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Abstract 

Introduction 

Cardiovascular magnetic resonance imaging (CMR) is an imaging modality from which the structure, 

function, perfusion, and metabolism of the cardiovascular system can be evaluated, which is essential in 

acquired and congenital cardiovascular disease (CVD). CMR can improve the outcomes of CVD during 

long term follow-up. 4D Flow MRI is a three-dimensional time-resolved CMR technique that uses phase 

contrast sequences with three-directional velocity-encoding and allows evaluation of the blood flow. 4D 

Flow MRI data can be analyzed with particle tracing. 

Particle tracing is a technique that releases virtual particles in flow data (seeding) and traces the path the 

particles follow throughout the vasculature by integrating the flow data. The particle traces can subsequently 

be quantified with flow distribution analyses and visualized with pathlines, time-derived lines depicting the 

path particles have taken. Important settings for particle tracing are the integration method, integration 

timestep and data interpolation method. The aim of this research is to investigate the effect of different 

particle tracing settings on the accuracy and computation time and provide a recommendation on the use 

of particle tracing in 4D Flow MRI data and which particle tracing settings to aim for. 

Methods 

A particle tracing algorithm with a graphical user interface was developed for an existing inhouse developed 

4D Flow post-processing workspace. Two 4D Flow MRI datasets from previous studies were acquired. 

One dataset was of a total cavopulmonary connection of a patient with Fontan circulation and the other 

was an intracardiac dataset of a healthy volunteer. Particle tracing with common settings and variations in 

integration method, integration timestep and data interpolation method was performed in both datasets 

and computation time, flow distributions (pulmonic distribution and four-component analysis), and 

number of particles that left the structure (missing particles fraction) and number of integration errors were 

quantified. The latter three were a measure of accuracy of the algorithm. Particle traces were subsequently 

visualized with pathlines. 

Results 

Particle with common settings gave a good accuracy for both datasets (missing particles fraction <20%). 

No differences in visualization, flow distributions and missing particles fraction were found for varying 

integration methods, interpolation methods and timesteps of 20ms or shorter. For timesteps of 30ms or 

longer, flow distributions changed compared to results with other settings and number of integration errors 

increased. Computation time increased almost linearly with the order of the integration method and almost 

inverted linearly proportional to the timestep. Retained inflow of four-component analysis was higher than 

normal values and direct flow was lower than normal values.  

Discussion 

For 4D Flow MRI based particle tracing we would recommend using a low order interpolator (e.g. a third 



5 
 

order Runge-Kutta integrator), a maximum timestep of half the temporal resolution of the data, and 

quadrilinear data interpolation. The results of the particle tracing tests with common settings were 

comparable to literature, except for the direct flow and retained inflow components of the four-component 

analysis. To enable accurate particle tracing, the particle seeding method must be chosen adequately and 

the MRI data and segmentations must be of good quality. Additional techniques such as segmentation 

shape interpolation and adaptive timestep control might be beneficial and their effect on the accuracy can 

be investigated in further research. As more advanced 4D Flow MRI acquisition techniques become 

available, their effect on particle tracing can be researched. 
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Introduction 

Cardiovascular Disease 

Approximately 18 million lives are lost every year due to cardiovascular disease (CVD), making it the leading 

cause of death worldwide.1 Acquired CVD has an increasing prevalence, especially in people below 50 years 

of age, and congenital CVD is the most frequent congenital defect in live born.2 Through advances in 

diagnosis, and pre-, peri- and post-operative care, the number of patients living with congenital CVD has 

increased dramatically, although important complications can reveal itself during long-term follow-up.3 

Nowadays, many CVDs can be predicted, prevented or treated. The most important factors for improving 

CVD outcomes are early detection, correct diagnosis, and adequate management of interventions during 

long term follow-up.  

Acquired CVD includes coronary artery disease, coronary heart disease, rheumatic heart disease, diseases 

of the pulmonary vessels and the aorta, heart tissue disease and heart valve disease.4 Acquired CVD can be 

asymptomatic and symptoms often only develop in advanced stages of the disease. Additionally, the 

symptoms are commonly non-specific such as shortness of breath, fatigue and oedema in extremities and 

the abdomen. There are only few specific (sub)clinical markers and as a result, acquired CVD is often 

underdiagnosed or diagnosed in a late stage of the disease.5,6 A common type of acquired CVD is 

cardiomyopathy, dysfunction of the heart muscle tissue. Traditionally, cardiomyopathy is diagnosed by 

measuring the left ventricular ejection fraction, the fraction of left ventricular blood that is pumped in the 

aorta in one cardiac cycle, in combination with the patient’s medical history and family history, but this can 

be inconclusive.7 

Congenital CVD, or congenital heart defect, is the most common birth defect, with prevalence in about 49 

million people globally in 2015.8 The defects can cause a range of complications, from asymptomatic to 

life-threatening. If diagnosed and treated correctly, generally there is a good prognosis. However, congenital 

CVD are still the leading cause of birth defect-related deaths.9 Treatment often consists of (open heart) 

surgery and lifelong specialized cardiac care, including regular follow-up examinations to assess the function 

of the cardiovascular system. Ventricular septal defect, atrial septal defects, and tetralogy of Fallot are the 

most common congenital CVDs, the latter being a combination of defects often seen together.10 Defects 

in the heart valves are also common and can be asymptomatic, whereas transposition of the great arteries 

(TGA) is less common but life-threatening. Different surgical procedures have been developed to correct 

the defects or to palliatively improve the performance of the cardiovascular system. After correction or 

palliation of congenital CVD, significant morbidity is present during long-term follow-up, which 

necessitates regular imaging of the heart and great vessels. 

4D Flow MRI 

Cardiovascular magnetic resonance imaging (CMR or cardiovascular MRI) is an imaging modality from 

which the structure, function, perfusion, and metabolism of the cardiovascular system can be evaluated. 
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Each of these assessments can be performed without ionizing radiation, intravenous contrast materials or 

invasive procedures, making it very suitable for frequent follow-up.11 4D Flow MRI is a three-dimensional 

time-resolved CMR technique that uses phase contrast sequences with three-directional velocity-encoding. 

This technique allows for many different quantifications and visualizations of flow, such as flow volume 

and flow patterns, which is essential in cardiology.12,13,14  

Phase contrast MRI is a technique in which phase signal is proportionally encoded to the velocity of moving 

spins.15,16 This encoding is achieved by introducing bipolar gradients in the directions that are to be encoded. 

The measured phase can range from -180 degrees to 180 degrees. The velocity a measured phase 

corresponds to is determined by the user-defined encoding velocity (venc), where -180 degrees equals -venc 

and 180 degrees equals venc. This phase can be expressed in grey values which often range from black to 

 

Figure 1: Schematic illustration of 4D Flow MRI of the thoracic aorta by Markl et al., 2012. For each time frame, 

four 3D datasets are collected: a reference scan and three velocity-encoded acquisitions in orthogonal directions. 

In this case, navigator gating of the diaphragm motion was used for image acquisition during free breathing.  
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white, where -180 degrees equals black, zero degrees equals grey and 180 degrees equals white. Velocities 

outside the range [-venc, venc] will cause aliasing, resulting in a mismatch of phase and velocity which causes 

artifacts in the data, as is the case when a venc is chosen too low. However, a higher venc also causes a low 

velocity to noise ratio (VNR) in areas with relatively low velocities.17 The consensus is therefore to select a 

venc only slightly above the estimated maximum velocity.18 The maximum velocity is estimated based on the 

average maximum velocities in the cardiovascular structure that is to be imaged. This estimation is not 

always possible, which is why using a robust and ideally error-free phase-unwrapping algorithm is 

recommended.18 New acquisition techniques that use multiple vencs have been developed to prevent aliasing 

and increase VNRs.19  

In 4D Flow MRI, a four-dimensional spatiotemporal volume scan is acquired over multiple cardiac cycles, 

from which at different timepoints in the cardiac cycle image volumes are reconstructed (see figure 1).20 

For regular velocity-encoding, at each of these timepoints (which are also called cardiac phases) four images 

are obtained: one reference image and three velocity-encoded images, one along each of three orthogonal 

directions.16 After the acquisition, four time-resolved 4D datasets are generated: one magnitude dataset and 

three flow datasets representing velocities in each of the orthogonal directions. The temporal resolution 

and total scan time can be adjusted by the number of phases scanned.  

Particle tracing 

An important post-processing technique for 4D Flow MRI data is particle tracing. In this technique, virtual 

massless particles are released at chosen spatiotemporal locations and are traced as they traverse throughout 

the vasculature, under influence of the flow data.21 This technique finds its origin in the analogue study of 

fluid dynamics and aerodynamics at the hands of researchers such as Leonardo Da Vinci.22 By adding dyes 

or grain to water, Da Vinci was able to study the flow patterns that occur and similarly, by adding smoke 

to air, he was able to show flow patterns created by the wind.23 Particle tracing is still mostly used in these 

areas of research, but now mainly in computational fluid dynamics and computational aerodynamics.24,25 

In humans, 4D flow derived particle tracing can be used for visualization and quantification.16,18 In so-called 

pathline visualization, the paths the particles follow are drawn to show the temporal evolution of the flow. 

These pathlines can be color-coded, e.g. to display the velocity. In quantification, the distribution of flow 

can be calculated by comparing the destinations of the particles. For example, this can be done in the left 

ventricle, where both the origin and destination of the particles can be used to categorize the particles and 

thereby assess the left ventricle function.26 

Computational particle tracing 

Unlike the analogue variant, digital or computational particle tracing requires algorithms to compute the 

path of the particle from the flow data. This calculation is done by integrating the flow data over time using 

iterative integration methods.21 The simplest of these integration methods is the Euler Method, which is a 

first order integration method with a very limited accuracy. More popular for particle tracing are the Runge-

Kutta methods, a family of higher order iterative integration methods. The higher order methods are more 
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precise, but more computationally expensive. As a compromise between computation time and accuracy, 

the fifth order Runge-Kutta method (RK45) is often chosen.26,27 

Besides the integration method itself, the accuracy of iterative integration depends on the time interval that 

is integrated over, also called the timestep. When applied to ordinary differential equations, a longer 

timestep means less accurate approximate solutions at the benefit of less steps to be calculate for the same 

time interval. The opposite is also true: a shorter timestep results in more accurate solutions at the cost of 

more steps to be calculated for the same time interval. Flow data cannot be properly described with ordinary 

differential equations, so a shorter timestep does not necessarily mean an increase in accuracy. 

4D Flow MRI scans are discrete in both space and time, due to a sampling process during acquisition, but 

the virtual particles in particle tracing can exist between these discrete spatiotemporal points. Therefore, 

interpolation is used to construct new data points in between the data points of the flow data. The data is 

often interpolated linearly in the temporal dimension, whereas the signal in the three spatial dimension is 

often interpolated using linear, cubic or advances splines interpolation. The choice for the interpolation 

method can have a large impact on computation time due to the multidimensional aspect of the data.28 For 

example, in a single dimension, the cubic interpolation method averages two times as many points as the 

linear interpolation method (4 points vs. 2 points for cubic and linear interpolation, respectively). In four 

dimensions, this would mean that the cubic interpolation averages 16 times as many points (44=256 vs. 

24=16 points in total for cubic and linear interpolation, respectively), which requires more calculation steps. 

More advanced interpolation creates better and smoother visualizations, but the quantitative effect of the 

interpolation method on the accuracy of particle tracing in medical data has not been described yet.28 

The accuracy of particle tracing can be measured in different ways, depending on the application of particle 

tracing.27,29,30 In all cases, the number of particles that leave the cardiovascular structure through the vascular 

wall, also called missing particles, can be measured. The ratio between the missing particles and the total 

amount of particles seeded can be used as a measurement of accuracy and Ha et al. have suggested using 

this ratio as a cut-off condition.30 For left ventricle particle tracing, the ejection fraction calculated from 

particle traces can compared to the ejection fraction that has been measured with an echocardiogram.  

Study aims 

4D Flow MRI based Particle tracing can be a unique tool to visualize and quantify blood flow in 

cardiovascular structures, but there is no clear advice as to which settings, such as interpolation method, 

integration method, and timestep length, should be used to perform the analysis accurately and quickly. In 

other research areas such as computational fluid dynamics, recommendations on using particle tracing have 

been given, but not for particle tracing in medical data. In this study, we aim to investigate the effect of 

different particle tracing settings on the accuracy and computation time and provide a recommendation on 

the use of particle tracing in 4D Flow MRI data and which particle tracing settings to aim for.  



11 
 

Methods 

Pythonviewer 

Many commercial post-processing software packages have been developed for 4D Flow MRI data, of which 

many can perform particle tracing. However, these packages do not allow changing most of the settings 

which are necessary for this research, such as the timestep and integrator type. Particle tracing was therefore 

implemented in the Pythonviewer (figure 2), a post-processing workspace developed within the 

Cardiovascular Imaging Group (CVIG) of the Leiden University Medical Center. This workspace allows 

visualization and quantification of cardiovascular imaging data and has been built for research purposes. It 

can handle medical images saved in the common DICOM format and uses the Python Imaging Library 

(PIL) and wxPython packages to display the data. The Visualization Toolkit (VTK), which is developed by 

Kitware, is used for additional visualization and quantification options.31 For data representation and 

numerical computations, the Python package NumPy was used.32 Particle tracing was not yet implemented 

in the Pythonviewer and, therefore, a particle tracing algorithm and an application-specific graphical user 

interface (GUI) were therefore developed for this research. 

Figure 2: The PythonViewer interface with a 4D Flow MRI scan loaded and visualized. The left viewport shows a magnitude image of 

the scan in standard grayscale slice visualization, whereas the right viewport displays a 3D volume rendering of the magnitude image. 
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Particle tracing algorithm 

The implemented particle tracing code consists of three parts: the GUI, the particle tracing algorithm, and 

the visualization algorithm. The GUI (figure 3) can be used to initiate the particle tracing, change the 

algorithm’s settings, and export the calculated particle traces. It is divided in three sections: the top section 

contains the main controls to save and delete particle traces, initiate the particle tracing and to initiate or 

delete the visualization. The middle section contains the main settings of the particle tracing: the seeding 

method, the seeding time, the integration method, the initial and maximum timestep, and the interpolation 

method. The bottom section contains the settings for the seeding grids, which are used in case instantaneous 

seeding method is chosen. 

The particle tracing algorithm itself consists of five parts, as can be seen in the flowchart in figure 4. The 

first part is the seeding, in which it determines at what spatiotemporal location particles are placed, which 

depends on the chosen seeding method. For instantaneous seeding, the particles are placed on the grid 

points of a user-defined seeding grid at the user-defined seeding time. If a structural mesh, such as a 

segmentation of the vasculature, is loaded, the algorithm excludes any particles that are outside of this mesh. 

This is useful for when the rectangular seeding grid fills a cross-section of the vasculature, but the corners 

exceed the vasculatures boundaries. For intracardiac seeding, particles are placed in the centers of the voxels 

that are within the predefined left ventricle segmentation. An inward margin of approximately the size of 

one voxel is taken for the left ventricle segmentation to avoid seeding too close to the myocardial wall. 

Seeding the particles, allocating system memory, and loading user-defined settings are together seen as the 

initialization. 

The second part of the particle tracing is the integration. Per particle, the flow data of its current 

spatiotemporal position is integrated over a timestep to calculate the particles new spatiotemporal position. 

This is done using the SciPy library, a toolkit for Python with configurable integrator methods.33 This toolkit 

has multiple integrator functions, including higher order integrators. For every particle, an integrator is 

setup and the integrator takes steps. For every step, the time, spatial coordinates, and velocity of the particle 

is recorded. 
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The third part of the algorithm is the function which interpolates the data that the integrator calls upon. 

The linear interpolation has been written as a Python script, whereas the tricubic interpolation method uses 

the ‘pytricubic’ module which has been created by Daniel Guterding and utilizes a C++ library. This tricubic 

interpolation is based on the tricubic interpolation algorithm by Lekien and Marsden.34 This algorithm is 

based on a specific 64 × 64 matrix that gives the relationship between the derivatives at the corners of 

elements and the coefficients of the tricubic interpolant for these elements. For tricubic interpolation, this 

matrix is initialized per cardiac phase before integration starts, which can increase computing time before 

integration and decrease computing time during integration. Interpolation over the time dimension was 

linear in both integration methods. 

 

Figure 3: Particle tracing graphical user interface (GUI). This interface was developed for this research and allows 

choosing particle tracing settings.   
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The fourth part of the particle tracing algorithm is the reporting of quantitative particle tracing results. This 

part displays the results of the accuracy measurements and the additional measurements, such as the 

computation time. Virtual counters are used whenever a particle’s tracing stops, to categorize the particle 

by its destination, such as a specific cardiovascular structure. These counters are then used to create the 

measurements results. 

The particles are traced until a stopping condition is met. This can be that the location of the particle is 

inside or outside a specific cardiovascular structure, that the particle moves slower than a user-defined 

threshold, or that a user-defined integration limit such as a maximum number of integration steps is reached. 

In this research, neither velocity nor the amount of integration steps were used as a stopping condition, but 

only the location of the particle with respect to segmentation models, as described further on. 

The fifth part is the visualization of calculated particle traces, which is programmed to be performed in one 

of two ways: all at once or in cine mode. When drawn all at once, the entire paths each particle takes are 

drawn. This static visualization does not show the temporal aspect of the pathlines (unless temporal color 

coding is used) and is mainly used for a visual inspection of the algorithm’s performance. For the cine mode 

visualization, a frame is drawn for a time interval containing the pathlines that are within that time interval 

Figure 4: Flow chart describing the particle tracing algorithm. The integration section is performed for every 

particle and the interpolation is performed for every integration step.  
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or in adjacent time intervals, also called streamlets. This is done for every time interval that pathlines exist 

in. These frames are then combined into an animation by ordering them by time. This dynamic visualization 

of pathlines is used in clinical practice to investigate the flow patterns. Color-coding can be used to give 

additional information to the particle traces. A commonly used color-coding is velocity color-coding, where 

the velocity of the pathline segment is visualized with a corresponding color. The color-coding used for the 

pathlines in this research is a relative velocity color-coding with colors ranging from blue to green to red, 

whereas pure blue is a velocity of zero and red is the maximum velocity a segment in the particle tracing 

data has. 

Experiment methods 

Particle tracing with different settings was performed on two different 4D Flow MRI datasets. One dataset 

is of a patient with a total cavopulmonary connection (TCPC) resulting from a Fontan procedure. This scan 

was performed for the VELOCITY study, a study by the LUMC and the University Medical Center 

Utrecht.35 The other 4D Flow MRI dataset is a scan of the heart of a healthy volunteer. This scan was 

performed for a previous study on flow patterns in patients with a corrected atrioventricular septal defect 

(AVSD).36 The datasets will be called the Fontan dataset and the Intracardiac dataset, respectively. Both studies 

were reviewed and approved by the Medical Ethical Committee and the patient and volunteer both had 

provided written informed consent. 

The aim of the experiment is to measure the effect of different settings on the computation time and 

accuracy of particle tracing. The different settings that were used were the interpolation method, the 

integration method and the timestep. For the interpolation method, the options used were four-dimensional 

linear (quadrilinear) interpolation and three-dimensional cubic (tricubic) spatial interpolation with linear 

interpolation in the dimension of time.34  

There were three options for the integration method: third order Runge-Kutta, fifth order Runge-Kutta 

and eighth order Runge-Kutta. These integration methods were based on the SciPy library functions RK23, 

RK45 and DOP853, respectively.33 It is worth noting that these integration methods were based on the 

Runge-Kutta families as described by Dormand and Prince and not the integration methods described by 

other researchers, such as Fehlberg.37,38 Each integration method has a built-in adaptive timestep control 

that repeats an integration step with a smaller timestep if the estimated error of the integration step exceeds 

a user-defined tolerance. The timestep is also increased for the next integration step if the estimated error 

is deemed small enough, until the maximum timestep is reached. The mentioned error estimation is 

performed by comparing the integration step results with a result of a lower order integration method. 

While this adaptive timestep control can be useful in actual practice, it is not used in this research to study 

the effects of the timestep on the accuracy and calculation time of the particle tracing algorithm.  
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The timesteps that were used in this research were 1ms, 5ms, 10ms, 15ms, 20ms, 30ms, 50ms, 75ms and 

100ms. The total number of particle tracing tests that were performed were therefore 24, of which 12 per 

dataset. The different settings per test are given in table 1. Given the most used settings for particle tracing 

in current literature, test #1 and test #13 are considered the standard settings with a quadrilinear 

interpolation method, a fifth order Runge-Kutta integration and a timestep of 10ms. The settings of the 

other tests will therefore mostly vary from these standard settings in only a single variable. The total 

computation time was measured from the moment the algorithm started and until the last particle was 

traced. The time it took to seed the particles, allocate system memory, and load user-defined settings was 

measured as initialization time. The time of the particle tracing itself, excluding the algorithms setup and 

reporting steps, was also measured. Particle tracing is considered to be inaccurate if many particles leave 

the vasculature; given that the particles represent volumes of blood, blood should not leave the vasculature 

unless the patient was bleeding internally. Therefore, the accuracy was measured by measuring the lost 

particles fraction for both data sets. Particles were considered part of the lost fraction if they were more 

 

Table 1: The settings used in the particle tracing tests 

Test # Dataset Interpolator Integrator Timestep [ms] 

1 Fontan Quadrilinear RK45 10 

2 Fontan Tricubic RK45 10 

3 Fontan Quadrilinear RK23 10 

4 Fontan Quadrilinear DOP853 10 

5 Fontan Quadrilinear RK45 1 

6 Fontan Quadrilinear RK45 5 

7 Fontan Quadrilinear RK45 15 

8 Fontan Quadrilinear RK45 20 

9 Fontan Quadrilinear RK45 30 

10 Fontan Quadrilinear RK45 50 

11 Fontan Quadrilinear RK45 75 

12 Fontan Quadrilinear RK45 100 

13 Intracardiac Quadrilinear RK45 10 

14 Intracardiac Tricubic RK45 10 

15 Intracardiac Quadrilinear RK23 10 

16 Intracardiac Quadrilinear DOP853 10 

17 Intracardiac Quadrilinear RK45 1 

18 Intracardiac Quadrilinear RK45 5 

19 Intracardiac Quadrilinear RK45 15 

20 Intracardiac Quadrilinear RK45 20 

21 Intracardiac Quadrilinear RK45 30 

22 Intracardiac Quadrilinear RK45 50 

23 Intracardiac Quadrilinear RK45 75 

24 Intracardiac Quadrilinear RK45 100 

RK45 = Fifth order Runge-Kutta integration; RK23 = third order Runge-Kutta integration; ODE853 = eighth order Runge-

Kutta integration.  
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than 5 mm outside of the segmentation models. This 5 mm margin, approximately the length of two voxels, 

was chosen to compensate for segmentation inaccuracies. For the intracardiac dataset, a four-component 

analysis, as proposed by Eriksson et al. and described further on, was also performed.26 For the Fontan 

dataset, the distribution of flow from the superior and inferior vena cava (SVC and IVC, respectively) to 

the left and right pulmonary artery (LPA and RPA, respectively), was also measured.30,39  

The SciPy integration methods have a built-in function to test whether the integration can be performed 

accurately with the given timestep. This can give errors if the size of the calculated step is too little, which 

happens if the particle leaves the boundaries of the 4D Flow data. This is possible with timesteps that are 

too long, as the particle can move too close to the boundaries of the data, resulting in errors in the next 

step. Additionally, integration errors can occur if the integration method cannot accurately calculate a step 

due to other reasons, such as a too large timestep. If integration errors occur, particle tracing is terminated 

for the particle that was being traced. The amount of errors was recorded and particles the tracing of which 

gave errors were excluded from further analysis. 

The tests were performed on a computer with an AMD 2600x hexacore processor running at 3.7GHz and 

16GB of RAM running at 2933MHz. No multi-core optimizations or GPGPU (General-purpose 

computing on graphics processing units) were performed and thus the algorithm only ran on a single CPU 

core. As most software packages have these optimizations, the results of the computing time measurements 

should not be taken as a real-world example of clinical use.  

Fontan data 

The 4D Flow MRI scan from a patient with a total cavopulmonary connection (TCPC) was performed on 

a Philips Ingenia MRI scanner with a magnetic field strength of three Tesla (3T). The scan consists of 24 

phases of 27 slices, with 176 by 176 voxels per slice. The voxels are isovolumetric with a length of 2.08mm. 

A Venc of 80cm/s was chosen and the temporal resolution (time between phases) was around 37ms. The 

data was made cyclic by repeating the cardiac phases in order in the interpolation algorithm. A segmentation 

of the TCPC was created by an experienced physician. Virtual cubes were placed at the connection of the 

left and right pulmonary artery with the TCPC, as can be seen in figure 5 (LPA-C and RPA-C). An additional 

cube was placed on a superior branch of the right pulmonary artery, as this branch was connected to the 

TCPC itself as well (RPAB-C). 

Seeding was performed using a continuous seeding method: particles were released from grid points of two 

seeding grids at every timeframe of the 4D Flow data. The two seeding grids were placed in the inferior 

vena cava and superior vena cava, perpendicular to the vessel. Due to the larger diameter of the inferior 

vena cava, the inferiorly placed seeding grid contained 40 by 40 (1600) grid points while the superiorly 

placed seeding grid contained 30 by 30 (900) grid points. Grid points that were outside of the 3D 

segmentation model or within one voxel-length of the segmentation’s wall were automatically excluded and 

no particles were released from these grid points. Particle tracing itself was performed over the course of 

two cardiac cycles. 
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The distribution of pulmonic flow, henceforth called pulmonic distribution (PD), was calculated from the 

particles’ origins and destinations: The percentage of particles that enter the LPA or RPA (or go missing) 

was reported for particles seeded from both the SVC and IVC individually. The ratio of particles that 

reached the LPA and RPA, and the ratio of particles that went missing was also reported. If particles were 

still in the TCPC structure at the end of the second cardiac cycle, they were reported as part of the remaining 

fraction. This fraction is ideally low, as this would mean that particle tracing was not stopped prematurely. 

As mentioned before, particles the tracing of which gave an integration error were recorded and excluded 

from further analysis, such as the PD analysis. 

Intracardiac data 

The 4D Flow MRI scan from a healthy volunteer for the beforementioned AVSD study was also performed 

on a Philips Ingenia 3T MRI scanner. This scan consists of 30 phases of 39 slices, with 176 by 176 voxels 

per slice. The voxels have a length and width of 2.27mm with a slice thickness of 3.00mm. A Venc of 

150cm/s was chosen and the temporal resolution was around 28ms. The data was made cyclic by repeating 

the cardiac phases in order in the interpolation algorithm. Segmentations of the left ventricle, aorta and left 

atrium were created for every phase and slice by an experienced physician using manual segmentation tools 

of inhouse developed Cardiac MRI analysis software. 3D models were created from the segmentations, as 

can be seen in figure 6. The models of the aorta and left atrium were not connected to the left ventricle 

model, because of the conversion of a slice-based segmentation to a 3D model. A cuboid model 

encompassing at least the aortic valve, the mitral valve and the parts of the other 3D models that were 

closest to these valves, was created for every phase (CON in figure 6). Particles that had left the left ventricle 

 

Figure 5: 3D models of the TCPC and counter cubes of the Fontan dataset with seeding grid (A) without MRI data 

and (B) with MRI magnitude data rendered using volume rendering. Both images are in anterior-posterior orientation 

and a 3D human anatomical model is drawn to visualise patient orientation. TCPC = Total Cavopulmonary Connection; 

SVC-SG = Superior Vena Cava seeding grid; IVC-SG = Inferior Vena Cava seeding grid; LPA-C = Left Pulmonary Artery 

counter cube; RPA-C = Right Pulmonary Artery counter cube; RPAB-C = Right Pulmonary Artery branch counter cube 
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model and were not in the left atrium or aorta model, were considered part of the missing particles fraction, 

unless they were still in the connection model. The location of the particle in relation to the segmentation 

models was done by selecting the segmentation models of the cardiac phase that the particle was temporally 

closest to, a so-called nearest-neighbor approach. 

Seeding was performed using an instantaneous intracardiac seeding method: particles were released from 

each voxel within the LV segmentation model at the time of isovolumetric contraction (end-diastole). This 

is the moment within the cardiac cycle where the left ventricle is at its largest and both the aortic and mitral 

valves are closed, so no blood enters or leaves the left ventricle. Voxels within a voxel-length of the left 

ventricle wall were excluded and no particles were released from these voxels. Particle tracing was 

performed over the course of one cardiac cycle. Particles were traced forwards in time until the moment of 

isovolumetric relaxation (end-systole), where both the aortic valve and mitral valve are closed again. 

Particles were also traced backwards in time until the moment of isovolumetric relaxation as well. Figure 7 

is a Wiggers diagram that shows the ventricular volume in relation to the echocardiogram signal.40 In the 

intracardiac data, the point of isovolumetric relaxation was determined to be the timeframe with the smallest 

LV volume and the point of isovolumetric contraction was determined to be the timeframe with the largest 

LV volume. As can be seen in figure 7, the LV volume can be constant from mid-atrial systole on or even 

larger in atrial systole than in isovolumetric contraction, but this was not the case for the used dataset.  

A four-component analysis was performed by categorizing the particles in four categories based on their 

origin and destination, as described by Eriksson et al (figure 8).26 The categories Direct Flow and Retained 

Figure 6: 3D models of the Left Ventricle (LV), Aorta (AO), Left Atrium (LA) and a connection cuboid (CON) 

(A) without MRI data and (B) with MRI magnitude data rendered using volume rendering. Figure 3A is in an 

oblique superior-inferior orientation and figure 6B is in an anterior-posterior orientation. A 3D human anatomical 

model is drawn to visualise patient orientation.  
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Inflow contained particles that during a single cardiac cycle entered the LV through the mitral valve and 

respectively left through the aortic valve or remained in the LV. The category Delayed Ejection Flow contained 

particles that during a single cardiac cycle were already in the LV and left through the aorta. The category 

Residual Volume contained particles that were already in the LV and stayed in the LV during a single cardiac 

cycle. Particles that left the LV through other means, either in systole, diastole, or both, were excluded from 

the four-component analysis and were noted as part of the lost fraction. Particles whose tracing gave an 

integration error were recorded and were not part of further analysis, such as the four-component analysis. 

  

 

Figure 7: Wiggers diagram. The figure shows the aortic, atrial, and ventricular pressure and the ventricular volume 

in relation to the electrocardiogram signal. The ventricular volume is lowest at the point of isovolumic relaxation 

and highest at the point of isovolumic contraction.  
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Figure 8: Pathline visualization of all blood flow involved in one cardiac cycle in the left ventricle in a healthy patient. 

The four-component color coding of Eriksson et al. is applied. A: Early LV filling; B: Diastasis; C: Atrial contraction. 
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Results 

Fontan dataset 

The results of the 12 particle tracing tests that were performed on the Fontan dataset are noted in Table 2. 

Test 1 is considered the standard settings and other tests only vary in a single variable to this standard test. 

The interpolation method is only different for test 2, whereas the integration method varies for tests 3 and 

4. The other tests, 5 to 12, have different timesteps. 

Interpolation method 

In the comparison of test 1 and test 2, differences in both pulmonic distribution and missing fraction are 

under one percent of the total of the particles seeded. Only the missing fraction of particles seeded from 

the SVC is more than one percent higher for the tricubic interpolation method (1.28%), which is due to a 

lower fraction of particles that had the same origin but a different destination. Total computation time and 

particle tracing time for the tricubic interpolation method was less than half of the linear interpolation 

method (respectively 07:04 vs 14:59 and 06:54 vs 14:55). Initialization time more than twice as high for the 

tricubic interpolation method (10 vs 4 seconds).  

Table 2: results of the particle tracing tests in the Fontan dataset 

  Test # 1 2 3 4 5 6 7 8 9 10 11 12 

  Interpolator QL TC QL QL QL QL QL QL QL QL QL QL 
 

Integrator RK45 RK45 RK23 ODE853 RK45 RK45 RK45 RK45 RK45 RK45 RK45 RK45 

  Timestep [ms] 10 10 10 10 1 5 15 20 30 50 75 100 

Compu-
tation time  

Total [h:mm:ss] 14:53 07:03 08:07 28:51 2:25:54 29:29 10:12 07:47 05:22 04:02 04:04 03:55 

Initialization [mm:ss] 00:04 00:11 00:04 00:04 00:20 00:04 00:03 00:03 00:03 00:03 00:03 00:03 

Particle tracing 
[h:mm:ss] 

14:50 06:53 08:03 28:47 2:25:34 29:25 10:09 07:43 05:18 03:58 04:01 03:52 

Time per particle [ms] 35 16 18 67 337 68 23 18 12 9 9 9 

All particles Seeded 25944 

From IVC 17544 (68%) 

From SVC 8400 (32%) 

To LPA [%] 25.60 24.95 25.53 25.53 25.59 25.59 25.58 25.50 25.49 25.39 23.00 17.99 

To RPA [%] 53.92 53.33 53.77 54.00 53.89 53.89 53.76 53.82 52.34 46.96 39.03 31.38 

Missing [%] 19.99 20.91 20.31 20.06 20.14 20.14 19.54 18.70 17.89 16.70 15.21 12.37 

Errors [%] 0.12 0.00 0.00 0.08 0.00 0.00 0.74 1.61 3.92 10.55 22.49 38.09 

IVC To LPA [%] 37.81 36.86 37.70 37.72 37.80 37.80 37.77 37.68 37.68 37.51 33.94 26.50 

To RPA [%] 37.25 36.83 37.05 37.26 37.18 37.28 37.36 37.44 35.62 30.02 24.47 19.29 

Missing [%] 24.38 25.14 24.66 24.53 24.47 24.29 23.96 23.27 22.83 21.53 19.19 15.32 

Remaining [%] 0.53 1.17 0.59 0.47 0.55 0.63 0.55 0.54 0.53 0.60 0.42 0.25 

Errors [%] 0.02 0.00 0.00 0.02 0.00 0.00 0.35 1.07 3.34 10.34 21.99 38.64 

SVC To LPA [%] 0.11 0.06 0.11 0.08 0.08 0.11 0.12 0.06 0.04 0.06 0.14 0.20 

To RPA [%] 88.73 87.80 88.68 88.98 88.80 88.86 88.01 88.04 87.26 82.35 69.43 56.61 

Missing [%] 10.82 12.10 11.21 10.71 11.11 11.02 10.31 9.14 7.56 6.61 6.89 6.23 

Remaining [%] 0.01 0.05 0.00 0.01 0.01 0.01 0.00 0.02 0.00 0.01 0.01 0.01 

Errors [%] 0.33 0.00 0.00 0.21 0.00 0.00 1.56 2.74 5.14 10.98 23.52 36.95 

IVC = Inferior Vena Cava; SVC = Superior Vena Cava; LPA = Left Pulmonary Artery; RPA = Right Pulmonary Artery; QL = Quadlinear interpolation; TC = Tricubic 

interpolation; RK45 = fifth order Runge-Kutta integration method; RK23 = third order Runge-Kutta integration method; ODE853 = eighth order Runge-Kutta integration method 
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Integration method 

Tests 1, 3 and 4 had differences only in integration method. Differences in pulmonic distribution, missing 

particles fraction and number of integration errors are under a half percent of total particles seeded for all 

possible comparisons (RK45 vs RK23, RK45 vs DOP853 and RK23 vs DOP853). Total computation time 

and particle tracing time was almost halved for the RK23 method and almost doubled for the DOP853 

method when compared to the RK45 method. Initialization time was equal for all tests, as the integration 

method was not part of the initialization code. 

Timestep 

The differences in pulmonic distribution for the tests with a timestep of 1ms to 20ms were under half a 

percent of total particles seeded for the particles seeded from the IVC and under one percent for particles 

seeded from the SVC. These differences were larger for a longer timestep, with a difference of one to two 

percent for a timestep of 30ms and differences of over 5 percent in most categories for longer timesteps. 

The missing fraction decreases with a longer timestep, whereas the number of integration errors increased 

greatly with a longer timestep. 

The computation time and particle tracing time decreased almost proportionally with a longer timestep for 

timesteps up to 30ms. From 50ms on, the computation time and particle tracing time were stable at around 

four minutes. Initialization time was slightly lower for longer timesteps (3 vs 4 seconds). The timestep is 

used in the initialization code to determine how much RAM is pre-allocated to the program to save the 

particle traces.  

Visualization 

For both the interpolation method tests (test 1 and 2) and the integration method tests (test 1, 3 and 4) 

there were no visible differences in the visualization of the particle traces. For tests with timesteps of 20ms 

 

 

Figure 9: Visualization of pathlines in early systole for (left) test 1 with a timestep of 10ms, (middle) test 9 with a timestep of 30ms, and (right) 

test 12 with a timestep of 100ms. At a longer timestep, the flow patterns, e.g. the large central vortex (white arrow), become less visible and the 

pathlines are less smooth. Less high-speed segments of the pathlines are traced at a longer timestep. Velocity color-coding ranging from blue to 

green (slow to fast) was used on the pathlines. The total cavopulmonary connection segmentation model is also drawn. 
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and longer (test 9 to 12) there were clear differences in the visualization when compared to the visualization 

of test 1 with a timestep of 10ms. The main central vortex in the TCPC (white arrow in figure 9) is well 

recognizable with a timestep of 20ms or shorter and increasingly unrecognizable with longer timesteps. 

Figure 9 shows the differences in pathlines for test 1, test 9 and test 12 with a timestep of 10ms, 30ms and 

100ms, respectively. The pathlines in the figure are of the early systole.  

 

Intracardiac dataset 

The results of the 12 particle tracing tests that were performed on the intracardiac dataset are noted in Table 

3. Test 13 is considered the standard settings and other tests only vary in a single variable to this standard 

test. The interpolation method is only different for test 14, whereas the integration method varies for tests 

15 and 16. The other tests, 17 to 24, have different timesteps. 

Interpolation method 

The four-component analysis of the quadrilinear interpolation and tricubic interpolation (test 1 and 2 

respectively) only show differences of less than one percent of all particles seeded. The missing particles 

fraction is less than one percent of all particles seeded higher for the tricubic interpolation (10.47% vs 

9.79%) and a little more than one percent higher in the four-component analysis (19.46% vs 18.37%). There 

was only a small difference in number of integration errors. Total computation time and particle tracing 

time was almost halved for the tricubic interpolation method (08:01 vs 15:15), but initialization time was 

about 13 seconds longer. 

Table 3: results of the particle tracing tests in the intracardiac dataset 
  Test # 13 14 15 16 17 18 19 20 21 22 23 24 

  Interpolator QL TC QL QL QL QL QL QL QL QL QL QL 
 

Integrator RK45 RK45 RK23 ODE853 RK45 RK45 RK45 RK45 RK45 RK45 RK45 RK45 

  Timestep [ms] 10 10 10 10 1 5 15 20 30 50 75 100 

Compu-
tation time  

Total [h:mm:ss] 15:26 08:02 08:48 28:58 2:21:01 29:33 10:55 08:32 06:11 04:21 03:38 03:21 

Initialization [mm:ss] 01:05 01:18 01:05 1:05 1:06 01:05 01:05 01:06 01:05 01:06 01:05 01:05 

Particle tracing [h:mm:ss] 14:21 06:44 07:43 27:53 2:19:55 28:28 09:50 07:27 05:06 03:15 02:33 02:16 

Time per particle [ms] 046 21 25 89 446 91 31 24 16 10 8 7 

All 
particles 

Seeded 25944 

To aorta [%] 34.45 34.65 34.37 34.34 34.17 34.07 34.82 34.67 33.20 26.86 20.30 14.31 

From left atrium [%] 43.12 42.60 43.31 43.00 43.37 43.29 43.55 43.34 42.99 41.71 39.60 34.71 

Missing [%] 18.37 19.46 18.34 18.44 18.08 18.41 18.08 18.38 18.90 17.76 16.59 13.33 

Errors [%] 0.01 0.00 0.00 0.02 0.00 0.00 0.10 0.19 1.45 8.40 19.38 32.90 

4-
component 

analysis 

DF [%] 22.99 22.78 22.97 22.85 22.83 22.66 23.29 23.08 21.85 19.03 15.51 12.20 

DEF [%] 16.69 17.39 16.58 16.72 16.57 16.62 16.53 16.71 16.77 14.45 12.64 9.95 

RI [%] 23.52 23.63 23.67 23.44 23.92 23.91 23.55 23.60 24.02 25.76 27.09 26.48 

RV [%] 36.80 36.20 36.78 36.98 36.69 36.81 36.62 36.61 37.36 40.77 44.75 51.36 

DF = Direct Flow; DEF = Delayed Ejection Fraction; RI = Retained Inflow; RV = Residual Volume; MP = Missing Particles; QL = Quadlinear 

interpolation; TC = Tricubic interpolation; RK45 = fifth order Runge-Kutta integration method; RK23 = third order Runge-Kutta integration method; 

ODE853 = eighth order Runge-Kutta integration method 



25 
 

Integration method 

Differences in the four-component analysis, missing particles fraction and number of integration errors 

were below a half percent of all particles seeded for all possible comparisons of integration methods (RK45 

vs RK23, RK45 vs DOP853 and RK23 vs DOP853). Total computation time and particle tracing time was 

almost doubled for the DOP853 method and almost halved for the RK23 method when compared to the 

RK45 method. There were no differences in initialization time. 

Timestep 

The differences in the missing particles fraction and the four-component analysis were below a half percent 

of all particles seeded for timesteps of 1ms to 20ms. From a timestep of 30ms or higher on, the particles 

traced to the aorta and left atrium decrease. As a result, the direct flow and delayed ejection fraction 

components decrease with a longer timestep and the residual volume increases. Contrarily, the retained 

inflow, which also depends on particles traced to the left atrium, increased as well. While the missing 

particles fraction decreases with a longer timestep, the number of integration errors increased greatly. 

Visualizations 

There are no visible differences in the visualizations of the individual particle tracing tests when varying 

interpolation method or integration method. There were however visible differences in the pathlines of the 

tests with timesteps of 20ms and longer when compared to the visualization of 10ms. With longer timesteps, 

 

Figure 10: Visualization of pathlines in early systole for (left) test 1 with a timestep of 10ms and (right) test 12 

with a timestep of 100ms. Pathlines are less smooth at a longer timestep and flow patterns (annotated by circles) 

such as vortices and curvatures become invisible at a longer timestep. Velocity color-coding ranging from blue to 

green (slow to fast) was used on the pathlines. Intracardiac segmentation models are also drawn, with green being 

the aortic model, red the left atrial model, dark blue the left ventricular model and colorless the connecting cuboid 

model. 
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the pathlines are less smooth and flow patterns like vortices are not visible. Figure 10 shows the differences 

in pathlines for test 13 and test 24 with a timestep of 10ms and 100ms, respectively. The pathlines in the 

figure are of the early systole.  

An additional visualization was made of only the retained inflow fraction, as can be seen in figure 11. The 

spatial location of the particles at isovolumetric relaxation is drawn, together with the segmentation models 

of the aorta, left ventricle, left atrium and the connection cuboid model at the same point in. It can be seen, 

as depicted by the circle, that a fraction of the particles are outside of the LV segmentation model and close 

to the aorta segmentation model. Closer to the LV segmentation are more particles outside the model, but 

still within the 5mm margin and therefore still part of the retained inflow fraction. 

 

Figure 11: Visualization of the retained inflow fraction (yellow points) at isovolumetric relaxation (end-systole). 

Segmentation models of the left ventricle (blue), left atrium (red), aorta (green) and a cuboid (grey) connecting 

these structures are drawn. A fraction of the particles was outside the left ventricle model and beside the aorta 

model, as indicated by the white ellipse. 
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Discussion 

In this research we have aimed to investigate the effect of integration method, timestep length and data 

interpolation method on the computation time and accuracy of particle tracing in 4D Flow MRI data. We 

have found that data interpolation method and integration method had hardly any effect on particle tracing 

accuracy, but they had a large effect on computation time, whereas higher order integration was more 

computationally expensive. The same is true for timesteps of 20ms or shorter, where a shorter timestep 

was more computationally expensive than a longer timestep. For timesteps of 30ms or longer, accuracy was 

decreased greatly.  

Using the standard particle tracing settings in the Fontan dataset gave results similar to literature.39 The 

missing particles fraction was around 20%, with a missing particles fraction of 24% for particles from the 

IVC and 11% for particles from the SVC. Although this is higher than the 20% threshold that was suggested 

by Ha et al., this was considered sufficient for this research.30 The pulmonic distribution was within normal 

values, whereas half of the IVC particles (excluding missing and error fractions) went to either pulmonary 

artery (normal 55% ± 19% to LPA) and almost all SVC particles went to the RPA (normal 87% ± 13%).39 

The standard particle tracing settings gave suboptimal results in the intracardiac dataset. Although the 

missing particles fraction was only around 18% and therefore under 20%, which was the threshold 

suggested in literature, the four-component analysis results gave a DF of 23% (normal 35% ± 6%), a DEF 

of 17% (normal 15% ± 3%), a RI of 24% (normal 17% ± 4%) and a RV of 37% (normal 33% ± 4%).26,29,30,36 

The DF is therefore too low and the RI too high. The DEF (here 17%) should be roughly the same as the 

RI (here 24%), otherwise the left ventricle would take more blood in than it would pump out, which is 

physiologically not realistic in a healthy heart. The DF and RI have in common that the particles reach the 

left atrium when tracing backwards. Further visualization of just the RI fraction showed that a portion of 

these particles did move in the direction of the aorta but did not enter the aortic segmentation. Instead, 

they moved just past the aortic model. It is possible that the segmentation of the aorta was not completely 

accurate and should have included this area, but further inspection of the MRI data gave no clear answer 

as to whether this is true. 

The number of integration errors was around zero percent for both datasets with the standard settings (test 

1 and 13). This did increase greatly in both datasets for tests with a timestep of 30ms or longer. It is 

important to note that the integration errors included errors that occurred because the data requested by 

the integrator was outside of the boundaries of the 4D Flow data. In longer timesteps, this can occur more 

often, because particles take larger temporal and spatial steps. These large steps can cause to the particle to 

protrude from the dataset within one step: the integrator uses data from multiple variable sub-steps (equal 

to the order of the integration method) to calculate the most accurate step. These particles would leave the 

vasculature segmentation in that step and would be considered part of the missing particles fraction. 

However, these errors occur within the integration step and particles are only checked if they are part of 

the missing fraction after the integration step. It is therefore important to note that even without the 
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integration error, the particles would be part of the missing fraction. Therefore, an increase in integration 

errors has equal importance to an increase in the missing particles fraction. 

For both datasets, the choice of interpolation method did not change the missing particles fraction and PD 

or four-component analysis results. However, using the tricubic interpolation method did reduce the 

computing time by around a half. Given that tricubic spatial interpolation is traditionally more 

computationally expensive than trilinear spatial interpolation, this result can be explained by the method 

used to apply the interpolation methods. Quadrilinear interpolation was programmed in python code using 

simple interpolation steps to interpolate over the different dimensions sequentially. Tricubic interpolation 

was performed using advanced matrix multiplications, which were performed by a precompiled C++ library 

(Eigen3), with linear interpolation over the time dimension afterwards. The use of matrix multiplications 

and precompiled C++ libraries are most likely the cause for the decrease in computation time.  

A higher or lower order integration method had no notable effect on the missing particles fraction and PD 

or four-component analysis results. It did however affect the computation time and particle tracing time: 

computation time was almost doubled for the eighth order integration method when compared to the 

commonly used fifth order integration method. The use of the third order integration method almost halved 

the computation time when compared to the fifth order integration method. 

In both datasets, timesteps of 20ms and lower gave almost equal results in PD or four-component analysis 

and missing particles fraction. Timesteps of 30ms and higher gave results that can be regarded as unrealistic: 

up to a RV of over 50% and RI of over 30% in the intracardiac dataset for a timestep of 100ms. In the 

Fontan dataset, timesteps of 30ms and higher gave an increase in errors by the integrator. The integration 

functions gave an error for many particles because the timestep was too long to perform accurate integration 

or the particles left the boundaries of the flow data. Total computation time increased almost linearly 

proportional to the decrease of the timestep. Although the computation time in this research should not 

be taken as a realistic example for particle tracing in optimized clinical software, having short computation 

time is preferential. It is therefore advised so select a timestep as large as possible, while still maintaining 

adequate accuracy. A timestep of about half of the interval between cardiac phases, in this case a timestep 

of about 15ms, is shown to be a good starting point for performing particle tracing. 

The integration functions used were part of the SciPy toolkit.33 By origin, these integration functions were 

functions with an adaptive timestep: every step, a higher order integration method and a lower order 

integration method are used and the difference in both is seen as the error of the integration. If the error is 

larger than the user-defined threshold, the timestep is decreased. Otherwise, the timestep is increased until 

a maximum is reached. This research did not use an adaptive timestep but a fixed timestep, because the aim 

of this research was to investigate the effect of timestep itself on the accuracy of particle tracing. An adaptive 

timestep can however be useful when using particle tracing in general clinical practice.  
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For the Fontan dataset, a continuous seeding method was chosen. This seeding method consists of releasing 

particles from a (two- or three-dimensional) seeding grid at a given time interval. In this research a time 

interval was the same as the interval between cardiac phases and thus particles were released from the 

seeding grid every cardiac phase. This seeding was performed for an entire cardiac cycle to quantify blood 

flow throughout the entire cardiac cycle. The particles were traced until a second cardiac cycle had passed, 

which was long enough because of the low remaining particles fractions (less than 0.5% of all particles) in 

every test.  

For quantification purposes of blood flow in blood vessels, such as flow distributions, it is recommended 

to seed throughout an entire cardiac cycle to quantify all possible flow since the cardiac cycle is a repeatable 

pattern and the flow within as well. It is important to trace the particles until all particles have reached a 

traceable destination, otherwise they will not be quantified. For visualization however, it can be beneficial 

to seed at only a specific time or time range within the cardiac cycle to visualize a part of the blood flow 

more prominently, e.g. when visualizing only systolic blood flow. Recently, Gaeta et al have described a 

volumetric seeding method in which particles are seeded from a grid depending on the velocity at that grid 

point to ensure each particle represents an equal volume of blood, which can be beneficial for quantification 

purposes.21 In (temporarily) closed systems such as the heart ventricles, seeding at all voxels within the 

system when the blood volume is constant, e.g. at the isovolumetric contraction or relaxation, allows for 

quantification and visualization of all blood flow within the system when tracing both forward and 

backward in time. This technique could be applied on non-closed systems as well to find the origin and 

destination of blood volumes in certain areas. An example would be seeding particles within an aneurysm 

and tracing forward and backward in time to identify the blood flow within the aneurysm. This is not done 

in current literature today.  

The segmentations of the cardiovascular structures that were used in this experiment were created by 

experienced physicians. For the intracardiac dataset, the segmentations were performed per slice of a short-

axis scan and the individual slice segmentations were combined to a 3D model per cardiac phase. To allow 

room for a segmentation error, a margin of 5mm, which was approximately the length of two voxels, was 

defined. Further analysis into the locations where particles leave the segmentations and the MRI data itself 

have shown no clear inaccuracies in the segmentations. These segmentations were performed on a time-

resolved short-axis scan of the heart and not on the 4D Flow MRI data itself. No registration was 

performed, which could be a source of error due to spatial or temporal segmentation mismatch.  

The segmentation models in the intracardiac dataset were created per cardiac phase, as the size of the 

vasculature varied per cardiac phase. In between the cardiac phases, no interpolation of the segmentations 

was performed, and particles were tested if they were inside the segmentations of the temporally nearest 

cardiac phase. This so-called nearest-neighbor approach is in fact the simplest interpolation technique and 

could be replaced with a more advanced interpolation technique such as linear interpolation. Because there 

was no available method to perform linear shape interpolation with just the Python toolkits used in this 
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research, no shape interpolation was done on the segmentations. Future research might answer whether 

linear shape interpolation as opposed to no shape interpolation yields other or even better results for 

intracardiac particle tracing. 

Some software packages use a user-defined minimum velocity as a stopping condition to stop tracing 

particles that leave the vasculature. These particles often move slowly outside of the vasculature because 

the flow data outside the vasculature is mostly noise, but they can move slowly if they reach flow data of 

another vasculature. This method of removing particles requires no segmentation and can therefore be 

useful for a quick visualization but is not recommended for quantification. Particles that enter areas of slow 

blood flow, such as aneurysms or an end-diastolic ventricle, will not be traced anymore, which could lead 

to inaccurate particle tracing quantifications. For this research, no minimum velocity was defined but 

segmentations were used to identify particles outside of the vasculature. 

For the standard results, the missing particles fraction was in a normal range compared to other 

literature.30,36 Physiologically however, a missing particles fraction should not exist unless the patient had a 

defect in the cardiovascular system, e.g. internal bleeding. No clear inaccuracies in the segmentations could 

be found and even with small timesteps, higher order integrations and advanced interpolation methods, no 

improvement in missing particles fraction could be achieved. Inaccuracies in particle tracing are therefore 

most likely from the data. This can be either to noise in the data or limitations in spatial or temporal 

resolution. It is therefore of importance to check the quality of the data before performing particle tracing. 

Further developments into the improvements of 4D Flow MRI data will most likely improve particle tracing 

as well. 

Conclusion 

We have performed particle tracing in two 4D Flow MRI datasets with different settings for the integration 

method, integration timestep and data interpolation method. Accuracy was measured quantitatively by 

measuring the number of particles lost during tracing, blood flow distributions and the number of 

integration errors, and quantitatively by visual inspection. From the results we would recommend that 

particle tracing is performed in 4D Flow MRI data with a low order interpolator, e.g. a third order Runge-

Kutta integrator, a maximum timestep of half the temporal resolution of the data, and quadrilinear data 

interpolation. Besides these settings, it is important to choose a seeding method appropriate for the specific 

aim that particle tracing is used for. Before applying particle tracing, the quality of the 4D Flow MRI data 

and the segmentations of the cardiovascular structures must be inspected for artefacts and a good accuracy 

per cardiac phase respectively to enable a good quality of particle tracing. 
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Future perspectives 

In this research we have explored the effect of the settings for integration method, integration timestep and 

data interpolation method on the accuracy of particle tracing. Several aspects of this research could be 

further investigated to give a broader insight into the accuracy of particle tracing. The effect of shape 

interpolations for the intracardiac segmentation models could be explored by comparing the results of 

particle tracing with and without these shape interpolations.  

The segmentations were created by hand, which is time-consuming and prone to intra- and inter-operator 

errors. The intracardiac segmentations were not created on the 4D Flow MRI data, but on time-resolved 

short-axis scans. Using automatic segmentations methods on the 4D Flow MRI data directly, whether it be 

the magnitude data, the velocity data or both, could lead to a less time-consuming and perhaps more 

accurate workflow. Especially in the clinical practice this could lead to an easier adoption of particle tracing 

in many cardiovascular care processes. If these automatic segmentations would become more available, 

their effects on the accuracy of particle tracing could be studied. 

4D Flow MRI is still an evolving imaging technique and further improvements could lead to better particle 

tracing. Both spatial and temporal resolution have effect on the particle tracing accuracy and could be 

improved. A limitation of these resolutions is the acquisition time, which is already reduced using advanced 

k-space filling techniques. Increasing acquisition speed while keeping total acquisition time the same could 

lead to increased spatial and temporal resolutions, and as a result possibly better particle tracing. Using 

multi-venc acquisition techniques can also lead to an increase in VNR and therefore could lead to better 

particle tracing outcomes. If new 4D Flow MRI acquisition techniques become more available, their effects 

on particle tracing can be studied.   
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