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The use of higher-dimensional pho-
tonic encodings (qudits) instead of two-
dimensional encodings (qubits) can im-
prove the loss tolerance and reduce the
computational resources of photonic-based
quantum information processing. To har-
ness this potential, efficient schemes for
entangling operations such as the high-
dimensional generalization of a linear op-
tics Bell measurement will be required.
We show how an efficient high-dimensional
entangled state analyzer can be imple-
mented with a linear optics interferome-
ter and auxiliary photonic states. The de-
gree of entanglement of the auxiliary state
is much less than in previous protocols
as quantified by an exponentially smaller
Schmidt rank. In addition, the auxiliary
state only occupies a single spatial mode,
allowing it to be generated deterministi-
cally from a single quantum emitter cou-
pled to a small qubit register. The reduced
complexity of the auxiliary states results
in a high robustness to imperfections and
we show that auxiliary states with fideli-
ties above 0.9 for qudit dimensions 4 can
be generated in the presence of qubit er-
ror rates on the order of 10%. This paves
the way for experimental demonstrations
with current hardware.

1 Introduction

Encoding quantum information in photonic de-
grees of freedom is at the heart of both quan-
tum networking [1] and photonic-based quan-
tum computing [2]. In the former, photonic
qubits can be used to entangle distant station-

ary qubit systems [3, 4, 5], while in the latter,
multi-photon entangled states can serve as a re-
source for universal quantum computing with lin-
ear optics [6, 7, 8]. Both approaches take ad-
vantage of the excellent coherence properties of
single photons and the easy manipulation of pho-
tonic qubits through linear optical elements such
as phase shifters and beam splitters.

Photons possess multiple degrees of freedom,
such as polarization, frequency, the time-bin ba-
sis or spatial modes. The dimensionality of pho-
tons can be increased by encoding the quan-
tum state in multiple (d) orthogonal modes,
which creates a photonic qudit that provides a
higher information density than photonic qubits:
a d-dimensional photonic state encodes up to
⌊log2(d)⌋ qubits of information [9, 10].

Photonic qudits have several advantages com-
pared to photonic qubits. For entanglement gen-
eration recent work has shown how photonic qu-
dits lower the quantum memory requirements for
the generation of multiple high-fidelity entangled
pairs [11, 12, 13, 14]. In quantum cryptography,
photonic qudits enable more error-robust quan-
tum key distribution [15, 16, 17, 18, 19]. For
photonic-based quantum computing, qudit en-
codings can provide means for more efficient al-
gorithms with reduced circuit depth [20, 21, 22],
lower the resource requirements for simulation
of high-dimensional gauge theories [23, 24, 23],
and optimization problems [25]. More fundamen-
tally, qudit entanglement can exhibit stronger
non-classical correlations than qubit entangle-
ment [26, 27].

Experiments with high-dimensionally entan-
gled photons have attracted much attention in
recent years [28, 29, 30, 31, 32, 33, 34, 35, 36,
37, 38]. The crux of all photonic-based quan-
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tum information processing is the ability to per-
form entangling operations between photonic sys-
tems. For photonic qubits, this can be obtained
with linear optics through probabilistic Bell mea-
surements [39, 40, 41]. In order to harness the
full potential of photonic qudits, similar high-
dimensional techniques have to be devised. In
three dimensions, the success rates of existing
protocols are high enough to perform experi-
ments, as has been shown with the quantum tele-
portation of a three-dimensional state [42, 43].
However, devising a scheme for a linear-optics,
high-dimensional entangled state analyzer (ESA)
with success rates that scale efficiently as the
photonic dimension increases has proven to be
difficult and remains an outstanding problem in
the field.

Auxiliary photonic states are necessary to per-
form an ESA [44]. Specifically, an ESA in d di-
mensions requires at least d − 2 extra photons.
Protocols with non-entangled auxiliary states
experience an exponentially decreasing success
probability as the dimension grows [43], which
severely limits their feasibility. The use of en-
tangled auxiliary states allows, in principle, for
efficient operation where the success probabil-
ity only decreases quadratically with the dimen-
sion [45]. The protocol in Ref. [45], however, re-
quires the Schmidt rank of the auxiliary state to
increase faster than exponentially with the di-
mension of the input states. Generating such
highly complex states is challenging, and known
generation protocols only succeed with exponen-
tially decreasing success probability [45].

In this paper, we introduce a novel protocol
for linear optics ESA in even dimensions, that
circumvents the exponential scalings of previous
proposals. Our protocol achieves an efficient d-
dimensional ESA with success probability 2/d2

for high-dimensional entanglement swapping us-
ing an auxiliary entangled state with Schmidt
rank scaling as d/2. Furthermore, we outline
how the auxiliary states can be generated deter-
ministically from a single quantum emitter cou-
pled to a small qubit processor with ∼ log (d/2)
qubits. We show that high-fidelity auxiliary
states with fidelity > 0.9 can be generated with
our protocol even in the presence of noise rates
on the order of 10% per gate operation. Conse-
quently, our protocol is compatible with current
quantum hardware such as solid-state defect cen-

ters [9, 46, 47] or atomic qubits [48] and outlines a
feasible route towards efficient high-dimensional
photonic quantum information processing.

2 High-Dimensional Entangled State
Analyzer

We consider time-bin encoded qudits, where the
presence of a single photon in different time slots,
or ‘bins’, is used to encode quantum information.
Although we focus on the time-bin encoding, our
scheme is compatible with other photonic qudit
encodings such as spatial or frequency encoding.
The implementations of the necessary operations
of our scheme that we describe here, such as the
quantum Fourier transform (QFT) and the gen-
eration of the auxiliary state are, however, spe-
cific for time-bin encoding. We leave the design
and implementation of other encodings to future
work.

A schematic overview of an ESA of two pho-
tonic input qudits following our protocol is shown
in Fig. 1. As it is shown in Ref. [44], per-
forming an ESA in d dimensions requires d ini-
tial particles. Thus, besides the two input pho-
tons (a and b), a minimum of d − 2 auxiliary
photons is required. We mix all input photons
with a QFT of the spatial modes, which can be
achieved with a sequence of beam splitters and
phase shifters [49, 50]. Finally, we herald on de-
tecting all photons in different time-bins: in these
cases the QFT erases the which-path information
of all photons: all photons are projected into the
permutation basis of all time-bins. The photons
can be detected by the same detector or by dif-
ferent detectors, which correspond to projections
on different maximally entangled states. We note
that these states are not necessarily orthogonal
to each other and that the full set of projections
do not correspond to a complete basis.

To maximize the success probability of our
setup, we design the auxiliary state of d− 2 pho-
tons such that these photons are never in the
same time bin since this would lead to an unsuc-
cessful ESA. Moreover, we use the fact that we
project all photons in a superposition of modes
where all time bins are unique (the permutation
basis) to exclude two unique time bins in each
mode of the auxiliary state. By doing so, each
mode leads to two non-zero terms in the final
projection of a and b, as we see later on. The
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d-dimensional Quantum Fourier Transform

Figure 1: Overview of a d-dimensional entangled state
analyzer (ESA) of time-bin encoded qudits in spatial
modes a and b. The protocol uses d− 2 auxiliary
photons in one input mode x0 to the quantum Fourier
transform (QFT), the other input modes
x1, x2, . . . , xd−3 contain vacuum as indicated by ∅.
The QFT of the spatial modes can be implemented
with standard linear optical elements. Finally, the
output modes are measured with d single photon
detectors labeled 0, 1, . . . d− 1. The condition for a
successful ESA is to measure all photons in different
time-bins and the resulting entangled state projection is
determined by the specific detection pattern of the
detectors.

auxiliary photons are therefore prepared in an
entangled state of the form

|aux⟩ = 1√
d/2

d
2 −1∑
j=0

|auxj⟩ , (1)

where |auxj⟩ = â†
τj [0]â

†
τj [1] . . . â

†
τj [d−3] |vac⟩ is de-

fined in the second-quantization framework. The
state above is a sum of terms labeled by j where
the time-bins of the photons are denoted by the
creation operators â†

τj [k]. Here τj is a vector with

elements τj [k] ∈ [0, d− 1].
To ensure that each term in |aux⟩ contains

d − 2 photons in different time-bins, we enforce
the constraint (τj [0], τj [1], . . . , τj [d− 3], yj , zj) ∈
P [0, 1, ..., d − 1], i.e., that they correspond to
a permutation P of all the d time-bins. Since
there are only d − 2 auxiliary photons and d
time-bins, each term |auxj⟩ does not contain pho-
tons in exactly two time-bins yj and zj . We en-
force that the two time-bins that are excluded in
one state |auxi⟩ are not equal to the two time-
bins excluded from any other term |auxj⟩, i.e.,
yi ̸= yj ∧ zi ̸= zj ∧ yi ̸= zj , ∀ i, j. From these
constraints, it follows that the state in Eq. (1) is
an entangled state with Schmidt rank d/2.

The freedom in choosing the sets {yj , zj} for
the auxiliary state corresponds to choosing what

subset of maximally entangled states the ESA
will project onto. One possible choice is to assign
all yj values as odd and all zj values as even. This
will result in a specific subset of entangled state
projectors set by the detection pattern. In gen-
eral, there are d!/(2d/2(d/2)!) ways to choose the
set {yj , zj}. Notably, a specific choice of the set
{yj , zj} will not necessarily lead to projections
onto states that are orthogonal to those corre-
sponding to a different choice of {yj , zj}. We
provide the general form of the projectors for
specific choices of the auxiliary state and detec-
tion patterns in Appendix A, but we will detail
the performance of our proposed ESA below for
four-dimensional entanglement swapping as an il-
lustrative example.

3 Entanglement Swapping in 4D
We discuss four-dimensional entanglement swap-
ping between remote qudit registers to better un-
derstand how the protocol works. In this exam-
ple, two remote qudit systems are entangled by
means of an ESA but in a similar way it applies to
e.g. fusion of high-dimensional graph states [22].

Consider two parties, Alice and Bob, who have
entangled their local, stationary qudit systems
with photonic qudits. The goal is to entangle
their local systems by projecting the photonic
states onto a maximally entangled state using a
four-dimensional ESA. The details of the setup
are shown in Fig. 2.

The initial state of Alice and Bob’s systems is

|ψ⟩AaBb = 1
4

3∑
i=0

â†
i,a |vac⟩ |i⟩A ⊗

3∑
j=0

â†
j,b |vac⟩ |j⟩B .

(2)
Here, the modes A, a (B, b) belong to Alice’s
(Bob’s) entangled state. We can project the
modes a and b onto a 4-dimensional maximally
entangled state using an ESA with an auxiliary
photonic state of two photons. Without loss of
generality, we consider an auxiliary state of the
form

|aux⟩ = 1√
2

(
â†

0,x0 â
†
1,x0 + â†

2,x0 â
†
3,x0

)
|vac⟩ , (3)

which is a superposition of the two photons being
in time bin 0 and 1 or 2 and 3, respectively. Next,
we show that this auxiliary state indeed swaps
the entanglement. Keeping track of the possible
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A B
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Figure 2: Example of the four-dimensional ESA for the
generation of four-dimensional entanglement
(equivalent to two Bell pairs) shared by Alice and Bob.
The QFT is implemented with four 50:50 beam
splitters (blue) and a phase shifter of π

2 .

states of all photons as they pass through each
linear optical element becomes a large calculation
very quickly. Many of the output states will be
redundant since we are only interested in certain
successful measurement results. Hence we start
with conditioning on detecting the four photons
(one from both Alice and Bob and two from the
auxiliary state) in different time bins and work
our way back through the protocol to see the pro-
jected state of Alice and Bob’s registers. We can
express the resulting state of the qudit registers
following a successful ESA measurement with a

photon detection in each time-bin as

|ϕ⟩AB = ⟨vac| â0,D0 â1,D1 â2,D2 â3,D3 UQFT |ψ⟩AaBb |aux⟩ ,
(4)

where UQFT is the QFT transformation of the
spatial modes and the annihilation operator âi,Di

describes the detection of the output photon in
time-bin i at detector Di. The subscripts Di

with Di ∈ {0, 1, 2, 3} thus label the spatial mode
corresponding to the detector (shown at the top
in Fig. 2) at which a photon in time-bin i is
measured. For example, D0 is the detector that
clicks in time-bin 0. As an example, we consider
the case where all photons are measured at the
first detector: D0 = D1 = D2 = D3 = 0. Work-
ing backward to find the state |ϕ⟩AB of Alice and
Bob, we start with the following projection state:

⟨P | = ⟨vac|â0,0â1,0â2,0â3,0 UQFT

= 1
24 ⟨vac|

(
â0,a + â0,b + â0,x0 + â0,x1

)
⊗

(
â1,a + â1,b + â1,x0 + â1,x1

)
⊗

(
â2,a + â2,b + â2,x0 + â2,x1

)
⊗

(
â3,a + â3,b + â3,x0 + â3,x1

)
,

(5)

where the spatial mode index of the annihilation
operators transforms from the detector modes to
the input modes of the ESA. Note that x0 cor-
responds to the spatial mode at the input of the
QFT that contains the auxiliary photons and x1
to the input mode that does not contain any pho-
tons. We obtain the expression in the second line
by letting UQFT act to the left.
This projector can be further simplified using

the fact that the input state |ψ⟩AaBb |aux⟩ has
one photon in modes a and b and two photons in
mode x0. Thus only terms in the projector that
correspond to one photon in both spatial mode
a and b and two photons in spatial mode x0 will
lead to non-zero overlap. Keeping only the non-
zero terms allows us to write the projector as:

⟨P ′| = 1
24 ⟨vac|

(
â0,aâ1,bâ2,x0 â3,x0 + â0,aâ2,bâ1,x0 â3,x0 + â0,aâ3,bâ1,x0 â2,x0 + â1,aâ0,bâ2,x0 â3,x0

+ â1,aâ2,bâ0,x0 â3,x0 + â1,aâ3,bâ0,x0 â2,x0 + â2,aâ0,bâ1,x0 â3,x0 + â2,aâ1,bâ0,x0 â3,x0

+ â2,aâ3,bâ0,x0 â1,x0 + â3,aâ0,bâ1,x0 â2,x0 + â3,aâ1,bâ0,x0 â2,x0 + â3,aâ2,bâ0,x0 â1,x0

) (6)

Applying this projection to the input state of the auxiliary photons leaves us with the projection of
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Alice and Bob’s photons a and b:

⟨P |ab = ⟨P ′ | aux⟩

= 1
24

√
2

⟨vac| (â0,aâ1,b + â1,aâ0,b + â2,aâ3,b + â3,aâ2,b).

(7)

We see that the input modes a and b are pro-
jected on a maximally entangled state. Because
a and b were entangled with the qudit registers,
following a successful ESA, the registers are also
projected into an entangled state:

|ϕ⟩AB = ⟨P |ab |ψ⟩AaBb

= 1
25

√
2

· 1
2

(
|0⟩A |1⟩B + |1⟩A |0⟩B + |2⟩A |3⟩B + |3⟩A |2⟩B

)
,

(8)

corresponding to a (not normalized) maximally
entangled state i.e., we have successfully per-
formed a high-dimensional entanglement swap.
The normalization constant corresponds to the
probability of this particular projection which is

p(|ϕ⟩) = |⟨P |ab |ψ⟩AaBb|2 =
∣∣∣∣ 1
25

√
2

∣∣∣∣2
= 1

211 . (9)

This is the success probability of one particular
detection pattern, but the protocol succeeds for
all measurement outcomes where the photons are
in different time bins. Depending on the specific
detection pattern, different maximally entangled
states will be prepared between Alice and Bob.
However, the states are all equivalent up to local
unitaries. A single target state like the one in
Eq. (8) can thus always be achieved by perform-
ing a local correction on either Alice or Bob’s
qudit, dictated by the detection pattern. For the
input state in Eq. (4) each of these projections is
equally likely, resulting in a total success proba-
bility of 1

8 .
In Supplemental Material A and B, we derive

the projectors of the ESA for general even dimen-
sion, d, and show that entanglement swapping
succeeds with probability psuc = 2

d2 . The intu-
ition behind this scaling is that for a successful
outcome, all photons must occupy different time-
bins. The terms in the auxiliary state already
contain photons in distinct time-bins. Further-
more, each term in the auxiliary state is missing
photons in two time-bins, namely yj , zj . This im-
plies that the photon on Alice’s side must occupy
time-bin yj , while the photon on Bob’s side must
occupy time-bin zj , or vice versa. The probabil-
ity that this happens is 2

d2 , which accounts for the

scaling of our protocol. Note that when applying
the projection to the auxiliary state in Eq. (7),
each term in the auxiliary state corresponds to
two non-orthogonal terms in ⟨P ′|. Thus, the pro-
jection of input photons a and b will be a state
with a Schmidt rank of two times the number
of terms in the auxiliary superposition and as a
consequence our protocol only works in even di-
mensions to project into a state with a Schmidt
rank that is a multiple of two.

4 Preparation of the Auxiliary State
The use of auxiliary photonic states in the form in
Eq. (1) is key to achieving an efficient ESA, where
the success probability only decreases quadrati-
cally with the dimension. In the four-dimensional
ESA example, we can prepare the auxiliary state
with one quantum emitter as shown in Fig. 3.
The emitter is initially prepared in an equal su-

perposition (|0⟩s + |1⟩s)/
√

2 of two ground states
|0⟩s , |1⟩s. We assume that there is a closed opti-
cal transition between the state |1⟩s and an ex-
cited state |e⟩s. A short optical π-pulse can ex-
cite the population in the |1⟩s state to the ex-
cited state followed by subsequent decay back to
the |1⟩s state with the emission of a photon. The
emitter can be coupled to an optical cavity or
waveguide for efficient collection of the photon
but this is not a requirement.
The proposal to prepare the required auxil-

iary multi-qudit state, illustrated by the pulse
sequence and overviewed at the top of Fig. 3, is
the following. We start by exciting the emitter,
which is prepared in an equal superposition of the
ground states. The emitter subsequently decays
and emits one photon corresponding to the bright
state in the ideal setting. We will first go through
the scheme without considering experimental im-
perfections and consider a more realistic setting
in the next section. We start by emitting two
photons in subsequent time bins:

1√
2

(
|0⟩s + â†

0â
†
1 |1⟩s

)
|vac⟩ . (10)

Here, the first ket indicates the spin qubit and
the second ket the state of the photonic qudit,
where â†

i is the creation operator of a photon in
time bin i. Next, the spin is flipped

1√
2

(
â†

0â
†
1 |0⟩s + |1⟩s

)
|vac⟩ , (11)
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Figure 3: Top left: the energy level diagram of the quantum emitter that generates the state of auxiliary photons in
the four-dimensional ESA. One of the ground states couples to an excited state that decays radiatively. Top right:
the corresponding pulse sequence to generate the two auxiliary photon states. Bottom: diagram for generating the
time-bin encoded auxiliary photons required for the four-dimensional ESA.
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Figure 4: Left: fidelity between the ideal auxiliary state and the imperfect auxiliary state (dashed lines) and the
fidelity of the (d− 2)-photon component of the imperfect auxiliary state (solid lines) in 4, 6 and 8 dimensions
against dephasing pdeph and depolarization pdepol. The probability of losing a photon in each emission step is
ploss = 0.1 for all dimensions. Right: success rate of the protocol with imperfect auxiliary state.

and we emit the next two photons:

1√
2

(
â†

0â
†
1 |0⟩s + â†

2â
†
3 |1⟩s

)
|vac⟩ . (12)

The photons are decoupled from the spin qubit
by measuring the emitter in the X-basis. De-
pending on the measurement outcome (|±⟩ =
(|0⟩±|1⟩)/

√
2), the relative phase in the prepared

state varies 1√
2(â†

0â
†
1 ± â†

2â
†
3) |vac⟩. This state has

the desired shape from Eq. (3). When the ESA
is applied with this auxiliary state, the relative
phase only leads to phase differences between the
final state projections. Different auxiliary states
can be prepared by applying a different sequence
of X-gates and photon emissions.

The above procedure can be generalized to pre-
pare the auxiliary states for arbitrary even di-
mensions. With a control register that contains

⌈log2

(
d
2

)
⌉ qubits, using multi-qubit controlled

gates, one can create the required state with d−2
photonic qudits and Schmidt rank d

2 . The con-
trol qubits are prepared in an equal superposi-
tion of d/2 different states. By applying a series
of multi-qubit controlled operations, the state of
the spin qubit is flipped controlled on a specific
term in the superposition of control qubits allow-
ing for the emission of a photon conditioned on
the state of the qubit register. Thus, each of the
d/2 superposition states of the qubit register cor-
responds to one mode in the superposition of the
auxiliary multi-qudit state. We refer the reader
to Supplemental Material C for further details.

5 Error Analysis

For near-term experiments, the operations of our
protocol will be subject to imperfections, mainly
during the generation of the auxiliary state and in
the larger optical circuit. We analyzed the qual-
ity of the auxiliary state in 4, 6 and 8 dimensions
for the following experimental imperfections: (1)
imperfect gate operations in the preparation of
the auxiliary photons, (2) dephasing due to phase
instability in the optical circuit including e.g. the
QFT interferometer and (3) loss of photons and
imperfect photon emission.

To keep the discussion general, we do not con-
sider a specific platform for the control qubits or
emitter, but rather model faulty gates as a depo-
larizing channel with depolarization probability
pdepol per unitary. Consequently, imperfect gate
operations will cause photons to be emitted in in-
correct time-bins or not at all as well as general
dephasing of the auxiliary state.

While the photons pass through the optical
fibers and the QFT circuit, optical instability can
cause dephasing of the auxiliary state. We model
this as a dephasing channel that acts on all auxil-
iary photons collectively. Furthermore, since the
number of photons scales linearly with the di-
mension of the protocol, the probability of losing
photons increases exponentially with dimension.
Loss of at least one photon causes the protocol
to fail since the detectors herald a photon loss
as fewer than d photons will be measured in the
absence of detector dark counts. Assuming neg-

Accepted in Quantum 2025-03-31, click title to verify. Published under CC-BY 4.0. 7



ligible dark count probabilities, photon loss will
thus only decrease the success rate and not the
fidelity of the scheme. Further details of the error
model are provided in Supplemental Material D.

The fidelity of the auxiliary state is shown in
Fig. 4. We vary the dephasing error and depo-
larizing error together and assume the loss prob-
ability per photon to be ploss = 0.1. Since we
consider the auxiliary state’s fidelity, the total
protocol’s fidelity will be higher as the part of
the auxiliary density matrix with less or more
than d photons can be heralded away at the de-
tectors, trading higher fidelities for a decrease in
success rates. Thus, we also calculate the fidelity
of the part of the auxiliary state with exactly d−2
photons, which significantly improves the perfor-
mance. We also show the total efficiency of the
protocol in Fig. 4: the performance in 4 dimen-
sions is substantially better than the higher di-
mensions, which is to be expected since the auxil-
iary state is generated with a single emitter and,
exceptionally, does not require a control register,
as shown in Fig. 3. In higher dimensions, the
generation of the auxiliary state becomes more
involved, requiring more photons to be emitted
and more multi-qubit operations controlled on a
qubit register. We indeed see that the effect of
errors is more prominent in higher dimensions.
Nonetheless, the generation in 4 dimensions is
very robust against errors, which is promising for
near-term implementations of the ESA.

6 Conclusion and Discussions

In summary, we have outlined an efficient linear-
optics implementation of a high-dimensional en-
tangled state analyzer in even dimensions. Our
scheme uses the minimal number of required aux-
iliary photons and has a success probability that
decreases only quadratically with the dimension.
Importantly, we achieve this with auxiliary states
with a Schmidt rank that increases only linearly
with the dimension and we outline how the states
can be generated deterministically with a single
quantum emitter coupled to a small (logarithmic
in dimension) qubit register.

Our work significantly relaxes the experimen-
tal requirement for a high-dimensional ESA and
points to the use of quantum emitters for the ef-
ficient preparation of auxiliary states for linear-
optics, high-dimensional photonics quantum pro-

cessing. As outlined in this paper, the auxiliary
state of a four-dimensional ESA succeeding with
probability 1/8 can be generated from a single
quantum emitter, paving the way for near-term
experimental demonstrations using atomic [48] or
solid-state emitters [9, 46].

We investigated the performance in a faulty
setting and showed that the success probability
and fidelity are robust against errors, especially
for d = 4. We note that the auxiliary state of
the four-dimensional ESA could also be prepared
from an SPDC source in a probabilistic manner
using a delay line for one of the emitted photons.
While such an approach does not scale to higher
dimensions, it may be relevant for near-term ex-
periments with no access to a quantum emit-
ter. Another approach is to use high-dimensional
quantum emitters for the generation of the aux-
iliary state [51]. This would eliminate the need
for a qubit register and is suited for e.g. atomic
emitters [52, 48]. While the success probability
of our scheme is on par with other, more compli-
cated schemes in the literature, we are not ruling
out that even better performance could poten-
tially be obtained in the future. Investigation of
this as well as the extension of our scheme to odd
dimensions is left for future work.
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Supplemental Material

A. ESA in Arbitrary Even Dimensions

Here, we derive the general projections per-
formed by our ESA scheme in arbitrary even di-
mension d as shown in Fig. 1. We use the same
notation of aj,k and yj and zj as in the main text
(see Eq. (1) and below). The general form of the
four-dimensional projection from Eq. (5) in ar-
bitrary even dimension and arbitrary detection
pattern is

⟨P ′| = ⟨vac| â0,D0 â1,D1 â2,D2 . . . âd−1,Dd−1 UQFT = 1
dd/2 ⟨vac|

(
â0,a + ωD0 â0,b + ω2D0 â0,x0 + ω3D0 â0,x1 + . . .+ ω(d−1)D0 â0,xd−3

)
⊗

(
â1,a + ωD1 â1,b + ω2D1 â1,x0 + ω3D1 â1,x1 + . . .+ ω(d−1)D1 â1,xd−3

)
⊗ . . .

⊗
(
âd−1,a + ωDd−1 âd−1,b + ω2Dd−1 âd−1,x0 + ω3Dd−1 âd−1,x1 + . . .+ ω(d−1)Dd−1 âd−1,xd−3

)
= 1
dd/2 ⟨vac|

[
ωD1 â0,aâ1,b + ωD0 â1,aâ0,b

]
â2,x0 â3,x0 â4,x0 . . . âd−1,x0 · ω2D2+2D3+...+2Dd−1

+
[
ωD2 â0,aâ2,b + ωD0 â2,aâ0,b

]
â1,x0 â3,x0 â4,x0 . . . âd−1,x0 · ω2D1+2D3+...+2Dd−1

+ . . .+
[
ωDd−1 âd−2,aâd−1,b + ωDd−2 âd−1,aâd−2,b

]
â0,x0 â1,x0 â2,x0 . . . âd−3 · ω2D0+2D1+...+2Dd−3

= 1
dd/2

∑
(t0,t1,...,td−1)

⟨vac| ât0,aât1,bât2,x0 ât3,x0 . . . âtd−1,x0 · ωDt1 +2Dt2 +2Dt3 +...+2Dtd−1

for (t0, t1, . . . td−1) ∈ P [0, 1, ..., d− 1].
(13)

Here ω is defined as ω = e
2πi

d . Di ∈ {0, 1, . . . d−
1} represents the output port at which a pho-
ton in time-bin i is measured. The expression
above is a general expression that holds for every
possible detection pattern where the photons are
measured in different time bins. The projection
describes the sum of all permutations of photons
in different time bins, where each permutation
term has a unique phase that depends on the
specific detection pattern of the photons. From
this expression, it is clear that every mode in the
auxiliary state can lead to a successful detection
pattern corresponding to two specific terms in the
joint state of photons a and b. Similar to Eq. (5),
we have omitted terms with more than one pho-
ton in spatial mode a and b and terms with pho-
tons in spatial modes x1, x2 . . . xd−3 since these

terms have zero overlap with the input state.
Next, we use the last expression from Eq. (13)

to project on the auxiliary input state to obtain
the projection of the input modes a and b from
the ESA:

⟨P ′|aux⟩ = 1√
dd · d

2

d
2 −1∑
j=0

ωf ⟨vac|
(
ω

Dyj âzj ,aâyj ,b

+ ω
Dzj âyj ,aâzj ,b

)
where f = 2Dτj [0] + 2Dτj [1] + . . .+ 2Dτj [d−3].

(14)

Here the τj [k] correspond to the terms in the
state of the auxiliary photons from Eq. (1).
Choosing specific τj [k] under the specified con-
straints defines the auxiliary state. As the con-
straints ensure that two time-bins (yj , zj) are ex-
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cluded in each term of the auxiliary state, the
underlying idea of the protocol is that we have
tailored the auxiliary state such that in the pro-
jection of the photons a and b, we project into an
equal superposition of d orthogonal modes, which
is a maximally entangled state. As the phases in
the projection depend on the detection pattern,
we project onto different entangled states for dif-
ferent detection patterns. There are dd successful
detection patterns meaning that different detec-
tion patterns do not result in projections onto or-
thogonal sets of maximally entangled states as is
also clear from Eq. (13). For entanglement swap-
ping, the same output state can, however, always
be output by means of local unitaries dictated by
the detection pattern, as we show below.

B. High-Dimensional Entanglement Swapping
Here we generalize the 4-dimensional entangle-
ment swapping procedure from the main text to
arbitrary even dimensions. The initial state of
Alice and Bob is now:

|ψ⟩ABab = 1
d

d−1∑
i=0

â†
i,a |vac⟩ |i⟩A⊗

d−1∑
j=0

â†
j,b |vac⟩ |j⟩B .

(15)
If the ESA is successful, we can apply Eq. (14)
to the initial state Eq. (15) to see that the state
is projected into:

|Ψ⟩AB = 1
d
√
dd · d

2

d
2 −1∑
j=0

ωf
(
ω

Dzj |yj⟩A |zj⟩B

+ ω
Dyj |zj⟩A |yj⟩B

)
.

(16)

Next, we apply the following unitary operation
to the qudit register of Bob:

U(D0, D1, ..., Dd−1) =
d
2 −1∑
j=0

ω−f
(
ω−Dyj |yj⟩ ⟨yj | + ω−Dzj |zj⟩ ⟨zj |

)
.

(17)

This results in the following state shared by Alice
and Bob.

|Ψ⟩AB = 1
d
√
dd · d

2

d
2 −1∑
j=0

(
|yj⟩A |zj⟩B + |zj⟩A |yj⟩B

)
.

(18)

Next we look at the output state for a spe-
cific choice of the auxiliary state, for exam-
ple choosing the pairs {yj , zj} consecutively:

(0, 1), (2, 3), . . . , (d− 2, d− 1).

|Ψ⟩AB = 1
d
√
dd · d

2

d
2 −1∑

j=0, j even

(
|j⟩A |(j + 1)⟩B + |j + 1⟩A |j⟩B

)
.

(19)
The probability of measuring one successful de-
tection pattern is:

|⟨Ψ|m |ψ⟩AB|2 =

∣∣∣∣∣∣ 1√
d

· 1

d
√
dd

√
d
2

· d

∣∣∣∣∣∣
2

= 2
d2 · dd

.

(20)
As long as all photons are measured in different
time-bins, the combination of output ports is ir-
relevant as we showed in the previous section.
Thus, each photon can be detected in d output
ports, and the protocol will succeed. There are d
photons and d photon detectors, thus, dd detec-
tion patterns lead to success. The total success
probability is a polynomial function of dimen-
sion:

pES = |⟨P |ab |ψ⟩ABab|
2 · dd = 2

d2 . (21)

C. Auxiliary Photon State
We described the shape of the auxiliary state in
Eq. (1) which is equivalent to the following for-
mulation.

|aux⟩ = 1√
d/2

d
2 −1∑
j=0

d−3⊗
k=0

â†
τj [k] |vac⟩

= 1√
d
2

(
â†

τ0[0]â
†
τ0[1] . . . â

†
τ0[d−3] |vac⟩

+ â†
τ1[0]â

†
τ1[1] . . . â

†
τ1[d−3] |vac⟩

+ . . .

+ â†
τ(d/2))−1[0]â

†
τ(d/2)−1[1] . . . â

†
τ(d/2)−1[d−3] |vac⟩

)
.

(22)

with

(τj [0], τj [1], ..., τj [d− 3]) ∈ P [0, 1, ..., d− 1]
(τj [0], τj [0], ..., τj [d− 3]) ̸= {yj , zj}
(yj , zj) ∈ {0, 1, ..., d− 1}2

yi ̸= yj ∧ zi ̸= zj ∧ yi ̸= zj ∀ i, j .

(23)

Where the creation operator â†
τj [k] corresponds

to a photon created in time-bin τj [k] in spatial
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mode x0 and the variables τj [k], yj , zj should sat-
isfy the constraints from Eq. (23). To prepare the
auxiliary state for the protocol in arbitrary even
dimensions, we use a register with a quantum
emitter that has (d/2) + 1 energy levels where
each state selectively emits a photon. This can
be realized with a single three state emitter sys-
tem, as shown in Fig. 3, coupled to a ⌈log2(d/2)⌉
qubit processor. We use this register as a control
register to flip the emitter state by applying gates
conditioned on a specific state of the qubit regis-
ter. In contrast to the example in 4 dimensions
in the main text, we now initialize the quantum
emitter in the bright state. This protocol can be
used in specific dimensions where d = 2x+1 for in-
teger x and in doing so, we reduce the number of
required multi-controlled bit flips to the emitter.
In arbitrary even dimension, the emitter should
start in the dark state and our protocol can be
used in the same way but requiring more multi-
controlled bit flips. The initial state is:

1√
d
2

(
|c0⟩ + |c1⟩ + . . .+ |c(d/2)−2⟩ + |c(d/2)−1⟩

)
⊗ |0⟩s .

(24)

With |cj⟩ the state of the control qubits and
{|c0⟩ , |c1⟩ , . . . , |c(d/2)−1⟩} spanning a basis, for
example the computational basis. In the proto-
col, the following operations are applied to flip
and excite the quantum emitter twice controlled
on one mode of the control register.

1. Flip the quantum emitter controlled on one
of the modes |cj⟩ in the superposition of con-
trol qubits such that it is in the dark state
corresponding to that mode.

2. Excite the quantum emitter to emit a photon
for all states except |cj⟩.

3. Excite the quantum emitter in the next
time-bin to emit a photon for all states ex-
cept |cj⟩.

4. Execute step 1 again to flip the quantum
emitter back to the bright state.

We call this pulse sequence to emit two consecu-
tive photons ’U j

em’, where the superscript j cor-
responds to a specific control mode |cj⟩.
Now we have all the elements to build up the

state of the auxiliary photons. We emit photons

in time-bins 0 and 1 corresponding to all modes

except |c d
2 −1⟩, so we start with operation U

d
2 −1
em .

The state after this operation is:

√
1
d/2

((
|c0⟩ + |c1⟩ + . . . + |c(d/2)−2⟩

)
â†

0â
†
1 |vac⟩

+ |c(d/2)−1⟩ |vac⟩
)

⊗ |1⟩s .

(25)

The second kets indicate the auxiliary photons in
spatial mode x0. We emit the next photons con-
trolled on all modes except c d

2 −2 with operation

U
d
2 −2
em :

√
1
d/2

((
|c0⟩ + |c1⟩ + |c2⟩ + . . .

)
â†

0â
†
1â

†
2â

†
3 |vac⟩

+ â†
0â

†
1 |c(d/2)−2⟩ |vac⟩ + â†

2â
†
3 |c(d/2)−1⟩ |vac⟩

)
⊗ |1⟩s .

(26)

We continue emitting photons controlled on
all modes except for one with operations

U
d
2 −3
em . . . U1

emU
0
em. After the last operation, the

state is:

√
1
d/2

(
â†

0â
†
1â

†
2â

†
3 . . . â

†
d−3 |c0⟩ |vac⟩

+ â†
0â

†
1â

†
2â

†
3 . . . â

†
d−5â

†
d−2â

†
d−1 |c1⟩ |vac⟩

+ â†
0â

†
1 . . . â

†
d−7â

†
d−4â

†
d−3â

†
d−2â

†
d−1 |c2⟩ |vac⟩

+ . . .

+ â†
0â

†
1â

†
4â

†
5 . . . â

†
d−1 |c(d/2)−2⟩ |vac⟩

+ â†
2â

†
3â

†
4â

†
5 . . . â

†
d−1 |c(d/2)−1⟩ |vac⟩

)
⊗ |1⟩s .

(27)

Where each photonic mode corresponding to a
mode from the control qubit contains photons
in all modes except two in a unique way: the
photonic mode of c0 does not contain photons in
time-bin ’d − 2’ and ’d − 1’, c1 does not contain
photons in time-bin ’d − 4’ and ’d − 3’ and so
on. To remove the correlation of the photonic
qudit states with the control register, we finally
measure the control register in the Fourier basis.
The outcomes determine the phases in the aux-
iliary state, which is still a suitable state of the
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form from Eq. (1). The measurement outcome
can be used to determine which entangled state
is generated exactly.
In Eq. (27) we have prepared a specific instance

of the auxiliary state. The same procedure can be
applied to prepare different auxiliary states. In
each time-bin, photons need to be emitted con-
ditional on certain modes in the control regis-
ter. We need to apply multicontrolled operations
from these modes to the emitter, such that the
emitter is in the bright state correlated to these
modes. Next, the emitter is excited and a photon
is emitted correlated with these modes. Apply-
ing the same multicontrolled operation returns
the emitter to the dark state and the process is
repeated for the next time-bin. Measuring the
control register in the Fourier basis projects the
photons into the desired auxiliary state.

D. Decoherence and Photon Loss
In dimensions 6 and 8, we model the faulty multi-
qubit controlled operations in the generation of
auxiliary photons as single qubit depolarizing
channels acting on each qubit following a perfect
gate operation. In 4 dimensions this is how we
model the imperfect X-gate of the emitter. The
Krauss operators are:

K0 =
√

1 − 3pdp
4

[
1 0
0 1

]

K1 =
√

pdp
4

[
0 1
1 0

]

K2 =
√

pdp
4

[
0 −i
i 0

]

K3 =
√

pdp
4

[
1 0
0 −1

]
.

(28)

The depolarizing channel acting on density ma-
trix ρ that describes a single qubit is modeled
as:

ρ̃ =
3∑

i=0
KiρK

†
i . (29)

In dimension 4, we depolarize the emitter. In
dimensions 6 and 8 we apply the single qubit de-
polarization to both qubits in the control register
and the emitter. We model the dephasing of aux-
iliary photons due to the instability of the linear
optics circuit and fibers as a collective dephasing.

The dephasing channel acting on density matrix
ρ of size x x x is given by:

ρ̃ = (1 − pdeph)ρ+ pdephdiag(ρ00, ρ11, . . . ρxx).
(30)

Each photon can be lost somewhere in the circuit
and we model this as a general loss probability
ploss. For example, if we want to emit a photon in
time-bin i conditional on the mode of the control
qubits cj and for all other modes ci where i ̸= j
not emit a photon, the faulty operation looks like:

|cj⟩ →
√

1 − plossâ
†
i |cj⟩ |vac⟩

|ci⟩ → |ci⟩ |vac⟩ .
(31)

This leads to an unnormalized density matrix
which effectively is equivalent to assuming a fi-
delity of zero when no photons are emitted when
they should be emitted.

As discussed previously, the terms with fewer
photons can be heralded away at the detection.
To see the effect of this heralding we calculate
the fidelity of the auxiliary state conditional on
the number of photons being equal to d− 2, the
number of auxiliary photons that should be there
in the ideal case. In the presence of detector dark
counts, auxiliary states with less than d− 2 pho-
tons could lead to a false success due to a dark
count. In addition, events where more than d−2
photons are emitted could also lead to a false
success if the photon detectors are not number
resolving. As these errors are arguably higher
order compared to the photon loss and the depo-
larizing errors considered here, we do not include
them in our model.
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