of operations. The schedules
consist of blocks of multiple-day pairing activities. Three consecutive
scheduling horizons are distinguished in this example. The first is week 1
till 4 in which the schedule has already been finalized and published to
the crew members. Although still prone to disruptions and mutations,
this part of the schedule is typically considered within the disruption
management practice of an airline. The second horizon is the moment
when the crew rostering problem is solved and adapted before publishing
it (the thick vertical line at Week 4). The goal is to ensure that all ac-
tivities in the schedule are covered with the required crew members in a
ly 2020
Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

mailto:b.f.santos@tudelft.nl
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejtl.2020.100018&domain=pdf
www.sciencedirect.com/science/journal/21924376
www.journals.elsevier.com/euro-journal-on-transportation-and-logistics
https://doi.org/10.1016/j.ejtl.2020.100018
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.ejtl.2020.100018

Fig. 1. Three example crew schedules for a period of 10 weeks from an airline schedule controller perspective indicating the challenge of evaluating flight requests.

M. Beulen et al. EURO Journal on Transportation and Logistics 9 (2020) 100018
cost-efficient way. The third horizon is the period in which crew mem-
bers can submit their requests (e in Fig. 1). That is, in this case, crew may
submit their request up to 10 weeks before operations and before the
roster is published. Depending on the collaborative labour agreement,
the airline has a couple of days after receiving the request to take the
decision of grant or not to grant it. The granting of requests can be
considered as pre-assignment decisions (c in Fig. 1) that can only be
revoked with high costs. These pre-assignments may lead to voids in the
roster (b in Fig. 1) when solving the crew rostering problem. These voids
may indicate an inefficient use of resources with respect to a scenario in
which pre-assigned activities are not considered.

This paper presents one of the first works addressing this problem of
dynamic evaluating flight requests. We propose a neural network clas-
sification algorithm to assess each flight request, based on features from
the request, flight and current status of the schedule. To train and test the
neural network algorithm, we developed a dynamic rostering framework
that evaluates flight requests over time. The framework combines a
mixed integer linear programming (MILP) rostering optimization model
with the neural-network algorithm. The rostering model is designed to
simulate and test the dynamic crew rostering process, assessing the effect
of granting requests that can reduce the efficiency of future rosters. These
results are used to train the neural-network algorithm, such that future
requests can be classified in terms of their potential impact on the ros-
tering efficiency.

The contribution of this work is two-fold. First, this is the first work to
directly model and assess crew requests when building crew schedules.
Although having received little or no attention so far in the literature, the
dynamic evaluation of crew requests is current practice for several air-
lines. Second, it proposes a machine-learning approach to evaluate flight
requests, assessing each request based on the potential impact that it may
have on the crew rostering costs at a later stage. This is an essential step
as it allows for an adaptive evaluation method that is applicable, and can
be retrained, for changing rostering scenarios. The machine learning
approach can be used by airlines as it can give a score per request, given
support to the decision of the crew schedulers when evaluating crew
requests.

The remainder of the paper is structured as follows: Section 2 presents
an overview of existing literature and discusses the context of the flight
request evaluation problem. Section 3 presents the methodology. The
experiments and results are presented in Section 4. Section 5 concludes
this paper with a summary of the main findings and considers future
research directions based on this work.

2. Literature and research context

2.1. Crew rostering literature

Kasirzadeh et al. (2017) provided a comprehensive literature
2

overview and description of the crew scheduling problem, involving
crew pairing (i.e., the problem of generating unassigned pairings), the
and crew rostering (i.e., the problem of allocating pairings to individual
crews). In particular, the authors describe the commonly used ap-
proaches in research and the industry to solve the airline crew rostering
problem. Approaches to handling crew preferences vary per airline but
almost always there is a process in place that incorporates preferences
into crew rostering.

Two general approaches to airline crew rostering can be taken.
Firstly, in the bidline schedules, complete anonymous lines of work (called
bidlines) are created. The bidlines are presented to the crew members
who can express preferences in the form of a bidding process. The bid-
lines are then assigned to individual crew members by optimizing for
these bids. Examples of methods for the bidline approach were presented
by Beasley and Cao (1996), Christou et al. (1999), Boubaker et al. (2010).

Secondly, in the personalized schedules approach, schedules are
created for individual crew members, while considering pre-assigned
activities, such as training periods or holidays, and crew members indi-
vidual requirements. Crew members can express their preferences by
referring to particular roster attributes (Caprara et al. (1998)). Examples
of roster attributes are duty start times, duty end times, pairing length,
pairing destination, specific pairings with fixed start and end date,
multiple day leave of absence, flying East- or Westbound. These attri-
butes are not always mutually exclusive. In the context of some airlines,
crews can be more specific and indicate preferences for particular ac-
tivities, such as flight pairings or a weekend off (Gamache (1998)). In this
personalized schedules approach, preferences and crew satisfaction can
be either considered at the global level (the rostering problem) or by given
priority to the satisfaction of senior crew members (the seniority-based or
preferential bidding problem). A definition of the rostering problem as a
set-covering optimisation is provided by Kohl and Karisch (2004). The
authors are affiliated with the Carmen Crew Rostering system which is
used at major European airlines such as Alitalia, British Airways, KLM as
well as the German state railway company Deutsche Bahn. Other ex-
amples of the rostering problem in the literature are the works from Day
and Ryan (1997), which considered an integer programming approach to
address the short-haul operations of Air New Zealand, Gamache (1999),
which compared the results from a proposed column-generation algo-
rithm with the rostering solution at Air France, and Maenhout and
Vanhoucke (2010) that used a Dantzig–Wolfe decomposition and a
scatter search method. The preferential bidding problem is less present in
the literature, becausemost airlines prefer to adopt the rostering problem
(Eltoukhy et al. (2017)). Gamache (1998) presented a model for
assigning pilots using the preferential bidding approach for the case of
Air Canada. In this model, a problem is solved for each crew member
sequentially and in seniority order aiming to maximize the bidding score
for each roster. Achour et al. (2007) presented an exact solution method
to solve the preferential bidding approach where the assignment of a

M. Beulen et al. EURO Journal on Transportation and Logistics 9 (2020) 100018
roster withmaximum bidding score to a more senior crew is delayed until
only one feasible roster is left for that crew member. The problem defi-
nition and optimisation approaches defined by Gamache (1998) and
Achour et al. (2007) are currently implemented in the crew scheduling
systems of several North-American airlines.

Recent trends in the crew rostering literature focus on the efficiency
of the solution techniques used and on the integration of the problem
with the crew pairing problem. In the solution process, literature has
focused on the effect of using different types of heuristics to improve
roster quality in limited computation time (e.g., Zeghal and Minoux
(2006), Saddoune et al. (2011), Azadeh et al. (2013)). The crew pairing
and crew rostering problem is commonly called crew scheduling problem
in the literature and it has been addressed by, e.g., Guo et al. (2006),
Zeghal and Minoux (2006), Saddoune et al. (2012), Azadeh et al. (2013),
Kasirzadeh et al. (2017), Quesnel et al. (2019), Zeighami and Soumis
(2019).

2.2. Dynamic crew preferences

Most of the previous works, in particular the ones dealing with the
personalized schedules approach, consider the existence of pre-assigned
activities when solving the rostering problem. However, none of them
address the evaluation and definition of those pre-assignments. The pre-
assignments are assumed as input. The problem of defining or granting
pre-assignments is, nevertheless, a challenge one. Decisions have to be
made while assuming that the roster will be finalized at a later stage.
Assignment decisions affect the state of the roster in a later planning
stage causing inefficiencies in the crew schedule.

In practice, most pre-assignment decisions are made by schedulers
that follow basic airline-imposed rules or collaborative agreements. A
systematic and better informed strategy could support the decision pro-
cess, by evaluating the impact of assignment some activities in advance.
In particular, for this work, such a systematic strategy could help to
analyse crew requests and determine in advance relevant characteristics
of the expected rosters. Although Kohl and Karisch (2004) mentioned the
existence of preferential bidding systems on the market for fast feedback
on crew requests during the bidding phase, this problem was never
addressed in the literature.

2.3. Evaluation mechanisms

Within the domain of nurse rostering, Smet et al. (2014) address that
it is common in the academic body that schedule periods are isolated
when modeling them and that this does not conform to real-world re-
quirements. Many of the problem constraints relate to the following or
previous schedule periods and to continuity in general. This part is often
not taken into account in the evaluation metrics of a roster. Within the
airline crew rostering domain, Biskup and Simons (2004) acknowledges
this and states that very few models consider learning effects in sched-
uling. The author distinguishes between autonomous learning and
induced learning methods. Because of rapid technological progress in
terms of computing, the importance of considering learning effects as a
competitive advantage in mathematical models is self-evident. The au-
thors use learning effects in the determination of due dates in a sched-
uling environment. An example of induced learning is presented by
Suraweera et al. (2013), who proposes a method that is able to infer
constraints from historical crew schedules based on a set of user provided
template outlining the general structure of important constraints. Com-
plex multivariate constraints can be induced by the algorithm. In a study
on the operational airline crew scheduling problem, Stojkovi�c et al.
(2009) argue that a very relevant asset to research would be the
day-to-day decision data of schedulers that make decisions on the
scheduling of disturbances. It is then possible to compare results obtained
by airline operators with automated decision models. In terms of
modeling crew preferences, a validation with operational data is often
missing. Only one author (Maenhout and Vanhoucke, 2010) has used one
3

month of airline crew preference data as validation for modeling crew
preferences in airline crew rostering. Contrary to this work, our research
had access to the historical rostering and flight request data (on both
submitted requests and corresponding decisions) from a major European
airline.

2.4. Research goal

The goal of this is to address the identified literature gap proposing
the first crew’s request evaluation method. We propose a data-driven
approach, since learning methods are expected to provide a suitable
methodology for evaluating flight requests. The goal of supervised ma-
chine learning is to reason from externally supplied class labels in a data
set what the class label of a future instance might be. Translating that to
crew preference management, it can be tested whether the granting or
rejecting of individual crew preferences can be evaluated using infor-
mation about the current roster status and the attributes of the request
itself. Supervised learning can be divided into two categories: classifi-
cation and regression. Since an individual crew request decision is a yes-
or-no decision, classification is expected to suit the problem specifics
more accurately. An overview of supervised learning algorithms is pre-
sented in a review paper by Kotsiantis (2007).

Classification algorithms have to be trained with data that reflect
good and bad decisions. This is essential to teach the algorithm how to
make the decisions based on the context of the request. The dependency
on data increases when we increase the number of features considered to
describe the context or when we aim for more accurate decisions. In the
context of crew’s flight request, there is not much data available that
could be used to train such an algorithm. Therefore, we propose a dy-
namic rostering framework to be used as a simulator and training gym for
our classification algorithm. This dynamic framework is described in the
next section of the paper.

3. Dynamic rostering framework

For an airline, it is desired to grant as many requests as possible with
the least possible required crew members to cover all the flight pairings.
Granting flight requests serves as a mean to promote crew satisfaction,
while the need for additional crew members represents higher operating
costs. The trade-off between these two factors is hard to model in a
concrete way – i.e., it is hard to determine what should be the maximum
costs to grant a pairing request. Therefore, we propose a dynamic ros-
tering framework that makes use of a supervised machine learning re-
quests evaluation algorithm to decide whether to grant or reject flight
pairing requests based on previous experience. This way, no trade-off or
cost threshold is defined to determine which requests to grant. The
methodology proposed was developed considering the problem of
developing personalized roster for the long-haul cockpit crew from an
airline operating according to personalized rostering with pre-assigned
activities.

The dynamic rostering framework is summarized in Fig. 2, in which
the process blocks are labeled referring to the dynamic rostering frame-
work or DRF. The framework is based on a rolling roster modeling
approach. In short, the dynamic framework loops over time, solving a
rostering model for every time step, while taking into account pairing
assignments or granted requests decided in previous time steps. The
framework is used to simulate the rostering process for multiple weeks.
Several simulations can be run in which the rostering problemwith flight
request evaluation can be solved for multiple consecutive time periods.

In this section, we explain the framework in detail. We start by
justifying the concept of time-space networks that we followed to
represent the rostering problem (DRF.3, in Fig. 2). In Subsection 3.2 we
discuss the shortest path algorithm used to generate cost-efficient rosters
(DRF.4). Then, we present the formulation of the rostering model used at
each time step (DRF.5), followed by the column generation algorithm
used to solve the rostering problem (DRF.6–.9). In Subsection 3.5 we

Fig. 2. Flow diagram of the dynamic rostering framework (DRF).

M. Beulen et al. EURO Journal on Transportation and Logistics 9 (2020) 100018
explain how resulting rosters are evaluated (DRF.10). Then, we explain
how we generated new pairing requests for each time step. In Subsection
3.4, the simulation-trained neural network algorithm and other bench-
mark algorithms that are used as request evaluation algorithms (DRF.15)
are introduced. We conclude this section by explaining the process of
creating and adjusting boundary conditions in the rosters (DRF.16).

3.1. Time-space network

Time-space networks are defined for each time the rostering model is
required to construct a framework for feasible sequencing of activities in
terms of time and space (DRF.3, in Fig. 2). Such a network graph is
composed of nodes that are connected by arcs. The nodes represent ac-
tivities (e.g., flights or layovers) to time and space and the arcs represent
Fig. 3. Example of a 7-day time-space network with three different pairings. In thic
sink node SIN.1.

4

the possible connections between the nodes.
To give a visual impression, a 7-day time-space network is presented

in Fig. 3. The figure shows an example with three different pairings -
Pairing A that is repeated every other day; Pairing B that is repeated
twice per week; and Pairing C that is operated only once per week.
Pairings are assumed to be an input to the dynamic rostering framework.
Note that the pairings represented in this figure are simplified. In prac-
tice, they can have a duration of 10 or more days and they include flights,
rest periods and other activities, such as trainings and office days. In this
figure, the horizontal and vertical axes indicate the time and space
component of the network, respectively. A cost value can be assigned to
an arc which indicates the costs of operating such pairing or being at the
airline base airport off-duty.
k arrows the shortest path between the roster source node SON.1 and the roster

M. Beulen et al. EURO Journal on Transportation and Logistics 9 (2020) 100018
3.2. Shortest path algorithm

Every possible path between the source node SON.1 to the sink node
SIN.1 in Fig. 3 is a different roster for a pilot. Even for this very simple
example, there are 15 possible 7-day rosters. For a practical case with
thousands of pilots and hundreds of flights operated per day, it would be
very computationally demanding to compute all possible paths for all
pilots, compare them and determine the optimal distribution of pairings
among pilots.

Therefore, we make use of the time-space network and of a shortest
path algorithm to generate cost-effective sequences of activities (rosters)
for crew members (DRF.4). The shortest paths are retrieved using
Dijkstra’s algorithm (Ahuja et al., 1990). An example of a roster is pro-
vided in blue thick arrows in Fig. 3, in which the pilot would have to start
operating Pairing A on the first day, have to rest days at the airline base
airport and then operate Pairing B.

Before running the rostering problem, the shortest path algorithm is
used to compute a single initial roster per crew member (DRF.4). This
way, the initial rostering problem only contains a very small amount of
the feasible rosters – as many as the crew members being considered.
Additional rosters are latter added using the column generation algo-
rithm explained in sub-section 3.4. During this rostering generation
process, a null cost is given to pairings that were assigned or granted to
the specific crew member in the previous time step.

3.3. Rostering problem

The rostering problem is formulated as a set covering problem that
ensures that in the final solution all pairings are covered by one crew
member. The resulting model is defined as an integer linear program-
ming model.

To formulate this problem, we analysed the rostering and request
evaluation process at one airline. We observed that granting request
makes the crew schedule less efficient, creating voids in the schedule and
requiring more crewmembers to operate the scheduled flights. The voids
in a crew roster are sometimes hard to fill in with other activities. It
depends on the length of the voids. If the void is smaller than the length
of the pairings used by the airline, it would mean that the void could only
be used for other activities than not flying. However, the demand for
these other activities depends on the context of the crew member. If, for
instance, no training, medical checks, office duties or holidays can be
scheduled in these voids, these days will be lost days for the airline. This
means that the crew member will have a paid day off.

Following these observations, we have considered a few assumptions
when formulating the rostering problem:

- The objective of the rostering problem is to minimize the number of
necessary crewmembers needed to operate the schedule. However, as
this is not known at the time the requests are evaluated, a proxy can
be obtained by computing the past crew costs associated with voids of
different lengths. These costs include the costs of additional crew to
cover the schedule and the salary associated with lost days.

- The airline can always use additional crew to cover the schedule. That
means that, besides the normal number of crew members needed to
operate the flight schedule before granting requests, it will be possible
to call more crew. These additional crewmembers will be more costly
(a compensation has to be given, either in extra days off or a wage
bonus).

- A crew member is equivalent to one full-time equivalent (FTE)
employee. Although several crew members work only part-time, we
work with the sum of the equivalent FTE’s of the airline crew.

The sets, variables and parameters used are summarized next, fol-
lowed by the formulation of the optimisation problem for a given crew
type at a specific time step t. Since we do not work with all possible
rosters and that new roster are added per iteration of the column
5

generation algorithm, we called this optimisation problem as a restricted
master problem (DRF.5).

Sets
LðtÞ : set of crew members of the crew type considered at time step t,

including additional crew.
PðtÞ : set of pairings to be covered by the crew type considered at time

step t.
PlðtÞ : set of pairings p 2 PðtÞ that were previously assigned to crew

memberl 2 LðtÞ in the previous time steps and that are either already
published or granted.

RðtÞ : set of personalized rosters for all crew members at time step t.
RlðtÞ : set of personalized rosters for crewmember l 2 LðtÞ at time step

t.

Decision variables
xlrðtÞ ¼ 1 : if personalized roster r 2 Rl(t) is chosen for standard crew

member l 2 LðtÞ at time step t; 0: otherwise.
s�p : slack variable for pairing p if it is not included in any of the

personalized rosters in the initial iteration.
sþp : slack variable for pairing p if it is included in more than one

personalized roster in the initial iteration.

Parameters

ðnivÞlrðtÞ : number of voids v in personalized roster r 2 RlðtÞ for crew
member l 2 LðtÞ with a void length of i number of days.

civ : cost of void in the roster with a void length of i number of days.
clpðtÞ : cost of choosing roster r 2 RlðtÞ to crew member. l 2 LðtÞ
M: a large constant.
er;lp ðtÞ ¼ 1 : if pairing p 2 PðtÞ is part of roster r 2 RlðtÞ for l 2 LðtÞ at

time step t; 0: otherwise
M: maximum duration of a void in any of the rosters. r 2 RðtÞ

Optimisation problem

Minimize
X
l2LðtÞ

X
r2RlðtÞ

"Xm
i¼1

�
niv
�l
rðtÞ � civ þ clpðtÞ

#
� xlrðtÞþM �

X
p2PðtÞ

�
s�p þ � sþp

�
(1)

Subject to:

X
l2LðtÞ

X
r2RlðtÞ

er;lp ðtÞ � xlrðtÞ þ sþp � s�p ¼ 1 ; 8p 2 PðtÞ (2)

X
r2RlðtÞ

xlrðtÞ¼ 1 ; 8l 2 LðtÞ (3)

X
r2RlðtÞ

er;lp ðtÞ � xlrðtÞ ¼ 1 ; 8p 2 PlðtÞ;8l 2 LðtÞ (4)

xlrðtÞ 2 f0; 1g ; 8l2LðtÞ;8r 2 RlðtÞ (5)

sþp ; s
�
p 2Z ; 8p 2 PðtÞ (6)

The objective function (1) is the minimization of the sum of the costs
of the rosters for all crew members (first term). The formulation of these
costs is case-specific and needs to be adapted to the airline crew rostering
policy. In Equation (1), we given an example of how to formulate these
costs by adopting the policy followed by the reference airline considered
in the case study. According to their policy, crew costs can be divided into
two types of costs: the cost of leaving voids in the personalized roster of a
crew member and the cost of assigning a personalized roster to a crew
member. The first type of costs is computed by analysing historical airline
data. Such analysis can be used to estimate the effective average loss days

M. Beulen et al. EURO Journal on Transportation and Logistics 9 (2020) 100018
associated with each different void length and the respective cost. The
second type of costs is considered to penalise the use of additional crew
and to capture some airline operational requirements or collective
agreements. For instance, these costs can be used to differentiate salary
costs associated with the allocation of pairings to different crews, to
define request priorities among different crew members, to include costs
of cancelling other predefined crew activities besides flights (e.g.,
training sessions), and to include fairness considerations when granting
requests. That is, when considering crew rankings and fairness, crew
members with higher request priority or with fewer requests granted in
the past have a lower roster costs than other crews.

A second term is added to the objective function to consider the use of
slack variables in the initial iteration(s) of the column generation algo-
rithm. Given that we initiate the rostering problem to only work with a
single roster per crew member, not all pairings are necessarily covered in
the initial iterations while other pairings are selected more than once.
Therefore, slack variables are added to constraints (2); these constraints
force each pairing to be included in one and only one personalized roster.
The slack variables guarantee that the problem is feasible in the initial
iteration. Note that in the implementation only slack variables for the
pairings that indeed to be fixed are added to the model.

Constraints (3) ensure that each crew member has in the end a roster
(even if it is an empty roster for most additional crew members), while
constraints (4) import previous defined assignments of pairings to crew
members. The latter constraints are the ones that capture the dynamic
sequence of solving the rostering problem sequentially in several time
steps, guaranteeing the consistency with previous decisions. Constraints
(5) and (6) define the domains of the variables.

This rostering is solved for each time step t in the rostering planning
horizon. For the traditional monthly crew rostering strategy (illustrated
in Fig. 1), this would mean that the time steps would be separated by 4
weeks and that in each time step we would look into a time horizon of 4
or more weeks, depending on the last end date of the pairings starting in
the 4 weeks under analysis.

3.4. Column generation algorithm

The optimisation of the integer linear programming problem in the
rostering model is achieved using a commercial optimisation solver
(Gurobi Optimization, 2018). To guarantee the global optimal solution,
the full set of all the possible rosters for each crew member should be
available. In larger-scale rostering problems, hundreds or even thousands
of possible rosters may exist for each crewmember. Computationally, it is
very demanding or even impractical to compute all rosters. Furthermore,
since only one roster can be chosen for each crew member, most
non-basic decision variables would have a value of zero. A better
approach is to use a column generation algorithm (Desaulniers et al.,
2005). Following this algorithm, we start with a manageable set of ros-
ters, obtain a feasible problem, and from that point onward determine
additional rosters to add in order to improve the incumbent solution.
Only rosters (i.e., columns) that have the potential to improve the
objective function are added to the rostering model. This algorithm has
proven to be very efficient solution technique to solve scheduling prob-
lems, in particular airline crew scheduling problems (e.g., Gamache
(1999), Cordeau et al. (2001), Kasirzadeh et al. (2017)).

The steps of the column generation algorithm adopted are:

- DRF.5 – Solve a relaxed version of a feasible restricted master prob-
lem – This means in solving the restricted master problem (RMP)
assuming that all decision variables are continuous. The feasibility of
RMP is guaranteed by computing an initial roster for each crew
member (DRF.4) and working with the slack variables in the rostering
model.

- DRF.6 – Obtain the solution and dual variables – From the solution to
the relaxed restricted master problem, extract the decision variables
values and the values of the decision variables to the dual problem.
6

- DRF.7 – Solve the pricing problem for all crewmembers – The pricing
problem represents the generation of new rosters using the shortest
path algorithm described above (sub-section 3.2). The costs at the
arcs of the time-space network are modified by subtracting the
(negative) dual variables associated with constraints (2). A new roster
is generated for all crew members.

- DRF.8 – Check if the stop criterion for adding columns is met – If the
cost of any of the newly generated rosters is lower than the cost of the
current roster for the crew member, then the roster (column) is added
to the restricted master problem and a new iteration as to be followed.
Otherwise, if no more negative reduced columns are found, the al-
gorithm stops.

- DRF.9 – Add columns to the restricted master problem – Modify the
restricted master problem by adding the rosters (columns) that
priced-out the current rosters. Eliminate slack variables (columns)
that are no longer in use.

3.5. Pairings evaluation

Requests are either granted or rejected in the weeks before the rosters
are finalized. The correctness of granting a request can only be estab-
lished after the roster is created to be able to measure its effects.
Consequently, in this dynamic rostering framework the evaluation of the
pairing request decisions are done a few time steps later.

To measure the effects of all these granted requests, a KPI is intro-
duced that evaluates all granted requests in a given rostering week. The
idea is that a good resulting roster is the one that grants a large number of
flight requests, while using none or very few additional crew members.
Therefore, we used the ratio represented in Equation (7).

KPI¼ ð# granted flight requestsÞ2
ð# required additional FTE þ 1Þ2 (7)

The KPI contains two variables: granted flight requests and required
additional FTE. The granted flight requests are in the numerator, as a
higher amount means a better KPI. Additionally, the required additional
FTE is in the denominator as a higher amount means a worse KPI. The
value of 1 is added to the equation as the required additional crew
members could be 0. A quadratic value of these variables is used to stress
the fact that relation between granted flight requests and additional
FTE’s is not linear – to have an additional granted request for the same
amount of additional FTE’s is better than increasing the KPI by one unit.

This KPI is given as a score to all requests performed in a time step
(assumed to be one week). The isolated effect of an individual granted
request on the need for additional FTE is hard to measure. Therefore, all
granted requests and additional FTE in a given time step are considered
at once. All requests granted in that week are labelled with the resulting
KPI value.

3.6. Generate new pairing requests

In the case this dynamic rostering framework is applied in practice,
new pairing requests can be retrieved from the airline system. However,
to train and test the evaluation algorithm, pairing requests need to be
generated for each time step (DRF.14). This is a random process that, to
better represent the real problem, should respect the flight request con-
ditions followed at the airline and should capture historical trends.

In this study, we have defined two sets of parameters that were used
in the generation of new pairings:

- Pairing request probability, prequest – Probability of a certain pairing
from the set of pairings in a given planning horizon (i.e., week 7 up to
and including week 12) being requested. This probability reflects the
fact that there are pairings that are much more requested than others.

- Number of pairing requests per crew member, nlrequest – Number of
pairings within the requested planning horizon that are requested by

M. Beulen et al. EURO Journal on Transportation and Logistics 9 (2020) 100018
each crew member in each time stage. This number reflects the fact
that there are groups of crewmembers that submit more requests than
others.

These parameters can be estimated using airline historical data. Re-
quests are generated by randomly selecting a crew member with still less
requests than nlrequest . The pairing being requested is selected by gener-
ating a random value and comparing it with the pairing request proba-
bilities prequest . In the case that duplicate pairing requests occurs, the
process is repeated. A crew member that achieves the number of pairings
nlrequest is excluded from being selected. The process ends when no more
crew members have requests to make.

3.7. Flight request evaluation method

In the dynamic framework of Fig. 2, flight requests are evaluated in
element DRF.15. We propose a simulation-trained Neural Network (NN)
algorithm for this evaluation (Schmidhuber, 2015). This is a supervised
machine learning technique that is used in the dynamic rostering
framework to classify each request. The ones that get a high score should
be granted, while requests associated with a low score potential cause
high costs to the airline and should be rejected.

In this subsection, we present the NN algorithm adopted followed by
the description of the other evaluation methods used as a benchmark.
Three alternative methods are used: a random assessment algorithm, a
rule-based assessment process, and a static version of the optimisation
model. Regardless of the method used, the assessment process follows
four steps, represented in Fig. 4:

- RA.1 – A feasibility check that verifies
– whether granting a flight request is feasible in the current roster
without having to capture the full planning horizon in a time-space
network. This feasibility check may guarantee, for example, that
not too many requests are granted in a given week.

– If the crew member is legible for the request submitted or if the
request does not violate any collective agreement. For fairness
reasons, crew members may be subject to a maximum number of
requests submitted and granted per time period (e.g., per year).

- RA.2 – A feature extraction step that collects data from the state of the
roster at the moment of assessing the request.

- RA.3 – The assessment method that is used to decide whether to grant
or decline the flight request.

- RA.4 – Updating the model for the decision that was made in the
flight request assessment.
3.7.1. Neural network algorithm
One of the main contributions of this work is the development of a
Fig. 4. Flight request assessment algor

7

classification algorithm based on a NN algorithm to classify flight pairing
requests in the context of the dynamic rostering framework. This NN is
used to learn from previously made decisions on whether to grant or
reject a request. By keeping track of specific features when the decision is
made and analyzing the final result of the impact on the rosters, the NN
could improve the decision-making process compared to the current
airline practice. To apply a NN algorithm to the problem, the Scikit Learn
MLPClassifier package is used. After several experiments, the best per-
formance was obtained while using a network of 2 hidden layers both
with 100 neurons. The ReLU activation function was used and adopted
the ADAM learning algorithm, using a log loss function. In addition, five
features were selected to be included in the algorithm. These are visu-
alized in Fig. 5 and explained below. In this figure, it can be seen that
three of the features focus on the distance between the previously
granted request before the new requested pairing, one on the distance
after the new requested pairing and one at the requested pairing itself.

– Two features based on the void length between the requested pairing
and the previously assigned pairing in the roster for the given pilot.
The void length can range from 0 to infinite days, but given the
planning horizon we capped this value to a maximum of 44 days.
These two features could also be used after the requested pairing and
subsequent pairing, but it was found during the experiments that
these did not increase the performance of the NN algorithm.
– Avg7: the amount of blocks of 7 days that fit in this void length.
The average pairing length is 7 days. For the maximum of 44 days
of void length, it means that this feature ranges from 0 to 6 blocks
of 7 days.

– Rest7: the rest value of the difference between the void length and
blocks of 7 days. For example, for a void length of 20 days, 2 blocks
of 7 days fit and there are 6 rest days. Therefore, this feature ranges
from 0 to 6.

- Additionally, two features are related to the amount of pairings that
would fit before and after the requested pairing if granted.
– #PairB: The log of the amount of pairings that are available and
would fit between the last assigned pairing and before the
requested pairing. The log value is taken as the value for this
amount ranges from 0 to almost 300 pairings (due to 71 pairings
per weeks and multiple weeks of requests) and it is more important
to go from for example 10 to 20 pairings than from 100 to 150.

– #PairA: The log of the amount of pairings that would fit after the
requested pairing and previously assigned pairings up to week 13.
This value is even higher than the one above and can get up to 500
pairings as more often there are no pairings assigned yet after the
requested pairing. Again, the log is taken to highlight the effect of
low values for this amount.
ithm (R
� Lastly, the length of the requested pairing is used as a fifth
feature.
A ¼ Request Assessment).

Fig. 5. Illustration of the pairing request features in the context of the rostering problem.

M. Beulen et al. EURO Journal on Transportation and Logistics 9 (2020) 100018
– LenPair: The length of the requested pairing. This feature ranges
from 5 to 12 days.

Using the features and the KPI presented in subsection 3.5, the NN can
be trained. The NN algorithm is trained with the data collected by
running the simulation model for many times, with different random
generated instances. As a warm-up, the NN is initially trained using data
generated by the random algorithm. For the first 500 weeks of rosters
generated using the random algorithm, a set of features is stored when
decisions are made to grant or reject rosters. Afterwards, the random
algorithm is replaced by the NN algorithm, so the network learns from its
own decisions.

For each flight request under consideration, the NN provides a score
between 0 and 1. Decisions have to be made based on a granting
threshold that defines when to grant a request. For example, a granting
threshold of 0.5 means that all requests that receive a score above 0.5 will
be granted. This threshold is used in the experiments to alter the number
of requests granted.

3.7.2. Benchmark methods

Random assessment. The random assessment of requests is based on a
probability of granting or not granting the request. Similar to the
granting threshold from the NN, this probability defines what should be
the value of a randomly generated value to grant a given request. No
features of the request are taken into account for this. This probability is
also used in the experiments to compare the different algorithms. The
random assessment serves as a lower-bound reference when comparing
the different algorithms.

Rule-based (airline practice). The rule-based algorithm is based on the
method used by the airline from the experiments. The airline uses fixed
rules to determine whether to grant or reject a request. These rules are
based on certain features of the request. First of all, the length of the void
between the requested pairing and the pairings already in the schedule is
used. If this length is a multiple of the average pairing length, a request
should be granted. There is flexibility to deviate from this length. For
example, if the average pairing length is 7 and a flexibility of 10% is
adopted, requested pairings can be granted if they that have a void length
of 21 � 2.1 days. This flexibility is a setting of the rule-based algorithm
and is used in the experiments. The second feature that is used in this
algorithm is the maximum amount of granted requests per day. If this
maximum is reached, no more requests are granted.

Static rostering model. The previous methods are compared with a static
version of the dynamic rostering framework that eliminates the dynamic
element of time in this process. The solution obtained with this method is
the optimal situation for the situation that all requests are submitted at
the same time and not time-phased. Because we defined the rostering
problem as a minimization problem and to grant a request will increase
the costs for the airline, the following constraint was added to the model
8

(1)–(3) & (5)–(6):
X
l2LðtÞ

X
r2RlðtÞ

X
p2PðtÞ

er;lp ðtÞ � glpðtÞ � xlrðtÞ � q (8)

where glpðtÞ is equal to 1 if pairing p 2 PðtÞ is requested by crew member
l 2 LðtÞ at time step t, and 0 otherwise; and q is the minimum desired
number of requests to be granted. Note that the constraints capturing the
consistency of the dynamic decisions (constraints 4) are not considered in
this static model. The static rostering model is used as an upper-bound
reference when comparing the different algorithms.

3.8. Boundary conditions

To account for continuity throughout the simulations, the overlap of
activities into the current rostering planning horizon is considered using
a set of boundary conditions. These boundary conditions are updated at
the end of each time step (DRF.16) and are reflected in the rostering
model (1)–(6) via the set PlðtÞ, the set of pairings that were previously
assigned to a crew member in previous time steps. This set considers the
overlap of both the pairings already published (elements a in Fig. 1) and
the flight pairings request granted in previous time steps (elements c in
Fig. 1).

Furthermore, the boundary conditions are also considered in the
establishment of the individual time-space networks (DRF.3). Con-
straints (4) enforce that previously assigned pairings are kept in the
rosters of the crew members. This makes the pricing problem (DRF.7)
intractable when having more than one pre-assigned pairing per crew
member, as discussed in Barnhat et al. (2000) for the multicommodity
flow problem. Thus, our approach was to adapt the time-space network
per crew member. We have eliminated from the network all parallel
pairings in conflict with the pre-assigned pairings. This guarantees that
the boundary conditions are respected when generating new paths and it
improves the efficiency of the solution technique.

4. Experiments and results

This section describes the experimental set-up, which focuses on the
input and settings of the different algorithms used. Additionally, the re-
sults of the experiments performed are given and discussed.

4.1. Experimental set-up

The dynamic rostering framework was tested with data from a major
European airline. This reference airline has a particular rostering and
flight request evaluation process. Requests can be submitted up to 12
weeks before the operation and the rostering problem is solved every
week (Fig. 6). The rosters are produced and adapted on weeks 5 and 6
before operations and are published before Week 4, so a rolling monthly
roster is provided to each crew member. The airline does not consider
prioritisation of the requests according to the seniority of the crew

Fig. 6. Crew rostering and flight request evaluation processes from the reference airline.

Table 1
Performance of the neural network.

True
Positives

False
Positives

False
Negatives

True
Negatives

F1-
score

Accuracy

1040 987 616 1357 0.60 0.60

M. Beulen et al. EURO Journal on Transportation and Logistics 9 (2020) 100018
members. It follows a first-come-first-served priority logic. Fairness is
considered by establishing quotas regarding the number of requests
requested or granted per crew member. We have adopted a similar
strategy in our experiments.

We had access to the cockpit crew scheduling data, including flight
requests data, for their long-haul fleet. We used this information to
determine the pairings per week and to generate pairing requests prob-
abilities. The pairings generated were composed by the flights, the
layover between the flights and the days off after the last flight, according
to collaborative agreements. In total, 71 flight pairings and 72 FTE are
used. The same flight pairings are repeated in the dynamic rostering
context for all the weeks, which is according to the airline practice. The
probabilities that flight pairings are requested is determined based on a
season of airline request data. In every iteration of the dynamic model a
sample is created of pairings that are requested by each crew member.

The rule-based technique based on the airline was set-up so that it
would match the performance as measured at the airline. The perfor-
mance of the flight request process is measured at the airline by
comparing the number of requests that are granted per FTE. It is found
that the airline uses around 75 FTE per week to cover the flight schedule
and, on average per week, 0.219 requests are granted per FTE at the
airline. The airline technique should, therefore, be set-up accordingly so
that a similar amount of granted requests per FTE are obtained. The right
setting for the rule-based technique is to adopt a flexibility of 11%.

The granting probability of the random assessment and granting
threshold of the NN algorithm assessment are then also set at various
levels to be able to compare the classifier with the other techniques. The
random assessment method required a probability of 0.13 to match the
same amount of FTE’s and a probability of 0.185 to match the same
number of average granted requests per week, when compared with the
airline. The NN algorithm required a threshold of 0.488 and 0.511,
respectively to match the same amount of FTE’s and average granted
requests per week.

The three algorithms are tested for varying granting thresholds (NN
algorithm), granting probabilities (random assessment) and flexibility
setting (rule-base). Due to the dynamic nature of the problem, especially
the carry-in effects of the rostering problem, the tests are performed for
multiple weeks. In total 5 repeats are performed of 115 weeks, from
which the last 100 weeks are selected for comparison. The first 15 weeks
are used to initialize the model and allow for correct carry-in in the first
measured week. This means that 500 weeks are run for each different
algorithm setting.

4.1.1. Set-up of the neural network
The NN algorithm was trained for 3500 weeks. Each of these weeks is

based on the same flight schedule, pairings and request probabilities.
These runs led to 600000 request granting decisions. From these 600000
requests performed, 50000 were granted by the model. These 50000
granted requests were classified using the KPI. Experiments were per-
formed to determine the best threshold to determine whether a request is
9

correctly or incorrectly granted. It was found that using the best 20000
requests based on the KPI as correctly granted and the worst 20000 as
incorrectly granted performed best. These 40000 requests are labelled
accordingly and provided to the NN. The set of 40000 requests is split in a
training set and a test set with 36000 and 4000 requests respectively.
After training the NN algorithm with these requests and their accompa-
nying features, the performance of the NN is measuredwith respect to the
test set. The results are given in Table 1. It can be observed that for the
test set of 4000 requests an F1-score and accuracy of 60% is obtained.
Additionally, the converge of the loss function during NN training can be
observed in Fig. 7.

The relative importance of each of the features used in the NN in the
classification of a request is determined using Garson’s algorithm (Gar-
son, 1991). This algorithm partitions the weights of the hidden layer and
output neurons into components of each input feature. The results of this
algorithm are given below.

� Avg7: 8.6%
� Rest7: 39.8%
� #PairB: 7.3%
� #PairA: 8.5%
� LenPair: 35.8%

The Rest7 and LenPair have the highest relative importance ac-
cording to this method, while the other three features to have lower
importance. The Rest7 importance validates the current rule-based
approach followed by the airline, where the main rule is to check if the
length of the void is multiple of seven. The importance of the LenPair
suggests that the number of days blocked when granting a request is
relevant for the flexibility of the rostering process – long pairings may
congest the roster too much, while small pairings may create long voids.

4.2. Results of experiments

A summary of the results of the experiments can be seen in Fig. 8.
Four lines can be observed: static, random, rule-based and NN algorithm.
On the y-axis of the graph the average number of granted requests per
week is given, while on the x-axis the average required FTEs per week for
the 500 weeks is given. For the given schedule under analysis with 0 re-
quests granted a minimum of 72 FTE are required. The static solution
increases to 30.5 granted requests for 72 FTE and from that point onward
it is found that on average 1.65 additional FTE are required for each
additional granted request. The full range for the three algorithms is

Fig. 7. Loss function for neural network training.

Fig. 8. Results of the three evaluation techniques and static solution.

M. Beulen et al. EURO Journal on Transportation and Logistics 9 (2020) 100018

10

M. Beulen et al. EURO Journal on Transportation and Logistics 9 (2020) 100018
provided, which means a granting threshold between 0 and 1 for the NN
algorithm, a granting probability between 0 and 1 for the random algo-
rithm and no flexibility and maximum flexibility in the airline rule-based
method.

To validate the rule-based method, the results are compared with the
average amount of granted requests per FTE. This is obtained with a
value of 75.51 required FTEs per week and 16.61 granted requests per
week. This leads to 0.220 granted requests per FTE. To compare the three
algorithms and the static solution, the settings are adjusted so that a
similar amount of required FTEs per week or similar amount of granted
requests per week is obtained. Having a similar result in terms of required
FTEs or granted requests enables the focus on just one of these variables
rather than them combined. The settings that lead to these results can be
seen in the Figure but also in Table 2. In this table, there are two sets of
results displayed. The first set is the results for a similar number of
required FTEs, while the second set has a similar amount of granted re-
quests. From both the figure and table, it can be observed that for the
same amount of required FTEs the static solution as expected provides
the best result with 32.63 granted requests on average per week. The NN
classifier leads to 20.36 granted requests, while the airline solution and
random solution lead to 16.61 and 13.35 granted requests respectively.

For a similar amount of granted requests, the required FTEs are 72.00
for the static solution. This solution does not need any additional FTEs to
be able to grant 16.61 requests. The NN algorithm needs 74.53 FTE, the
airline rule-based solution 75.51 and the random solution 76.32 FTE.
This means a similar order as with the requested FTEs, with the static
solution performing best followed by the NN algorithm, airline and
random.

Besides the comparison for similar levels of granted requests and
requested FTEs, the trend for different settings of the algorithms can be
observed from Fig. 8. The static solution rises from 0 to 30.5 granted
requests without needing additional FTEs on top of the 72 FTE. After that,
it increases with 1.65 FTE per additional granted request. The NN clas-
sifier ranges from a granting threshold of 1.00 (0 granted requests and
72.00 FTE) to 0.00 (33.11 granted requests and 80.67 FTE). It can be
observed that with the granting threshold of 0.00 the model is saturated,
as the point before is with a granting threshold of 0.10 and leads to a
similar amount of granted requests. The performance of the random so-
lution is similar which demonstrates that at that far end of the range the
solutions are random due to saturation. For increasing granting
threshold, the model needs increasingly less additional FTE for each
granted request until it reaches a threshold of 1.00. The airline technique
shows a much smaller range in solutions as it has much lower flexibility
than the NN algorithm due to the rule-based nature of the technique.
Finally, the random solution shows a similar trend as the NN algorithm
with a similar start and end, but in terms of performance is below the NN
algorithm.

4.3. Discussion of experiments

The results demonstrate the applicability of a NN classification al-
gorithm to determine whether to grant or reject requests. It is found that
for similar amounts of required FTEs the NN algorithm performs better
Table 2
Results with standard deviation of the techniques.

Technique Required FTEs Granted requests

Static 75.51 32.63
NN algorithm 75:49� 0:05 20:36� 0:22
Rule-based 75:51� 0:12 16:61� 0:17
Random 75:51� 0:05 13:35� 0:08

Static 72.00 16.61
NN algorithm 74:53� 0:15 16:65� 0:34
Rule-based 75:51� 0:12 16:61� 0:17
Random 76:32� 0:10 16:58� 0:10

11
than the airline and random techniques in terms of granted requests per
week. In a similar fashion, the NN also performs better than the airline
rule-based and the random selection methods in terms of the number of
additional FTEs required to operate the weekly schedules with a similar
amount of granted requests. This better performance is also indicated in
Fig. 8, where the performance line of the NN algorithm is always higher
than the airline and the random methods, with the exception of the
0 granted requests point.

The results can also be used to highlight the complexity of the
problem. The upper-bound solution shows 32.63 granted requests on
average per week for 75.51 required FTEs, following a static represen-
tation of the problem at hand. The NN algorithm and the rule-based
solution are only able to grant 20.36 and 16.61 requests respectively
for a similar amount of required FTEs. In other words, the NN algorithm
and airline method are able to grant 62% and 51% of the requests
respectively compared to the static solution. This shows that while the
NN algorithm performs better than the current airline rule-basedmethod,
there is still a large difference between the NN algorithm and the static
solution. Similarly, this can be concluded for the amount of required FTEs
for 16.61 granted requests. The static solution does not need additional
FTEs to solve the problem, while the NN algorithm and the rule-based
method followed by the airline uses 2.53 and 3.51 extra FTEs respec-
tively. It can be inferred that (part of) the differences result from the error
introduced when simulating the personalized rostering problem with
pre-assigned activities as a static problem.

The comparisons are performed around the point of 16.61 granted
requests and 75.51 required FTEs, which is chosen as it is a similar
performance as the airline’s current practice. The results would be
similar if this point is chosen differently, but the rule-basedmethod based
on the airline has limited flexibility due to the rule-based nature of the
technique. For instance, a flexibility level of 100%would mean a random
choice.

5. Conclusions

This paper presents the first study in which crew requests are
modelled and assessed to build personalized rosters. This a challenging
problem, in which the airline needs to make a decision whether to grant
or reject the crew requests before the rostering process starts. The impact
of the decisions in the resulting schedules is very hard to determine at the
time of deciding. To solve this problem we proposed a dynamic rostering
framework which combines an integer linear programming rostering
model solved with the help of a column generation algorithm with a
simulation-trained neural network (NN) algorithm. The NN algorithm
classifies each request, providing a score that can help the airline to
better select which requests to grant.

The need for a dynamic rostering model over a static model was
confirmed in a case study with a major European airline. It was found
that the NN algorithm performs better than the current airline practice in
terms of both of these measures. On the one hand, for a similar amount of
required FTEs, it is found that the NN algorithm is able to grant, on
average, more than 22% requests than the rule-based method which
follows airline practice. On the other hand, for a similar amount of
granted requests, the airline method needs one FTE more than the NN
classifier to operate the schedule with the same number of requests
granted. It can, therefore, be concluded that the classification algorithm
is a viable method for the evaluation of pairing requests.

Furthermore, we have also compared the results from the dynamic
approach with the results from a static version of the rostering problem.
As expected, our results suggest that more flexibility and higher crew
satisfaction comes with a cost. The static formulation, in which all re-
quests are assessed at the same time, may result in 3.5% fewer FTEs being
required to operate a schedule with the same amount of requests granted
by a dynamic approach. The implementation of a dynamic management
solution to manage crew requests has to be a choice of the airline com-
pany, after weighting the disadvantages and benefits of such an

M. Beulen et al. EURO Journal on Transportation and Logistics 9 (2020) 100018
approach.
The practical value of the current dynamic rostering framework, and

the potential of the NN algorithm, was well demonstrated with the case
study of the European airline. However, this work can be further
extended to be more suitable for another context. Namely, the framework
was tested with data from a single airline and flight season. Although it
should work for any other airline with an dynamic assessment of re-
quests, it could be interesting to analyze the results for different sched-
uling practices and flight seasons, and considering requests not only for
flight pairings but also for other activities (such as training sessions or
holidays). Another natural extension of this work is to consider pairings
with activities besides flights. These pairings are common in practice and
they can have an influence on the assessment of the pairings requested.
Furthermore, it would be interesting to adapt the framework to the
context of short-haul cockpit crew or cabin crew contexts. Additional
future work could include the potential use of the proposed framework as
an on-line request assessment tool. The airline that supports this study is
currently considering this on-line implementation.
Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgements

The authors thank the reference airline for their support and the ac-
cess to data. In addition, the authors thank to the two anonymous re-
viewers whose comments helped improve and clarify this manuscript.

References

Achour, H., Gamache, M., Soumis, F., Desaulniers, G., 2007. An exact solution approach
for the preferential bidding system problem in the airline industry. Transport. Sci. 41
(3), 354–365.

Ahuja, R.K., Mehlhorn, K., Orlin, J., Tarjan, R.E., 1990. Faster algorithms for the shortest
path problem. J. ACM 37 (2), 213–223.

Azadeh, A., Farahani, M.H., Eivazy, H., Nazari-Shirkouhi, S., Asadipour, G., 2013.
A hybrid meta-heuristic algorithm for optimization of crew scheduling. Applied Soft
Computing Journal 13 (1), 158–164.

Barnhat, C., Hane, C.A., Vance, P.H., 2000. Using branch-and-price-and-cut to solve
origin-destination integer multicommodity flow problems. Oper. Res. 48 (2),
318–326.

Beasley, J., Cao, B., 1996. A tree search algorithm for the crew scheduling problem. Eur.
J. Oper. Res. 94 (3), 517–526.
12
Biskup, D., Simons, D., 2004. Common due date scheduling with autonomous and
induced learning. Eur. J. Oper. Res. 159 (3), 606–616.

Boubaker, K., Desaulniers, G., Elhallaoui, I., 2010. Bidline scheduling with equity by
heuristic dynamic constraint aggregation. Transp. Res. Part B Methodol. 44 (1),
50–61.

Caprara, A., Toth, P., Vigo, D., Fischetti, M., 1998. Modeling and solving the crew
rostering problem. Oper. Res. 46 (6), 820–830.

Christou, I.T., Zakarian, A., Liu, J.-M., Carter, H., 1999. A two-phase genetic algorithm for
large-scale bidline- generation problems at delta air lines. Interfaces 29 (5), 51–65.

Cordeau, J.-F., Stojkovi�c, G., Soumis, F., Desrosiers, J., 2001. Benders decomposition for
simultaneous aircraft routing and crew scheduling. Transport. Sci. 35 (4), 375–388.

Day, P.R., Ryan, D.M., 1997. Flight attendant rostering for short-haul airline operations.
Oper. Res. 45 (5), 649–661.

Desaulniers, G., Desrosiers, J., Solomon, M.M., 2005. Column Generation. Springer.
Eltoukhy, A.E.E., Chan, F.T.S., Chung, S.H., 2017. Airline schedule planning: a review and

future directions. Ind. Manag. Data Syst. 117 (6), 1201–1243.
Gamache, M., 1998. The preferential bidding system at air Canada. Transport. Sci. 32 (3),

246–255.
Gamache, M., 1999. A column generation approach for large-scale Aircrew rostering

problems. Oper. Res. 47 (2), 247–263.
Garson, G.D., 1991. Interpreting neural-network connection weights. AI Expet. 6 (4),

46–51.
Guo, Y., Mellouli, T., Suhl, L., Thiel, M.P., 2006. A partially integrated airline crew

scheduling approach with time-dependent crew capacities and multiple home bases.
Eur. J. Oper. Res. 171 (3), 1169–1181.

Gurobi Optimization, L.L.C., 2018. Gurobi Optimizer Reference Manual.
Kasirzadeh, A., Saddoune, M., Soumis, F., 2017. Airline crew scheduling: models,

algorithms, and data sets. EURO Journal on Transportation and Logistics 6 (2),
111–137.

Kohl, N., Karisch, S.E., 2004. Airline crew rostering: problem types, modeling, and
optimization. Ann. Oper. Res. 127, 223–257.

Kotsiantis, S.B., 2007. Supervised machine learning: a review of classification techniques.
Informatica 31, 249–268.

Maenhout, B., Vanhoucke, M., 2010. A hybrid scatter search heuristic for personalized
crew rostering in the airline industry. Eur. J. Oper. Res. 206 (1), 155–167.

Quesnel, F., Desaulniers, G., Soumis, F., 2019. Improving air crew rostering by
considering crew preferences in the crew pairing problem. Transportation Science,
Article in Advance 1–18. https://doi.org/10.1287/trsc.2019.0913, 0.

Saddoune, M., Desaulniers, G., Elhallaoui, I., Soumis, F., 2011. Integrated airline crew
scheduling: a bi-dynamic constraint aggregation method using neighborhoods. Eur. J.
Oper. Res. 212 (3), 445–454.

Saddoune, M., Desaulniers, G., Elhallaoui, I., Soumis, F., 2012. Integrated airline crew
pairing and crew assignment by dynamic constraint aggregation. Transport. Sci. 46
(1), 39–55.

Schmidhuber, J., 2015. Deep learning in neural networks: an overview. Neural Network.
61, 85–117.

Smet, P., Bilgin, B., De Causmaecker, P., Berghe, G., 2014. Modelling and evaluation
issues in nurse rostering. Ann. Oper. Res. 218, 303–326.

Stojkovi�c, M., Soumis, F., Desrosiers, J., 2009. The operational airline crew scheduling
problem. Transport. Sci. 39. January:2014–2014.

Suraweera, P., Webb, G.I., Evans, I., Wallace, M., 2013. Learning crew scheduling
constraints from historical schedules. Transport. Res. C Emerg. Technol. 26, 214–232.

Zeghal, F., Minoux, M., 2006. Modeling and solving a crew assignment problem in air
transportation. Eur. J. Oper. Res. 175 (1), 187–209.

Zeighami, V., Soumis, F., 2019. Combining benders’ decomposition and column
generation for integrated crew pairing and personalized crew assignment problems.
Transport. Sci. 53 (5), 1479–1499.

http://refhub.elsevier.com/S2192-4376(20)30021-2/sref1
http://refhub.elsevier.com/S2192-4376(20)30021-2/sref1
http://refhub.elsevier.com/S2192-4376(20)30021-2/sref1
http://refhub.elsevier.com/S2192-4376(20)30021-2/sref1
http://refhub.elsevier.com/S2192-4376(20)30021-2/sref2
http://refhub.elsevier.com/S2192-4376(20)30021-2/sref2
http://refhub.elsevier.com/S2192-4376(20)30021-2/sref2
http://refhub.elsevier.com/S2192-4376(20)30021-2/sref3
http://refhub.elsevier.com/S2192-4376(20)30021-2/sref3
http://refhub.elsevier.com/S2192-4376(20)30021-2/sref3
http://refhub.elsevier.com/S2192-4376(20)30021-2/sref3
http://refhub.elsevier.com/S2192-4376(20)30021-2/sref4
http://refhub.elsevier.com/S2192-4376(20)30021-2/sref4
http://refhub.elsevier.com/S2192-4376(20)30021-2/sref4
http://refhub.elsevier.com/S2192-4376(20)30021-2/sref4
http://refhub.elsevier.com/S2192-4376(20)30021-2/sref5
http://refhub.elsevier.com/S2192-4376(20)30021-2/sref5
http://refhub.elsevier.com/S2192-4376(20)30021-2/sref5
http://refhub.elsevier.com/S2192-4376(20)30021-2/sref6
http://refhub.elsevier.com/S2192-4376(20)30021-2/sref6
http://refhub.elsevier.com/S2192-4376(20)30021-2/sref6
http://refhub.elsevier.com/S2192-4376(20)30021-2/sref7
http://refhub.elsevier.com/S2192-4376(20)30021-2/sref7
http://refhub.elsevier.com/S2192-4376(20)30021-2/sref7
http://refhub.elsevier.com/S2192-4376(20)30021-2/sref7
http://refhub.elsevier.com/S2192-4376(20)30021-2/sref8
http://refhub.elsevier.com/S2192-4376(20)30021-2/sref8
http://refhub.elsevier.com/S2192-4376(20)30021-2/sref8
http://refhub.elsevier.com/S2192-4376(20)30021-2/sref9
http://refhub.elsevier.com/S2192-4376(20)30021-2/sref9
http://refhub.elsevier.com/S2192-4376(20)30021-2/sref9
http://refhub.elsevier.com/S2192-4376(20)30021-2/sref10
http://refhub.elsevier.com/S2192-4376(20)30021-2/sref10
http://refhub.elsevier.com/S2192-4376(20)30021-2/sref10
http://refhub.elsevier.com/S2192-4376(20)30021-2/sref10
http://refhub.elsevier.com/S2192-4376(20)30021-2/sref11
http://refhub.elsevier.com/S2192-4376(20)30021-2/sref11
http://refhub.elsevier.com/S2192-4376(20)30021-2/sref11
http://refhub.elsevier.com/S2192-4376(20)30021-2/sref12
http://refhub.elsevier.com/S2192-4376(20)30021-2/sref13
http://refhub.elsevier.com/S2192-4376(20)30021-2/sref13
http://refhub.elsevier.com/S2192-4376(20)30021-2/sref13
http://refhub.elsevier.com/S2192-4376(20)30021-2/sref14
http://refhub.elsevier.com/S2192-4376(20)30021-2/sref14
http://refhub.elsevier.com/S2192-4376(20)30021-2/sref14
http://refhub.elsevier.com/S2192-4376(20)30021-2/sref15
http://refhub.elsevier.com/S2192-4376(20)30021-2/sref15
http://refhub.elsevier.com/S2192-4376(20)30021-2/sref15
http://refhub.elsevier.com/S2192-4376(20)30021-2/sref16
http://refhub.elsevier.com/S2192-4376(20)30021-2/sref16
http://refhub.elsevier.com/S2192-4376(20)30021-2/sref16
http://refhub.elsevier.com/S2192-4376(20)30021-2/sref17
http://refhub.elsevier.com/S2192-4376(20)30021-2/sref17
http://refhub.elsevier.com/S2192-4376(20)30021-2/sref17
http://refhub.elsevier.com/S2192-4376(20)30021-2/sref17
http://refhub.elsevier.com/S2192-4376(20)30021-2/sref18
http://refhub.elsevier.com/S2192-4376(20)30021-2/sref19
http://refhub.elsevier.com/S2192-4376(20)30021-2/sref19
http://refhub.elsevier.com/S2192-4376(20)30021-2/sref19
http://refhub.elsevier.com/S2192-4376(20)30021-2/sref19
http://refhub.elsevier.com/S2192-4376(20)30021-2/sref20
http://refhub.elsevier.com/S2192-4376(20)30021-2/sref20
http://refhub.elsevier.com/S2192-4376(20)30021-2/sref20
http://refhub.elsevier.com/S2192-4376(20)30021-2/sref21
http://refhub.elsevier.com/S2192-4376(20)30021-2/sref21
http://refhub.elsevier.com/S2192-4376(20)30021-2/sref21
http://refhub.elsevier.com/S2192-4376(20)30021-2/sref22
http://refhub.elsevier.com/S2192-4376(20)30021-2/sref22
http://refhub.elsevier.com/S2192-4376(20)30021-2/sref22
https://doi.org/10.1287/trsc.2019.0913
http://refhub.elsevier.com/S2192-4376(20)30021-2/sref24
http://refhub.elsevier.com/S2192-4376(20)30021-2/sref24
http://refhub.elsevier.com/S2192-4376(20)30021-2/sref24
http://refhub.elsevier.com/S2192-4376(20)30021-2/sref24
http://refhub.elsevier.com/S2192-4376(20)30021-2/sref25
http://refhub.elsevier.com/S2192-4376(20)30021-2/sref25
http://refhub.elsevier.com/S2192-4376(20)30021-2/sref25
http://refhub.elsevier.com/S2192-4376(20)30021-2/sref25
http://refhub.elsevier.com/S2192-4376(20)30021-2/sref26
http://refhub.elsevier.com/S2192-4376(20)30021-2/sref26
http://refhub.elsevier.com/S2192-4376(20)30021-2/sref26
http://refhub.elsevier.com/S2192-4376(20)30021-2/sref27
http://refhub.elsevier.com/S2192-4376(20)30021-2/sref27
http://refhub.elsevier.com/S2192-4376(20)30021-2/sref27
http://refhub.elsevier.com/S2192-4376(20)30021-2/sref28
http://refhub.elsevier.com/S2192-4376(20)30021-2/sref28
http://refhub.elsevier.com/S2192-4376(20)30021-2/sref28
http://refhub.elsevier.com/S2192-4376(20)30021-2/sref28
http://refhub.elsevier.com/S2192-4376(20)30021-2/sref29
http://refhub.elsevier.com/S2192-4376(20)30021-2/sref29
http://refhub.elsevier.com/S2192-4376(20)30021-2/sref29
http://refhub.elsevier.com/S2192-4376(20)30021-2/sref30
http://refhub.elsevier.com/S2192-4376(20)30021-2/sref30
http://refhub.elsevier.com/S2192-4376(20)30021-2/sref30
http://refhub.elsevier.com/S2192-4376(20)30021-2/sref31
http://refhub.elsevier.com/S2192-4376(20)30021-2/sref31
http://refhub.elsevier.com/S2192-4376(20)30021-2/sref31
http://refhub.elsevier.com/S2192-4376(20)30021-2/sref31

	Dynamic evaluation of airline Crew’s flight requests using a neural network
	1. Introduction
	2. Literature and research context
	2.1. Crew rostering literature
	2.2. Dynamic crew preferences
	2.3. Evaluation mechanisms
	2.4. Research goal

	3. Dynamic rostering framework
	3.1. Time-space network
	3.2. Shortest path algorithm
	3.3. Rostering problem
	Sets
	Decision variables
	Parameters
	Optimisation problem

	3.4. Column generation algorithm
	3.5. Pairings evaluation
	3.6. Generate new pairing requests
	3.7. Flight request evaluation method
	3.7.1. Neural network algorithm
	3.7.2. Benchmark methods
	Random assessment
	Rule-based (airline practice)
	Static rostering model

	3.8. Boundary conditions

	4. Experiments and results
	4.1. Experimental set-up
	4.1.1. Set-up of the neural network

	4.2. Results of experiments
	4.3. Discussion of experiments

	5. Conclusions
	Declaration of competing interest
	Acknowledgements
	References

