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ABSTRACT
Big Data systems allow collecting massive datasets to feed the data

hungry deep learning. Labelling these ever-bigger datasets is in-

creasingly challenging and label errors affect even highly curated

sets. This makes robustness to label noise a critical property for

weakly-supervised classifiers. The related works on resilient deep

networks tend to focus on a limited set of synthetic noise patterns,

and with disparate views on their impacts, e.g., robustness against

symmetric v.s. asymmetric noise patterns. In this paper, we first

extend the theoretical analysis of test accuracy for any given noise

patterns. Based on the insights, we design TrustNet that first learns

the pattern of noise corruption, being it both symmetric or asym-

metric, from a small set of trusted data. Then, TrustNet is trained

via a robust loss function, which weights the given labels against

the inferred labels from the learned noise pattern. The weight is

adjusted based on model uncertainty across training epochs. We

evaluate TrustNet on synthetic label noise for CIFAR-10, CIFAR-

100 and big real-world data with label noise, i.e., Clothing1M. We

compare against state-of-the-art methods demonstrating the strong

robustness of TrustNet under a diverse set of noise patterns.

CCS CONCEPTS
•Computingmethodologies→Machine learning; •Machine
learning approaches→ Neural networks.

KEYWORDS
deep neural networks, robust loss function, noisy labels in big data,

noise transition matrix, noise estimation
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1 INTRODUCTION
Nowadays big data systems allow collecting and processing im-

mense datasets which shifts the bottleneck for deep learning from
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computing resources to providing high quality labels [26]. Big data

systems allowed for a surge of massive self-generated data. How-

ever, it is shown that big data training sets collected from the wild

can contain corrupted labels as high as 40% [38]. Even popular and

curated learning datasets include varying degrees of wrong labels

with bigger sets tending to have higher noise ratios, e.g., 10.12% for

the QuickDraw dataset with 50M samples and 5.83% for the Ima-

geNet dataset with 50K samples [23, 24]. The high learning capacity

of deep neural networks can memorize the pattern of correct data

and, unfortunately, dirty data as well [1]. As a result, when training

on data with non-negligible dirty labels, the learning accuracy of

deep neural networks can significantly drop [42].

While the prior art deems it imperative to derive robust neural

networks that are resilient to label noise, there is a disparity in

which noise patterns to consider and evaluate. The majority of

deep networks robust against dirty labels focuses on synthetic label

noise, which can be symmetric or asymmetric. The former case [2]

assumes noise labels can be corrupted into any other classes with

equal probability. The later case [36] assumes only a particular set

of classes are swapped, e.g., truck images are often mislabeled as

automobile class in CIFAR-10. Patterns of noisy labels observed

from real-life big data sets, e.g., Clothing1M [38], exhibit not only

high percentages of label noise but also more complicated pat-

terns mixing symmetric and asymmetric noises. Moreover, there

is disagreement among related work on which noise patterns are

more detrimental and difficult to defend against for regular net-

works [21, 34].

Noise patterns are commonly captured in transition matrices [2],

which describe the probability of how a true label is corrupted

into another fake and observable label. A large body of prior art

estimates such a label transition matrix without knowing the true

labels and incorporates such information into the learning pro-

cess [25]. Accurate estimation of the transition matrix can improve

the robustness of neural networks, but it is extremely complicated

when lacking the information on true labels and encountering so-

phisticated noise patterns [39, 40].

Joint training on clean and adversarial examples with known

ground truth is shown effective [15, 20] to enhance the robustness

of deepmodels against noisy and poisonous labels. Nonetheless, it is

costly to obtain label ground truth. To take advantage of adversarial

examples and avoid its high overhead, we advocate to use only a

fraction of trusted data that contain not only given labels but also

the expert-validated true labels for the same. Moreover, we opt to

use such small set to mainly supervise the training of transition

matrix, instead of supervising the classifier directly as done in most

adversarial learning.

In this paper, we first develop a thorough understanding of the

noise patterns, ranging from symmetric and asymmetric. We extend
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the analysis from [2] and derive the generalized analysis for classifi-

cation test accuracy under any given noise pattern. Our theoretical

analysis compares real-world noise patterns against synthetic, sym-

metric, and simple asymmetric, noise. Our findings on a diverse

set of noise patterns lead us to focus on challenging cases where

existing robust networks [6, 25, 37] may fall short of defending

against.

The second contribution of this paper is to introduce a new

robust learning framework TrustNet. Specifically, we adopt the

idea in LABELNET [5] to estimate the noise transition matrix via

training on a small set of trusted data, i.e., 10% of the training

data and provide estimated labels – additional label information.

TrustNet extends LABELNET by weighting the loss of the given

labels and inferred labels to enhance the model performance. The

specific weights are dynamically adjusted every epoch, based on

the model confidence.

Thirdly, we evaluate TrustNet onmultiple big data vision sets.We

use the curated CIFAR-10 and CIFAR-100 sets with labels corrupted

by synthetically generated noise transition patterns. TrustNet is

able to achieve higher accuracy than SCL [36], D2L [37], Boost-

rap [27], Forward [25], and Co-teaching+ [41] in all most challeng-

ing scenarios. We also demonstrate the effectiveness of TrustNet

on a big data vision set collected in the wild, i.e., Clothing1M, again

achieving higher accuracy than state-of-the-art baselines.

2 RELATEDWORK
The problem of noisy labeled data has been addressed in several

recent studies. We first summarize the impact of noise patterns,

followed by the defense strategies that specifically leverage noise

patterns.

2.1 Noisy Labels in Big Data
The existence of wrong labels in Big Data sets is inevitable [24].

Several studies indicate the presence of noisy labels in both training

sets [3, 4, 13] and testing sets [23, 24, 29]. The amount of errors, i.e.

noise level, varies according to the label collection method, the an-

notators expertise, and, most relevantly, the size of the dataset [33].

For instance, [19] and [13, 30] study the noisy labels in the WebVi-

sion and ImageNet datasets, respectively, two of popular big vision

datasets with over 24.M and 14M images. However, this phenom-

ena goes beyond image labelling. Recent studies [23, 24] find label

errors in many even highly popular learning datasets from diverse

domains.

2.2 Impact of Noise Patterns
Understanding the effect of label noise on the performance of the

learning models is crucial to make them robust. The impact of

label noise in deep neural networks is first characterized [2] by

the theoretical testing accuracy over a limited set of noise patterns.

We generalize the theoretical test accuracy proposed by [2] for

different noise patterns by using a generic transition matrix. [34]

suggests an undirected graphical model for modeling label noise in

deep neural networks, indicating the symmetric noise to be more

challenging than asymmetric. Multiple untrusted data sources are

studied by [16], considering label noise as one of the attributes of

mistrust. However, it remains unclear how various kinds of noise

patterns impact learning.

2.3 Noise Resilient Networks
2.3.1 Symmetric Noise. The following studies tackle the problem
of symmetric label noise, meaning that corrupted labels can be any

of the remaining classes with equal probability. One approach is to

train the network based on noise resilient loss functions. D2L [21]

monitors the changes in Local Intrinsic Dimension (LID) and incor-

porates LID into their loss function for the symmetric label noise.

[12] introduces a loss correction technique and estimates a label

corruption matrix for symmetric and asymmetric noise. Leveraging

two different neural networks is another method to overcome label

noise. Co-teaching [10] and Co-teaching+ [41] trains two neural

networks while crossing the samples with the smallest loss between

the networks for both noise patterns. [14] combats uniform label

flipping via a curriculum provided by the MentorNet for the Stu-

dentNet. However, these works do not explicitly model the noise

pattern in their resilient models. Although LABELNET [5] learns

the noise pattern by training a DNN with ground truth and noisy

labels, it requires the ground truth of all the samples. We aim to

solve this issue by reducing the dependency on the ground truth

via TrustNet.

2.3.2 Asymmetric Noise. Another stream of related work considers

both symmetric and asymmetric noise. One key idea is to differenti-

ate clean and noisy samples by exploring their dissimilarity. [11, 18]

introduce class prototypes for each class and compare the samples

with the prototypes to detect noisy and clean samples. Decou-

pling [22] uses two neural networks and updates the networks

when a disagreement happens between the networks. Estimation of

the noise transition matrix is another line of research to overcome

label noise, introduced in Masking [9] and Forward [25] to correct

the labels. However, these studies fail to consider the information

in the noisy labels to estimate the matrix. Building a robust loss

function against label noise has been studied in the following works,

although the dynamics of the learning model seem to be neglected.

SCL [36] and [43] provide robust loss function by adding regular-

ization term. Bootstrapping [27] combines perceptual consistency

with the prediction objective by using a reconstruction loss. Meta-

Weight-Net [31] uses multi-layer perceptron to re-weight samples

during learning process in the loss function. With the same perspec-

tive, [28] re-weights samples based on their similarity to a clean

validation set. The studies [7, 32] changes the architecture of the

neural network to tackle the problem. In this work, we study both

symmetric and various kinds of asymmetric label noise. We lever-

age the information of the trusted data, containing both noisy labels

and ground truth, to accurately estimate the noise transition matrix.

Furthermore, we benefit from a dynamic update in our proposed

loss function to tackle the label noise problem.

3 UNDERSTANDING DNNS TRAINEDWITH
NOISY LABELS

In this section, we present theoretical analysis on the test accuracy

of deep neural networks assumed to have high learning capacity.

Test accuracy is a common metric defined as the probability that

the predicted label is equal to the given label. We extend prior
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(a) Truncated normal, µ = 1, σ = 0.5
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(b) Bimodal, µ1 = 2, σ1 = 0.5, µ2 = 7, σ2 = 5
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(c) Partial targeted
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(d) Truncated normal: µ = 1, different σ
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(e) Bimodal: µ1 = 2, µ2 = 7, different σ1, σ2
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Figure 1: Three study cases on CIFAR-10 with 10 classes. First row compares the theoretical values (lines) against empirical
test accuracy results (points) for 0 ≤ ε ≤ 1. Second row shows analytical results: the impact of noise patterns with different
parameters on the test accuracy across noise ratios.

art results [2] by deriving test accuracy for generic label noise

distributions. We apply our formulation on three exemplary study

cases and verify the theoretical values against experimental results.

Finally, we compare test accuracy curves for different noise patterns

providing insights on their difficulty for regular networks.

3.1 Preliminaries
Consider the classification problem having dataset D =

{(x1,y1), (x2,y2), ..., (xN ,yN )} where xk denotes the kth observed

sample, and yk ∈ C := {0, ..., c − 1} the corresponding given class

label over c classes affected by label noise. Let F (·,θ ) denote a

neural network parameterized by θ , and yF denote the predicted

label of x given by the network yF = F (x ,θ ). The label corruption
process is characterised by a transition matrix Ti j = P(y = j |ŷ = i)
where ŷ is the true label. Synthetic noise patterns are expressed as

a label corruption probability ε plus a noise label distribution. For
example, symmetric noise is defined by ε describing the corruption

probability, i.e.Tii = 1 − ε,∀i ∈ C , plus a uniform label distribution

across the other labels, i.e. Ti j =
ε

c−1 ,∀i , j ∈ C .

3.2 Generalization of Test Accuracy
To generalize the previous test accuracy [2], we first consider the

case where all classes are affected by the same noise ratio. We

then further extend to the case where only a subset of classes is

affected by noise. To derive the following Lemmas we assume that

F is a perfect Deep Neural Network (DNN) having sufficient high

capacity to learn the given pattern with high accuracy. This is the

same assumption used by related work, i.e. [2, 42].

All class noise: All classes are affected by the same noise ratio

ε , i.e., meaning only 1 − ε percentage of given labels are the true

labels.

Lemma 1. For noise with fixed noise ratio ε and any given label
distribution with probability function P(y = j),∀j , i , where i ∈ C is
the true label, the test accuracy is

P(yF = y) = (1 − ε)2 + ε2
C∑
j,i

P2(y = j) (1)

The proof is available in the appendix.

Partial class noise: in this pattern only a subset S of class labels
are affected by a noise ratio, whereas the setU = C \ S is unaffected
by any label noise.

Lemma 2. For partial class noise with equal class label probability,
where S is the set affected by noise with ratio ε and U is the set of
unaffected labels, for any true label i ∈ C and any given label distri-
bution with probability function P(y = j),∀j , i , the test accuracy
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is

P(yF = y) =
|U |

|C |
+

|S |

|C |
[(1 − ε)2 + ε2

S∑
j,i

P2(y = j)] (2)

The proof is available in the appendix.

The goal of Lemma 1 and Lemma 2 is to generalize the test accu-

racy proposed by [2] to noises characterized by a generic transition

matrix Ti j .

3.3 Validation of Theoretical Analysis
We validate our extension of test accuracy on three various noise

patterns for CIFAR-10 under different noise ratios and comparing

the theoretical estimation with empirical accuracy results.

As the first new noise pattern, we consider noisy class labels

following a truncated normal distributionNT (µ,σ ,a,b). This noise
pattern is motivated by the targeted adversarial attacks [8]. We

scale NT (µ,σ ,a,b) by the number of classes and center it around

a target class c̃ by setting µ = c̃ and use σ to control how spread

out the noise is. a and b simply define the class label boundaries, i.e.

a = 0 and b = c − 1. To compute the test accuracy, we estimate the

empirical distribution at the different classes and apply Eq. 1. The

second noise pattern extends our previous case. This distribution,

referred in short as bimodal hereon, combines two truncated normal

distributions. It has two peaks in µ1 and µ2 with two different shapes
controlled by σ1 and σ2. The peaks are centered on two different

target classes µ1 = c̃1 and µ2 = c̃2. The third noise pattern considers
partial targeted noise where only a subset of classes, [2, 3, 4, 5, 9]

in our example, are affected by targeted noise, i.e. swapped with a

specific other class. Here we rely on Eq. 2 to estimate test accuracy.

This noise pattern has been studied in [36].

Figure. 1 summarizes the results. The first row compares the the-

oretical curves against the empirical results obtained by corrupting

CIFAR-10 dataset with different noise ratios from clean to fully cor-

rupted data: 0 ≤ ε ≤ 1. The highest deviation between theoretical

(lines) and empirical (points) results occurs for truncated normal

noise around ε = 1.0. Here the theoretical accuracy is 13.46% points

worse than the measured accuracy. For the other two, the deviation

is at most 7.69% and 6.73% (without considering ε = 0.0) for bimodal

and partial targeted noise, respectively. Overall, the theoretical and

empirical values match well across the whole range of noise ratios.

3.4 Impact of Different Noise Patterns
We conclude by using our theoretical analysis to compare the im-

pact on test accuracy of different noise patterns. First, we consider

different parameters for truncated normal and bimodal noises and

finish with comparing all noise patterns from here, in [2] and the

real-world noise pattern from [38].

Figure. 1, the second row shows all results. We start with trun-

cated normal noise with a fixed target class and different σ . Higher
values of σ result in a wider spread of label noise across adjacent

classes as shown in Figure. 1d. Under lower noise ratios, e.g., ε < 0.5,

the impact of varying σ is negligible, as shown by the overlapping

curves. After that, we see that the most challenging cases are with

high values of σ due to the wider spread of corrupted labels de-

viating from their true classes.Similarly to the previous analysis,

for bimodal noise, we fix the target classes, i.e., µ1 and µ2, while
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Figure 2: TrustNet architecture.

varying the variances around the two peaks, i.e., σ1 and σ2. Over-
all the results are similar to truncated normal noise, but we can

observe that the sensitivity to sigma is lower (see Figure. 1e) even

if on average test accuracy of truncated normal is higher than bi-

modal noise. For instance, in case of ε = 1.0 the difference between

σ = 0.5 and σ = 1 is 16.26% for truncated normal, but only 11.11%

for bimodal. Hence, bimodal tends to be more challenging since

lines for different σ are all more condensed around low values of

accuracy with respect to truncated normal noise.

To conclude, we compare all synthetic symmetric and asymmet-

ric noise patterns considered against the real-world noise pattern

observed on the Clothing1M dataset [38] (see Figure. 1f). The mea-

sured noise ratio of this dataset is ε = 0.41. To estimate the test

accuracy, we scale the noise pattern to different ε by redistributing

the noise, such as to maintain all relative ratios between noise tran-

sition matrix elements per class. This imposes a lower limit on the

noise ratio of ε = 0.36 to be able to keep all elements within the

range [0, 1]. As intuition can suggest, partial targeted noise has the

least impact since it only affects a fraction of classes. More interest-

ingly, we see that the decrease in accuracy for all asymmetric noise

patterns is not monotonic. When noise ratios are high, another

class becomes dominant, and thus it is easier to counter the noise

pattern. On the contrary, all curves tend to overlap at smaller noise

ratios, i.e., noise patterns play a weaker role compared to at higher

noise ratios. Finally, the real-world noise pattern almost overlaps

with bimodal. This might be due that errors in Clothing1M often

are between two classes sharing visual patterns [38].

4 METHODOLOGY
In this section, we present our proposed robust learning framework,

TrustNet, featuring on a light weight estimation of noise patterns

and a robust loss function.

4.1 TrustNet Architecture
Consider extending the classification problem from Pre-

liminaries section with a set of trusted data, T =

{(x1,y1, ŷ1), (x2,y2, ŷ1), ..., (xN ,yN , ŷN )}. T is validated by
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experts and has for each sample x both given y and true ŷ class

labels. Hence, our classification problem comprises two types

of datasets: T and D, where D has only the given class label

y. The given class labels y in both data sets are affected by the

same noise pattern and noise ratio. Further, we assume that T is

small compared to D, i.e. |T | << |D|, due to the cost of experts’

advise. Corresponding to the two datasets, TrustNet consists of

two training routines highlighted by the top and bottom halves of

Figure. 2.

First (top half), we adopt the architecture of LABELNET [5] and

leverage the trusted dataset to learn the underlying noise transition

matrix. TrustNet uses LABELNET to learn the noise transition ma-

trix and estimate the true labels for the untrusted data. LABELNET

is a deep neural network jointly trained on the given and true labels,

however, it requires the ground truth of all the data. Since acquiring

the ground truth of the data in real-world scenarios is extremely

expensive and time consuming, we reduce this cost by modifying

LABELNET via introducing a weighted loss function, which we

describe in § 4.3.

Second (bottom half), the trained LABELNET is used to de-

rive a dataset D ′
from D by enriching it with estimated class

labels ỹ inferred by LABELNET (blue path). Hence D ′ =

{(x1,y1, ỹ1), (x2,y2, ỹ2), ..., (xN ,yN , ỹN )}. Then, we train a deep

neural network, F (·,θ ), onD ′
using the proposed robust loss func-

tion from Noise Robust Loss Function section. We note that the

trusted data is used only to train LABELNET, not F (·,θ ).
As we mentioned in § 3, the proposed Lemma 1 and Lemma 2

show an extension of the DNN memorization effect on test accu-

racy [2, 42] to the noise patterns used to evaluate TrustNet. TrustNet

intends to reduce the memorization effect for noise with a two-stage

approach. The first stage corrects the noisy labels and the second

stage uses a weighted loss function on the given and the corrected

labels.

4.2 Estimating Noise Transition Matrix
Here we briefly describe LABELNET which is a framework that

consists of two neural networks: Amateur and Expert. Amateur

aims to classify images guided by the feedback from Expert. Expert

acts as a supervisor who corrects the predictions of Amateur based

on the ground truth. Essentially, Expert learns how to transform

predicted labels to true labels, i.e., a reverse noise transition matrix.

During training, first Amateur provides for a sample xk a pre-

diction of the class probabilities yA
k to Expert. Expert uses yA

k
concatenated with the given class label yk to learn to predict the

ground truth class label ŷk . In turn, the predicted label from Expert

yEk is provided as feedback to train Amateur. In summary, train-

ing tries to minimize recursively the following two loss functions

for Amateur, described by F A (·,θA ) and Expert, described by

F E (·,θ E ):

min

θA
L(F A (xk ,θ

A ),yEk ) (3)

min

θ E
L(F E (< yA

k ,yk >,θ
E ), ŷk ) (4)

where < ·, · > represents vector concatenation.

The trained LABELNET can estimate the true label from an

image xk :

ỹk = F E (< F A (xk ,θ
A ),yk >,θ

E ). (5)

Specifically, we use the trained LABELNET to enrich and transform

D inD ′
by incorporating for each image xk the inferred class label

ỹk . Subsequently, we use D
′
to train F (·,θ ) via the loss function

robust to noise from Noise Robust Loss Function section.

4.3 Noise Robust Loss Function
The given labels are corrupted by noise. Directly training on the

given labels results in highly degraded performance as the neural

network is not able to easily discern between clean and corrupted

labels. To make the learning more robust to noise, TrustNet pro-

poses to modify the loss function to leverage both given labels y
and inferred labels ỹ from LABELNET to train F (·,θ ).

The predicted label of F (·,θ ) is compared, e.g., via cross-entropy

loss, against both the given label and inferred label. The challenge

is how to combine these two loss values. Ideally, for samples for

which LABELNET and F (·,θ ) are highly accurate, the inferred

label can be trusted more. On the contrary, for samples for which

LABELNET and F (·,θ ) have low accuracy, the given labels can

be trusted more. Specifically, TrustNet uses a weighted average

between the loss of the predicted label from F (xk ,θ ) against both
the given label yk and the LABELNET’s inferred label ỹk with per

sample weights αk and (1−αk ) for all samples xk inD ′
. Moreover,

TrustNet dynamically adjusts αk after each epoch based on the

observed learning performance of F (xk ,θ ).
In detail we use cross-entropy H as standard loss measure to

train our deep neural network F (xk ,θ ):

H(F (xk ,θ ),yk ) = −

c−1∑
i=0

1(yk , c) logF (xk ,θ ) (6)

where 1(yk , c) is an indicator function equal to 1 if yk = c and 0

otherwise. For each data point xk in D ′
, we assign weights of αk

and (1 − αk ) to the cross-entropy of the given yk and inferred ỹk
labels, respectively. We let αk ∈ [0, 1]. Hence, we write the robust

loss function Lrobust as following:

Lrobust (F (xk ,θ ),yk , ỹk ) = αk H(F (xk ,θ ),yk )

+ (1 − αk ) H(F (xk ,θ ), ỹk ).
(7)

When the weight factor is low, we put more weight on the cross-

entropy of inferred labels, and vice versa. In the following, we

explain how to dynamically set αk per epoch.

4.3.1 Dynamic αk . Here we adjust αk based on the uncertainty of

TrustNet and LABELNET. When the learning capacities of LABEL-

NET and TrustNet are higher (lower values of loss function), we

have more confidence on the inferred labels and put more weight

on the second term of Eq. 7, i.e., smaller αk values. As a rule of

thumb, at the beginning αk values are high since TrustNet experi-

ences higher losses at the start of training. Then αk values gradually

decrease with the growing capacity of TrustNet.

Let αk,e be the weight of the kth image at epoch e . We initialize

αk,0 based on the entropy value S from inferred class probabilities
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Algorithm 1: TrustNet training
Input :Trusted dataset T , Untrusted dataset D; Epochs

ELABELNET ,ET rustN et .

Untrusted dataset D made of: Observed samples x ,
Given labels y
Trusted dataset T made of: Observed samples x ,
Given labels y, True labels ŷ

Output :Trained TrustNet F (x ,θ )
1 Initialize F A

and F E
with random θA

and θ E

2 for e = 0, 1, ..., ELABELNET on T do
3 Train F E

and F A #LABELNET training

4 end
5 D ′ = D extended with ỹ = F E (< F A (x ,θA ),y >,θ E )

#LABELNET inference
6 Initialize F with random θ #TrustNet training

7 for e = 0, 1, ..., ET rustN et on D ′ do
8 if e == 0 then
9 αk,0 = S(ỹk )

10 else

11 αk,e = αk,e−1(1 +
S (yF

k (e))−S (y
F

k (e−1))

S (yF

k (e−1))
)

12 end
13 Train F (x ,θe ) with

αk,e H(F (xk ,θe ),yk ) + (1 − αk,e ) H(F (xk ,θe ), ỹk )
for each sample k

14 end

ỹk of LABELNET:

S(ỹk ) = −

c−1∑
i=0

ỹik loд ỹik

where c is the number of classes and ỹik is the ith class probability

of ỹk . We use LABELNET since we do not have yet any predictions

from TrustNet’s own neural network.

For subsequent epochs, e > 0, we switch to TrustNet as source

of entropy values. We gradually adjust αk,e based on the relative

difference between current and previous epoch values:

αk,e = αk,e−1(1 +
S(yF

k (e)) − S(yF
k (e − 1))

S(yF
k (e − 1))

) ∀e > 0, (8)

where yF
k (e) are the class probabilities predicted by F (·,θ ) for the

kth image at epoch e . When the entropy values decrease, we gain

more confidence in TrustNet and the weights on the inferred labels

(1-(1 − α)) increase.
We summarize the training procedure of TrustNet in Algorithm 1.

Training LABELNET consists of training two neural networks: Ex-

pert, F E (·,θ E ), and Amateur, F A (·,θA ), using the trusted data

T for ELABELNET epochs (line 1-4). Then we need to compute

the inferred labels for all data points in D to produce D ′
(line 5).

Finally, we train TrustNet for ET rustN et epochs (line 6-14). The

initialization of αk is via the entropy of the inferred labels (line 9)

and then updated by the entropy of predicted labels (line 11). The

robust loss function is computed accordingly (line 13).

5 EVALUATION
In this section, we empirically compare TrustNet against the state

of the art noise, under both synthetic and real-world noises. We

aim to show the effectiveness of TrustNet via testing accuracy on

diverse and challenging noise patterns.

5.1 Experiments setup
We consider three datasets: CIFAR-10 [17], CIFAR-100 [17] and

Clothing1M [38]. CIFAR-10 and CIFAR-100 both have 60K images

of 32×32-pixels organized in 10 and 100 classes, respectively. These

two datasets have no or minimal label noise. We split the datasets

into 50K training and 10K testing sets and inject into the training set

the label noises from Understanding DNNs. section. We assume that

10% of the training set forms the trusted data with access to the clean

labels used as ground truth.We use this trusted set to learn the noise

transition via LABELNET. In turn, LABELNET infers the estimated

labels for the remaining training data. The whole training set is

then used to train TrustNet. Clothing1M contains 1 million images

scrapped from the Internet which we resize and crop to 224 × 224

pixels. Images are classified into 14 class labels. These labels are

affected by real-world noise stemming from the automatic labelling.

Out of the 1 million images, a subset of trusted expert-validated

images contains the ground truth labels. This subset consists of

47K and 10K images for training and testing, respectively. As for

CIFAR-10 and CIFAR-100, we use the trusted set to train LABELNET

and infer the estimated labels for the rest of the dataset to train

TrustNet. Note that for all three datasets, only training set is subject

to label noise, not testing set.

The architecture of Expert consists of a 4-layer feed-forward

neural network with Leaky ReLU activation functions in the hidden

layers and sigmoid in the last layer. This Expert architecture is used

across all datasets. TrustNet and Amateur use the same architecture,

which depends on the dataset. For CIFAR-10 TrustNet and Amateur

consist in an 8-layer CNN with 6 convolutional layers followed by

2 fully connected layers with ReLU activation functions as in [35].

For CIFAR-100 both rely on the ResNet44 architecture. Finally,

Clothing1M uses pretrained ResNet101 with ImageNet. TrustNet

(LABELNET) is trained for 120 (150) and 200 (180) for CIFAR-10 and

CIFAR-100, respectively, using SGD optimizer with batch size 128,

momentum 0.9, weight decay 10
−4
, and learning rate 0.01. Finally,

Clothing1M uses 50 (35) epochs and batch size 32, momentum 0.9,

weight decay 5 × 10
−3

and learning rate 2 × 10
−3

divided by 10

every 5 epochs.

Our target evaluation metric is the accuracy achieved on the

clean testing set, i.e. not affected by noise. We compare Trust-

Net against six noise resilient networks from the state of the art:

SCL [36], D2L [37], Forward [25], Bootstrap [27], Co-teaching+ [41],

and Co-teaching [10]. We do not compare TrustNet to LABELNET

because primarily LABELNET requires labels in the inference pro-

cess and training.Moreover, LABELNET needs accessing the ground

truth for the whole data samples. All training uses Keras v2.2.4 and

Tensorflow v1.13. We use 10% of the dataset as the trusted samples

for the pre-training of baselines to have a fair comparison.
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Figure 3: Three study cases on CIFAR-10 with 10 classes that show the transition matrices for noise ratio ε = 0.5.

5.2 Synthetic Noise Patterns
For CIFAR-10 and CIFAR-100, we inject synthetic noise. We focus

on asymmetric noise patterns following a truncated normal and

bimodal distribution, and symmetric noise, as discussed in Under-

standing DNNs. section. We inject noises with average rates ε = 0.4,

0.5 and 0.6. For truncated normal the target classes and variances

are class 1 with σ = 0.5 or σ = 5 and 10 with σ = 1 or σ = 10 for

CIFAR-10 and CIFAR-100, respectively. For bimodal we use µ1 = 2,

σ1 = 1 plus µ2 = 7, σ2 = 3 and µ1 = 20, σ1 = 10 plus µ2 = 70,

σ2 = 5 for CIFAR-10 and CIFAR-100, respectively. We illustrate the

noise transition matrix of these noise patterns in Figure 3.

5.2.1 CIFAR-10. We summarize the results of CIFAR-10 in Table 1.

We report the average and standard deviation across three runs.

Overall the results are stable across different runs as seen from the

low values of standard deviation. For readability reasons, we skip

the results for 50% noise in the table. These results follow the trend

between 40% and 60% noise. An extended table is shown in the

appendix.

TrustNet achieves the highest accuracy for bimodal noises, which

is one of the most difficult noise patterns based on Understanding

DNNs. section. Here the accuracy of TrustNet is consistently the

best beating the second best method by increasing 2.4%, 21.1%,

and 27.2% for 40%, 50%, and 60% noise ratios, respectively. At the

same time, TrustNet is the second best method for symmetric and

truncated normal asymmetric noise. Here the best method is often

SCL, which also leverages a modified loss function to enhance

the per class accuracy using symmetric cross-entropy. This design

targets direct symmetric noise where SCL outperforms TrustNet.

Considering the asymmetric truncated normal noise, the difference

is smaller and decreasing with increasing noise ratio. At 60% noise

SCL is only marginally better by, on average, 2.9%. Finally, test

accuracy variations are not noticeable with increasing σ values. All

other baselines perform worse.

5.2.2 CIFAR-100. Table 2 summarizes the CIFAR-100 results over

three runs. CIFAR-100 is more challenging than CIFAR-10 because

it increases tenfold the number of classes while keeping the same

amount of training data. This is clearly reflected in the accuracy

results across all methods, but TrustNet overall seems to be more

resilient. Here, TrustNet achieves the highest accuracy for both

asymmetric noise patterns under all considered noise ratios. On

average, the accuracy of TrustNet is higher than SCL, the second

best solution, by 2%. The improvement is higher for higher noise

ratios and lower variation, i.e., σ = 1. SCL outperforms TrustNet on

symmetric noise of low and middle intensity, i.e., ε = [0.4, 0.5], but

the difference diminishes with increasing noise, and at 60% TrustNet

performs better. Different from CIFAR-10, test accuracy variations

become noticeable for truncated normal noise with increasing σ
values producing a positive effect across most baselines. All other

baselines perform worse.

5.3 Real-world Noisy Data: Clothing1M
We use the noise pattern observed in real world data from the Cloth-

ing1M dataset to demonstrate the effectiveness and importance of

estimating the noise transition matrix in TrustNet. Table 3 summa-

rizes the results on the testing accuracy for TrustNet and the six

baselines. The measured average noise ratio across all classes is 41%.

Here, TrustNet achieves the highest accuracy, followed by SCL and

Forward. Forward is another approach trying to estimate the noise

transition matrix. The better accuracy of TrustNet is attributed to

the additional label estimation from LABELNET learned via the

trusted data and dynamically weighting the loss functions from

given and inferred labels. The promising results here confirm that

the novel learning algorithm of TrustNet can tackle challenging

label noise patterns appearing in real-world datasets.

6 DISCUSSION
In this section, we discuss testing accuracy on clean and noisy sam-

ples. The analysis derived in Understanding DNNs. section consider

testing on labels affected by the same noise as training data. This is

due to the fact that the ground truth of labels is usually assumed

unknown and not even available in the typical learning scenarios.

However, the accuracy measured from the noisy testing data pro-

vides no information about how effective resilient networks defend

the training process against the noisy data. Hence, related work on

noisy label learning tests on clean samples, which show different

trends as hinted in the evaluation section. Figure. 4 compares the

two approaches across different noise patterns empirically. In gen-

eral, in the case of clean test labels, the testing accuracy decreases

with increasing noise ratios almost linearly. As for noisy labels,

testing accuracy shows a clear quadratic trend, first decreasing

before increasing again. Specifically, the lowest accuracy happens
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Table 1: Accuracy on clean testing set for CIFAR-10 under 40% and 60% noise and patterns: i) symmetric, ii) bimodal with µ1 = 2,
σ1 = 1, µ2 = 7, σ2 = 3 and iii) truncated normal with µ = 1, σ = [0.5, 5]. Best results in bold.

CIFAR-10

Methods

Symmetric Bimodal Asymmetric Truncated Normal Asymmetric

ε = 0.4 ε = 0.6 ε = 0.4 ε = 0.6
ε = 0.4 ε = 0.6

σ = 0.5 σ = 5 σ = 0.5 σ = 5

TrustNet 77.03 ± 0.32 61.22 ± 0.66 72.67 ± 0.3372.67 ± 0.3372.67 ± 0.33 42.18 ± 0.6142.18 ± 0.6142.18 ± 0.61 74.21 ± 0.69 73.88 ± 0.78 66.48 ± 0.61 67.23 ± 0.57

SCL 81.50 ± 0.2281.50 ± 0.2281.50 ± 0.22 73.13 ± 0.1273.13 ± 0.1273.13 ± 0.12 69.07 ± 1.17 15.00 ± 0.67 80.93 ± 0.5080.93 ± 0.5080.93 ± 0.50 80.90 ± 0.1480.90 ± 0.1480.90 ± 0.14 68.67 ± 0.9668.67 ± 0.9668.67 ± 0.96 70.90 ± 0.6770.90 ± 0.6770.90 ± 0.67

D2L 75.87 ± 0.33 60.54 ± 0.44 70.59. ± 0.11 34.67 ± 0.36 70.01 ± 0.21 71.22 ± 0.57 59.62 ± 0.13 62.35 ± 0.43

Forward 68.40 ± 0.36 51.27 ± 1.11 61.03 ± 0.61 33.27 ± 0.53 67.83 ± 0.86 68.63 ± 0.65 50.90 ± 0.99 51.53 ± 0.74

Bootstrap 71.03 ± 0.85 56.47 ± 1.18 61.10 ± 0.54 31.17 ± 0.59 70.80 ± 0.78 71.07 ± 0.78 54.87 ± 0.50 55.80 ± 1.23

Co-teaching+ 72.44 ± 0.37 60.08 ± 0.48 55.33 ± 0.19 38.37 ± 0.77 57.02 ± 0.45 59.81 ± 0.72 41.11 ± 0.36 43.16 ± 0.29

Co-teaching 72.04 ± 0.61 58.78 ± 0.32 53.89 ± 0.25 37.51 ± 0.18 55.41 ± 0.19 58.31 ± 0.41 40.06 ± 0.69 41.95 ± 0.61

Table 2: Accuracy on clean testing set for CIFAR-100 under 40% and 60% noise and patterns: i) symmetric, ii) bimodal with
µ1 = 20, σ1 = 10, µ2 = 70, σ2 = 5, and iii) truncated normal with µ = 10, σ = [1, 10]. Best results in bold.

CIFAR-100

Methods

Symmetric Bimodal Asymmetric Truncated Normal Asymmetric

ε = 0.4 ε = 0.6 ε = 0.4 ε = 0.6
ε = 0.4 ε = 0.6

σ = 1 σ = 10 σ = 1 σ = 10

TrustNet 41.23 ± 0.43 29.11 ± 0.1229.11 ± 0.1229.11 ± 0.12 45.01 ± 0.1445.01 ± 0.1445.01 ± 0.14 32.32 ± 0.3032.32 ± 0.3032.32 ± 0.30 37.66 ± 0.3637.66 ± 0.3637.66 ± 0.36 44.56 ± 0.4244.56 ± 0.4244.56 ± 0.42 23.96 ± 0.3823.96 ± 0.3823.96 ± 0.38 33.29 ± 0.4133.29 ± 0.4133.29 ± 0.41

SCL 42.30 ± 0.3642.30 ± 0.3642.30 ± 0.36 28.43 ± 0.69 43.57 ± 0.42 30.70 ± 0.88 37.63 ± 0.62 43.50 ± 0.45 19.20 ± 0.57 31.93 ± 0.39

D2L 41.01 ± 0.21 21.41 ± 0.12 32.47 ± 0.43 10.55 ± 0.19 10.66 ± 0.16 10.32 ± 0.21 10.11 ± 0.38 10.05 ± 0.14

Forward 36.40 ± 0.37 16.00 ± 0.80 38.80 ± 0.28 19.03 ± 0.69 34.03 ± 0.33 39.80 ± 0.33 10.27 ± 0.47 22.90 ± 0.00

Bootstrap 28.40 ± 0.16 6.70 ± 0.59 32.17 ± 0.62 10.10 ± 0.94 27.23 ± 0.71 34.17 ± 0.96 6.10 ± 0.16 12.53 ± 1.84

Co-teaching+ 39.35 ± 0.35 26.32 ± 0.54 34.64 ± 0.59 26.52 ± 0.58 34.17 ± 0.24 36.59 ± 0.32 18.24 ± 0.71 26.61 ± 0.33

Co-teaching 37.82 ± 0.22 25.44 ± 0.71 33.76 ± 0.54 26.12 ± 0.33 32.02 ± 0.56 33.85 ± 0.62 16.99 ± 0.32 25.33 ± 0.12

Table 3: Accuracy on clean testing set of real-world noisy Clothing1M.

Methods TrustNet SCL D2L Forward Bootstrap Co-teaching+ Co-teaching
Accuracy(%) 73.06 70.78 69.43 70.04 68.77 70.33 70.10

at noise ratio of 0.6 and 0.8 in the case of the truncated normal

noise example with µ = 1 and σ = 0.5 (Figure. 4a), and the bimodal

noise example with µ1 = 2,σ1 = 0.5, µ2 = 7,σ2 = 5 (Figure. 4b),

respectively. The reason is that specific class examples with erro-

neous labels become more numerous than examples with the true

class, e.g., more truck images are labelled as an automobile than

automobile images. Such an effect is missing when testing on clean

labels.

7 CONCLUSION
Motivated by the disparity of label noise patterns studied in the

prior state-of-the-art methods, we first derive the analytical under-

standing of synthetic and real-world noise, i.e., how testing accuracy

degrades with noise ratios and patterns. Challenging noise patterns

identified here lead to the proposed learning framework, TrustNet,

which noise resilient classification. TrustNet first learns a noise

transition matrix via a small set of trusted data and LABELNET.

Combining the estimated labels inferred from LABELNET, Trust-

Net computes a robust loss function from both given and inferred

labels via dynamic weights according to the learning confidence,

i.e., the entropy. The proposed method estimates the correct labels

of various datasets with different sizes ranging from small to large.

We evaluate TrustNet on CIFAR-10, CIFAR-100, and Clothing1M

using a diverse set of synthetic and real-world noise patterns. The

higher testing accuracy against state-of-the-art resilient networks

shows that TrustNet can effectively learn the noise transition and

enhance the robustness of loss function against noisy labels.
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Figure 4: Empirical testing on noisy and clean labeled data
on CIFAR-10.
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A TEST ACCURACY OF CIFAR-10 AND
CIFAR-100 UNDER 50% NOISE RATIO

We extend the results in Table 1 and Table 2 by adding the test

accuracy TrustNet and other rivals for different noise patterns

with 50% noise ratio. The results are shown in Table 4 and Table 5

for CIFAR-10 and CIFAR-100, respectively. In Table 4, TrustNet

performs better comparing to other competitors under ε = 0.5 for

bimodal noise. As we mentioned in § 5, our method outperforms
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against rivals for all the cases except symmetric noise with ε = 0.4

and ε = 0.5 for CIFAR-100.

B PROOF OF LEMMA 1
Lemma 1. For noise with fixed noise ratio ε and any given label

distribution with probability function P(y = j),∀j , i , where i ∈ C is
the true label, the test accuracy is

P(yF = y) = (1 − ε)2 + ε2
C∑
j,i

P2(y = j) (9)

Proof. We have that Tii = 1 − ε,∀i ∈ C since all classes are

affected by the same noise ratio. Moreover, the probability of se-

lecting noisy class labels is scaled by the noise ratio Ti j = ε P(y =
j), j , i ∈ C . Now:

P(yF = y) =
C∑
i
P(ŷ = i)P(yF = y |ŷ = i)

=

C∑
i
P(ŷ = i)

C∑
j
T 2

i j

=

C∑
i
P(ŷ = i)[T 2

ii +

C∑
j,i

T 2

i j ]

=

C∑
i
P(ŷ = i)[(1 − ε)2 + ε2

C∑
j,i

P2(y = j)].

(10)

Since

∑C
i P(ŷ = i) = 1, we obtain Eq. 1. ■

C PROOF OF LEMMA 2
Lemma 2. For partial class noise with equal class label probability,

where S is the set affected by noise with ratio ε and U is the set of
unaffected labels, for any true label i ∈ C and any given label distri-
bution with probability function P(y = j),∀j , i , the test accuracy
is

P(yF = y) =
|U |

|C |
+

|S |

|C |
[(1 − ε)2 + ε2

S∑
j,i

P2(y = j)] (11)

Proof. We have that for affected labels in S the same noise

transition definitions hold, i.e. Tii = 1 − ε,∀i ∈ S and Ti j = ε P(y =
j), j , i ∈ S . For unaffected labels we have that ε = 0 hence

Tii = 1,∀i ∈ U and Ti j = 0, j , i ∈ U . Moreover, P(ŷ = i) = 1

|C |
assuming all class labels are equally probable. Now:

P(yf = y) =
C∑
i
P(ŷ = i)P(yf = y |ŷ = i)

=

|U |∑
i
P(ŷ = i)P(yf = y |ŷ = i)

+

|S |∑
i′

P(ŷ = i ′)P(yf = y |ŷ = i ′)

=

U∑
i
P(ŷ = i)

U∑
j
T 2

i j +

S∑
i′

P(ŷ = i ′)
S∑
j′

T 2

i′j′

=

U∑
i
P(ŷ = i)[T 2

ii +

U∑
j,i

T 2

i j ]

+

S∑
i′

P(ŷ = i ′)[T 2

i′i′ +

S∑
j′,i′

T 2

i′j′]

=
1

|C |

U∑
i
[T 2

ii +

U∑
j,i

T 2

i j ]

+
1

|C |

S∑
i′
[T 2

i′i′ +

S∑
j′,i′

T 2

i′j′]

=
1

|C |

U∑
i
1 +

1

|C |

S∑
i′
[(1 − ε)2 + ε2

S∑
j′,i′

P2(y = j ′)]

=
|U |

|C |
+

|S |

|C |
[(1 − ε)2 + ε2

S∑
j′,i′

P2(y = j ′)]

■
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Table 4: Accuracy on clean testing set for CIFAR-10 under 40%, 50%, and 60% noise and patterns: i) symmetric, ii) bimodal with
µ1 = 2, σ1 = 1, µ2 = 7, σ2 = 3, and iii) truncated normal with µ = 1, σ = [0.5, 5]. Best results in bold.

Methods

Symmetric Bimodal Asymmetric Normal Asymmetric

ε = 0.4 ε = 0.5 ε = 0.6 ε = 0.4 ε = 0.5 ε = 0.6
ε = 0.4 ε = 0.5 ε = 0.6

σ = 0.5 σ = 5 σ = 0.5 σ = 5 σ = 0.5 σ = 5

TrustNet 77.03 ± 0.32 69.87 ± 0.56 61.22 ± 0.66 72.67 ± 0.3372.67 ± 0.3372.67 ± 0.33 67.28 ± 0.5767.28 ± 0.5767.28 ± 0.57 42.18 ± 0.6142.18 ± 0.6142.18 ± 0.61 74.21 ± 0.69 73.88 ± 0.78 69.34 ± 0.44 69.52 ± 0.75 66.48 ± 0.61 67.23 ± 0.57

SCL 81.50 ± 0.2281.50 ± 0.2281.50 ± 0.22 78.17 ± 0.7678.17 ± 0.7678.17 ± 0.76 73.13 ± 0.1273.13 ± 0.1273.13 ± 0.12 69.07 ± 1.17 46.13 ± 1.10 15.00 ± 0.67 80.93 ± 0.5080.93 ± 0.5080.93 ± 0.50 80.90 ± 0.1480.90 ± 0.1480.90 ± 0.14 76.80 ± 0.4576.80 ± 0.4576.80 ± 0.45 77.33 ± 0.4577.33 ± 0.4577.33 ± 0.45 68.67 ± 0.9668.67 ± 0.9668.67 ± 0.96 70.90 ± 0.6770.90 ± 0.6770.90 ± 0.67

D2L 75.87 ± 0.33 66.34 ± 1.43 60.54 ± 0.44 70.59. ± 0.11 52.84 ± 0.43 34.67 ± 0.36 70.01 ± 0.21 71.22 ± 0.57 65.32 ± 0.07 66.08 ± 0.38 59.62 ± 0.13 62.35 ± 0.43

Forward 68.40 ± 0.36 61.77 ± 0.21 51.27 ± 1.11 61.03 ± 0.61 46.37 ± 0.33 33.27 ± 0.53 67.83 ± 0.86 68.63 ± 0.65 61.20 ± 0.22 61.40 ± 0.16 50.90 ± 0.99 51.53 ± 0.74

Bootstrap 71.03 ± 0.85 65.33 ± 0.41 56.47 ± 1.18 61.10 ± 0.54 45.97 ± 0.34 31.17 ± 0.59 70.80 ± 0.78 71.07 ± 0.78 64.13 ± 0.60 65.43 ± 0.09 54.87 ± 0.50 55.80 ± 1.23

Co-teaching+ 72.44 ± 0.37 65.82 ± 0.23 60.08 ± 0.48 55.33 ± 0.19 42.06 ± 0.53 38.37 ± 0.77 57.02 ± 0.45 59.81 ± 0.72 51.56 ± 0.62 52.73 ± 0.38 41.11 ± 0.36 43.16 ± 0.29

Co-teaching 72.04 ± 0.61 63.78 ± 0.13 58.78 ± 0.32 53.89 ± 0.25 40.67 ± 0.72 37.51 ± 0.18 55.41 ± 0.19 58.31 ± 0.41 50.29 ± 0.61 50.83 ± 0.41 40.06 ± 0.69 41.95 ± 0.61

Table 5: Accuracy on clean testing set for CIFAR-100 under 40%, 50%, and 60% noise and patterns: i) symmetric, ii) bimodal
with µ1 = 20, σ1 = 10, µ2 = 70, σ2 = 5, and iii) truncated normal with µ = 10, σ = [1, 10]. Best results in bold.

Methods

Symmetric Bimodal Asymmetric Normal Asymmetric

ε = 0.4 ε = 0.5 ε = 0.6 ε = 0.4 ε = 0.5 ε = 0.6
ε = 0.4 ε = 0.5 ε = 0.6

σ = 1 σ = 10 σ = 1 σ = 10 σ = 1 σ = 10

TrustNet 41.23 ± 0.43 35.77 ± 0.28 29.11 ± 0.1229.11 ± 0.1229.11 ± 0.12 45.01 ± 0.1445.01 ± 0.1445.01 ± 0.14 39.55 ± 0.6239.55 ± 0.6239.55 ± 0.62 32.32 ± 0.3032.32 ± 0.3032.32 ± 0.30 37.66 ± 0.3637.66 ± 0.3637.66 ± 0.36 44.56 ± 0.4244.56 ± 0.4244.56 ± 0.42 32.76 ± 0.1332.76 ± 0.1332.76 ± 0.13 39.04 ± 0.5539.04 ± 0.5539.04 ± 0.55 23.96 ± 0.3823.96 ± 0.3823.96 ± 0.38 33.29 ± 0.4133.29 ± 0.4133.29 ± 0.41

SCL 42.30 ± 0.3642.30 ± 0.3642.30 ± 0.36 35.93 ± 0.1735.93 ± 0.1735.93 ± 0.17 28.43 ± 0.69 43.57 ± 0.42 37.60 ± 0.45 30.70 ± 0.88 37.63 ± 0.62 43.50 ± 0.45 29.77 ± 0.33 37.67 ± 0.74 19.20 ± 0.57 31.93 ± 0.39

D2L 41.01 ± 0.21 33.72 ± 0.34 21.41 ± 0.12 32.47 ± 0.43 21.23 ± 0.13 10.55 ± 0.19 10.66 ± 0.16 10.32 ± 0.21 10.14 ± 0.10 10.02 ± 0.26 10.11 ± 0.38 10.05 ± 0.14

Forward 36.40 ± 0.37 26.03 ± 0.97 16.00 ± 0.80 38.80 ± 0.28 30.13 ± 0.25 19.03 ± 0.69 34.03 ± 0.33 39.80 ± 0.33 21.23 ± 0.34 32.23 ± 0.31 10.27 ± 0.47 22.90 ± 0.00

Bootstrap 28.40 ± 0.16 14.37 ± 0.12 6.70 ± 0.59 32.17 ± 0.62 19.17 ± 0.86 10.10 ± 0.94 27.23 ± 0.71 34.17 ± 0.96 13.80 ± 0.41 22.97 ± 1.54 6.10 ± 0.16 12.53 ± 1.84

Co-teaching+ 39.35 ± 0.35 33.77 ± 0.49 26.32 ± 0.54 34.64 ± 0.59 30.34 ± 0.24 26.52 ± 0.58 34.17 ± 0.24 36.59 ± 0.32 29.06 ± 0.52 33.30 ± 0.39 18.24 ± 0.71 26.61 ± 0.33

Co-teaching 37.82 ± 0.22 31.69 ± 0.61 25.44 ± 0.71 33.76 ± 0.54 28.89 ± 0.18 26.12 ± 0.33 32.02 ± 0.56 33.85 ± 0.62 28.01 ± 0.42 31.57 ± 0.26 16.99 ± 0.32 25.33 ± 0.12
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