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SUMMARY

Over the past decades, integrated photonic circuits have revolutionized the field of op-
tics by enabling on-chip generation, manipulation, and detection of light with unprece-
dented scalability and precision. By leveraging advances in material platforms and nanofab-
rication tools and techniques, integrated photonics supports an ever-expanding range of
applications, from high-speed optical communications and on-chip sensing to photonic
quantum computing and signal processing. In this work, we showcase fundamental de-
vice designs and advanced nanofabrication techniques to improve their performance.
We also address critical challenges—such as integrating active components, managing
losses, and achieving high thermal tunability and discuss future directions for ultra-
compact, energy-efficient, and multifunctional integrated photonic devices.

As a start, chapter 2 treats the conventionally used material platforms for integrated
photonics, emphasizing their advantages and drawbacks, including fundamental build-
ing blocks for integrated photonic circuits, tuning mechanisms to achieve reconfigura-
bility in integrated photonics, combination with superconducting nanowire single pho-
ton detectors and applications of integrated photonic circuits.

Chapter 3 demonstrates how these devices are fabricated using advanced nanofab-
rication tools and techniques, and shows the optical setups that are needed to be build
to characterize them, both at room temperature and at cryogenics.

To optimize the material platform, chapter 4 explores the current chemical vapor
deposition (CVD) techniques for a-SiC, emphasizing the use of more advanced tools
to improve the thin film quality for the use in the fabrication of optical devices with
low waveguide propagation losses. Using inductively-coupled plasma enhanced CVD
(ICPCVD), We achieved three times lower propagation losses (0.78 dB/cm) than the cur-
rent state-of-the-art (3 dB/cm) at half the deposition temperature (150◦C) and provided
a route to do hybrid integration with the silicon nitride platform.

To further enhance these devices, chapter 5 highlights, using the ICPCVD technique
with silicon dioxide claddings the tuning of the thermo-optic thermal shift in ring res-
onators. We demonstrate up to a tenfold improvement in the thermal tunability, ather-
mal devices and bidirectional thermal tunability on amorphous silicon carbide, silicon
nitride and silicon-on-insulator.

Based on the previous demonstrations, chapter 6 demonstrates the integration of
this material platform with superconducting nanowire single photon detectors for quan-
tum photonic applications.

To finalize this dissertation, chapter 7 overviews three main collaborations done dur-
ing the project related to hybrid photonics of a-SiC with polymers, lithium niobate and
silicon nitride photonic platforms and summarizes the main results of the thesis, reflect-
ing on current challenges and future opportunities using this platform.
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SAMENVATTING

In de afgelopen decennia hebben geïntegreerde fotonische circuits het vakgebied van de
optica getransformeerd door het mogelijk te maken om licht op een chip te genereren,
manipuleren en detecteren met ongekende schaalbaarheid en precisie. Door gebruik
te maken van vooruitgang in materiaalsystemen en nanofabricagetechnieken onderste-
unt geïntegreerde fotonica een steeds breder scala aan toepassingen, van snelle optische
communicatie en on-chip sensing tot fotonische kwantumcomputing en signaalverw-
erking. In dit werk tonen we fundamentele apparaatontwerpen en geavanceerde nanofab-
ricagetechnieken om hun prestaties te verbeteren. We bespreken ook kritieke uitdagin-
gen—zoals het integreren van actieve componenten, het beheersen van verliezen en het
bereiken van hoge thermische afstembaarheid—en bespreken toekomstige richtingen
voor ultracompacte, energie-efficiënte en multifunctionele geïntegreerde fotonische ap-
paraten.

Als begin behandelt hoofdstuk 2 de conventioneel gebruikte materiaalsystemen voor
geïntegreerde fotonica, met nadruk op hun voordelen en nadelen, inclusief fundamentele
bouwstenen voor geïntegreerde fotonische circuits, afstemmechanismen om herconfig-
ureerbaarheid te bereiken in geïntegreerde fotonica, combinaties met supergeleidende
nanodraad enkel-foton detectoren en toepassingen van geïntegreerde fotonische cir-
cuits.

Hoofdstuk 3 toont hoe deze apparaten worden vervaardigd met behulp van gea-
vanceerde nanofabricagetools en -technieken, en laat de optische opstellingen zien die
nodig zijn om ze te karakteriseren, zowel bij kamertemperatuur als bij cryogene temper-
aturen.

Om het materiaalsysteem te optimaliseren verkent hoofdstuk 4 de huidige tech-
nieken voor chemische dampafzetting (CVD) voor a-SiC, met nadruk op het gebruik van
meer geavanceerde tools om de dunnefilmkwaliteit te verbeteren voor de fabricage van
optische apparaten met lage golfgeleiderverliezen. Met behulp van inductief gekoppelde
plasma-geactiveerde CVD (ICPCVD) bereikten we drie keer lagere voortplantingsver-
liezen (0,78 dB/cm) dan de huidige stand van de techniek (3 dB/cm) bij de helft van
de afzettemperatuur (150◦C) en boden we een route aan voor hybride integratie met het
silicium-nitrideplatform.

Om deze apparaten verder te verbeteren benadrukt hoofdstuk 5, met gebruik van de
ICPCVD-techniek en siliciumdioxide claddings, het afstemmen van de thermo-optische
verschuiving in ringresonatoren. We tonen tot een tienvoudige verbetering in thermis-
che afstembaarheid, athermische apparaten en bidirectionele thermische afstembaarheid
aan in amorf siliciumcarbide, silicium-nitride en silicon-on-insulator.

Op basis van de voorgaande demonstraties toont hoofdstuk 6 de integratie van dit
materiaalsysteem met supergeleidende nanodraad enkel-foton detectoren voor kwan-
tumfotonische toepassingen.
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Ter afronding van dit proefschrift geeft hoofdstuk 7 een overzicht van drie belan-
grijke samenwerkingen tijdens het project, gerelateerd aan hybride fotonica van a-SiC
met polymeren, lithiumniobaat en silicium-nitride fotonische platformen, en vat het de
belangrijkste resultaten van het proefschrift samen, waarbij wordt gereflecteerd op de
huidige uitdagingen en toekomstige mogelijkheden met dit platform.



RESUMEN

Durante las últimas décadas, los circuitos fotónicos integrados han revolucionado el
campo de la óptica al permitir la generación, manipulación y detección de luz en chip
con una escalabilidad y precisión sin precedentes. Aprovechando los avances en platafor-
mas de materiales y herramientas y técnicas de nanofabricación, la fotónica integrada
respalda una gama cada vez mayor de aplicaciones, desde comunicaciones ópticas de
alta velocidad y sensores integrados hasta computación cuántica fotónica y procesamiento
de señales. En este trabajo, mostramos diseños fundamentales de dispositivos y técni-
cas avanzadas de nanofabricación para mejorar su rendimiento. También abordamos
desafíos críticos—como la integración de componentes activos, la gestión de pérdidas
y la obtención de alta sintonización térmica—y discutimos las futuras direcciones hacia
dispositivos fotónicos integrados ultracompactos, energéticamente eficientes y multi-
funcionales.

Como inicio, el capítulo 2 trata las plataformas de materiales comúnmente utilizadas
en fotónica integrada, haciendo énfasis en sus ventajas y desventajas, incluyendo blo-
ques de construcción fundamentales para circuitos fotónicos integrados, mecanismos
de sintonización para lograr reconfigurabilidad, la combinación con detectores super-
conductores de un solo fotón basados en nanohilos, y aplicaciones de los circuitos fotóni-
cos integrados.

El capítulo 3 demuestra cómo se fabrican estos dispositivos utilizando herramien-
tas y técnicas avanzadas de nanofabricación, y muestra los montajes ópticos necesarios
para caracterizarlos, tanto a temperatura ambiente como a temperaturas criogénicas.

Para optimizar la plataforma de materiales, el capítulo 4 explora las técnicas actuales
de deposición química de vapor (CVD) para a-SiC, destacando el uso de herramientas
más avanzadas para mejorar la calidad de la película delgada en la fabricación de dis-
positivos ópticos con bajas pérdidas de propagación en la guía de onda. Usando CVD
mejorado con plasma inductivamente acoplado (ICPCVD), logramos pérdidas de propa-
gación tres veces menores (0.78 dB/cm) que el estado del arte actual (3 dB/cm) a la mitad
de la temperatura de deposición (150◦C), y proporcionamos una vía para la integración
híbrida con la plataforma de nitruro de silicio.

Para mejorar aún más estos dispositivos, el capítulo 5 destaca, utilizando la técnica
ICPCVD con recubrimientos de dióxido de silicio, el ajuste del desplazamiento termo-
óptico en resonadores de anillo. Demostramos hasta una mejora de diez veces en la
sintonización térmica, dispositivos atérmicos y sintonización térmica bidireccional en
silicio carburo amorfo, nitruro de silicio y silicio sobre aislante.

Basado en las demostraciones anteriores, el capítulo 6 muestra la integración de esta
plataforma de materiales con detectores superconductores de un solo fotón basados en
nanohilos para aplicaciones fotónicas cuánticas.

Para finalizar esta disertación, el capítulo 7 presenta una visión general de tres co-
laboraciones principales realizadas durante el proyecto, relacionadas con la fotónica
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híbrida de a-SiC con polímeros, niobato de litio y plataformas fotónicas de nitruro de
silicio, y resume los principales resultados de la tesis, reflexionando sobre los desafíos
actuales y las oportunidades futuras utilizando esta plataforma.
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INTRODUCTION

Bruno LOPEZ-RODRIGUEZ

The world as we have created it is a process of our thinking. It cannot be changed without
changing our thinking.

Albert Einstein

1
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2 1. INTRODUCTION

1.1. FROM BULK TO A SINGLE CHIP
In the era of the digital revolution, where global data consumption and the demand for
ultra-high-speed communication are increasing, the limitations of conventional elec-
tronic systems are becoming clear. The quest for faster, more efficient, and scalable tech-
nologies has placed photonics at the forefront to surpass the boundaries of traditional
electronics. Integrated photonics emerges as a transformative solution, integrating opti-
cal components such as lasers, modulators, and waveguides onto compact, chip-scale
platforms. This evolution is comparable to the development of electronic integrated
circuits, promising to revolutionize industries by enabling dense, low-power, and high-
performance photonic systems.

Traditional optics and photonic setups rely on discrete bulk elements (mirrors, lenses,
beamsplitter crystal blocks, ...) and present evident problems in scalability, cost, and
robustness, hindering their deployment in next-generation applications [1]. Integrated
photonics addresses these issues by enabling complex optical functions onto single sub-
strates, making use of advanced fabrication techniques to achieve miniaturization and
mass production. The implications are profound and cover many application fields such
as telecommunications, where photonic integrated circuits (PICs) enhance fiber-optic
networks, data centers and artificial intelligence [2–4]; biomedical sensing, enabling
portable diagnostic devices [5–7]; and quantum technologies, where precise light con-
trol is critical [8]. Furthermore, the synergy of photonics with electronics opens avenues
for hybrid systems, combining the computational power of current computers with fast
and high bandwidth optical data transfer.

Despite its promise, the field has some challenges. Efficient light manipulation de-
mands innovative waveguide architectures and materials compatible with existing com-
plementary metal-oxide-semiconductor (CMOS) fabrication processes. On the other
hand, nonlinear effects, waveguide propagation losses, and reduced coupling efficien-
cies between components require novel design strategies.

1.2. HYBRID PHOTONICS
Hybrid photonic systems rely on the synergy of different materials used in integrated
photonics such as silicon, III-V semiconductors, polymers, and two-dimensional mate-
rials, combining their specific advantages to overcome the inherent limitations of mono-
lithic designs [9, 10]. By integrating components like high-efficiency III-V lasers with
low-loss silicon nitride waveguides or coupling nonlinear optical polymers to silicon
photonic circuits, these systems exploit the unique optical, electronic, and mechani-
cal properties of each material to achieve functionalities that would be unachievable
within a single substrate. Such architectures enable enhanced light-matter interactions,
improved tuning, and extended operational bandwidths, critical for applications rang-
ing from ultra-dense optical interconnects in data centers to chip-scale quantum light
sources. However, the realization of hybrid systems demands innovative solutions for
material compatibility, material interface engineering, and scalable fabrication, as mis-
matches in lattice constants, thermal expansion coefficients, and matching of optical
mode profiles pose significant challenges. Recent advances in heterogeneous integra-
tion techniques, such as transfer printing, wafer bonding, and selective epitaxial growth,
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have enabled precise alignment and robust coupling between components, paving the
way for next-generation devices [11–14].

1.3. MOTIVATION OF THE THESIS
With the diverse range of materials available in the integrated photonics landscape, it
is challenging to choose a specific platform. However, in this thesis, I aim to convince
the reader that amorphous silicon carbide (a-SiC), with further advancements, has the
potential to be a game changer in integrated photonics.

Silicon carbide (SiC) exists in numerous crystalline forms, known as polytypes, though
only a few are commonly used for integrated photonic devices, primarily 4H-SiC (hexag-
onal) and 3C-SiC (cubic) (see fig.1.1a). The state-of-the-art developments in photonic
devices made on this platform will be discussed in Chapter 2, but a key advantage is their
ability to achieve low optical losses and support various nonlinear photonic applica-
tions. However, they come with a significant drawback: to be optically compatible, they
require transfer bonding, a process that is time-consuming, expensive and imprecise in
controlling layer thickness (as depicted in fig.1.1b). Furthermore, integrating crystalline
SiC (c-SiC) with other materials for heterogeneous photonic systems poses additional
challenges. The processing temperatures needed during annealing and chemical inter-
actions between the different materials lead to compatibility issues. Another limitation
of crystalline SiC is the difficulty in tailoring its intrinsic properties such as refractive
index and composition during crystal growth.

In contrast, a-SiC overcomes these challenges by offering fabrication flexibility. Un-
like its crystalline counterpart, a-SiC can be deposited using chemical vapor deposition
(CVD) techniques at relatively low temperatures (<300°C) and with tunable composition,
allowing seamless integration with standard CMOS processes. The technique explored
in this thesis, Inductively Coupled Plasma-Enhanced CVD (ICPCVD), enables the depo-
sition of a-SiC at just 150°C. Therefore, significantly expanding the range of materials
compatible with a-SiC without thermal degradation, paving the way for broader adop-
tion in integrated photonic technologies.

Reducing power consumption in photonic devices is critical, especially as integrated
photonics becomes part of more demanding applications. This thesis also tackles the
problem of achieving highly efficient, low-power thermo-optic tuning in PICs. The amount
of thermo-optic tuning that one can achieve is intrinsic to the material platform and un-
less the composition is altered, it cannot be easily tuned. We address this issue by engi-
neering the silicon dioxide cladding, with a low refractive index and the most common
material in photonics. It is the first demonstration that this material can modify the
thermo-optic tunability with athermal, positive and negative thermo-optic responses
that can be implemented deterministically on a single chip. Consequently, it also ad-
dresses biosensing applications and enables novel photonic architectures.
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4 1. INTRODUCTION

Figure 1.1: a) Crystalline structure of the most common polytypes of silicon carbide, with cubic or hexagonal
arrangement of the lattice (reproduced with permission from Henan Superior Abrasives) and b) transfer bond-
ing process flow to achieve crystalline silicon carbide on insulator (reproduced with permission from Elsevier
[15]).

1.4. UNDERSTANDING A PHOTONIC DEVICE
To understand the chapters that follow, we will briefly introduce some important pa-
rameters in photonic platforms and that are used to characterize optical devices. These
terms span linear optics (refractive index, propagation losses), resonant systems (Q fac-
tor), thermal effects (thermo-optic coefficient), and nonlinear phenomena (second-order
and third-order), each playing key roles in photonic device design and functionality and
in this entire thesis.

• Refractive index (n): is a dimensionless number that indicates how much light
slows down and refracts in the interface between a material and vacuum. In op-
tical devices, a higher refractive index is preferred since it enhances the optical
confinement and reduces the bending losses, increasing the integration density.

• Quality factor (Q): is a measure of the energy storage efficiency in resonant sys-
tems. For optical devices, higher quality factors are associated to narrower filtering
and lower propagation losses of the platform. In the literature, the loaded quality
factor is usually given as the ratio of the resonant wavelength (λ) and the full-width
at half maximum (FWHM). Intrinsic quality factors indicate the inherent material
properties of the platform without considering the device geometry. These param-
eters are related to each other in the equation below, where Tb is the normalized
transmission factor in the bus waveguide.

Ql oaded = λ

FW H M
Qi ntr i nsi c = 2Qloaded

1+√
Tb

(1.1)
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• Waveguide propagation losses: measured in dB/cm, represents the attenuation
of light as it travels through a waveguide. Propagation losses are usually caused
by material absorption, scattering due to sidewall roughness or bending losses.
The losses can be estimated from the intrinsic quality factors using the relations
below where the group index (ng ) is determined from the free spectral range (FSR)
(separation between adjacent resonant dips) as is discussed in Chapter 4:

α(cm−1) = 2πng

Qi ntλ
; α(dBcm−1) = 4.3429 ·α(cm−1) (1.2)

• Thermo-optic coefficient (dn/dT): is the rate of change of refractive index as a
function of temperature. Achieving high values enables low power thermal tuning
of photonic devices, with the benchmark established in silicon on insulator plat-
form (1.8 x 10−4RIU/◦C) [16]. It is intrinsic to the platform, but can be modified
by changing the stoichiometry or introducing optical claddings [17, 18]. Chap-
ter 5 overviews the thermo-optic effect but as a general introduction, it depends
on the expansion coefficients of core, cladding and substrate and the mismatches
between them, creating additional strain.

With high power photon sources, the relationship between the polarization in the
material and the electric field is non-linear. Particularly, the polarization can be
expressed as a sum of several terms [19]:

P = εoχ
(1)ξ+εoχ

(2)ξ2 +εoχ
(3)ξ3 + ... (1.3)

• Second order non-linear coefficient (χ (2)): describes the non-linear response of a
material to light where the interaction is proportional to the square of the electro-
magnetic field. It is responsible for second harmonic generation processes (fre-
quency doubling) [20]. When defined in pm/V, the value determines how effi-
ciently the material responds when applied to an electric field and with higher
values, less voltage needs to be applied for electro-optic tuning of photonic de-
vices [21]. It occurs in materials that lack inversion symmetry and a commonly
used material for electro-optic devices is lithium niobate (LiNbO3 or LN). In Chap-
ter 6 it is shown the hybrid integration of lithium niobate with amorphous silicon
carbide.

• Third-order non-linear coefficient (χ (3)): describes the interaction of the electro-
magnetic field with a material with the third-order term and it is present in all ma-
terials. It is a critical parameter for supercontinuum generation, four-wave mixing
and frequency combs, being high in materials such as silicon and amorphous sili-
con carbide [22–24].
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1.5. OUTLINE OF THE THESIS
The scope of this thesis includes:

Chapter 2 gives an overview of different integrated photonic platforms, the most
common photonic components used as building blocks and main tuning mechanisms
to achieve reconfigurability, providing representative applications in the field of inte-
grated photonics. It also presents the current state of the art for silicon carbide photonic
devices.

Chapter 3 reviews all the experimental techniques and gives detailed information
and schematics about the deposition tools, the fabrication process for photonic devices
and superconducting detectors and the main optical measurement setups used during
this thesis, both for cryogenics and room temperature.

Chapter 4 shows the development of high quality amorphous silicon carbide thin
films using ICPCVD technique (see fig.1.2a) and compares it with conventional plasma-
enhanced CVD (PECVD) devices. We fabricate standard waveguides and ring resonators
with a high-quality factor (beyond 5x105) corresponding to three times lower losses (0.78
dB/cm) than the current state-of-the-art for a-SiC (3 dB/cm) [25] (fig.1.2b). Most impor-
tantly, due to the deposition at low temperatures, we discuss its suitability for hybrid
integrated photonics in SiN and temperature-sensitive platforms.

Chapter 5 studies the thermal tunability of photonic devices using engineered sili-
con dioxide claddings (deposited using ICPCVD). We discuss the influence of deposition
temperature and chamber pressure (fig.1.2c) on the performance of the cladding. We
achieve large thermo-optic shifts, athermal devices, and bi-directional thermal response
deterministically and on a single chip (fig.1.2d). We also demonstrate basic device con-
figurations exploiting these properties and a configuration using cladding lift-off to re-
duce the thermal crosstalk between photonic devices.

Chapter 6 shows the integration of superconducting nanowire single photon detec-
tors saturating at 950 nm with amorphous silicon carbide photonic components for fu-
ture quantum photonic experiments (fig.1.2e).

Chapter 7 reviews the additional studies that have been performed with this plat-
form in the field of integrated photonics, mainly the hybrid integration with polymers,
lithium niobate and silicon nitride (fig.1.2f). It also summarizes the results obtained in
the thesis, highlights the challenges and provides future opportunities for this platform.
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Figure 1.2: Pictorial view of the subjects treated in this thesis: a) the deposition of a-SiC films via CVD tech-
niques, b) the fabrication of high quality photonic devices, c) the tuning of the thermo-optic tunability of
photonic devices with silicon dioxide claddings, d) the use of these claddings deterministically for passive and
active ring resonators, e) the integration of a-SiC with SNSPDs and f) the hybrid integration of a-SiC with i)
polymers, ii) lithium niobate and iii) silicon nitride.
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This chapter provides an overview of the primary material platforms used in inte-
grated photonic devices, highlighting their key characteristics for various applications.
We explore the fundamental components of an integrated photonic circuit, including el-
ements for coupling, filtering, routing, and modulating light. Additionally, we examine
the main tuning mechanisms for photonic devices and discuss waveguide-integrated su-
perconducting detectors across different platforms. The applications of integrated pho-
tonic circuits in quantum information processing, communications, LiDAR, biosensing,
and quantum technologies are also reviewed. Finally, we summarize the latest advance-
ments in silicon carbide-based photonic platforms.

2.1. INTEGRATED PHOTONIC DEVICES

2.1.1. MATERIAL PLATFORMS

The choice of material platform is important in integrated photonics, since it dictates
the device performance, fabrication complexity, and specific application. Silicon-on-
insulator (SOI) is a dominant platform due to several key properties. Silicon’s high re-
fractive index contrast with the silica cladding permits ultracompact photonic devices.
The reduced footprint reduces the power consumption in active configurations. Most
importantly, this platform is compatible with mature CMOS processes, which enable
dense, low-loss waveguides and tunable circuits [1–6]. An important disadvantage is
that at telecommunication wavelengths silicon presents two-photon absorption which
limits the efficiency of Kerr non-linearities. On the other hand, this platform lacks trans-
parency in the visible part of the spectrum, has high sensitivity to temperature variations
and susceptibility to sidewall roughness due to the reduced dimensions. All of these
made platforms like silicon nitride (SiN) more appealing, offering broader wavelength
coverage, deposition processes enabling to combine it with other photonic platforms,
benefits from lower propagation losses, and have gathered attention for various linear
and non-linear applications due to the absence of non-linear absorption losses [7–14].
Nevertheless, both SOI and SiN platforms lack the presence of intrinsic photon sources
unless they are integrated with light sources made from III-V materials [15, 16]. For ac-
tive functionalities such as light emission, amplification and detection, III-V semicon-
ductors (e.g., indium phosphide (InP) and gallium arsenide (GaAs)) enable integrated
lasers, photodetectors, and optical amplifiers. However, their integration with silicon of-
ten requires hybrid or heterogeneous approaches to address lattice mismatch and ther-
mal challenges with reduced scalability and CMOS compatibility [17, 18]. Emerging plat-
forms like lithium niobate-on-insulator (LNOI) have gained popularity for their excep-
tional electro-optic coefficients, enabling ultra-fast modulators and efficient wavelength
conversion [19–23], while polymers offer flexibility, cost-effective fabrication and poten-
tial for scalability [24–29]. Due to the increasing demand for more complex applications,
the field is slowly shifting toward hybrid systems, combining materials with single pho-
ton sources on InP waveguides with silicon photonics [30] or LNOI modulators made
together with SiN [31, 32], silicon [33] or even silicon carbide [34, 35], exploiting syner-
gies between platforms. The table below summarizes some of the platforms together
with several parameters of interest such as refractive index, quality factor, thermo-optic
coefficient, second order non-linear coefficient and non-linear refractive index. Specific
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explanations of each property can be found in the introductory chapter.

Material Index (n) Q (x106) TOC (RIU/C) χ2 (pm/V) n2 (m2/W) ref.
SOI 3.48 22 1.8×10−4 — 5 x 10−18 [36, 37]
SiN 1.9-2.1 420 2.4×10−5 — 2.6 x 10−19 [38, 39]
InP 3.16 0.045 2.01×10−5 287 1.5 x 10−16 [40–42]
GaAs 3.4 3.2 2.67×10−5 170* 1.6 x 10−17 [36, 43]
LNOI 2.21 80 3.95×10−5 27 9.1 x 10−20 [36, 44]
4H-SiCOI 2.56 5.6 4.94×10−5 18 9.6 x 10−19 [45–47]
PECVD a-SiC 2.45 0.16 2.77×10−5 — 4.8 x 10−18 [48]
ICPCVD a-SiC 2.55 0.57 7.3×10−5 — - [49]
AlN 2.12 1 2.32×10−5 4.7 2.3 x 10−19 [50–52]

Table 2.1: Summary of optical and nonlinear parameters for various photonic materials at a wavelength of
1550 nm. The values for quality factor are given for loaded. Table inspired by [36]. *Value at 1064 nm.

.

2.1.2. BASIC BUILDING BLOCKS
Integrated photonic circuits should be able to couple light coming from outside or gen-
erate it on chip, route, filter and manipulate the photons and finally, detect these pho-
tons. For more comprehensive information about the specific components listed here
and more advanced concepts, L. Chrostowski et.al [53] provide a guide for silicon pho-
tonics design. Below are introduced the most basic building blocks that we can find on
integrated photonics:

Waveguides are the simplest elements of integrated photonic systems, enabling the
confinement and guided propagation of light at the micro- and nanoscale. Typically
fabricated from high-refractive-index materials like silicon nitride, silicon-on-insulator,
silicon carbide or polymers, waveguides operate by total internal reflection, channeling
light through a core surrounded by lower-index cladding layers [54, 55].

Grating couplers (fig.2.1a) are critical interfaces between optical fibers and on-chip
waveguides. Their traditional configuration consists of a periodic array of nanostruc-
tures (grating) to couple light vertically. Their design flexibility and compatibility with
wafer-scale testing make them an indispensable component of modern industrial pho-
tonic circuits. However, wavelength sensitivity and polarization dependence require
careful optimization [56, 57]. Edge-tapered couplers (fig.2.1b) are made by adiabati-
cally tapering waveguide widths at chip edges to match the mode profile of optical fibers,
achieving low-loss, polarization-insensitive coupling ideal for high-power or broadband
applications [58, 59].

For compact filtering, modulation and sensing one can use ring resonators [60].
These devices consist of a closed-loop waveguide coupled to one or more straight bus
waveguides (fig.2.1c). When the optical path length of the ring matches an integer mul-
tiple of the wavelength, constructive interference occurs, resonantly enhancing specific
wavelengths while suppressing others. The quality factor (Q-factor), free spectral range
(FSR), and extinction ratio of the resonator depend on the coupling strength, ring cir-
cumference, and waveguide loss. These parameters are discussed more in detail in chap-
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ter 4. In a similar way, photonic crystal cavities (fig.2.1d) engineered with periodic
nanostructures, confine light in ultra-small volumes reaching quality factors of Q > 106

[61].
Passive light splitting and routing can be achieved by using y-splitters (fig.2.1e)[62]

and multi-mode interferometers (MMI) (fig.2.1f) [63].
Phase modulators dynamically control light by altering the refractive index primar-

ily through electro-optic and thermo-optic effects. In combination with them, Mach-
Zehnder interferometers (MZIs) exploit light interference to modulate, switch, or sense
optical signals. A basic MZI consists of two parallel waveguides connected by a pair of
optical couplers, forming two arms of equal or unequal length (fig.2.1g). By introducing
a phase difference between the arms—via thermo-optic (fig.2.1h), electro-optic (fig.2.1i),
or strain-induced refractive index change—the output intensity in the ports can be mod-
ulated [64, 65].

Figure 2.1: Basic photonic elements that are used for purposes such as coupling light vertically via a) grat-
ing couplers or horizontally with b) edge couplers. Some of the most common filtering elements are c) a
ring resonator and d) a photonic crystal cavity. To route and split the light one can use e) a y-splitter, f) a
multimo-mode interferometer, g) a passive beam-splitter, h) a Mach-Zehnder interferometer which uses i) a
phase shifter achieved with electro-optics (gold pads on the side) or thermo-optics (micro-heater on top).
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2.1.3. TUNING OF PHOTONIC DEVICES
Tunable components are essential for dynamically controlling light in integrated pho-
tonic systems, enabling reconfigurable optical circuits and precise wavelength shifts.
The most utilized approach to accomplish this task is via thermal tuning using the thermo-
optic effect. In this configuration, integrated metallic microheaters modify the refrac-
tive index of the waveguide material by inducing heat with a current (fig.2.2a), enabling
phase shifts and resonance wavelength adjustments in devices like ring resonators and
Mach-Zehnder interferometers [39, 66], following the general equation:

∆Φ= 2πL

λ0

dn(λ)

dT
∆T (2.1)

where L is the length of the thermo-optically tunable section, λ0 is the wavelength of
the light in vacuum, dn/dT is the thermo-optic coefficient of the material and ∆T is
the temperature change. Chapter 5 dives into the mechanisms of the thermo-optic ef-
fect and tackles one of the challenges present in integrated photonic platforms, achiev-
ing small and large thermal tunabilities with opposite signs on the sample platform.
While simple to implement and highly stable, thermal tuning suffers from slow response
times (milliseconds) and high power consumption. In contrast, electro-optic tuning
exploits electric-field-induced refractive index changes using contact pads in-plane (or
out-of-plane depending on the polarizability) in between the waveguides in materials
like lithium niobate or III-V semiconductors (fig.2.2b), achieving up to 500 GHz modula-
tion with minimal power dissipation [67, 68]. The phase difference in this case is related
to the electric field applied between electrodes with the relation:

∆Φ=−πL

λ0
n3r E (2.2)

In this equation, n is the refractive index, r the electro-optic coefficient of the ma-
terial and E is the applied electric field. This approach, critical for high-speed optical
modulators and switches, benefits from materials with strong Pockels effect, though
challenges remain in integrating such materials with CMOS platforms. With this pur-
pose, Chapter 6 shows the successful integration and application of amorphous silicon
carbide with lithium niobate [35].

Despite this not being covered in the thesis, mechanical tuning of photonic devices
have gathered attention recently. This method is enabled by micro-electro-mechanical
systems (MEMS), which physically adjust photonic components such as waveguide gaps
or suspended ring resonators via piezoelectric actuation (2.2c). MEMS-based tuning of-
fers sub-microsecond response times, low optical loss and non-thermal operation, mak-
ing it ideal for reconfigurable photonic circuits [69–71].

2.2. PHOTONICS FOR QUANTUM APPLICATIONS
Photon sources and detectors are an essential aspect of current and future photonic ap-
plications. In this section we will discuss the different material platforms that host or
can be used to generate single photons. Additionally, we will also review the integra-
tion of superconducting single photon detectors on standard photonic platforms using
a variety of superconducting materials.
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Figure 2.2: Concept scheme for a) thermal tuning using micro-heaters on the top of the waveguides, b) electro-
optic tuning using in-plane contacts to create an electric field in the electro-optic material and c) mechanical
tuning using piezoelectric materials.

2.2.1. PHOTON SOURCES

Until very recently, the inclusion of single photon emitters in SOI and SiN platforms re-
quired pick-and-place integration of emitters [72]. However, researchers demonstrated
silicon nitride single-photon emitters that can be intrinsically generated, enabling effi-
cient routing on the same platform [73, 74]. III–V semiconductor chips (e.g. GaAs or
InP) can host epitaxial quantum dots within the photonic structure, yielding bright and
deterministic single-photon emission [75]. While LN does not natively host quantum
emitters, periodically poled lithium niobate (PPLN) can be used to generate entangled
photon pairs through spontaneous parametric down conversion (SPDC)[76, 77]. Addi-
tionally, wide-bandgap materials such as diamond and silicon carbide (SiC) serve as
both photonic platform and emitter host, with embedded color centers based on NV,
SiV or divacancy centers with long spin coherence [78–80] or based on spontaneous
four-wave mixing (SFWM) [81]. Another approach uses two-dimensional materials (like
hBN or WSe2) as single-photon emitters that can be layered onto photonic chips [82–86];
their atomic thickness allows tight coupling to underlying waveguide modes, but precise
placement and emitter stability (often requiring cryogenic operation or post-processing
to activate narrow-line emitters) are important considerations in integrating 2D sources.

2.2.2. WAVEGUIDE-INTEGRATED SNSPDS

Waveguide-integrated superconducting nanowire single-photon detectors (SNSPDs) com-
bines the sensitivity and broad detection window of superconducting nanowires with
the reconfigurability of integrated photonic circuits. These devices consist of ultrathin
superconducting nanowires made of niobium nitride (NbN), niobium titanium nitride
(NbTiN), tungsten silicide (WSi) or molybdenum silicide (MoSi) among others, patterned
directly on photonic waveguides or deterministically embedded, enabling efficient cou-
pling of guided optical modes to the active detection region. Waveguide-integrated
SNSPDs achieve near-unity on-chip quantum detection efficiency [87], ultra-low dark
count rates [88], and picosecond-level timing resolution [89, 90], making them indis-
pensable for applications requiring single-photon sensitivity, such as quantum key dis-
tribution (QKD), light detection and ranging (LiDAR), and quantum computing [91, 92].
Their integration with photonic waveguides minimizes optical losses and alignment chal-
lenges inherent in free-space systems, while enabling scalable, on-chip architectures.
SNSPDs have been successfully integrated in different photonic material platforms such
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as Si [87, 93–97], SiN [98–105], GaAs [106–111], AlN [112], LiNbO3 [113, 114], Ta2O5 [115]
and diamond [116–118].

2.3. APPLICATIONS OF INTEGRATED PHOTONIC CIRCUITS

In this section we will explore some of the most relevant works highlighting the different
application areas for integrated photonic circuits. Some of them are in very early stage,
while others have gathered funding and consolidated into well known startup compa-
nies in the world.

2.3.1. QUANTUM INFORMATION PROCESSING AND COMMUNICATIONS

In quantum communications, photonic integrated circuits can ensure compact, chip-
scale optical satellite links [119] and quantum key distribution systems, where entangled
photon pairs, generated via nonlinear processes in waveguides or microring resonators,
are routed through with minimal decoherence [120–122]. On-chip beam splitters, phase
modulators, and superconducting nanowire single-photon detectors enable high-speed,
fault-tolerant quantum networks, while resonant cavities could enhance photon-emitter
interactions for efficient quantum light sources. For quantum computing, integrated
photonics facilitates linear optical quantum processing using the KLM protocol [123]
by controlling complex interferometric arrays with Mach-Zehnder interferometers and
tunable phase shifters, enabling two-photon gates and boson sampling experiments
[124–127]. Hybrid platforms, such as silicon carbide hosting silicon-vacancy centers or
lithium niobate modulators for fast qubit control, further bridge photonic and solid-
state quantum systems [128–130]. Integrated photonic platforms enable the generation
of microcombs—compact frequency combs that offer high precision and stability for
quantum applications. By harnessing second-order nonlinearities, one can achieve ef-
ficient frequency conversion processes critical for generating entangled photon pairs,
while third-order nonlinear devices enable wavelength conversion, parametric ampli-
fication, signal regeneration or optical demultiplexing among others [131–137]. These
advancements are essential for secure quantum communications, scalable quantum in-
formation processing and linear optical computing [138].

2.3.2. LIGHT DETECTION AND RANGING

Modern LiDAR systems use photonic integrated circuits to generate, steer, and detect
laser pulses with unprecedented precision and speed. On-chip semiconductor lasers,
such as those fabricated in indium phosphide or hybrid III-V/silicon platforms, emit
coherent light at near-infrared wavelengths, while optical phased arrays (OPAs), com-
posed of tunable phase shifters and grating antennas, enable solid-state beam steering
without moving parts, enhancing reliability and scan rates [139–142]. Silicon nitride
and silicon photonics further reduce propagation losses and enable dense integration
of components like Mach-Zehnder modulators for frequency-modulated continuous-
wave (FMCW) LiDAR, which improves depth resolution and reduce the impact of ambi-
ent light [143].
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2.3.3. BIOSENSING

Integrated photonics is redefining biosensing by enabling ultra-sensitive, portable, and
multiplexed platforms for real-time detection of biomolecules, pathogens, and cellular
interactions. With the use of ring resonators and photonic crystal cavities it is possi-
ble to detect small changes in refractive index caused by molecular binding events on
functionalized waveguides, achieving label-free sensing with sub-picomolar sensitiv-
ity. Advanced designs, such as plasmonic-photonic hybrid structures, enhance light-
matter interaction for single-molecule detection [144] or broadband spectrometers on
a lithium niobate platform [145]. Integrated microfluidics enable "lab-on-a-chip" sys-
tems for point-of-care diagnostics [146]. Photonic devices can also improve the current
tomographic ultrasonic and photoacoustic techniques with optomechanical ultrasound
sensors. These sensors have been successfully demonstrated to provide images of fast-
moving objects, leaf veins and live zebrafish [147, 148].

2.4. STATE-OF-THE-ART FOR SILICON CARBIDE PHOTONIC PLAT-
FORMS

The main goal of this thesis is to highlight current and new fabrication methods for high-
performance optical devices made on silicon carbide. In this section, we will provide
an overview of the state of the art for both crystalline and amorphous silicon carbide
photonic platforms. The works provided here will extend the literature review shown
and published in chapter 4 with research that appeared later in the field.

2.4.1. CRYSTALLINE SILICON CARBIDE

Silicon carbide is a semiconductor commonly known in applications for high power
electronics that has emerged as an attractive material platform for integrated photon-
ics, with advantages over other materials like silicon or silicon nitride. With a wide
bandgap, great thermal and chemical stability, a high refractive index, transparency in
the visible and infrared wavelengths and strong second- and third-order nonlinearities,
this material enables high-performance photonic devices [149]. From the several crys-
talline forms or polytypes, the most commonly used ones are 4H-SiC (hexagonal), 6H-
SiC (hexagonal) and 3C-SiC (cubic). As stated in the introduction, to use this material for
integrated photonic devices, the first step is transfer-bonding with silicon dioxide, a low
refractive index material, to form silicon carbide on insulator (SiCOI). 4H-SiCOI ring res-
onators with waveguide width of 3 µm and thickness of 530 nm have been fabricated to
perform optical parametric oscillators with quality factors of 1.1 x 106 [150]. In another
article, researchers used the same platform to study soliton microcombs and achieving
quality factors as high as 5.6 x 106 in ring resonators with waveguide width of 1.85 µm
and thickness between 500 nm and 600 nm [151]. The highest values achieved in 4H-
SiCOI platforms reached 7.1 x 106 (mean Q of 6.75 x 106) on whispering gallery mode res-
onators (not waveguide-based devices) [45]. For 3C-SiCOI platform, suspended devices
have shown quality factors of 4.1 x 104 [152] while the highest reported was 1.42 x 105

with 40 µm ring radius, waveguide width of 1700 nm and thickness of 500 nm [153]. Re-
cent progress in the integration of 3C-SiCOI with lithium niobate demonstrated optical
devices with loaded quality factors of 1.4 x 103 and electro-optic tunability of 6.2 pm/V
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[34]. These devices were made on films with 280 nm in thickness and had a waveguide
width of 900 nm tapered down to 450 nm to enhance the mode interaction with lithium
niobate. Other works have shown integration of silicon carbide with epitaxially grown
AlGaAs quantum dot lasers [154] and embedded InGaAs QDs on GaAs waveguides [155].

2.4.2. AMORPHOUS SILICON CARBIDE
To avoid the need for transfer bonding, using chemical vapor deposition techniques it
is possible to form amorphous SiC, a disordered variant. This material combines the
benefits of SiC with CMOS-compatible low-temperature fabrication and the possibil-
ity to include it on a larger variety of substrate materials with precise thickness control.
Most importantly, the CVD process allows to tune the composition, affecting the refrac-
tive index, the non-linear properties and the operation wavelength. In 2014, researchers
showed PECVD a-SiC optical disk resonators with quality factors of 1.3 x 105 for optical
Kerr non-linear experiments with a Kerr non-linearity of 5.9 × 10−15 cm2/W [156]. A re-
cent work fabricated PECVD a-SiC optical ring resonators achieving intrinsic quality fac-
tors of 1.6 x 105 being, at the time of publication (2019), the highest ever recorded among
all SiC platforms with waveguide propagation losses of 3 dB/cm [48]. Most importantly,
they used a reduced temperature of 300◦C making it compatible with CMOS processes.
Using these devices in a second work, the same researchers performed four-wave mixing
(FWM) experiments. They recorded a third-order non-linear coefficient ten times higher
(4.8 × 10−14 cm2/W) than crystalline silicon carbide and silicon nitride [157]. Advances
in deposition techniques made it possible to increase these quality factors exceeding 5
x 105 during this thesis [49] representing three times higher values and at half the de-
position temperature (150◦C), hence advancing heterogeneous integration with a wider
variety of materials that were not compatible with the standard 300◦C. During this time,
another work showed that PECVD a-SiC could be tuned to achieve the highest thermal
tunability in a platform with a TOC of 1.88 x 10−4/◦C comparable to Si [158]. The device
geometry was a ring resonator with radius of 50 µm, gap between bus and ring waveg-
uide varying between 100 nm and 400 nm, a waveguide width of 875 nm and a thickness
of 320 nm. Nevertheless, the optical devices had quality factors of 103 hinting that this
tuning mechanism could affect their performance. Recently, researchers used PECVD
a-SiC films deposited with different recipes to achieve high third-order non-linearities
[159]. The achieved a non-linear refractive index of 6.7 x 10−18 m2/W for a refractive
index of 2.80, comparable to silicon, a commonly used non-linear material. For hy-
brid integration, while there is a work based on simulations showing the combination
of a-SiC with lithium niobate [160], the only experimental work showing this platform
with electro-optic modulation is shown by Z.Li et. al [35]. Here it is demonstrated an
electro-optic tunability of 3.4 pm/V and quality factors exceeding 105 in racetrack ring
resonators with bending radius 120µm, waveguide width of 800 nm and thickness of 280
nm.
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2.5. CONCLUSION
This chapter lays the foundation for understanding the materials, components, and func-
tionalities of integrated photonic devices, which are essential for the discussions in sub-
sequent chapters. Furthermore, it expands on the literature presented in the main pub-
lications for state-of-the-art silicon carbide photonic devices within the scope of this
thesis. The sections presented here will be particularly relevant when going through de-
vice geometry optimization, photonic device integration, and emerging applications in
quantum and hybrid photonics.
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of soliton microcombs, Nature Photonics 16, 52 (2022).

[152] K. Powell, A. Shams-Ansari, S. Desai, M. Austin, J. Deng, N. Sinclair, M. Lončar, and
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This chapter will provide a more in detail and visual overview of the experimental
methods that have been applied in this thesis. Specifically, the film deposition tech-
niques, the fabrication processes for the photonic devices (ring resonators, waveguides
and superconducting detectors) and the silicon dioxide lift-off processes. Additionally, a
detailed explanation of the optical setups involved in the characterization experiments
will be given, both at room temperature and cryogenic temperatures. The aim of this
chapter is to serve as a manual for future students and researchers in the field.

3.1. DEPOSITION TECHNIQUES

In this thesis, we fabricate devices with two chemical vapor deposition techniques: PECVD
and ICPCVD and, as a comparison, a schematic for the chambers of both systems is in-
cluded below in fig.3.1. For PECVD, we used a Plasmalab 80+ while for the ICPCVD, we
used a PlasmaPro100. PECVD has been utilized for silicon, silicon dioxide, silicon ni-
tride and amorphous silicon carbide deposition [1–8], being the more conventional de-
position technique for photonic devices. On the other hand, ICPCVD is a newer method
to yield high quality and high density films with low hydrogen incorporation for similar
materials [9–15].

ICPCVD offers a lower operation temperature than PECVD, allowing to integrate the
silicon carbide films with CMOS processes and with III-V materials, which are very sen-
sitive to higher temperatures. The films provided by ICPCVD present higher density and
therefore higher refractive index with a lower deposition temperature, improving the
light confinement together with low hydrogen incorporation that reduces optical losses.
In PECVD (fig.3.1a), the bias between the parallel plates is coupled to the forward plasma
power. On the other hand, ICPCVD (fig.3.1b) has a plasma that is inductively coupled,
making it possible to achieve higher plasma densities without ion damage. As a result,
the films obtained with ICPECVD present lower surface roughness than PECVD.

Figure 3.1: Chamber geometry in a a) PECVD and b) ICPCVD processes.
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3.2. DEVICE FABRICATION
In the following chapters of the thesis that correspond to the different publications there
are simplified fabrication flows that do not show specific processes. In this section, we
will give an overview of the fabrication of photonic devices together with superconduct-
ing nanowire single photon detectors and the specific steps to achieve a high-quality
silicon dioxide lift-off. Before giving the fabrication flow, there are some common con-
cepts and recipes that we will describe below:

• ICPCVD deposition of a-SiC: the deposition is performed in a mixture of 15 sccm
of silane (SiH4), 10 sccm of methane (CH4), 10 sccm of Argon (Ar) as carrier gas
and 11 scmm of Ar close to the sample. The later is used to improve uniformity of
the flows which directly impacts the film quality. The plasma power for the depo-
sition is set to 750 W, the chamber pressure to 2 mTorr and the optimal deposition
temperature is 150◦C with 39 nm/min deposition rates.

• ICPCVD deposition of SiO2: The deposition is performed in a mixture of 16 sccm
of silane (SiH4) and 60 sccm of nitrous oxide (N2O). The plasma power for the de-
position is set to 1300 W, the chamber pressure to 8 mTorr and the optimal depo-
sition temperature is 150◦C, achieving deposition rates of 60 nm/min.

• Electron beam lithography: this step is performed in a Raith EBPG 5200+ using
an aperture of 400 µm and an acceleration voltage of 100 kV.

• Reactive Ion Etching (RIE) in Sentech Etchlab 200: for optical devices and SNSPDs
we followed a similar ething recipe of 13.5 sccm of SF6 and 3.5 sccm of O2 at a RF
power of 50W and chamber pressure of 8 µbar. Previous to the etching step, the
chamber is cleaned using 200 sccm O2 at 200W for 10 min and pre-conditioning
the chamber for 5 min without the sample using the same etching recipe.

• RIE descum in Sentech Etchlab 200: only in the case of waveguide-based devices
(not SNSPDs) and before depositing materials for lift-off processes, we remove the
resist residues by performing an oxygen plasma cleaning step for 1 min with 200
sccm O2 at 20 W of RF plasma power.

• Markers, contact pads and heaters: all three structures are patterned using the
same positive resist PMMA 950K A6 spin-coated at 3000 rpm/min to achieve a
thickness of around 600 nm and baked at 175◦C for 1 min. An electron beam
lithography step is followed with a dose of 1100-1300 µC/cm2 to expose the pat-
terns with a resolution and a beam step size of 64 nm and a beam spot size of
around 100 nm. The development is performed in MBIK:IPA (1:3) for 1 min and
IPA for 1 min and later the sample is dried using a nitrogen gun.

• Lift-off: is a step used to remove the material deposited on top of the resist and
leave the gold markers, contact pads, micro-heaters or silicon dioxide. This step is
performed in PRS3000 at 80◦C overnight leaving the sample vertically in a holder
and a magnetic stirrer.
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• Sample cleaning: to remove chemical residues or particles from resist and re-
deposition, we always immerse the sample in acetone and IPA and dry it with a
nitrogen gun. For the normal samples without SNSPDs, this is done 5 min for each
in a sonication bath at power level of 9 (out of 9). For the SNSPD samples, we only
immersed the samples since sonication can potentially harm the devices.

3.2.1. PHOTONIC DEVICES

During this thesis, we followed two approaches for the fabrication of photonic devices.
The simpler one that gave us higher quality optical devices is described in Chapter 4
and also used in Chapter 5. These devices are fabricated using a one-step lithography
fabrication approach. We start by thermally oxidizing a silicon wafer to achieve a thick-
ness of 2.5 µm SiO2 and depositing 280 nm a-SiC using ICPCVD at 150◦C. ARP-6200-09
positive resist is spin-coated at 2500 rpm-min and baked at 165◦C for 1 min to remove
the solvent. To define the pattern, we exposed the resist in an electron beam lithography
tool. The design has a resolution and beam step size of 2 nm with a beam spot size of 3
nm. The optimal dose for this resist was found to be 280 µC/cm2. To reveal the exposed
region, the sample was developed 1 min in pentylacetate, 1 min in MBIK:IPA (1:1), 1 min
in IPA and dried using a nitrogen gun. To transfer the pattern to the film, a RIE step was
followed for 120 s. To remove the remaining resist residues, we performed a descum step
for 500 s. As a final step, we spin coated PMMA 950K A7 resist to achieve a thickness
of 1 µm or deposited a PECVD SiO2. The devices are fabricated for both grating cou-
pling configuration (fig.3.2a) and for a side coupling configuration (fig.3.2b) which will
be discussed in the section Device characterization.

Figure 3.2: Optical devices fabricated using the standard ARP-6200-09 fabrication route on amorphous silicon
carbide for a) grating coupler configuration and b) side coupling configuration.

For the integration of our a-SiC platform with superconducting detectors based on
NbTiN films, we followed a standard fabrication process on silicon substrates with ther-
mally oxidized silicon dioxide. A thin film of NbTiN film is deposited using DC Mag-
netron sputtering [16]. The first layer that we pattern are for the gold contact pads of
the SNSPDs and the marker field for consecutive lithography steps. Before gold evapo-
ration and to remove possible resist residues, we performed descum. The sample is then
transferred to a metal evaporation tool where a layer of 5 nm of chromium is deposited
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as a sticking layer and 80 nm of Au to define the pads and markers. Following this de-
position, a lift-off process is done. After this, maN-2401 resist is spin-coated at a rate of
4000 rpm/min to achieve a final thickness of 100 nm. The resist is then baked at 90◦C to
remove the solvent and transferred to the electron beam lithography tool to expose the
resist. The set resolution and beam step size (BSS) for this design is 2 nm, with a beam
spot size of 3 nm. A dose test is performed to obtain an optimal dose of 300 µC/cm2. Ex-
amples of scanning electron microscope images of lower doses are shown in fig.3.3. To
reveal the pattern, we rinsed the sample in maD-525 for 1 min, deionized water for an-
other minute and the sample was dried with a nitrogen gun. For a film thickness between
7 nm and 9 nm, the etching step is run for 40s. At this step, the devices are characterized
to verify the performance and it will be reviewed in the section Device characterization.
The remaining residues of resist are removed by immersing the sample in PRS3000 at
80◦C for few hours and later the sample was cleaned. Immediately after this and to pre-
vent the oxidation of the superconducting film, a 280 nm layer of a-SiC is deposited with
ICPCVD. The optical ring resonators and waveguides were patterned using ARN-7520-
17 negative resist with a dose of 500 µC/cm2, developed using MF322 for 60s, twice in
MF322:H2O (1:10) for 15 s and tiwce in H2O for 15s. We performed an etching step for
120 s and resist descum. An oxide lift-off step is performed following the same procedure
that will be shown in Silicon dioxide lift-off. This is done to leave the markers open for
the alignment of the microheater pattern. For the micro-heaters, we deposited 80 nm of
titanium and 10 nm of gold, the later to reduce the resistance of the micro-heaters. To
finalize, a lift-off step is performed and the sample is cleaned.

Figure 3.3: Effect of different electron beam doses in maN-2401 resist defining a wire for SNSNPDs, using
doses of a) 275 µC/cm2, b) 250 µC/cm2 and c) 225 µC/cm2

3.2.2. SILICON DIOXIDE LIFT-OFF
The fabrication of the optical devices is similar to the previous section using ARP-6200-
09 positive resist, including the marker layer for consecutive lithography steps. The sam-
ple is then spin-coated with PMMA 960K A11 at 2500 rpm/min for a thickness of 2.2 µm.
We perform electron beam lithography and the openings are defined using a resolution
of 64 nm, with beam step size of 64 nm and beam spot size of around 100 nm. The
dose for this exposure was set to 1300 µC/cm2. The development is similar to previ-
ous PMMA exposures. Afterwards, the most important step is to clean the resist residue
with an descum step for 1 min. An optical microscope image of a device after this step
is shown in fig.3.4a. The resist height is measured using a profilometer and the depo-
sition of ICPCVD SiO2 is done to achieve a thickness 200-300 nm lower than the resist
thickness. Following the deposition, a lift-off step is performed with a magnetic stir-
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rer overnight. The sample is then cleaned and a second opening is done to deposit the
second cladding at the desired deposition conditions to achieve bidirectional thermal
tunability. Metallic heaters are fabricated on top of the optical waveguides to tune the
devices and the resulting device is shown in fig.3.4b.

Figure 3.4: a) Resist opening prepared to deposit one of the silicon dioxide claddings and b) final device with
two different claddings for bidirectional thermal tunability and metallic micro-heaters.

3.3. DEVICE CHARACTERIZATION
This section gives an overview of the specific components that have been fabricated and
provides a detailed explanation of the optical setups that have been used in this the-
sis. To characterize the wavelength spectra of ring resonators, we assembled two setups
for in-plane and grating coupling configurations. In addition, we included a thermal
element and a printed circuit board (PCB) with electrical connections to measure ther-
mal shifts and tune the devices using micro-heaters, respectively. To measure the su-
perconducting nanowire single photon detectors, we performed the measurements at
cryogenic temperatures in a Gifford-McMahon cryocooler. The PCB used for electrical
connections (fig.3.5a) have 8 radio-frequency subminiature push-on (RF SMP) connec-
tors (4 on each side) and 16 pin connectors (14 pins for signal and 2 for the common
ground, 8 total connectors on each side).

3.3.1. ROOM TEMPERATURE SETUP

During the work presented in this thesis, the measurement setups at room temperature
evolved to two different configurations: for grating coupling using single fibers and side
coupling with v-groove fiber assemblies as depicted in fig.3.5b. The common elements
for these setups are the tunable laser (Photonetics TUNICS-PRI 3642 HE 15), the DC volt-
age supply for electrical tuning of the optical devices (RIGOL model DP832A), the paddle
polarization controllers (FPC560), the powermeters (818-IR Newport, linearity 0.5%), the
free-space polarizer (FBR-LPNIR) and the U-bench (FB-51) with optical fiber collimators
(FBP-C-FC). To measure the thermal response of the optical devices, the setups also have
a customized sample base with a thermal element and a manual controller with a tem-
perature sensor. A MATLAB Graphical User Interface (GUI) is used to control the laser,
stages, powermeter and DC voltage supply and it is capable of obtaining data of trans-
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mission spectra for a single ring at fixed temperature and voltage and transmission data
at different applied voltages for ring resonators and MZIs. A general description of the
setups is given below:

• Grating coupling setup: it consists of two XYZ micrometer stages from Thorlabs
(MTB612D) and 3D printed magnetic fiber holders with the possibility to adjust
the incidence angle. For automatic scanning, the sample stage has two Newport
closed-loop piezo linear actuators (model 8310CE). The output light from the opti-
cal devices is collected using a multimode fiber. In this configuration, the MATLAB
GUI can also automatize the stages to move from ring to ring, adjust the maximum
coupling and acquire the transmission spectra. Therefore enabling overnight au-
tomatic measurements and data analysis. A close-up of the sample mount for this
setup is shown in fig.3.5c.

• Side coupling setup: The setup has a 3D printed mount to hold a V-groove fiber
assembly from OzOptics (wavelength 1550 nm, separation 250 µm). The sample
stage has two Newport open loop linear piezoactuators (model 8302) for XY move-
ment of the sample and the V-groove stage an additional one for the Z movement.
The overall setup arrangement is shown in fig.3.5d.

Figure 3.5: a) PCB used for the characterization of photonic devices at room temperature and cryogenics,
b) schematic of the optical setup with both grating coupler and side coupling configuration. The setups are
assembled separately from each other but with common components such as the tunable laser, a temperature
controller, a programmable power supply and the polarization controllers; and they can be seen in c) sample
stage for the grating coupling configuration and d) optical setup for side coupling configuration.
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3.3.2. CRYOGENIC SETUP
Before further fabrication, the superconducting detectors are wire bonded and the re-
sistance is measured at room temperature. If the values are in agreement with expected
values and previously measured devices (around 1 MOhm in this thesis), the PCB is then
mounted on the cryostat.

An overview of the optical setup to characterize the photonic devices with supercon-
ducting detectors is shown in fig.3.6. The cryostat has an open window for imaging and
optical access to be able to couple light into the devices. The imaging system consists of
a charge-coupled device (CCD) camera with a movable lens for infinity correction and a
fixed lens in the cryostat. The assembly also has an illumination path with a light emit-
ting diode (LED, Thorlabs LIUCWHA) and a fiber collimator (Newport F-C5-F2-1550)
to inject light coming from the laser. The cryostat has two thermal radiation shields to
achieve low temperatures and an external shield for vacuum. The second shield has a
temperature of about 40K and holds cryogenic amplifiers to improve the signal-to-noise
ratio of the detection events, while the third shield of the sample stage keeps a temper-
ature of 2.8- 3.2 K. In the PCB stage, there are SMP connections to electrically access
the devices and several optical fibers in the case of having to characterize the detectors
with flood illumination or with self-aligned fiber sleeves. To bias the detectors and re-
trieve the photon pulses, the devices are controlled with a driver that is connected using
subminiature version A (SMA) connectors to the outside of the cryostat, and Bayonet
Neill-Concelman (BNC) connectors to the oscilloscope. The oscilloscope retrieves the
voltage pulses as a function of time and can perform time jitter measurements to de-
termine the uncertainty in the arrival of the photons due to the detector characteristics,
electrical circuitry and optical setup. A BNC cable is connected from the pulsed laser to
the oscilloscope for these measurements to give a reference trigger signal.
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Figure 3.6: a) Overview of the cryogenic setup for SNSPD measurements. The laser source can be a tun-
able laser for telecom (to characterize ring resonators) or a pulsed laser (to determine the time jitter of the
detectors). For time jitter, the pulsed laser is connected to the oscilloscope via coaxial cables for synchroniza-
tion with the readout signal of the detectors given by the driver. The light is attenuated by a digital attenuator,
aligned with paddle polarization controller to a free-space polarizer in a U-bench and again aligned to the max-
imum coupling of the grating couplers with another paddle polarization controller. b) Open window imaging
and laser input. The output from the U-bench goes to a laser collimator in the cage square bracket system and
is coupled into the devices using grating couplers.
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Integrated photonic platforms have proliferated in recent years, each demonstrating
its own unique strengths and shortcomings. Given the processing incompatibilities of
different platforms, a formidable challenge in the field of integrated photonics still re-
mains for combining the strength of different optical materials in one hybrid integrated
platform. Silicon carbide is a material of great interest because of its high refractive in-
dex, strong second and third-order non-linearities and broad transparency window in
the visible and near infrared. However, integrating SiC has been difficult, and current
approaches rely on transfer bonding techniques, that are time consuming, expensive
and lacking precision in layer thickness. Here, we demonstrate high index Amorphous
Silicon Carbide (a-SiC) films deposited at 150◦C and verify the high performance of the
platform by fabricating standard photonic waveguides and ring resonators. The intrinsic
quality factors of single-mode ring resonators were in the range of Qi nt = (4.7−5.7)×105

corresponding to optical losses between 0.78-1.06 dB/cm. We then demonstrate the po-
tential of this platform for future heterogeneous integration with ultralow loss thin SiN
and LiNbO3 platforms.

4.1. INTRODUCTION
Integrated photonics is a rapidly-growing field that is revolutionizing the way we use
light for computing, communication, and sensing. By developing new platforms and
technologies, researchers are continuously enhancing the performance and capabilities
of the building blocks of future photonic technologies. Silicon-On-Insulator [1], Silicon
Nitride [2] and Aluminum Nitride [3] have shown outstanding performance, for example,
in sub-picometer wavelength filters, low loss and high visibility Mach-Zehnder interfer-
ometers and accurate variable beam splitters. Due to the persisting demand to unlock
new properties and allow for higher degrees of freedom in photonic devices, materi-
als that offer tunability and strong non-linear behavior have gained attention in recent
years.

Silicon Carbide (SiC) is emerging as a promising material for integrated quantum
photonics due to its unique characteristics such as a high refractive index, strong second-
and third-order optical non-linearities [4, 5] (arising from a wide band gap and sup-
pressed two-photon absorption at telecom wavelengths) and a broad transparency win-
dow from visible to the mid-infrared range [6]. For quantum computing experiments,
different crystalline forms of silicon carbide are being incorporated in a broad range
of photonic schemes to individually address single-photon sources[7] and spin-qubits
[8]. 4H-SOI SiC ring resonators have been shown to exhibit quality factors between
1.1× 106 (making them a valuable demonstrator for optical parametric oscillation) [9]
and 5.6 × 106 (used in experiments to study soliton micro-combs) [10]. On the other
hand, the highest reported quality factor in a silicon carbide platform was achieved using
its crystalline form 4H-SiCOI and reached values up to 6.75×106 in micro-disk resonators
[11]. However, one challenge in using SiC in quantum photonics is the need for transfer-
bonding methods when depositing the crystalline material onto other substrates [11] in-
volving expensive and time-consuming processes together with issues regarding precise
thickness control, complicating hybrid integration. Furthermore, provided that this last
requirement is fulfilled, processing temperatures and chemical interactions between the
different materials give rise to compatibility issues.
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For hybrid integration with other platforms, an inert material such as amorphous
silicon carbide has great potential. One of the most promising properties of a-SiC is its
strong third-order nonlinearity, which is ten times higher than SiN [12] and crystalline
SiC [13], useful in, for example, four-wave mixing processes. This has been attributed to
the presence of intermediate states (traps or defects) within the band gap which are more
prominent in amorphous films and that can lead to enhanced two-photon and three-
photon absorption [14]. In another work, the non-linear refractive index of a-SiC was
improved by increasing the C-C bonds in C-rich SiCx after annealing [15]. From the stan-
dard Chemical Vapor Deposition (CVD) techniques, Plasma-Enhanced CVD (PECVD)
has shown excellence in terms of optical performances in ring resonators with intrin-
sic quality factors reaching up to 1.6×105 at around 1550 nm [16]. Furthermore, it was
compatible with the well-established CMOS fabrication processes. Recently, four-wave
mixing has also been demonstrated using this platform with micro-ring resonators hav-
ing loaded quality factors of 0.7 × 105 at around 1550 nm [17]. Therefore, it remains
a challenge to decrease the losses in this platform and compete with well-established
technologies.

In this work, we fabricate and characterize ring resonators on amorphous silicon car-
bide films deposited via Inductively Coupled Plasma-Enhanced CVD (Oxford ICPCVD
PlasmaPro100). All optical devices show intrinsic quality factors above 4.66×105, with
the highest being 5.7×105, overall, more than three times higher than previous achieve-
ments with this material and waveguide propagation loss ranging between 0.78-1.07
dB/cm. These values are comparable to well established platforms that can be deposited
at low temperatures such as PECVD SiN at 350◦C (0.42 dB/cm [18]). Additionally, using
our ICPCVD optimized recipe, the a-SiC films can be deposited at 150◦C, which to our
knowledge is the lowest temperature among other techniques and can be implemented
with a variety of optical materials with a simple lift-off process. Most importantly, we
demonstrate a fabrication route for heterogeneous integration of a-SiC films with SiN
and LNOI supported by optical simulations. Table 1 shows a comparison of the different
reported SiC platforms. A more comprehensive table can be found in the supplementary
information (table S2 of appendix A).

Material Width/Thickness (nm) Qi nt (x105)/Losses(dB/cm) T (◦C) Reference
3C-SiCOI 1700/500 1.42 / 2.9 - 19
4H-SiCOI 3000/530 11 / 0.38 - 9
4H-SiCOI 1850/500-600 56 / Not reported - 10

PECVD a-SiC 800/350 1.6 / 3 300 16
ICPCVD a-SiC 750/280 4.7-5.7 / 0.78-1.07 150 This work

Table 4.1: Comparison of different waveguide-based optical devices in SiC.

4.2. AMORPHOUS SILICON CARBIDE

4.2.1. DEPOSITION OF A-SIC FILMS

A Morphous silicon carbide has gained interest as a photonic platform due to its high
refractive index, large and tunable band gap, chemically inert nature, and potential
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compatibility with CMOS processes. The deposition of amorphous Silicon Carbide thin
films can be achieved with Low-Pressure CVD (LPCVD) [20], PECVD [21] and ICPCVD
[22], where the latest two have been shown in previous studies with good reproducibility
not only for Silicon Carbide but also with other materials for photonic devices, such as
Silicon Nitride. [16, 23, 24].

The main difference between PECVD and ICPCVD is in the plasma coupling mech-
anisms, i.e. inductive coupling in the case of ICPCVD while PECVD is capacitively cou-
pled. In the case of PECVD, the bias between the parallel plates is coupled to the forward
plasma power, which in turn means that a higher plasma density can cause more ion
damage to the substrate compared to ICPCVD. Therefore, in PECVD, the plasma densi-
ties have to be kept lower than in ICPCVD. The latter means that in ICPCVD depositions,
lower deposition temperatures and higher densities can be achieved [25–27].

In optical devices, the performance is mainly affected by the presence of Si-H and
N-H bonds, which is the major loss mechanism for SiN-based resonators (assuming that
roughness effects have been eliminated through conventional techniques) [28, 29]. In
the case of a-SiC:H thin films, Si-H bonds are also present in addition to C-H bonds. As
shown in some studies, hydrogenation decreases with density, involving the increase of
the deposition temperature [30].

Fig.4.1a shows the experimentally measured (using an ellipsometer) refractive index
(n) and the loss coefficient (k) of an a-SiC film deposited at 150◦C. The refractive index of
the a-SiC is 2.55 at 1550 nm, which is higher than the refractive index of SiN, leading to
more compact and improved device integration since a higher refractive index translates
into a high field confinement. Most importantly, depending on the Si and C content of
the films, the refractive index and the overall properties of the material can be tuned to
match the specific requirements (see Fig. S1 in appendix A).

The inset of fig.4.1a shows typical deposition results on a small 15x15 mm thermally
oxidized silicon sample. The color variation close to the edges reveals thickness non-
uniformity in the PECVD sample (left) due to thin film interference [31] while, in con-
trast, ICPCVD (right) shows excellent uniformity. The non-uniformity in PECVD is pri-
marily attributed to edge effects and skin effects [32], which are more prominent in
smaller samples due to their increased surface-to-volume ratio. Moreover, the larger
plasma sheet leads to more ions accelerating towards the sample from the edge regions
and with higher energies [25]. Such uniformity is especially important for wafer-scale
processing, where the cost can be reduced through the optimization of the deposition
process.

Atomic Force Microscopy (AFM) images in fig.4.1b reveal that the grain size of the
PECVD film (left) is significantly larger than that of the ICPCVD film (right). This obser-
vation is consistent with previous studies that have suggested that higher plasma den-
sities in PECVD lead to larger grain sizes [33]. Specifically, the root-mean-square (rq )
values for the ICPCVD and PECVD films were found to be 1.02 nm and 1.27 nm, respec-
tively. The difference in surface roughness and grain size between the two films can
significantly affect their optical properties.

An important advantage of a-SiC is the possibility to incorporate nitrogen as has been
previously demonstrated [34] that could lead to conductive films and optical elements
where the devices can be tuned directly with electrical contacts, and therefore allowing
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configurations for e.g. optical switches [35] or adding tunability to multimode interfer-
ometers (MMIs) [36].

Figure 4.1: a) Refractive index (n) and loss coefficient (k) for ICPCVD films deposited at 150◦C. Inset: compari-
son between film uniformities for the cases of deposition using PECVD and ICPCVD techniques, b) AFM scans
of films deposited at 250◦C using PECVD (left) and ICPCVD (right), c) fabrication flow for the optical devices
and d) SEM image of the waveguide cross-section. Inset: FDTD simulation of the confined mode and e) optical
microscope image of a ring resonator device with grating couplers.

4.2.2. EXPERIMENTAL METHODS
A complete process flow of the fabrication of the final photonic devices is shown in
fig.4.1c. a-SiC films were deposited with ICPCVD on 2.5 µm thermally grown silicon
dioxide. The film thickness for the deposited a-SiC was chosen according to FDTD sim-
ulations to ensure single-mode operation in the waveguides and ring resonator (inset
of fig.4.1d) and the final film thickness and refractive index was determined using an
ellipsometer.

To define the structures, ARP-6200-09 electron beam positive resist was spin-coated
and the patterns were formed using electron beam lithography. After exposure, the sam-
ples were developed and afterward etched using reactive ion etching (RIE Sentech Etch-
lab 200) with a mixture of SF6 and O2. A final layer of PMMA (1 µm) or SiO2 was used
to enhance the confinement in the waveguides acting as a top cladding. To characterize
the devices, we have used both edge and grating couplers. Fig.4.1d shows an electron
microscope image of a cross-section of a device and fig.4.1e an optical microscope im-
age of a device with grating couplers. For thermo-optic measurements, a thick (3 µm)
layer of SiO2 was deposited on top of the devices.

For the side coupling configuration, we used a C-band tunable laser (Photonetics
TUNICS-PRI 3642 HE 15). The polarization incident in the waveguide was selected using
a free space polarizer and polarization-maintaining fibers (OZ Optics V-groove assem-
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Figure 4.2: a) Optical microscope image of a ring resonator made on films deposited at 150◦C with ICPCVD
covered with silicon dioxide cladding as represented in the inset, b) spectrum between 1549 nm and 1553 nm
of the device and scan with 1 pm resolution of the selected resonant dip at 1550.196 nm.

bly). To obtain the transmission spectrum of the optical ring resonators, the wavelength
of the laser was swept in the desired range with 1 pm resolution. The output power was
recorded with a photodetector (Newport 843-R).

4.3. RESULTS AND DISCUSSION

4.3.1. DEVICE CHARACTERIZATION

Many ring resonators fabricated on PECVD and ICPCVD films with various parameters
such as waveguide width, gap, ring radius, and deposition temperature were thoroughly
studied and compared, and the overall results can be found in appendix A together with
the equations to determine the quality factor and waveguide propagation losses.

The highest quality factors were obtained for a deposition with ICPVCD at a tem-
perature of 150◦C for a ring resonator with ring radius of 120 µm as shown in fig.4.2a
and the data is shown in fig.4.2b, from which a free spectral range of 1.3 nm is deter-
mined. A loaded quality factor (QL) of 4.2x105 was measured and the intrinsic quality
factor (Qi nt ) of the device is estimated to be 5.7x105 which is more than three times
higher than previously reported results [16], corresponding to waveguide propagation
losses of 0.89 dB/cm. The lowest propagation loss was 0.78 dB/cm for the ring resonator
shown in Fig.S6 of appendix A.

4.3.2. THERMO-OPTIC COEFFICIENT OF ICPCVD A-SIC
The thermo-optic coefficient plays a major role in the choice of photonic platforms,
where many applications require low-power thermal tuning to reduce the thermal cross-
talk between devices. In this latter case, platforms based on SiN and SiO2 have shown
poor performance [37], making thermal tuning a challenging task. In this work, we mea-
sure the thermo-optic coefficient of a-SiC deposited via ICPCVD by studying the shift
in the resonance wavelength of optical ring resonators upon a change in temperature
in a range between 23◦C and 47◦C and the setup is shown in fig.S9 of appendix A. This
is done by using a heater in the sample holder that is thermally connected to the PCB
through a copper block. In the same location as the heater, there is a thermistor used to
monitor the temperature. The sample is fixed into the PCB using thermally conductive
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Figure 4.3: a) Transmission spectra for a-SiC deposited at 150◦C as the temperature of the devices is raised at
23◦C (blue), 37◦C (yellow) and 48◦C (red) and b) wavelength shift of a resonance dip as a function of temper-
ature for devices made on ICPCVD a-SiC films deposited at 150◦C and 250◦C and PECVD a-SiC deposited at
400◦C taken with steps of 2◦C.

silver paste. The heater and thermistor are connected to a controller to change the tem-
perature and keep it constant through a feedback loop. Fig.4.3a shows a representative
transmission spectrum at different temperatures taken from the device from which we
achieved the highest quality factors. Fig.4.3b shows the wavelength of a specific reso-
nance dip for temperature steps of 2◦C for devices fabricated on ICP and PECVD films.
The change in effective refractive index (ne f f ) as a function of the material temperature
can be derived from the following relation [38]:

dλ

dT
=

(
aneff +

dneff

dT

)
λ

ng
(4.1)

with a = 2.6x10−6/◦C being the expansion coefficient of the thermal Silicon Dioxide upon
a change in temperature, ne f f the effective index of the a-SiC waveguide with 750 nm in
width and varying thickness (measured by ellipsometry and confirmed with SEM) that
have been estimated using 3D FDTD simulations in Lumerical, and ng is the group index
at 1550 nm that is obtained from the transmission spectra (see fig.S7 of appendix A).
The equation that relates the thermo-optic coefficient of the materials involved with the
change in the effective refractive index as a function of temperature was obtained in
previous studies using the overlap integral approximation [39, 40]:

dneff

dT
= ΓSiO2

dnSiO2

dT
+Γa−SiC

dna−SiC

dT
(4.2)

where Γ denotes the overlap integral coefficients for the Silicon Dioxide cladding and
the Silicon Carbide waveguide and is determined using 3D Mode simulations in Lumer-
ical with the specific dimensions of the individual devices. The thermo-optic coeffi-
cient of PECVD SiO2 is already known to be 0.96x10−6/◦C as determined in the literature
[37]. For the devices made on a-SiC deposited at 150◦C, a thermo-optic coefficient of
7.3x10−5/◦C is obtained, which is three times higher than PECVD SiN [37]. As a reference,
thermo-optic measurements of a-SiC deposited via PECVD at 400◦C are also shown, with
a thermo-optic coefficient of 5.1x10−5/◦C , overall in agreement with previous works [41].
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DEPOSITED AT A LOW TEMPERATURE

4.4. HYBRID INTEGRATION AND FUTURE OUTLOOK

In quantum photonic circuits, routing photons with low losses is a vital requirement
and to this end, over the last decade, material platforms such as LPCVD Silicon Nitride
have been extensively optimized to reduce the losses. Recent works using thin film SiN
waveguides have enabled high-yield and wafer-scale fabrication with losses as low as 1
dB/m [42, 43] which is a fundamental requirement for two-photon interference on chip
[44, 45]. As a future outlook, we highlight in fig.4.4a the use of 280 nm thick a-SiC in
combination with low-loss waveguides based on Silicon Nitride thin-films (40 nm) and
Lithium Niobate, two promising platforms for integrated quantum photonics. In this
scheme, delay lines and photonic routing can be done with low-loss on SiN to later ex-
ploit the non-linearity of a-SiC in wavelength conversion experiments and generation of
entangled photon pairs. It can also be used in combination with crystalline Silicon Car-
bide or Silicon to deterministically address single photon sources and route the single
photons. The input light can be delivered to the photonic structures using grating cou-
plers, edge couplers or directly produced on-chip by embedded nanowire quantum dots
based on III-V materials[46]. Photonic mirrors can be used to improve the collection ef-
ficiency of the quantum dots and electrical gates allow the control of the fine structure
splitting [47]. A tapered waveguide is designed to avoid coupling losses when the light
is injected from 40 nm SiN waveguides to the 280 nm a-SiC (n=2 and n=2.589 respec-
tively at 1550 nm). These structures are later covered with a 3 µm thick silicon dioxide
cladding that is also tapered to improve the confinement. From FDTD simulations, a ta-
per length of 150 µm achieves a coupling efficiency of 92.6% at a wavelength of 1550 nm
with very high confinement in the a-SiC waveguide confirmed by the low bending losses
of the mode (see fig.S12 in appendix A). Manipulation of light can be performed via vari-
able beamsplitters and Mach-Zehnder interferometers and routed towards supercon-
ducting single-photon detectors forming the basic building blocks to perform quantum
photonic operations.

Owing to the low temperature at which these films are deposited, we demonstrate a
feasible approach to integrate the a-SiC films with current platforms based in a lift-off
process with PMMA in fig.4.4b, where the specific details about the procedure can be
found in appendix A.

Lithium Niobate (LiNbO3) provides efficient electro-optic modulation, high second-
order non-linearity, broad transparency window from the visible to the mid-infrared
range [48] and ultralow losses at telecommunication wavelengths as demonstrated in
an LNOI platform [49]. For this reason, to include our a-SiC devices in this platform and
combine the properties that they both offer, in appendix A (fig.S13a) we demonstrate a
fabrication route for heat-free tuning of photonic devices together with FDTD simula-
tions of the mode profile (fig.S13b).
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Figure 4.4: a) Amorphous Silicon Carbide Photonic devices made on a Silicon Nitride platform. Light coupling
can be performed via side coupling, using grating couplers or waveguide-embedded nanowire quantum dots
that have a mirror for enhanced optical collection and can be electrically tuned. The representation includes
tunable single-photon filtering with ring resonators, low-loss delay lines made on thin-film a-SiC (or SiN),
Mach-Zehnder interferometers, Variable Beamsplitters and Superconducting Nanowire Single Photon Detec-
tors (SNSPDs). b) lift-off process and optical microscope top-view image of the fabricated devices, c) FDTD
simulations of the mode profile in tapered a-SiC/SiN waveguides embedded in a tapered SiO2 cladding for a
high coupling efficiency.
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Integrated photonic circuits have transformed data communication, biosensing,
and light detection and ranging, and hold wide-ranging potential for optical
computing, optical imaging and signal processing. These applications often require
tunable and reconfigurable photonic components, most commonly accomplished
through the thermo-optic effect. However, the resulting tuning window is limited
for standard optical materials such as silicon dioxide and silicon nitride. Most
importantly, bidirectional thermal tuning on a single platform has not been
realized. For the first time, we show that by tuning and optimizing the deposition
conditions in inductively-coupled plasma chemical vapor deposition (ICPCVD) of
silicon dioxide, this material can be used to deterministically tune the thermo-optic
properties of optical devices without introducing significant losses. We demonstrate
that we can deterministically integrate positive and negative wavelength shifts on
a single chip, validated on amorphous silicon carbide (a-SiC), silicon nitride (SiN)
and silicon-on-insulator (SOI) platforms. This enables the fabrication of a novel
tunable coupled ring optical waveguide (CROW) requiring only a single heater. In
addition, we observe up to a 10-fold improvement of the thermo-optic tunability
and demonstrate athermal ring resonators with shifts as low as 1.5 pm/◦C. The
low-temperature deposition of our silicon dioxide cladding can be combined with
lift-off to isolate the optical devices resulting in a decrease in thermal crosstalk by
at least two orders of magnitude. Our method paves the way for novel photonic
architectures incorporating bidirectional thermo-optic tunability.

5.1. INTRODUCTION
Achieving a high degree of tunability in photonic devices has been a focal point
in the field of integrated photonics for several decades with a wide range of
applications from telecommunications and biochemical sensing to fundamental
quantum photonic experiments in many material platforms[1–17].

The most universally utilized method to achieve photonic device tunability is by
exploiting the thermo-optic effect. The thermo-optic coefficient (TOC) of an optical
material describes the change in refractive index due to a temperature change
(dn/dT)[18–20]. It has been shown that the thermal tunability of a platform depends
on the volume expansion of the materials, the temperature-induced refractive
index differences, waveguide path-difference variations, the strain between core and
cladding material, and their mechanical properties such as Young modulus and
Poisson’s constant, described with the following relation and simplified [21–24]:

dλ

dT
=λ

(
1

ne f f

dne f f

dT
+αsub

)
−λ 1

E

d
[
ν

(
σxx +σy y

)−σzz
]

dT
(5.1)

where ne f f is the effective refractive index at the given wavelength λ, αsub is the
thermal expansion coefficient of the substrate, E and ν are the Young modulus and
the Poisson’s constant of the core, and σxx , σy y and σzz the stress components.
In Eq.5.1 the first term on the right-hand side represents the effective thermo-optic
coefficient and is the usual term used in literature studies for the stress-free state.
In contrast, the second term corresponds to the thermal shift produced by a
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stress gradient. Thermal stress arises due to the mismatch between the thermal
expansion coefficients of the waveguide and the cladding materials. In the usual
configuration to exploit the thermo-optic effect, metal heaters are placed above the
guiding material to control the phase of the light. This method of tuning photonic
devices is virtually lossless, easy to integrate, and applicable to nearly all photonic
platforms. Nevertheless, the tuning strength is specific to the material platform
and, importantly, it is weak in photonic platforms such as silicon nitride or silicon
dioxide, two of the most commonly used materials in integrated photonics [25, 26].
To compensate for it, hybrid integration with platforms with higher TOC can be
performed such that e.g.: delay lines can be fabricated on a low-loss material (SiN)
while interference is done on high TOC platforms (a-SiC) [27–29]. Increasing the
TOC of materials has been a major challenge and, so far, accomplished by tuning
their composition [30, 31] or depositing high refractive index claddings such as
silicon oxycarbide (SiOC) [32]. Using TiO2, a high index cladding, several works
achieved SOI athermal devices, where this material cancels out the positive thermal
expansion of this photonic platform [33–36]. However, these methods are complex
and only applicable to specific platforms. Moreover, changing the composition
modifies the overall properties of the guiding layer and often significantly increases
the propagation losses, while depositing a high index cladding increases the bending
losses and reduces the integration density. Other works have shown that the
thermo-optic properties of optical devices can also be modified by applying external
thermal stress, with the drawback of presenting multimode operation, birefringence
and loss increase [21, 22]. Finally, only positive or negative thermal shifts have been
achieved thus far[37–39]; bidirectional tuning on a single platform remains elusive.

In this work we report for the first time that inductively-coupled plasma chemical
vapor deposition (ICPECVD) can be used to tailor the thermo-optic properties of
optical devices by depositing silicon dioxide claddings, the most common optical
material, achieving large positive and negative thermal wavelength shifts on a single
chip without significantly affecting the optical losses (depicted in fig.5.1a). We apply
this technique on amorphous silicon carbide, silicon nitride and silicon-on-insulator
platforms, and demonstrate an up to 10-fold improvement of the thermo-optical
wavelength tunability of SiN compared to literature values. Moreover, we demonstrate
a 5-fold higher thermal tunability and athermal photonic ring resonators on a-SiC
platform. This powerful tunability range allows us to showcase unprecedented
photonic devices by deterministically including claddings with negative and positive
thermal responses on the same chip. Additionally, thanks to our low-temperature
deposition technique, we introduce a novel fabrication approach to isolate active
optical devices and demonstrate a decrease in thermal crosstalk by at least two
orders of magnitude.

5.2. RESULTS AND DISCUSSION

5.2.1. THERMO-OPTIC WAVELENGTH SHIFT AND PROPAGATION LOSS

Following the general formula for the thermo-optic coefficient in Fig. 5.1b and
as demonstrated in other works, applying thermal stress in the cladding can
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contribute to controlling the temperature sensitivity of optical devices[21–24]. In
CVD techniques it is known that different parameters such as temperature, chamber
pressure, gas ratios and RF plasma power can modify the stress profiles in the
deposited films [40–44], their morphology (fig.5.1c) such as grain size [45] and
density [46] or the chemical composition (fig.5.1d), with nitrogen, hydrogen and
incorporation of dopants, overall affecting the thermal expansion properties of the
cladding[47, 48]. Most importantly it has been shown that, in ICPCVD, RF plasma
power and pressure can also induce noticeable differences in the anisotropy ratio,
which relates the film thickness in the sidewall to that of the substrate and could
potentially affect the strain profile around the waveguide region [49]. Fig.5.1e
shows two scanning electron microscope cross-sections of the deposition of silicon
dioxide around the waveguide region. Different chamber pressures of i 2.5 mTorr
and ii 12 mTorr produce noticeable differences in the anisotropy of the cladding.
These parameters can also affect other contributing factors such as the thermal
expansion coefficient and polarizability [24]. We measure the thermal response of
optical ring resonators (radius 120 µm, waveguide width 750 nm, gap 850 nm and,
as measured by ellipsometry, thickness of 270 nm) fabricated on a-SiC films and
covered with silicon dioxide claddings deposited via ICPCVD and PECVD techniques
under different deposition temperatures (Fig. 5.2a) and chamber pressures (Fig. 5.2b).
Details about free spectral range, group index, effective index, thermal tunability
and device dimensions for a-SiC, SiN and Si platforms can be found in Appendix
B together with the calculated effective TOC. For compatibility with the lift-off
process, we tune the thermal tunability at a fixed temperature of 150◦C by modifying
the chamber pressure. We conducted temperature reliability tests for different
claddings and found that silicon dioxide claddings deposited at 150◦C can withstand
temperatures up to 400◦C (see Appendix B). At a deposition temperature of 150◦C
(Fig. 5.2b) we achieve wavelength shifts between +29.5 pm/◦C (at 2 mTorr) and -118
pm/◦C (at 16 mTorr). Using this approach, we record a thermal shift of -138 pm/◦C
in a-SiC platform depositing ICPCVD SiO2 at 300◦C and 12 mTorr, corresponding
to dne f f /dT = -2.2×10−4RIU/◦C. The respective spectra with the detuning of the
resonance dip at different temperatures can be seen in Fig. 5.2c. This represents
a tunability of almost 5 times higher than standard devices [27] and significantly
22% more than that of silicon [50] (see Appendix B for the fitting). Crucially, for
sensing applications, and thanks to the significant thermal tuning from negative to
positive, our method allows for the fabrication of athermal devices by choosing the
appropriate chamber pressure (3 mTorr) and deposition temperature (150◦C). We
achieved a thermal response as low as 1.5 pm/◦C in a temperature range between
27◦C and 35◦C, a relevant temperature range for biological and chemical sensing
[51] (Fig. 5.2d), which is 20 times lower than the standard PECVD-cladded devices
(see Appendix B for individual spectra). In Fig. 5.2a it can be seen that the largest
thermal tunability of -166 pm/◦C occurs for a deposition temperature of 75◦C
(temperature raises to 91◦C due to table heating). The spectra and fits can be
found in Appendix B. For these low temperatures, we find that the device response
is not stable, resulting in different TOCs after the temperature is raised. As shown
in Appendix B the same is true for a device made on a silicon nitride platform, a
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Figure 5.1: a) Illustration of the deterministic integration of different claddings on the same chip with
positive, athermal and negative detuning. b) General formula for the thermal shift in optical devices,
proportional to volume expansion, composition, polarizability and mechanical properties [24, 40].
Varying the deposition parameters in CVD techniques can induce changes in the thermal expansion
properties of the films due to c) the morphology (grain size and topography) [45] and density [46]
of the films as shown by our AFM studies, d) their chemical composition and bonds with other
compounds such as hydrogen, nitrogen or dopants [47, 48] and e) cladding anisotropy around the
waveguide adding additional strain [23, 49] as has also been observed in our crossectional SEM images
of waveguides with ICPCVD silicon dioxide claddings deposited at chamber pressures of i 2.5 mTorr, ii
12 mTorr.

cladding deposited at 30◦C cannot be heated more than 33◦C since the thermal shift
and hence the tunability decreases.

To demonstrate that this method can be applied to other platforms, we deposit
claddings using PECVD and ICPCVD at different temperatures on SOI (width 700
nm and thickness 220 nm with ring radius of 120 µm) and SiN (width 1000 nm and
thickness 368 nm with ring radius of 120 µm) platforms and record the detuning of
the resonance wavelength for each device as a function of the stage temperature.
The resonance wavelength detuning as a function of temperature are shown in
Fig. 5.2e and f, respectively. The representative spectra at different temperatures can
be found in Appendix B. Fig. 5.2e shows that for SOI optical ring resonators we can
achieve thermal shifts between -96 pm/◦C (dne f f /dT = -2.2×10−4/◦C) for ICPCVD
oxide deposited at 75◦C and +40 pm/◦C for 300◦C PECVD oxide cladding.

Similarly, Fig. 5.2f shows that depositing PECVD SiO2 on SiN devices yields
14 pm/◦C, comparable to values found in the literature[52]. In contrast, when
this cladding is deposited with ICPCVD at 300◦C we achieve a thermal shift of
-106 pm/◦C, representing an improvement of almost an order of magnitude and a
dne f f /dT of -1.2×10−4/◦C.

In terms of optical quality, using ICPCVD SiO2 at a temperature of 150◦C and
changing the chamber pressure results in devices with similar quality over the
pressure range from 2 mTorr to 8 mTorr with waveguide propagation losses of 2.68
dB/cm (Qi nt = 1.58×105, comparable to literature values).
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Figure 5.2: a) Wavelength shift in pm/◦C for a-SiC devices with ICPCVD cladding deposited at
different temperatures and a constant chamber pressure of 8 mTorr using ICPCVD (green) and PECVD
(blue) together with the standard deviation obtained from the linear fitting. Lines are guides to the eye.
b) Thermo-optic tunability in pm/◦C for a-SiC devices with ICPCVD cladding deposited at different
chamber pressures and a temperature of 150◦C (red) and 300◦C (purple) together with the standard
deviation obtained from the linear fitting. c) Wavelength spectra of a device with a cladding deposited
via ICPCVD at 300◦C and 12 mTorr chamber pressure recorded at different temperatures between
27◦C and 32◦C. d) Detuning of the resonance wavelength for a-SiC devices with cladding deposited
by PECVD (chamber temperature 300◦C; green symbols) and ICPCVD (chamber temperature 150◦C
and chamber pressure 3 mTorr; blue symbols). Lines are linear fits. e) Detuning of the resonance
wavelength for silicon-on-insulator optical devices with PECVD and ICPCVD claddings deposited at
different temperatures. Lines are linear fits with slopes as indicated. f ) Detuning of the resonance
wavelength for silicon nitride optical devices with PECVD and ICPCVD claddings deposited at different
temperatures. Lines are linear fits with slopes as indicated.
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5.2.2. PASSIVE AND ACTIVE DEVICES

To highlight the flexibility of our fabrication strategy, we propose the first
demonstration of a passive actuated coupled resonator optical waveguide (CROW)
device using a single cladding with negative thermal tunability. CROW devices are
typically used in optical filtering, dispersion compensation, and non-linear optics
[53–56]. In addition, they can be used to delay, store, and buffer photons with
controlled times[57]. The basic structure of a CROW device consists of two or
more adjacent and coupled ring resonators. Fig. 5.3a shows a device with this
configuration and the inset a basic lift-off process using a silicon dioxide cladding
deposited at 150◦C and 8 mTorr. Lift-off is challenging for CVD methods due to
the high deposition temperatures, incompatible with lithography resists [58]. Other
techniques such as sputtering can be used, but the number of parameters that
can be modified is much more limited and they often lead to lower-quality oxides
(unless annealing is performed) and poor step coverage [59, 60]. Fig. 5.3b shows the
output spectra as the temperature of the sample is increased from 32.5◦C to 34.5◦C.
In this case, the matching condition is achieved at a temperature of 33.9◦C. As
another example, we show in Appendix B a Mach-Zehnder interferometer where it is
possible to vary the output power in the ports by modifying the stage temperature.
In their usual configuration, these devices are tuned with separate micro-heaters on
top of the rings. Once the coupling condition is fulfilled, the resonances of each
ring overlap, and the photons can be filtered to the output. In contrast, our CROW
design incorporating two rings of opposite thermal shifts can be tuned by a single
heater. This is done by using a lift-off friendly temperature of 150◦C, compatible
with lithography resists, but with chamber pressures of 2 mTorr (positive TOC) and
8 mTorr (negative TOC) following Fig. 5.2b.

Using our fabrication scheme, we fabricate a CROW configuration with two
claddings (Fig. 5.3c) and similar ring parameters as previously shown. Fig. 5.3d shows
an optical microscope image of the final rings with heaters. They are connected in
series (or in parallel) having common voltage and common ground. For a device
connected in parallel (R=784Ω), sweeping the voltage results in the diagram shown
in Fig. 5.3e. This figure represents a 2D map tracking the position of the dips for
both rings as the voltage is increased. For a voltage of 6V, the resonance matching
condition for both rings is fulfilled. Appendix B includes a similar plot for a device
connected in series, displaying similar behavior but requiring a higher operation
voltage.

5.2.3. CLADDING LIFT-OFF FOR THERMAL ISOLATION

In standard methods, the cladding is deposited on the whole sample making it
challenging to place optical devices close to each other due to thermal crosstalk.
Some approaches have shown that, to reduce the thermal crosstalk, the cladding
between devices can be etched [61–64] or predictive models can be developed to
control their overall response [65–67]. The possibility of defining the cladding using
lift-off significantly reduces the design and fabrication complexity.

Due to the low processing temperatures involved in ICPCVD we fabricated
a cladding limited to a region of 4µm around the waveguide and studied the
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Figure 5.3: a) CROW resonator fabricated using bidirectional thermal response with only one cladding.
Inset: basic lift-off process with cladding. b) Transmission spectra around 1552 nm of the output signal
of the device shown in panel d at temperatures of 32.5◦C (blue), 33.5◦C (orange), 33.9◦C (green) and
34.5◦C (red). c) Fabrication scheme for the inclusion of bidirectional claddings in optical devices. 1)
Resist spin coating, exposure and development. 2) SiO2 cladding deposition for positive shift. 3) Lift-off
in acetone. 4) Resist spin-coating, exposure, development and deposition of negative TOC cladding. 5)
Lift-off in acetone. 6) Patterning of metal heaters via lift-off. d) Optical microscope image of two ring
resonators connected with a middle waveguide. e) Resonant wavelength as a function of the voltage
applied to metal heaters of the optical device shown in panel b (R=784Ω)

thermal response. For reference, we also fabricated ring resonators with standard
PECVD cladding. Both ring resonators have a 10 µm separation between adjacent
waveguides and dimensions similar to those in previous sections. Fig. 5.4a shows
optical images of the devices together with a schematic side-view of the cladding.
To determine the thermal crosstalk between adjacent rings, we varied the power
dissipated in the heater of ring A (R=1.9kΩ) and observe the thermal response of
both rings A and B (Fig. 5.4a). In the case of standard PECVD cladding, the thermal
response of rings A and B is 18.5 pm/mW (red line in Fig. 5.4b) and 1.5 pm/mW (red
line in Fig. 5.4c), respectively. Similar to PECVD, for a continuous ICPCVD cladding,
the thermal response of rings A and B is -22.7 pm/mW (purple line in Fig. 5.4b) and
-2.5 pm/mW (purple line in Fig. 5.4c), respectively. By using an ICPCVD cladding
with lift-off method, we improve the performance of our device in two ways: we
increase the thermal response in ring A (42 pm/mW, green line in Fig. 5.4b) and
decrease the thermal response in ring B (no thermal shift visible within a free
spectral range, green line in Fig. 5.4c). Therefore, we can thermally isolate two ring
resonators placed 10 µm apart by depositing an ICPCVD cladding with the lift-off
method, which is not feasible in standard PECVD claddings (see Appendix B for the
measured data). Note that the heating efficiency of the on-chip micro-heaters falls
outside the scope of this study, and the geometry of the heaters and thickness of
the cladding can be modified to significantly raise the ratio between heat generation
and power consumption, and optimize the reconfiguration time [68–72].
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Figure 5.4: a) Optical microscope image (top view) of ring resonator devices fabricated using continuous
cladding (left) and cladding delimited with lift-off (right). Red arrows denote thermal crosstalk from
the micro-heater of R=1.9kΩ. b) Detuning as a function of power consumed in ring A fabricated using
PECVD (red), ICPCVD (purple) and cladding lift-off (green). c) Shift of the adjacent ring due to thermal
crosstalk as a function of power consumed in the micro-heater for PECVD (red), ICPCVD (purple) and
cladding lift-off (green).



5

68 REFERENCES

5.3. CONCLUSIONS
We demonstrated, for the first time, the use of ICPCVD silicon dioxide claddings
deposited at low temperatures to achieve positive, negative and athermal thermo-
optic devices on a single chip with large thermal tunability across several photonic
platforms such as amorphous silicon carbide, silicon nitride and silicon-on-insulator.
Most importantly, we fabricated both passive and active components. Our approach
opens up the possibility for the fabrication of low-power photonic configurations such
as Mach-Zehnder interferometers, single-heater CROW optical devices, and highly
sensitive temperature sensors that could be easily integrated with current electronic
and photonic technologies. Additionally, we showed that the low-temperature
fabrication scheme allows to thermally isolate the optical devices to compensate
for the high thermal shifts and to increase the photonic integration densities. This
study presented a phenomenological approach to tuning the thermal properties of
optical devices. While preliminary research into the root cause of the effect is
presented in Appendix B, more comprehensive studies are needed to fully unravel
the mechanism behind the exciting findings that are reported here. Measurements
of film stress, surface morphology and anisotropy ratio of the cladding indicate that
these properties could be the main mechanism behind this effect. Nevertheless, to
model these devices, it is important to understand other contributions such as the
composition and density of the films, hydrogen, nitrogen or dopant incorporation,
specific mechanical constants of the deposited films (Young´s modulus and Poisson
constant), the strain between the layers and how the device geometry can affect
the thermal tunability. With further improvements, we foresee the use of these
configurations for novel photonic architectures and widely tunable photonic circuits.
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In this chapter we demonstrate the integration of NbTiN superconducting
nanowire single-photon detectors (SNSPDs) exhibiting saturated internal detection
efficiency at near-infrared wavelengths of 950 nm with amorphous silicon carbide
(a-SiC) waveguides and photonic devices. This integration approach opens
promising pathways toward scalable, high-performance photonic systems, beneficial
for applications in quantum communication, integrated LiDAR and quantum
computing. The manuscript is under preparation.

6.1. INTRODUCTION
Superconducting nanowire single-photon detectors (SNSPDs) represent the state-of-
the-art choice for quantum photonic experiments, offering substantial advantages over
alternative technologies like transition edge detectors and avalanche photodiodes.
SNSPDs provide exceptionally low dark count rates, broad spectral sensitivity from
visible to mid-infrared wavelengths, detection efficiencies surpassing 90% between
900 nm and 1550 nm, sub-10 ps timing resolution, rapid recovery times and
photon number resolving capabilities [1–5]. All of these properties are critical
for single-photon-sensitive applications, including quantum key distribution, light
detection and ranging (LiDAR), quantum computing and quantum information
[6–11]. SNSPDs are usually integrated inside cryostats, which cool them to a few
Kelvin to maintain superconductivity. Optical fibers are aligned to the detectors,
often using self-aligned sleeves that position the fiber core directly above each
nanowire for efficient coupling. In multi-channel systems, each detector is typically
connected to its own fiber, ensuring independent photon input. This setup allows
stable, low-loss light delivery into the cryogenic environment while preserving the
detector’s high efficiency and low noise for different wavelengths [2, 12]. Integrating
these detectors onto photonic circuits combines their superior sensitivity and wide
detection window with the reconfigurability and scalability inherent to integrated
photonics [13].

SNSPDs consist of ultrathin superconducting nanowires, commonly fabricated
from materials such as niobium nitride (NbN), niobium titanium nitride (NbTiN),
tungsten silicide (WSi), or molybdenum silicide (MoSi), deposited on waveguides
or deterministically embedded into waveguides to facilitate efficient coupling of
guided optical modes directly to their active detection regions. A SNSPD works
by exploiting the transition of a superconducting nanowire into a resistive state
upon photon absorption and the behaviour is explained through the hot-spot model
[9]. The nanowire, cooled below its critical temperature and biased with a current
just under its critical current, remains superconducting with zero resistance until a
photontransfers the energy to the material. When absorbed, the photon’s energy
breaks Cooper pairs and generates a localized “hotspot” where superconductivity
is suppressed. As the current passes through the nanowire, the hot-spot grows
due to an avalanche effect and this forces the bias current to flow around the
hotspot. When the current density exceeds the critical limit, a temporary resistive
region develops. The appearance of this resistive section produces a measurable
voltage pulse, which serves as the detection signal. After the hotspot cools within
picoseconds to nanoseconds, the nanowire returns to its superconducting state,
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being able to detect the next photon.
SNSPDs have been successfully integrated in different photonic material platforms

such as Si [14–19], SiN [20–27], GaAs [28–33], AlN [34], LiNbO3 [35, 36], Ta2O5 [37]
and diamond [38–40].

Amorphous silicon carbide (a-SiC) is a promising platform for integration with
SNSPDs due to its broad optical transparency extending from the ultraviolet (UV)
to mid-infrared (mid-IR), high refractive index (2.4-2.6), relatively low waveguide
propagation losses and high third-order non-linearities. Its high refractive
index particularly enhances coupling efficiency with nanowire quantum dots in
microcavities [41]. In comparison to the traditionally utilized PECVD techniques,
a-SiC deposited with ICPCVD yields high-quality film deposition at a lower
temperature (150°C) and optical devices with better performance [42].

As has been shown in previous studies, this compatibility opens up the
seamless integration of SNSPDs with advanced photonic structures, including
adiabatic tapers for hybrid integration with low-loss thin-film SiN [43, 44] and
lithium niobate [45]. The integration with lithium niobate is particularly beneficial,
allowing heat-free electro-optical modulation and leveraging its strong second- and
third-order nonlinear optical properties. In this section we present an alternative
material platform suitable for quantum photonics and waveguide-integrated SNSPDs
saturating at near-infrared wavelengths of 950 nm. Therefore, matching the emission
wavelength of nanowire quantum dots based on InAsP that we characterize in our
lab [44].

As a general overview of the applications for the proposed configuration, we
fabricated a chip shown in fig.6.1a which can be used for signal demultiplexing with
several ring resonators tuned to separate the specific wavelengths (fig.6.1b) directly
applied in single-photon biosensing [46], c) high data rate optical communication
using time-amplitude demultiplexing (fig.6.1c) [47] and on-chip quantum interference
experiments (fig.6.1d) using balanced Mach-Zehnder interferometers to measure the
quality of single-photon sources [41].

6.2. SAMPLE FABRICATION
The complete fabrication flow for these devices is described in section 3.2.1 of the
Experimental methods and a simplified fabrication process is depicted in Fig. 6.2a.
A microscope image illustrating a fabricated Mach-Zehnder interferometer (MZI) on
the a-SiC photonic layer is shown in Fig. 6.2b. Additionally, Fig. 6.2c presents
a fully fabricated coupled resonator optical waveguide (CROW) device featuring
integrated metallic micro-heaters. Ring resonators provide a compact way to study
resonance effects, spectral filtering and quality factors; while MZIs serve as versatile
interferometric structures for modulation, switching and phase control. Together,
they validate the platform’s ability to support both passive and active photonic
functionalities. Because of limited time and the required modifications to the
optical setup, these elements have not yet been fully characterized to assess their
performance.
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Figure 6.1: a) Optical microscope image of the fabricated chip for several applications such as b)
wavelength demultiplexing for spectroscopy and biosensing, c) high data rate optical communication
using time-amplitude demultiplexing and d) quantum interference to measure the quality of
single-photon sources.

Figure 6.2: Fabrication flow for the integration of SNSPDs with a-SiC photonic devices and optical
microscope image of a waveguide integrated SNSPD. Inset: scanning electron microscope image of the
nanowire.

6.3. CHARACTERIZATION OF SNSPDS AND RING RESONATORS

The main optical and electrical setup to characterize the SNSPDs with flood
illumination is shown in section 3 (Experimental Methods). The first method to
characterize the detection response of SNSPDs is through the photon count rate
(PCR) curves that measure how detection efficiency depends on the bias current
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applied to the detector and the photon flux. At low bias currents, the PCR is low,
but it rises sharply as the bias current increases following a sigmoidal curve. Near
the critical current, the PCR saturates, reflecting the detector’s intrinsic efficiency. At
this point, increasing the bias current has no effect in the efficiency of the detector.
Fig.6.3a shows the photon count rate curves before and after deposition of ICPCVD
a-SiC with an illumination wavelength of 940 nm.

In SNSPDs, the photon energy plays a key role in determining detection
efficiency. Higher-energy photons (shorter wavelengths) deposit more energy into
the nanowire, producing larger hot spots with more quasiparticles, which makes
it easier for the bias current to exceed the local critical current and trigger
a resistive transition. This generally leads to higher detection efficiency and
lower timing jitter. In contrast, lower-energy photons (longer wavelengths) create
smaller hot spots with fewer excitations, which may not be sufficient to drive
the nanowire into the normal state unless the device is biased very close to its
critical current or specifically engineered for long-wavelength sensitivity. As a result,
SNSPDs tend to detect high-energy photons more readily, while detecting low-energy
photons requires careful optimization of nanowire geometry, material properties
and operating conditions. Fig.6.3b demonstrates these detectors’ fabrication and
successful operation up to 2000 nm wavelength in a 7 nm NbTiN film without
performing waveguide integration.

The second important aspect of these detectors are the dark counts. Dark counts
in SNSPDs are false detection events that occur even when no photon is present.
They arise mainly from random fluctuations in the superconducting nanowire, such
as thermal excitations, stray blackbody radiation or electronic noise, which can
create resistive hotspots similar to those caused by real photons. Dark counts set
the noise floor of the detector and are typically minimized by cooling to very
low temperatures, using proper shielding and optimizing the nanowire design and
fabrication process. Fig.6.3c shows the effect of waveguide integration in the dark
count rates and critical currents of a detector made on a 9 nm film. Therefore, the
photonic integration of the detectors created additional dark counts and a decrease
in critical current that could be explained by the introduction of unwanted strain in
the superconducting film. More experiments need to be performed to determine the
exact process adding this additional strain, such as the deposition of the a-SiC film
or that of the silicon dioxide claddings.

Last but equally important is the timing properties of the nanowires know as
the time jitter. This metric refers to the uncertainty in the exact arrival time of the
detection signal relative to when the photon actually hits the detector. It is caused
by variations in hotspot formation, current redistribution, signal propagation along
the nanowire and noise in the readout electronics. Lower jitter means more precise
timing resolution, which is crucial for applications like quantum communication and
time-correlated photon counting. In fig.6.3d we demonstrate a timing jitter of 37.4
ps for a detector with 70 nm wide nanowires in a 9 nm film. Even when this value
is larger than previous literature studies [4], the performance can be improved by
optimizing the detector geometry and varying film thickness without compromising
the detector performance.
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Figure 6.3: a) Photon count rate curves for 940 nm wavelength as a function of the bias current
applied to a detector before and after deposition of a-SiC via ICPCVD for 9 nm NbTiN film, b) PCR
curves for 1550 nm and 2000 nm wavelength of a hairpin SNSPD fabricated on a 7 nm NbTiN film
before a-SiC deposition, c) dark count rates as a function of the bias current applied to the 9 nm
SNSPD before and after deposition and d) histogram of time jitter for a detector with 70 nm wide
nanowires.

Using this fabrication process, the similarities of the etching recipe of the SNSPDs
also create some roughness in the thermal silicon dioxide due to overetch which
can affect the quality of the optical layer. To demonstrate that after this etching
process does not influence the performance of the optical devices, we measured the
transmission spectrum of a ring resonator similar to the one shown in Fig.6.4a using
the room temperature setup with grating coupler configuration (see Experimental
methods section). The resulting spectrum is shown in Fig.6.4b, from which we
obtained a full-width-at-half maximum (FWHM) of 24.4 pm corresponding to a
loaded quality factor of 63,524. Comparing this value to standard devices made on
this platform shows that the degradation and increased optical losses are related
to both the induced roughness in the thermal oxide due to over-etching and the
etching quality of the a-SiC film generating sidewall roughness in the waveguides.
Nevertheless, the obtained quality factors can still be used for most photonic
architectures and fundamental quantum photonic experiments using quantum dots,
validating the fabrication process.
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Figure 6.4: a) Optical microscope image of a ring resonator in a drop-port configuration for signal
filtering and b) Transmission spectra at room temperature of the through-port of a similar ring
resonator fabricated in the same sample with wavelength step size of 4 pm.

6.4. CONCLUSION AND OUTLOOK
This chapter overviews the feasibility of integrating SNSPDs with our recently
developed amorphous silicon carbide (a-SiC) photonic platform. In this platform,
we have demonstrated all the essential building blocks required to conceive
a fully reconfigurable photonic circuit, capable of supporting a wide range of
applications including optical communications, quantum photonics, LiDAR, and
biosensing. As a next step, our efforts will focus on a systematic characterization
of the waveguides, modulators, filters and superconducting nanowire single-photon
detectors under cryogenic operating conditions. These studies will allow us to
quantify optical losses, assess device stability, evaluate modulation and switching
performance and understand the mechanisms that drive SNSPD degradation. Beyond
passive and active photonic elements, we will pursue the integration of on-chip
nanowire quantum dots as deterministic single-photon sources, enabling quantum
light generation for fundamental experiments in quantum optics and information
processing. Finally, we will explore hybrid integration strategies, combining our
detector arrays with advanced material platforms such as thin-film lithium niobate,
to achieve heat-free electro-optic modulation, ultra-low propagation loss and the
high-bandwidth needed for next-generation quantum information processors.

Integrating SNSPDs directly onto photonic platforms is highly significant for
the future of both classical and quantum technologies. By combining ultrafast,
highly efficient single-photon detection with compact, scalable photonic circuits, it
becomes possible to build chip-scale systems that are far more stable, compact and
energy-efficient than current bulk-optics solutions. There are immediate examples
where this integration will be essential. For example, for advancing quantum
communication and quantum key distribution, where reliable detection of single
photons is essential for secure information transfer. It also enables large-scale
quantum photonic processors, since having detectors on the same chip as sources
and modulators minimizes coupling losses and improves overall system fidelity.
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7
OUTLOOK AND CONCLUSION

7.1. OUTLOOK
To highlight several possibilities in hybrid photonic integration of our platform for
different applications, this section briefly summarizes the works that followed our
primary research on the deposition of high-quality a-SiC films and are part of
collaborations or current research projects in our group. Combining amorphous
silicon carbide films with polymers was done at VU Amsterdam and TU Delft sent
high-quality films. The integration of a-SiC with lithium niobate and with silicon
nitride are both research lines developed in our group at TU Delft.

7.1.1. POLYMERS

Mohammad Talebi Khoshmehr et al. [1] presented an etch-less method with a novel
hybrid optical waveguide configuration that enhances functionality and performance
in photonic integrated circuits. Traditional optical waveguides rely on high-index
material etching, limiting their versatility and increasing propagation losses due to
fabrication imperfections. This work integrates a low-index, easily processable SU8
polymer with an amorphous silicon carbide (a-SiC) guiding layer, eliminating the
need for etching. The hybrid design significantly enhances polarization control,
achieving a transverse magnetic mode suppression of 62 dB at 1550 nm which
simplifies optical measurements. Additionally, the waveguide demonstrates a 2.5×
improvement in coupling efficiency compared to untapered SiC waveguides. The
authors further optimize performance through thermal baking, reducing scattering
losses from 1.57 to 1.3 dB/cm. These advancements make the hybrid waveguide an
attractive alternative for low-loss, polarization-sensitive, and highly efficient photonic
devices, particularly for applications requiring precise mode shaping and dispersion
control. The study’s findings contribute to the development of next-generation
photonic systems, with implications for quantum photonics, biosensing, and
high-density optical circuits.
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7.1.2. LITHIUM NIOBATE

Zizheng Li et al. [2] demonstrate the heterogeneous integration of amorphous
silicon carbide (a-SiC) on thin-film lithium niobate (TFLN), offering a scalable
and CMOS-compatible platform for high-speed reprogrammable photonic integrated
circuits (PICs). Lithium niobate is widely recognized for its exceptional electro-optic
properties, fast modulation and second-order nonlinearity, but the processing of this
material remains challenging due to etching limitations and incompatibility with
standard CMOS fabrication techniques. By depositing a-SiC using low-temperature
inductively coupled plasma-enhanced chemical vapor deposition (ICPCVD), this work
circumvents these challenges, enabling high-performance photonic devices without
compromising the integrity of the lithium niobate substrate. The fabricated a-SiC/LN
waveguides and ring resonators achieve intrinsic quality factors exceeding 1.06×105

and demonstrate resonance electro-optic tunability of 3.4 pm/V. The platform
supports dense integration, allowing the realization of compact photonic structures
down to 40 µm bending radius while maintaining low loss. The demonstrated
approach holds significant promise for advanced applications in reconfigurable
photonics, nonlinear optics, and quantum information processing, leveraging both
second- and third-order nonlinearities on a single chip.

7.1.3. SILICON NITRIDE

Zizheng Li et. al [3] introduced an adiabatic tapering coupler designed to
enable bidirectional, low-loss optical interconnection between thin-film silicon
nitride (Si3N4) and amorphous silicon carbide (a-SiC) photonic platforms. While
Si3N4 is well known for its ultra-low propagation loss ( 1 dB/m), it suffers
from weak mode confinement, limiting its integration density. In contrast, a-SiC
offers higher refractive index contrast, much higher thermo-optic tuning coefficient
and stronger mode confinement, making it ideal for compact photonic circuits.
With an adiabatic transition between these two materials, the proposed coupler
achieves a high coupling efficiency at telecom wavelengths of 1550 nm, higher
than 96%, with minimal insertion loss. The design is optimized through numerical
simulations, showing efficient mode transfer with negligible losses even at tight
bending radii (0.29% loss at a 90° bend with a 20 µm radius). In another
publication, Zizheng Li, Naresh Sharma et al. [4] also investigated the incorporation
of quantum dots (QDs) and superconducting nanowire single-photon detectors
(SNSPDs) within this hybrid platform. Through experiments and simulations, the
authors demonstrate an adiabatic coupler that efficiently transfers light between SiN
and a-SiC waveguides with a coupling efficiency of 96% at 885 nm. Moreover,
the work characterizes nanowire quantum dots, showing high single-photon purity
(g(2)(0) = 0.011) and a short lifetime (0.98 ns). By transferring these sources, this
hybrid approach would enable advanced on-chip quantum optics experiments such
as Hong–Ou–Mandel interference, while addressing key challenges in integrating
low-loss and high-confinement photonic platforms.
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7.2. CONCLUSION OF THE THESIS
In this thesis we started by optimizing the deposition of amorphous silicon carbide
films using PECVD and ICPCVD to make high quality and low propagation loss
optical devices. We then used this platform to fabricate standard waveguides and ring
resonators, focusing on the telecom range, and more precisely, 1550 nm. To increase
the tunability of the photonic devices, we developed a deposition recipe for silicon
dioxide that can be used to deterministically address optical devices on a single chip,
achieving up to a ten-fold improvement in the thermal tunability, athermal devices
and bi-directional thermal response. To finish, we integrated superconducting single
photon detectors on this platform for future quantum experiments. The main
achievements of this thesis are:

1) We developed high quality amorphous silicon carbide films using the
novel technique ICPCVD. The deposition with this tool enabled lower temperature
processes than standard PECVD techniques, from 300°C to 150°C. The optimization
was performed by controlling the plasma power, chamber pressure, gas ratios and
deposition temperature aiming to increase the refractive index of the films, reduce
the grain sizes and achieve low surface roughness. In parallel to this optimization
process, we fabricated photonic waveguides, ring resonators and grating couplers
to verify the platform’s performance. We achieved three times higher quality
factors above 4.7x105 compared to ring resonators made on a standard PECVD
a-SiC platform with the highest intrinsic quality factor of 5.7x105, corresponding to
waveguide propagation losses of less than 1 dB/cm. We demonstrated how this
process, combined with a lift-off technique, can embed the deposited films into
silicon nitride, or any other platform, to protect optical devices in hybrid photonic
systems. The low-temperature deposition of the films will allow the combination
with many more material platforms than before, including quantum dots based on
III-V materials and superconducting single-photon detectors.

2) We developed a silicon dioxide deposition recipe using ICPCVD that can
be used to tune the thermal properties of ring resonators and that is universally
applicable to any platform that uses the thermo-optic effect. To achieve this, we
varied the deposition temperature and pressure of the cladding and measured the
thermal response of the resonance wavelength in ring resonators. The highest
thermal shift recorded was -138 pm/°C on a-SiC for a deposition temperature of
300°C and a chamber pressure of 12 mTorr, representing 5 times higher thermal shift
than standard devices fabricated using PECVD silicon dioxide claddings. On a silicon
nitride platform, we demonstrated that we can achieve a ten fold improvement
in the thermal tunability with -106 pm/°C. To determiniscally address the specific
devices, we selected a temperature of 150°C in order to be compatible with a lift-off
process and demonstrated that we can achieve both positive and negative thermal
shifts. Most importantly, we fabricated a novel CROW device configuration using this
approach that can be tuned using only a single heater. Finally, to address the high
thermal crosstalk inherent to this platform, we showcase an integration approach
based on lift-off to thermally isolate optical devices and allow for high integration
densities.

3) We integrated superconducting nanowire single photon detectors on amorphous
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silicon carbide and demonstrated their performance from 940 nm to 2000 nm.
The platform developed during this thesis provides a stepping stone for further

development of basic technologies that can potentially reach the market.

7.3. CHALLENGES AND OPPORTUNITIES
Whenever a new platform is developed, there are challenges and opportunities
ahead. With all the information and literature review provided in this thesis it
is a requirement to ask what disadvantages arise, possibilities to solve them and
opportunities for future advancements.

1) Even with the drawback of transfer bonding, crystalline silicon carbide will still
be the platform of choice for integrated photonics, mainly for the high second-order
non-linearities, possibility to integrate with CMOS electronics and the existence of
well-known single photon sources based on vacancy centers. To address the issue
with single-photon centers, several works have implemented them using irradiation
techniques [5], ion implantation [6], femtosecond laser writing [7] or in-situ defect
incorporation during deposition. Another approach could be to irradiate the devices
with erbium ions that could potentially induce the creation of color centers [8]. A
more comprehensive overview of single photon centers on silicon carbide can be
found in literature studies [9].

2) While developing the amorphous silicon carbide high-quality films, the focus
was on telecom wavelengths. As we move closer to the demands of current
quantum technologies, it is imperative to start thinking about improving the optical
performance at wavelength matching today´s state-of-the-art single photon emitters.
It is a requirement to put effort into decreasing the waveguide propagation losses
at near-infrared and eventually visible wavelengths for their use with quantum dot
sources and color centers. Similarly, with the current advancement of detectors,
mid-infrared operation should also be addressed for sensing applications [10].

3) To further decrease the losses, it is known that using nitrogen-based precursors
will incorporate this element into the deposited films. As shown in works with
silicon nitride, deuterated or chlorine-based precursors will lower the waveguide
propagation losses [11, 12].

4) Another implication of using CVD techniques for the deposition of amorphous
silicon carbide is the feasibility to introduce nitrogen dopants in the films [13, 14].
While the effect on the optical quality is still unknown, it could enable the possibility
of making conductive dielectric films to directly affect the device functionality
using electrical contacts. Future studies should look into the effect in optical
quality and electrical conductivity as nitrogen is incorporated during deposition.
Most importantly, the fabrication of electrically tunable ring resonators, multimode
interferometers and heating elements should be experimentally verified.

5) While we obtained high thermal tunability devices using silicon dioxide
claddings, it will be important to understand the device temporal dynamics and the
relation of heat dissipation, reconfiguration time and oxide deposition parameters.

6) Thermo-optic measurements at room temperature are not valid for lower
temperatures. To properly characterize and simulate the claddings and combine
them with superconducting detectors, the next step should be to characterize them
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at cryogenic temperatures [15].
A natural progression for future research would involve addressing these

challenges systematically, ensuring that silicon carbide-based integrated photonic
platforms meet the requirements of emerging quantum technologies. Investigating
methods to enhance non-linearities in the material, optimizing waveguide designs
and deposition recipes to reduce the propagation losses across multiple wavelength
ranges, and understanding thermal tunability mechanisms will be essential.
Additionally, exploring cryogenic characterization techniques will provide deeper
insight into the device performance.
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A.1. DEPOSITION RECIPES AND ELLIPSOMETRY DATA
The deposition of amorphous silicon carbide films in PECVD was done using a
mixture of SiH4 (15 sccm), CH4 (75 sccm) and Ar (285 sccm) with temperatures
ranging between 300◦C and 400◦C. The chamber pressure was kept in all recipes at
1000 mTorr with a forward plasma power (PFW) of 20W. The average deposition
rates were 39 nm/min. An example for the effect in optical properties (refractive
index and extinction coefficient) upon the variation of Si/C ratio during PECVD
deposition is shown in fig.S1.

For the deposition of ICPCVD a-SiC films, the same mixture was applied with 15
sccm of SiH4, 10 sccm of CH4, at temperatures ranging between 150◦C and 400◦C.
In this case, an Ar flow close to the sample (Arring) was choose to be 11 sccm while
the Ar flow in the chamber was 10 sccm. The chamber pressure was kept at 2 mTorr
for all recipes with a forward plasma power of 750 W. The average deposition rates
were 37 nm/min. In fig.S2 it can be seen that lowering the temperature lowers the
roughness in the films with a minimum at 150◦C.

Figure S. A.1: Refractive index and loss coefficient of a-SiC films deposited at 300◦C with PECVD as a
function of methane flow for a fixed silane flow.
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Figure S. A.2: Atomic Force microscope images of ICPCVD a-SiC deposited at a) 75◦C, b) 150◦C and
c) 400◦C

A.2. DEVICE FABRICATION AND INSPECTION
The development of the electron beam resist was performed in a three-step process
immersing the samples in pentyl-acetate, MBIK:IPA (1:1) and IPA for 1 min each. For
etching, the plasma power was set to 20W with 13.5 sccm of SF6 and 3.5 sccm of O2

at a chamber pressure of 8 µBar. After etching the excess e-beam resist was removed
by oxygen plasma cleaning (200 sccm O2 at 50W) for 8 minutes.

To determine the specific dimensions of the waveguides under study, electron
microscope images were taken top view and cross-section as shown in fig.S3.

Figure S. A.3: Scanning Electron Microscope images of a) a ring resonator with 100 µm radius and
gap 900 nm, b) gap region between the ring resonator and the bus waveguide, c) side image of the
waveguide profile and d) top image of the bus waveguide for a design of 800 nm width.

A.3. DEVICE FABRICATION AND INSPECTION
The most important parameter in an optical ring resonator is the loaded quality
factor (QL), and is obtained experimentally from the transmission spectra of a
resonance dip (or peak). This value quantifies the filtering quality of the device, and
it is defined as [1]:

QL = λ

∆λ
(A.1)

where λ is the center wavelength at the resonance and ∆λ is the Full Width at
half maximum of the Lorentzian fit. However, since this value is affected by the
interaction with the coupling waveguide, the following expression for an intrinsic
quality factor is often preferred:
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Qi = 2QL

1+pT
(A.2)

In this equation, T denotes the transmission at the resonance.
From the intrinsic quality factor (Qi ), the loss coefficient (α) can be estimated by

attending to the following expressions [2]:

α= 2πng

Qiλ
(A.3)

where the group index (ng ) can be determined using experimental data of the
free spectral range (FSR) of the ring resonator with radius R under study:

ng = λ2

2πR ·F SR
(A.4)

Last, to convert to units of dB/cm, the relation below is applied to the loss
coefficient (cm−1), with L being the length of the waveguide:

α(dB/cm) = 1

L
10l og10

(
P

Po

)
= 1

L
10log10

(
e−αL)= 4.3429 ·α(cm−1) (A.5)

A.4. SYSTEMATIC MEASUREMENTS OF QUALITY FACTOR, FREE SPECTRAL

RANGE AND GROUP INDEX
To systematically characterize the devices with PMMA cladding, we used a C-L band
tunable laser (Santec TSL-550). The light is coupled into the device using grating
couplers patterned in the films. A fiber polarization controller Thorlabs (FPC032) is
used to select the polarization of the input light. To obtain the transmission spectrum
of the optical ring resonators, the wavelength of the laser is swept from 1500-1600
nm with 1 pm resolution at a speed of 10 nm/sec. The output transmission of
the device is collected on a photodetector (Newport 2011). The following data is
taken for the best two samples in the several deposition runs of ICPCVD. For these
systematic measurements, devices were fabricated including grating couplers and an
automatic setup was used to obtain the spectra. For reference, PECVD is also shown
to demonstrate and compare this technique. In the later, the temperature cannot
be lower than 200°C since no functional devices will be achieved. All the results
obtained for the best two recipes in ICPCVD and PECVD are shown in fig.S4. Devices
patterned on PECVD films deposited at 400°C presented higher quality factors, thus
confirming that the main loss mechanism in PECVD, hydrogen incorporation, is
lower. In this case, the highest loaded quality factor for the ring resonator was
1.8x105 with intrinsic quality factor of 2.1x105. On the other hand, ICPCVD shows a
great stability over a broader temperature range due to the minimal incorporation of
hydrogen and generally, lower grain sizes. The device with the highest quality factor
obtained during this optimization process is shown in fig.S5.

For the device shown in fig.S5 and using the equations introduced in the
beginning, a waveguide propagation loss of 1.06 dB/cm is obtained. Nevertheless,
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Figure S. A.4: Systematic data acquisition for the loaded quality factor of ring resonators in PECVD
(400°C) and ICPCVD (150°C) as a function of a) gap distance and b) ring radius; c) gap distance for
different waveguides widths and two different temperatures of ICPCVD.

Figure S. A.5: a) Transmission spectrum from 1516 to 1525 nm of the ring resonator with highest
quality factor with a free spectral range of 1.4 and b) 1 pm resolution scan of a resonance dip at
1521.65 nm.

Figure S. A.6: a) Optical microscope image of a ring resonator with 300 µm diameter fabricated on
a-SiC films deposited at 150◦C with PMMA cladding and b) normalized transmission spectra with 1
pm resolution of a resonance dip around 1549.46 nm.
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the lowest propagation losses were obtained for the device with 150 µm radius and
PMMA cladding shown in fig. S6 with 0.78 dB/cm.

The free spectral range of the devices was taken from a set of dips around 1550
nm and the measurement number indicates each of the dip to dip distances. The
group index was obtained using eq.S4 for each wavelength and ring radius and the
data is represented in fig.S7.

Figure S. A.7: For devices made on ICPCVD a-SiC deposited at 150°C with different radii, from 50 µm
(blue) to 100 µm (purple), a) Free spectral range of several peaks around 1550 nm and b) group index
as a function of the wavelength obtained from the FSR data for different radius.

A.5. THERMO-OPTIC COEFFICIENT OF A-SIC DEVICES
To determine the thermo-optic coefficient (TOC) of the optical ring resonators, the
refractive index (n) and the thickness of the film (t) was obtained from ellipsometry
data (shown in fig.S8) and confirmed via electron microscope images of the devices
under study. Finite-Domain Time-Domain (FDTD) simulations using the commercial
software Lumerical were performed to obtain the effective refractive index (ne f f )
and the overlapping factor (Γ).

Figure S. A.8: Ellipsometry data for ICPCVD films deposited at 150◦C and 250◦C and PECVD deposited
at 400°C showing a) refractive index and b) extinction coefficient

The samples were placed on top of a PCB using thermally conductive silver
paste (fig.S9a). The PCB has a resistive thermal element and the temperature can
be varied with a voltage supply up to 100◦C (fig.S9b). The temperature is recorded
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using a temperature sensor close to the sample surface. Optical access to the devices
is performed with the same polarization maintaining fiber v-groove assemblies used
for the initial characterization. In table S1 are shown the main parameters used for
the calculation of the TOC together with the loaded and intrinsic quality factors for
the best performing recipes.

Figure S. A.9: a) PCB with heating element and b) temperature controller for side coupling
configuration.

Sample t (nm) ne f f Shift (pm/◦C) TOC (10−5/◦C) QL (x105) Qi nt (105)
ICP 150◦C 280 1.91 36.2 7.3 4.2 5.7
ICP 250◦C 270 1.92 36.6 7.4 1.9 2.4

PECVD 400◦C 265 1.79 28.8 5.1 1.8 2.1

Table A.1: Physical and optical parameters of fabricated devices.

A.6. LIFT-OFF OF A-SIC DEVICES
The sample is prepared by exposing a 1 µm layer of PMMA with the desired shape
to transfer. The shape used in this study is a squared island, yet the feasibility of
this method is not limited to the geometry to transfer, enabling for small footprint
and high flexibility for the implementation. Afterwards, deposition of a-SiC at 150◦C
is performed, and the pattern is revealed by doing lift-off with acetone at 53◦C,
followed by a patterning step for the optical devices that can be seen in fig.S10a and
are tested with a side coupling configuration.

A close look of the interface between the deposited a-SiC and the thermal SiO2

in fig.S10c shows that the temperature at which the films are deposited does not
affect the quality of the lift-off. Devices fabricated on films deposited without the
lift-off technique showed similar performance and the degradation can be attributed
to the deposition tool as shown in fig.S10b.

A.7. TAPER DESIGN FOR A-SIC-SIN INTEGRATION
To determine the losses between the two platforms we performed Lumerical
simulations considering the overlapping integral of the power in the two waveguides
(fig.S11a for a-SiC profile and fig.S11b for 40 nm SiN). For the confinement of the
final mode in the a-SiC, several bending radii were chosen and the power loss after
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Figure S. A.10: a) Optical microscope image of lift-off a-SiC deposited at 150◦C with ring resonator
devices, b) 1 pm resolution transmission spectra of one of the devices and c) edge of the region
between a-SiC and the substrate.

the bend was evaluated and shown fig.S12a with the configuration in fig.S12b. The
monitor size to compute this power transfer was set to 1.2x1µm2.

Figure S. A.11: Power distribution obtained by FDTD Simulations of the top taper region of a) a-SiC
(dotted black line) and b) SiN (dotted orange line): both embedded in a tapered SiO2 cladding (dotted
green line).

Figure S. A.12: a) Normalized power transfer as a function of bending radius and b) taper and
monitor position for the determination of the bending losses.
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A.8. FABRICATION ROUTE FOR INTEGRATION OF A-SIC AND LITHIUM

NIOBATE
To protect the lithium niobate layer to the etching chemistry of a-SiC, a thin
layer of silicon dioxide (50 nm) is deposited via PECVD or ICPCVD. In case the
roughness of this layer affects the optical performance of the a-SiC devices, a
planarization step using ion beam etching can be followed. Deposition of a-SiC
films at low temperature is performed with a thickness of 280 nm. Depending on
the configuration needed for modulation, a second etching step can be performed
using Ar milling to define a waveguide in the LN or to etch a bias for the Au
contact pads, which could enhance the modulation. After etching the LN waveguide,
RCA-1 cleaning step is used to remove organic contaminants and reduce the sidewall
roughness of the optical devices, enhancing the optical performance. For the FDTD
simulations, the refractive index of a-SiC was chosen to be n=2.589 according to
experimental data obtained via ellipsometry while for x-cut Lithium Niobate, it was
chosen as nx=2.21, ny=2.21 and nz=2.13 (according to the coordinates in fig.S13b).

Figure S. A.13: a) Fabrication flow of a-SiC on LN for electro-optic modulation and b) mode profile
obtained via FDTD 3D simulations of a-SiC/LN. The isolation layer between a-SiC and LN allows for
the etching of the a-SiC waveguides without affecting the performance of the LN.

Material Refractive
index (n)

W/T (nm) Qi nt
(x105)
/ dB/cm

Temp. (C) n2
(cm2/W)

Ref

PECVD
SiN

1.9 1500/730 7.24 / 0.42 350 - [3]

LPCVD SiN 2.07 1300/655 8 / 0.4 700-
850/1100*

5·10−15 [4]

Sputtered
AlN

2.02 3500/1100 37 / 0.1 300 - [5]

3C-SiCOI 2.6 1700/500 1.42 / 2.9 - - [6]
4H-SiCOI 2.6 3000/530 11 / 0.38 - 6.9·10−15 [7]
4H-SiCOI 2.6 1850/500-

600
56 / - - 6.9·10−15 [8]

PECVD a-
SiC

2.45 800/350 1.6 / 3 300 4.8·10−15 [9]

ICPCVD a-
SiC

2.59 750/280 4.7-5.7 /
0.78-1.07

150 - This work

Table A.2: Physical and optical parameters of fabricated devices, being W and T the width and
thickness of the waveguides in the optical devices, and n2 the Kerr coefficient. *Annealing temperature
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B1. FILM CHARACTERIZATION

We performed stress measurements, atomic force microscopy and ellipsometry of
the deposited silicon dioxide films and the results are found in this section. Overall,
these measurements are an indication of the different properties that could be
affecting the thermal expansion and conduction of the films. Stress measurements
indicate overall stress in the film and not local stress on specific devices, which
might be higher around the waveguide region due to anisotropy differences. AFM
measurements reveal the grain sizes, surface roughness and deposition topography
(skew) of the silicon dioxide claddings. As discussed in the main manuscript and
supported by literature studies, these parameters affect the thermal expansion and
conduction properties of a material. Ellipsometry data provides refractive index and
an estimation of the density of the films, showing similar optical properties among
all deposited films independent of deposition temperature or chamber pressure.
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B1.1. FILM STRESS

We measured the stress of amorphous silicon carbide and silicon dioxide films using
FLX-2320-S Thin Film Stress Measurement system from Toho Technology. Silicon
carbide films were deposited on top of thermally oxidized silicon wafers (525 µm)
with oxide thickness of 8 µm. To characterize the silicon dioxide films they were
deposited on bare silicon wafers. The data is summarized in table S1.

Table S. B.1: Stress data for a-SiC and SiO2 deposited using PECVD and ICPCVD techniques.

B1.2. ATOMIC FORCE MICROSCOPY

We performed AFM scans of the deposited silicon dioxide films via PECVD and
ICPCVD at different temperatures and retrieved surface morphology data, mainly
surface roughness and skewness. The latter measures whether the surface has more
deep valleys (negative skew) or protruding narrow peaks (positive). Three examples
of AFM scans taken at different temperatures and techniques can be seen in fig.S1
and results can be found in table S2 with varying temperatures.

Figure S. B.1: Atomic Force Microscope scans of silicon oxide deposited a) with PECVD at 300◦C, b)
with ICPCVD at 30◦C and c) with ICPCVD at 150◦C.

B1.3. ELLIPSOMETRY

To characterize the refractive index of the silicon dioxide films deposited via ICPCVD
and PECVD, we used Woollam M-2000 spectroscopic ellipsometer and fitted the
corresponding data with a Cauchy model for both PECVD and ICPCVD at different
deposition temperatures (Fig.S2a). For ICPCVD, we also performed ellipsometry for
different chamber pressures (Fig.S2b). Table S2 summarizes the thickness, refractive
index, surface roughness and skew obtained for the different films.
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Figure S. B.2: Ellipsometry data for the refractive index as a function of wavelength for PECVD and
ICPCVD Silicon Dioxide films deposited at different a) temperatures and b) chamber pressure.

Table S. B.2: Data for silicon dioxides deposited with ICPCVD and PECVD at different temperatures
representing film thickness, refractive index, surface roughness and AFM skew. (—) refers to not
measured.

B2. CHARACTERIZATION SETUP AND SUMMARIZED DATA

B2.1. CHARACTERIZATION SETUP

An schematic of the characterization setup described in the main manuscript is
shown in fig. S3a with a picture of the optical setup in the lab shown in fig.S3b.

Figure S. B.3: a) Schematic of the optical setup used for the measurements and b) full optical setup
in the lab.
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B2.2. OPTICAL PROPERTIES OF THE FABRICATED DEVICES

For the silicon dioxide claddings deposited at different temperatures via ICPCVD and
PECVD on a-SiC, SiN and SOI, we summarize in table S3 the refractive index, free
spectral range and corresponding group index of optical devices with dimensions
stated in table S5.

Table S. B.3: Optical properties of the devices fabricated using different oxides with PECVD and
ICPCVD at different temperatures. All the free spectral ranges are taken from the spectral measurement
done at room temperature. *The corresponding group index is calculated assuming the FSR of the first
mode. (—) refers to samples not fabricated.

For silicon dioxide claddings deposited via ICPCVD on a-SiC platform at a fixed
deposition temperature of 150°C, we summarize in table S4 the free spectral range
and group index of the fabricated devices.

Table S. B.4: Optical properties of the devices made with Silicon Dioxide deposited via ICPCVD at
150°C varying the chamber pressure.

To determine the effective thermo-optic coefficient, we simulated the mode
profile with the selected dimensions using Ansys Lumerical MODE solutions for the
different platforms. The table below summarizes information about width, thickness,
ring radius, refractive index and obtained effective index. In table S6 we summarize
the mode overlap factor for the different platforms using the simulation results in
table S5.

Table S. B.5: For the studied ring resonators summary of material platform, waveguide dimensions,
ring radius and effective index calculated using FDTD (Ansys Lumerical MODE solutions).
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Table S. B.6: For the studied ring resonators mode fill factors calculated using FDTD (Ansys Lumerical
MODE solutions).

Table S7 summarizes the wavelength shifts in pm/°C and the corresponding
effective thermos-optic coefficient for the different claddings deposited on a-SiC, SiN
and SOI.

Table S. B.7: For a-SiC, SiN and SOI optical ring resonators, thermal shift in pm/°C and effective
thermo-optic coefficient for different oxide temperatures and techniques. (—) refers to samples not
fabricated/non-functional devices. As a reference, PMMA on SiN has thermal tunability of -51 pm/°C.

For the ICPCVD silicon dioxide claddings deposited at a temperature of 150°C
and varying the chamber pressure, we summarize in table S8 the wavelength shift in
pm/°C and the corresponding effective thermos-optic coefficient.

Table S. B.8: For a-SiC optical ring resonators, thermal shift in pm/°C and effective thermo-optic
coefficient with an ICPCVD oxide cladding deposited at 150°C at different chamber pressures.

To determine the losses introduced by the different claddings deposited at
different deposition temperatures and pressures on a-SiC optical devices, we
summarized the main parameters of the analysed resonance dip together with the
optical losses in dB/cm in table S9.

We also deposited one of the ICPCVD claddings at a temperature of 300°C with
a chamber pressure of 12 mTorr on a-SiC, corresponding to the wavelength spectra
reported in the main manuscript (fig.2c). The data to determine the losses can be
found in table S10 has been taken from the spectra at room temperature (27°C).

Table S11 summarizes main parameters of the measured resonance for a-SiC
devices depositing silicon dioxide claddings via ICPCVD at a deposition temperature
of 150°C and varying chamber pressure from 2.5 mTorr to 16 mTorr.
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Table S. B.9: Optical data for different ICPCVD Silicon Dioxide at a chamber pressure of 8 mTorr and
different deposition temperatures of specific transmission dips.

Table S. B.10: Optical data for ICPCVD Silicon Dioxide deposited at a temperature of 300°C and
chamber pressure of 12 mTorr of a specific transmission dip.

Table S. B.11: Optical data for ICPCVD Silicon Dioxide deposited at a temperature of 150°C and
different chamber pressures of a specific transmission dip.

Fig. S4 shows a graphical representation of the change of free-spectral
range, quality factor and refractive index for ICPCVD films deposited at different
temperatures and pressures. Fig.S4c also shows the refractive index of silicon dioxide
claddings deposited via PECVD at 300°C and 400°C.

B3. PASSIVE DEVICES
We demonstrate two different passive configurations of optical devices. Fig.S5a
shows the resulting spectra two ring resonators connected in series with positive
and negative claddings as the temperature of the sample stage is raise from 20°C to
35°C in steps of 2°C. Fig.S5b shows an optical microscope image of a Mach-Zehnder
interferometer where one of the arms is covered with a cladding deposited via
ICPCVD at a temperature of 150°C and chamber pressure of 8 mTorr. Raising the
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Figure S. B.4: For a-SiC devices, parameters as a function of deposition temperature and pressure of
the Silicon Dioxide cladding. More precisely, a) Free spectral range, b) Intrinsic quality factor and c)
refractive index of the deposited oxides.

stage temperature vary the relative phase between each arm and the intensities at
different outputs.

Figure S. B.5: a) Spectra of ring resonators at different temperatures fabricated on the same chip
with shared bus waveguide and claddings presenting bidirectional thermal response and b) Optical
microscope image of a Mach-Zehnder interferometer covered with ICPCVD SiO2 cladding in one of the
arms and intensity as a function of temperature for the two output ports.
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B4. STRAIN RELEASE

B4.1. DEPOSITION OF PECVD FILMS

As an experiment to determine the effect in the thermal tunability when depositing
other films with opposite thermal expansion, we deposited PECVD claddings on
top of the ICPCVD cladded devices deposited at 150°C. The resonance wavelength
position as a function of the stage temperature for the different configurations is
depicted in fig.S6. It is observed that the dominant shift is similar to the one
introduced by only using PECVD cladding and it cannot be attributed to annealing
effects in the films as shown in section 4.3.

Figure S. B.6: Wavelength shift as a function of temperature for optical ring resonators covered with
ICPCVD SiO2, Standard PECVD SiO2 and PECVD on top of ICPCVD oxide.

B4.2. LOW TEMPERATURE CLADDING

We deposited a silicon dioxide cladding via ICPCVD at 30°C on silicon nitride devices
and the wavelength spectra as a function of the stage temperature between 27°C and
35°C is shown in fig.S7. When measuring the thermal response of the resonance, we
observed that for stage temperatures higher than 33°C, there is a non-linear jump
and the thermal tunability becomes lower. We attribute this effect to strain release
between the core and the cladding that causes a decrease in the thermal tunability
of the optical devices.

B4.3. TEMPERATURE STABILITY

On films deposited via ICPCVD at a temperature of 150°C and chamber pressure of 8
mTorr, we also performed high temperature processing of the devices to investigate
possible changes in the thermo-optic shift. The temperature range was done in
incremental steps from 200°C to 400°C during 1h and the resulting position of
the resonance dip as a function of stage temperature for the different processing
temperatures is shown in fig.S8. We observed no difference in the thermal tunability.

B5. REPRESENTATIVE SPECTRA FOR THE DIFFERENT PLATFORMS
Below we include representative data and spectra for the wavelength shift of devices
on amorphous silicon carbide, silicon nitride and silicon-on-insulator using different
deposition conditions, mainly chamber pressure and deposition temperature.
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Figure S. B.7: Wavelength spectra around 1550 nm for ICPCVD 30°C Silicon Dioxide cladding on a SiN
device as a function of temperature between 27°C and 35°C in steps of 2°C.

Figure S. B.8: Wavelength shift as a function of the stage temperature of the selected resonance dip
for different temperatures, from the standard devices (green) to annealing at 400°C (yellow).

B5.1 AMORPHOUS SILICON CARBIDE

In fig.S9 we represent the wavelength shift as a function of stage temperature for
ICPCVD silicon dioxide claddings deposited at 150°C and chamber pressures of
1.5 mTorr and 12 mTorr corresponding to negative and positive thermal tunability.
Fig.S10 shows the resulting wavelength spectra taken at different stage temperatures
and linear fitting to obtain the wavelength tunability for a-SiC devices with silicon
dioxide ICPCVD claddings deposited at 30°C and chamber pressure of 8 mTorr. This
device presents the largest shift in wavelength in a stage temperature range between
27°C and 30°C.

We also include in fig.S17 the wavelength spectra at different stage temperatures
and corresponding resonance wavelength fitting of ICPCVD claddings deposited via
ICPCVD at 150°C and varying the chamber pressure. The wavelength accuracy is
limited by the step size of the wavelength sweeps (0.005 nm) and the accuracy of the
laser (absolute wavelength accuracy of ±0.2 nm, tuning accuracy of ±0.02 nm and
tuning repeatability of ±0.005 nm). Every time a scan is finished, the laser is set back
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Figure S. B.9: Spectra taken at different temperatures for a-SiC ring resonators with SiO2 cladding
deposited via ICPCVD at 150°C and corresponding fitting for chamber pressure of a) 12 mTorr and b)
1.5 mTorr.

Figure S. B.10: a) Normalized spectra at different stage temperatures for an a-SiC optical device with
ICPCVD SiO2 cladding deposited via ICPCVD at 75°C (ramp up to 91°C) and chamber pressure of 8
mTorr and b) resonance dip position with linear fitting.

to the initial wavelength and the limiting factor is the laser positioning accuracy. The
measurements done with the optical spectrum analyser (for all the devices with SiN
and SOI and a-SiC devices using PECVD cladding) show minimal standard deviation
in the resonant dip position.

The device that presented the highest negative shift for the a-SiC platform was
fabricated using ICPCVD SiO2 deposited at a temperature of 300°C and chamber
pressure of 12 mTorr. The fitting of the resonance dip as a function of temperature
is represented in fig.S12 and corresponds to the data shown in fig.2b in the main
manuscript.

Attending to the systematic measurements done for ICPCVD claddings deposited
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Figure S. B.11: Spectra taken at different temperatures for a-SiC ring resonators with SiO2 cladding
deposited via ICPCVD at 150°C and corresponding fitting for chamber pressure of a) 2.5 mTorr, b) 8
mTorr, c) 10 mTorr and d) 16 mTorr.

at a temperature of 150°C and varying the chamber pressure on a-SiC optical devices,
the athermal condition can be achieved for a chamber pressure of 3 mTorr. We
deposited a silicon dioxide cladding on a-SiC with these conditions and measured
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Figure S. B.12: For silicon dioxide deposited using ICPCVD at a temperature of 300°C and chamber
pressure of 12 mTorr, wavelength position of the selected resonance dip position as a function of
temperature together with the linear fitting.

the ring resonator in a temperature range between 27°C and 41°C in steps of 1°C.
The resulting spectra is shown in fig.13a with the corresponding wavelength position
as a function of the stage temperature in fig.13b. The thermal tunability between
27°C and 35°C obtained from fitting the data is 1.1 pm/°C . In the main article,
the same data is represented in steps of 2°C resulting in a thermal tunability of 1.5
pm/°C.

Figure S. B.13: For an a-SiC ring resonator with ICPCVD SiO2 cladding deposited at 150°C and
chamber pressure of 3 mTorr shown in figure 2 of the manuscript a) Normalized spectra taken at
different temperatures with steps of 1°C and b) dip position as a function of temperature.

B5.2. SILICON NITRIDE DEVICES

We deposited silicon dioxide claddings on silicon nitride devices via ICPCVD and
PECVD at different temperatures and the resulting wavelength spectra as a function
of stage temperature is found in fig.S14. As a reference, we also included the effect of
a common electron beam resist PMMA on the thermal shift, known to give negative
thermo-optic tunability.
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Figure S. B.14: Wavelength shift as a function of temperature for SiN device using ICPCVD SiO2
deposited at a) 30°C, b) 150°C, c) 300°C, d) 400°C, e) PMMA (-51 pm/°C) and f) PECVD SiO2 deposited
at 300°C.

B5.3. SILICON-ON-INSULATOR DEVICES

We deposited SOI optical devices using PECVD at temperatures of 200°C and 300°C
and ICPCVD at a temperature of 75°C (fig.S15) and the wavelength spectra as a
function of temperature is shown in fig.S15. We also deposited silicon dioxide via
ICPCVD at 300°C and chamber pressure of 8 mTorr resulting in a thermal tunability
of 5.5 pm/°C. The wavelength spectra as a function of the temperature and the
corresponding fitting for the two resonances separated one free spectral range is
shown in fig.S16.

B6. COUPLED-RESONATOR OPTICAL WAVEGUIDE (CROW ) DEVICES
We fabricated one sample with two CROW devices using positive and negative
claddings and metal micro-heaters. We measured this devices by sweeping the
voltage and recorded the spectra.
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Figure S. B.15: Wavelength shift as a function of temperature for an SOI device with SiO2 claddings
deposited using a) PECVD at 200°C, b) PECVD at 300°C and c) ICPCVD at 75°C.

Figure S. B.16: a) Transmission spectra for a Silicon-On-Insulator device with SiO2 cladding deposited
via ICPCVD at 300°C and chamber pressure of 8 mTorr and b) corresponding fitting of the two dips
separated by a free spectral range.

CROW DEVICE 1
In the same configuration as the device shown in the main manuscript, we measured
another device connected in parallel as depicted in fig.S17a in a voltage range of 0V
to 12V in steps of 0.5V. Fig.S17b shows that the resonance condition can be achieved
at a voltage of 9.5V. Fig.S17c shows wavelength spectra taken at different voltages of
0V, 7.5V and 9.5V (resonance condition).

CROW DEVICE 2
For the same device as the one shown in the manuscript (fig.3b-c) and in the same
configuration (heaters connected in parallel), we did a coarse scan of the voltage in
steps of 1 V from 0 to 13 V. A 2D mapping of the transmitted intensity as a function
of the wavelength is shown in fig.S18 together with the specific spectra taken at
different voltages of 0V, 3V and 6V.

B7. THERMAL CROSSTALK
In this section we show the corresponding spectra taken at different voltages (from
0V to 10V) to characterize the thermal crosstalk between devices using continuous
PECVD (fig.S20) and ICPCVD (fig.S21) claddings as well as cladding deposited using
lift-off for thermal isolation (fig.S22). Ring A depicts the device where the heater is
applied while Ring B is the device that shifts due to thermal crosstalk. We also show
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Figure S. B.17: a) Optical microscope image of device 1 with two ring resonators connected with a
middle waveguide to track the resonance dips in parallel connection configuration. b) Wavelength
intensity spectra as a function of voltage applied and c) Wavelength spectra for 6V (blue), 7.5V (orange)
and 9.5V (green). The spectra are separate between each other.

Figure S. B.18: Transmission intensity as function of the wavelength spectra for different applied
voltages for the device in fig.3b-c of the main manuscript and wavelength spectra for voltages 0V, 3V
and 6V taken from the 2D map. The spectra are separate between each other.

an SEM image of the region between optical devices after performing ICPCVD lift-off
of the cladding (fig.S23).

We performed scanning electron microscopy (SEM) of the cladding fabricated
using lift-off and the resulting image is shown in fig.S23. Depositing a cladding
delimited by resist produces roughness in the region where the lift-off is performed.
The main reason is that the silicon dioxide is also deposited with lower quality
without continuity on the resist. When the lift-off is performed, material in the
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Figure S. B.19: a) Optical microscope image of device 2 (shown in the main article fig.3b-c) connected
in series with two ring resonators with a middle waveguide to track the resonance dips. b) Wavelength
intensity spectra as a function of the volage applied and c) Wavelength spectra for 2V (blue), 5V
(orange), 10V (green) and 15V (red). The spectra are separate between each other.

Figure S. B.20: Spectra at different voltages for the two ring resonators fabricated using continuous
PECVD cladding

cladding that is also attached to the resist is also removed. It is important to
notice that this does not affect the optical quality of the mode since the cladding
is wide enough (cladding width of 9 µm). In the picture below is also pointed
the top micro-heater width (yellow), the remaining amorphous silicon carbide film
(orange), the limit of the silicon dioxide cladding (blue) and the bottom thermal
silicon dioxide (red).
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Figure S. B.21: Spectra at different voltages for the two ring resonators fabricated using continuous
ICPCVD cladding.

Figure S. B.22: Spectra at different voltages for the two ring resonators fabricated using the lift-off
approach.

B8. RAMP-UP AND RAMP-DOWN MEASUREMENTS
To address the repeatability of the measurements using the different claddings,
we performed forward and backward voltage sweeps on devices with ICPCVD
and PECVD silicon dioxide. The voltage was varied between 0V and 6V. Fig.S24a
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Figure S. B.23: Scanning Electron Microscope imaging of the resulting cladding after lift-off in the
region between two optical ring resonators with the different elements delimited with arrows: cladding
(blue), heaters, (yellow), a-SiC film (orange) and thermal silicon dioxide (red).

summarize the data for two different devices with similar ring resonator parameters
as stated in the main manuscript and using ICPCVD cladding deposited at a
temperature of 150°C and chamber pressure of 8 mTorr. Device 1 shows a deviation
between measurements that could be related to device fabrication but also hysteresis.
The second device presents a smaller variation and expected behaviour. Fig.S24b
shows the wavelength shift as a function of the voltage for a device with PECVD
cladding deposited at 300°C compared to the data in fig.S24a. In comparison,
the measurement results using a PECVD silicon dioxide cladding show a smaller
deviation between data points and no signs of hysteresis.

B9. STABILITY MEASUREMENTS OF THE OPTICAL SETUP
To assess the reproducibility of the measurements and determine the error given
by the optical setup with the tunable laser, we performed four consecutive sweeps
of temperature between 27°C and 31°C on a sample with ICPCVD silicon dioxide
cladding deposited at 150°C and a chamber pressure of 10 mTorr. We extracted the
thermal shifts with the respective errors in the fitting and determined the standard
deviation of the measured resonant wavelength at a fixed stage temperature as
summarized in table S12.
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Figure S. B.24: Forward and backward voltage sweeps of a-SiC ring resonators made with silicon
dioxide deposited with a) ICPCVD at 150°C and chamber pressure of 8 mTorr for two different devices
and b) comparison with a cladding deposited with PECVD at 300°C.

Table S. B.12: Resonance wavelength position as a function of temperature for the four consecutive
measurements together with the extracted slope and error.
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