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Abstract

Evaluation of aircraft performance for design, certification, and maintenance purposes requires aerodynamic
knowledge for the entire flight envelope of an aircraft. Simplified models that relate geometric properties and
flight conditions of an aircraft to its aerodynamic properties are simply not sufficient anymore, as non-linear
aerodynamic phenomena, e.g., vortex development and flow separation, can drastically influence the per-
formance of an aircraft. Therefore, high-fidelity simulations and wind tunnel experiments are necessary to
assess the performance of an aircraft sufficiently. Although the development of new technologies in the last
centuries allowed the computational time of the high-fidelity simulations to be decreased significantly, the
computational expense still remains large. New techniques that are used to simulate the load cases of an
aircraft and evaluate its aerodynamic properties are therefore aimed to provide an accurate representation of
the high-fidelity simulations while the numerical complexity and hence the computational cost of the model
is reduced. These techniques can be referred to as Reduced-Order Models (ROM).

Previous studies, conducted at the Royal Netherlands Aerospace Centre (NLR) as part of a collaborative re-
search task group within the Science and Technology Organization (STO) of the North Atlantic Treaty Or-
ganisation (NATO), investigated the development of different ROMs that should be able to accurately predict
the surface pressure distribution of the MULti-DIsciplinary CONfiguration (MULDICON) Unmanned Com-
bat Air Vehicle (UCAV). In particular, a ROM based on the neural network approach shows promising results
but suffers from drawbacks such as inaccurate prediction of the surface pressure near the wing tip region
and the exclusion of time-history effects. This thesis report will serve as a continuation of previous research
done on the reduced-order modeling approach for the prediction of the surface pressure coefficients of the
UCAV configuration and will provide a baseline for future research. The research objective for this thesis re-
port is therefore to develop a CFD data-driven Reduced-Order Model (ROM) based on the neural network
approach that is able to predict the surface pressure and integral aerodynamic load coefficients of the UCAV
MULDICON design and is able to capture the transient effects of the flow field for different flight maneuvers
with the capability to reach the same level of accuracy as high-fidelity tools.

In this thesis, a ROM is developed that makes use of a reduced-order basis that is constructed using Proper
Orthogonal Decomposition (POD). The POD method decomposes the high-fidelity samples used to train the
ROM into spatial POD modes that will be used for the reduced-order basis, that are ranked in order of contri-
bution towards the total kinetic energy (TKE). A reduced-order basis with only 10 spatial POD modes already
captures 99 % of the TKE, which includes the most dominant flow properties and can be used to project the
full-order solution with an accuracy that is in the same orders of magnitude while the data that is used is
minimized. A Recurrent Neural Network (RNN) architecture is used as a surrogate model to determine the
input-output relationship of the model. For this thesis, a Long Short-Term Memory (LSTM) architecture is
used, which is widely used for the prediction of time-sequential data. The ROM that is constructed in this
thesis is a combination between the POD method and the LSTM architecture, which can be referred to as the
POD-LSTM model.

The performance of the POD-LSTM model has been evaluated and is split up into two different phases: the
offline and online stages. The offline stage of the ROM is the stage where the reduced-order basis is con-
structed and the high-fidelity samples that are used for training are evaluated. From the offline stage, it can
be concluded that the high-fidelity samples provide good coverage of the regressor space and most of the test
samples have the same projection error as the high-fidelity training samples that are used for the construc-
tion of the reduced-order basis. The POD-LSTM model has been trained for varying model parameters and
it was shown that the number of LSTM units has the largest influence on the computational training time.
In the online stage, the performance of the prediction of the surface pressure coefficients using test samples
that are gathered from steady and unsteady harmonic pitch and plunge oscillations are evaluated. The results
for the steady simulations show that the POD-LSTM model is able to accurately predict the axial and normal
force coefficient, while inaccuracy is shown for the pitching moment coefficient. The main reason for the
inaccurate prediction of the pitching moment coefficient is the inaccurate prediction of the surface pressure
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coefficient near the wing tip region. Both the harmonic pitch and plunge oscillations show similar results,
whereas the normal and axial force coefficients are predicted with good accuracy but the pitching moment
coefficient is inaccurate due to an error in the surface pressure prediction near the wing tip region. The per-
formance of the POD-LSTM model in terms of computational cost has been evaluated and was proven to be
faster than previous studies, whereas the number of LSTM layers and LSTM units has the largest influence on
the computational performance.

Overall, the POD-LSTM model has provided solutions to improve on previous studies for the surface pressure
coefficient prediction of the UCAV configuration. However, it must be noted that this thesis report serves as
a baseline for future research and the full capabilities of the POD-LSTM model still need to be exploited to
provide a fair comparison with previous studies. Different training maneuvers, increase in training time and
different model architectures could influence the performance of the POD-LSTM model and therefore should
be incorporated in future studies to provide improvements to the proposed ROM.
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1
Introduction

The process of aircraft design, certification, and load predictions for maintenance purposes require a lot of
aerodynamic knowledge that usually is obtained from data that is gathered for the entire flight envelope. This
aerodynamic knowledge that is required to evaluate the loads, the performance, and the handling qualities of
an aircraft can vary from integral loads of the aircraft up to distributed data such as pressure and shear stress
distributions. Currently, this aerodynamic analysis of aircraft is performed using high-fidelity tools such as
Computational Fluid Dynamics (CFD) and windtunnel experiments. Although these approaches are very
promising, they are still considered to be computationally expensive and hence very time-consuming. New
techniques that are developed to simulate the load cases of an aircraft are therefore aimed to provide an accu-
rate representation of the high-fidelity tools while the numerical complexity and the computational training
time are reduced. A typical approach to do this is to simplify the physics of the model, e.g., the use of potential
flow equations for the determination of the load cases [22]. However, the issue with these simplified models
is that significant effects, e.g., transonic flow effects and stall, are neglected and therefore not all features of
the flow are incorporated. Another technique that can be used to reduce the numerical complexity is referred
to as reduced-order modeling, which aims to provide an accuracy that is comparable to the already existing
high-fidelity tools while remaining its complex features. Implementations of such techniques as the Reduced
Order Model (ROM) can be used next to high-fidelity tools to minimize the amount of high-fidelity data that
is necessary and hence to decrease the computational training time and prediction time during aerodynamic
analysis of an aircraft. This thesis report will go into the research details of the construction of a ROM with the
aim to accurately predict the surface pressure distribution of an unconventional aircraft design. This chapter
serves as an introduction to the research studies that have been performed in collaboration with the Royal
Netherlands Aerospace Centre (NLR). First, the project motivation will be discussed. Second, the problem
description of the thesis will be described. Third, the research objective and research questions that will be
handled during this report will be discussed. Finally, the report outline of this thesis will be presented.

1.1. Project motivation
In 2018, a research task group was formed within the Science and Technology Organisation (STO) was formed
by the North Atlantic Treaty Organisation (NATO). The purpose of this task group AVT-251 on multi-disciplinary
design and performance assessment of effective, agile NATO air vehicles, was the application of advanced nu-
merical tools and collaborative approaches to the design of an Unmanned Combat Air Vehicle (UCAV) for a
specific bomber mission [4]. The UCAV design can be categorized as an unconventional aircraft type. Usu-
ally, high-fidelity tools or experiments are necessary in order to evaluate the performance of such designs as
empirical models based on existing aircraft are not applicable or do not cover the design space well. There-
fore, the implementation of ROMs could enhance the early stages of the design process, as they will reduce
the number of high-fidelity simulations necessary. Furthermore, ROMs can be used for load prediction for
different states of flight. Additionally, they can be coupled to flight dynamics models and structural models
to determine aircraft performance and establish a basis for predictive maintenance. As part of the STO task
group, the Royal Netherlands Aerospace Centre (NLR) has been contributing to the development of ROMs
for aerodynamic load prediction for the UCAV design, with a particular interest in the indicial response ap-
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proach and the neural network approach ([28],[18]). The latter shows potential but suffers from an inaccurate
prediction of the surface pressure near the wingtips, causing inaccurate results for the pitching moment coef-
ficient. This research study, in collaboration with the NLR, is done as a continuation of the research of ROMs
for aerodynamic load prediction on the UCAV design and will provide a further investigation into the neural
network approach.

1.2. Problem description
Previous studies have shown that the neural network approach can be used as a good surrogate model in
the construction of Reduced-Order Models. In particular, the neural network approach that has been intro-
duced by Papp [18] and was based on the Convolutional Neural Network (CNN) architecture has shown good
promise for the aerodynamic load prediction of the UCAV design using state variables only, e.g., the angle of
attack α and the pitch rate q . However, a few drawbacks using this approach have been identified:

• The CNN architecture makes use of an input tensor that is based on the geometrical coordinates of the
UCAV design. Although the number of data points in the domain is reduced, the size of the input tensor
still causes the CNN architecture to be very complex, which can lead to an increase in computational
training time and computational prediction time. A reduction of the input tensor size for the CNN
architecture could lead to a decrease in the computational training and computational prediction time
of the model.

• Currently, the CNN architecture is only able to predict the surface pressure distribution using state vari-
ables of one instantaneous time step, i.e., the CNN architecture is not able to make use of time-history
effects that can influence the flow for the prediction of its consecutive time step. The incorporation of
multiple time steps in the CNN architecture could lead to an increase of the model prediction accuracy
of the surrogate model due to coverage of transient effects within the flow. The inclusion of time-history
effects is particularly important for unsteady simulations.

• The CNN architecture has no imposed boundary conditions for the prediction of the surface pressure
coefficients. As the CNN architecture directly relates the geometric coordinates of the UCAV design and
current state variables with the surface pressure prediction, unrealistic results could be produced. The
introduction of boundary conditions within the CNN architecture or the input tensor could lead to an
enhancement of the model prediction accuracy.

• The prediction of the surface pressure distribution near the wing tip region is inaccurate for higher
angles of attack. It has been shown that only a small error in the prediction of the surface pressure
near the wing tip can lead to large errors in the prediction of the pitching moment coefficient. The
introduction of a weighted relationship towards the tip region could put more emphasis on the accurate
prediction of this region, leading to an increase in the model prediction accuracy.

• The CNN architecture that is introduced is based on state-of-the-art applications that were shown in
literature and previous studies. Evaluation of model parameter sensitivity is not included, while model
parameters could have a large influence on the model performance in terms of accuracy and cost. A
sensitivity analysis of the model parameters can provide the user insights into the model performance
and hence determine which model parameters are suitable for the application of the model.

To summarize, the CNN architecture, as discussed in the work of Papp [18], is a complex surrogate model that
makes use of an input tensor that is based on geometric coordinates and thus is computationally expensive.
Although the model is able to predict the surface pressure distribution of most cases well, the model is only
capable of predicting the surface pressure distribution using one instantaneous time step. Additionally, the
inaccurate prediction of the surface pressure near the wing tip region of the UCAV design leads to large errors
in the prediction of the pitching moment coefficient.

A potential solution to improve the previous model of Papp and to overcome its drawbacks is twofold:

1. The introduction of boundary conditions could enhance the model prediction accuracy. However, this
must be done without increasing the complexity of the model.
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2. The use of multiple time steps for prediction, i.e., the inclusion of time-history effects, could improve
the model prediction accuracy.

A literature study has been performed to identify possible reduced-order modeling techniques to incorpo-
rate the suggested solutions as stated above. A more elaborate discussion of this literature can be found in
Chapter 2 and Chapter 3. First of all, in order to impose boundary conditions in the model and to make sure
that the predictions of the surrogate model are realistic, it was found that one can make use of a modal de-
composition method that is referred to as Proper Orthogonal Decomposition (POD). The POD method uses
high-fidelity snapshots that are typically instantaneous full-order solutions obtained from CFD data. This
method will decompose the full-order solution into spatial modes with its corresponding time coefficients
that are ranked in relevance towards the contribution of the Total Kinetic Energy (TKE) of the flow, i.e., the
first spatial mode that is found has a higher TKE than the second spatial mode. From the obtained spatial
modes, a reduced-order basis can be constructed on which the full-order model is projected via multiplica-
tion with its time coefficients. Usually, only a few spatial modes are necessary in order to obtain 99 % of the
TKE [29], i.e., a reduced-order basis that is constructed from only a few spatial modes can cover the most
dominant flow properties. One of the benefits of using this approach is that it will reduce the amount of data
significantly. Furthermore, as the spatial modes only need to be constructed once, they are not used in the
prediction of the surrogate model. This means that with the use of the POD method, one only is interested
in the prediction of the time coefficients of the reduced-order basis. As the spatial modes cover the most
dominant flow properties, boundary conditions are imposed automatically if the time coefficients are pre-
dicted well, hence this will reduce the inaccuracy of the surface pressure prediction of the model. As only the
prediction of time coefficients of the reduced-order basis is necessary to approximate the full-order solution,
complex neural network architectures, e.g., the CNN, become redundant. As the inclusion of multiple time
steps in the prediction of the model to incorporate time-history effects is of importance, the Recurrent Neu-
ral Network (RNN) architecture is of interest. The RNN architecture, as the name already suggests, is able to
handle time-sequential data. Literature has shown that within the RNN architectures, the Long Short-Term
Memory (LSTM) model performs best for predicting time-sequential data and is used for a wide range of ap-
plications. One of the benefits of the LSTM model is that it will only memorize relevant information and will
disregard all the information that is irrelevant for the prediction of the time-sequential data. This working
principle makes the LSTM model a proper surrogate model that is able to capture general trends within the
data.

The reduced-order modeling approach that is proposed in this thesis work will be a combination between
the Proper Orthogonal Decomposition method and the LSTM architecture and will be referred to as the POD-
LSTM model. It must be noted that the purpose of this thesis work is to identify the strengths and weaknesses
of the new proposed model and therefore will only serve as a baseline for the construction of the POD-LSTM
model. If the work is deemed to be successful, a more elaborate investigation is necessary in order to provide
a good comparison between the current and previous studies. Furthermore, as the high-fidelity CFD data
that is used for this work has been obtained from previous studies, the generation of the high-fidelity CFD
data is outside of the scope of this project.

1.3. Research objective and questions
The proposed reduced-order modeling approach that will be discussed in this thesis aims to provide solu-
tions for the drawbacks that were found in previous studies. As this work serves as a baseline for further
research, this thesis work aims to fulfill the following formulated research objective:

"To develop a CFD data-driven Reduced-Order Model (ROM) based on the neural network approach that
is able to predict the surface pressure and integral aerodynamic load coefficients of the UCAV MULDICON
design and is able to capture the transient effects of the flow field for different flight maneuvers with the
capability to reach the same level of accuracy as high-fidelity tools."

To achieve this research objective, the following research question is proposed:

Is the reduced-order modeling approach that is based on the POD-LSTM model a suitable approach to
predict the surface pressure and integral aerodynamic load coefficients of the UCAV MULDICON design,
while the accuracy of the model is in the same orders of magnitude as the high-fidelity simulations and
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computational training time and computational prediction time of the model are low?

In order to provide answers to the main research question, additional research questions are formulated that
will provide more insights into the proposed research for this thesis work:

1. What are the limitations of using a reduced-order basis? How many spatial POD modes are necessary
in order to construct a reduced-order basis for a given accuracy?

2. What is the effect of varying the spatial POD modes within the reduced-order basis?

3. Do the high-fidelity samples cover the regressor space of the proposed POD-LSTM model sufficiently
to predict samples that are within the bounds of coverage?

4. How can the errors of the POD-LSTM model predictions be evaluated in a systematic way? How can
the differences between the errors of the reduced-order basis and the surrogate model be identified?

5. What is the effect of varying the model parameters on the computational expense of the model?

1.4. Report outline
This thesis report will investigate possibilities to improve the previously proposed surrogate model that is
based on the neural network approach by Papp [18] and will provide the answers to the research questions
as stated in this introduction. In Chapter 2 and Chapter 3, the theoretical background for this thesis work
is discussed, which serves as fundamental knowledge for the proposed POD-LSTM model. Then, Chapter 4
will describe the methodologies that are used to construct the proposed POD-LSTM model. In Chapter 5,
the results of the simulations for the prediction of the surface pressure coefficients of the UCAV design are
shown. Finally, in Chapter 6, the conclusions of this thesis work are discussed and recommendations for
further research are proposed.
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Literature Review: An introduction to

reduced-order modeling techniques

Prior to this thesis work, a literature study has been performed in order to identify potential solutions that can
be used to improve previous studies on the prediction of the surface pressure distribution of the UCAV design.
As the neural network surrogate modeling approach shows potential, the scope of the literature review has
been limited to state-of-the-art applications that are using the neural network approach. This chapter will
provide the reader a basic understanding of the neural network approach and will serve as an introduction
towards reduced-order modeling.

2.1. Introduction to Reduced-Order Modeling

Currently, highly expensive simulations such as CFD simulations and wind tunnel experiments are necessary
in order to evaluate the performance of aircraft for design, certification, and maintenance purposes. Although
current developments in RANS CFD simulations and the rapidly evolving developments in hardware are de-
creasing the computational cost, they are still considered to be too expensive for real-time evaluation. Hence,
new techniques that are developed to simulate the load cases of an aircraft are therefore aimed to provide an
accurate representation of the high-fidelity tools while the numerical complexity and the computational cost
of it are reduced. Models that are able to capture the main features of the flow, while numerical complexity is
reduced and high accuracy with respect to high fidelity models is achieved, are referred to as Reduced-Order
Models (ROM).

Two different reduced-order modeling approaches exist: the intrusive and the non-intrusive approach. One
of the major drawbacks of the intrusive reduced-order modeling approach is that it requires access to the full
model and solvers, which are typically unavailable when working with fluid flows, where the details of gov-
erning equations are not known. The non-intrusive reduced-order modeling approach is based on snapshots
from high-fidelity tools, e.g., numerical approximations obtained from Computational Fluid Dynamics (CFD)
or measurements via wind tunnel experiments. The benefit of non-intrusive reduced-order models is that it
does not require any knowledge about the underlying equations but is still able to approximate the dominant
properties of the flow field. As this research will be a continuation of the previous proposed research, one is
only interested in the non-intrusive reduced-order modeling approach. The non-intrusive approach works
in a black-box manner, i.e., the approach is entirely data-driven and thus enables great flexibility for practical
problems [31]. Reduced-order models work with an offline-online strategy, where the offline stage is used to
determine a reduced-order basis and construct the surrogate model and the online stage is used to predict
new solutions for a given input with the given surrogate model. An example of the offline-online strategy is
shown in Figure 2.1.

5
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Figure 2.1: A flow chart of the non-intrusive ROM [31].

2.1.1. Dimensionality Reduction for non-intrusive Reduced-Order Models: The Proper
Orthogonal Decomposition

One of the benefits of the (non-intrusive) reduced-order modeling approach is that only a limited amount
of data is used to approximate the full-order solution by means of dimensionality reduction methods. Di-
mensionality reduction can be done in various ways, however, the modal decomposition method is the most
used in current literature. Modal decomposition can be used to approximate the full-order solution by pro-
jecting the full-order solution on a reduced-order basis. Two main modal decomposition methods exist: The
Proper Orthogonal Decomposition (POD) method and the Dynamic Mode Decomposition (DMD) method.
Although both methods have their own benefits, the POD method is deemed to be optimal [13] and shows
the most potential for the research objective of this work. The POD method and its fundamentals will be
discussed in this section.

Proper Orthogonal Decomposition
One of the techniques that are often applied for dimensionality reduction in reduced-order modeling ap-
proaches is called the Proper Orthogonal Decomposition (POD) method. The POD method is known under
various names, e.g., the Principal Component Analysis (PCA) or the Karhunen-Loève Transform, depending
on the field of application. The basic concept of the POD method in the field of fluid dynamics is to decom-
pose a given vector field and determine its orthogonal basis, known as spatial functions, that each capture a
portion of the Total Kinetic Energy (TKE) of the flow. It must be noted that the deterministic spatial functions
found with POD are ordered by relevant significance, i.e., the first spatial mode found has a higher TKE than
the second spatial mode. Dimensionality reduction using the POD is done by approximating the entire flow
field with a limited number of spatial modes that will represent the most dominant behavior of the flow while
maintaining accuracy. As one is mainly interested in approaches that can be used for non-intrusive ROM,
the section below will only elaborate on POD methods that can be used with data obtained from high-fidelity
simulations.

Direct Method
The POD method was introduced for the very first time by Lumley in 1967 in the field of fluid dynamics [13].
This POD method is more commonly known as the POD direct method. The direct method as described in
this section is based on the given example by Weiss [29], considering a n-dimensional flow with the velocity
vector U = (u, v, w) and the spatial coordinates x̄ = (x, y, z) for a given time t . It must be noted that POD also
is applicable for different variables, e.g., pressure and vorticity, and is not just limited to the velocity vector as
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described in this section.

As one is mainly interested in the flow dynamics, one can reconstruct the velocity field by subtracting the
time-averaged velocity field from each individual vector field at a given instant t to obtain the velocity fluctu-
ation at a given point x̄. If one then re-orders each time instant fluctuating velocity field and adds all of them
into one matrix, one obtains the matrix U , known as the snapshot matrix. For simplicity, only the longitudinal
velocity u was considered in this example. If one is dealing with more velocity components, e.g., v, w , one
can simply extend the columns of snapshot matrix U with the given velocity components. It must be noted
that the re-ordering of matrix U can be done in several ways, as long as the same procedure is used for the
reversed process. An example for the snapshot matrix U with m given time instants for one component is
given as:

U =


u11 ... u1n

u21 ... u2n

. . .

. . .
un1 ... umn

=


u′(x1, y1, t1) ... u′(xn , yn , t1)
u′(x1, y1, t2) ... u′(xn , yn , t2)

. . .

. . .
u′(x1, y1, tm) ... u′(xn , yn , tm)

 (2.1)

The idea behind the POD direct method is to decompose the given velocity fields such that the vector field
can be written as a set of deterministic spatial functions, or POD modes, φk , which are multiplied by a time
coefficient ak (t ) for a given time instant t . This is shown in Equation (2.2).

u′(x, t ) =
∞∑

k=1
ak (t )φk (x) (2.2)

To determine if the vector field is correlated, thus to find deterministic spatial functions φk , it is necessary to
determine the covariance matrix of the vector field U with m given time instants:

C = 1

m −1
U T U (2.3)

It must be noted that the determination of the covariance matrix, C , is resulting in a square matrix of (N xN )
dimensions according to N-given data points in the grid. By evaluating the eigenvalues and eigenvectors of
the covariance matrix C and ordering the eigenvalues from the largest eigenvalue to the smallest with their
corresponding eigenvectors, one can obtain the proper orthogonal modesφ from the re-arranged eigenvector
matrix.

φ=


φ11 ... φ1n

φ21 ... φ2n

. . .

. . .
φn1 ... φnm

 (2.4)

Finally, one can obtain the variance of the vector field U on the orthogonal basis by projecting the vector field
U onto each individual eigenvector of the proper orthogonal modes φ:

A =Uφ=


a11 ... a1n

a21 ... a2n

. . .

. . .
an1 ... anm

=


u11 ... u1n

u21 ... u2n

. . .

. . .
un1 ... umn



φ11 ... φ1n

φ21 ... φ2n

. . .

. . .
φn1 ... φnm

 (2.5)

The columns of the obtained matrix A are known as the time coefficients for each of the corresponding modes
for the given time instants. To visualize the modes as presented above, one can follow the exact inverse
procedure to obtain a scalar field, referred to as the spatial modes of the flow field. An example of these
spatial modes with the corresponding time coefficients can be seen in Figure 2.2.
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Figure 2.2: POD spatial mode representation for first three modes of turbulent separation-bubble flow [29].

The benefit of using the POD method is that the spatial modes are ranked in the relevance of the TKE of the
flow, i.e., the first spatial mode has a higher contribution to the TKE than the second spatial mode. Moreover,
the energy that is covered in each mode is expected to decay rapidly with increasing ranks. Therefore, using
only the first few modes, i.e., the reduced basis, captures a large portion of the overall energy and in most of
the time is sufficient to serve as a good approximation to the original high-fidelity simulations [31]. One of
the properties of the POD method is that the dominant flow properties of the flow can be extracted from the
full-order solution with only a limited amount of spatial POD modes necessary. Therefore, the POD method
not only serves as a dimensionality reduction method, which decreases the computational cost of the model
but also bounds the approximation of the full-order solution, i.e.., the reduced-order basis will only provide
values that are deemed realistic. An example of the full-order solution approximation using a reduced-order
basis constructed using the POD method is shown in Figure 2.3, where only two spatial POD modes are used
to approximate the instantaneous full-order solution.
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Figure 2.3: Example of dimensionality reduction with POD [26].

2.2. Surrogate modeling techniques for non-intrusive Reduced-Order Mod-
els

One of the benefits of a non-intrusive reduced-order model is that the model is data-driven, hence under-
standing the underlying fundamentals is not necessary. However, as there are no governing equations avail-
able an approximation model is necessary that is able to map the relationship between the input and out-
put of the full-order solution. Such approximation models are referred to as surrogate models. As the exact
working between the input-output relationship is unknown, it is said that these surrogate models work in a
black-box manner. Usually, the model is constructed based on modeling the response to a limited number of
high-fidelity simulations. An example of the construction of a surrogate model is shown in Figure 2.4.

Figure 2.4: A surrogate model construction flowchart [11]

As shown from the figure, the surrogate model is constructed using high-fidelity data, e.g., CFD simulations,
that are obtained from a number of preselected inputs. These preselected inputs usually are determined us-
ing Design of Experiments (DoE), which tries to minimize the number of data points necessary while the full
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regressor space is covered.

There are various data-driven surrogate models available such as Response Surface Modeling, Kriging, the use
of Radial Basis Functions, or the neural network approach. As one is mainly interested in the improvement of
previous studies that are based on a neural network surrogate model, the scope of this work is limited to the
neural network approach only.

2.2.1. Introduction to machine learning: the neural network approach
This section will provide a basic understanding of the state-of-the-art ann applications that are currently
used in the field of fluid dynamics. The fundamentals of ANNs will be discussed to give the reader sufficient
information behind the theory of the black-box manner behavior of the neural network approach.

Basic principles of ANNs
The modeling of ANNs is inspired by how the biological brain processes information. The first understanding
of how the biological brain does this has been investigated by Warren McCulloch and Walter Pitts [20] with
their concept of a simplified brain cell, also referred to as neuron, described with the McCulloch-Pitts (MCP)
neuron model. The human brain contains more than 86 billion of these neurons [2] that are all involved in
the process of gathering and transmitting electrical signals and hence processing information. A schematic
overview of a single neuron, as described by McCulloch and Pitts [20], is shown in Figure 2.5. As seen from
the figure, the neuron receives a signal via their dendrites, processes all the input signals in the cell body, and
transmits its output via the axons, which are connected to other neurons. It was described that the cell body
of the MCP neuron model only transmits an output signal if the accumulated input signal exceeds a certain
threshold [20].

Figure 2.5: Schematic overview of the working of a single neuron [1].

The computational model that is accompanied with this MCP neuron model relates the synapses, the con-
nection between different neurons, as weighted signals. The neuron only transmits a signal if the accumu-
lated weighted input signals exceed a certain threshold according to its activation function, which will be
elaborated on later in this section. A schematic overview of this computational model is shown in Figure 2.6.

Figure 2.6: Schematic overview of the computational model of a single neuron [1].
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As seen from Figure 2.6, the operation that is carried out by a single neuron can be derived as the output
value, y , that is obtained from the activation function, f , evaluated at the summation of the weighted input
signal, defined as the input, x, multiplied by its corresponding weight, w , plus its bias, b:

y j = f (z j ) = f
(∑

i
wi xi +b

)
(2.6)

Based on the basic principles of such a MCP neuron model, Rosenblatt published the first concept of the
perceptron learning rule [23]. This rule would predict whether or not a neuron would transmit a signal for a
given input, by automatically learning the optimal weight coefficients from previously given input data. Both
the MCP neuron model and the perceptron learning rule are the basis of how neural networks are currently
modeled.

The basic architecture of an ANN consists out of multiple neurons stacked in a layer. The simplest form of
an ANN exists as a Single-Layer Perceptron (SLP) network. This SLP network directly relates the input to the
output. However, for more complex feature extraction, one can use Multi-Layer Perceptron (MLP) networks.
These networks consist, as the name suggests, out of multiple layers. All the layers that exist between the
input and the output of the ANN are called hidden layers. If the ANN contains more than one hidden layer,
the ANN is defined as a deep artificial neural network [21]. However, it must be noted that the input layer of
the neural network architecture does not count as a layer. The annotations that will be used for the weights,
biases, and activations of the ANNs in this report are according to Figure 2.7. This figure shows that the
weights that are used, w l

j k , represent the weight of the connection of the k th neuron in the (l −1) th layer to

j th neuron in the l th layer. Furthermore, the bias and the activation, bl
k and al

k respectively, represent the
bias and the activation of the k th neuron in the l th layer.

(a) Annotation for the weights of an ANN.
(b) Annotation for the activation and

bias of an ANN.

Figure 2.7: Annotations for a given ANN [17].

Although the connection between the neurons in consecutive layers is linear, one can solve complex func-
tions with the use of the activation function, f . The activation function is a function that translates the input
of a given neuron to a given value according to its pre-defined function. Different functions exist, e.g., sig-
moid or hyperbolic tangent functions. The result of the activation function will influence the behavior and
ultimately the training of the ANN. The higher the output of the neuron, the more important that neuron is
in the process of representing the behavior that is given. Furthermore, the bias is used in order to make sure
that all the neurons are trained in an efficient manner, e.g., if the neuron has an output of zero, the activa-
tion function, dependent on the function given, will also output a value of zero, hence the neuron will not be
trained.

The most common connection between layers is the fully-connected layer. In a fully-connected layer, the
neurons between two adjacent layers are fully pairwise connected, but the neurons share no connections
within each layer. An example of this architecture can be seen in Figure 2.8. Different kinds of connections
exist within the ANN architecture, which on its own define the type of architecture. The most common ar-
chitectures that are found in neural network modeling are the Feed-Forward Neural Network (FFNN), the
Convolutional Neural Network (CNN) and the Recurrent Neural Network (RNN).
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(a) A 2-layer MLP network. The input layer is not
counted as a layer in the network.

(b) A 3-layer MLP network. The input layer is not counted as a layer in
the network.

Figure 2.8: Schematic overview of fully-connected neural network architectures [1].

In order to assure that the ANN is capable of predicting the outcomes for new input data, the ANN needs
to adjust the weights of the predefined neurons accordingly, as described by the perceptron learning rule
[23]. The process at which ANN parameters are changed in order to increase the performance of the model
is called training. By training the model, the ANN basically extracts features from given data and tries to alter
the ANN parameters to obtain a better fit for the model. If the training is deemed to be successful, the ANN
will be able to predict the outcome of new data, which is similar to the data that is used for the training of the
ANN, with small errors.

Essentially, the training of an ANN is an optimization process where the error between the predicted and the
desired outcome of the ANN is minimized using a defined cost or loss function. As one of many examples,
such a cost function can be defined as the sum of squared errors, dependent on the given objective [21]:

C (w) = 1

2

∑
i

(
yi − f (z)i

)2 (2.7)

As one is interested in minimizing the cost function of the ANN, it is necessary to determine the effect of
a variation of the ANN parameters and hence find the optimal solution of all the parameters to obtain the
minimum value of the cost function. In other words, it is necessary to determine the gradient of the cost
function with respect to all the parameters of the ANN in order to determine the most influencing parameters
and enhance the minimization of the cost function by altering these parameters. One of the algorithms that
are used to determine the minimum of the cost function and thus to train ANNs efficiently is the gradient
descent [17].

Gradient descent
The gradient descent algorithm is an iterative method that determines the desired direction to reach the
minimum of the cost function in the most efficient manner by evaluating the gradient of the cost function,
∇C . If one then chooses a small variation in parameters, i.e., the weights and biases for a given ANN, ∆v , one
can obtain the following expression [17]:

∆C ≈∇C ·∆v (2.8)

One can define these changes of parameters using a predefined (positive) learning rate, η, to define the
change vector of parameters as [17]:

∆v =−η∇C (2.9)

Using both expressions, one can obtain a new relation for the difference in the cost function for the varying
parameters:

∆C ≈−η∇C ·∇C =−η||∇C ||2 (2.10)

It is known that ||∇C ||2 ≥ 0, hence the variation of the cost function by altering the parameters is always
negative or equal to zero. This means that the given cost function will always decrease or remain constant
for a variation of the cost function parameters. Knowing this, one can use this relationship to determine the
updated value of the cost function parameters:
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v → v ′ = v −η∇C (2.11)

One will repeat this process until convergence is reached and the minimum of the cost function or the max-
imum amount of iterations, also known as epochs, is found. In essence, for ANNs the gradient descent al-
gorithm is used to find the weights, wk , and the biases, bk , which will minimize the defined cost function to
obtain accurate results for the given problem. For ANNs Equation (2.11) can therefore be rewritten as follows:

w l
j k → (w l

j k )′ = w l
j k −η

∂C

∂w l
j k

bl
j → (bl

j )′ = bl
j −η

∂C

∂bl
j

(2.12)

One of the main challenges that is introduced when dealing with ANNs is that the cost function, mainly due to
the activation function and the many layers that are associated with them, is non-convex. Therefore, a proper
selection of the learning rate, η, is necessary in order to make sure that the one reaches the global minimum
of the cost function as efficient as possible such that the number of iterations can be minimized and hence
the computational cost of the ANN can be decreased. Essentially, a large learning rate allows the model to
learn faster as the change of the cost function is large as well, with the risk to overshoot the global or local
minimum of the cost function, eventually resulting in a larger training error. A small learning rate allows the
model to determine the global or local minimum with very high accuracy, but a small learning rate will result
in a slower convergence and hence increase the computational cost. Parameters that are pre-defined by the
user are also referred to as hyperparameters. The learning rate, as well as the choice of activation function
of the model, are common hyperparameters, however, it must be noted that the number of hyperparameters
depends on the ANN architecture that is chosen. The hyperparameters of an ANN can influence the perfor-
mance of the model significantly and are hence necessary to be optimized using trial and error.

Several different approaches for the gradient descent exist. The method that is described above is often re-
ferred to as the batch gradient descent, as each update is performed after the summation of all of the data for
each iteration. Especially with large data sets, which is very common in the use of ANNs, this can result in an
increase in the computational cost of the ANN. Instead of using all the data from the data set, one can lower
the number of data that is used for training the ANN model and use a randomized subset of the given data,
referred to as mini-batch gradient descent. The advantage of this method is that the amount of data that is
used is reduced and hence the computational cost of the model is reduced. However, due to the random-
ization of the given subset, noise is introduced at each iteration, and convergence of the model is therefore
considered to be hard. An alternative to both methods is the stochastic gradient descent that, instead of the
batch gradient descent, performs the parameter updates on each example after randomization of the data set.
The stochastic gradient descent is usually better with respect to generalization, due to the addition of more
noise due to the randomization. The disadvantage of this approach is that due to the increase of noise, the
convergence of the model becomes even harder than the mini-batch gradient descent, resulting in a longer
computational time of the model. A representation of the mentioned approaches is shown in Figure 2.9
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Figure 2.9: Representation of different gradient descent approaches. [5]

Backpropagation
In order to use the gradient descent algorithm, it is necessary to determine the gradient of the cost function
with respect to the parameters of the ANN. One of the conventional ways to do this is to introduce a small
variation in one of the parameters and obtain the difference between the original value of the cost function
and the new value of the cost function. The problem with this conventional way of determining the gradi-
ent vector is that this method is slow for a multi-dimensional problem with many parameters, as the same
cost function needs to be evaluated for all the parameters individually. Therefore, in order to increase the
efficiency of the gradient descent algorithm, it is necessary to use different methods. One of the methods
that currently is widely used to determine the gradients of the cost function is called backpropagation [21].
Although the technique of backpropagation already was discovered, the popularity for the use of this tech-
nique comes from the study by Rumelhart [24], which showed the efficiency of this method for ANNs above
others.

The basic idea of backpropagation becomes clear from the expression of the change in the cost function
for a given weighted input. If one considers a small change to the weighted input to one of the neurons in a
network,∆z l

j , such that the activation function of the neuron now is defined as f (z l
j +∆z l

j ), one can determine

the change of the cost function with respect to this small change of the weighted input as follows:

∆C = ∂C

∂z l
j

∆z l
j (2.13)

Using this relation it can be seen that if the gradient of the cost function with respect to the weighted input,
∂C
∂zl

j

, is a high absolute value, one could reduce the cost function drastically by selecting a small change to

the weighted input, ∆z l
j , that has an opposite sign to the given gradient. However, if the gradient of the cost

function with respect to the weighted input is small, the neuron is already near the optimal value for it to
minimize the cost function. Note that this only holds if a small change of the weighted input is considered.
From this given example, it can be said that the gradient of the cost function is a measure of the error in the
neuron, δl

j . Therefore, the error of the j − th neuron in the l − th layer is defined as follows:

δl
j ≡

∂C

∂z l
j

(2.14)

In backpropagation the error is propagated from the output layer to the input layer of the ANN, hence the
error and its dependencies is derived backwards as the name already suggests. One can derive the procedure
of backpropagation by starting with the error of the output layer, defined as the L − th layer, using the chain
rule:

δL
j =

∂C

∂zL
j

=∑
i

∂C

∂aL
i

∂aL
i

∂zL
j

= ∂C

∂aL
j

f ′(zL
j ) (2.15)
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It must be noted that the activation aL
i only returns a value if i = j , returning aL

j .

Now suppose that the error of the l +1th layer, δl+1
j , is known. In backpropagation, one would like to express

the error of the l − th layer as an expression of the error of the l +1th layer, in order to define the movement
of the error backward in the neural network. If one would apply the chain rule, one can obtain the following
relationship:

δl
j =

∂C

∂z l
j

=∑
k

∂C

∂z l+1
k

∂z l+1
k

∂z l
j

=∑
k

∂z l+1
k

∂z l
j

δl+1
k (2.16)

From the MLP, the weighted input of the l +1th can be described as:

z l+1
k =∑

j
w l+1

k j al
j +bl+1

k =∑
j

w l+1
k j f (z l

j )+bl+1
k (2.17)

Now by combination of Equation (2.16) and Equation (2.17), one will obtain the following relation for the
error in the l − th layer, δl

j :

δl
j =

∑
k

w l+1
j k δl+1

k f ′(z l
j ) (2.18)

As now the error of the output layer, δL
j , is defined and the error of any layer can be expressed as the error

of the next layer, as seen in Equation (2.16), one can combine apply both relations to determine the error for
any layer in the network. As one mainly is interested in determining weights such that the cost function of the
ANN is minimized, one needs to express the errors that are found throughout the layers to the given weights.
This is done using the chain rule and the gradient of the cost function with respect to the weights is defined
with the following expression:

∂C

∂wL
j k

=∑
i

∂C

∂zL
i

∂zL
i

∂wL
j k

=∑
i
δL

i

∂
∑

k w l
i k al−1

k +bl
i

∂wL
j k

= δL
j aL−1

k (2.19)

The same idea holds for the gradient of the cost function with respect to the biases, bL
j :

∂C

∂wL
j k

=∑
i

∂C

∂zL
i

∂zL
i

∂bL
j

=∑
i
δL

i

∂
∑

k w l
i k al−1

k +bl
i

∂bL
j

= δL
j (2.20)

The advantage, as can be seen by the derivation of the backpropagation procedure above, is that it simulta-
neously computes all the partial derivatives, using just one forward and backward pass through the network.
This in comparison with the conventional technique, in which only one weight parameter is adjusted for
each iteration, shows a tremendous reduction in computational cost, especially for large ANNs with a large
number of weights associated. The training of an ANN using the backpropagation method is therefore very
efficient.

Generalization
The main feature of an ANN is that it should be able to predict the results of new unexplored data. Training
data is used to minimize the error between the predicted and expected outcome, also known as the training
error, and hence to determine the values of the weights and biases of the network such that the error of the
predicted outcome is minimal. If the training of an ANN is successful, the model is able to predict the out-
come of unexplored data well,i.e., with small test or generalization error, the model is said to be generalized.
Generalization is a very important aspect in the design of ANNs and should be handled with care in order to
prevent under- or overfitting. The training of an ANN mainly exists out of two procedures: First, to reduce
the training error by determining the weights and biases that will minimize the cost function for a given data
set. Secondly, to determine the generalization error by predicting the outcomes of unexplored data, e.g., test
data set, and to minimize the difference between the training error and the generalization error. If the ANN
fails to predict the outcome of the training data set and hence the training error is large, the model is said to
be underfitting, i.e., the model has a high bias. However, if the ANN is successfully able to predict the out-
come of the training data set, but the model is not able to predict the data of unexplored data, e.g., test data
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set, the model is said to overfit, i.e., the model has a high variance) [21]. A representation of the problem of
under- and overfitting is shown in Figure 2.10. It can be concluded from the figure that the under-or overfit
compares to the complexity of the model, where underfit is related to a model that is not complex enough
and overfit is related to a model that is too complex for the given data. A few common solutions that are used
to reduce the generalization error are the collection of more training data, introducing a penalty term at the
cost function using regularization, by determining a simpler model with fewer parameters or by reducing the
dimensionality of the data such that fewer parameters are necessary to be fitted to the data [21].

Figure 2.10: Representation of underfitting and overfitting. [21]

Regularization techniques are mainly used to prevent overfitting by tuning the complexity of the models [21].
There are two different well-known regularization techniques: L1 regularization (Lasso Regression) and L2
regularization (Ridge Regression) [15]. Both regularization techniques are an adjustment to the original cost
function of the ANN. However, the difference between the two regularization techniques is the penalty term.
The L1 regularization (Lasso Regression) adds the absolute value of the coefficient as a penalty term to the
cost function:

L1penal t y =λ
∑
k
|wk | (2.21)

The L2 regularization adds the squared magnitude as penalty term to the cost function:

L2penal t y =λ
∑
k

w2
k (2.22)

The regularization parameter, λ, controls how well the training data will fit while obtaining small weights.
If the regularization parameter is chosen to be very small or zero, one will obtain the original cost function.
An increase of the regularization parameter will increase the regularization strength, hence the introduction
of more information to penalize extreme parameter values [21]. These regularization methods are specially
used for large data sets containing a large set of features [15].
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State-of-the-art: Surrogate modeling for

non-intrusive Reduced-Order Models

Previous research that was introduced by Papp to predict the surface pressure coefficients of an UCAV con-
figuration has shown that the neural network approach is a suitable approach to be used as surrogate model
[18]. However, one of the drawbacks of the proposed Convolutional Neural Network (CNN) architecture is
that this neural network architecture is only able to handle one time step at a time, i.e., previous time steps
are neglected and therefore time-history effects are excluded in the prediction of the surface pressure distri-
bution. This chapter will explore neural network architectures that are able to handle time sequential data
and will discuss the proposed surrogate model used for this research.

3.1. Recurrent neural networks (RNNs) and its limitations
ANNs that have been discussed so far, e.g., FFNNs and CNNs, are not capable of handling the order of input
samples. For these models the input is passed through the model using feedforward and backpropagation
steps and the weights are updated independently on the order of samples. It is said that these models do
not have memory of the past seen samples [21]. Up until now, it therefore has been assumed that the input
data for machine learning algorithms is independent. However, this assumption is not valid when one deals
with sequential data. In order to handle sequential data, or sequences, the Recurrent Neural Network (RNN)
architecture was developed that is able to remember past given input data. RNNs currently are widely used
for voice recognition and translation applications. Sequential data modeling can come as a vector of ordered
inputs, a vector of ordered outputs or in several cases both. Dependent on the type of sequential modeling
tasks, the architecture of the ANN will differ. An example of different types of sequential modeling is shown
in Figure 3.1.

Figure 3.1: Different types of sequence modeling tasks [9].

Contrary to a standard FFNN, the hidden layers in a RNN architecture not only receive information from the
input layers but the hidden layers receive information from both the input layer and the hidden layer from
the previous time step. This procedure usually is visualised as a loop in the RNN architecture, also known as a

17
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recurrent edge [21]. If one would unfold the loop in time, one would obtain a deep FFNN with shared weights
as shown in Figure 3.2 [3].

Figure 3.2: The architecture of an unfolded single layer RNN [21].

As already mentioned before, in the RNN architecture the connections between the different hidden states,
the recurrent edges of the network, are associated with a weight vector. It must be noted that these weights do
not depend on time and hence are shared with all the states in the RNN model. Therefore, the calculation of
the activation functions of the hidden layers is very similar to the approach of calculating the activation func-
tions of MLPs. In Figure 3.3 a representation of a single layer RNN can be seen with the associated weights.

Figure 3.3: The representation of a single layer RNN with associated weights [21].

From Figure 3.3 one can obtain the relation for activation of the hidden layer at the time step t :

ht = fh
(
Whx x t +Whhht−1 +bh

)
(3.1)

Once the activation of the hidden layers is calculated, one can calculate the output at time step t using the
following relationship:

y t = fy
(
Wyhht +by

)
(3.2)

In order to train the ANN, one can use Backpropagation Through Time (BPTT). BPTT is the use of backprop-
agation for multiple time steps and was introduced by Werbos [30]. The basic idea behind BPTT is that the
overall cost C is the sum of all the cost functions at the adjacent given timesteps:

C =
T∑

t=1
C t (3.3)

As the cost function is dependent on the hidden layers of the previous all the previous time steps, one can
calculate the gradient of the cost function according to the chain rule using the following relationship:

∂C t

∂Whh
= ∂Lt

∂y t

∂y t

∂ht

( t∑
k=1

∂ht

∂hk

∂hk

∂Whh

)
(3.4)

The gradient of the hidden units in the layers with respect to previous time steps, ∂ht

∂hk , can be computed as a
multiplication of adjacent time steps:
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∂ht

∂hk
=

t∏
i=k+1

∂hi

∂hi−1
(3.5)

Although BPTT is an efficient way to determine the gradient of the cost function with respect to the weights
given, it also introduces a new problem: vanishing or exploding gradients. The problem of vanishing or ex-
ploding gradients occurs in very deep networks, where the amount of layers are large, but the phenomenon
is dominant in RNN networks. The problem arises due to the backpropagation of the error into the network

due to the gradient of the hidden units with respect to previous time steps, ∂ht

∂hk , which has t −k multiplica-
tions. As the weights are shared with all the states in the RNN network, this means that the weights of the
recurrent edge will be multiplied with a factor of t −k resulting in a factor of w t−k

hh . Hence, if the weight vector
|whh | < 1, the resulting weight vector becomes very small when t −k is large. The same holds for the weight
vector |whh | > 1, where the resulting weight vector becomes very large when t−k is large. A desirable solution
would therefore be that the weights of the solution are approximately equal to 1, |whh | = 1, such that the rela-
tive change for each time step is minimal. As already mentioned, the same holds for deep ANN architectures,
where the amount of layers is relatively large, causing the backpropagation of the error to explode or vanish
the gradient with respect to the cost function. The problem that is presented here does not mean that the
training of a RNN is impossible, however it means that the gradient descent becomes increasingly inefficient
when the temporal span of the dependencies increases, hence the convergence of the training will take a
long time or will not succeed at all [3]. Several solutions to overcome the vanishing and exploding gradient
problem exist:

• Gradient clipping
This technique is a partial solution that can be used to avoid exploding gradients. Gradient clipping
sets a maximum value to the gradients if they grow too large, to stop the gradient becoming larger.

• Complexity reduction
One of the most simple ways to avoid exploding or vanishing gradients is by reducing the complexity
of the ANN by limiting the amount of layers that can be used in an ANN architecture. By limiting the
amount of layers, the multiplication of the weights is also limited. It must be noted that when one re-
duces the number of layers, the complexity of the model reduces and hence mapping different features
can be difficult.

• Truncated Backpropagation Through Time (TBPTT)
This technique limits the number of time steps that the signal will backpropagate through the model.
In this way the temporal span of the dependencies is decreased and hence exploding or vanishing gra-
dients can be avoided.

• Weight initialization
A proper weight initialization can be a partial solution for vanishing or exploding gradients. By selecting
a proper method for the weight initialization, one can avoid that the output of the activation functions
already tend to be large at the start of training the ANN.

• Introduction of the Long Short-Term Memory (LSTM)
One that has been more successful, especially for RNN modeling, is the introduction of the LSTM. The
LSTM architecture uses a memory cell to model long-range sequences to avoid the vanishing gradient
problem.

3.1.1. Candidate network: the Long Short-Term Memory (LSTM) network
The LSTM architecture was introduced by Hochreiter and Schmidhuber [7] to overcome the vanishing gra-
dient problem. Although a lot of research was already performed on increasing the efficiency of RNNs, the
LSTM architecture was one of the first that lead to many more successful runs, and learns much faster than
previous solutions, e.g., weight initialization and truncated backpropagation through time [7].

The basic idea of the LSTM is that the hidden layer of a RNN is replaced by a memory cell. The unfolded LSTM
memory cell can be seen in Figure 3.4. Each memory cell contains desirable weights, |w | = 1, to overcome
vanishing gradient problems and each cell has a cell state, C t , associated that is dependent on the previous
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time step. The LSTM memory cell is able to remember information over time in the RNN architecture via so-
called gates that add or remove information of the cell state. These gates learn and extract which information
is relevant to remember or forget, which is trained during the trainig process.

Figure 3.4: LSTM memory cell [21].

In the LSTM memory cell, three different types of gates are used: the forget gate, the input gate and the
output gate. All the gates contain sigmoid or hyperbolic tangent activation functions, which return a linear
combination by performing matrix-vector multiplications on their input. The different types of gates are
explained below.

• The forget gate ft

This gate determines what information should be remembered or removed before it is passed on to
calculate the new cell state, C t . The values that are returned are between 0 and 1 and are relevant
for passing the information to the calculation of the new cell state, i.e., a value of 0 means that the
information should be suppressed and a value of 1 means that the information is passed through. The
forget gate is computed as follows:

ft =σ
(
Wx f x t +Wh f ht−1 +b f

)
(3.6)

• The input gate it

This gate is used for calculation of the new cell state, C t , based on the information that has been passed
through by the forget gate and the cell state of the previous time step, C t−1. Both the previous hidden
state as the input are used in a sigmoid and hyperbolic tangent function, where the sigmoid determines
how relevant the new given input is and hence determines how much information from the new input
will be added to the network. Both the input gate, it , as the input node, g t , are calculated using the
following relations:

it =σ
(
Wxi x t +Whi ht−1 +bi

)
(3.7)

g t = tanh
(
Wxg x t +Whg ht−1 +bg

)
(3.8)

As now both the addition of new information as the information that should be passed through the
network are known, one can determine the current cell state, C t , using the following relation:

C t = (
C t−1 ¯ ft

)⊕ (
it ¯ g t

)
(3.9)

• The output gate ot

This gate determines how to update the value of the current hidden state, ht :
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ot =σ
(
Wxo x t +Whoht−1 +bo

)
(3.10)

From this, the hidden state can be calculated using the following:

ht = ot ¯ tanh
(
C t ) (3.11)

Both the current cell state, C t as the current hidden state, ht , are then passed through the next time
step.

The advantage of the LSTM model is that the network architecture remembers the relevant information that
is passed through in the time sequence, irrelevant of the length of the time sequence given, with respect to
original RNN architectures where the problem of vanishing or exploding gradients leads to the ineffective-
ness of the model due to the relevant information of the sequences that is forgotten by the network.

Variations on the LSTM network architecture exist that are used to decrease the computational cost of the
network, e.g., the Gated Recurrent Unit (GRU). The GRU is similar to the LSTM model but does not use a
cell-state in its architecture. The GRU contains two different gates, a reset and update gate. As the GRU has
less gates and hence less operations to calculate, the GRU is deemed to be faster than the LSTM architecture.
However, no significant difference between the performance of the two model architectures is presented and
usually both models are performed to determine which one is more suitable for the given data [19].

3.2. The POD-LSTM Long-Short Term Memory (LSTM) network
The previous section introduced the LSTM architecture as one the many RNN architectures. However, the
LSTM architecture currently is one of the most successful RNN architectures that is used in the prediction of
time sequential data and is used in many applications such as prediction of financial trends. As discussed
in Chapter 2, the POD method is one of the most efficient methods for dimensionality reduction and the
usage of this method leaves the user with a constructed reduced-order basis, that is obtained from a pre-
selected number of spatial POD modes and its corresponding time coefficients. As the spatial POD modes
are only constructed once from the high-fidelity training samples, the only relationship that needs to be ap-
proximated with the use of a surrogate model is the relationship between the input of the model, e.g., the
angle of attack α and the pitch rate q , and the time coefficients that are necessary to project the full-order
solution on the reduced-order basis. This leaves the user with limited sequential data that is suitable for the
LSTM architecture. Knowing this, the proposed reduced-order model can be constructed with the use of the
Proper Orthogonal Decomposition (POD) method in combination with the surrogate model that is based on
the LSTM architecture. In short, this combination can be referred to as the POD-LSTM model. The POD-
LSTM model shows potential as the only data that is used to train the model are the time coefficients of the
corresponding spatial POD modes and the input state variables of the high-fidelity samples, reducing the
complexity of the neural network architecture tremendously with respect to previous studies.
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POD-LSTM model

This chapter will provide the methods that are used for the construction of the proposed POD-LSTM model.
First, the case study that will be used for the current research will be introduced. Finally, the methodologies
behind the proposed non-intrusive reduced-order model will be described in detail.

4.1. The MULDICON Unmanned Combat Aerial Vehicle
The case study that will be used for the assessment of the proposed non-intrusive ROM approach for this the-
sis report is the Unmanned Combat Air Vehicle (UCAV) configuration of the STO research task group AVT-251,
called the MULti-DIsciplinary CONfiguration (MULDICON). The purpose of the MULDICON design was to
assess the performance of advanced numerical tools of the complex interaction of over-wing vortices, lead-
ing to non-linear aerodynamic characteristics, and collaborative approaches to an UCAV design for military
missions [4],[16]. The Royal Netherlands Aerospace Centre (NLR) has been contributing to the development
of ROMs for aerodynamic load prediction for the UCAV design and this thesis report will elaborate on the fur-
ther development of this research in collaboration with NLR. The MULDICON was chosen as a case study for
this thesis as it allows to assess the performance of the proposed non-intrusive ROM model with previously
generated data and to reflect the outcomes on previous approaches that were developed within the 251st
NATO task group.

The MULDICON is a tailless Blended-Wing-Body (BWB) that is designed to fulfill the requirements of a long-
range transport mission with a radius of 1500 km and no aerial refueling, which in this case is closely related
to the low-level penetration bomber classification [12]. The design mission for the MULDICON is shown in
Figure 4.1. The main parameters of the MULDICON are given in Table 4.1.

Figure 4.1: MULDICON design mission profile [12].
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Table 4.1: MULDICON main properties [18],[12].

Parameter Description

Propulsion 1 Turbofan engine w/o afterburner
Engine integration Buried

Payload storage Internal
Payload mass 2 x 1000 kg
Design range 3,000 km w/o aerial refueling
Fuel reserve ≈ 45 min

Cruise altitude 11 km
Cruise Mach Number 0.8

Stability margin 0 - 3 % MAC

Table 4.2: MULDICON wing geometry properties [12].

Parameter Symbol Unit Value

Wing reference area Sr e f m2 77.8
Wing span br e f m 15.38

Reference length lr e f m 6.0
Moment reference point (x,y,z) Mr e f (x, y, z) m (6,0,0)

The design of the MULDICON has a sharp leading edge of 53 degrees and a trailing edge of 30 degrees with a
span of 16 meters. The wing planform of the MULDICON is shown in Figure 4.2 and its relevant geometrical
properties are shown in Table 4.2.

Figure 4.2: Planform of the MULDICON UCAV [28].

As the purpose of this thesis is to develop a non-intrusive ROM that is capable of capturing both linear and
non-linear flow phenomena, the flight conditions that are considered for this thesis are derived from the
MULDICON design mission, as depicted in Figure 4.1, where both phenomena occur. The take-off configu-
ration of the design mission will be used as a design point for the high-fidelity simulations, as it both includes
the largest excitation of the angle of attack, which is 20 degrees, and the highest requirement of the pitch
rate, which is 20 degrees per second [12]. For simplification, only symmetric motions are considered in the
approach for the development of the non-intrusive ROM at this design point. An overview of the flight con-
ditions that will be used for the high-fidelity simulations is shown in Table 4.3.
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Table 4.3: Flight conditions for the take-off configuration [12].

Flight Conditions Symbol Unit Value

Mach Number M∞ - 0.2
Velocity V∞ m/s 68.06

Ambient pressure P∞ Pa 101325
Ambient temperature T∞ K 288.15

Ambient density ρ∞ kg /m3 1.225
Angle of attack range α deg [-2,20]
Maximum pitch rate qmax deg/s 20

The design point of the take-off configuration is considered to be the optimal design point for the develop-
ment of the non-intrusive ROM, as it allows for the investigation of both linear and non-linear phenomena of
the flow field. An example of the flow visualization for varying angles of attack is shown in Figure 4.3. It can be
seen that at an angle of attack of 10 degrees and above, two leading-edge vortices are formed over the inboard
section of the upper surface. Furthermore, at the wingtips, a small vortex is present which moves inboard
and grows with increasing angle of attack. As it grows, the strength of the vortex is reduced which results in a
reduction of local lift. The combination of both flow separation and vortices make the MULDICON aerody-
namics non-linear and unsteady at angles of attack of 12 degrees and higher and therefore the MULDICON
is considered as an interesting case for the assessment of ROM approaches [16].

(a) Flow visualization for α = 10
deg.

(b) Flow visualization for α = 12
deg.

(c) Flow visualization for α = 14
deg.

(d) Flow visualization for α = 16
deg.

Figure 4.3: NLR ENSOLV flow development of the MULDICON Design3 with angle of attack α=10, 12, 14, 16 deg., for low-speed M=0.2
[16].

4.2. Proposed non-intrusive Reduced-Order Model: The POD-LSTM net-
work

This section will describe the proposed non-intrusive ROM that will be used for the prediction of the surface
pressure coefficients of the MULDICON. The proposed ROM is based on the non-intrusive ROM architecture
as described in Chapter 2 and the flow diagram of the proposed ROM is shown in Figure 4.4. As can be seen
in the figure, the non-intrusive ROM has two different stages:

• Offline stage
The offline stage is the stage where the ROM is constructed. The offline stage can be split up into three
different sections: First, the number of sampling points of the model is determined and constructed.
The sampling strategy (Design of Experiments) that is used to collect the sampling points determines
the minimum amount of high-fidelity samples that is necessary to train the surrogate model of the
ROM in an efficient and sufficient matter. The sampling strategy that is applied for this ROM is known
as the Schroeder Sweep [8] and will be elaborated on in the next sections of this chapter. Second, a
Model Order Reduction (MOR) technique is applied to the high-fidelity sampling points by using a
modal reduction method. For this particular ROM, the POD technique as described in Chapter 2 will
be used to reconstruct a reduced-order basis that is based on a limited number of spatial POD modes.
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The reduced-order basis that is constructed from the limited number of spatial POD modes together
with its time coefficients are normalized and split up into small sets of data. Finally, a surrogate model
is constructed that can approximate a relationship between a given input and the desired output using
a data-driven approach. As described in Chapter 2 several surrogate modeling techniques exist that
can approximate a linear or non-linear relationship between the given input and output data. For this
ROM the neural network approach will be used to construct a surrogate model. In particular, the Long
Short-Term Memory (LSTM) model will be used that is capable of handling sequential data. The given
input of the surrogate model is a series of state variables of the MULDICON for a given range of time
steps and the desired output is the surface pressure coefficient distribution at the last time step in the
series. Once the LSTM model is constructed, the model is trained using the data that is constructed
from the sampling strategy. The trained LSTM model can predict the normalized time coefficients of
the spatial POD modes for a given set of state variables.

• Online stage
The online stage is the stage where the trained surrogate model is used to predict new sampling points
that were not covered by the sampling strategy of the offline stage. For this thesis, both steady and
unsteady simulations are used to evaluate the performance of the proposed ROM to assess the predic-
tion of both linear and non-linear aerodynamic phenomena. The prediction of the surrogate model
for a new set of state variables gives the normalized time coefficients for the spatial POD modes that
were constructed in the offline stage. The flow field of the MULDICON can be reconstructed with the
reduced-order basis from the offline stage and the de-normalized predicted time coefficients of the
surrogate model.

This section will discuss all the essentials that are necessary to construct the non-intrusive ROM as depicted
in Figure 4.4. This section will first discuss the sampling strategy that is used for the ROM. Second, this section
will discuss the collection of the high-fidelity sample that is used to train the surrogate model. Third, the
modal decomposition method that is used for the ROM is explained. Finally, the surrogate model that is used
for the ROM and the evaluation methods of the non-intrusive ROM are explained.
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Figure 4.4: Proposed POD-LSTM non-intrusive Reduced-Order Model architecture.

4.2.1. Sampling Strategy: The Schroeder Sweep
The selection of the number of sampling points that are constructed from high-fidelity tools, e.g., CFD sim-
ulations, is of great importance for the construction of a non-intrusive ROM. For example, the number of
high-fidelity samples should be sufficient enough in order to cover the desired regressor space, but the num-
ber of samples should not be too large in order to avoid the computational expense and therefore making
the use of ROMs redundant. Thus, to extract maximum information about the underlying input-output re-
lationship of the high-fidelity simulations, the samples that are chosen should fill the regressor space in an
optimal sense. The design of such a strategy is also referred to as Design of Experiments (DoE) [10]. Several
DoE techniques exist in order to determine the required amount of high-fidelity samples necessary, as well
as the regressor range for which these samples are covered. This section will discuss the DoE technique that
is based on optimality criteria and is used to obtain the high-fidelity samples from CFD simulations that are
used to train the surrogate model of the ROM. First, the reference frame of the MULDICON dynamics model
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will be discussed. Second, the motion variables and the dynamics model that will cover the design space are
discussed. Finally, the DoE technique is discussed for the generation of the training data.

Flight dynamics model
In order to generate the high-fidelity samples from CFD simulation software, it is necessary to determine
the motion variables of the aircraft at a given time instant. The motion variables of the MULDICON are
described by a simple aircraft dynamics model, where only the attitudes, linear and angular velocities, and the
accelerations of the aircraft are of interest. Using an earth frame as a reference, the attitude of the MULDICON
is commanded by the angle of attack α and the pitch angle θ. As the motion variables are prescribed by
previous research from Papp ([18]) and only is used to gather the high-fidelity samples, further investigation
of the flight dynamics model is out of the scope of this thesis work. The motion variables that are used in this
work are the same as previous studies and the reference frame for these variables is shown in Figure 4.5.

Figure 4.5: Motion variables in-flight dynamic reference frame [18].

Design of Experiment (DoE) technique: The multi sine input design
The use case of this thesis, the MULDICON UCAV, allows the identification of both linear and nonlinear aero-
dynamic flow phenomena. As the generation of data using high-fidelity simulation tools, e.g., CFD, is compu-
tationally expensive, it is necessary to limit the number of samples to outweigh the benefits of the use of the
ROM approach. Capturing all the relevant flow properties within a limited amount of high-fidelity samples
is challenging and therefore a proper DoE technique is necessary. Extensive research has been performed to
investigate different a priori DoE techniques for system identification methods. One of the techniques men-
tioned in the paper by Jirasek ([8]) that is also used for this thesis is based on the use of optimality criteria.
This thesis will make use of previously generated data as a benchmark for the assessment of the new pro-
posed ROM technique. As described previously by Papp [18], generally the motion of an aircraft is described
by the excitation of the control surfaces. However, due to the simplified model of the MULDICON and the
lack of control surfaces, the DoE technique will be applied to the state variables α(t) and θ(t) directly. For the
scope of this project, only symmetrical excitations will be considered.

The approach that was used is an extension of the Schroeder sweep input design method [25] to construct
multiple orthogonal input signals with optimized peak factors for real-time parameter estimation as de-
scribed by Morelli [14]. Each input to the aircraft motion is described as a phase-shifted set of sinusoids
and takes the following form:

u j =
∑
k

Ak cos
(2πkt

T
+φk

)
(4.1)
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Table 4.4: Summary of the constructed multisine signals [18]

Parameter Symbol Unit Value

Signal duration T s 25
Minimum frequency fmi n Hz 0.04
Maximum frequency fmax Hz 1

Number of frequencies n f - 25
Initial value for angle of attack α0 deg 12.5
Amplitude for angle of attack Aα deg 10

Initial value for pitch angle θ0 deg 0
Amplitude for pitch angle Aθ deg 10

The main benefit of this technique is that the only a priori information that is necessary to use this tech-
nique is an estimation of the frequency band for the system dynamics. The idea behind this technique is that
multiple multi sine input signals can be constructed that will excite the state variables simultaneously due to
its orthogonality but also are designed in an optimal sense for a given input due to the optimization of the
Relative Peak Factor (RPF) of the signals. The RPF, also known as the crest factor, is a measurement of the
efficiency of the signal in terms of the amplitude range of the signal. A signal with a RPF of 1 is considered
to be optimal, hence low RPFs are desired for the construction of multi sine input signals. The signals are
optimized for their RPF by altering the individual phase shift of each sinusoid. For more information about
the multi sine input design, one is referred to the paper by Morelli in which the entire approach is extensively
discussed [14].

The multi sine input design requirements are obtained from the requirements of the chosen design point of
the MULDICON [12]. For the take-off configuration a maximum angle of attack of 20 degrees was found and
a maximum pitch rate requirement of 20 deg/s. These requirements can be translated into inputs for the
construction of the input signals. The angle of attack range that will be considered for the construction of
the input signal is between 0 and 20 degrees. To make sure that the angle of attack range is covered well, the
nominal value of the input signal for the angle of attack is set to 12.5 degrees with an amplitude of 10 degrees.
Furthermore, as angular rates for both the angle of attack and pitch are identical, the same amplitudes are
defined for the pitch angle, however, the nominal value used for the pitch angle was set to 10 degrees. The
frequency of the input signals was set according to the calculation of the reduced frequency of the signal,
whereas a reduced frequency of 0.01 was set as minimum as this range of reduced frequencies can still be
regarded quasi-steady, resulting in a minimum frequency of 0.04 Hz. The maximum frequency of the signal
was set to 1 Hz, which yields more than double the pitch rate requirement (50 deg/s) to extend and obtain
better coverage of the regressor space. The frequency resolution is based on the lowest frequency of the signal,
hence the total signal is built from 25 sinusoids. A summary of the constructed signals is shown in Table 4.4.

The optimized multisine signals for the angle of attack and pitch angle are shown in Figure 4.6 and have
relative peak factors of RPF(uα) ≈ 1.05 and RPF(uθ) ≈ 1.02 respectively.
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Figure 4.6: Optimized multisine signal of the motion variables with relative peak factors of RPF(uα) ≈ 1.05 and RPF(uθ) ≈ 1.02 [18].

The regressor space coverage for the most relevant state variables, namely the angle of attackα, the pitch rate
q and the angular rate of the angle of attack α̇, is shown in Figure 4.7. It can be seen that the generated signals
cover the regressor space well within the requirements of the given design point. However, it must be noted
that a proportional part of the input signals is concentrated near the boundary of the regressor space, which is
a typical property for the Schroeder sweep. One could use different input signals, e.g., the (piecewise) spiral
maneuver, in order to cover the lower frequencies of the regressor space if the Schroeder sweep seems to
provide insufficient coverage [8]. The full regressor space coverage for the projected state variables is shown
in Figure 4.8.

Figure 4.7: Regressor coverage of the training maneuver for the state variables α, α̇ and q .
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Figure 4.8: Projected regressor coverage of the training maneuver for different state variables.
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Table 4.5: Pitch oscillation motion variables resolved in the inertial earth reference frame [18].

Variable Symbol Dimension Values

Nominal AoA A0 [deg] 5 10 10 15
Amplitude A [deg] 5 5 10 5
Frequency f [Hz] 0.25 0.5 1.0 0.25 0.5 1.0 0.125 0.25 0.5 0.25 0.5 1.0
Duration T [s] 4 2 1 4 2 1 8 4 2 4 2 1

Horizontal distance x [m] 270.5 135.1 67.4 267.5 133.6 66.6 531.9 265.9 123.8 262.3 131.0 65.4
Vertical distance z [m] 23.7 11.8 5.9 47.2 23.6 11.8 47.2 23.6 11.8 70.4 35.2 17.6

Horizontal velocity U0 [m/s] 67.8 67 67 65.7
Vertical velocity W0 [m/s] 5.9 11.8 11.8 17.6

Table 4.6: Plunge oscillation motion variables resolved in the inertial earth reference frame [18].

Variable Symbol Dimension Values

Nominal AoA A0 [deg] 5 10 10 15
Amplitude A [deg] 5 5 10 5
Frequency f [Hz] 0.25 0.5 1.0 0.25 0.5 1.0 0.125 0.25 0.5 0.25 0.5 1.0
Duration T [s] 4 2 1 4 2 1 8 4 2 4 2 1

Horizontal distance x [m] 270.5 135.1 67.4 267.5 133.6 66.6 531.9 265.9 123.8 262.3 131.0 65.4
Vertical distance z [m] 23.7 11.8 5.9 47.2 23.6 11.8 93.8 46.9 23.4 70.3 35.1 17.5

Horizontal velocity U0 [m/s] 67.8 67 67 65.7
Horizontal velocity min. Umi n [m/s] 67.3 65.7 64.0 64.0
Horizontal velocity max. Umax [m/s] 68.1 67.8 68.1 67.0

Vertical velocity W0 [m/s] 5.9 11.8 11.8 17.6
Vertical velocity min. Wmi n [m/s] 0.0 5.9 0.0 11.8
Vertical velocity max. Wmax [m/s] 11.8 17.6 23.3 23.3

Evaluation of the regressor space: Test cases
In order to assess the performance of the proposed ROM, high-fidelity samples are gathered that are well
within the limits of the regressor space but are not used to train the surrogate model. Two different test cases
are considered in order to evaluate the performance of the model: steady and unsteady simulations.

The steady simulations are obtained from singular high-fidelity samples and cover the range of the angle of
attack from 0 to 20 degrees with zero rates and accelerations. For the unsteady simulations, two different
types of harmonic motions are considered: pitch and plunge oscillations. During a pure sinusoidal pitching
maneuver, the pitch angle is changed while the absolute velocity vector of the aircraft is kept unchanged. In
contrast, during a pure sinusoidal plunging motion, the pitch angle is preserved and the normal and longitu-
dinal components of the absolute velocity vector differ causing the instantaneous angle of attack to change.
As for both motions, only the angle of attack is used in the high-fidelity simulations, the input of the angle of
attack is considered the same for both motions. The other motion variables are derived from the boundary
conditions. An illustration of the pure sinusoidal pitch and plunge oscillations are shown in Figure 4.9.

Figure 4.9: Definition of pitch and plunge oscillations [6].

The high-fidelity simulations for the MULDICON will be performed within the boundaries of the regressor
coverage space as defined by the requirements of the design point. The high-fidelity simulations will be
constructed from various sets of pure pitch and plunge sinusoidal oscillations with angle of attack amplitudes
of 5 and 10 degrees around different sets of nominal angle of attack values of 5, 10, and 15 degrees. The
frequency of the signals will be within the bounds of the regressor space and are set to 0.25, 0.5, and 1 Hz
respectively. A full overview of the different pitch and plunge motions is shown in Table 4.5 and Table 4.6,
respectively.
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4.2.2. Full-order model for computational fluid dynamics

All the high-fidelity sample points are obtained from CFD simulations using the in-house solver ENSOLV
of the Royal Netherlands Aerospace Centre (NLR). ENSOLV is an advanced solver capable of solving three-
dimensional, time-dependent flows around complex configurations using the Reynolds-Averaged Navier–Stokes
(RANS) equations that makes use of a finite volume method. The sampling points from the CFD simulations
were gathered for previous research, hence the turbulence model selection, validation, and verification or the
generation of the mesh was outside the scope of this project. For more details about the high-fidelity CFD
simulations, one is referred to the report of Papp [18].

The mesh that was used for the CFD simulations covers half of the span of the MULDICON as the performed
motions are considered to be symmetrical only. The grid of the MULDICON model that is used for collection
of the high-fidelity samples of the is shown in Figure 4.11. In total, the grid contains over 12 million cells of
which the mesh around the wing covers 112 cells along the chord and 128 along the span. For the scope of
this project, one is only interested in flow-wise wing surface pressure distributions, hence for the generation
of the high-fidelity samples, the domain around the wing is fully neglected. For each time step, the wing
pressure distribution is saved for each vertex in terms of non-dimensional coefficients, e.g., the pressure co-
efficient and the integral load coefficients.

The data that is gathered from the CFD simulations are stored into a single matrix to simplify computations
making it able to obtain the entire flow field into one domain. The upper half of the matrix represents the
lower surface of the wing, whereas the lower half of the matrix represents the upper surface of the wing. A
representation of the matrix format is shown in Figure 4.10. It must be noted that the domain of the entire
wing was halved, resulting in a final grid of 113 x 65 nodes (7345 elements).

Figure 4.10: Representation of the high-fidelity data in matrix format.
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Figure 4.11: The constructed grid used for the RANS simulations for the MULDICON UCAV [16].

4.2.3. Modal Decomposition Method: Proper Orthogonal Decomposition
Model Order Reduction (MOR) approaches are one of the most popular techniques used in the construction
of a ROM. These MOR techniques allow constructing a reduced-order basis onto which the full-order simu-
lations are projected, while still maintaining sufficient accuracy. One of the most widely used approaches in
MOR is the Proper Orthogonal Decomposition (POD) method, as described in Chapter 2. The POD method
is a modal decomposition method that allows reconstructing the full-order model into a subset of orthogonal
spatial modes with corresponding time coefficients. One of the benefits of this method is that all the spatial
modes are orthogonal, hence unique. Furthermore, the spatial modes are ranked in order of relevance for the
contribution of the Total Kinetic Energy (TKE), i.e., the first spatial mode has a higher contribution to the TKE
than the second, etc. Therefore, the most dominant characteristics of the flow field can be modeled using
only a few spatial modes, allowing to reduce the amount of data necessary tremendously.

For the proposed non-intrusive ROM, the high-fidelity training samples are stored in matrix format as de-
picted in Figure 4.10. Using this matrix format, the high-fidelity samples are decomposed according to the
Proper Orthogonal Decomposition (POD) method as described in Chapter 2. First, the wing surface pressure
fluctuation is determined by subtracting the mean of all the high-fidelity samples for each given time step.
Second, the spatial POD modes and their corresponding time coefficients are constructed from the training
samples. The number of spatial modes that are constructed is dependent on the number of data points in
the grid that is used. Therefore, from the high-fidelity training samples a total of 7,345 spatial POD modes
are constructed. Finally, the constructed spatial POD modes from training samples are used to determine the
time coefficients of the test samples. It must be noted that as the concentration of the number of vertices,
due to the structure of the grid, at both the leading edge and the trailing edge is higher than half chord, all the
data points of the high-fidelity samples are first multiplied with its surrounding cell areas. Therefore, each
data point is multiplied by 4 different cell areas except for the boundaries of the domain. This is done to
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reconstruct spatial POD modes that will be able to capture the dominant flow phenomena well. A compar-
ison of the spatial POD modes for data with and without cell area multiplication is shown in Figure 4.12. It
can be seen that the spatial POD modes that are constructed from data with cell area multiplication are able
to cover the leading edge vortices, which were also seen in the flow visualization of the introduction of the
MULDICON use case, well. It must be noted that in order to reconstruct the flow field with the reduced-order
basis, the spatial POD modes first need to be transformed back to the original data set, i.e., all the spatial POD
modes are divided by their cell area.

(a) POD mode without cell area multiplication (b) POD mode with cell area multiplication

Figure 4.12: Difference between POD mode reconstruction without and with cell area multiplication.

As previously mentioned, one of the benefits of the POD method is that the spatial POD modes are orthogo-
nal, hence unique. According to this property, the spatial POD modes can be ranked in order to the contribu-
tion of the TKE. The energy containment is related to the eigenvalue for each mode and can be determined
using the following relationship:

%T K E = λk∑∞
k=1λk

(4.2)

One of the benefits of this property is that the user can set a requirement for the number of modes that are
necessary to be used on a reduced-order basis. Generally, the criteria to determine the minimum number
of modes is that the reduced-order basis should cover at least 99% of the TKE. Although the TKE is a good
measurement to determine the minimum amount of spatial POD modes necessary to obtain the most dom-
inant properties, it is not necessarily a good approach to obtain phenomena that are less frequent, such as
non-linear phenomena, e.g., flow separation and turbulent flow. To capture these phenomena, a proper se-
lection of the minimum number of spatial POD needs to be incorporated as criteria for an accurate ROM.To
give the reader a general idea of the constructed spatial POD modes from the high-fidelity training samples,
the energy containment for each mode up until the 10th mode is shown in Figure 4.13. It can be seen that the
only the first 10 spatial POD modes are sufficient to capture more than 98 % of the TKE.
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Figure 4.13: Energy containment for each mode in percentage of the TKE.

Next to the contribution of the TKE for each mode, also the amplitudes of the time coefficient for each spatial
POD mode are a good measurement to determine how dominant each mode is with respect to the flow field
projection. Moreover, as the POD method is a linear method, the higher the amplitude, the higher the contri-
bution of that given spatial POD mode is on the reduced-order basis. In Figure 4.14 the maximum amplitudes
of the time coefficient for each mode are shown up until the 50th mode. Also in this figure, it can be seen that
the first 10 to 20 modes have large amplitudes and are therefore considered to have a large contribution to
the projected flow, whereas after the 20th mode the values of the amplitude decrease significantly.

Figure 4.14: Maximum time coefficients amplitudes per mode for the training maneuver.

An example of the constructed spatial POD modes with their corresponding time coefficients for the high-
fidelity training samples is shown in Figure 4.15. It must be noted that the time coefficients for both upper
and lower surfaces are identical as the spatial POD modes are constructed using the entire flow domain. The
spatial POD modes are only split up into the upper and lower surface domain for illustration purposes. A
more elaborate example of the spatial POD modes and the corresponding mean of the high-fidelity training
samples is shown in Figure 4.16. From the figure, it can be seen that the mean of the flow includes the gen-
eration of a small leading-edge vortex, which is due to the nominal value of the input signal which is set to
an angle of attack of 12.5 degrees. Furthermore, the figure shows that the first two modes of the upper sur-
face contribute to a large portion of the leading edge vortex development, whereas for the lower surface the
spanwise leading edge flow development is highlighted.
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Figure 4.15: Example of the first two constructed POD spatial modes of the MULDICON with its corresponding time coefficients for the
given training maneuver.
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Figure 4.16: POD spatial mode representation of the MULDICON of the given training maneuver obtained from CFD simulations
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Calculation of lift, normal force, and moment coefficient

One of the benefits of using the POD method is that the spatial POD modes only need to be constructed once
in order to evaluate new high-fidelity samples. This also means that all the properties that are related to these
spatial modes, only need to be calculated once. One can use this property to derive the integral aerodynamic
loads in terms of the axial and normal force coefficient and the pitching moment coefficient. First, the integral
aerodynamic load coefficients are calculated for each cell using the following equations:

∆Fk =−Cp ∗ Ak ∗q∞∗~nk (4.3)

∆Mk =~rk ×∆Fk (4.4)

The total integral aerodynamic load coefficients for each mode can then be calculated using the following
relationship:

CFmode =
[
CX CY CZ

]T = 1
1
2ρV 2Sr e f

Nb∑
k=1

∆Fk (4.5)

CMmode =
[
CMx CMY CMZ

]T = 1
1
2ρV 2Sr e f lr e f

Nb∑
k=1

∆Mk (4.6)

The calculations according to the equations above are repeated for each individual spatial POD mode and
stored. The integral load coefficients for the reduced-order basis can be calculated by multiplying the cor-
responding time coefficients with the corresponding contribution of the integral load coefficients for each
spatial POD mode.

4.2.4. Surrogate modeling: the LSTM model
This section will discuss the implementation of the surrogate model that is used for the proposed non-
intrusive ROM. As discussed in Chapter 2 and Chapter 3, several surrogate modeling approaches exist in the
use of ROMs. The neural network approach that was used for the MULDICON case as described by Papp [18]
shows good promise, however as described in Chapter 3 the model was unable to capture time-history effects
and the prediction of the wing tip surface pressure for higher angles of attack was inaccurate. Furthermore,
as the model did not use a reduced-order basis for the projection of the full-order model, the training time of
the neural network still was computational expensive as all the high-fidelity data was considered. This study
will elaborate on the neural network approach and will exchange the surrogate model with a different neural
network architecture in order to include time-history effects. Furthermore, this study will assess the compu-
tational performance of the surrogate model for a varying set of model parameters to determine the effects
of the model parameters and highlight parameters of importance for both accuracy and computational ex-
pense. First, the architecture of the proposed surrogate model will be discussed. Second, data handling of
the surrogate model will be discussed. Third, the model parameters used for the non-intrusive ROM will be
discussed. Finally, the evaluation method of the model including verification of the surrogate model will be
discussed.

The Long-Short Term Memory (LSTM) network
One of the most popular neural networks that is used for sequential data is the Long Short-Term Memory
(LSTM) network. This network, as described in Chapter 3 has been developed to overcome the drawbacks of
the previously developed Recurrent Neural Network (RNN). The surrogate model that is used for this study is
the many-to-one LSTM network, for which a sequential set of state variables is constructed as input and the
desired output of the surrogate model is the set of predicted time coefficients for the number of spatial POD
modes. The LSTM model architecture is consisting out of a deep layer network with at least one LSTM layer
and a fully connected layer to the output layer. An example of the surrogate model architecture is shown in
Figure 4.17.
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Figure 4.17: An example of the LSTM network architecture.

LSTM model parameters
This section will describe the LSTM model parameters that are used for the training and prediction of the
surrogate model. As the LSTM network is constructed using Python and the provided Tensorflow1 architec-
ture most of the parameters that are used by the model are default settings. However, a few parameters are
pre-defined by the user, which are also referred to as hyperparameters. The following hyperparameters are
considered:

• Number of LSTM layers
The number of LSTM layers determines the number of consecutive recurrent layers in the model archi-
tecture. Each LSTM layer is paired with a drop-out layer. The default is set to 1.

• Number of LSTM units
The number of LSTM units determines the number of LSTM memory cells, as depicted in Figure 3.4,
per layer. The default is set to 32.

• Number of dense layers
The number of dense layers determines the number of consecutive dense layers after the LSTM layers.
The default is set to 1.

• Number of dense units
The number of dense units determines the number of nodes in a dense layer. The default is set to 32.

• Number of time-steps used
The number of time steps determines the number of previous time steps (excluding the current time-
step) that is considered for the prediction of the current time-step. The default is set to 5.

• Batch size
The batch size is a hyperparameter used for training the LSTM model and determines the number of
training examples utilized in one iteration. The default is set to 16.

• Drop-out rate
The drop-out rate is a hyperparameter used for training the LSTM model and determines the percent-
age of nodes that are left out in the training of the layer in one iteration. The default is set to 0.2.

• Number of spatial POD modes
The number of spatial POD modes determines the number of spatial modes that will be used to con-
struct the projection of the full-order model. As the number of spatial POD modes is directly linked to
the time coefficient, this hyperparameter will determine the output size of the model. The default is set
to 5.

1Tensorflow V2: www.tensorflow.org

www.tensorflow.org
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• Model accuracy
The model accuracy is a hyperparameter used for training the LSTM model and determines how ac-
curate the surface pressure projection of the training set is with respect to the full-order model. This
hyperparameter will determine the number of iterations that are necessary to achieve this accuracy.

Next to the model parameter settings, also the optimization method that is used for training of the LSTM net-
work and the model evaluation in terms of loss function are user-defined settings. The optimization method
for training and evaluating the weights within the LSTM network is done using the ADAM method. The ADAM
method combines the momentum gradient descent approach and adaptive methods.

Furthermore, in order to evaluate the training process of the LSTM network, the loss function that is given
by the user should be minimized. The loss function is a measure of error between the predicted and desired
outcome of the model. For the LSTM network, the loss function is defined as the mean-squared error between
the predicted and desired outcome and is defined using the following relationship:

MSE(ypr edi cted , ytr ue ) = 1

N

N∑
i=1

‖ypr edi cted − ytr ue‖2 (4.7)

It must be noted that as the POD-LSTM network output is based on the selection of the maximum amount
of spatial POD modes and hence is using a reduced-order basis, the desired outcome, ytr ue , is set to the
projection of the full-order solution on the reduced-order basis constructed from the maximum amount of
spatial POD modes. Therefore, the error measurement is defined as the error between the projection of the
predicted time coefficients on the reduced-order basis and the full-order model projection on the reduced-
order basis.

LSTM data handling
In order to enhance the training of the LSTM network architecture, the data is pre-processed before being
used by the model. First, all the data, both input, and output, is normalized using a minimum-maximum
scaler. The idea behind normalization is that the data is measured at different scales and hence the data does
not contribute equally to the training of the model, creating a bias for each variable. In order to avoid this
potential problem, the data is normalized prior to training the model. The working principle of the minimum-
maximum scaler is that all the data will be scaled to a given range, e.g., from 0 to 1. A relationship for a
simplified version of the minimum-maximum scaler is shown below:

xscaled = x −xmi n

xmax −xmi n
(4.8)

After the data is normalized, the data of the model needs to be split up into different sets of time series in
order to be used by the LSTM model. This is done using the sliding window approach, where the input data
is split up into time series with a user-defined number of time steps and the corresponding output is defined
as the time coefficients corresponding to the to-be calculated time step, with a length of the user-defined
number of spatial POD modes.

Model verification
In order to make sure that the model is working correctly, a model verification method is proposed. The
method that is proposed is the evaluation of a 1-D signal that is obtained from synthetic data and should
represent the upper surface pressure distribution of a pitching airfoil at a single coordinate CP (x, y). The 1-D
input signal consists of the same set of state variables as used in the POD-LSTM ROM. The 1-D output signal
is decomposed using the Fourier series method as described below:

f (x) = a0 +
∞∑

n=1
ancos(nx

π

L
)+

∞∑
n=1

bn si n(nx
π

L
) (4.9)

The 1-D output signal is decomposed using the Fourier series in order to represent a similar situation as
the usage of the POD method for the LSTM network. The spatial ’POD’ modes φi are constructed using a
random number generator and are considered constant, whereas the time coefficients are obtained from
the decomposed series, e.g., an cos(nx π

L ) and bn sin(nx π
L ), normalized with its corresponding spatial POD

constant, i.e.,
an cos( πL )

φn
. As the time coefficients are constructed from sets of sine and cosine signals, the time
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coefficients are orthogonal and have the same working principle as the POD method holds. An example of
the 1-D signal projection is shown in Figure 4.18.

Figure 4.18: 1-D signal POD representation for verification of the LSTM surrogate model.

The model verification method can be used at any time in order to verify the working of the LSTM model
and can give the user a general idea about the evaluation of the model performance, e.g., hyperparameter
sensitivity and computational cost.

Systematic model evaluation approach
As described in Chapter 3, most of the current ROM approaches for the MULDICON case are derived from
state-of-the-art applications. However, for most of these approaches, the variation of model parameters has
not been included in the assessment of the ROM, whereas changing the user-defined parameters of a model
could have a large influence on the outcome of the constructed ROM in terms of accuracy and computational
cost. This section will discuss a systematic approach that is used in order to evaluate the model performance
for different sets of model parameters.

The model evaluation approach is split up into two different parts: the model evaluation with respect to its
reduced-order basis and the model evaluation of the LSTM network prediction.

• Model evaluation with respect to the reduced-order basis
As one of the properties of the ROM is that it can be used for a reduced-order basis, as constructed from
a limited number of spatial POD modes, it must be taken into account in the evaluation of the model
performance. In short, the number of spatial POD modes that are used to construct the reduced-order
basis is directly linked to the maximum accuracy that is achieved by the model, i.e., the higher the num-
ber of spatial POD modes used, the higher the accuracy. In order to remain consistent, it is necessary to
evaluate the model performance for a given set of reduced-order basis. For this approach, it is assumed
that the number of training samples is sufficient to cover the regressor space well and test samples can
be approximated in the same order of magnitude as the training samples. Using this assumption, one
can use the training samples as a reference to define a set of reduced-order bases while generaliza-
tion of the model is maintained. The measurement of error that is used to evaluate the accuracy of the

reduced-order basis is defined as the projection error of the training samples: εpr o j ,t r ai ni ng
C

P
′ . It must be
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noted that for the purpose of this study, the projection error of the samples is based on the prediction
of the surface pressure coefficients. However, depending on the application of the model, one is not
restricted to the evaluation of the projection error of the surface pressure coefficients only but can be
extended to the integral aerodynamic load coefficients as well.

• Model evaluation of the LSTM network
The model evaluation of the prediction of the POD-LSTM model will determine how well the POD-
LSTM model is able to represent the reduced-order basis of the POD method. As earlier described,
the model performance is evaluated in terms of the mean-squared error, whereas the loss function is
defined as the error measurement between the prediction of the projected flow and the projection of
the reduced-order basis. In order to provide a good comparison for different sets of model parameters,
the relative accuracy of the model is prescribed in terms of the mean-squared error. The neural network
error that is used as a measurement of performance is equal to zero if the POD-LSTM predictions are
identical to the reduced-order basis projection of the full-order model.

The model evaluation methods as described above can be summarized into the following measurement er-
rors:

• ε
pr o j ,t r ai ni ng
C

P
′ : The instantaneous projection error for the training samples in comparison to the full-

order model in terms of MSE.

• ε̄
pr o j ,t r ai ni ng
C

P
′ : The time-averaged projection error of the surface pressure coefficient for the training

samples in comparison to the full-order model in terms of MSE.

• ε̄N N
C

P
′ : The time-averaged neural network error of the surface pressure coefficient for the training sam-

ples in comparison to the reduced-order basis in terms of MSE.

One of the practical aspects of this model evaluation approach is that the projection error and the neural
network error are split, hence errors can easily be identified and conclusions can be drawn easily about the
performance of both the offline and online stage of the ROM.

In order to determine the set of projection errors that are used to construct the reduced-order basis, and
hence to determine the minimum amount of numbers necessary, the surface pressure coefficient projec-
tion error is calculated for an increase in the number of modes. The time-averaged projection error of the
surface pressure coefficient of the training samples in decreasing order of magnitude with the minimum re-
quired spatial POD modes necessary is shown in Table 4.7, whereas the time-instantaneous projection error
is shown in Figure 4.19. It can be seen that for a small time-averaged projection error of the surface pressure
coefficients, only a small portion of the total number of modes is necessary. These results show that the use
POD method has some great potential for Model Order Reduction (MOR). However, it must be noted that it is
assumed that the training samples cover the regressor space well enough to produce a well generalized ROM,
whereas in practice this may not be the case.

Table 4.7: Minimum number of spatial POD modes that is required for a given time-averaged projection error ε̄
pr o j ,tr ai ni ng
C

p
′ of the

training maneuver. The number of spatial POD modes necessary are depicted as percentage of the total number of modes, which is
equal to 7,345 modes.

Time-averaged projection error ε̄pr o j ,t r ai ni ng
C

p
′ Minimum number of spatial POD modes

1E-1 5 (0.07% of total number of modes)
1E-2 40 (0.5% of total number of modes)
1E-3 120 (1.6% of total number of modes)
1E-4 310 (4.2% of total number of modes)
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Table 4.8: Levels of time-averaged projection error ε̄
pr o j ,t r ai ni ng
C

p
′ with the corresponding neural network error ε̄N N

C
p
′ used for

computational cost analysis.

Time-averaged projection error ε̄pr o j ,t r ai ni ng
C

p
′ Time-averaged neural network error ε̄N N

C
p
′

1E-1 (5 modes) 1E-2
5E-3

1E-2 (40 modes) 1E-2
5E-3

Figure 4.19: The instantaneous projection error ε
pr o j
C

P
′ of the training maneuver with respect to the full-order model for increasing the

number of spatial POD modes.

For the systematic model evaluation approach, which is used to assess the model performance in terms of
cost and accuracy for model parameter changes, four different POD-lstm networks will be used. The POD-
lstm networks vary in terms of the projection error and the neural network error in terms of the time-averaged
MSE of the surface pressure of the training samples. The model settings that will be used for the approach are
shown in Table 4.8.

Baseline model: Sensitivity analysis

In order to obtain a comparable measurement of the model performance with the given model evaluation
method settings as shown in Table 4.8, a baseline model is constructed that will be used for the prediction
of the surface pressure coefficients. This baseline model is based on the outcome of a sensitivity analysis
that is performed for different model parameters as shown in Figure 4.20. The sensitivity analysis is per-

formed for a surface pressure projection error of ε̄pr o j ,t r ai ni ng
C

p
′ = 1E-1, corresponding to a total of 5 spatial

POD modes used, with a maximum number of iterations equal to 500. The sensitivity analysis is performed
over both training and test samples and the distribution of the cases is represented in the violin plot. The
baseline model parameters are determined from the sensitivity analysis, selecting the model parameters that
result in the lowest average mean-squared error of all cases where the variance is small. The baseline model
parameters are shown in Table 4.9.
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Figure 4.20: Sensitivity analysis shown in violin plots of the LSTM surrogate model for different hyperparameters for selected projection

error ε̄
pr o j ,tr ai ni ng
C

P
′ = 1E-1. The dots represent the time-averaged MSE for the test cases as described in Section 4.2.1.
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Table 4.9: LSTM surrogate model baseline properties.

Hyperparameters Value

Number of LSTM layers [-] 1
Number of LSTM units [-] 32
Number of dense layers [-] 1
Number of dense units [-] 128

Number of time-steps used [-] 5
Batch size [-] 16

Drop-out rate [-] 0.2
Model optimization method [-] ADAM

Model loss function [-] MSE



5
Simulation results of the POD-LSTM
non-intrusive Reduced-Order Model

This chapter will discuss the results of the proposed non-intrusive POD-LSTM ROM. The results presented in
this chapter can be divided into two different sections: the results of the offline stage and the results of the
online stage. First, the offline stage results will be discussed including the projection error for an increasing
number of spatial POD modes and the training results of the model. Second, the online stage results will be
discussed including the model performance over the regressor space as well as the computational perfor-
mance. Finally, a brief summary of the results will be provided.

5.1. Offline stage results
This section will discuss the results of the offline stage, as described in Chapter 4. First, the influence on the
variation of the number of spatial POD modes and the variation of the spatial POD modes on the projection
error for all cases will be discussed. Finally, the results of training the POD-LSTM ROM will be discussed.

5.1.1. POD Projection error
The projection error is described as the error between the projection of the full order model on the reduced-
order basis, which is constructed from a limited number of spatial POD modes, and the full order model in
terms of the mean-squared error. Next to the contribution of the TKE of each spatial POD mode, the pro-
jection error is a measure to determine the minimum number of spatial POD modes necessary in order to
reconstruct the full order model with a given accuracy. In this chapter the results are shown for the projection
error over all test samples for an increase in the number of spatial POD modes and a comparison is made
between the use of different spatial POD modes.

Variation in the number of spatial POD modes
In order to assess the effectiveness of the POD method and the use of the reduced basis that is constructed
from the training samples, the projection error has been calculated for all the test samples for an increase in
the number of spatial POD modes. Depending on the application, one is interested in the projection error
of the surface pressure coefficient or the integral aerodynamic loads, e.g., the normal force coefficient or the
pitching moment coefficient. The purpose of this section is to determine if the training samples cover the
regressor space sufficiently in order to construct a reduced-order basis that can be used for the prediction of
the test case samples.

The results for the projection error of the surface pressure coefficient, the normal force coefficient, and the
pitching moment coefficient for an increase in the number of spatial POD modes are shown in Figure 5.1, Fig-
ure 5.2 and Figure 5.3, respectively. From Figure 5.1 it can be seen that for an increase in the number of spatial
POD modes used for construction of the reduced-order basis, the projection error of the training maneuver,
as expected, decreases with an increase in the number of spatial POD modes used. In general, the same trend

47
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holds for most of the test samples, however, it can be seen that the test samples have a larger projection er-
ror than the training maneuver. Furthermore, it can be seen that for a limited amount of test samples the
projection error increases with an increase in the number of spatial POD modes used. The same trends can
be seen for the projection error of the normal force coefficient and the pitching moment coefficient, where
the projection error is at least two orders of magnitude smaller. The test samples that are resulting in a large
projection error are similar for both the projection of the surface pressure coefficient and the integral load
coefficients. Overall, the figures are in agreement with the hypothesis that the projection error of the training
maneuver is in the same orders of magnitude as the test samples, if the regressor space is covered well.

Figure 5.1: Time-averaged projection error ε̄pr o j of the pressure coefficient for an increasing number of spatial POD modes in terms of
average MSE over all test cases.
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Figure 5.2: Time-averaged projection error ε̄pr o j of the normal force coefficient for an increasing number of spatial POD modes in
terms of average MSE over all test cases.

Figure 5.3: Time-averaged projection error ε̄pr o j of the pitch moment coefficient for an increasing number of spatial POD modes in
terms of average MSE over all test cases.

In order to identify the limitations of the current training samples, the test samples that are resulting in the
smallest and largest projection error are investigated and compared with the regressor space coverage of the
training samples. The test samples that are selected for the comparison are obtained from the average sur-
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face pressure coefficient projection error of the training maneuver and are set to the standards as discussed

in Chapter 4, ε̄pr o j ,tr ai ni ng
Cp′

= 1E-1 and ε̄
pr o j ,tr ai ni ng
Cp′

= 1E-2, which are translated to a minimum number of

spatial POD modes of 5 and 40, respectively. The largest projection errors are shown for test samples that are
originated from the harmonic pitch oscillations with a nominal angle of attack value of 10 degrees with an
amplitude of 5 degrees, whereas the plunge motions with the same values for the nominal angle of attack and
amplitude are found to be at the lower range of errors. The comparison of the regressor space coverage for the
training and the resulting smallest and largest projection error test samples is shown in Figure 5.4. Further-
more, the regressor space coverage for the most dominant state variables is shown in Figure 5.5 and Figure 5.6,
respectively. From the figures, it can be seen that the training samples are concentrated near the boundaries
of the signal and the coverage of the state variables within the smaller range of amplitudes is limited. As ex-
pected, the test samples with the highest projection error are in the same region where the coverage is limited.
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Figure 5.4: Regressor coverage of the training maneuver and the best and worst performing test cases with respect to the projection
errors ε̄pr o j ,tr ai ni ng = 1E-1 and ε̄pr o j ,tr ai ni ng = 1E-2.
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Figure 5.5: Regressor coverage of the training maneuver and the best and worst-performing test cases with respect to a projection error
of ε̄pr o j ,tr ai ni ng = 1E-1, 5 modes, respectively.
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Figure 5.6: Regressor coverage of the training maneuver and the best and worst-performing test cases with respect to a projection error
of ε̄pr o j ,tr ai ni ng = 1E-2, 40 modes, respectively.

Variation of spatial POD modes
Next to varying the number of spatial POD modes to construct a reduced-order basis, one can also make
use of a variation of the individual spatial POD modes while the number of spatial POD modes that are used
remains the same. The motivation to alter the individual spatial POD modes is to investigate if the projec-
tion error of the test samples can be minimized while the number of spatial POD modes that are used for
the construction of the reduced-order basis can be limited. For example, as described by Papp [18], the de-
scribed model had difficulties in predicting the wing tip surface pressure coefficients for higher angles of
attack. Hence, one could focus on the design of spatial POD modes that put an emphasis on the tip region,
with the expectation that this will reduce the number of spatial POD modes that are necessary to construct a
reduced-order basis.

In Figure 5.7 an example of a variation in the individual spatial POD modes is shown, wherein this case an
emphasis is put on the wing tip region to reduce the projection error near this region while the number of
spatial POD modes that is necessary to construct this basis can be relatively small. From this, it can be seen
that the vortices that are created at the leading edge in the altered POD basis are less dominant and the region
of the wing at larger span has shown an increase in the area of interest. The results of the projection error for
the original and the newly constructed spatial POD basis are shown in Figure 5.7 for prediction of the surface
pressure coefficients, the normal force coefficient, and the pitching moment coefficient, where the results are
presented as the average of all test samples over time in terms of MSE. It can be seen from the figure that the
projection of the new spatial POD basis shows a decrease in terms of the projection error for both the surface
pressure coefficient and the pitching moment coefficient, whereas for the normal force coefficient it actually
shows an increase with respect to the original basis. From this figure, it can be concluded that the tip region
is an area of interest for the determination of the pitching moment coefficient, i.e., the flow near the tip has
a high influence on the error of the pitching moment coefficient. However, it can be concluded that a better
projection of the flow towards the root of the MULDICON is of interest for the projection error of the normal
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force coefficient.

(a) Original spatial POD mode. (b) Spatial POD mode with a linear weighted relationship along the span.

Figure 5.7: Differences between the original spatial POD modes and altered spatial POD modes with a linear-relationship towards the
tip location for the first POD spatial mode of the upper surface.

Figure 5.8: Time-averaged projection error ε̄pr o j for variation of spatial POD modes in terms of average MSE over all test cases.

5.1.2. Limitations on the use of a reduced-order basis
As the Proper Orthogonal Decomposition (POD) method makes use of a reduced-order basis that is used
to approximate the full-order solution, this method imposes an error that is directly related to the number of
spatial POD modes that is used to construct the reduced-order basis. In other words, compromises have to be
made between the amount of data that is used to construct the reduced-order basis and the error with respect
to the full-order solution that is imposed by the use of this reduced-order basis. As already discussed in the
previous sections, it was shown that the reduced-order basis that is constructed from the spatial POD modes
obtained from the high-fidelity training samples shows good accuracy of the full-order solution with a limited
number of spatial POD modes necessary. However, in order to determine the limitations of the use of the
reduced-order basis a detailed investigation of the projection of the full-order solution is necessary. For this,
one of the test samples has been investigated to identify any deficiencies in the use of the current reduced-
order basis. In Figure 5.9 the input variables and the projection error of the surface pressure coefficients are
shown for the pitch oscillation with A0 = 10 deg , A = 5 deg and f = 0.25 Hz. This pitch oscillation was chosen
as it has shown the largest relative projection error with respect to other test samples.
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Figure 5.9: POD-LSTM input state variables for pitch oscillation A0 = 10 deg , A = 5 deg, f = 0.25 Hz.

It can be seen from the figure that the average projection error of the test sample is in agreement with the
threshold that was set for the construction of the reduced-order basis using the high-fidelity training sam-
ples. It can be seen that for both thresholds, the average projection error is in the same order of magnitude or
even lower. This means that the spatial POD modes that are constructed from the high-fidelity training sam-
ples serve as a good basis for the prediction of unseen samples, e.g., the high-fidelity test samples. Hence,
from this, it can be concluded that the high-fidelity training samples cover the regressor space well.

In Figure 5.10 the absolute projection error with respect to the full-order solution is shown for different pro-
jection error thresholds. It can be seen that for both reduced-order bases the absolute error is low and only
large errors are shown at the leading edge towards the tip region, although this region is very small.
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(a) Absolute projection error of the upper surface at t = 2.2 s for a

reduced-order basis with ε̄
pr o j ,tr ai ni ng
CP ′ = 1E-1

(b) Absolute projection error of the lower surface at t = 2.2 s for a

reduced-order basis with ε̄
pr o j ,tr ai ni ng
CP ′ = 1E-1

(c) Absolute projection error of the upper surface at t = 2.2 s for a

reduced-order basis with ε̄
pr o j ,tr ai ni ng
CP ′ = 1E-2

(d) Absolute projection error of the lower surface at t = 2.2 s for a

reduced-order basis with ε̄
pr o j ,tr ai ni ng
CP ′ = 1E-2.

Figure 5.10: Comparison of the absolute projection error for pitch oscillation A0 = 10 deg, A = 5 deg, f = 0.25 Hz at t = 2.2 s for

reduced-order basis with an accuracy of ε̄
pr o j ,tr ai ni ng
CP ′ = 1E-1 and ε̄

pr o j ,tr ai ni ng
CP ′ = 1E-2, respectively.

Overall, it is shown that the reduced-order basis that has been constructed from the high-fidelity training
samples provides a good basis for the prediction of the test samples. Hence, the limitations of the reduced-
order basis are therefore negligible.

5.1.3. POD-LSTM model training
This section will discuss the model evaluation of the training process for different settings of the POD-LSTM
network. The training process has been evaluated in terms of the computational time and the computational
count estimate for the variation of the number of LSTM layers, LSTM units, dense layers, dense units, the
number of time steps used, and the batch size.

The computational time has been measured as the total time it takes to train the POD-LSTM model for a given
accuracy, using the current processor time of the training process only. Furthermore, the training operation
count estimate is measured, which is defined as the total number of iterations that were necessary to train
the model times the number of trainable parameters that the model includes. The operation count estimate
can be used as a reference for the computational time, as the same trend is expected, and can be used as a
comparison between the model complexity and the computational time. In order to avoid large variation of
the computational processor time, mainly due to running background processes and different weight initial-
ization of the surrogate model, the simulations are run 5 times each. The results for the computational time
and the operation count estimate as shown in this section are the averaged values over the 5 runs for each
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model setting. In total, 29 different model settings were run for each level of accuracy and time-averaged
projection error resulting in a total of 580 simulations. In Table 5.1 the different model settings for the runs
are shown.

Table 5.1: Model settings that are used for evaluation of the computational training time and operational count estimate for each level
of accuracy and projection error.

Number of LSTM layers Number of LSTM units Number of dense layers Number of dense units Drop-out layer Drop-out rate Batch size Time steps past

1 32 1 128 TRUE 0.2 16 5
2 32 1 128 TRUE 0.2 16 5
3 32 1 128 TRUE 0.2 16 5
4 32 1 128 TRUE 0.2 16 5
5 32 1 128 TRUE 0.2 16 5
1 16 1 128 TRUE 0.2 16 5
1 64 1 128 TRUE 0.2 16 5
1 128 1 128 TRUE 0.2 16 5
1 256 1 128 TRUE 0.2 16 5
1 32 0 128 TRUE 0.2 16 5
1 32 2 128 TRUE 0.2 16 5
1 32 3 128 TRUE 0.2 16 5
1 32 4 128 TRUE 0.2 16 5
1 32 1 32 TRUE 0.2 16 5
1 32 1 64 TRUE 0.2 16 5
1 32 1 256 TRUE 0.2 16 5
1 32 1 512 TRUE 0.2 16 5
1 32 1 128 TRUE 0.1 16 5
1 32 1 128 TRUE 0.3 16 5
1 32 1 128 TRUE 0.4 16 5
1 32 1 128 TRUE 0.5 16 5
1 32 1 128 TRUE 0.2 4 5
1 32 1 128 TRUE 0.2 8 5
1 32 1 128 TRUE 0.2 32 5
1 32 1 128 TRUE 0.2 64 5
1 32 1 128 TRUE 0.2 16 3
1 32 1 128 TRUE 0.2 16 4
1 32 1 128 TRUE 0.2 16 6
1 32 1 128 TRUE 0.2 16 7

All the simulations were performed using a personal laptop running on the CPU only, whereas each simula-
tion was run on one core. All the training and test samples are gathered from the in-house flow solver of the
NLR, ENSOLV, which was run on the NLR cluster consisting out of 80 threads. The specifications are found in
Table 5.2.

Table 5.2: Specifications for model runs and high fidelity simulations

ENSOLV Surrogate model
Platform (CPU) NLR Computing Cluster @ 80 Threads Intel Core i7-4700MQ CPU @ 2.40GHz

Variation of LSTM layers

For the number of LSTM layers, the results of the computational training time and the operation count esti-
mate are shown in Figure 5.11. It can be seen that as the number of LSTM layers in the model is increased, the
computational training time is increased as well, which is in agreement with the operation count estimate.
Furthermore, it can be seen that although the number of LSTM layers is increased, the computational train-
ing time for higher accuracy models, i.e., lower projection and neural network errors, also is increased. From
this, it can be concluded that the LSTM layers do not have a large influence on the accuracy of the model.
The overall results for the given levels of accuracy and variation in the number of LSTM layers are shown in
Table 5.3.
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(a) Computational training time in seconds. (b) Operation count estimate.

Figure 5.11: Comparison between the computational training time and operation count estimate for varying number of LSTM layers.

Table 5.3: Training results for a varying number of LSTM layers

LSTM layers ε̄
pr o j ,t r ai ni ng
CP ′ [-] ε̄N N

CP ′ [-] Training time [s] Trainable parameters [-] Iterations [-] Operation count estimate [-]

1 1.00E-01 1.00E-02 53.23121 9733 6.8 66184.4
5.00E-03 243.2572 9733 39.6 385426.8

1.00E-02 1.00E-02 326.65 14248 48 683904
5.00E-03 2798.653 14248 460.8 6565478

2 1.00E-01 1.00E-02 95.13692 18053 8 144424
5.00E-03 293.6007 18053 28.2 509094.6

1.00E-02 1.00E-02 421.0009 22568 38 857584
5.00E-03 3546.738 22568 347.6 7844637

3 1.00E-01 1.00E-02 118.3952 26373 7 184611
5.00E-03 460.6099 26373 31.66667 835145.1

1.00E-02 1.00E-02 671.2726 30888 46.2 1427026
5.00E-03 5340.424 30888 406.2 12546706

4 1.00E-01 1.00E-02 224.0489 34693 11 381623
5.00E-03 700.5039 34693 38 1318334

1.00E-02 1.00E-02 1034.935 39208 55.2 2164282
5.00E-03 6265.555 39208 678.6 26606549

5 1.00E-01 1.00E-02 296.3622 43013 12.8 550566.4
5.00E-03 1133.677 43013 52.2 2245279

1.00E-02 1.00E-02 1640.479 47528 77 3659656
5.00E-03 10882.64 47528 1200.4 57052611

Variation of LSTM units

For the number of LSTM units, the results of the computational time and the operation count estimate are
shown in Figure 5.12. It can be seen that as the number of LSTM units increases, the computational time for

models with a lower projection error, i.e., ε̄pr o j ,t r ai ni ng
CP ′ = 1E-2, drastically decreases up until 128 LSTM units.

The differences between the highest and lowest computational time is up to at least a factor of 150, where the
minimum time measured is equal to approximately 3 minutes. Furthermore, as shown in the figure, it can be

concluded that for higher projection errors, i.e., ε̄pr o j ,t r ai ni ng
CP ′ = 1E-1, the number of LSTM units have less of

an effect on the training time of the model. The overall results for the given levels of accuracy and variation in
the number of LSTM units are shown in Table 5.4. It can be seen that the minimum computational training
time for all levels of accuracy is found at 128 LSTM units.
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(a) Computational training time in seconds. (b) Operation count estimate.

Figure 5.12: Comparison between the computational training time and operation count estimate for varying number of LSTM units.

Table 5.4: Training results for a varying number of LSTM units

LSTM units ε̄
pr o j ,t r ai ni ng
CP ′ [-] ε̄N N

CP ′ [-] Training time [s] Trainable parameters [-] Iterations [-] Operation count estimate [-]

16 1.00E-01 1.00E-02 93.40714 4229 12.8 54131.2
5.00E-03 734.8835 4229 107.4 454194.6

1.00E-02 1.00E-02 2828.057 8744 476.4 4165642
5.00E-03 33570.16 8744 10001 87448744

32 1.00E-01 1.00E-02 53.23121 9733 6.8 66184.4
5.00E-03 243.2572 9733 39.6 385426.8

1.00E-02 1.00E-02 326.65 14248 48 683904
5.00E-03 2798.653 14248 460.8 6565478

64 1.00E-01 1.00E-02 50.63236 26885 5.4 145179
5.00E-03 264.5275 26885 25.4 682879

1.00E-02 1.00E-02 219.8688 31400 23.6 741040
5.00E-03 299.4722 31400 91.4 2869960

128 1.00E-01 1.00E-02 46.91124 85765 3.8 325907
5.00E-03 259.593 85765 18.4 1578076

1.00E-02 1.00E-02 167.5636 90280 16 1444480
5.00E-03 193.488 90280 47.4 4279272

256 1.00E-01 1.00E-02 72.84511 301829 4.2 1267682
5.00E-03 315.9105 301829 17.6 5312190

1.00E-02 1.00E-02 199.5296 306344 13.4 4105010
5.00E-03 209.8117 306344 32.6 9986814

Variation of dense layers

For the number of dense layers, the results of the computational time and the operation count estimate are
shown in Figure 5.13. It can be seen that as the number of dense layers increases, the computational time for

the models with a low projection error, i.e., ε̄pr o j ,t r ai ni ng
CP ′ = 1E-2, slightly increases. Furthermore, it can be

concluded that the number of dense layers has no effect on the computational training time for the model

with the highest projection error, i.e., ε̄pr o j ,t r ai ni ng
CP ′ = 1E-1, as the computational training time stays relatively

constant while the operation count estimate increases with the number of dense layers. The overall results
for the given levels of accuracy and variation in the number of dense layers are shown in Table 5.5.
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(a) Computational training time in seconds. (b) Operation count estimate.

Figure 5.13: Comparison between the computational training time and operation count estimate for varying number of dense layers.

Table 5.5: Training results for a varying number of dense layers

Dense layers ε̄
pr o j ,t r ai ni ng
CP ′ [-] ε̄N N

CP ′ [-] Training time [s] Trainable parameters [-] Iterations [-] Operation count estimate [-]

0 1.00E-01 1.00E-02 72.09693 5029 9.2 46266.8
5.00E-03 245.1009 5029 27.2 136788.8

1.00E-02 1.00E-02 331.3637 6184 44.6 275806.4
5.00E-03 1173.12 6184 398.8 2466179

1 1.00E-01 1.00E-02 53.23121 9733 6.8 66184.4
5.00E-03 243.2572 9733 39.6 385426.8

1.00E-02 1.00E-02 326.65 14248 48 683904
5.00E-03 2798.653 14248 460.8 6565478

2 1.00E-01 1.00E-02 66.15296 26245 8.4 220458
5.00E-03 374.0533 26245 40.4 1060298

1.00E-02 1.00E-02 343.7377 30760 47 1445720
5.00E-03 1528.83 30760 453.6 13952736

3 1.00E-01 1.00E-02 71.60106 42757 8.8 376261.6
5.00E-03 331.2201 42757 36.6 1564906

1.00E-02 1.00E-02 475.8283 47272 58.6 2770139
5.00E-03 2030.686 47272 531.8 25139250

4 1.00E-01 1.00E-02 76.60156 59269 9.6 568982.4
5.00E-03 364.7361 59269 41.6 2465590

1.00E-02 1.00E-02 470.6361 63784 61.4 3916338
5.00E-03 2721.934 63784 661.4 42186738

Variation of dense units

For the number of dense units, the results of the computational time and the operation count estimate are
shown in Figure 5.14. It can be seen that as the number of dense units increases, the computational time for

the models with a low projection error, i.e., ε̄pr o j ,t r ai ni ng
CP ′ = 1E-2, slightly increases. Furthermore, it can be

concluded that the number of dense units has no effect on the computational training time for the model

with the highest projection error, i.e., ε̄pr o j ,t r ai ni ng
CP ′ = 1E-1, as the computational training time stays rela-

tively constant while the operation count estimate increases with the number of dense units for all levels of
accuracy. The overall results for the given levels of accuracy and variation in the number of dense layers are
shown in Table 5.6.
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(a) Computational training time in seconds. (b) Operation count estimate.

Figure 5.14: Comparison between the computational training time and operation count estimate for varying number of dense units.

Table 5.6: Training results for a varying number of dense units

Dense units ε̄
pr o j ,t r ai ni ng
CP ′ [-] ε̄N N

CP ′ [-] Training time [s] Trainable parameters [-] Iterations [-] Operation count estimate [-]

32 1.00E-01 1.00E-02 61.16608 6085 7.8 47463
5.00E-03 294.2625 6085 36.8 223928

1.00E-02 1.00E-02 277.8146 7240 45.2 327248
5.00E-03 1252.241 7240 432.2 3129128

64 1.00E-01 1.00E-02 56.52176 7301 7 51107
5.00E-03 254.0716 7301 31.2 227791.2

1.00E-02 1.00E-02 315.6246 9576 43.6 417513.6
5.00E-03 1411.94 9576 416.6 3989362

128 1.00E-01 1.00E-02 53.23121 9733 6.8 66184.4
5.00E-03 243.2572 9733 39.6 385426.8

1.00E-02 1.00E-02 326.65 14248 48 683904
5.00E-03 2798.653 14248 460.8 6565478

256 1.00E-01 1.00E-02 55.49962 14597 7 102179
5.00E-03 353.2781 14597 43.6 636429.2

1.00E-02 1.00E-02 389.9887 23592 52 1226784
5.00E-03 1699.312 23592 480.6 11338315

512 1.00E-01 1.00E-02 79.25485 24325 10.4 252980
5.00E-03 399.447 24325 46.6 1133545

1.00E-02 1.00E-02 460.7465 42280 56.2 2376136
5.00E-03 1843.234 42280 510.4 21579712

Variation of time steps used

For the number of previous time steps used the results of the computational time and the operation count
estimate are shown in Figure 5.15. It can be seen that as the number of previous time steps used increases,

the computational time for the models with a low projection error, i.e., ε̄pr o j ,t r ai ni ng
CP ′ = 1E-2, decreases up to

a factor of 2. For the 5 previous time steps used, the computational training time is maximum. Furthermore,
it can be concluded that the number of previous time steps used has no effect on the computational training

time for the model with the highest projection error, i.e., ε̄pr o j ,t r ai ni ng
CP ′ = 1E-1, as the computational training

time stays relatively constant. As the previous time steps used do not affect the complexity of the model but
only the amount of input data that is used to train the model, the operation count estimate remains relatively
constant for all levels of accuracy. The overall results for the given levels of accuracy and variation in the
number of previous time steps used are shown in Table 5.7.
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(a) Computational training time in seconds. (b) Operation count estimate.

Figure 5.15: Comparison between the computational training time and operation count estimate for varying number of time steps used.

Table 5.7: Training results for a varying number of time steps used

Time steps used ε̄
pr o j ,t r ai ni ng
CP ′ [-] ε̄N N

CP ′ [-] Training time [s] Trainable parameters [-] Iterations [-] Operation count estimate [-]

3 1.00E-01 1.00E-02 73.99291 9733 11.6 112902.8
5.00E-03 484.9379 9733 63.8 620965.4

1.00E-02 1.00E-02 506.7633 14248 79 1125592
5.00E-03 1610.329 14248 637.4 9081675

4 1.00E-01 1.00E-02 65.16311 9733 9 87597
5.00E-03 401.7217 9733 50 486650

1.00E-02 1.00E-02 369.2927 14248 51.2 729497.6
5.00E-03 2600.32 14248 571.8 8147006

5 1.00E-01 1.00E-02 53.23121 9733 6.8 66184.4
5.00E-03 243.2572 9733 39.6 385426.8

1.00E-02 1.00E-02 326.65 14248 48 683904
5.00E-03 2798.653 14248 460.8 6565478

6 1.00E-01 1.00E-02 60.27392 9733 7 68131
5.00E-03 265.1357 9733 29 282257

1.00E-02 1.00E-02 326.3161 14248 41 584168
5.00E-03 1298.474 14248 431.4 6146587

7 1.00E-01 1.00E-02 53.37125 9733 6 58398
5.00E-03 259.1913 9733 26.4 256951.2

1.00E-02 1.00E-02 339.8525 14248 39.4 561371.2
5.00E-03 1194.519 14248 359.8 5126430

Variation of batch size

For the variation of the batch size, the results of the computational time and the operation count estimate
are shown in Figure 5.16 It can be seen that as the batch size increases, the computational time for the mod-

els with a low projection error, i.e., ε̄pr o j ,t r ai ni ng
CP ′ = 1E-2, decreases up to a factor of 4. After a batch size of

32, the computational training time remains constant. Furthermore, it can be concluded that the batch size
has less of an effect on the computational training time for the model with the highest projection error, i.e.,

ε̄
pr o j ,t r ai ni ng
CP ′ = 1E-1, as the computational training time is reduced up to a factor 2 maximum. As the batch

size does not affect the complexity of the model but only the amount of input and output data that is used
simultaneously to train the model, the operation count estimate only slightly increases for all levels of accu-
racy. The overall results for the given levels of accuracy and variation of the batch size are shown in Table 5.8.
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(a) Computational training time in seconds. (b) Operation count estimate.

Figure 5.16: Comparison between the computational training time and operation count estimate for varying batch size.

Table 5.8: Training results for varying batch size

Batch sized ε̄
pr o j ,t r ai ni ng
CP ′ [-] ε̄N N

CP ′ [-] Training time [s] Trainable parameters [-] Iterations [-] Operation count estimate [-]

4 1.00E-01 1.00E-02 95.02895 9733 5.4 52558.2
5.00E-03 438.6905 9733 24.4 237485.2

1.00E-02 1.00E-02 699.9768 14248 37 527176
5.00E-03 4221.93 14248 454.2 6471442

8 1.00E-01 1.00E-02 88.35486 9733 6.6 64237.8
5.00E-03 421.551 9733 35 340655

1.00E-02 1.00E-02 509.2415 14248 38.4 547123.2
5.00E-03 2934.361 14248 396 5642208

16 1.00E-01 1.00E-02 53.23121 9733 6.8 66184.4
5.00E-03 243.2572 9733 39.6 385426.8

1.00E-02 1.00E-02 326.65 14248 48 683904
5.00E-03 2798.653 14248 460.8 6565478

32 1.00E-01 1.00E-02 50.54407 9733 10.8 105116.4
5.00E-03 242.5923 9733 43.4 422412.2

1.00E-02 1.00E-02 293.0864 14248 59.2 843481.6
5.00E-03 978.4491 14248 574 8178352

64 1.00E-01 1.00E-02 54.49008 9733 15 145995
5.00E-03 310.0013 9733 59.4 578140.2

1.00E-02 1.00E-02 252.7937 14248 86.2 1228178
5.00E-03 1031.841 14248 679.6 9682941

POD-LSTM model training evaluation
The results as discussed above should provide the user of the POD-LSTM model insights in the variation of
the given hyperparameters. From the results, it can be concluded that the variation of the LSTM units has
the largest effect on the computational training time, with differences up to a factor of 150. For all the other
hyperparameters differences up to a factor of 2 up until 4 are found for the computational training and can
therefore be considered small with respect to the variation of the number of LSTM units used. The maxi-

mum computational training time for the lowest projection error during this analysis, i.e., ε̄pr o j ,t r ai ni ng
CP ′ =

1E-2, was found to be up to more than 9 hours, while the minimum training time was only 3 minutes. An
overview of the minimum and maximum computational training time found for the variance of the hyperpa-
rameters including the average training time for all the levels of accuracy as well as a comparison with respect
to the high-fidelity simulations and previously constructed surrogate models is shown in Section 5.1.3. From
the table, it can be concluded that for the construction of the POD-LSTM model the average training time
increases with an increasing level of accuracy, i.e., where both projection error and neural network error are
small. Furthermore, it can be seen that the hyperparameters have a large effect on the computational training
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time that is necessary to train the model to the given level of accuracy. From the hyperparameter sensitivity
analysis it can be concluded that if the hyperparameters are considered to be optimal, the maximum training
time of the POD-LSTM model can be minimized to only 4 minutes for both the lowest projection error and

prediction error, i.e., ε̄pr o j ,t r ai ni ng
CP ′ = 1E-2 and ε̄N N

CP ′ = 5E-3. The total training time of the POD-LSTM model is

the summation of the simulation time of the high-fidelity samples and the training of the POD-LSTM model,
which in the case of the optimal hyperparameter settings is negligible with respect to the simulation time
of the high-fidelity samples. The POD-LSTM model shows a significant decrease in the model training time
with respect to the previously constructed surrogate model as described by Papp, however, it must be noted
that the accuracy of the CNN is significantly higher by up to a factor of 1000. Due to time constraints, a fair
comparison between the different surrogate models was not possible and will be proposed in future work.

Table 5.9: POD-LSTM computational training time comparison with respect to high-fidelity simulations and previous constructed
surrogate model from D. Papp [18]

Model ε̄
pr o j ,t r ai ni ng
CP ′ [-] ε̄N N

CP ′ [-] Minimum training time Maximum training time Average training time

POD-LSTM (@2.4 GHz) 1.00E-01 1.00E-02 0.8 m 8.5 m 1.6 m
5.00E-03 4.0 m 48.9 m 7.7 m

1.00E-02 1.00E-02 0.8 m 47.1 m 8.5 m
5.00E-03 3.2 m 9 h 19 m 58.1 m

ENSOLV (Training samples) 9600 h/120 h (@80 threads)
CNN (Papp @2.6 GHz) 7.00E-05 17 h 56 m (boosted with GPU tesla k40m @ 2880 cores)

5.2. Online stage results: POD-LSTM non-intrusive ROM predictions

This section will discuss the online stage results, hence the performance of the prediction capabilities of the
POD-LSTM model after it is trained. The model settings that are used for the analysis of the online stage re-
sults are based on the baseline model parameters as described in Chapter 4. This section will go into detail
about the steady simulation results and the unsteady simulations results for harmonic oscillations and will
provide a comparison with previous research. Finally, the computational performance of the POD-LSTM is
shown for the prediction time.

5.2.1. Steady simulations

The steady simulations are performed between an angle of attack range between 0 and 20 degrees. The com-
parison between the high-fidelity CFD simulations that are gathered from ENSOLV, the in-house solver of the
NLR, and the prediction of the POD-LSTM model for the steady simulations is shown Figure 5.17. From the
figure it can be seen that both the normal force coefficient and the axial force coefficient are covered well
for the given model, where the model with projection error ε̄pr o j = 1E-2 and prediction error ε̄N N = 5E-3
shows the best fit. However, the prediction of the POD-LSTM model for the pitching moment coefficient for
all ranges of the angle of attack is inaccurate. For the prediction of the pitching moment coefficient, it can be

seen that the models that were run with a higher projection error, i.e., in particular, ε̄pr o j ,t r ai ni ng
CP ′ = 1E-1 and

ε̄N N
CP ′ = 5E-3, are able to capture the general trend of the CFD simulations, although the values of the prediction

are off. Interesting to note from this figure, is that the models with a lower projection error, i.e., ε̄pr o j ,t r ai ni ng
CP ′

= 1E-2, are less accurate than the models with a higher projection error and show abrupt changes in the value
of the pitching moment coefficient, which is not in trend with what is expected for higher accuracy models.
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(a) POD-LSTM prediction of the normal force coefficient for steady
simulations.

(b) POD-LSTM prediction of the axial force coefficient for steady
simulations.

(c) POD-LSTM prediction of the pitching moment coefficient for steady
simulations.

Figure 5.17: POD-LSTM prediction of the integral load coefficients for steady simulations.

In order to determine the limitations of the POD-LSTM model and to identify the errors of the prediction of
the pitching moment coefficient, the results of the steady simulations are investigated in more detail. For this
analysis, the absolute error of the surface pressure coefficient is investigated for the different levels of accu-
racy. In particular, the angles of attack of 18 and 20 degrees are of interest, as these values are in the scope
of the non-linear aerodynamic regime of the UCAV MULDICON and show large differences for the different
levels of accuracy. In Figure 5.18 the distribution of the instantaneous surface pressure coefficients for both
the upper and lower surface of the MULDICON are shown for the angles of attack of 18 and 20 degrees, re-
spectively. From the figure, it can be seen that the flow both includes the development of the leading-edge
vortex and wingtip separation.
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(a) Upper surface pressure distribution for steady simulations for α = 18
deg.

(b) Lower surface pressure distribution for steady simulations for α = 18
deg.

(c) Upper surface pressure distribution for steady simulations for α = 20
deg.

(d) Lower surface pressure distribution for steady simulations for α = 20
deg.

Figure 5.18: Surface pressure distribution for steady simulations for α = 20 deg obtained from CFD simulations.

The absolute error of the surface pressure coefficient, i.e., the error between the prediction of the POD-LSTM
model and the high-fidelity CFD simulations, for the upper and lower surface of the MULDICON at an angle
of attack of 18 and 20 degrees is shown in Figure 5.19, Figure 5.20 and Figure 5.21, Figure 5.22 respectively. It
can be seen from the figures that for both angles of attack, the error of the prediction of the lower surface pres-
sure coefficients is marginal, while the main contribution of the total prediction error for the surface pressure
coefficient is due to inaccurate prediction of the surface pressure near the tip region at the upper surface. As
already discussed in the offline stage results section, it was shown that an inaccurate flow representation of
the surface pressure coefficients near the tip region leads to higher errors for the pitching moment coefficient.
Hence, the inaccurate prediction of the pitching moment coefficient for the steady simulations is caused by
the inaccurate prediction of the surface pressure coefficient near the tip. Furthermore, it can be seen that the
models with a higher projection error, although unexpected, show a smaller error near the tip region than the
models with a lower projection error.
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(a) Absolute prediction error at α = 18 deg for surrogate model

ε̄
pr o j ,tr ai ni ng
CP ′ = 1E-1, ε̄

N N ,tr ai ni ng
CP ′ = 1E-2.

(b) Absolute prediction error at α = 18 deg for surrogate model

ε̄
pr o j ,tr ai ni ng
CP ′ = 1E-1, ε̄

N N ,tr ai ni ng
CP ′ = 5E-3.

(c) Absolute prediction error at α = 18 deg for surrogate model

ε̄
pr o j ,tr ai ni ng
CP ′ = 1E-2, ε̄

N N ,tr ai ni ng
CP ′ = 1E-2.

(d) Absolute prediction error at α = 18 deg for surrogate model

ε̄
pr o j ,tr ai ni ng
CP ′ = 1E-2, ε̄

N N ,tr ai ni ng
CP ′ = 5E-3.

Figure 5.19: POD-LSTM absolute prediction error of the upper surface pressure distribution for different surrogate model settings for
steady simulations at α = 18 deg.
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(a) Absolute prediction error at α = 18 deg for surrogate model

ε̄
pr o j ,tr ai ni ng
CP ′ = 1E-1, ε̄

N N ,tr ai ni ng
CP ′ = 1E-2.

(b) Absolute prediction error at α = 18 deg for surrogate model

ε̄
pr o j ,tr ai ni ng
CP ′ = 1E-1, ε̄

N N ,tr ai ni ng
CP ′ = 5E-3.

(c) Absolute prediction error at α = 18 deg for surrogate model

ε̄
pr o j ,tr ai ni ng
CP ′ = 1E-2, ε̄

N N ,tr ai ni ng
CP ′ = 1E-2.

(d) Absolute prediction error at α = 18 deg for surrogate model

ε̄
pr o j ,tr ai ni ng
CP ′ = 1E-2, ε̄

N N ,tr ai ni ng
CP ′ = 5E-3.

Figure 5.20: POD-LSTM absolute prediction error of the lower surface pressure distribution for different surrogate model settings for
steady simulations at α = 18 deg.
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(a) Absolute prediction error at α = 20 deg for surrogate model

ε̄
pr o j ,tr ai ni ng
CP ′ = 1E-1, ε̄

N N ,tr ai ni ng
CP ′ = 1E-2.

(b) Absolute prediction error at α = 20 deg for surrogate model

ε̄
pr o j ,tr ai ni ng
CP ′ = 1E-1, ε̄

N N ,tr ai ni ng
CP ′ = 5E-3.

(c) Absolute prediction error at α = 20 deg for surrogate model

ε̄
pr o j ,tr ai ni ng
CP ′ = 1E-2, ε̄

N N ,tr ai ni ng
CP ′ = 1E-2.

(d) Absolute prediction error at α = 20 deg for surrogate model

ε̄
pr o j ,tr ai ni ng
CP ′ = 1E-2, ε̄

N N ,tr ai ni ng
CP ′ = 5E-3.

Figure 5.21: POD-LSTM absolute prediction error of the upper surface pressure distribution for different surrogate model settings for
steady simulations at α = 20 deg.
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(a) Absolute prediction error at α = 20 deg for surrogate model

ε̄
pr o j ,tr ai ni ng
CP ′ = 1E-1, ε̄

N N ,tr ai ni ng
CP ′ = 1E-2.

(b) Absolute prediction error at α = 20 deg for surrogate model

ε̄
pr o j ,tr ai ni ng
CP ′ = 1E-1, ε̄

N N ,tr ai ni ng
CP ′ = 5E-3.

(c) Absolute prediction error at α = 20 deg for surrogate model

ε̄
pr o j ,tr ai ni ng
CP ′ = 1E-2, ε̄

N N ,tr ai ni ng
CP ′ = 1E-2.

(d) Absolute prediction error at α = 20 deg for surrogate model

ε̄
pr o j ,tr ai ni ng
CP ′ = 1E-2, ε̄

N N ,tr ai ni ng
CP ′ = 5E-3.

Figure 5.22: POD-LSTM absolute prediction error of the lower surface pressure distribution for different surrogate model settings for
steady simulations at α = 20 deg.

5.2.2. Unsteady simulations: Harmonic oscillations
This section will discuss the results that are obtained from the unsteady simulations. The unsteady simula-
tions are performed using different sets of test samples for harmonic pitch and plunge motions. An overview
of the performed simulations is shown in Section 4.2.1.

In order to be able to compare the accuracy of the prediction for the different harmonic motions, a new metric
is introduced: the Normalized Mean Squared Error (NMSE). This metric will determine the performance of
each model, whereas an exact representation of the model will result into a NMSE of 1. The lower the NMSE,
the worse the accuracy of the model. The expression for the NMSE is as follows:

N MSE(ypr edi cted , ytr ue ) = 1− ‖ypr edi cted − ytr ue‖2

‖ytr ue −E(ytr ue )‖2 (5.1)

This section will compare the different harmonic motions and will investigate the cause of the errors for the
given motions. First, the harmonic pitch motions will be investigated. Second, the harmonic plunge motions
will be investigated. Finally, a comparison between the proposed model and previous studies will be shown.
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Pitch oscillations
This section will discuss the results of the prediction of POD-LSTM model for the unsteady harmonic pitch
motions. In Figure 5.23 the results are shown for the prediction of the surface pressure coefficient, the nor-
mal force coefficient, and the pitching moment coefficient in terms of NMSE and are labeled by frequency
for each pitch maneuver. The NMSE is measured as error between the prediction of the POD-LSTM model
and the CFD simulations. From the figures, it can be seen that on average the POD-LSTM model for pitch
maneuvers with a frequency of 0.5 Hz is producing the best results for the prediction of the surface pressure
coefficient. Moreover, it can be seen that both the surface pressure coefficients and the normal force coeffi-
cient are predicted with a higher accuracy than the pitching moment coefficient. Interesting to note from the
figures is that the harmonic pitch motions with a nominal value of 10 degrees with an amplitude of 5 degrees
have the lowest accuracy of all cases, which is in agreement with the high projection error for these motions
as found in the offline stage results. In order to determine the deficiencies of the POD-LSTM model for un-
steady simulations, the case with the lowest accuracy for the surface pressure coefficient will be investigated.

(a) LSTM prediction accuracy of the surface pressure coefficient in terms of
NMSE for varying frequency.

(b) LSTM prediction accuracy of the normal force coefficient in terms of
NMSE for varying frequency.

(c) LSTM prediction accuracy of the pitching moment coefficient in terms
of NMSE for varying frequency.

Figure 5.23: LSTM prediction accuracy of the pressure coefficients, normal coefficients, and pitching moment coefficients in terms of
NMSE for pitch oscillations at varying nominal values and amplitudes.

As already mentioned above, the POD-LSTM model shows the highest prediction error for the test case of the
harmonic pitch motions with a nominal value of 10 degrees and an amplitude of 5 degrees. To identify the
limitations of the POD-LSTM model, the harmonic pitch motion with a nominal value of 10 degrees and an
amplitude of 5 degrees with a frequency of 0.25 Hz will be investigated, as this test case resulted in the high-
est prediction error for the surface pressure coefficient. The input state variables as well as the error of the
surface pressure coefficient for the given test sample in terms of MSE are shown in Figure 5.24. It can be seen



72 5. Simulation results of the POD-LSTM non-intrusive Reduced-Order Model

from the figure that for both the models with a high projection error, ε̄pr o j ,t r ai ni ng = 1E-1, and low projection
error, ε̄pr o j ,t r ai ni ng = 1E-2, the error of the surface pressure coefficient prediction is relatively high near the
initial states of the harmonic pitch motion, which are α ≈ 10 deg. and α̇, q ≈ (-) 7.5 deg/s, respectively.

Figure 5.24: POD-LSTM input state variables for pitch oscillation A0 = 10 deg , A = 5 deg, f = 0.25 Hz.

The prediction of the POD-LSTM model for the normal force coefficient, axial force coefficient, and the pitch-
ing moment coefficient is shown in Figure 5.25, Figure 5.26 and Figure 5.27, respectively. It can be seen that
all the integral load coefficients are covered well by the POD-LSTM model with errors that are all in the same
order of magnitude. Furthermore, it can be noted that the differences between the prediction errors for both
projection errors, i.e., ε̄pr o j ,t r ai ni ng = 1E-1 and ε̄pr o j ,t r ai ni ng = 1E-2, can vary up to a factor 100. Overall, the
model with the lowest projection error and largest prediction error, i.e., ε̄pr o j ,t r ai ni ng = 1E-1 and ε̄N N = 5E-3,
has the lowest errors for the prediction of the integral load coefficients. From this it can be concluded that
the number of spatial POD modes used for the construction of the reduced-order basis do not have a large
influence on the prediction of the integral aerodynamic load coefficients for this case, whereas the number
of spatial POD modes is of importance for the surface pressure coefficient prediction.
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Figure 5.25: POD-LSTM prediction of the normal force coefficient for pitch oscillation A0 = 10 deg , A = 5 deg, f = 0.25 Hz.
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Figure 5.26: POD-LSTM prediction of the axial force coefficient for pitch oscillation A0 = 10 deg , A = 5 deg, f = 0.25 Hz.
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Figure 5.27: POD-LSTM prediction of the pitching moment coefficient for pitch oscillation A0 = 10 deg , A = 5 deg, f = 0.25 Hz.

In order to identify the deficiencies of the constructed POD-LSTM model, the instantaneous surface pressure
coefficients for two notable time steps are investigated. In Figure 5.28 the instantaneous surface pressure co-
efficients of the upper surface are shown for the CFD simulation at t = 1.1 s and t = 2.1 s. As already discussed
during the steady simulation results, the prediction of the upper surface is identified as the main source of
errors, hence for illustration purposes, only the upper surface pressure coefficients are taken into account for
the analysis. It can be seen from the figures that at these time steps, a leading-edge wing vortex is produced
and wingtip separation occurs.
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(a) Upper surface pressure distribution at t = 1.1 s. (b) Upper surface pressure distribution at t = 2.1 s.

Figure 5.28: Upper surface pressure distribution for pitch oscillation A0 = 10 deg, A = 5 deg, f = 0.25 Hz at t = 1.1 s and t = 2.1 s obtained
from CFD simulations.

In Figure 5.29 and Figure 5.30 the absolute error of the surface pressure coefficient prediction is shown for
the different levels of model accuracy for t = 1.1 s and t = 2.1 s, respectively. From both figures, it can be
seen that the largest error is found near the tip region of the upper surface of the wing. As described before,
and also confirmed by the prediction of the pitching moment coefficient, the inaccurate prediction of the
wing tip region is the main cause of the errors in the prediction of the pitching moment coefficient. Further-
more, it can be seen that the error region at the wingtip is larger for models with a lower projection error, i.e.,
ε̄pr o j ,t r ai ni ng = 1E-2. From Figure 5.30 it can be concluded that even a small error region near the wing tip
can result in a high prediction error of the pitching moment coefficient. Next to inaccurate prediction of the
surface pressure coefficient near the wing tip region, small errors are found at the region where the leading-
edge vortex is developed.



5.2. Online stage results: POD-LSTM non-intrusive ROM predictions 77

(a) Absolute prediction error at t = 1.1 s for surrogate model

ε̄
pr o j ,tr ai ni ng
CP ′ = 1E-1, ε̄

N N ,tr ai ni ng
CP ′ = 1E-2.

(b) Absolute prediction error at t = 1.1 s for surrogate model

ε̄
pr o j ,tr ai ni ng
CP ′ = 1E-1, ε̄

N N ,tr ai ni ng
CP ′ = 5E-3.

(c) Absolute prediction error at t = 1.1 s for surrogate model

ε̄
pr o j ,tr ai ni ng
CP ′ = 1E-2, ε̄

N N ,tr ai ni ng
CP ′ = 1E-2.

(d) Absolute prediction error at t = 1.1 s for surrogate model

ε̄
pr o j ,tr ai ni ng
CP ′ = 1E-2, ε̄

N N ,tr ai ni ng
CP ′ = 5E-3.

Figure 5.29: POD-LSTM absolute prediction error of the upper surface pressure distribution for different surrogate model settings for
pitch oscillation A0 = 10 deg, A = 5 deg, f = 0.25 Hz at t = 1.1 s.



78 5. Simulation results of the POD-LSTM non-intrusive Reduced-Order Model

(a) Absolute prediction error at t = 2.1 s for surrogate model

ε̄
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CP ′ = 1E-1, ε̄

N N ,tr ai ni ng
CP ′ = 1E-2.

(b) Absolute prediction error at t = 2.1 s for surrogate model

ε̄
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CP ′ = 1E-1, ε̄

N N ,tr ai ni ng
CP ′ = 5E-3.

(c) Absolute prediction error at t = 2.1 s for surrogate model

ε̄
pr o j ,tr ai ni ng
CP ′ = 1E-2, ε̄

N N ,tr ai ni ng
CP ′ = 1E-2.

(d) Absolute prediction error at t = 2.1 s for surrogate model
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pr o j ,tr ai ni ng
CP ′ = 1E-2, ε̄

N N ,tr ai ni ng
CP ′ = 5E-3.

Figure 5.30: POD-LSTM absolute prediction error of the upper surface pressure distribution for different surrogate model settings for
pitch oscillation A0 = 10 deg, A = 5 deg, f = 0.25 Hz at t = 2.1 s.

As the accuracy of the POD-LSTM model is directly related to the prediction of the time coefficients for each
spatial POD mode, investigation of the prediction of each time coefficient can tell more about the limitations
of the current model. In Table 5.10 the NMSE for each predicted time coefficient is shown for the different
levels of accuracy of the model. From the table, it can be seen that the time coefficient of the first spatial POD
mode is predicted best for all model settings. Furthermore, it can be seen that on average the models with

the a higher projection error, i.e., ε̄pr o j ,t r ai ni ng
CP ′ = 1E-1, show better results for the prediction of the time co-

efficients. This means that although the projection error is lower, due to an increase in the number of spatial
POD modes used for the , the induced error due to the larger prediction errors for each time coefficient could
cause a reconstruction of the surface pressure field with higher errors. For the models with a projection error

of ε̄pr o j ,t r ai ni ng
CP ′ = 1E-2, the higher ranked time coefficients for the spatial POD modes relatively show larger

errors in comparison to the lower ranked time coefficients. The main reason for the inaccurate prediction of
higher-ranked time coefficients is an increase in the frequency of each time coefficient due to the origin of the
spatial POD modes that are constructed. As the lower ranked spatial POD modes contribute more towards the
TKE of the flow, these modes contain more dominant flow properties which are varying less throughout the
time domain with respect to higher-ranked spatial POD modes. This variation of flow properties throughout
the maneuver can be translated into low and high frequency signals respectively, i.e., lower-ranked spatial
POD modes have lower frequency time coefficients than higher-ranked spatial POD modes. It must be noted
that the error of the prediction of the time coefficients for the first five spatial POD modes is higher for the

models with a lower projection error, i.e., ε̄pr o j ,t r ai ni ng
CP ′ = 1E-2. This can be explained as these models in-
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corporate more spatial POD modes and hence need to cover a larger range of frequencies, which results in a
prediction that is less accurate for the lower frequency ranges,i.e., the lower-ranked spatial POD modes. The
prediction of the time coefficients of the first and eighth spatial POD mode are shown in Figure 5.31.

Table 5.10: NMSE evaluation of the POD-LSTM ROM time coefficient prediction for pitch oscillation A0 = 10 deg, A = 5 deg, f = 0.25 Hz.

Mode [-] NMSE per time coefficient [-]

ε̄
pr o j
CP ′ = 1E-1 ε̄

pr o j
CP ′ = 1E-2

ε̄N N
CP ′ = 1E-2 ε̄N N

CP ′ = 5E-3 ε̄N N
CP ′ = 1E-2 ε̄N N

CP ′ = 5E-3

1 0.981263 0.991624 0.979089 0.991343
2 0.033209 0.746636 0.799141 0.570572
3 0.461558 0.556417 0.645733 0.455129
4 0.735079 0.845859 0.841301 0.723033
5 0.208956 0.068972 -0.71327 -0.50738
6 -2.31708 -0.17276
7 0.675327 0.77854
8 -6.83557 -6.23126
9 -2.00816 -2.63086

10 -0.52383 -1.1797
11 0.203696 0.499216
12 0.776713 0.777103
13 -0.04337 -0.22462
14 -0.01448 0.400898
15 -0.45998 -0.87836
16 -0.35598 -0.88312
17 -1.46686 -1.05606
18 0.046836 0.456528
19 -0.70079 0.02242
20 0.180511 0.265406
21 -0.07525 0.10441
22 -0.63752 -0.99657
23 -0.30731 -0.70437
24 -0.47114 -0.70987
25 -0.15808 -0.15973
26 0.345687 0.597983
27 -0.10847 0.194035
28 0.658356 0.602494
29 -0.50314 -0.04392
30 0.014272 0.00649
31 -0.64797 -0.34648
32 -0.44626 -0.51413
33 -0.96068 -0.09198
34 -0.13758 0.011881
35 -0.64277 -0.24847
36 -0.06339 -0.19489
37 -0.28854 -0.18207
38 -1.09002 -0.43355
39 -0.10235 -0.38886
40 0.189914 0.219939

Average [-] 0.48 0.64 -0.39 -0.28
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(a) POD-LSTM prediction of time coefficient a1 for pitch oscillation A0 = 10 deg , A = 5 deg, f = 0.25 Hz.

(b) POD-LSTM prediction of time coefficient a8 for pitch oscillation A0 = 10 deg , A = 5 deg, f = 0.25 Hz.

Figure 5.31: POD-LSTM prediction of time coefficient for different spatial modes for pitch oscillation A0 = 10 deg , A = 5 deg, f = 0.25
Hz. Top: POD-LSTM prediction with high accuracy. Bottom: POD-LSTM prediction with low accuracy.

In Table 5.11 an overview is shown of the time-averaged prediction error of the full-order solution and a
comparison is provided with respect to the projection error of the constructed reduced-order basis for all
harmonic pitch motions. It can be seen from the table that most of the projection errors are smaller than the
projection error threshold set for the training maneuver, hence the reduced-order basis is able to accurately
capture all dominant flow properties of the test samples within a few spatial POD modes only. Furthermore,
it can be seen that the prediction error is relatively close towards the projection error and hence the LSTM
surrogate model shows good prediction performance with respect to its reduced-order basis.
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Table 5.11: Time-averaged prediction and projection error for harmonic pitch motions in terms of MSE.

Motion variables Prediction error in MSE [-] Projection error in MSE [-]

ε̄
pr o j
CP ′ = 1E-1 ε̄

pr o j
CP ′ = 1E-2 ε̄

pr o j
CP ′ = 1E-1 ε̄

pr o j
CP ′ = 1E-2

Nominal AoA A0 [deg] Amplitude A [deg] Frequency f [Hz] ε̄N N
CP ′ = 1E-2 ε̄N N

CP ′ = 5E-3 ε̄N N
CP ′ = 1E-2 ε̄N N

CP ′ = 5E-3

5 5 0.25 0.06454 0.05773 0.02252 0.01918 0.05323 0.01535
0.5 0.06349 0.05686 0.02227 0.01885 0.05329 0.01550
1 0.06085 0.05475 0.02194 0.01839 0.05403 0.01619

10 5 0.25 0.07508 0.06452 0.03842 0.03017 0.07190 0.05210
0.5 0.07915 0.06654 0.02953 0.02267 0.08604 0.08933
1 0.08629 0.07285 0.02569 0.02547 0.11741 0.16774

10 0.125 0.05805 0.05792 0.03604 0.02540 0.04391 0.00975
0.25 0.05565 0.05169 0.02540 0.01795 0.04577 0.00896
0.5 0.05550 0.05276 0.02219 0.02101 0.05201 0.00838

15 5 0.25 0.07761 0.06658 0.03995 0.03403 0.06448 0.02280
0.5 0.06853 0.05943 0.02821 0.02278 0.06054 0.01056
1 0.07274 0.06163 0.02503 0.02929 0.06725 0.01060

Plunge oscillations

This section will discuss the results of the prediction of the POD-LSTM model for the unsteady harmonic
plunge motions. In Figure 5.32 the results are shown for the prediction of the surface pressure coefficients,
the normal force coefficient and the pitching moment coefficient in terms of NMSE and are labeled by fre-
quency for each plunge maneuver. The NMSE is measured as error between the prediction of the POD-LSTM
model and the CFD simulations. From the figures, it can be seen that on average the POD-LSTM model for
plunge maneuvers with a frequency of 0.5 Hz is producing the best results for the prediction of the surface
pressure coefficient. Moreover, it can be seen that both the surface pressure coefficients and the normal force
coefficient are predicted with higher accuracy than the pitching moment coefficient. It is notable that the
harmonic plunge motions with a nominal value of 15 degrees with an amplitude of 5 degrees have the lowest
accuracy of all cases. This section will go into the details of the results of the case with the lowest accuracy for
the surface pressure coefficient for a frequency of 0.25 Hz. This case has been chosen as it provides good com-
parison with respect to the pitch maneuver with the same nominal value for the angle of attack and frequency.
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(a) LSTM prediction accuracy of the surface pressure coefficient in terms of
NMSE for varying frequency.

(b) LSTM prediction accuracy of the normal force coefficient in terms of
NMSE for varying frequency.

(c) LSTM prediction accuracy of the pitching moment coefficient in terms
of NMSE for varying frequency.

Figure 5.32: LSTM prediction accuracy of the pressure coefficients, normal coefficients, and pitching moment coefficients in terms of
NMSE for plunge oscillations at varying nominal values and amplitudes.

To provide good comparison with the previously investigated pitch motion, the harmonic plunge motion with
a nominal value of 10 degrees and an amplitude of 5 degrees with a frequency of 0.25 Hz will be investigated.
The input state variables as well as the error of the surface pressure coefficient for the given test sample in
terms of MSE are shown in Figure 5.33. It can be seen from the figure that for both the models with a high
projection error, ε̄pr o j ,t r ai ni ng = 1E-1, and low projection error, ε̄pr o j ,t r ai ni ng = 1E-2, the error of the surface
pressure coefficient prediction, just as for the pitch motion, is relatively high near the initial states of the
harmonic plunge motion, which are α ≈ 10 deg., α̇≈ (-) 7.5 deg/s and q = 0 deg/s, respectively.
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Figure 5.33: POD-LSTM input state variables for plunge oscillation A0 = 10 deg , A = 5 deg, f = 0.25 Hz.

The prediction of the POD-LSTM model for the normal force coefficient, axial force coefficient and the pitch-
ing moment coefficient is shown in Figure 5.34, Figure 5.35 and Figure 5.36, respectively. It can be seen that
the normal force coefficient and the axial force coefficient are covered well by the POD-LSTM model with
errors that are all in the same order of magnitude, whereas the trend of the pitching moment coefficient is
harder to predict and hence less accurate.
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Figure 5.34: POD-LSTM prediction of the normal force coefficient for plunge oscillation A0 = 10 deg , A = 5 deg, f = 0.25 Hz.
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Figure 5.35: POD-LSTM prediction of the axial force coefficient for plunge oscillation A0 = 10 deg , A = 5 deg, f = 0.25 Hz.
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Figure 5.36: POD-LSTM prediction of the pitching moment coefficient for plunge oscillation A0 = 10 deg , A = 5 deg, f = 0.25 Hz.

The instantaneous surface pressure coefficients for two notable time steps are investigated. In Figure 5.37 the
instantaneous surface pressure coefficients of the upper surface are shown for the CFD simulation at t = 1.1
s and t = 2.2 s. As already discussed during the steady simulation results, the prediction of the upper surface
is identified as the main source of errors, hence for illustration purposes only the upper surface pressure
coefficients are taken into account for the analysis. It can be seen from the figures that at these time steps, a
leading-edge wing vortex is produced and wing tip separation occurs, which are similar flow properties as in
the previous discussed pitch maneuver.
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(a) Upper surface pressure distribution at t = 1.1 s. (b) Upper surface pressure distribution at t = 2.2 s.

Figure 5.37: Upper surface pressure distribution for plunge oscillation A0 = 10 deg, A = 5 deg, f = 0.25 Hz at t = 1.1 s and t = 2.2 s
obtained from CFD simulations.

In Figure 5.38 and Figure 5.39 the absolute error of the surface pressure coefficient prediction is shown for
the different levels of model accuracy for t = 1.1 s and t = 2.2 s, respectively. The figures show similar results
as for the previously described pitch maneuver, where it can be seen that the largest error is found near the
tip region of the upper surface of the wing. Furthermore, it can be seen that the error region at the wing tip is
significantly larger for models with a lower projection error, i.e., ε̄pr o j ,t r ai ni ng = 1E-2.
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(a) Absolute prediction error at t = 1.1 s for surrogate model

ε̄
pr o j ,tr ai ni ng
CP ′ = 1E-1, ε̄

N N ,tr ai ni ng
CP ′ = 1E-2.

(b) Absolute prediction error at t = 1.1 s for surrogate model

ε̄
pr o j ,tr ai ni ng
CP ′ = 1E-1, ε̄

N N ,tr ai ni ng
CP ′ = 5E-3.

(c) Absolute prediction error at t = 1.1 s for surrogate model

ε̄
pr o j ,tr ai ni ng
CP ′ = 1E-2, ε̄

N N ,tr ai ni ng
CP ′ = 1E-2.

(d) Absolute prediction error at t = 1.1 s for surrogate model

ε̄
pr o j ,tr ai ni ng
CP ′ = 1E-2, ε̄

N N ,tr ai ni ng
CP ′ = 5E-3.

Figure 5.38: POD-LSTM absolute prediction error of the upper surface pressure distribution for different surrogate model settings for
plunge oscillation A0 = 10 deg, A = 5 deg, f = 0.25 Hz at t = 1.1 s.
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(a) Absolute prediction error at t = 2.2 s for surrogate model

ε̄
pr o j ,tr ai ni ng
CP ′ = 1E-1, ε̄

N N ,tr ai ni ng
CP ′ = 1E-2.

(b) Absolute prediction error at t = 2.2 s for surrogate model

ε̄
pr o j ,tr ai ni ng
CP ′ = 1E-1, ε̄

N N ,tr ai ni ng
CP ′ = 5E-3.

(c) Absolute prediction error at t = 2.2 s for surrogate model

ε̄
pr o j ,tr ai ni ng
CP ′ = 1E-2, ε̄

N N ,tr ai ni ng
CP ′ = 1E-2.

(d) Absolute prediction error at t = 2.2 s for surrogate model

ε̄
pr o j ,tr ai ni ng
CP ′ = 1E-2, ε̄

N N ,tr ai ni ng
CP ′ = 5E-3.

Figure 5.39: POD-LSTM absolute prediction error of the upper surface pressure distribution for different surrogate model settings for
plunge oscillation A0 = 10 deg, A = 5 deg, f = 0.25 Hz at t = 2.2 s.

In Table 5.12 the results of the prediction of the time coefficients in terms of NMSE are shown for the plunge
maneuver. Similar as to the pitch maneuver, it can be seen that the prediction of the time coefficient for
the first spatial POD mode shows the best results, whereas the prediction of the time coefficient for the eight
spatial mode shows the worst results. Furthermore, just as for the pitch maneuver the same trend is seen in an
increase in the error for higher ranked spatial POD modes. However, it must be noted that the average errors
of the predicted time coefficients for the plunge maneuver are lower in comparison to the pitch maneuver.
The predicted time coefficients are shown in Figure 5.40 for the first and the eighth spatial POD mode.
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Table 5.12: NMSE evaluation of the POD-LSTM ROM time coefficient prediction for plunge oscillation A0 = 10 deg, A = 5 deg, f = 0.25
Hz.

Mode [-] NMSE per time coefficient [-]

ε̄
pr o j
CP ′ = 1E-1 ε̄

pr o j
CP ′ = 1E-2

ε̄N N
CP ′ = 1E-2 ε̄N N

CP ′ = 5E-3 ε̄N N
CP ′ = 1E-2 ε̄N N

CP ′ = 5E-3

1 0.987597 0.999456 0.979027 0.999141
2 0.002314 0.906767 0.959135 0.727625
3 0.533132 0.756888 0.887484 0.588762
4 0.844971 0.983046 0.991609 0.856213
5 0.384702 -0.0025 -1.36612 -1.16012
6 -2.7072 -0.02696
7 0.652951 0.798574
8 -17.3595 -15.3851
9 -2.42486 -3.0963

10 -0.81407 -1.69329
11 0.221225 0.794415
12 0.864203 0.850571
13 -0.07308 -0.28556
14 -0.03451 0.405687
15 -0.4484 -0.81783
16 -0.276 -0.83969
17 -2.52954 -1.79902
18 0.088711 0.628851
19 -1.5935 -0.0167
20 0.119574 0.209105
21 -0.07169 0.153527
22 -0.68162 -1.01259
23 -0.31696 -0.69602
24 -0.56934 -0.99178
25 -0.56383 -0.44433
26 0.407143 0.698398
27 -0.1211 0.225404
28 0.644257 0.577546
29 -0.94987 -0.06137
30 0.002612 -0.17331
31 -1.13471 -0.63137
32 -0.45923 -0.57248
33 -1.89943 -0.21893
34 -0.09427 0.064395
35 -0.77327 -0.18432
36 0.265912 -0.58942
37 -0.49429 -0.34554
38 -1.17515 -0.46745
39 -0.14763 -0.52536
40 0.190386 0.240615

Average [-] 0.55 0.73 -0.80 -0.58
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(a) POD-LSTM prediction of time coefficient a1 for plunge oscillation A0 = 10 deg , A = 5 deg, f = 0.25 Hz.

(b) POD-LSTM prediction of time coefficient a8 for plunge oscillation A0 = 10 deg , A = 5 deg, f = 0.25 Hz.

Figure 5.40: POD-LSTM prediction of time coefficient for different spatial modes for plunge oscillation A0 = 10 deg , A = 5 deg, f = 0.25
Hz. Top: POD-LSTM prediction of time coefficient with high accuracy. Bottom: POD-LSTM prediction of time coefficients with low

accuracy.

In Table 5.13 an overview is shown of the time-averaged prediction error of the full-order solution and a
comparison is provided with respect to the projection error of the constructed reduced-order basis for all
harmonic plunge motions. The results are similar as to the harmonic pitch motions, with the most notable
result that the projection error is in the same orders of magnitude or even lower than the set threshold for the
projection errors of the training maneuver.
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Table 5.13: Time-averaged prediction and projection error for harmonic plunge motions in terms of MSE.

Motion variables Prediction error in MSE [-] Projection error in MSE [-]

ε̄
pr o j ,tr ai ni ng
CP ′ = 1E-1 ε̄

pr o j ,tr ai ni ng
CP ′ = 1E-2 ε̄

pr o j ,tr ai ni ng
CP ′ = 1E-1 ε̄

pr o j
CP ′ = 1E-2

Nominal AoA A0 [deg] Amplitude A [deg] Frequency f [Hz] ε̄N N
CP ′ = 1E-2 ε̄N N

CP ′ = 5E-3 ε̄N N
CP ′ = 1E-2 ε̄N N

CP ′ = 5E-3

5 5 0.25 0.06510 0.05823 0.02262 0.01927 0.05333 0.01538
0.5 0.06485 0.05810 0.02251 0.01891 0.05366 0.01552
1 0.06457 0.05819 0.02285 0.01855 0.05540 0.01609

10 5 0.25 0.07390 0.06371 0.03918 0.03094 0.05960 0.01420
0.5 0.07731 0.06451 0.02626 0.01951 0.06108 0.01321
1 0.08644 0.07110 0.01800 0.01843 0.06790 0.01204

10 0.125 0.05793 0.05769 0.03546 0.02493 0.04409 0.00989
0.25 0.05619 0.05197 0.02458 0.01708 0.04620 0.00945
0.5 0.06181 0.05223 0.01731 0.01928 0.05237 0.00900

15 5 0.25 0.07937 0.06881 0.04019 0.03464 0.06487 0.02401
0.5 0.08049 0.06731 0.03459 0.02948 0.06696 0.02286
1 0.12850 0.10914 0.07273 0.08828 0.12669 0.12885

5.2.3. POD-LSTM model performance

To assess the performance of the POD-LSTM model and to provide a comparison with previous studies, the
model performance in terms of prediction time is discussed in this section. The assessment of the model
performance is done by predicting the training samples, where the maneuver has been repeated 5 times total
in order to provide an accurate measurement of the prediction time. Furthermore, an assessment is done
for the prediction time for varying hyperparameters of the model. It must be noted that only hyperparame-
ters are included that influence the model complexity or the amount of input data that is used for the model
prediction, hence the batch size is not considered during this assessment. Each prediction is done 5 times
for each hyperparameter in order to avoid the influence of background processes during the run. This sec-
tion will discuss the total maneuver prediction time as well as the prediction time for each time step. The
assessment has been done using the specifications that were shown in Table 5.2.

Variation of LSTM layers

In Figure 5.41 the computational prediction time of the full maneuver is shown for varying number of LSTM
layers. From the figure it can be seen that the prediction time almost linearly increases with increasing num-
ber of LSTM layers. The overall prediction time results, including the results per time step are shown in
Table 5.14.

Figure 5.41: Computational prediction time for varying number of LSTM layers.
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Table 5.14: Prediction results for a varying number of LSTM layers

LSTM layers ε̄
pr o j ,t r ai ni ng
CP ′ [-] ε̄N N

CP ′ [-] Total prediction time [s] Prediction time per time step [s]

1 1.00E-01 1.00E-02 4.191268 0.000148
5.00E-03 4.224438 0.000149

1.00E-02 1.00E-02 4.52364 0.00016
5.00E-03 5.022778 0.000177

2 1.00E-01 1.00E-02 6.573286 0.000232
5.00E-03 6.827334 0.000241

1.00E-02 1.00E-02 6.966079 0.000246
5.00E-03 9.557676 0.000337

3 1.00E-01 1.00E-02 8.766485 0.000309
5.00E-03 9.357569 0.00033

1.00E-02 1.00E-02 9.677004 0.000342
5.00E-03 14.21434 0.000502

4 1.00E-01 1.00E-02 10.71022 0.000378
5.00E-03 11.72726 0.000414

1.00E-02 1.00E-02 14.72005 0.00052
5.00E-03 16.42994 0.00058

5 1.00E-01 1.00E-02 12.75674 0.00045
5.00E-03 13.47559 0.000476

1.00E-02 1.00E-02 16.31249 0.000576
5.00E-03 19.83834 0.0007

Variation of LSTM units

In Figure 5.42 the computational prediction time of the full maneuver is shown for varying number of LSTM
layers. From the figure it can be seen that the prediction time almost linearly increases with increasing num-
ber of LSTM units. The overall prediction time results, including the results per time step, are shown in Ta-
ble 5.15.

Figure 5.42: Computational prediction time for varying number of LSTM units.
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Table 5.15: Prediction results for a varying number of LSTM units

LSTM units ε̄
pr o j ,t r ai ni ng
CP ′ [-] ε̄N N

CP ′ [-] Total prediction time [s] Prediction time per time step [s]

16 1.00E-01 1.00E-02 6.573286 0.000232
5.00E-03 6.827334 0.000241

1.00E-02 1.00E-02 4.755023 0.000168
5.00E-03 4.652098 0.000164

32 1.00E-01 1.00E-02 4.191268 0.000148
5.00E-03 4.224438 0.000149

1.00E-02 1.00E-02 4.52364 0.00016
5.00E-03 5.022778 0.000177

64 1.00E-01 1.00E-02 8.766485 0.000309
5.00E-03 9.357569 0.00033

1.00E-02 1.00E-02 5.611828 0.000198
5.00E-03 5.87677 0.000207

128 1.00E-01 1.00E-02 10.71022 0.000378
5.00E-03 11.72726 0.000414

1.00E-02 1.00E-02 7.392733 0.000261
5.00E-03 7.250718 0.000256

256 1.00E-01 1.00E-02 12.75674 0.00045
5.00E-03 13.47559 0.000476

1.00E-02 1.00E-02 13.67016 0.000483
5.00E-03 13.90889 0.000491

Variation of dense layers

In Figure 5.43 the computational prediction time of the full maneuver is shown for varying numbes of dense
layers. From the figure, it can be seen that the prediction time is increasing slightly for an increasing num-
ber of dense layers. The overall prediction time results, including the results per time step, are shown in
Table 5.16.

Figure 5.43: Computational prediction time for varying number of dense layers.
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Table 5.16: Prediction results for a varying number of dense layers

Dense layers ε̄
pr o j ,t r ai ni ng
CP ′ [-] ε̄N N

CP ′ [-] Total prediction time [s] Prediction time per time step [s]

0 1.00E-01 1.00E-02 4.140147 0.000146
5.00E-03 4.3416 0.000153

1.00E-02 1.00E-02 4.2474 0.00015
5.00E-03 4.777703 0.000169

1 1.00E-01 1.00E-02 4.191268 0.000148
5.00E-03 4.224438 0.000149

1.00E-02 1.00E-02 4.52364 0.00016
5.00E-03 5.022778 0.000177

2 1.00E-01 1.00E-02 4.450955 0.000157
5.00E-03 4.279335 0.000151

1.00E-02 1.00E-02 4.514106 0.000159
5.00E-03 4.929297 0.000174

3 1.00E-01 1.00E-02 4.403034 0.000155
5.00E-03 4.194825 0.000148

1.00E-02 1.00E-02 4.718713 0.000167
5.00E-03 5.229906 0.000185

4 1.00E-01 1.00E-02 4.597823 0.000162
5.00E-03 4.708853 0.000166

1.00E-02 1.00E-02 4.833574 0.000171
5.00E-03 5.522656 0.000195

Variation of dense units

In Figure 5.44 the computational prediction time of the full maneuver is shown for varying number of dense
units. From the figure it can be seen that the prediction time is increasing slightly for an increasing number
of dense units, however the differences are significantly small that the effect of varying the dense units is
negligible for computational prediction time . The overall prediction time results, including the results per
time step are shown in Table 5.17.

Figure 5.44: Computational prediction time for varying number of dense units.
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Table 5.17: Prediction results for a varying number of dense units

Dense units ε̄
pr o j ,t r ai ni ng
CP ′ [-] ε̄N N

CP ′ [-] Total prediction time [s] Prediction time per time step [s]

32 1.00E-01 1.00E-02 4.19401 0.000148
5.00E-03 4.318153 0.000152

1.00E-02 1.00E-02 4.598414 0.000162
5.00E-03 4.76999 0.000168

64 1.00E-01 1.00E-02 4.130597 0.000146
5.00E-03 4.218606 0.000149

1.00E-02 1.00E-02 4.542324 0.00016
5.00E-03 4.856077 0.000171

128 1.00E-01 1.00E-02 4.191268 0.000148
5.00E-03 4.224438 0.000149

1.00E-02 1.00E-02 4.52364 0.00016
5.00E-03 5.022778 0.000177

256 1.00E-01 1.00E-02 4.212829 0.000149
5.00E-03 4.18315 0.000148

1.00E-02 1.00E-02 4.660517 0.000165
5.00E-03 5.16251 0.000182

512 1.00E-01 1.00E-02 4.448591 0.000157
5.00E-03 4.600008 0.000162

1.00E-02 1.00E-02 4.925752 0.000174
5.00E-03 5.510708 0.000195

Variation of time steps used

In Figure 5.45 the computational prediction time of the full maneuver is shown for varying number of time
steps used. From the figure it can be seen that the prediction time shows a small linear increase for an in-
creasing number of time steps used. The overall prediction time results, including the results per time step,
are shown in Table 5.18.

Figure 5.45: Computational prediction time for a varying number of time steps used.
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Table 5.18: Prediction results for varying time steps used

Time steps ε̄
pr o j ,t r ai ni ng
CP ′ [-] ε̄N N

CP ′ [-] Total prediction time [s] Prediction time per time step [s]

3 1.00E-01 1.00E-02 3.864684 0.000136
5.00E-03 4.104628 0.000145

1.00E-02 1.00E-02 4.293692 0.000152
5.00E-03 4.873513 0.000172

4 1.00E-01 1.00E-02 3.940593 0.000139
5.00E-03 4.345948 0.000153

1.00E-02 1.00E-02 4.567063 0.000161
5.00E-03 5.086767 0.00018

5 1.00E-01 1.00E-02 4.191268 0.000148
5.00E-03 4.224438 0.000149

1.00E-02 1.00E-02 4.52364 0.00016
5.00E-03 5.022778 0.000177

6 1.00E-01 1.00E-02 4.545966 0.00016
5.00E-03 4.965896 0.000175

1.00E-02 1.00E-02 5.552729 0.000196
5.00E-03 5.72535 0.000202

7 1.00E-01 1.00E-02 4.737366 0.000167
5.00E-03 5.026316 0.000177

1.00E-02 1.00E-02 5.761844 0.000203
5.00E-03 5.886796 0.000208

POD-LSTM model performance evaluation
The results as discussed above should provide the user of the POD-LSTM model insights in the variation
of the given hyperparameters for the computational prediction time of the model. From the results, it can
be concluded that the variation of the LSTM layers and units have the largest effect on the computational
prediction time, whereas the differences between minimum and maximum prediction time are up to a factor
of 3. For all the other hyperparameters differences are significantly small that it can be considered that they
have no effect on the computational prediction time of the POD-LSTM model. In Section 5.2.3 an overview of
the minimum and maximum computational prediction time is found for the variance of the hyperparameters
as well as a comparison is provided with respect to the high-fidelity simulations and the previous constructed
surrogate model as described by Papp [18]. It can be seen from the table that on average the prediction time
is similar for all levels of accuracy. Furthermore, it can be seen that the prediction time of the constructed
POD-LSTM models is significantly smaller than of the previous constructed CNN by Papp, by up to a factor
of 60. This can be explained as the proposed model in this work, just as for training of the model, only makes
use of the reduced-order basis and hence the complexity of the model can be significantly decreased with
respect to previous studies.

Table 5.19: POD-LSTM computational prediction time comparison with respect to high-fidelity simulations and previous constructed
surrogate model from D. Papp [18]

Model ε̄
pr o j ,t r ai ni ng
CP ′ [-] ε̄N N

CP ′ [-] Minimum prediction time per time step Maximum prediction time per time step Average prediction time per time step

POD-LSTM (@2.4 GHz) 1.00E-01 1.00E-02 0.14 ms 0.45 ms 0.21 ms
5.00E-03 0.15 ms 0.48 ms 0.21 ms

1.00E-02 1.00E-02 0.15 ms 0.58 ms 0.21 ms
5.00E-03 0.15 ms 0.71 ms 0.24 ms

ENSOLV (Training samples) 6 x 106 ms / 76 x 103 ms (@80 threads)
CNN (Papp @2.6 GHz) 7.00E-05 15 ms

5.3. Summary of the POD-LSTM model results
This chapter discussed the simulation results of the proposed POD-LSTM model. The results were split up in
two different sections: the offline stage results and the online stage results.

Overall, the offline stage results have shown that the high-fidelity samples that are used for the construction
of the reduced-order basis provide good regressor space coverage and the projection error of most of the test
samples is in the same order of magnitude as the training samples. Furthermore, variance on the reduced-
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order basis was investigated to determine the effects on the use of different spatial POD modes, that can either
be constructed from new training samples or can be altered from the original reduced-order basis. Depen-
dent on the application purpose of this POD-LSTM model, variation of the reduced-order basis has shown
that it can be beneficial for the integral load projection of the surface pressure coefficient or the pitching mo-
ment coefficient. The training process of the LSTM surrogate model has been evaluated and it has shown
that the number of LSTM units used in the model has the highest influence on the computational training
time, whereas if the parameters of the model are optimal the computational training time can be reduced to
an average of 4 minutes. The limitations of the reduced-order basis were investigated and it was shown that
for lower projection errors the region of error is highlighted near the tip of the UCAV configuration. However,
in general the projection error of the reduced-order basis is small for both constructed reduced-order basis
and limitations of using the POD method are therefore negligible.

For the online stage results, two different simulations were investigated: steady and unsteady simulations.
The steady simulations were performed for the angle of attack range between 0 - 20 degrees, to identify both
linear and non-linear phenomena. The results of the prediction of the steady simulations have shown ac-
curate results for the normal force coefficient and the axial force coefficient for all level of model accuracy
settings. However, the pitching moment coefficient was predicted inaccurately due to the inaccurate sur-
face pressure coefficient near the wing tip region. It must be noted that the model with a higher projection
error, i.e., a reduced-order basis with fewer spatial POD modes showed a better accuracy for the prediction
of the pitching moment coefficient. For the unsteady results, harmonic pitch and plunge motions were in-
vestigated. These cases are introduced in order to identify the deficiencies of the POD-LSTM model within
the regressor space of the high-fidelity training samples. The results for both the harmonic pitch and plunge
motions are similar, whereas the surface pressure coefficient, the normal force coefficient, and the axial force
coefficient are predicted with high accuracy. However, just as with the steady simulation results, the results
of the pitching moment coefficient are inaccurate due to inaccurate prediction of the surface pressure coeffi-
cient of the wing tip region. The results have shown that even small errors of the surface pressure coefficient
near the wing tip could lead to high errors of the pitching moment coefficient. For both harmonic pitch and
plunge motions the errors of the time coefficients are presented and it is shown that the prediction of the time
coefficients for the first spatial POD mode shows the highest accuracy, whereas the accuracy decreases with
increasing rank of the spatial POD mode. The model performance in terms of computational cost has been
investigated and it is shown that the number of LSTM layers has the highest influence on the prediction time
of the POD-LSTM model. However, it must be noted that the prediction time of the proposed POD-LSTM
model is faster than previous studies, which is mainly due to the reduced complexity of the surrogate model.

As an addition to the unsteady harmonic motions, also a special maneuver has been investigated. The results
of this maneuver are shown in Appendix A. This maneuver was investigated to determine the performance of
the POD-LSTM model near the bounds of the regressor space. From the results it is shown that the accuracy
of the prediction of the POD-LSTM model near the bounds of the state variables tends to increase massively.
Therefore, the POD-LSTM model can only be used within the bounds of the regressor space coverage and
does not serve as extrapolation model.
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Conclusion and recommendations

In this thesis, a CFD data-driven Reduced-Order Model (ROM) is constructed for the prediction of the surface
pressure and the aerodynamic load coefficients of the MULDICON UCAV configuration. The motivation for
this thesis work was to identify possible solutions for the drawbacks of previous studies that were performed
to predict the surface pressure distributions of the UCAV configuration. These solutions include the incor-
poration of time-history effects using Recurrent Neural Network (RNN) architectures and the possibility to
impose boundary conditions on the flow using Proper Orthogonal Decomposition (POD).

This work proposed a POD-LSTM model that makes use of a reduced-order basis that is constructed from
high-fidelity CFD samples and has been used to predict the surface pressure coefficient distribution of the
MULDICON UCAV configuration. A systematic approach was used in order to evaluate the model perfor-
mance of the POD-LSTM model in terms of accuracy and computational training time and computational
prediction time. Both evaluations of the offline and online stage were done and the results of this evaluation
were presented in this thesis report. This chapter will conclude the results that were found and will propose
further recommendations for the POD-LSTM model that can be used in future studies.

6.1. Conclusions
This section will discuss the conclusions that followed from the results for the prediction of the surface pres-
sure coefficients using a POD-LSTM model. The conclusions will be presented in two different parts that will
discuss the difference between the offline stage of the model and the online stage of the model.

The conclusions that can be drawn from the offline stage results are as follows:

• The high-fidelity samples that are obtained from CFD simulations, which were defined using the Schroeder
sweep, provide good regressor coverage for the construction of a reduced-order basis using the POD
method. The projection of the full-order solutions on the constructed reduced-order basis of the test
samples has been investigated and has shown an accuracy that is in the same order of magnitude as
the accuracy of the training samples. Furthermore, the limitations of the reduced-order basis have been
investigated and it was shown that the projection errors only cover a small region of the leading edge
near the wingtip. Although these errors could lead to a high contribution of the error of the pitching
moment coefficient, the region of error is small and the limitations on the use of a reduced-order basis
are minimal.

• Variations of the reduced-order basis have been investigated in order to determine the effect of alterna-
tive spatial POD modes on the projection error. It was shown that the alternative reduced-order basis,
where the spatial POD modes were altered to provide more emphasis on the tip region, provided lower
projection errors for both the surface pressure coefficient and the pitching moment coefficient, while
the number of spatial POD modes used for this reduced-order basis was constant.

• A systematic approach was used in order to be able to evaluate the performance of the POD-LSTM
model. The benefit of using the POD method for the POD-LSTM model is that errors between the of-
fline and online stage can be identified separately, which can give the user of the model insight into
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possible improvements. Furthermore, a sensitivity analysis has been performed to determine the ef-
fect of varying the model parameters for the computational training time of the POD-LSTM model. It
was shown that the number of LSTM units in the model has a significant effect on the computational
training time and should be considered as a parameter of interest in future modeling approaches. Fur-
thermore, to achieve an accuracy of 5E-3 in terms of MSE for the prediction of surface pressure coeffi-
cient for the training samples, a minimum of 4 minutes of computational training time was found. This
time is significantly lower than the time that was needed to produce the high-fidelity training samples.
Due to time constraints, a fair comparison between previous studies was not possible. However, it was
shown that the POD-LSTM model shows potential to be a good competitor with respect to previous
studies in terms of computational expense.

The following conclusions can be drawn from the online stage results:

• The full-order steady CFD simulation results are compared with the POD-LSTM predictions. Here, it
was shown that the normal force coefficient and the axial force coefficient are both well captured by the
POD-LSTM model for all angles of attack. However, the pitching moment coefficient shows inaccurate
predictions due to an inaccurate prediction of the surface pressure coefficients near the wing tip region.
It was shown that the models with a higher projection error, i.e., the reduced-order basis with less spa-
tial POD modes, showed a better accuracy for the pitching moment coefficient. Although it is expected
that a reduced-order basis with a lower projection error shows better results for the prediction of the
surface pressure coefficient, this was not the case for the steady results. As more time coefficients need
to be predicted for a model with a lower projection error, the accuracy of the time coefficients of the
first spatial POD modes is less accurate in comparison to a model with a higher projection error. It was
shown that the frequency of the time coefficients increases with an increasing rank of the spatial POD
modes. This makes it harder to predict the range of frequencies for the time coefficients if the number
of POD modes used is increased.

• Unsteady harmonic oscillations were investigated and compared to the full-order solution. From the
results, it was shown that most of the maneuvers are covered well by the POD-LSTM model, where the
projection error for most maneuvers is below the threshold that was set for the training samples. Fur-
thermore, it was shown that the time-averaged prediction errors for the surface pressure coefficients
are in the same order of magnitude as the projection errors. Hence, it can be concluded that the POD-
LSTM model is able to predict the test samples well. Similar to the steady results, it was shown that the
pitching moment coefficient shows the highest prediction errors for all cases due to an inaccurate pre-
diction of the surface pressure coefficient near the wing tip region. The highest errors of the prediction
of the surface pressure coefficient are shown where the regressor coverage is minimal. Hence, more
training samples are needed in this region to improve the reduced-order basis for the surface pressure
coefficient.

• The computational prediction time of the POD-LSTM model was evaluated for varying model param-
eters. It was shown that the number of LSTM units and LSTM layers have the highest influence on
the computational prediction time. Although these model parameters have a relatively high contribu-
tion towards the computational prediction time, the overall prediction time of the POD-LSTM model
in comparison to previous studies is significantly lower, by up to a factor of 60.

Overall, the POD-LSTM model shows promising results for the prediction of the surface pressure coefficients
and the integral aerodynamic load coefficients. In particular, the normal force coefficient and the axial force
coefficient of the UCAV MULDICON configuration for both steady and unsteady simulations show promise.
The drawback of this model in comparison to previous studies is the inaccurate prediction of the surface
pressure coefficient near the wing tip region, which causes high errors of the pitching moment coefficient.
As a reduced-order basis is used for the construction of the model, errors between the offline and online
stage of the model can be identified easily and model complexity can be reduced significantly. This results
in lower computational expense for both the training process and the prediction of the model. This research
serves as a baseline for the construction of a POD-LSTM model that will provide knowledge on the influence
of different model parameters. The full capabilities of the POD-LSTM model still need to be exploited in
future studies, in which longer training time, higher prediction accuracy, and different training samples are
suggested.
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6.2. Recommendations: Improvement of the POD-LSTM model
As this thesis work only serves as a baseline for the construction of the POD-LSTM model, further research is
necessary in order to exploit the full potential of this proposed reduced-order modeling approach. From the
current work, the following recommendations are proposed for incorporation in future studies:

• To improve the surface pressure coefficient prediction near the wing tip region, a variance of the cur-
rent reduced-order basis can be used. As can be seen from the offline stage results, a variance of the
reduced-order basis that incorporated a linear weighted relationship towards the tip region for each
spatial POD mode showed a decrease in the projection error for both the surface pressure coefficient
and the pitching moment coefficient. Although this reduced-order basis was already investigated in
the offline stage, they have not been used in the online stage of the POD-LSTM model yet. In addi-
tion, a second POD-LSTM model can be used to predict the region of the wingtip that makes use of a
reduced-order basis with a larger number of spatial POD modes used. This method is known as domain
decomposition [27] and, in combination with the original POD-LSTM model, can provide solutions for
the inaccurate pressure prediction near the wingtip.

• To improve the prediction of the integral load coefficients, it is suggested to consider the integral load
coefficients in the prediction of the POD-LSTM model. Currently, the integral load coefficients are
calculated from the predicted time coefficients that are based on the surface pressure distribution of
each individual mode. As the shear stress of the UCAV is not included, the prediction of the integral
load coefficients can be inaccurate. Furthermore, if the time coefficients are predicted inaccurately,
they can have a large influence on the integral load coefficients. As the surrogate model only makes use
of time-sequential data, the integral load coefficients can easily be implemented in the prediction of
the model to avoid errors that are imposed due to inaccurate predictions of the time coefficients.

• As the prediction of the time coefficients are directly linked to the error of the surface pressure coef-
ficients, the error of the time coefficient prediction could be incorporated in the loss function of the
POD-LSTM model. Currently, the loss function is only based on the projection of the predicted time
coefficients on a reduced-order basis. A weighted relationship can be used to increase the accuracy of
prediction of the time coefficients of the higher-ranked spatial POD modes, resulting in better predic-
tion of the surface pressure coefficient and the integral aerodynamic loads.

• The scope of the POD-LSTM model is limited due to the simplified MULDICON UCAV configuration.
As the proposed POD-LSTM model only makes use of the state variables as input, the model can easily
incorporate more features such as the deflection of ailerons and elevators. To extend the scope of the
current POD-LSTM model, a more detailed model of the MULDICON UCAV can be used.





A
Special simulations: Sharp pitch-up

maneuver

Next to the harmonic pitch and plunge motions, another type of maneuver is investigated: the sharp pitch-
up maneuver. This maneuver will be discussed as it will provide the user of the model information about the
performance of the POD-LSTM model towards the bounds of the regressor space. Furthermore, this partic-
ular maneuver has been used in previous studies and provides good comparison to the POD-LSTM model.
The input state variables as well as the error of the surface pressure coefficient for the given sharp pitch-up
maneuver in terms of MSE are shown in Figure A.1. It can be seen from the figure that for both the models
with a high projection error, ε̄pr o j ,t r ai ni ng = 1E-1, and low projection error, ε̄pr o j ,t r ai ni ng = 1E-2, the error
of the surface pressure coefficient prediction is relatively high at the time instantaneous moments where the
pitch rate changes. Furthermore, it can be seen that the differences between the surface pressure coefficient
prediction for both projection errors, i.e., ε̄pr o j ,t r ai ni ng = 1E-1 and ε̄pr o j ,t r ai ni ng = 1E-2, are relatively small,
whereas the model with the highest accuracy settings shows the best results.
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Figure A.1: POD-LSTM input state variables for sharp pitch-up maneuver.

The prediction of the POD-LSTM model for the normal force coefficient, axial force coefficient and the pitch-
ing moment coefficient is shown in Figure A.2, Figure A.3 and Figure A.4, respectively. It can be seen that
both the normal force coefficient and the pitching moment coefficient are covered well by the POD-LSTM
model with errors that are in the same orders of magnitude, whereas the axial force coefficient has an off-
set in its prediction. The transient that occurs after a change in pitch rate is not covered by the POD-LSTM
model, although the average of the transient is predicted well. Furthermore, it can be noted that the peaks of
the integral load coefficients that occur in the predictions of the model are due to the instantaneous change
of the pitch rate, where its values are outside of the regressor space and therefore cause the error of predic-
tion to increase significantly. The differences between the model prediction for both projection errors, i.e.,
ε̄pr o j ,t r ai ni ng = 1E-1 and ε̄pr o j ,t r ai ni ng = 1E-2, can vary up to a factor 100.
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Figure A.2: POD-LSTM prediction of the normal force coefficient for sharp pitch-up maneuver.
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Figure A.3: POD-LSTM prediction of the axial force coefficient for sharp pitch-up maneuver.
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Figure A.4: POD-LSTM prediction of the pitching moment coefficient for sharp pitch-up maneuver.

The instantaneous surface pressure coefficient distribution for two notable time steps is investigated. In Fig-
ure A.5 the instantaneous surface pressure coefficients of the upper surface are shown for the CFD simulation
at t = 14.5 s, which represents the abrupt changes in the pitch rate of the maneuver, and t = 18 s, where the
differences between the different levels of model accuracy are large. As seen from the figures, both a leading
edge wing vortex and flow separation near the wing tip region occur. It must be noted that the flow separation
of the wing tip pressure coefficient covers a larger area of the upper surface than for the previously discussed
pitch and plunge motions. Furthermore, it can be seen that the leading edge wing vortex is extended towards
a larger part of the span of the wing.
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(a) Upper surface pressure distribution at t = 14.5 s. (b) Upper surface pressure distribution at t = 18 s.

Figure A.5: Upper surface pressure distribution for the sharp pitch-up maneuver, at t = 14.5 s and t = 18 s obtained from CFD
simulations.

In Figure A.6 and Figure A.7 the absolute error of the surface pressure coefficient prediction is shown for the
different levels of model accuracy for t = 14.5 s and t = 18 s, respectively. Similar results as for the pitch and
plunge motions are obtained from the figures, where it can be seen that the largest error is found near the tip
region of the upper surface of the wing. In Figure A.7 it can be seen that error of the prediction of the flow
separation near the wing tip region decreases with increasing model accuracy used for training.



109

(a) Absolute prediction error at t = 14.5 s for surrogate model

ε̄
pr o j ,tr ai ni ng
CP ′ = 1E-1, ε̄

N N ,tr ai ni ng
CP ′ = 1E-2.

(b) Absolute prediction error at t = 14.5 s for surrogate model

ε̄
pr o j ,tr ai ni ng
CP ′ = 1E-1, ε̄

N N ,tr ai ni ng
CP ′ = 5E-3.

(c) Absolute prediction error at t = 14.5 s for surrogate model

ε̄
pr o j ,tr ai ni ng
CP ′ = 1E-2, ε̄

N N ,tr ai ni ng
CP ′ = 1E-2.

(d) Absolute prediction error at t = 14.5 s for surrogate model

ε̄
pr o j ,tr ai ni ng
CP ′ = 1E-2, ε̄

N N ,tr ai ni ng
CP ′ = 5E-3.

Figure A.6: POD-LSTM absolute prediction error of the upper surface pressure distribution for different surrogate model settings for the
sharp pitch-up maneuver at t = 14.5 s.
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(a) Absolute prediction error at t = 18 s for surrogate model

ε̄
pr o j ,tr ai ni ng
CP ′ = 1E-1, ε̄

N N ,tr ai ni ng
CP ′ = 1E-2.

(b) Absolute prediction error at t = 18 s for surrogate model
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CP ′ = 1E-1, ε̄

N N ,tr ai ni ng
CP ′ = 5E-3.

(c) Absolute prediction error at t = 18 s for surrogate model

ε̄
pr o j ,tr ai ni ng
CP ′ = 1E-2, ε̄

N N ,tr ai ni ng
CP ′ = 1E-2.

(d) Absolute prediction error at t = 18 s for surrogate model

ε̄
pr o j ,tr ai ni ng
CP ′ = 1E-2, ε̄

N N ,tr ai ni ng
CP ′ = 5E-3.

Figure A.7: POD-LSTM absolute prediction error of the upper surface pressure distribution for different surrogate model settings for the
sharp pitch-up maneuver at t = 18 s.

In Table A.1 the prediction error of the time coefficients for the spatial POD modes is shown in terms of NMSE.
It can be seen that, similar to previous discussed results, the time coefficients for the first spatial POD mode is
predicted with the highest accuracy and the accuracy of the prediction for higher ranked spatial POD modes
decreases significantly. Furthermore, it must be noted that the time coefficient prediction for all model set-
tings on average shows better results than for the pitch and plunge motions, especially for the models with

a lower projection error, i.e., ε̄pr o j ,t r ai ni ng
CP ′ = 1E-2. In Figure A.8 the time coefficient prediction for the first

and the thirtieth spatial POD mode is shown, where it can be seen that the amplitudes and frequencies of the
signal for the thirtieth spatial POD mode are significantly off.
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Table A.1: NMSE evaluation of the POD-LSTM ROM time coefficient prediction for the sharp pitch-up maneuver.

Mode [-] NMSE per time coefficient [-]

ε̄
pr o j
CP ′ = 1E-1 ε̄

pr o j
CP ′ = 1E-2

ε̄N N
CP ′ = 1E-2 ε̄N N

CP ′ = 5E-3 ε̄N N
CP ′ = 1E-2 ε̄N N

CP ′ = 5E-3

1 0.975982 0.970835 0.978669 0.983779
2 0.88617 0.971469 0.936745 0.939503
3 0.5838 0.545515 0.513483 0.722386
4 0.421363 0.491892 0.39815 0.355895
5 -0.02688 -0.34459 -0.76799 -0.15573
6 -1.32789 -1.59634
7 -0.31109 -0.00837
8 -0.14389 -0.41464
9 -0.4771 -0.32743

10 -1.39854 -1.73915
11 -0.10648 -0.23223
12 -0.76915 -0.79732
13 0.056474 0.056778
14 0.195286 0.150318
15 -0.1427 -0.20642
16 -0.19127 -0.14399
17 -0.46469 -0.61035
18 -0.1566 0.248758
19 -0.14707 -0.25291
20 0.084457 0.08769
21 -0.02132 0.052453
22 -0.09551 -0.21644
23 -0.21305 -0.33801
24 -0.28409 -0.18003
25 -0.63021 -0.64983
26 -0.02589 -0.03738
27 -0.37748 -0.20954
28 0.137783 -0.05389
29 -1.30334 -1.09934
30 -2.57686 -2.46191
31 -0.24817 -0.35453
32 -0.5724 -0.49688
33 -0.71864 -0.38454
34 -1.22691 -1.13637
35 -0.17347 -0.00947
36 -0.19504 -0.109
37 -1.42399 -1.088
38 -0.55018 -0.48896
39 -0.17979 -0.10453
40 -0.28565 -0.1568

Average [-] 0.57 0.53 -0.36 -0.31
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(a) POD-LSTM prediction of time coefficient a1 for the sharp pitch-up maneuver.

(b) POD-LSTM prediction of time coefficient a30 for the sharp pitch-up maneuver.

Figure A.8: POD-LSTM prediction of time coefficient for different spatial modes for the sharp pitch-up maneuver. Top: POD-LSTM
prediction of time coefficient with high accuracy. Bottom: POD-LSTM prediction of time coefficients with low accuracy.



Bibliography

[1] CS231n Convolutional Neural Networks for Visual Recognition. URL https://cs231n.github.io/
neural-networks-1/.

[2] Frederico A. C. Azevedo, Ludmila R. B. Carvalho, Lea T. Grinberg, José Marcelo Farfel, Renata E. L.
Ferretti, Renata E. P. Leite, Wilson Jacob Filho, Roberto Lent, and Suzana Herculano-Houzel. Equal
numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up pri-
mate brain. Journal of Comparative Neurology, 513(5):532–541, 2009. ISSN 1096-9861. doi: 10.
1002/cne.21974. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/cne.21974. _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cne.21974.

[3] Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with gradient descent is difficult.
IEEE Transactions on Neural Networks, 5(2):157–166, March 1994. ISSN 1045-9227, 1941-0093. doi: 10.
1109/72.279181. URL https://ieeexplore.ieee.org/document/279181/.

[4] Russell M. Cummings, Carsten Liersch, and Andreas Schuette. Multi-Disciplinary Design and Perfor-
mance Assessment of Effective, Agile NATO Air Vehicles. In 2018 Applied Aerodynamics Conference, At-
lanta, Georgia, June 2018. American Institute of Aeronautics and Astronautics. ISBN 978-1-62410-559-3.
doi: 10.2514/6.2018-2838. URL https://arc.aiaa.org/doi/10.2514/6.2018-2838.

[5] Imad Dabbura. Gradient Descent Algorithm and Its Variants, September 2019. URL https://
towardsdatascience.com/gradient-descent-algorithm-and-its-variants-10f652806a3.

[6] A. R. Davari and M. R. Soltani. Effects of Plunging Motion on Unsteady Aerodynamic Behavior of an
Aircraft Model in Compressible Flow*.

[7] Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory. Neural Computation, 9(8):1735–
1780, November 1997. ISSN 0899-7667, 1530-888X. doi: 10.1162/neco.1997.9.8.1735. URL https://
www.mitpressjournals.org/doi/abs/10.1162/neco.1997.9.8.1735.

[8] Adam Jirasek, Tiger Jeans, Matthew Martenson, Russell Cummings, and Keith Bergeron. Improved
Methodologies for Maneuver Design of Aircraft Stability and Control Simulations. In 48th AIAA Aerospace
Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, Florida, Jan-
uary 2010. American Institute of Aeronautics and Astronautics. ISBN 978-1-60086-959-4. doi: 10.2514/
6.2010-515. URL http://arc.aiaa.org/doi/10.2514/6.2010-515.

[9] Andrej Karpathy. The Unreasonable Effectiveness of Recurrent Neural Networks. URL http://
karpathy.github.io/2015/05/21/rnn-effectiveness/.

[10] Andy J. Keane and Prasanth B. Nair. Computational Approaches for Aerospace Design: The Pursuit of
Excellence. Wiley, 1 edition, June 2005. ISBN 978-0-470-85540-9 978-0-470-85548-5. doi: 10.1002/
0470855487. URL https://onlinelibrary.wiley.com/doi/book/10.1002/0470855487.

[11] Slawomir Koziel and Anna Pietrenko-Dabrowska. Basics of Data-Driven Surrogate Modeling. In
Performance-Driven Surrogate Modeling of High-Frequency Structures, pages 23–58. Springer Inter-
national Publishing, Cham, 2020. ISBN 978-3-030-38925-3 978-3-030-38926-0. doi: 10.1007/
978-3-030-38926-0_2. URL http://link.springer.com/10.1007/978-3-030-38926-0_2.

[12] Carsten M. Liersch and Gavin Bishop. Conceptual Design of a 53deg Swept Flying Wing UCAV Con-
figuration. In 2018 Applied Aerodynamics Conference, Atlanta, Georgia, June 2018. American Institute
of Aeronautics and Astronautics. ISBN 978-1-62410-559-3. doi: 10.2514/6.2018-2839. URL https:
//arc.aiaa.org/doi/10.2514/6.2018-2839.

[13] J. L. LUMLEY. The structure of inhomogeneous turbulent flows. Atmospheric Turbulence and Radio
Wave Propagation, 1967. URL https://ci.nii.ac.jp/naid/10012381873. Publisher: Nauka.

113

https://cs231n.github.io/neural-networks-1/
https://cs231n.github.io/neural-networks-1/
https://onlinelibrary.wiley.com/doi/abs/10.1002/cne.21974
https://ieeexplore.ieee.org/document/279181/
https://arc.aiaa.org/doi/10.2514/6.2018-2838
https://towardsdatascience.com/gradient-descent-algorithm-and-its-variants-10f652806a3
https://towardsdatascience.com/gradient-descent-algorithm-and-its-variants-10f652806a3
https://www.mitpressjournals.org/doi/abs/10.1162/neco.1997.9.8.1735
https://www.mitpressjournals.org/doi/abs/10.1162/neco.1997.9.8.1735
http://arc.aiaa.org/doi/10.2514/6.2010-515
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
https://onlinelibrary.wiley.com/doi/book/10.1002/0470855487
http://link.springer.com/10.1007/978-3-030-38926-0_2
https://arc.aiaa.org/doi/10.2514/6.2018-2839
https://arc.aiaa.org/doi/10.2514/6.2018-2839
https://ci.nii.ac.jp/naid/10012381873


114 Bibliography

[14] Eugene A. Morelli. Multiple input design for real-time parameter estimation in the fre-
quency domain. IFAC Proceedings Volumes, 36(16):639–644, September 2003. ISSN 14746670.
doi: 10.1016/S1474-6670(17)34833-4. URL https://linkinghub.elsevier.com/retrieve/pii/
S1474667017348334.

[15] Anuja Nagpal. L1 and L2 Regularization Methods, October 2017. URL https://towardsdatascience.
com/l1-and-l2-regularization-methods-ce25e7fc831c.

[16] Raj Nangia, Mehdi Ghoreyshi, Michel P.C. van Rooij, and Russell M. Cummings. Aerodynamic design
assessment and comparisons of the MULDICON UCAV concept. Aerospace Science and Technology, 93:
105321, October 2019. ISSN 12709638. doi: 10.1016/j.ast.2019.105321. URL https://linkinghub.
elsevier.com/retrieve/pii/S1270963819303487.

[17] Michael A. Nielsen. Neural Networks and Deep Learning. 2015. URL http://
neuralnetworksanddeeplearning.com. Publisher: Determination Press.

[18] David Papp. Prediction of unsteady nonlinear aerodynamic loads using deep convolutional neural net-
works: Investigating the dynamic response of agile combat aircraft. 2018. URL https://repository.
tudelft.nl/islandora/object/uuid%3Aeda27197-0f43-4b83-a2ac-d0bb564a7ef4.

[19] Michael Phi. Illustrated Guide to LSTM’s and GRU’s: A step by
step explanation, June 2020. URL https://towardsdatascience.com/
illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21.

[20] Walter Pitts and Warren S. McCulloch. A logical calculus of the ideas immanent in nervous activity.
The bulletin of mathematical biophysics, 5(4):115–133, December 1943. ISSN 1522-9602. doi: 10.1007/
BF02478259. URL https://doi.org/10.1007/BF02478259.

[21] Sebastian Raschka and Vahid Mirjalili. Python Machine Learning: Machine Learning and Deep Learning
with Python, scikit-learn, and TensorFlow, 2nd Edition. Packt Publishing, 2nd edition, 2017. ISBN 978-
1-78712-593-3.

[22] M. Ripepi, M. J. Verveld, N. W. Karcher, T. Franz, M. Abu-Zurayk, S. Görtz, and T. M. Kier. Reduced-order
models for aerodynamic applications, loads and MDO. CEAS Aeronautical Journal, 9(1):171–193, March
2018. ISSN 1869-5582, 1869-5590. doi: 10.1007/s13272-018-0283-6. URL http://link.springer.
com/10.1007/s13272-018-0283-6.

[23] F. Rosenblatt. The Perceptron, a Perceiving and Recognizing Automaton Project Para. Cornell Aeronauti-
cal Laboratory, 1957. Google-Books-ID: P_XGPgAACAAJ.

[24] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning representations by back-
propagating errors. Nature, 323(6088):533–536, October 1986. ISSN 1476-4687. doi: 10.1038/323533a0.
URL https://www.nature.com/articles/323533a0. Number: 6088 Publisher: Nature Publishing
Group.

[25] M. Schroeder. Synthesis of low-peak-factor signals and binary sequences with low autocorrelation (Cor-
resp.). IEEE Transactions on Information Theory, 16(1):85–89, January 1970. ISSN 0018-9448. doi:
10.1109/TIT.1970.1054411. URL http://ieeexplore.ieee.org/document/1054411/.

[26] Kunihiko Taira, Steven L. Brunton, Scott T. M. Dawson, Clarence W. Rowley, Tim Colonius, Beverley J.
McKeon, Oliver T. Schmidt, Stanislav Gordeyev, Vassilios Theofilis, and Lawrence S. Ukeiley. Modal
Analysis of Fluid Flows: An Overview. AIAA Journal, 55(12):4013–4041, December 2017. ISSN 0001-1452,
1533-385X. doi: 10.2514/1.J056060. URL https://arc.aiaa.org/doi/10.2514/1.J056060.

[27] Andrea Toselli and Olof B. Widlund. Domain Decomposition Methods — Algorithms and Theory, vol-
ume 34 of Springer Series in Computational Mathematics. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2005. ISBN 978-3-540-20696-5 978-3-540-26662-4. doi: 10.1007/b137868. URL http://link.
springer.com/10.1007/b137868.

https://linkinghub.elsevier.com/retrieve/pii/S1474667017348334
https://linkinghub.elsevier.com/retrieve/pii/S1474667017348334
https://towardsdatascience.com/l1-and-l2-regularization-methods-ce25e7fc831c
https://towardsdatascience.com/l1-and-l2-regularization-methods-ce25e7fc831c
https://linkinghub.elsevier.com/retrieve/pii/S1270963819303487
https://linkinghub.elsevier.com/retrieve/pii/S1270963819303487
http://neuralnetworksanddeeplearning.com
http://neuralnetworksanddeeplearning.com
https://repository.tudelft.nl/islandora/object/uuid%3Aeda27197-0f43-4b83-a2ac-d0bb564a7ef4
https://repository.tudelft.nl/islandora/object/uuid%3Aeda27197-0f43-4b83-a2ac-d0bb564a7ef4
https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21
https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21
https://doi.org/10.1007/BF02478259
http://link.springer.com/10.1007/s13272-018-0283-6
http://link.springer.com/10.1007/s13272-018-0283-6
https://www.nature.com/articles/323533a0
http://ieeexplore.ieee.org/document/1054411/
https://arc.aiaa.org/doi/10.2514/1.J056060
http://link.springer.com/10.1007/b137868
http://link.springer.com/10.1007/b137868


Bibliography 115

[28] Michel P.C. van Rooij, Neal T. Frink, Brett R. Hiller, Mehdi Ghoreyshi, and Mark Voskuijl. Generation of a
reduced-order model of an Unmanned Combat Air Vehicle using indicial response functions. Aerospace
Science and Technology, 95:105510, December 2019. ISSN 12709638. doi: 10.1016/j.ast.2019.105510.
URL https://linkinghub.elsevier.com/retrieve/pii/S1270963819303104.

[29] Julien Weiss. A Tutorial on the Proper Orthogonal Decomposition. 2019. doi: 10.14279/
depositonce-8512. URL https://depositonce.tu-berlin.de/handle/11303/9456. Accepted:
2019-06-20T11:33:10Z.

[30] P.J. Werbos. Backpropagation through time: what it does and how to do it. Proceedings of the IEEE, 78
(10):1550–1560, October 1990. ISSN 00189219. doi: 10.1109/5.58337. URL http://ieeexplore.ieee.
org/document/58337/.

[31] Jian Yu, Chao Yan, and Mengwu Guo. Non-intrusive reduced-order modeling for fluid problems: A brief
review. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering,
233(16):5896–5912, December 2019. ISSN 0954-4100, 2041-3025. doi: 10.1177/0954410019890721. URL
http://journals.sagepub.com/doi/10.1177/0954410019890721.

https://linkinghub.elsevier.com/retrieve/pii/S1270963819303104
https://depositonce.tu-berlin.de/handle/11303/9456
http://ieeexplore.ieee.org/document/58337/
http://ieeexplore.ieee.org/document/58337/
http://journals.sagepub.com/doi/10.1177/0954410019890721

	Preface
	Abstract
	List of Symbols
	List of Figures
	List of Tables
	Acronyms
	Introduction
	Project motivation
	Problem description
	Research objective and questions
	Report outline

	Literature Review: An introduction to reduced-order modeling techniques
	Introduction to Reduced-Order Modeling
	Dimensionality Reduction for non-intrusive Reduced-Order Models: The Proper Orthogonal Decomposition

	Surrogate modeling techniques for non-intrusive Reduced-Order Models
	Introduction to machine learning: the neural network approach


	State-of-the-art: Surrogate modeling for non-intrusive Reduced-Order Models
	Recurrent neural networks (RNNs) and its limitations
	Candidate network: the Long Short-Term Memory (LSTM) network

	The POD-LSTM Long-Short Term Memory (LSTM) network

	Methodologies: Construction of the POD-LSTM model
	The MULDICON Unmanned Combat Aerial Vehicle
	Proposed non-intrusive Reduced-Order Model: The POD-LSTM network
	Sampling Strategy: The Schroeder Sweep
	Full-order model for computational fluid dynamics
	Modal Decomposition Method: Proper Orthogonal Decomposition
	Surrogate modeling: the LSTM model


	Simulation results of the POD-LSTM non-intrusive Reduced-Order Model
	Offline stage results
	POD Projection error
	Limitations on the use of a reduced-order basis
	POD-LSTM model training

	Online stage results: POD-LSTM non-intrusive ROM predictions
	Steady simulations
	Unsteady simulations: Harmonic oscillations
	POD-LSTM model performance

	Summary of the POD-LSTM model results

	Conclusion and recommendations
	Conclusions
	Recommendations: Improvement of the pod-lstm model

	Special simulations: Sharp pitch-up maneuver
	Bibliography

