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The predicted effect of preservation 
scenarios on indoor overheating 
for the renovation of heritage-listed 
apartment-style lilong houses in Shanghai 
under climate change
Muxi Lei1,2*  , Twan van Hooff1, Bert Blocken3,4 and Ana Pereira Roders5 

Abstract 

An increase in ambient air temperature due to climate change can adversely affect indoor thermal conditions, par-
ticularly in heritage-listed dwellings, as renovation efforts may be limited by preservation constraints, potentially lead-
ing to indoor overheating for occupants. Incorporating heritage-listed dwellings into the climate change adaptation 
strategies is essential. Heritage-listed dwellings exhibit varying preservation constraints, with character-defining ele-
ments differing across cases. A literature review indicates a deficiency in research regarding climate change adapta-
tion for lilong houses, which are two- to three-storey terrace houses featuring timber-brick structures, predominantly 
constructed in late 19th and early 20th century Shanghai, and recognised as significant urban heritage of the city. 
Through building energy simulations, this article examines the climate change adaptation of heritage-listed apart-
ment-style lilong houses in Shanghai. Overheating hours and degree hours are utilised to assess indoor overheating 
conditions. Three scenarios for the preservation of the building envelope are proposed: (1) preservation of walls, (2) 
preservation of windows, (3) preservation of the roof. There are five categories of climate change adaptation meas-
ures. The findings indicate that substantial reductions can be attained by implementing a single preservation scenario 
customised to the character-defining elements and preservation constraints of heritage-listed dwellings. The most 
significant decrease in the number of overheating hours is observed in the wall preservation scenario, with a reduc-
tion of 69%, followed by a 53% reduction in the roof preservation scenario and a 31% reduction in the window preser-
vation scenario. The proposed preservation scenarios enable the improvement in building indoor thermal conditions 
without compromising heritage preservation.

Keywords Shanghai, Heritage-listed dwellings, Apartment-style lilong houses, Indoor overheating, Future climate, 
Climate change adaptation, Building renovation
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1 Introduction
In line with global trends, due to climate change, the 
near-surface air temperature in China increased by 
0.24  °C /10  years from 1951 to 2018 (Climate Change 
Center of CMA, 2019), with future increases predicted 
within a range of 1.3 °C to 5.0 °C for the period 2081 to 
2100 compared to the period 1986 to 2005 (CTNARCC 
Editorial Committee, 2015). The predicted increase in 
ambient air temperature can lead to increased indoor 
overheating, resulting in thermal discomfort for the 
occupants.

Building renovations can improve the performance of 
buildings in indoor thermal conditions (e.g. van Hooff 
et al. 2014; Vasaturo et al. 2018). However, heritage-listed 
dwellings often have preservation constraints (e.g. Mar-
tínez-Molina et al. 2016), which may disable the needed 
improvements in the renovations. Thus, climate change 
may have a long-term impact on the health and well-
being of occupants. Preservation concerns the process 
of ‘maintaining a place in its existing state and retarding 
deterioration’ (Australia ICOMOS, 2013, 2). These pres-
ervation constraints are important as they preserve the 
character-defining elements conveying cultural signifi-
cance over time. Thus, adapting heritage-listed dwellings 
to future climate change is important yet challenging, 
particularly regarding the maintenance of both occupant 
thermal comfort and character-defining elements. Con-
sidering heritage-listed dwellings differ in preservation 
constraints, where the character-defining elements vary 
per building, it is important to research the potential of 
improving building performance at the level of the build-
ing components (e.g. De Berardinis et al. 2014). Because, 
for example, in heritage-listed dwellings where the roof 
conveys significance, other building components as the 
walls and windows could be improved.

Earlier studies have investigated the predicted effect 
of future climate change on indoor thermal conditions. 
A study for dwellings in Lisbon, Portugal, showed a pre-
dicted increase in discomfort hours of 13% to 17% for 
2050 and 43% to 53% for 2080 compared to a typical 
meteorological year (TMY) (Barbosa et al. 2015). Yu et al. 
(2023) showed an increase in overheating hours from 
884  h for a TMY to 1719  h for 2060 for a residence in 
Changchun, China, due to the predicted climate change. 
Conversely, indoor thermal conditions can be improved 
(e.g. Jafarpur and Berardi 2021), mainly depending on the 
local climate conditions and the season studied. Applying 
climate change adaptation measures (CCAMs) can pro-
vide a solution to reduce indoor overheating in buildings 
under climate change (e.g. van Hooff et al. 2014; Albers 
et al. 2015; Baba et al. 2023).

The usability of heritage-listed dwellings may be com-
promised due to a decrease in indoor thermal comfort 

resulting from climate change (e.g. Muñoz González 
et  al. 2020; Lei et  al. 2022). Regarding indoor thermal 
conditions, Muñoz González et al. (2020) showed that a 
decrease in discomfort hours of 10% to 20% during cold 
months and an increase of 20% to 30% during warmer 
months were predicted in 2050 compared to 2018 for 
historic churches in Seville, Spain. Moreover, Lei et  al. 
(2022) predicted an increase of 58% to 60% in the num-
ber of overheating hours for Beijing and 41% to 44% for 
Shanghai for a heritage-listed dwelling in 2050 compared 
to a TMY. These previous studies showed that climate 
change could have noticeable effects on heritage-listed 
dwellings and thus may compromise the cultural sig-
nificance of buildings. In addition, poor indoor thermal 
conditions can be present, leading to possible unwanted/
uncontrolled building renovation, changes in room usage, 
or even abandoned heritage-listed dwellings. It is neces-
sary to mitigate the adverse effects of climate change, for 
example, on indoor thermal conditions in heritage-listed 
dwellings. However, none of the aforementioned studies 
focused on climate change adaptation of traditional lilong 
houses, which are two- to three-storey terrace houses 
featuring timber-brick structures, predominantly con-
structed in late 19th and early 20th century Shanghai, 
and recognised as significant urban heritage of the city. 
This is notable given the increasing interest in enhanc-
ing thermal comfort in lilong houses (e.g. Song and Mo 
2010).

2  Base case building: generic heritage‑listed 
dwellings

This article takes apartment-style lilong houses as an 
example to evaluate indoor overheating and its mitiga-
tion under climate change using building energy simu-
lations. Apartment-style lilong houses in Shanghai were 
built around the 1940s (Xu and Yan 1983), prior to the 
introduction of the first Chinese building energy stand-
ard in the 1980s (Chen et  al. 2015). This building type 
typically consists of a two- to three-storey timber-brick 
structure. It is characterised by a compact interior, often 
lacking a parlor room (Xue and Lou 2005), and low ther-
mal resistance in the building envelope due to insuffi-
cient thermal insulation (Song and Chen 2010). Yongjia 
New Village (Yongjia Xincun) was defined as a generic 
building model which served as the base case (i.e. with-
out CCAMs implemented) (e.g. Xu and Yan 1983). It 
was built with a site area of around 3.7  hm2 in the 1940s 
(Lou and Xue 2002) and was listed as the second batch of 
‘Outstanding Historic Building’ in 1994 (Office of Shang-
hai Chronicles 2005).

The typical layout of the dwelling is shown in Fig.  1. 
The number of floors, building geometry, interior lay-
out and bedroom dimensions of the generic model were 
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based on data identified from (Xue and Lou 2005) and 
from the online real estate platform Lianjia (Lianjia 2016) 
(Fig.  2). The building has a timber-brick structure with 
construction and materials summarised in Table  1. An 
assumption was made about the dimension of the air cav-
ity for modelling (see Table 1). The occupancy schedule 
of a working couple was based on the work of Hu et al. 
(2019). Details of the occupancy schedule and internal 
heat gains are shown in Table 2.

3  Building envelope preservation and climate 
change adaptation measures

3.1  Scenarios for building envelope preservation
Indoor building thermal conditions are largely affected 
by building envelope properties, while constraints on the 
renovation of certain character-defining elements may 
be present due to preservation constraints for heritage-
listed dwellings. For Yongjia New Village, the character-
defining elements include the building envelope and the 

Fig. 1 Shanghai Yongjia New Village (Yongjia Xincun). a, b Building facades, c windows, d roof attic, e indication of the interior layout for a dwelling 
on the 1st floor [Source: the authors. Subfigure (e) is based on Xue and Lou (2005), Lianjia (2016) and on-site investigation]

Fig. 2 Generic building based on Xue and Lou (2005) and Lianjia (2016). a-c Front facade, back facade and side facade. W1 to W4 show 
the operable windows (same for all floors). The dashed box in (a, b, d) shows the location of the studied dwellings. The ground floor 
was not included to avoid ground effects on the heat balance. e Floor plan and interior layout: Bedroom A (BA), Bedroom B (BB), Corridor (C), 
Kitchen (K) and Bathroom (B). Dimensions in millimetres (Source: the authors)
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featured interior decoration (Xuhui District Housing 
Security and Administration Bureau 2016). Hence, build-
ing envelope preservation is considered in the present 
study to minimise the effect on envelope components 
conveying cultural significance.

Measures to improve the indoor thermal conditions 
and reduce energy demand may still be applicable, 
e.g. on a building component level such as walls, win-
dows, roofs, etc., depending on the character-defining 
elements and the limits of acceptable change (e.g. De 
Berardinis et  al. 2014; Standing Committee of SMPC, 
2019). An earlier study showed that the preserva-
tion constraints of the envelope components of lilong 
houses vary; modifications are restricted for certain 
external walls, while alterations are permitted for those 
that have previously undergone changes (e.g. Song and 
Mo 2010).

A scenario-based approach was adopted to address the 
diverse preservation constraints. Three essential compo-
nents of the building envelope, i.e. walls, windows and 
roof, were considered based on which three preserva-
tion scenarios were developed. In order to minimise the 

potential impact of CCAMs on the original architectural 
appearance, no CCAMs were applied to the component 
to be preserved:

• Wall preservation scenario: external walls are pre-
served, while windows and the roof are adapted for 
better performance in the building renovation.

• Window preservation scenario: windows are pre-
served, while external walls and the roof are adapted 
for better performance in the building renovation.

• Roof preservation scenario: the roof is preserved, 
while external walls and windows are adapted for 
better performance during the building renovation.

3.2  The considered climate change adaptation measures
Five types of CCAMs were included in the present study: 
(1) lower thermal transmittance, (2) vegetated roof, (3) 
increased roof solar reflectance, (4) adding exterior solar 
shading, and (5) additional natural ventilation.

In CCAM 1, for lower thermal transmittance, increased 
wall insulation (RC_wall), increased roof insulation 

Table 1 Building construction and materials based on Lou and Xue (2002), Xue and Lou (2005) and Song and Chen (2010)). Values for 
the thermal resistance of the construction  (Rc) were based on CIBSE (2015) and MOHURD and AQSIQ (2016)

a 0.3 was set for solar reflectivity value (albedo) except for the plaster (albedo = 0.9 for the plaster), and 0.9 was set for thermal emissivity value for all the opaque 
materials (e.g. Bretz et al. 1992)
b Monthly ground temperatures at 1.0 m depth were used (Meteotest 2021)
c A fixed window was used if the window conveys cultural significance

Building components Construction (from outside to inside)a Thermal resistance 
of construction  (Rc) 
 [m2K/W]

Internal floor/ceiling Timber deck, air cavity (d (cavity width) = 150 mm,  Rcav (thermal resistance of the cavity) = 0.19 
 m2K/W (CEN, 2007)), timber deck

0.43

Ground floor Rammed earth, concrete, cement mortar (floor/ceiling) 1.14b

Pitched roof Clay tiles, timber roof deck 0.17

Doors Timber doors 0.23

Windowsc Single-pane glazing with wooden frames (thermal transmittance value (U value) = 5.20 W/m2K, solar 
heat gain coefficient = 0.70 (ASHRAE, 2021))

-

External walls Plaster, bricks (external), cement mortar (wall) 0.39

Internal walls Cement mortar (wall), bricks (internal), cement mortar (wall) 0.21

Table 2 Room occupied hours and internal heat gains

a Heat gains from occupant for Bedroom A = 126 W (male) & 112 W (female), Bedroom B = 72 W (male) & 64 W (female), Kitchen = 167 W (male) & 149 W (female) 
(AQSIQ and SAC 2008; MOHURD and AQSIQ 2012a). Electric equipment = 3.8 W/m2 and lighting = 5 W/m2 (MOHURD 2018). Gas equipment = 1000 W and a 
refrigerator = 60 W (e.g. Hasan et al. 2009; ASHRAE 2021). Note that 10% of the electric equipment load was present for Bedroom B (e.g. Lam et al. 2005), lighting only 
after 17:00 h and the heat gain from the refrigerator for the entire day

Rooms Heat  gainsa Monday to Friday Weekends

Bedroom A Occupant, electric equipment, lighting 7:00–7:30 h, 18:00–22:30 h 9:00–9:30 h, 12:00–13:00 h, 19:00–23:00 h

Bedroom B Occupant, electric equipment 0:00–6:30 h, 22:30–24:00 h 0:00–8:30 h, 13:00–15:00 h, 23:00–24:00 h

Kitchen Occupant, electric equipment, lighting, gas 
equipment, refrigerator

6:30–7:00 h, 17:00–18:00 h 8:30–9:00 h, 11:00–12:00 h, 18:00–19:00 h
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(RC_roof) and window replacement (WR) were stud-
ied. For energy saving, an insulation layer of extruded 
polystyrene with a thickness of 120  mm was added for 
RC_wall and RC_roof. The insulation layer for RC_wall 
was added at the outer surface of the external walls, i.e. 
external insulation, to minimize possible condensa-
tion due to thermal bridges (MOHURD, 2012). External 
insulation, however, is not suggested to be applied to the 
external walls with cultural significance. For RC_roof, 
the insulation layer was added between the clay tile and 
the roof deck. For WR, a window with a visible transmit-
tance value of 0.50 (ASHRAE 2021), which is larger than 
0.45 as required by MOHURD and AQSIQ (2012b), was 
used, which has a solar heat gain coefficient of 0.34 (see 
Table  3). WR was only included for the case where the 
original windows were replaced to minimize its effect on 
the cultural significance of the heritage-listed dwellings. 
The thermal transmittance values (U values) of the dif-
ferent envelope parts with CCAMs implemented were 
smaller than the U values required by the relevant guide-
lines (MOHURD, 2010, 2012) (see Table 3).

In CCAM 2, an extensive vegetated roof (VR) was used, 
consisting of a reinforced concrete deck with 0.25  m 
thickness of substrate and soil, supporting a ground cover 
plant (sedum) (MOHURD 2013). The VR construction, 

including vegetation, substrate, roofing material and 
roof deck, was based on MOHURD (2013) and CIBSDR 
(2014) (see Table 3). The application of VR may require 
additional renovation actions, which could change the 
original architectural appearance, especially for the roof 
conveying cultural significance.

In CCAM 3, for increased roof short-wave reflectance 
(SR09_roof), the short-wave reflectivity or albedo value 
of the outer surface of the roof was increased to 0.9 using 
high-solar reflecting coatings.

In CCAM 4, a movable vertical roller shade providing 
exterior solar shading (SS) was used at the windows (see 
Table  3). If activated, all of the glazing areas of a win-
dow will be covered by the shading (U.S. Department of 
Energy, 2019c).

In CCAM 5, additional natural ventilation (NV) can 
be readily implemented through windows (NV_win-
dow) for wall and roof preservation scenarios, with ven-
tilation flow rate dependent on wind speed and thermal 
stack effect (U.S. Department of Energy, 2019c). For the 
window preservation scenario, however, no natural ven-
tilation was provided through the windows, i.e. a ‘worst 
case’ scenario with the windows closed, and thus building 
openings on the external walls, e.g. wall grilles (NV_wall) 
and opened doors were used instead to provide natural 

Table 3 Overview of the considered climate change adaptation measures (CCAMs)

a Re (exterior surface heat transfer resistance) = 0.05  m2 K/W,  Ri (interior surface heat transfer resistance) = 0.11  m2 K/W (MOHURD and AQSIQ 2016) for the estimation 
of U (thermal transmittance) values, in EnergyPlus these values are not used but external and internal convective heat transfer coefficients were calculated using 
DOE-2 and TARP, respectively (Walton 1983; LBL 1994; Mirsadeghi et al. 2013; U.S. Department of Energy 2019b, 2019c)
b R (thermal resistance) values were based on Tang et al. (2007), CIBSE (2015) and MOHURD and AQSIQ (2016)

Building renovation Climate change adaptation measures

Increased wall insulation (RC_wall) U = 0.25 W/m2K (i.e. < 1.5 W/m2K as required by (MOHURD, 2010, 2012))a

Increased roof insulation (RC_roof ) U = 0.27 W/m2K (i.e. < 0.8 W/m2K as required by (MOHURD, 2010, 2012))a

Window replacement (WR) U = 1.52 W/m2K (i.e. < 4.0 W/m2K as required by (MOHURD, 2010, 2012)), solar heat gain coeffi-
cient = 0.34 (ASHRAE, 2021)

Vegetated roof (VR)b • Vegetation: height = 0.10 m (Peng and Yang 2019), leaf area index (LAI) = 4 (Sailor and Bass 2014), 
leaf albedo value = 0.17 (Feng et al. 2010)
• Substrate: thickness = 0.25 m (MOHURD 2013), R = 1.25  m2K/W for dry soil
• Roofing materials: thickness = 0.07 m, R = 0.17  m2K/W
• Roof deck: thickness = 0.20 m, R = 0.11  m2K/W

Increased roof short-wave reflectance (SR09_roof ) Short-wave reflectivity (albedo) value was increased from 0.3 to 0.9 for the outer surface of the roof 
(e.g. Bretz et al. 1992)

Exterior solar shading
Vertical roller shade (SS)

Solar reflectivity value = 0.8 (e.g. Bretz et al. 1992), distance between shading and glazing = 0.05 m 
(U.S. Department of Energy, 2019c)
Two activation criteria:
• Incident solar irradiance on windows > 200 W/m2 (e.g. Beck et al. 2010; U.S. Department of Energy 
2019a, 2019b)
• Indoor air temperature > 20 °C (i.e. 2 °C higher than the heating setpoint from (MOHURD, 2010))

Additional natural ventilation through windows 
(NV_window) or wall openings (NV5_wall)

Two ventilation conditions:
• Available for daytime only (7:00–19:00 h for weekdays and 9:00–20:00 h for weekends), i.e. NV_
window_day & NV5_wall_day
• Available for a whole day, i.e. NV_window_day + night & NV5_wall_day + night
Two criteria:
• Indoor air temperature > 26 °C (i.e. same as the cooling setpoint from (MOHURD, 2010))
• Outdoor air temperature < indoor air temperature (e.g. van Hooff et al. 2014)
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cross-ventilation with an average ventilation flow rate of 
5.0  h−1 air changes per hour (ACH) (based on an average 
wind speed of 3.7 m/s (Meteotest 2021) and an opening 
area of 0.1  m2). Table 3 shows the conditions and criteria 
for introducing natural ventilation.

In addition, the individual CCAMs in different preser-
vation scenarios were combined to evaluate their effec-
tiveness. Table  4 shows the selection and combination 
of the CCAMs in different preservation scenarios. The 
combined CCAMs, if used at the same location, were 
determined based on the most effective individual meas-
ure for that location, e.g. SR09_roof instead of VR for 
the roof. Note that the combined measures are based on 
the selected individual CCAMs in different preservation 
scenarios, as shown in Table 4, to achieve a possible larg-
est reduction in indoor overheating. Multiple preserva-
tion scenarios merged or combined with all individual 
CCAMs would require additional analyses.

4  Methodology
4.1  Weather conditions
Weather data of a TMY (air temperature of 2000–2019; 
solar radiation of 1991–2010) generated from Mete-
onorm (Meteotest 2021) was used to represent the 
current climate. The future weather data in 2050 was 
stochastically generated using Meteonorm (Meteotest 
2020b, 2021) to represent the near-term future climate 
(hereinafter 2050). The future climate data was gener-
ated under the climate change scenario of representative 
concentration pathway (RCP) with the highest emission 
level, i.e. RCP8.5 (Moss et  al. 2010; van Vuuren et  al. 
2011), based on an average of 10 Coupled Model Inter-
comparison Project Phase 5 global climate models (Mete-
otest 2020a).

Figure 3a shows a clear increase in the predicted annual 
and monthly average ambient air temperatures in Shang-
hai. The annual average air temperature in 2050 (Tavg,2050) 

is predicted to be 2 °C higher than in the TMY (Tavg,TMY). 
Furthermore, the monthly average air temperature in 
each month is higher in 2050 than in the TMY, with 
the increase ranging from 1.5  °C to 2.4  °C. The percen-
tual change in the annual average hourly solar radiation 
is small, i.e. ΔGh,a = + 7.3% (Fig. 3a). Figure 3b shows an 
increase in the number of hours with an air temperature 
higher than 30 °C (∆n30 = 420) and 35 °C (∆n35 = 256) for 
2050 compared to the TMY during the summer (1 June 
to 31 August).

4.2  Simulation settings
Building indoor thermal conditions were simulated 
using EnergyPlus (Crawley et  al. 2001; U.S. Department 
of Energy 2019a). The number of time steps per hour 
was set to 6, except for VR. For VR, the number of time 
steps per hour was increased to 60, as suggested by the 
U.S. Department of Energy (2019c). A ventilation rate of 
1.0  h−1 was provided to the bedrooms for the entire day 
(MOHURD, 2010), and a ventilation rate of 11.9  h−1 (450 
 m3/h) for the kitchen during the occupied hours (e.g. 
CECS 2010). The infiltration rate of 0.645   h−1 used for 
all the rooms, including the roof attic, was averaged from 
Chen et  al. (2012) and Shi et  al. (2015). Ground reflec-
tivity values were set to 0.2 throughout the year (e.g. Liu 
and Jordan 1963; Thevenard and Haddad 2006). Heating 
was provided during the heating period from 1 Decem-
ber to 28 February (MOHURD 2010). Indoor overheating 
was only evaluated during the non-heating period, i.e., 
1 March to 30 November (6600 h). Adiabatic walls were 
assumed for the walls between the studied dwelling and 
the neighbouring dwellings, while the floor and ceiling 
were influenced by the indoor conditions of the dwellings 
located above and below the target dwelling. The suitabil-
ity of the simulation settings was validated in the study 
of Lei et  al. (2022) based on a comparison with experi-
mental data from the literature. Bedroom windows were 

Table 4 Implementation of the CCAMs on the developed envelope preservation scenarios

a (-): no measures implemented. RC_wall: increased wall insulation. RC_roof: increased roof insulation. WR: window replacement. VR: vegetated roof. SR09_roof: 
increased roof short-wave reflectance. SS: exterior solar shading. NV_window_day/day + night: additional natural ventilation through windows. NV5_wall_day/
day + night: additional natural ventilation through wall openings

Preservation scenarios

Wall preservation Window preservation Roof preservation

Envelope component

CCAMs for  walla (-) RC_wall, NV5_wall_day, NV5_wall_day + night RC_wall

CCAMs for  windowa NV_window_day, NV_win-
dow_day + night, WR, SS

(-) NV_window_day, NV_window_
day + night, WR, SS

CCAMs for  roofa RC_roof, VR, SR09_roof RC_roof, VR, SR09_roof (-)

Combined measures NV_window_day + night, WR, 
SS, RC_roof, SR09_roof

NV5_wall_day + night, RC_roof, SR09_roof NV_window_day + night, WR, SS
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orientated towards eight different orientations, i.e., the 
south (S), southwest (SW), west (W), northwest (NW), 
north (N), northeast (NE), east (E) and southeast (SE), to 
include the effect of orientation on indoor overheating.

4.3  Assessment of indoor overheating
A Chinese adaptive thermal comfort model from the 
guideline GB/T 50785–2012 (MOHURD and AQSIQ 
2012a) was selected to evaluate occupant thermal com-
fort. The adaptive thermal comfort model was selected 
for a Chinese hot summer and cold winter climate zone 
(e.g. Shanghai (MOHURD and AQSIQ 2016)).

The running mean outdoor temperature was calculated 
using Eq. (1) (MOHURD and AQSIQ 2012a):

with.
Trm = running mean outdoor temperature [°C];
α = 0.8;
Tod-n = daily average outdoor temperature of n days ago 

[°C].

4.3.1  Indoor overheating hours
The upper threshold of category II (75% to 90% accept-
ability (Carlucci et  al. 2018) from the guideline GB/T 
50785–2012 was selected to evaluate indoor overheating 
conditions using Eq. (2) (MOHURD and AQSIQ 2012a):

with.

(1)Trm = (1− α) Tod−1 + αTod−2 + α2
Tod−3 + α3

Tod−4 + α4
Tod−5 + α5

Tod−6 + α6
Tod−7

(2)Tupper = 0.73Trm + 12.72

Tupper = upper threshold of the indoor operative tempera-
ture [°C] (18 °C ≤ Tupper ≤ 30 °C);

Trm = running mean outdoor temperature [°C].
The hourly overheating condition was determined by 

Eq. (3).

with ohi the hourly overheating conditions, To is the 
indoor operative temperature [°C] (ASHRAE, 2021), Tup-

per the upper threshold of the indoor operative tempera-
ture [°C].

The number of overheating hours was calculated using 
Eqs. (3) and (4):

with ho the overheating hours [h], n is the number of 
hours during the non-heating period, i.e. 6600, ohi the 
hourly overheating condition, ∆t one hour [h].

4.3.2  Indoor degree hours for the evaluation of overheating
The degree of overheating was indicated by the number 
of degree hours using Eq. (3) and Eq. (5).

(3)ohi =

{

1, To > Tupper

0, To ≤ Tupper

(4)ho =

n
∑

i=1

(ohi�t)

(5)hd =

n
∑

i=1

[ohi(To − Tupper)�t]

Fig. 3 Air temperature (Ta) and hourly solar radiation (Gh) in the typical meteorological year (TMY) and 2050 in Shanghai. In (a), the dots represent 
the monthly average air temperatures, and the bars represent the monthly average hourly solar radiation. Hourly air temperatures from 1 June 
until 31 August are shown in (b). The horizontal dashed lines in (b) indicate the air temperature of 30 °C and 35 °C. Note that the axis in (b) starts 
from a non-zero value of 10 °C (Source: the authors)
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with hd the degree hours [°Ch], n the number of hours 
during the non-heating period, i.e. 6600, ohi the hourly 
overheating conditions, To is the indoor operative tem-
perature [°C], Tupper the upper threshold of the indoor 
operative temperature [°C] and ∆t one hour [h].

5  Results
5.1  Base case dwellings
Figure  4 shows the predicted number of overheating 
hours (Fig.  4a, b) and degree hours (Fig.  4c, d) for the 
bedrooms of the base case dwellings under future climate 
change. The number of overheating hours and degree 
hours is larger for all orientations in 2050 compared to 
the TMY due to the predicted increase in the ambient air 
temperature in 2050. Furthermore, the average number 
of overheating hours and degree hours increases for 2050 
compared to the TMY, ranging from 28 to 32% for the 
average number of overheating hours and from 69 to 84% 
for the average number of degree hours.

The largest number of overheating hours and degree 
hours occurs when the bedroom windows are oriented 

towards the eastern sides (SE or E for the number of 
overheating hours; E for the number of degree hours).

The number of overheating hours and degree hours 
for each orientation is, as expected, smaller for the bed-
rooms on the 1st floor compared to the 2nd floor. This 
is because of the low albedo value (albedo = 0.3 (see 
Sect.  2)) and the limited thermal resistance of the roof 
surface, i.e. larger transmission heat gains for the attic 
and the limited thermal resistance of the ceiling between 
the attic and the dwelling on the 2nd floor, resulting in an 
increased heat gain by the transmission for the dwelling 
on the 2nd floor. Therefore, the dwelling on the 2nd floor 
has a higher indoor overheating risk than the 1st floor. 
This observation is in line with the specific suggestion for 
an evaluation of summer indoor thermal conditions after 
renovation for the rooms on the top floor in the Chinese 
hot summer and cold winter climate zone by MOHURD 
(2012). Therefore, the remainder of this study focuses on 
the effect of CCAMs on indoor overheating in the dwell-
ing on the 2nd floor.

Fig. 4 The number of overheating hours for (a) Bedroom A and (b) Bedroom B, and the number of degree hours for (c) Bedroom A and (d) 
Bedroom B in the TMY and 2050. The average numbers over the eight orientations for the 1st floor (Avg, 1st floor) and the 2nd floor (Avg, 2nd floor) 
are indicated at the bottom of each graph (Source: the authors)
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5.2  Effect of climate change adaptation measures
Numerical simulations for the effects of the CCAMs were 
performed for both Bedroom A and Bedroom B, and 
the simulation results are similar between Bedroom A 
and Bedroom B. Hence, the results are only reported for 
brevity in Bedroom A.

5.2.1  Wall preservation scenario
Figure  5 compares the average, maximum and mini-
mum numbers of overheating hours (Fig. 5a) and degree 
hours (Fig.  5b) before and after the implementation of 
the CCAMs in the wall preservation scenario. In Fig. 5, 
the columns show the average values, and the error bars 
represent the maximum and minimum values of the eight 
orientations.

CCAMs for window: Additional natural ventilation 
through the windows available for a whole day (NV_win-
dow_day + night) achieves a larger reduction in the num-
ber of overheating hours and degree hours compared to 
daytime only (NV_window_day). WR and using exterior 
SS show similar reductions in the average number of 
overheating hours and degree hours. However, the appli-
cation of SS results in the smallest difference between the 
maximum and minimum numbers of overheating hours 
and degree hours. Thus, the effect of this CCAM on over-
heating is less dependent on orientation.

CCAMs for roof: RC_roof only leads to a marginal 
decrease in the average number of overheating hours 
and degree hours due to the reduced heat loss through 
the roof attic during the night, which partly counteracts 
the effect of RC_roof to reduce transmission heat gains 

during daytime. In addition, almost no effect (≤ 2%) on 
the average number of overheating hours and only a 
small reduction in the average number of degree hours 
are found when applying VR. The small decrease can be 
explained by the lower albedo of the leaf (0.17 for the leaf 
and 0.3 for the roof surface (see Sect. 2 & 3)), the dwelling 
location (the dwelling is not directly under VR) and the 
considered vegetation type (an extensive vegetated roof 
was used instead of an intensive one), which together 
limit the effect of VR. SR09_roof effectively reduces the 
average number of overheating hours (−26% for TMY; 
−21% for 2050) and degree hours (−41% for TMY; −33% 
for 2050).

Combined window and roof CCAMs: The implemen-
tation of the combined window and roof CCAMs results 
in a considerable reduction in the average number of 
overheating hours (−69% for TMY; −62% for 2050) and 
degree hours (−85% for TMY; −76% for 2050).

In the wall preservation scenario, the most effective 
individual climate change adaptation measure to reduce 
the average number of overheating hours and degree 
hours is NV_window_day + night. The combined window 
and roof CCAMs are more effective than the individual 
CCAMs in terms of reducing the average number of over-
heating hours and degree hours and can limit the number 
of hours to 867 (TMY) and 1355 (2050) for overheating 
hours and 989 (TMY) and 2797 (2050) for degree hours.

5.2.2  Window preservation scenario
Figure 6 presents the effect of the CCAMs on the aver-
age, maximum and minimum numbers of overheating 

Fig. 5 Effect of climate change adaptation measures (CCAMs) on indoor overheating in the wall preservation scenario for Bedroom A on the 2nd 
floor in the TMY and 2050. a The number of overheating hours, and (b) the number of degree hours. NV_window_day/day + night: additional 
natural ventilation through windows. WR: window replacement. SS: exterior solar shading. RC_roof: increased roof insulation. VR: vegetated roof. 
SR09_roof: increased roof short-wave reflectance (Source: the authors)
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hours (Fig. 6a) and degree hours (Fig. 6b) in the window 
preservation scenario. The columns show the average val-
ues, and the error bars represent the maximum and mini-
mum values of the eight orientations.

CCAMs for wall: In contrast to the other individual 
CCAMs, RC_wall increases the average number of over-
heating hours and degree hours. The increased indoor 
overheating can be explained by the increased wall insu-
lation, which reduces the heat release through the wall 
to the outside when the outdoor air temperature is lower 
than the indoor air temperature, e.g. during the night 
(e.g. van Hooff et al. 2014). Similar to NV_window_day/
day + night, natural ventilation through wall openings 
with a ventilation flow rate of 5.0  h−1 ACH is more effec-
tive if available for a whole day (NV5_wall_day + night) 
than for daytime only (NV5_wall_day). However, 
NV5_wall_day/day + night is less effective compared to 
NV_window_day/day + night.

CCAMs for roof: The same results for the CCAMs as 
listed for the roof in the wall preservation scenario (see 
Sect. 5.2.1).

Combined wall and roof CCAMs: Only a moderate 
reduction in the average number of overheating hours 
and degree hours is obtained when using the combined 
wall and roof CCAMs, i.e., the reduction is slightly larger 
than SR09_roof. For SR09_roof, the reduction is −26% 
(TMY) and −21% (2050) for the average number of over-
heating hours and −41% (TMY) and −33% (2050) for the 
average number of degree hours.

In the window preservation scenario, the most effec-
tive individual climate change adaptation measure is 

SR09_roof, and the combined wall and roof CCAMs 
are more effective than the individual CCAMs in terms 
of reducing the average number of overheating hours 
(−31% for TMY; −27% for 2050) and degree hours (−52% 
for TMY; −45% for 2050).

5.2.3  Roof preservation scenario
Figure 7 shows the effect of the CCAMs on the average, 
maximum and minimum numbers of overheating hours 
(Fig. 7a) and degree hours (Fig. 7b) in the roof preserva-
tion scenario. In Fig.  7, the columns show the average 
values, and the error bars represent the maximum and 
minimum values of the eight orientations.

CCAMs for wall: The effect of RC_wall is the same as in 
the window preservation scenario (see Sect. 5.2.2).

CCAMs for window: Same as the effects of CCAMs 
for windows in the wall preservation scenario (see 
Sect. 5.2.1).

Combined wall and windows CCAMs: A large reduc-
tion in the average number of overheating hours and 
degree hours is achieved using the combined wall and 
window CCAMs.

In the roof preservation scenario, the most effective 
individual climate change adaptation measure to reduce 
the average number of overheating hours is NV_win-
dow_day + night (−33% for TMY; −32% for 2050) and 
degree hours (−52% for TMY; −47% for 2050). Com-
pared to the individual CCAMs, the combined wall 
and window CCAMs are more effective in reducing the 
average number of overheating hours (−53% for TMY; 

Fig. 6 Effect of CCAMs on indoor overheating in the window preservation scenario for Bedroom A on the 2nd floor in the TMY and 2050. a The 
number of overheating hours, and b the number of degree hours. RC_wall: increased wall insulation. NV5_wall_day/day + night: additional natural 
ventilation through wall openings. RC_roof: increased roof insulation. VR: vegetated roof. SR09_roof: increased roof short-wave reflectance (Source: 
the authors)
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−47% for 2050) and degree hours (−73% for TMY; −65% 
for 2050).

5.2.4  Indoor overheating between different preservation 
scenarios

A comparison of the reduction in the average num-
ber of overheating hours and degree hours by using the 
combined measures between the three different preser-
vation scenarios shows that the reduction for wall pres-
ervation scenario > roof preservation scenario > window 
preservation scenario, i.e. the remaining average number 
of overheating hours and degree hours is the largest for 
the window preservation scenario, followed by the roof 
preservation scenario, and finally the wall preservation 
scenario.

The largest remaining average number of overheating 
hours and degree hours occurs for the window preser-
vation scenario due to the unchanged low-performance 
window (see Sect. 2), resulting in a large amount of inci-
dent solar radiation. The remaining average number of 
overheating hours and degree hours is larger for the roof 
preservation scenario than the wall preservation scenario 
due to the effect of the roof attic, i.e., the low albedo of 
the roof surface and the low thermal resistance of the 
roof surface and the ceiling for the dwelling on the 2nd 
floor (see Sect. 2).

6  Discussion
6.1  Effect of climate change adaptation measures
The larger reduction in the average number of overheat-
ing hours and degree hours achieved by using natural 

ventilation for a whole day, regardless of through window 
or wall, highlights the importance of night ventilation to 
reduce indoor overheating. Applying exterior solar shad-
ing limits the effect of orientation on indoor overheating.

Applying RC_roof and VR only lead to a small or even 
no effect on the average number of overheating hours 
and degree hours. Hence, given the thickness of the insu-
lation material, i.e., 120  mm for RC_roof, and the addi-
tional actions required for using VR (e.g. MOHURD 
2013), RC_roof and VR are less practical solutions for the 
studied dwellings to reduce indoor overheating.

In contrast to RC_roof, RC_wall increases the average 
number of overheating hours and degree hours. This is 
due to solar heat gains through the transparent sur-
faces of the building envelope, i.e. the windows, and the 
reduced transmission heat losses with increased wall 
insulation (e.g. van Hooff et  al. 2014). Relatively small 
decreases in the average number of overheating hours 
and degree hours are found when using NV5_wall_day/
day + night, and thus, mechanical ventilation may be 
involved to further reduce indoor overheating.

6.2  Effect of the preservation scenarios
The application of five types of commonly used CCAMs 
for building renovation was influenced by preservation 
constraints. The difference between the renovation 
of heritage-listed dwellings and non-heritage-listed 
dwellings is that some building components will have 
preservation constraints due to the conveyed cultural 
significance.

A study for non-heritage-listed dwellings showed that 
exterior solar shading and additional natural ventilation 

Fig. 7 Effect of CCAMs on indoor overheating in the roof preservation scenario for Bedroom A on the 2nd floor in the TMY and 2050. a The number 
of overheating hours, and (b) the number of degree hours. RC_wall: increased wall insulation. NV_window_day/day + night: additional natural 
ventilation through windows. WR: window replacement. SS: exterior solar shading (Source: the authors)
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were most effective in reducing indoor overheating, e.g. 
reducing the number of overheating hours to almost 
zero (van Hooff et  al. 2014). However, in the window 
preservation scenario where the application of exterior 
solar shading and additional natural ventilation through 
the windows is constrained, a maximum reduction of 
31% (TMY) and 27% (2050) for the average number of 
overheating hours is found. This relatively small reduc-
tion can be attributed to the effect of the preservation 
scenarios on the application of CCAMs.

6.3  Limitations and future work
This study used RCP8.5 in 2050 to obtain future 
weather data. Additional emission scenarios, e.g. 
RCP2.6, climate change scenarios, e.g. shared socioec-
onomic pathway (SSP) (O’Neill et  al. 2014; Riahi et  al. 
2017), and other future years could be considered to 
address the uncertainty in future weather predictions.

In addition, for heritage preservation, other residen-
tial building types, such as detached dwellings or other 
building typologies for the lilong houses, e.g. garden-
style lilong houses (e.g. Xu and Yan 1983), if heritage-
listed, could be included in future studies. Furthermore, 
future work could include multiple preservation sce-
narios for components in the building envelope or the 
information regarding cultural significance conveyed to 
the dwellings based on the documents related to herit-
age designation to analyse the effect of CCAMs on cul-
tural significance. Other aspects, e.g.  CO2 emissions, 
financial feasibility, and hygrothermal effects within the 
envelope, could be the focus of future studies. Defini-
tions from other sources, e.g. from Historic England, 
that conservation refers to ‘the process of maintaining 
and managing change to a heritage asset in a way that 
sustains and, where appropriate, enhances its signifi-
cance’ (Historic England 2024, p. 36), can be included 
to guide the renovation of heritage-listed dwellings 
in future studies. Finally, an analysis of urban inter-
ventions could be conducted, e.g. adding green infra-
structure to reduce outside air temperature and solar 
radiation on the building envelope and subsequently 
achieve a possible reduction in indoor overheating.

7  Conclusions
This article investigates the climate change adaptation of 
Shanghai heritage-listed apartment-style lilong houses 
based on five types of CCAMs to reduce indoor over-
heating under RCP8.5 in 2050. The conclusions are:

• For the base case dwellings, the number of overheat-
ing hours and degree hours is larger for 2050 com-
pared to the TMY (e.g., up to + 32% for the average 

number of overheating hours). Moreover, the num-
ber of overheating hours and degree hours is larger 
for the 2nd floor than the 1st floor (e.g. up to + 7% for 
the average number of overheating hours).

• Night ventilation is important for indoor overheating 
mitigation, whether provided through windows or 
wall openings.

• The effect of orientation on indoor overheating can 
be limited using exterior solar shading.

• Increasing roof insulation and applying the vegetated 
roof only result in a small or even no reduction in 
indoor overheating.

• The average number of overheating hours and degree 
hours is increased by the increased wall insulation 
while decreased by the increased roof insulation.

• Natural ventilation through the wall openings results 
in a relatively small reduction in the average number 
of overheating hours and degree hours compared to 
natural ventilation through the windows.

The most effective individual climate change adapta-
tion measure to reduce indoor overheating for this par-
ticular case is natural ventilation through the windows 
for a whole day in the wall and roof preservation scenar-
ios (−33% for TMY and −32% for 2050 for the average 
number of overheating hours), and increased roof albedo 
in the window preservation scenario (−26% for TMY and 
−21% for 2050 for the average number of overheating 
hours).

The combined CCAMs are, as expected, more effec-
tive than the individual CCAMs in all of the three pres-
ervation scenarios, with a reduction of up to 69% in the 
average number of overheating hours in wall preserva-
tion scenario, 31% in window preservation scenario, and 
53% in roof preservation scenario. The reduction in the 
average number of degree hours is up to 85% in the wall 
preservation scenario, 52% in the window preservation 
scenario, and 73% in the roof preservation scenario.

This research confirms that the renovation of herit-
age-listed dwellings can significantly contribute to cli-
mate change adaptation and the decarbonisation of the 
built environment. Even if all CCAMs combined can be 
applied, which would be the most efficient, this research 
proves that a tailored approach per building and preser-
vation constraints can lead to greater contributions by 
heritage-listed dwellings.
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