]
TUDelft

Technische Universiteit Delft
Faculteit Elektrotechniek, Wiskunde en Informatica
Delft Institute of Applied Mathematics

Prestaties van de Morris method met copula’s

(Engelse titel: Performance of the copula-based
Morris Method)

Verslag ten behoeve van het
Delft Institute of Applied Mathematics
als onderdeel ter verkrijging

van de graad van

BACHELOR OF SCIENCE
in

TECHNISCHE WISKUNDE

door

Rutger van Beek

Delft, Nederland
Juni 2019

Copyright (©) 2019 door Rutger van Beek. Alle rechten voorbehouden.

]
TUDelft

BSc verslag TECHNISCHE WISKUNDE

“Prestaties van de Morris method met copula’s.”

(Engelse titel: “ Performance of the copula-based Morris Method)”
Rutger van Beek

Technische Universiteit Delft

Begeleider

Dr. D. Kurowicka

Overige commissieleden

Dr. G.Y.H. El Serafy Dr. J.G. Spandaw

Juni, 2019 Delft

Abstract

The Morris method ([Morris, 1991]) is a widely used screening method in sensitivity analysis.
The method assumes that the input parameters are independent of each other. To overcome
the assumption a copula-based Morris method is proposed ([Tene et al., 2018]). In this report
the results of taking the dependencies into account are analyzed for the Morris method. For two
examples sensitivity analysis is performed with the Morris method, with copula-based Morris
method and by calculating sample correlations with a Monte Carlo simulation. From the analysis
it follows that taking dependencies into account can have varying effects for different methods. It
turns out that a straight-forward implementation makes the method often practically unusable.
The sampling of model evaluation points becomes too computer expensive. The amount of
copula evaluations is growing exponentially with the dimension and for copulas without an
analytic expression these are already lengthy. The computational intensity can be reduced
in two ways. First, one can approximate the probabilities. Different ways of approximating
the probabilities are researched. Numerically integrating with the midpoint rule seems to be
the best way of approximating the probabilities in the copula-based Morris method. Next to
approximating the probabilities, one can also use the independent groups when implementing the
method. When the input parameters are correlated there are usually a few groups of correlated
parameters rather than that all the parameters are correlated with each other. This can be
utilized to more efficiently implement the copula-based Morris method. When the group sizes
are not increasing the computational intensity depends linearly instead of exponentially on the
number of model parameters. By using both improvements the method can generally be applied
to tens or hundreds of parameters in reasonable time, which is desired for a screening method.

Contents

Introduction

Sensitivity Analysis

2.1 Local methods e
2.2 Global methods
2.2.1 Sensitivity measures Lo
2.2.2 Sensitivity of a linear model L oo
2.3 Monte Carlo simulation o
2.4 Screening methods Lo
2.5 Examples e
2.5.1 Linear model with interactions
2.5.2 Sensitivity of the linear model with interactions
2.5.3 Population model
2.5.4 Sensitivity of the population model,
Original Morris Method
3.1 Elementary effects
3.2 Sampling elementary effects o oo
3.21 Samplingonagrid
3.2.2 Sampling paths using matrices oL
3.2.3 Sampling paths, geometric interpretation
3.3 Analyzing the distribution of elementary effects
3.4 Examples e e
3.4.1 Linear model with interactions
3.4.2 Morris method on the population model
3.5 Parameters of the Morris method o L.
3.5.1 Choosingpand d
3.5.2 Choosing r e e
Copula-based Morris method
4.1 Describing dependence: copulas Lo
4.1.1 Typesof Copula
4.1.2 Finite difference formula o L oL
4.2 Copula-based sampling of paths,
4.2.1 Samplingacell
4.2.2 Sampling a starting point
4.2.3 Permutation
4.3 Examples e

© 00 IO

10
10
10
12
14

16
16
17
17
19
20
21
22
22
25
26
26
28

4.3.1 Copula-based Morris method on linear model
4.3.2 Copula-based Morris method on population model

Improvements in calculations of corner probabilities

5.1 Approximating corner probabilitieso
5.1.1 One-cell approximation
5.1.2 Numerical integration oL
5.1.3 Conclusion on approximating probabilities

5.2 Independent Groupso
5.2.1 Example
5.2.2 Algorithm
5.2.3 Results e

Conclusion

Matlab implementation of indendent groups

40
40
40
40
44
47
47
49
49

51

53

Chapter 1

Introduction

Nowadays mathematical modelling is widely used in the natural sciences, engineering and the
social sciences. The idea is to make a phenomenon abstract by describing it in mathematical
concepts. The mathematical model is then a function, y = f(z1,...,x4), describing the phe-
nomenon. The function, f : R — R, has d input parameters, z;, and 1 output, y. In many cases
a mathematical model does not have one output. In that case, one can define a summarizing
function. Such a function could be an error function or an average of all the outputs. Another
possibility is to choose one of the outputs to investigate the sensitivity of. The function can be
represented in different ways. It can be a simple mathematical expression, a set of equations,
computer code or a black-box-model. In general, one puts some numbers into the function and
gets a number out. In a black-box-model the internal workings of the model are unknown,
because they are too complicated or are not accessible. However, one can compute the output
given the input.

Input Black-box model Output

Figure 1.1: Visualization of a black-box-model. The input goes in the black-box, the output
comes out. But what happens in between can be everything.

Often computers are used to solve mathematical models. In the last decades, the capacities of
computers have increased a lot. This allowed for computers to solve very complicated mathe-
matical models. A more complicated model can grasp more details of the phenomenon. It also
means that it is harder to understand the relation between the input and the output. All the
details in the model make it impossible to oversee all the different calculations and their effects.
Not overseeing the internal workings is not so important if the input is exactly known. One can
just use the output of the model. However, most of the time model parameters are estimated
based on data or expert judgments. Both methods lead to uncertainty in the parameters. There
is not one value for the parameters, but rather a probability distribution on a set of possible
values. The uncertainty can then for instance be measured by the variance or entropy of the
distribution. A different value for an input parameter generally leads to another value for the
output. Therefore the uncertainty in the input propagates to the output of the model. It is
hard to predict how the uncertainty propagates when it is not possible to oversee the internal
workings of the model or when the model is too complex. The input and output of the model
are thus random variables and we write Y = f(X). The effect of uncertainty in the input on the

model output could be very different for different parameters or different models. The analysis
of these different effects is called sensitivity analysis.

Sensitivity analysis provides methods to study the relation between the uncertainty of the input
and output. In [Saltelli et al., 2004] sensitivity analysis is defined as follows:

“The study of how the uncertainty in the output of a model (numerical or otherwise) can be
apportioned to different sources of uncertainty in the model input”

There are plenty of reasons to do sensitivity analysis, but four will be named here.

e The most important reason is when one wants to reduce the uncertainty in the model.
Parts of the input that contribute a lot to the uncertainty of the model output can be
identified by sensitivity analysis. These parameters should be analyzed further. One can
for instance collect more data or ask more experts to reduce the uncertainty of these
inputs. As a consequence, the uncertainty in the model output also decreases. Analyzing
parameters that are not influential would not have the same effect.

e Furthermore models are often over complicated or over-parametrized. This means that
there are parts of the model or parameters which do not have a significant influence on
the model output. Over-parametrization is a widespread problem in ecological models
([van Griensven et al., 2006]). Sensitivity analysis methods can indicate whether parame-
ters or parts of the model have negligible effect. These parameters or parts can be simplified
or set to a constant value, which reduces the complexity of the model.

e Furthermore one can get a better understanding of the workings of the model by knowing
the influence of different input parameters.

e Finally it is also possible to find errors in the model by finding unexpected relations
between the input and output.

These are the four main reasons to analyze the sensitivity of the model. As there are many
reasons to do sensitivity analysis there are different settings for which different methods are
appropriate. One of these methods is the Morris method ([Morris, 1991]). It is a widely used
method in sensitivity analysis ([Iooss and Lemaitre, 2015]) and can be applied for an efficient
preliminary analysis. An assumption of the method is that all the parameters, X;, are indepen-
dent. Independence of the parameters is assumed in all major sensitivity methods. There are
examples of models for which there are dependencies between the input parameters. Examples
are mentioned in [Tene et al., 2018], [Saltelli et al., 2004] and [Li et al., 2011]. The problem of
sensitivity analysis with dependent input is not researched much yet, but for the variance-based
methods it is solved ([Mara and Tarantola, 2012]). In [Jacques et al., 2006] the correlated in-
puts are treated as a group. This is not a real solution, but rather a workaround. A Morris
method without the independence assumption was proposed in [Tene et al., 2018]. Here copulas
are used to describe the dependencies between the input parameters. These dependencies are
then taken into account in the method.

It turns out that in some cases the implementation of the copula-based Morris method is too
computational intensive. This problem was mentioned in [Tene et al., 2018]. For the imple-
mentation a lot of computer evaluations of a copula are necessary. For some copulas such an
evaluation is lengthy. Often a more efficient implementation is necessary for the method to
be practically useful. The central question in this report is: “Are there more efficient imple-
mentations for the copula-based Morris method?”. Two ways of increasing the performance of

the method are researched. First of all, probabilities calculated by evaluating copulas can be
approximated instead of exactly calculated. Several ways of approximating the probabilities are
compared. Next to that, the possibility to use the structure of the dependencies is researched.
The effect of differently implementing the method when there are independent groups is re-
searched.

The goal of this report is to present, analyze and improve the copula-based Morris method.
The report is organized as follows. First, an introduction in sensitivity analysis is given. One
can get a feeling for the desired properties of methods in sensitivity analysis. Next to that the
two important examples used throughout the report are presented and a sensitivity analysis is
applied to them. In the third chapter the Morris method is presented in two ways. First, the
original way of Morris using sampling matrices is presented. Next, a more intuitive geometric
interpretation is given. This interpretation is also used to extend the Morris method. We discuss
the interpretation of the results with some examples and the choices for the parameters in the
Morris method. In the fourth chapter the extended Morris method will be presented. First, an
introduction into copulas is given. Here the necessary properties of copulas for this report will
be treated. The copula-based Morris method is also applied to an example, where one can see
the difference between taking the dependencies in input parameters into account and not doing
this. In the fifth chapter the problem of the amount of lengthy copulas evaluations, mentioned
before, will be addressed. A solution proposed in [Tene et al., 2018] is compared to several
other approximation of probabilities computed with copulas. Next to that, an implementation
using independent groups is presented. Finally, a conclusion is mode on when to use which
implementations.

Chapter 2
Sensitivity Analysis

Sensitivity analysis consists of many different methods. There are also different ways to measure
sensitivity. In this chapter, we will name the most important groups of methods. The first two
groups we distinguish are the local and global methods. Also, we will do a simple sensitivity
analysis on two examples.

2.1 Local methods

In a local method the sensitivity of a model is analyzed only in a certain point. The point
is called the base value. The most common approach is to calculate or estimate the partial
derivatives in the base value with respect to the input parameters. A partial derivative indicates
how much the model output changes when the corresponding input changes. Partial derivatives
are therefore one way to measure the sensitivity of a model. Parameters with partial derivatives
close to zero are not so influential. The model output does not change much when the value
of the parameter changes. High values (both positive and negative) of the partial derivative
indicate an influential parameter. A lot of uncertainty in an influential parameter will lead to
a lot of uncertainty in the model input. The method of calculating the partial derivatives is a
One-At-a-Time(OAT) method. These methods change only one parameter at a time to isolate
the effects. The effects can thus easily be assigned to an input parameter. The disadvantages are
that for each parameter the calculations should be repeated and the interactions between input
parameters cannot be measured. The counterpart of local methods are the global methods,
which will be discussed next.

2.2 Global methods

Global methods allow for the exploration of a whole variation range of the inputs. One can use
bounds for each parameter. The sensitivity of the model will then be analyzed for the entire
range between these bounds. The values of the input variables are unknown and thus random
variables. Within the global sensitivity analysis methods there are a lot of different methods
for different situations. These methods have different sensitivity measures. A few sensitivity
measures used in global methods will be presented in the next section.

2.2.1 Sensitivity measures

The first sensitivity measure that will be discussed are the partial derivatives of the output
with respect to the different inputs. These were already mentioned in section 2.1 where the
local methods were discussed. The partial derivatives compare a change in the input with a
change in the output. In a local method, it is obvious in which point the derivatives should be
calculated. In global methods, there are many possible values for the parameters, so there is
not one derivative. Partial derivatives are calculated in different points. The idea is to analyze
the distribution of the derivatives per parameter. A simple summary of the distribution is the
average. The average gives a good idea about the general effect of the parameter. The variance
and other properties of the distribution can also be used to analyze the effects of parameters.
Another way to measure the sensitivity is by calculating the correlation of the model output with
the model input. All correlations are defined to be a measure of the dependence or association
of two variables in some sense. One can calculate the correlation of the model output, Y, with
all the model input parameters, X;. This will then indicate how dependent the model output
is on the different parameters. Parameters with a correlation close to 1 have a high positive
dependence, whereas parameters with a correlation close to -1 have a high negative dependence.
Both are considered influential parameters. Correlations close to zero indicate that there is
almost no dependence of that type. So the (absolute) values of the correlations are compared
to see what the most influential parameters are. The sign of the correlation indicates the sign
of the general effect. There are different types of correlations that can be used.

e The most commonly used correlation coefficient is the Pearson product-moment correlation
coefficient. This correlation measures linear dependence.

e Another type of correlations are the rank-based correlations in which the ranks of both
sets are compared. For instance, Kendall’s 7 and Spearman’s rho are examples of rank
correlations. In this report Spearman’s p is used in the sensitivity analysis to measure rank
correlation. All rank correlations will rank have comparable values. The usage of rank cor-
relations in sensitivity analysis is very elaborately discussed in [Saltelli and Sobol, 1995].

Other correlations and more information about the correlations above can be found in [Nelsen, 2006].
They can all be used as a sensitivity measure when applied to the model output and a model
parameter.

The last type of sensitivity measure that will be discussed is the variance decomposition. Here
the uncertainty in the model output is measured by the variance. The sensitivity measure is
then the part of the variance in the model output that can be apportioned to the variance in a
set of input parameters. The set can be taken to be a single parameter, if one wants to know
the influence of individual parameters. The method was introduced by Sobol in 1993 and is in
detail presented in [Sobol, 1993].

2.2.2 Sensitivity of a linear model

In the previous section different measures for sensitivity were introduced. In this section all of
these sensitivity measures will be calculated for the simple linear model:

Y =Bo+ 81 X1+ -+ BaXyg (2.1)

It is assumed that the input parameters are independent and that they are distributed uniformly
on [0,1]. Intuitively the sensitivity of parameters in a linear model should be closely related

to the corresponding S as this coefficient describes the relation between the model input and
output.

Partial derivatives The partial derivatives of a linear function are just equal to the corre-

sponding coeflicients.
oY

ox;,

The distribution of partial derivatives is equal to a single value.

(2.2)

Correlations The linear correlations can be calculated using the independence of the param-
eters.

_ Cov(Y, X))
B v/ Var(Y)/Var(X;)
_ Cov(Xi, BiXi, X))
\/Var(Z?:15iXi) Var(X;)
_ Cov(B;X;, X;)
VL, B2Var(X,)y/Var(X;)
_ piVar(X;)
VL, B2Var(Xi)y/Var(X;)
__ BiVar(X)) (2.3)
VL, p2Var(X)

p(Y, X;)

Apportioning of variance For the apportioning of the variance we first observe the following:

d d
Var(Y) = Var(d_ 8iX;) = Y _ 87 Var(X;) (2.4)

i=1 i=1
Now one can see that the fraction of the variance of the model output explained by
,BJQ-Var(Xj)

—2—————_ This sums to ones as desired.
>4 B2Var(X;)

parameter j is equal to

All the three sensitivity measures were calculated for the linear model. In all the cases the
sensitivity was closely related to the corresponding coefficient. And in all cases a bigger
corresponded to a bigger influence. This should not come as a surprise as the different sensitivity
measures all try to measure (roughly) the same concept.

2.3 Monte Carlo simulation

In the previous section, we have seen that calculating the sensitivity measures is easy for the
linear model. For complicated models calculating the sensitivity measures will come down
to estimating them. This will often be done using some form of Monte Carlo simulation
([Metropolis and Ulam, 1949]). More information about the implementation of Monte Carlo
simulation can be read in [Robert and Casella, 2013]. In Monte Carlo simulation a random
sample of the parameter is used to simulate the model. By doing this many times the sensitivity
measures can be estimated from the samples. The law of large numbers makes sure that the
estimate converges to the real value. The estimate will differ from the exact value, but for a large

sample the difference will be small. Different implementations for different sensitivity measures
result in different sensitivity analysis methods. For correlations it is intuitive how Monte Carlo
simulation can be used. We can use a lot of Monte Carlo samples to calculate the sample corre-
lation. The sample correlation is an unbiased estimator for the actual value of the correlation.
Monte Carlo simulation simulations can also be used when there are dependencies between the
parameters. We should then use copulas to do the random sampling in the parameter space.
Copulas are introduced and explained in section 4.1.

2.4 Screening methods

In the previous section, an idea was given for methods that can analyze the sensitivity of more
complex models. One part of the global method,s where random sampling is often used, are the
screening methods. These are methods that estimate the sensitivity measures very efficiently.
They allow for the analysis of models with tens or hundreds of parameters ([Saltelli et al., 2004]).
With efficient we mean that not many model evaluations are necessary to produce a meaningful
result. Screening methods give a qualitative output rather than a quantitative input. In most
sensitivity analysis methods the parameters get scores and these values have a direct meaning
related to the sensitivity of the model. Screening methods usually provide more of a quantitative
output. They can rank the parameters or give the nature of the effects of certain parameters,
but cannot exactly quantify the sensitivity.

There are many different screening methods. Most screening methods are based on the idea
of fractional factorial designs ([Box and Hunter, 1961]). A few discrete levels for each variable
are considered. For instance for a certain parameter with lower bound 0.5 and upper bound
0.9 one only considers the values 0.5,0.6,0.7,0.8,0.9 instead of the whole range. The number
of levels can of course vary. A full factorial design is when all the combinations of values for
all the parameters are used. In a fractional factorial design a subset of the full factorial design
is used. Different ways of choosing this subset lead to different methods. Generally, the subset
is (partially) random. Then a fractional factorial design is closely related to a Monte Carlo
simulation. Only considering each parameter at a few levels makes sure that the coverage of the
space is good and the results will be more reliable. By only using a fraction of the full factorial
not many computations are needed.

Another often chosen method to speed up the analysis is to do the screening by groups. By
changing multiple values at the same time the amount of model evaluations is lowered. Of course
the causes of the effect cannot be assigned to a single variable. Therefore often the process is
repeated a few times with different partitions each time. By averaging over the different runs
the effects of a single parameter can be estimated. This is different from the OAT method as
mentioned in section 2.1. In contrary to OAT methods the effects of a single parameter are
harder to isolate, but fewer computations are necessary.

Examples of screening methods can be found in [Cotter, 1979], [Andres and Hajas, 1993] and
[Bettonvil and Kleijnen, 1997]. There are many more, but in general they allow for a quick ex-
ploration of the parameter space. They give not so much information, but allow for an indication
of the types of the effects and the ranking of parameters based on their influence. Most of the
methods make assumptions on the underlying model that is analyzed. The Morris method does
not make such assumptions and is therefore widely used.

2.5 Examples

The two examples will be described first and a sensitivity analysis is performed. The examples
will be used throughout the report to compare different methods in sensitivity analysis.

2.5.1 Linear model with interactions

The first example will consist of three linear functions with interactions. These functions all
have three input parameters, but different coefficients. The coefficients are chosen such that the
nature of the effects of the parameters is very clear. We hope to see these effects then clearly in
the sensitivity analyses. The functions, f; : [0,1]> — R, will be of the following form:

fi(z1, 22, 23) = Bra1 + Poxa + Baxz + Pr2x122 + P1 3123 + P2322x3 (2.5)

A few different sets of parameters will be used. In the first function the parameters will be
chosen such that function has no interactions. The coefficients corresponding to interaction
effects will be set to almost zero. The size of the influence will increase, so 1 has the smallest
influence and x3 the biggest, but the influence of x3 will be negative. The second function will
consist of a variable, x1 with negligible effects and two parameters, x5 and x3 who also have
interaction. The non-interaction effect of x3 will be negative. Then the overall effect of this
parameter is non-monotonic. The last function will have negative interaction effects between
the parameters 1 and xo. The effect of these two parameters are then non-monotonic. x3 will
have a no interaction effects. The corresponding values of are summarized in figure 2.1.

function f1 f2 f3
B 1 (01| 0

B 5 5 5

53 -10 | -5 | 10
P12 0.11]0.3]-10
B1.3 0.1 03103
B2,3 0.1] 10 | 0.3

Figure 2.1: The coefficients for the three different test functions.

In this report great emphasize is put on making it possible to handle dependent input parameters
in sensitivity analysis. Therefore some correlations are defined for the input parameters. For
the methods that allow for inputs to be correlated, the correlations will be set to the values in
figure 2.2.

Ty | T2 z3
T 1109]—-0.5
T2 0.9 1 0
I3 —0.5 0 1

Figure 2.2: The correlations of the input parameters for the functions f;, fo and fs.

2.5.2 Sensitivity of the linear model with interactions

We will now do a sensitivity analyses of these simple functions. The method described in section
2.3 will be used. Random samples from the sample space will be used to create a sample of

10

model evaluations. And the sample correlation with the different inputs will be calculated. The
Pearson and Spearman correlations are calculated. The ranks are based on the absolute value
of the Spearman correlation coefficient. Next to that, we will also perform the analysis while
taking the dependencies into account. The resulting sample correlation will be compared. For
both simulations a sample size of N = 10000 was used.

Pearson | Spearman | ranks Pearson | Spearman | ranks
X1 | 0.0965 0.08999 3 X1 | 0.8223 0.8163 2
Xo | 0.4453 0.4227 2 Xo | 0.5021 0.4823 3
X3 | -0.8828 -0.8887 1 X3 | -0.8660 -0.8700 1

Figure 2.3: The results of the sensitivity analysis for fi using sample correlations with a sample
size of 10000. In the left gable the dependencies are not taking into account, whereas in the
right table they are. The ranking is based on the absolute values of the Spearman correlation
coefficient.

The results of the sensitivity analysis for the first function can be seen in figure 2.3. The first
function was constructed such that there would be no interactions. The correlations resulting
from the simulation with independent parameters are as expected. The size of the correlation is
related to the size of the coefficient, 3, and the signs and ranks are correct. We can also compare
the correlation with the Pearson correlations computed in 2.2.2 for the linear model without
interactions and independent variables. The variance of each variable is Var(U[0,1]) = -,
because they are all assumed to be uniformly distributed on [0,1]. The Pearson correlation
coefficients for the model without interaction can be computed with equation 2.3 and are:

p(X1,Y)=0.0891 p(as,Y)=0.4454 p(X3,Y) = —0.8909

The correlations are very similar to the sample correlations, because the interactions are very
small for f;. When we look at the right table of figure 2.3, where the dependencies are taken into
account, we see that X7 is now very much correlated with the model output. This is because it
is correlated with Xy and X3 with the signs such that variable is very much correlated with the
model output. Here the dependencies have a big effect on the results of the sensitivity analysis.

Pearson | Spearman | ranks Pearson | Spearman | ranks
X4 0.0381 0.0365 2 X3 0.7714 0.7793 2
Xs 0.961 0.9738 1 Xo | 0.9634 0.9753 1
X3 | 0.0297 0.0242 3 X3 | -0.0130 -0.0146 3

Figure 2.4: The results of the sensitivity analysis for fs using sample correlations with a sample
size of 10000. In the left gable the dependencies are not taking into account, whereas in the
right table they are. The ranking is based on the absolute values of the Spearman correlation
coeflicient.

For function fs only Xs seems to have a significant effect in the case of independent variables.
The other two variables seem to have negligible effects. We know from the function that X3 has
a big effect, but that the effects are have different signs. The linear part is negative and the
interaction effects is positive. The parameter is important, but this is not seen in the sensitivity
analysis. With dependencies X; becomes important, because it is correlated with Xs which has

11

a big effects. The effects of X3 still do not come up in the analysis.

Pearson | Spearman | ranks Pearson | Spearman | ranks
X1 | -0.3384 -0.3166 2 X1 | -0.6765 -0.6677 2
Xo | 0.0297 0.0295 3 Xo | -0.2317 -0.2184 3
X3 | 0.9047 0.9132 1 X3 | 0.9434 0.9491 1

Figure 2.5: The results of the sensitivity analysis for f3 using sample correlations with a sample
size of 10000. In the left gable the dependencies are not taking into account, whereas in the
right table they are. The ranking is based on the absolute values of the Spearman correlation
coeflicient.

Lastly, for function 3 we see that X3 is very important as expected from the coefficients. In the
case with independent parameters the interaction effect of X; and X5, which is quite big, is not
so clearly visible. Similar as with the previous function, a parameter with effects of opposite
signs is unjust indicated as not important. The interaction effect becomes a lot more obvious,
when the big dependency between X; and X5 is taken into account.

2.5.3 Population model

In the previous section, an example of sensitivity analysis was given where the effects of the dif-
ferent parameters were clear by looking at the model function. We will now consider an example
were the effects of different parameters is not so clear. We will consider a model that describes
the development of different populations of animals that compete for resources. These develop-
ments can be described with the competitive Lotka-Volterra equations ([Zhu and Yin, 2009]).
The population sizes will grow logistically when there is no competition. However, as both
animals compete for the same resources, the existing of one has a harmful effect on the growth
of the other. The equations describing the growth for the population sizes of species x1 and x2
are as follows.

dry _ ray (1— T1+0q,2%2
dt K4 (2 6)
drs '

202 _ T2
dt T9I9 1 K2>

In equation 2.6 the competitive Lotka-Volterra equations are given, where the r’s are the growth
rates for the corresponding species. This means that when there would be no competition with
other animals (from other or the same species) the population would grow with this rate. a2
indicates the size of the harmful effect of 3 on 1. When «; o is large it means that xo uses a lot
of resources x1 needs. In combination with a big population size of x5 it will decrease the growth
of 1. The K’s are the carrying capacities of the environment under investigation. This is the
maximum population size of the corresponding animal an environment can sustain. Also the
starting population sizes, z1(0) and z2(0) are input parameters. The values of the parameters
are not exactly known, but bounds can be estimated. A uniform distribution is then assumed
between these bound. All the parameters and their bounds are summarized in figure 2.6. The
values for the parameters are chosen similar to the example studied in [Vano et al., 2006]. The
model output we will focus on the ratio of the two population sizes after five years, z2(5)/x1(5).
Similarly as in the example in the previous section we draw 10000 random samples form the
parameter space and calculate the resulting model output each time. In figure 2.7 the uncertainty
in the model output is visualized by a histogram of the simulations.

12

parameter interpretation lower bound | upper bound
71 per capita growth rate species 1 0.8 1.2
79 per capita growth rate species 2 0.5 0.8
1,2 the harmful effect of species 2 on 1 0.2 0.8
K Carrying capacity for species 1 0.9 1.1
Ky Carrying capacity for species 2 0.8 1
x1(0) starting population species 1 0.3 0.7
x2(0) starting population species 2 0.2 0.5

Figure 2.6: The different parameters for the competitive Lotka-Volterra model with an estimate
for their value.

Histogram of 10000 simulations of the competitive Lotka-Volterra equations

3500

3000

2500

frequency
[~}
[=]
=1
L=

1500

1000

500

0.5 1 15 2 25 3 35 4
ratio x21x1

Figure 2.7: The distribution of the model output (ratio x1/zo after five years) of 10000 simula-
tions. The parameters were assumed to be independent for these simulations.

Until now independence of the input parameters was assumed. However, for biological reasons
there are correlations between certain parameters. For instance, if carrying capacities are closely
correlated. The species compete for roughly the same resources. When the environment turns
out to contain more resources for one species it probably also contains more resources for the
other species. The correlations would have to assessed by experts. In figure 2.8 the estimated
correlations are summarized. The correlations between parameters and themselves are of course

1.

parameters ri| ro| ag | K1 | Ko | 21(0) | 22(0)
1 1 0]-0.5 0 0 0.5 0

79 0 11 0.5 0 0 0 0.5

asg1 | -0.5 1 0.5 1 0 0 -0.5 0.5

Ky 0 0 0 1105 0 0

Ky 0 0 0] 0.5 1 0 0

21(0) | 05| 0/-05] 0] 0 1| 05

x2(0) 005 05 0 0| -05 1

Figure 2.8: The estimated correlations in the parameters.

Simulations from a set of dependent parameters can be done using copulas, which will be dis-
cussed in section 4.1. In figure 2.9 the histogram for the ratio of two populations after five

13

years can be seen. The histogram looks very similar to the histogram of the simulations where
the correlations were not taken into account. The uncertainty in the model output with and
without dependencies in the input parameters is thus very similar. In the next section we will
see whether the dependencies matter for the sensitivity analysis.

Histogram of 10000 simulations of the competitive Lotka-Volterra equations
3500

3000

2500

2000

frequency

1500

1000

500

0.5 1 1.5 2 25 3 3.5 4
ratio x21x1

Figure 2.9: The distribution of the model output (ratio z1/z2 after five years) of 10000 simula-
tions where the correlations between the input parameters are taken into account.

2.5.4 Sensitivity of the population model

A sensitivity analysis of the model described in the previous section will now be performed.
For this we will use the same method as used in the other example. We used a Monte Carlo
simulation to create a sample and calculated the correlations of the model output with different
inputs. We will do this here for the model with and without correlated input parameters. Next
to that, we are going to calculate the correlation of the model output with different inputs as a
sensitivity analysis.

A sample size of 10000 will be used. Both the linear correlation and Spearman’s p will be
estimated from this sample. 10000 is a big enough sample size to come close enough to the ac-
tual values. The first observation that we can make from figure 2.10 is that taking into account

parameter | Pearson | Spearman | ranks parameter | Pearson | Spearman | ranks
r1 0.0159 0.0069 7 r1 -0.3348 -0.3494 5

79 0.2044 0.2046 5 ro 0.5996 0.6236 2
1,2 0.5941 0.7999 1 01,2 0.7130 0.8977 1
K -0.3388 -0.3299 2 K -0.1784 -0.1653 6
Ko 0.3165 0.3117 3 Ky 0.1486 0.1306 6
x1(0) -0.0632 -0.0589 6 x1(0) -0.4101 -0.4143 4
x2(0) 0.2647 0.2550 4 x2(0) 0.5853 0.5992 3

Figure 2.10: The results of the sensitivity analysis of the competitive Lotka-Volterra. The sample
linear correlation and Spearman’s rho are calculated based on a Monte Carlo sample. Also the
parameters are ranked based on their influence. On the left the correlations between the model
input parameters are not taken into account. On the right the model input parameters are taken
into account.

14

the dependencies in the model really makes a big difference. The parameters r;, 72, 21(0) and
x2(0) are a lot more correlated with the model output, whereas the correlation of K; and K
has decreased. The parameter oo is the only parameter that is not much affected. All the
parameters for which the correlations increased a lot are exactly the ones correlated with aq .
Because a1 2 is such an influential parameter the parameters correlated with o4 2 are now also
well correlated with the model output. The changes in the correlations indicate that in this case
it was important to take the dependencies into account.

Another observation that can be made is that the linear correlation coefficient is very simi-
lar to Spearman’s p. It can be concluded from this that the effects are almost linear. Only for
a2 the values of the two correlations coefficients differ much. This indicates that the effect of
a2 is partially non-linear. Lastly we can draw conclusions about the sensitivity of the model.
We will look at the right table. As this is the table were the correlations of the input parame-
ters are taken into account. The most important parameter seems to be aq2. If one wants to
decrease the uncertainty in the model output than one should investigate this parameter. Other
important parameters are K; and Ks. It seems that the parameters related to species 2 are
more important then those related to species 1. The effects of K1 and K5 are the smallest but
not negligible. This was an example of how sensitivity analysis could be applied to a simple
model and what conclusion can be made from the analysis. The example also showed that in
this case it was important to take the dependencies into account.

In this chapter a general introduction into sensitivity analysis was given. The most impor-
tant sensitivity measures were defined. Next to that it was shown how these can be calculated
for a simple linear model. And an idea was given how the sensitivity measures can be estimated
in more complicated models. Two examples of a sensitivity analysis were given. First on simple
functions were the effects were obvious and then on a more realistic, but sill small model. In
the next chapter the Morris method is introduced. This is a method that can estimate the
distribution of partial derivatives for all types of models.

15

Chapter 3

Original Morris Method

Sensitivity analysis and its main ideas were introduced in the previous chapter. In this chapter
a global sensitivity analysis method will be presented. The method is the Morris method, which
was proposed by Max D. Morris in 1991 ([Morris, 1991]). It is an OAT screening method. At
the end of the chapter the method will be applied to both the examples that were introduced
in the previous chapter.

3.1 Elementary effects

In the Morris method the following setting is assumed. The range defined on the parameters
can be used to scale the parameter space to the unit hypercube, f :[0,1]¢ — R. Because this
can be done without loss of generality, the parameter space will be assumed to be [0,1]? for
the rest of the report. As only bounds for the parameters are known a uniform distribution is
assumed between the bounds, X; ~ U[0, 1].

The Morris method uses the distribution of derivatives as the sensitivity measure. It was shown
in section 2.2.1 how the (partial) derivatives are related to the sensitivity of the model. In most
models calculating exact derivatives is not possible. Many models have no explicit expression
of partial derivatives, because they consist of computer code for example. Therefore not the
exact, but an approximation of the partial derivative is used. This approximation is called an
elementary effect and is defined as follows:

flxe, .. xj+0,...,2q) — f(o1, ... 24, ...,2q)

EEj(ZL‘l,...,xd) = (31)

is the elementary effect in the point (x1,...,24) in the direction of input variable z;. The
parameters are changed one-by-one, so that the effect of the individual parameters is isolated
as generally happens in an OAT method. The idea in the Morris Method is to sample these
elementary effects and analyze their distribution. It will be possible to distinguish three types
of influence:

e negligible effects
e (close to) linear effects

e non-linear or interaction effects.

16

3.2 Sampling elementary effects

In equation 3.1 it can be seen that the calculation of an elementary effect uses two model
evaluations. In this section it will be shown in which two points the model should be evaluated.
Especially how these points can be chosen such that the model evaluations can be used efficiently.
The Morris method is meant to be a screening method. The number of model evaluations should
be kept to the minimum. The number of samples of elementary effects per parameter that is
calculated is denoted as r. For the sampling of elementary effects a fractional factorial design
will be used. This is used often in screening methods and the basic idea is already mentioned
in section 2.4. Each parameter is only considered at a few different levels in the range. The full
factorial design can be represented as a grid. In a fractional factorial design we sample a subset
of the grid points to evaluate the model. These points will then be used to calculate elementary
effects. Morris used sampling matrices to explain and notate the sampling of elementary effects.
Next to that, there is also a more intuitive geometric interpretation as given in [Tene et al., 2018|.
Both will be presented in this section. The geometric approach will be used in chapter 4 to extend
the Morris method.

3.2.1 Sampling on a grid

Instead of looking at the problem as sampling in a full factorial design we will look at the problem
as sampling from a grid, which in the end comes down to the same thing. However, the grid can
be visualized. For the grid we choose a regular grid with p levels in each dimension. The step over
which the elementary effects will be calculated is equal to 6 = 1% for some k € {1,2,...,p—1}.
k is thus over many different levels one elementary effect is calculated. In the visualizations
in this section k = 1 is chosen, to make the figures clear. A discussion about choosing these
parameters as well as r can be found at the end of this chapter. The grid is chosen such
that elementary effects with step § are calculated between grid points. The grid points will be
{0, p%l, cey g%%, 1}¢. The discretization of the 3-dimensional cube is shown in figure 3.1, where
p = 3 is used. The axis shown in the picture will be used throughout this section for all pictures.
In some pictures they are left out because of readability.

T3

Figure 3.1: The grid of the 3-dimensional unit hypercube with 3 levels in each dimension
In general, one needs two model evaluations to calculate one elementary effect as one is calcu-

lating a change. This can also be seen in equation 3.1, where the model function f is evaluated
in two points. However, by efficiently using the grid, model evaluations can be reused. The

17

endpoint of the previous calculation is used as a starting point for the next calculation. This
effect is visualized in figure 3.2. In the figure, points used to calculate elementary effects are joint
by coloured lines, where the start and endpoint of the line represent a point in which the model
should be evaluated. In the left subfigure the elementary effects are calculated apart. For each
elementary effect two points next to each other are used. This requires 12 model evaluations
for the 6 elementary effects. In the right subfigure the elementary effects are calculated with
the same equation 3.1, only now the model evaluations are reused. After an elementary effect is
calculated, a point next to the last point is chosen to calculate another elementary effect together
with a point used in the previous calculation. In the right figure only 8 model evaluations are
needed for the same amount of elementary effects.

Figure 3.2: The difference between calculating elementary effects apart (left) or over paths
(right).

We will now look at the blue paths in figure 3.2 more closely. The following elementary effects
are calculated with the blue paths. In both the left and right picture an elementary effect in
each direction can be calculated over the blue paths.

Elementary effect calculations (left) Elementary effect calculations (right)

11 111y r1d 11 111y _r L1

EEl(O)) f(z 5 2) h f(2 2) EEl(O)) _ f(2) D 2) . f(bR 2)
272 3 272 3

1 17lal - 1307l 111 lvlal - l7lal

EE2(17077)) = f(: 2) 1 f(2) EE2(777,7)) = f(2 2) T f(2 2 2)
2 5 2°2°2 5

1 0,1,1) = £(0,1, 3 11 511 = f(3,1,4

By (0,1, 0)) = TORUTIOL) g 1y 1y M DD 206)
2 3 2 2 5

Here one can see that in both cases a elementary effects using the points (0, %, ;) and (%, %, %)

However, in the right picture the point (%, %, %) is reused to calculate the second elementary
effects. In the left example this is not the case and the two new model evaluations are used.
The same applies to the calculation of the third elementary effect. This can be generalized by
calculating the elementary effects over paths that have a change in each direction exactly once.
These paths allow for the calculation of one elementary effect in each direction. One should
therefore sample r of these paths to obtain all the necessary elementary effects. It would result
in a total of r(d + 1) instead of 2dr model evaluations. This is a big improvement, especially if

d is large. Sampling these paths will be discussed in the next sections.

18

3.2.2 Sampling paths using matrices

Above the sampling of elementary effects is reduced to the sampling of r paths over a grid. A
path is a set of points on the grid where each point only differs from the previous in one dimension
and a distance §. Morris used sampling matrices to describe the sampling of elementary effects.
In the sampling matrices each row represents a point of the path. Two consecutive rows of the
sampling matrices should differ in only one column and this difference should be equal to 6.
Next to that, there should be exactly one such difference in each column. These matrices can
be constructed in the following manner. First a random point on the grid, called a base value
x*, is chosen. Let B be a d + 1 by d matrix of 0’s and 1 ’s with the property that for every
column there are two rows of B, which only differ in that particular column. An example of
such a matrix would be:

00 ... 0
10 ... 0

=11 ... 0 (3.2)
11 ... 1]

Let D* be a diagonal matrix with values randomly 1 or —1. Let Jgj41,4 be an d + 1 by d matrix
of all ones. Then 3[(2B — Jyi1,4) D* + Jgs1,4) is a matrix similar to B, but now for each column
either the column is the same or all the 0’s and 1’s are switched. To give equal probability to
all the points a d by d random permutation matrix P* is applied as well. This leads to the
following matrix formula:

* * 6 * *
B* = (Jd+1,1X + 2) (2B — Jit1,0)D* + Jay1,4] P (3.3)

The rows of B* form a path on the grid with the desired properties. Each matrix or vector with
a star indicates that it is generated randomly. By independently sampling r samples for each
of these random matrices, r matrices B* are obtained. Each B* corresponds to one path in the
grid described in section 3.2.1. A row of each B* corresponds to a point in which the model
should be evaluated.

We will again look at the blue paths in the right picture of figure 3.2. The sampling matrix
belonging to this path is written down in equation 3.4

11
V1
B =% 2 3% (3.4)
IO
L2
This matrix can be constructed by using equation 3.3 and the following matrices:
[1 0 0 100
x*=[0 4 %, D*=]0 10, P=[010 (3.5)
0 0 1 0 01

All the diagonal entries of D* are 1, because the paths only changes in the positive direction. If
the path would change in the negatives direction for a certain parameter then the corresponding
entry on the diagonal of D* would be negative. Next to that, the permutation matrix is equal
to the identity matrix. This is because coincidentally the elementary effects are calculated in
the order 1, 2, 3. Another order could be sampled. That would results in a different matrix for
P* and a different path will result. Using sampling matrices to obtain a path in the grid is not
very intuitive. A geometric approach is more intuitive and this will be presented next.

19

3.2.3 Sampling paths, geometric interpretation

Now a geometric interpretation of the same process will be given. This interpretation was pre-
sented in [Tene et al., 2018]. In order to sample such a path one should first sample a cell in
the grid (green in figure 3.3). The cell should be a hypercube with the Morris step § as size in
each dimension and grid points as corners. There are (p — k)? of such cells and each cell should
have equal probability. Next one of the 2¢ corner of the cell should be sampled with equal
probability. This corner will be the starting point of the path. Finally one should use a random
permutation of the dimensions to decide in which order all the dimensions are traversed. So if a
certain dimension is the first in the permutation than the starting point of the path is changed ¢
in the corresponding dimension and such that a new corner of the original cell is obtained. This
process is repeated for the entire permutation. The process of sampling a path is illustrated in
figure 3.3, where we see the three steps above. First the cell is sampled, then a starting point is
sampled and lastly a permutation is used to create a path.

(a) Sampling a cell from the (b) Sampling a corner of the cell (¢) Sampling a permutation to
grid. as starting point of the path. obtain a path on the cell.

Figure 3.3: Visualization of the geometric interpretation of choosing a path. The axis correspond
to the axis used in figure 3.1 and have been left out for readability.

This way of sampling paths can be done independently r times. After the model is evalu-
ated in each point all the desired elementary effects can be calculated. To sample cells Latin
Hypercube Sampling can be used to obtain a good spread over the parameter space. A good
spread is especially important when r is small. Latin Hypercube Sampling was first presented in
[McKay et al., 1979]. In Latin Hypercube Sampling (LHS) all the dimensions are divided into
n equally sized intervals. A Latin Hypercube Sample is then a sample of n random numbers
with exactly one sample in each interval for every dimension. Per dimension the random points
are spread out over all the intervals. For a d-dimensional hypercube with n intervals in each
dimension this can be arranged in the following way: First generate d independent permutations
m, ..., mdof {1,...,n}. Furthermore let U ~ U[0,1] then

, i1
Vg::”ln +oh j=leod i=1.n (3.6)

An example of this transformation is given in figure 3.4. The permutations indicate in which
intervals the sample will be. Then in each interval a point is uniformly sampled. We can leave
the second term of equation 3.6 out, because we need cells instead of samples in the Morris
method. We can use the permutations to obtain n cells who are all different in each dimension.
To apply LHS for the Morris method we should set n = p — k to let the borders of the LHS

20

09 10 uniformly sample points . 10 Latin hypercube sampled points

L]
o8| ® 09} o .
07l 08
07t o
06 f o . °
. 06
05F .
5" . >" 057
04t o
04+
03} ©
o 03+
L L]
02 ° 02t *
[]
04 F ° 01l
[]
0 | | | | | | | | | | o | | | | | | | | | |
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
u v

1 1

Figure 3.4: The uniform sample on the left is transformed to a LHS sample using equation 3.6

overlap with the borders of the cells. Possibly = of the Morris method is bigger than n, the
amount of samples generated. In this case the process can be repeated until enough cells are
obtained. Then more than one sample can occur per interval, but overall a good spread of the
cells is maintained. Now that it is clear how to obtain all the necessary elementary effects their
distribution will be analyzed to make a conclusion about the sensitivity of the model.

3.3 Analyzing the distribution of elementary effects

Using the above procedure to obtain model evaluation points, elementary effects can be calcu-
lated. This would result in r sampled elementary effects for each parameter. Several sensitivity
measures are defined to indicate properties of the parameter from the distribution of elementary
effects. We denote the elementary effect of parameter j in path ¢ as EEE.Z). In the original paper
two sensitivity measures were proposed, the average and standard deviation ([Morris, 1991]).

1 « ;
W= EE!” (3.7)
=1
;= ! Z(EE(Z) — 115)? (3.8)
J r—1 — 7 J

These sensitivity measures allow for the categorization of the input parameters based on their
effects on the model output. p; gives an idea of the general effect of changing the parameter. o;
indicates whether the elementary effects change much over the grid. When p; is close to zero it
indicates that there is no general effect on the model output. This can be due to the parameter
having a negligible effect. That would be indicated by a low value for o; as well. If a low value
of |u5] is accompanied with a high value of o; then the effects are important but non-monotonic.
The different elementary effects cancel each other out in computing the average. It can be due
to the effect being non-linear or because of interactions with other parameters. When p; is big
(either positive or negative) there is a clear general effect. Together with a low value of o; this
indicates a (close to) linear effect. A high value for both p; and o; indicates non-linear effects
or interactions with other parameters. This interpretation is summarized in table 3.5. Making
a scatter plot with for each parameter the p-values on the x-axis and the values of o on the
y-axis gives a good overview. In that case points close to the origin indicate negligible effects.

21

Other points close to the x-axis indicate linear effects. Points further from the x-axis indicate
non-linear effects or interactions with other parameters. One can say that the further from the
origin the more important the parameter. An example of such a graph will be given in section
3.4. Other sensitivity measures are proposed to rank parameters on their importance. The

o\ il low high
low negligible effects (close to) linear effects
high | non-monotonic effects that are non-linear non-linear effects
and or interaction with other parameters | and or interaction with other parameters

Figure 3.5: Summary of the indications of the different effects parameters can have

first, u*, is the mean of the absolute elementary effects proposed by [Campolongo et al., 2007].
Although the information about the sign of the general effect is removed it can also indicate
effects with opposite signs as important.

d
w =Y IEEY] (3.9)

=1

Also D is proposed as a sensitivity measure to rank the importance of the parameters by
[Portilla et al., 2009]. This is the euclidean distance from the origin in the p — o-graph.

Dj=\/ui+ 0} (3.10)

Both i and Dj can be used to rank the parameters based on their influence on the model
outcome. For p} it is shown in [Campolongo et al., 2007] that the sensitivity measure achieves
similar results as the variance-based method, which is a lot more computationally intensive.
By ranking the parameters one can differentiate between the important and the unimportant
parameters. Now that we know how to draw conclusions from the distribution of elementary
effects the whole Morris method is known. In the next section examples will be given on how
to categorize the input variables in the three categories using a p-o-diagram.

3.4 Examples

The Morris method will be applied to the same examples for which the sensitivity was already
analyzed using correlations. The input parameters are assumed to be independent, because the
Morris method cannot handle dependencies.

3.4.1 Linear model with interactions

First we apply the Morris method to the linear model with interactions, which was described in
2.5.1. For applying the Morris method to these function we will use the following parameters:
r=20,p=4, k=1 and thus § = % The calculation of the ranks will be based on the value of

*

wr.

22

p~o diagram for the Morris Method for function 1, f1

45
4l

35¢ parameter | X3 Xo X3
3+ 7 1.1000 | 5.1133 | -9.9133

sl o 0.0497 | 0.0549 | 0.0613
ol w* 1.1000 | 5.1133 | 9.9133

D 1.1011 | 5.1136 | 9.9135

Lor ranks 3 2 1
N

05f

ol__e3 Y o2

-10 -5 0 5 10

Figure 3.6: The results of the sensitivity analysis of fi. Left one sees the y — o-diagram and on

the right one sees the table with the values for all the sensitivity measures.

From figure 3.6 a lot can be concluded. For the first function the standard deviation is very low
for each of the variables. It means that all the effects are close to linear, which is indeed the
case. This can also be seen in the u — o-diagram. the points all lie close to the horizontal axis,
which indicates that the effects are almost linear. The point corresponding to variable one is
very close to the origin. Therefore it might be considered that variable 1 has negligible effects.
Furthermore both p* and D rank the parameters based on their influence as expected from the

coefficients.

- diagram for the Morris Method for function 2, f2

4.5
4 3 2
357 parameter X, X5 X3
3t o 0.4000 | 11.4833 | -0.5367
o5l o 0.1491 | 3.9788 | 3.8963
Nl w* 0.4000 | 11.4833 | 3.3433
D 0.4269 | 12.1531 | 3.9331
o7 ranks 3 1 2
1l
05f
L |
0 .
10 5 0 5 10

Figure 3.7: The results of the sensitivity analysis of fs. Left one sees the y — o-diagram and on

the right one sees the table with the values for all the sensitivity measures.

Parameters X5 and X3 of the second function have a high standard deviation. This is because
these two parameters have interactions with each other. u3 is close to zero, although X3 has a

23

big influence. The effects are just not monotone. This is also why both p* and D rank it as
quite an important variable. From the graph, but also from the values of u* and D it can be
concluded that the effects of x; are negligible.

p-o diagram for the Morris Method for function 3, f3

45F ®1
L
al
351 parameter X4 Xo X3
3t I -4.5367 | 0.1900 | 10.2600
a5l o 4.5107 | 4.2458 | 0.1838
ol u 5.2367 | 3.6567 | 10.2600
D 6.3975 | 4.2500 | 10.2616
Ve ranks 2 3 1
i
0.5
3
oL— . . J :
-10 -5 0 5 10

Figure 3.8: The results of the sensitivity analysis of f3. Left one sees the p — o-diagram and on
the right one sees the table with the values for all the sensitivity measures.

For the last function it can easily be seen from the graph that the effect of the third parameter
is indeed linear. The overall effect of x; is quite negative, but the high standard deviation indi-
cates that this is mainly an interaction effect. For x5 it can be concluded that in general it has
no effect, but the standard deviation shows that this is because the effects are with interaction
or non-linear, which is indeed the case. For the previous two functions ,u; and D; were very
similar here small differences are visible. We can see D gives a bit more weight to parameters
with interaction effects. Still the differences are minimal and for the ranks of inputs using the
Morris method it will in general not matter.

In these examples we have seen that the results were equally similar in the sensitivity anal-
ysis with correlations as expected from the coefficients. However, from the Morris method a
lot more can be concluded. The interaction effects are more clearly visible. Next to that, pa-
rameters with opposite effects are also indicated as influential. In the sensitivity analysis with
sample correlations in the previous chapter, these seemed not so influential. The Morris method
randomly samples the paths to calculate the elementary effects. Different runs of the method
will therefore lead to different results. To get a feeling for the uncertainty in the method, the
analysis is repeated 100 times for function f3. The results can be seen in figure 3.9. One can
see that there is some uncertainty especially in the value for the standard deviation. However,
the differences are small and would not lead to a different characterization of the effect.

For these simple examples the effects were clear by looking at coefficients of the function. In gen-
eral one applies this method when these effects cannot be seen so easily. For the Morris method
the results were again as expected and similar to the sensitivity analysis with correlations. In
the next we will see whether it is also the case for the population model.

24

p-o diagram for sensitivity analysis of f3

¢

=

) o
251 oo

Figure 3.9: The results 100 repetitions of the Morris method on function fs.

3.4.2 Morris method on the population model

In this section we will apply the Morris method to the population model described in section
2.5.3. We cannot take the dependencies of the model into account as the Morris method assumes
that the input is independent. The parameters in the Morris method are chosen to be r = 20
p=4and é = % Choosing these parameters is elaborately discussed in the next section.

*

I o I D | ranks
r1 | 0.03095 | 0.08711 | 0.04571 | 0.09245

r9 0.2851 | 0.2462 | 0.2851 | 0.3767
1,2 0.9484 0.392 | 0.9484 1.026
K; | —0.4297 | 0.2629 | 0.4297 | 0.5038
Ky 0.4344 | 0.2044 | 0.4344 | 0.4801
x1(0) | —0.07865 | 0.07412 | 0.07865 | 0.1081
x2(0) 0.3801 0.35| 0.3801| 0.5167

OO N| WO

Figure 3.11: Values for the different sensitivity measures resulting from applying the Morris
method to the population model. The ranking of the model parameters based on their influence
is based on p*.

In figures 3.10 and 3.11 the results of the sensitivity analysis are summarized. Both in the graph
and the table one can see that aq 2 is the most important parameter. Both r; and x;(0) are not
so influential. The ranking of the parameters is very much the same as in the sensitivity analysis
where the correlations were calculated. Only the ranks of K7 and K> are reversed, but one can
see that the values that lead to that ranking are very close. Furthermore if we would have chosen
D as the sensitivity measure to base the rankings on the two would not be reversed. However,
then the ranks of Ky and x2(0) would be reversed. In general we can say that the ranks, both
based on p* and D are very similar. For all parameters the standard deviation is of comparable

25

051

0.45

04r

035

& 0.25

0.15

84

p~o diagram for the Morris Method

®3

e7

e 2

®5

e 1

®6
0.05

h "

Figure 3.10: The p — o-diagram resulting from applying the Morris method to the population
model.

size as the average. The effects are thus not close to linear. This is different from the other
analysis were all effects seemed to be close to linear. Furthermore no major differences in the
results can be spotted between doing sensitivity using Monte Carlo or with the Morris method.
However, for this Morris method 20 - (7 + 1) = 160 model evaluations were used, whereas with
the Monte Carlo simulation we used 10000 model evaluations.

3.5 Parameters of the Morris method

In this section the reader will be given an idea about how p,d and r in the Morris should be
chosen based on information of the model. In the original paper by Morris it was proposed to
use p even and & = 21%1. Then the computation would be less complicated. First p and ¢
which are closely related will be discussed and next r will be discussed.

3.5.1 Choosing p and ¢

The choices for p and § go hand in hand, because § = p%l, for k € {1,...,p—1}. These param-

eters have two main influences on the performance of the method. The first main influence is the
accuracy of the approximation of the derivatives. In the Morris method we are approximating
derivatives with elementary effects. The smaller the step of the elementary effect the better the
approximation. A simple function where we can see the effect: f(x1,z2) = sin(10z1) cos(10z2)
on [0,1]2. This function has derivatives in the interval [—10, 10], which change a lot over small
intervals. The function is plotted in figure 3.12.

26

plot of f(x1, xz) = (sin(10x)*cos(10x)

T

N

B
"‘5“\\“\\‘.

)

(I

I

Figure 3.12: The function f(z1,xs) = sin(10z1) cos(10z3) on [0, 1]?

Comparison of the elementary effects distribution for p=3 Comparison of the elementary effects distribution for p=10
‘ ' \ I i " w i i ‘ : :

0.6 0.3
[0 perivatives distribution [0 perivatives distribution
[Elementary effects distribution (p=3) [Elementary effects distribution (p=10)
0.5 .25
=041 >
1) 1)
c c
[} [}
=) =)
g g
&= 0.3 =
o o
2 2
T T
© ©
Szt -
0.1+
0
-10 -5 0 5 10
value of derivative or elementary effect value of derivative or elementary effect

Figure 3.13: The empirical distribution of the elementary effects for p=3 (left) and p=10 (right).
The distributions are compared with a Monte Carlo estimate of the distribution of derivatives.
The derivatives and elementary effects are with respect to z1 in f(x1, z2) = sin(10z1) cos(10z2).

In figure 3.13 the distribution of the elementary effects according to the Morris method is
graphed for two values of p, 3 and 10. For comparison one can see the exact distribution in
red. Calculating the exact distribution is in general not possible, but in this example it can
be computed easily. One can see that in the left histogram the higher values of the derivatives
are completely missed, because they are averaged out with smaller effects. The influence of the
parameter seems a lot less than it in fact is. In the right histogram we see that the accuracy is a
lot better when ¢ is decreased. There is, however, also a downside to decreasing §. Decreasing ¢
means that p increases, which results in a worse coverage of the parameter space if the number of
samples r is kept the same. Increasing p means that the amount of cells increase exponentially,
because this amount is equal to (p—1)%. The fraction of the parameter space that is investigated
is at most ﬁ. So in high dimensions only a very small part of the parameter space is
investigated. The Latin Hypercube Sampling, as described in section 3.2.3, takes care of this
problem partially, by making sure the chosen cells are spread out over the parameter space.

27

However, still only a small fraction of the cells is investigated.

14 Spread of.the model evaluatiogs for p=4 y Spread of the model evaluations for p=10
0.9 0.9 °
0.8 0.8 ° ° °
0.7 0.7
L L] []
0.6 0.6
< 0.5 < 0.5
0.4 0.4
L L] L) L] L]
0.3 0.3
0.2 02 ° °
0.1 0.1 ®
0 * * 0e
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
X X

1 1

Figure 3.14: The dots represent model evaluation points in the Morris method for p = 4 (left)
and p = 10 (right). Also r = 5 was used.

In figure 3.14 this is visualized for two dimensions where 5 cells were chosen. One can see that
for a small value of p the spread of the model evaluation points over the parameter space is
a lot better. In the right subfigure for p = 10 there are a lot of white spaces, where there
are no model evaluation points. This picture shows the effect in only two dimensions, when
the dimensions increase the amount of cells increases exponentially and this becomes more of a
problem. There is thus a trade-off between the coverage of the Morris method and the accuracy
of the derivatives estimations. Choosing k large is not a good idea, because then one has bad
coverage and bad derivative approximations. Generally we would set £k = 1, p = 4 and thus
§ = L. For specific models and also for depending on the value of r other parameter values

3
might be better. Choosing a value for r will be discussed in the next section.

3.5.2 Choosing r

In the previous section the trade-off when choosing a value for p was described. For r the choice
depends on the available computational power. As was shown in section 3.2.1 the amount of
model evaluations is 7(d + 1). In general sensitivity analysis is applied when the model is very
complex. Therefore most of the time a lot of model evaluations is not possible, because one
model evaluation already takes a long time. The value of r is therefore mostly dependent on the
available computational power and the computational intensity of the model. It seems that r
should be at least 10 for p = 4 and a high dimension d, such that different parts of the param-
eter space are covered. If r < 10 already is too costly then the number of parameters that is
investigated should be decreased to still reach » = 10. Results that are obtained with a very low
r probably have no meaning. An r higher then 10 is better because there is a better coverage
of the parameter space. If can be chosen a lot larger then 10 than p can be increased, because
a good coverage is maintained. The value of r therefore also influences the trade-off described
in the previous section. For the rest of this report generally the values » = 20, p = 4 and thus
0= % are used. These values are similar to often used values.

Now one has a full picture of the workings and abilities of the Morris method. As said in

the introduction this method assumes independence between the input parameters. The cells
and corners are all sampled with equal probability. These probabilities should not be all equal

28

when there are dependencies between the input parameters. In the next chapter the Morris
method will be extended such that dependencies in the input can be taken into account.

29

Chapter 4

Copula-based Morris method

In the previous chapter the Morris Method was presented. A big emphasize was put on the
geometric interpretation of the Morris method. This will be used in this chapter. Here the
copula-based Morris method as introduced in [Tene et al., 2018] will be presented. We start
with an introduction into copulas. Next, the actual extension of the Morris method that allows
dependencies between parameters is presented. In the end we will analyze the effect of taking the
dependencies into account for the two examples for which the sensitivity was already analyzed.

4.1 Describing dependence: copulas

Copulas are functions that describe dependence. They will be used in the extension of the
Morris method, which takes dependencies into account. The introduction to copulas is based
on [Nelsen, 2006], where a more in-depth presentation of copulas can be found.

A transformation that can be applied to continuous random variables is the probability in-
tegral transform. This is a transformation between the unit uniform distribution and another
continuous distribution using the cumulative density function (CDF), notated as F.

X = Fx(X) ~ U([0,1]) (4.1)

A copula is a multidimensional distribution function with uniform marginals. The Sklar Theorem
([Sklar, 1959]) then states that by using the probability integral transform every multidimen-
sional distribution can be rewritten as a copula and its marginals. For a random vector X with
distribution function Fx and corresponding copula C one can write

Fx(x) = C(Fx, (z1), ..., Fx,(z4)) (4.2)

What we can see from the equation is that we can change the marginals without changing the
copula or the dependence. We can model the dependencies between different variables and their
marginals. This property makes them very useful, especially for high dimensional statistical
problems. First one can estimate the marginals and next one can separately estimate the
dependence structure. Fitting a multidimensional distribution function with different marginals
would be very cumbersome.

4.1.1 Types of Copula

There are many types of copula all describing different dependence structures. The three used
in this thesis will be introduced here.

30

Independence copula The simplest copula is the independence copula. The distribution of
a vector of independent random variables is the product of the marginals. The copula
corresponding to independence is therefore a function that takes the product of all the
inputs.

C(ul,...,

Plot of Independence copula pdf Scatter plot of 5000 samples of the Independence copula

2

u

1

Figure 4.1: The visualization of the two-dimensional independence copula with the PDF (left)
and a sample (right).

Gaussian copula An often used copula is the Gaussian copula. As the name suggests it is
closely related to the normal distribution. The parameter of the Gaussian copula is a
correlation matrix R. The Gaussian copula is given by

Cgaussian(u) = (I)R(CI)fl(ul)’ e CI)fl(ud)) (4.4)

Where ® is the cumulative distribution function of the standard normal,

D(2) = \/12?/ e~/ gt

(== G-) R (x -)
@Rxl,...xd:/ / exp<x,u R~ X;L)dX

’ oo Jooo \/(2m)EdetR 2
is the multivariate normal distribution with covariance matrix R. The Gaussian copula
cannot be written as an explicit function, because ® is not a explicit function. The
Gaussian copula is used a lot, because of its relation with the normal distribution. In this
report the dependencies between the input parameters are also modelled with a Gaussian
copula.

Archimedean copula The Archimedean copulas are a whole class of copulas. They all have
a different generator function, ¢ with usually one parameter (#).The generator function
should be d-monotone ([McNeil et al., 2009]). The Archimedean copulas can generally be
written as follows:

C(u;0) = w1 (W (ur;0) + - + 9 (ug; 0):) (4.5)
An example of an Archimedean copula is the Gumbel copula. This copula has generator
function v (t) = (—log(t))?. The parameter f should be in [1,00). For two dimension the
copula has the following explicit formula:

C(u;0) = exp | ~((~ log(u1)0 + (~ log(v))")/*

For many generator functions the Archimedean copulas have an explicit expression, which
makes computations easier.

31

Plot of Guassian copula pdf with parameter ;=0.7

Density
B

of Guassian copula pdf with parameter p=0.7

Figure 4.2: The visualization of the Gaussian copula with the PDF (left), a sample (middle)
and the contourplot of the PDF (right).

Plot of Gumbel copula with parameter 1.2 Sc1

09
08
o1
06
3V 05
04
03
02

0.1

0

P —

Contourplot of Gumbel copula pdf with parameter 9=1.

Figure 4.3: The visualization of the Gumbel copula with the PDF (left), CDF(middle) and

contourplot of the PDF (right).

4.1.2 Finite difference formula

The problem of calculating probabilities using a copula is now addressed. Only the simple cases
of calculating the probabilities over hyperrectangles is discussed. In one dimension calculating
probabilities over intervals is trivial. Suppose one has a random variable Y with cumulative
distribution function (CDF) Fy = P(Y < y) and wants to know the probability of Y being in
some interval [a,b]. The following applies

P(Y € [a,b]) = P(Y < b) — P(Y < a) = Fy(b) — Fy(a).

(4.6)

The idea behind equation 4.6 can be extended to more dimensions. Probabilities of random
variables over hyperrectangles can be calculated using the CDF and the finite difference formula
as given by [Nelsen, 2006]. The probability of a random vector X with as distribution a copula

C over a hyperrectangle between the points a = (aq, ...,

Plag < @1 < bi,... a0 S @q < bg) = AL AMC

where the A is the difference operator defined by AZ’J', C =C(ug,...

b,

agq) and b = (by, ..

yug)—Cl(uq, ...

., bq) is given by
(4.7)

gy, Ug).

As an example the probability of a random vector X with as distribution the Gaussian cop-

ula with correlation p = 0.5 is calculated, X ~ C' =
over the rectangle with corners (0.8,0.6) and (0.4,0.1).

Gaussian
C’0.5

. The probability is calculated

P(0.4 < X; < 0.8,0.1 < X3 < 0.6) = C(0.8,0.6) — C(0.4,0.6) — C(0.8,0.1) + C(0.4,0.1)
= 0.5380 — 0.3162 — 0.0974 + 0.0758

= 0.2002

32

(4.8)

0.6 haanasans Semmmee-
+- o+

0'(1) EE

0 0.4 08 1

Figure 4.4: The example above illustrated. Only the area over which it was the goal to calculate
the probability has a positive count.

This example is illustrated in figure 4.4. It shows how by calculating probabilities over different
areas and adding and subtracting them, the probability of the right area is obtained. The pluses
and minuses indicate how often each area is added or subtracted. The basic properties of copulas
are now given. In the rest of this chapter these will be used to extend the Morris method to
take dependencies into account.

4.2 Copula-based sampling of paths

The Morris method will be extended now by taking dependencies into account. The method
described in [Tene et al., 2018] will be explained and elaborated. It is assumed that next to the
usual setting a copula is defined on the input parameters. All copulas are allowed, but if the
independence copula is chosen, the method comes down to the original Morris method. The
only thing that will be altered to the Morris method is the sampling of the paths over which the
elementary effects are calculated.

4.2.1 Sampling a cell

We follow the process of sampling paths in the geometric interpretation of the Morris method.
We therefore sample a cell first. In section 3.2.3 it was mentioned that in the original Morris
method this can be done using Latin Hypercube Sampling (LHS). In [Packham and Schmidt, 2008]
it was presented how LHS can be altered to take dependencies into account. Instead of random
permutations as used in equations 3.6, permutations are constructed using the copula. Again
each of the d dimensions is divided into n subintervals. In the extended Morris method n should
be chosen to be equal to p — k. Now a sample, Xj,..., X, of the copula is drawn. In each
dimension the sample is ordered. The index in the ordered sample is called the rank. The rank
Rg is the rank of sample 7,1 < ¢ < n in dimension j,1 < j < d. These ranks form a permutation,
but this permutation is based on the copula. The ranks can then be used as the permutation
in equation 3.6. In figure 4.5 it is visualized how a copula sample is transformed to a Latin
Hypercube Sample of cells. But the Latin Hypercube Sample still shows the dependencies of the
copula. The method is called Latin Hypercube Sample with Dependencies (LHSD). Equally as
in the original method we don’t mind about the samples in the cell as long as we know the cells.
Note that using LHSD with the independence copula is equivalent to LHS. By using LHSD the

33

10 Samples from Gaussian copula with p=0.8 10 Latin Hypercube sampled cells

17 ° 17
L]

09 09+

08} 08t

07r o 07 -
06 06
x 051 L] > 05 -
04 r 04
03r ° 03
021 02
'y L]
011 01

. I
o ® ‘ ‘ ‘ ‘ ‘ ‘ ‘ | 0 L

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 07 08 0.9 1
X

1 V1

Figure 4.5: The copula sample on the left is transformed to a LHSD sample using equation 4.9.
For these pictures the Gaussian copula with parameter p = 0.8 was used.

cells are spread over the entire hypercube, but with taking the dependencies into account. The
corners of cell ¢ are in the end given by

d i i
Celli:H{Ri LA 1+5} (4.9)

et p—1"~p-1

In this equation the ranks are based on a copula sample. Sampling cells with LHSD leads to
p — k cells per sample and can should be repeated until r cells are obtained.

4.2.2 Sampling a starting point

Once a cell is sampled a corner of this cell should be sampled as starting point of the path. The
copula is a distribution function on the unit hypercube, but we only need a distribution of the
grid points. We will transform the copula to a distribution on the grid points. The bases for this
should be that points with a lot of density from the copula close to it, should be more probable

in the grid point distribution. If x is a point in the grid we choose the following volume to belong

to that point, Vi = (H?Zl[xj — 30,z + %5]) N[0,1]¢. The last intersection is to make sure that

everything is well defined also on the boundary. Now each point has a volume assigned to it we
can say that the probability of that corner is equal to the probability of the volume according
to the copula.

P(x) = C(u)du (4.10)

Vi

This is now a discrete distribution were each corner has a probability. To sample a corner after
choosing a cell, the probability distribution should be conditioned on the cell that is chosen. Let
the cell be given by Cell = H;l:l{aj,bj} with the corresponding volume Ve = H;l:l[aj,bj].
We then define the conditional probability of the corner given the cell by

P(Vx N Veen)
P(Voen)
The areas in this equation are illustrated in figure 4.6. The calculation comes down to the

following. After choosing the cell, each dimension is divided in two. This gives 2¢ hyperrectangles
each with exactly one corner of the original cell. The probability of that corner is then the

]P’(x]Cell) = P(Vx|vCeH) = (411)

34

Figure 4.6: Illustration of the areas and points mentioned in this section

probability of the corresponding hyperrectangle according to the copula. The calculation of
these probabilities can be done using the finite differences formula as presented in 4.1.2. Now
that a distribution of the corners of the chosen cell is obtained it is easy to sample one of the
corners as the starting point of the path. This way a corner is sampled by using the copula.

4.2.3 Permutation

Once a starting point is obtained a permutation of the dimensions is needed to get a full path.
In this section we diverge from the method described in [Tene et al., 2018]. In that paper it
was proposed to randomly permute the dimensions as was done in the original Morris method.
Here it is chosen to use the distribution of the corners obtained in the previous section for the
permutation as well. The second point in the path is a corner of the cell adjacent to the starting
point. This point is obtained by sampling from these adjacent corners. The probability used is
the distribution of the corners as obtained in the previous section, conditioned on the corners
being adjacent to the starting corner. We can do the same for the other points of the path. Each
time the probability distribution on the corners, conditioned on being adjacent to the previous
point, is used. Next to that the dimension in which the corners differ should not have been
used in the path before. This way a path over the cell is obtained. These are the same kind of
paths as obtained in the Morris method. But very importantly the path is now sampled with
taking the copula as much as possible into account. The paths are not sampled with the same
probability for all the paths as in the Morris method, but the copula favours certain paths above
others. Still all paths can occur only some will be unlikely. The paths should be used in the
same way to obtain the elementary effects as in the Morris method. Also the analysis of the
distribution of the elementary effects is equal. But now the dependencies between the input
parameters have been taken into account.

4.3 Examples

We will now apply the extended Morris method to the two examples to which we applied the
Morris method. For these examples we can see what the results are of taking the dependencies
into account. The standard parameters are used: r = 20, p = 4, k = 1 and thus 6 = %. The

3
ranking of the input variables will be based on p*.

35

4.3.1 Copula-based Morris method on linear model

We apply the copula-based Morris method to the linear model with interactions, which can be
found in 2.5.1. The results of the original Morris method applied to this model can partially be
seen in the graphs, but are most extensively analyzed in 3.4.1.

p-o diagram for sensitivity analysis of f‘1

® with dependencies

4.5 ® without dependencies
al
351 parameter X, X5 X3
3t I 1.098 5.098 -9.897
a5l o 0.0382 | 0.03148 | 0.06297
ol w* 1.098 5.098 9.897
D 1.099 5.098 9.897
Ly ranks 3 2 1
i
0.5}
0 23 l e 02 x
10 5 0 5 10

Figure 4.7: The results of the sensitivity analysis of f; with the correlated parameters. The
results without the correlated parameters are also plotted as a reference. Left one sees the
1 —o-diagram and on the right one sees the table with the values for all the sensitivity measures.

In figure 4.7 we see the results of applying the copula-based Morris method on f; as given in
2.5.1. We see in the y — o-diagram that the points coincide. The correlations have almost no
effect on the results of the sensitivity analyses. This is not surprising as we choose the function
such that it has almost no interactions. When there are no interaction between parameters the
values of other parameters do not matter for the effects of a parameter. Sampling paths based
on correlations between parameters then has no effect.

36

p~c diagram for sensitivity analysis of f2

5 -
® with dependencies
457 | ® without dependencies
4l
35y 'é v parameter X4 X X3
3+ n 0.395 | 10.14 | 0.3217
25l o 0.1146 | 3.269 | 3.227
oL w* 0.395 | 10.14 | 2.742
D 0.4113 | 10.66 | 3.243
ver ranks 3 1 2
1k
0.5
0 : : o1 - -
-10 -5 0 5 10

Figure 4.8: The results of the sensitivity analysis of fo with the correlated parameters. The
results without the correlated parameters are also plotted as a reference. Left one sees the
1 —o-diagram and on the right one sees the table with the values for all the sensitivity measures.

In figure 4.8 one can see the results of applying the copula-based Morris method to function
fo. There are some differences between the results with and without dependencies now. This is
because the interaction effects are a bit bigger. The effect of parameter 1 was negligible and still
is. The effect is negligible over the entire parameter space. It therefore doesn’t matter which
paths we sample with a higher probability. The parameters 2 and 3 have a big interaction effect,
however, these were chosen uncorrelated. Therefore the results are still similar as when there
were no interactions.

p-o diagram for sensitivity analysis of f3

5
® with dependencies
45| @ without dependencies
al
o2
351 parameter X1 X X3
3t .*1 2 1 -3.855 | 0.3167 | 10.31
25l o 2.801 | 3.724 | 0.1889
ol uw* 4.075 | 3.207 10.31
D 4.765 | 3.738 10.31
Ly ranks 2 3 1
i
05
0 : : ' ‘ L
10 5 0 5 10

"

Figure 4.9: The results of the sensitivity analysis of f3 with the correlated parameters. The
results without the correlated parameters are also plotted as a reference. Left one sees the
1 —o-diagram and on the right one sees the table with the values for all the sensitivity measures.

Figure 4.9 shows the results of the sensitivity analysis of function fs. Here changes between

37

the sensitivity analysis with and without dependencies can be seen. Parameters 1 and 2 have
an interaction effect and they are correlated. This results in a different value for the sensitivity
measures. Also both p* and D indicate that X; and Xs are less important relative to X3 now.
This is because the interaction effect is more important now and that cancels out the linear
effects of the parameters. For parameter three the effects are again minimal.

In general we see that taking dependencies into account only has an effect if the parameters
have an interaction effect. This is in contrast to the sensitivity analysis with the correlations of
the model output with different inputs. There, being correlated with an influential parameter
made the parameter itself also influential. The Morris method is made global by summarizing
a set of One-At-the-Time effects. Although taking the dependencies into account leads to the
sampling of different elementary effects, still the effect of a single parameter is measured. The
influence of the taking the dependencies into account is therefore not so big. If one compares
the effects with the uncertainty in the method is visualized in figure 3.9 it can be questioned
whether the effects are significant.

4.3.2 Copula-based Morris method on population model

Now we have seen that how the Morris method can be applied in the case of dependencies we can
apply it to the example of the population model as described in 2.5.3. The results of applying
the Morris method with and without dependencies will be compared. The results will also be
compared to the sensitivity analysis with correlations on the populations, which can be found
in section 2.5.4. We will use the standard parameters again: r =20, p =4 and § = %

- diagram for sensitivity analysis of the

competetive Lotka-Volterra equations
0.5 o3

0.45
041
031

€7 0.25F
.7.5
0.2+ °2

o4 o7

o6 o2
0.1

0.05+ o1 ® with dependencies
® without dependencies

0 1 | 1 | 1 1 1 1]
0.6 -0.4 0.2 0 0.2 0.4 0.6 0.8 1 1.2

Figure 4.10: The p — o-diagram for the sensitivity of the competitive Lotka-Volterra equations
as described in section 2.5.3. The Morris method is applied both with and without taking into
account the dependencies.The corresponding parameters are » = 20, p = 4 and § = % for both
cases.

38

I o w D | ranks

r1 | 0.01562 | 0.07398 | 0.04405 | 0.07562
T 0.2263 | 0.08347 | 0.2263 | 0.2412
12 1.114 | 0.5208 1.114 1.23
K —0.486 0.215 0.486 | 0.5315

Ky 0.4982 | 0.2781 | 0.4982 | 0.5706
x1(0) | —0.09104 | 0.09816 | 0.09104 | 0.1339
x2(0) 0.2925 | 0.1233 | 0.2925 | 0.31747

= O N W= O

Figure 4.11: Values for the different sensitivity measures resulting from applying the Copula-
based Morris method to the population model with dependent input parameters. The ranking
of the model parameters based on their influence is based on u*.

In figure 4.10 and one can see the results of applying the Morris method both with and without
taking dependencies into account. The difference between taking into account the dependencies
is visible in the graph, but it is not that big. The differences do not lead to a different cate-
gorization of parameters. The distribution of elementary effects is different when taking into
account the dependencies. The ranks are very similar. Only K, K2 and z2(0) are switched
around a bit. It is still very clear that oy o is the most important parameter in this model.

The results of the sensitivity analysis can also be compared to the sensitivity analysis with
Monte Carlo simulation as in section 2.5.4. The results for the cases without dependencies
turned out to be very similar. In the previous section we already saw that the influence of
taking dependencies into account is very different for the Morris method and the Monte Carlo
sample correlation. For the population model this is also the case. The influence of parameters
does not change that much in the population model, whereas parameters correlated with a1 o
became a lot more important in the other sensitivity analysis. If we look at the ranking for
the different parameters the only thing that is the same is that oy o is still the most important
parameter. The other ranks are different.

In this chapter the finite differences formula given by equation 4.7 is used. It turns out that in

some cases the finite difference formula is too computationally intensive for practical use in the
Morris method. In the next chapter this problem will be analyzed.

39

Chapter 5

Improvements in calculations of
corner probabilities

In the previous chapter it is shown how the Morris Method can be adapted to take dependencies
between parameters into account. There the finite differences formula was used to calculate the
probabilities of the corners. The problem is that the method is too slow for copulas, without
an explicit expression for the copula CDF. For instance, applying the method to a problem
with 8 parameters takes already about an hour to find the points in which the model should
be evaluated. The Morris method is often used as a screening method. Therefore most of the
time tens or hundreds of parameters are used. The problem is that the computational intensity
increases exponentially with the dimensions. First of all, if the dimension increases one, the
number of corner probabilities to calculate doubles. Next to that, the amount of copula CDF
evaluations per corner doubles. For non-explicit copulas one such evaluation is already lengthy
and for high dimensions this becomes problematic. The calculation of corner probabilities is the
part of the method that is too computationally intensive, we therefore focus on improving the
implementation of this.

5.1 Approximating corner probabilities

5.1.1 One-cell approximation

In [Tene et al., 2018] it was proposed to compute the corner distribution only once. The idea is
to calculate the corner probabilities as if the cell chosen would be the entire cube. The corner
probabilities would be calculated for the entire unit hypercube. Then for each sampled cell the
corner probabilities are assumed to be the same. This way the corner probabilities only have to
be calculated once, but it uses the assumption that the copula has a similar behaviour among
all cells. This can be the case for copulas with a lot of symmetry. At the end of the section, the
method will be compared with some numerical integration techniques to see whether it can be
used in general.

5.1.2 Numerical integration

As one can see in figure 4.4 when using the finite differences formula the probabilities over
certain areas are calculated often and then added and subtracted. This is because a copula
distribution function gives the probability of the hyperrectangle between a point and the origin.
However we only need the probability over a small hyperrectangle. In this section we will
calculate the probabilities only over the hyperrectangle by numerically integrating the copula

40

probability density function. For copulas without an explicit copula CDF numerically integrating
the PDF will often be faster than using the finite differences formula. However, there will be an
error, because we numerically integrate. In this section we will present four ways of numerical
integration. At the end of the section, the numerical integration methods together with the
one-cell approximation will be compared based on error and speed.

Midpoint rule

The first type of numerical integration that is discussed will be midpoint integration. For example
in [Vuik et al., 2007] a 1-dimensional midpoint rule is mentioned. The idea is that when one
has to integrate a function over an interval the function value in the middle of the interval is a
good representation for the function value over the interval. One can then multiply the middle
function value with the size of the interval. Midpoint integration can be written in formula’s as

follows: ,
[1@~ g (‘“2”)) b a) (5.1)

How equation 5.1 approximates integrals can be seen in figure 5.1, where it visualized for an
exampled. When the interval is wide or the function differs a lot over the interval the approx-
imation is not that good. It can, however, be improved by dividing the interval into n smaller
subintervals and applying the midpoint rule to each subinterval. This idea is illustrated in the

3
right subfigure of figure 5.1. In figure 5.1 it is illustrated how / x?dx can be approximated
1

10 T T T T T 10 T T T T I

S N e O
[

S N e O
[
|

| | |
0 05 1 15 2 25 3 0 05 1 15 2 25 3
z z

Figure 5.1: The midpoint rule with 1 (left) and 4 (right) function evaluations illustrated. The
3

integral / z?dx is approximated.
1

with the midpoint rule. We will calculated the green areas to see what the approximation error
3 2
is. First we notice that the actual value is / 2?dx = 85. In applying the midpoint rule we use
1

a=1,b=3and f(z) = 2%

/13 dr ~ <‘“2r3>2 (3-1)=38 (5.2)

41

The approximation error is thus equal to % We are also going to apply to midpoint rule where
we use four subintervals.

3 1.5 2 2.5 3
/ 932d:c—/ 2dx—|—/ 332d:c+/ 332dx—|—/ 22dx
1 1.5 2 2.5
1.5+ 2\
) 5—1)+< ; > 2-1.5)

~(%
. <2+ > (25-2) 1 <2.52+3>2(3_2.5)

69
8

= (1.5625 + 3.0625 + 5.0625 + 7.5625) - 0.5 = (5.3)
The approximation error is now equal to 2—14. By increasing the amount of subintervals the
approximation error was decreased and this works in general. The midpoint rule can be extended
to higher dimensions. As V' is a hyperrectangle with equal length in each dimension the middle is
easily found. Then again the function is evaluated in the middle point. As in the 1-dimensional
case smaller subvolumes can be created to decrease the error. Now in each dimension the
interval should be split in an equal amount of subintervals. Again one evaluates the function in
each of the midpoints and multiplies with the corresponding volume. One would now obtain a
approximation for the integral by summing over the results of all volumes.

Trapezoidal rule

A more sophisticated algorithm is the trapezoidal rule ([Vuik et al., 2007]). This algorithm uses
the average of the two outer function values as an overall average. The method converges faster
than the midpoint rule. The calculation is as follows:

/ flx dacNM(—a) (5.4)

This method is illustrated in figure 5.2 for the same example as with the midpoint rule. As with

10 T T T T T].0 T T T T T

S N OB O
[
|

S N = O
[
|

| | |
0 05 1 15 2 25 3 0 05 1 15 2 25 3
T z

Figure 5.2: The trapezoidal rule for integration illustrated with 2 (right) and 5 (right) model

3
evaluations. The integral / z?dx is approximated.
1

the midpoint rule we can calculate the approximations to see what the error is. Again a = 1,
b= 3 and f(x) = 22 are used and the actual value is still 8%.

3 12 32
/ ridr ~ ;L (3—1)=10 (5.5)
1

42

The approximation error is 1%. Again we also apply the method with 4 subintervals.

3 1.5 2 2.5 3
/ 22dx :/ x2d$+/ x2d$+/ a:Qd;r—l—/ 22dx
1 1 1.5 2 2.5

12 +1.52 1.52 4+ 22
~ %(1.5 1)+ %(2 —1.5)
22 4252 2.52 + 32
T 952y 4 22X T3 g
2 2
35
= 0.8125 + 1.5625 + 2.5625 + 3.8125 = T (5.6)

Again the approximation error is decreased. Now it is equal to % In this example the midpoint
rule was more accurate, but in general the trapezoidal rule converges faster than the midpoint
rule. So when more and more subintervals are used the error will decrease faster. There is one
problem. A lot of copulas do not behave well at the boundary of the unit hypercube. In figure
4.2, where the Gaussian copula is displayed it can be seen that at the exact boundary the value
of the PDF is zero everywhere, although at some boundaries the value of the copula close to
the boundary tends to infinity. With the trapezoidal method, the PDF is also evaluated at the
boundary of the unit hypercube, but its value there is not representative for the value in the
region. Therefore the approximation will be off.

Monte Carlo Integration

Monte Carlo integration uses random sampling for calculating an integral. This idea was in-
troduced in [Metropolis and Ulam, 1949]. More information about this method can be read in
[Robert and Casella, 2013]. The idea is to construct a random variable, Y, with as expectation
the desired quantity. The law of large numbers states that in the cases of i.i.d. random vari-
ables that the sample mean converges to the average. If one wants to integrate a function over
an hyperrectangle V = ngl[ai, b;] one can apply this in the following way. First N uniform
samples from the hyperrectangle are drawn. Next, the function is evaluated in these points and
multiplied with the volume of V. Then the sample mean is calculated. According to the weak
law of large numbers this than converges to the expected value, which is the exact integral. This
can be written down in equations as follows where X; ~ U(V) i.i.d., ¥; = ||[V||f(X;) and ||V]|
denotes the volume of area we are integrating over:

N N
RIS st = £ 3o > B0 = [00 5)
i=1 i=1 v

An estimation for the standard error of the estimate is ||V]|4/ varT(Y) The error decreases thus

with square root of the number of samples. In general Monte Carlo integration works well for
integrals in high dimensions, which we are dealing with in the copula-based Morris method.

Antithetic variates

Sometimes the standard error in Monte Carlo can be decreased by using antithetic variates
([Hammersley and Morton, 1956]). The idea is that if one uses a randomly generated point that
one also uses the opposite point (whatever that may be according to the setting). Then the

43

average of the estimate based on those two points is used instead of the estimate based on the
single point. For the example above with calculating the integral over a hyperrectangle this can
be done as follows. First one draws a uniformly distributed vector U. One then transforms this
to the hyperrectangle, X; = [a1 +u1(by1 —a1),...,aq+uq(bg—aq)], over which we are integrating.
Next to this point one also uses X; = [a1 + (1 — u1)(by — a1),...,aq + (1 — ug)(bg — ag)]”. This
is the opposite point in our setting. All the coordinates are flipped with respect to the center of
the cell. The variance of the combined estimate is now as follows:

J(X5) + f(&)) _ Var(f(Xi)) + Var(f(X;)) + 2Cov(f(Xi), f(X:)

. y (5.8)

Var(Y) = Var (
So the variance is reduced if the covariance is negative between the function value and the
function value in the ‘opposite’ point. A reduced standard error means that the estimate is
more accurate. This method is thus preferred over standard Monte Carlo when the covariance
between the two function values is negative.

Comparison of numerical integration techniques

Four ideas for numerical integration were presented. The numerical integration methods are
similar in the sense that they all evaluate the copula PDF in several points and use a weighted
average of the PDF values in these points as an estimate for the value over the entire volume.
The methods differ in which points the PDF should be evaluated. In the midpoint rule the
points are in the middle of smaller hyperrectangles. In the trapezoidal method the points are
also fixed, but points at the border are also used. In Monte Carlo integration the points in which
the PDF is evaluated are random. By using antithetic variables the points are still random, but
a bit better spread is achieved. The points in which the PDF is evaluated are visualized in
figure 5.3. Note that for the last two figures the algorithms are (partially) random and the
distributions of the points is therefore just an example. However, also these figures should give
an idea of what the distribution of model evaluation points should look like.

(a) Midpont rule (b) Trapezoidal rule (¢) Monte Carlo (d) Antithetic variates

b2 b2 [4 @ \ 4 bg bQ

° ° i

o []
° ° ® ° ® ¢ L P
e o

° ° o ®

as a e ® L X2) a2
al by a1 by al by al by

Figure 5.3: The function evaluation points for different numerical integration techniques. In the
figure for the antithetic variates the colours corresponds to sets of points and their ’opposite’
point.

5.1.3 Conclusion on approximating probabilities

To compare the methods two quantities are used. The first quantity is the speed of the algo-
rithm. The algorithms are used to speed up the copula-based Morris method, therefore speed is
important. The second quantity is the error the approximations causes. As we are calculating

44

probabilities instead of general real numbers we will use a non-standard error measure. We will
measure the error by the average change in log-odds. Function 5.9, the change in log-odds, has
desired properties in comparing probabilities, for instance E(z,y) = E(1 — 2,1 —y).

log T — log Y
11—z 1—y

To compare the different methods of approximating the probabilities it is chosen to apply the
methods to calculate all corner probabilities in grid with p = 5 and d = 5. The speed is measured
and the average change in log-odds is calculated. In the first table the underlying copula is the
Gaussian copula with correlation parameter p = 0.5 for all the parameters. In the second table
the underlying copula is the Gumbel copula with parameter § = 2. § = 2 comes down to a
Kendall’s 7 equal to 0.5. The linear correlation cannot be calculated from 6. The important
difference is that the Gumbel copula has an explicit expression, whereas the Gaussian does
not. For the numerical methods in brackets is the amount of PDF evaluations per probability
calculation.

E:[0,1]* — [0,00) by E(z,y) = (5.9)

method speed (in seconds) | average error (difference in log odds)
Finite differences 668.533 0
one-cell approximation 0.608 0.6515
Midpoint (N=1) 4.395 0.0313
Midpoint (N=3125) 66.069 0.0150
Trapezoidal (N=32) 7.7376 0.2202
Trapezoidal (N=1024) 60,916 0.0775
Monte Carlo (N=10) 5.122 0.1129
Monte Carlo (N=1000) 32.332 0.0111
Antithetic variates (N=10) 7.834 0.1130
Antithetic variates (N=1000) 37.592 0.0110

Figure 5.4: Results for simulating the calculation of all the corner probabilities in a grid with
p =>5 and d = 5 for the Gaussian copula with correlation parameter p = 0.5 for all parameters.
The parameters in brackets indicate the amount of function evaluations used per probability
calculation.

method speed (in seconds) | error
Finite differences 9.918 0

one-cell approximation 0.051 1.0747
Midpoint (N=1) 144.194 0.0728
Trapezoidal (N=1) 1419.007 0.1582
Monte Carlo (N=4) 368.240 0.3361
Antithetic variates (N=4) 385.616 0.3359

Figure 5.5: Results for simulating the calculation of all the corner probabilities in a grid with
p=>5 and d = 5 for the Gumbel copula with parameter 6§ = 2.

First of all one can see that all the approximation algorithms provide a speed improvement for
the case with the Gaussian copula. This can be explained by the fact that PDF of the Gaussian
copula can be calculated a lot easier than the CDF as there is no explicit expression for the CDF

45

in contrary to the Gumbel copula. Exactly calculating the probabilities using the finite differ-
ences formula is therefore already quite fast. Using a lot of PDF evaluations to estimate these
probabilities is taking more time and there is also an approximation error. One can conclude
that the numerical integration techniques only make sense when the PDF is easy to calculate
and the CDF not, like with the Gaussian copula. In cases with an explicit formula for the CDF
as with the Gumbel copula, numerical integration should not be used. For these cases one can
either use the once-cell approximation or the finite differences formula. The one-cell approxima-
tion is very fast, but also very inaccurate compared to the numerical integration methods. As a
reference the error of the exact solution with giving all corners the same probability is 0.4655.
It is therefore best to use the finite differences formula. It was suggested in section 5.1.1 that
the error of the one-cell approximation would decrease when there are more symmetries. The
results in the tables are in line with that. The error when the one-cell approximation is applied
to the more symmetrical Gaussian copula is lower.

In comparing the numerical integration methods one can see that using antithetic variates in
Monte Carlo does not add accuracy. This should therefore not be used. As expected the trape-
zoidal method does not perform well, because at the boundaries of the unit hypercube the value
of the PDF at the boundary is often a lot different from the value of PDF close to the boundary.
This is the case for many copulas. Trapezoidal integration should therefore not be used. The
midpoint method has the best accuracy when not many PDF evaluations are used. When more
computational power is available the Monte Carlo integration using is very accurate, because it
converges faster.

We will now see what the effect of these speed improvements is in a more practical setting.
The Morris method is generally applied to models with tens or hundreds of parameters. The
points in which the model should be evaluated should be calculated in a reasonable time. The
reasonable order of magnitude for finding the model evaluation points seems to be a couple of
hours. The computational time for the model evaluations is included in this. We will therefore
now test which problem size we can handle in about one hour. We will use the standard param-
eters (r =20,p=4,4 = %) and the Gaussian copula. For the straight-forward implementation
with finite differences this is about 8 dimensions. Calculating all the model evaluation points
in 8 dimensions took 3258.715 seconds or 0.905 hour. By implementing the method using the
midpoint rule for calculating probabilities this can be more than doubled. It is possible to han-
dle 20 dimensions, because that took 2586.431 seconds or 0.718 hour. With 20 dimensions one
comes close to values where one has memory issues. In Matlab it is for instance not possible to
save the distribution of the corners in dimensions higher than 29, because for 30 this is an array
of size 230 or 8.0 GB. 30 is a lot less then the standard screening methods which can handle tens
or hundreds of input parameters.

In general the midpoint integration rule seems the best way to approximate the corner proba-
bilities in order to decrease the computer intensity of the method. Therefore we will also look
at another way to speed up the implementation. Not by approximating the probabilities, but
rather by making sure we have to do fewer computations.

46

5.2 Independent Groups

One can easily imagine that when there is dependence among parameters that this is only among
certain groups. Especially models with a lot of parameters usually have a lot of parameters that
are unrelated to each other and therefore also independent of each other. The example of the
population model has, for instance, two independent groups of correlated variables. In this sec-
tion it is showed how in these cases the copula-based Morris method can be implemented more
efficiently.

Say the model parameters can be divided into two arbitrary independent groups. So X! € R%
and X2 € R% and the modeling being f : [0,1]%+% — R. By saying the groups are inde-
pendent it is meant that all pairs of X! and X? are independent: V1 < i < dp, V1 < j <
ds, XZ-1 is independent of X]?. Because of this independence we can write C(uq, ... U4, +d,) =
Ci(ui,...ug,)Co(Udy41, - - -, Ud +d,)- The probability of independent event is equal to the prod-
uct of the marginal probabilities. This idea can of course be extended by using induction to
combine more independent groups. If (Cj);cq1,...) @ sequence of copulas, then C' = []iL, C; is
again a copula.

We will apply the extended Morris method to each group separately. The groups are inde-
pendent, so the value of a parameter in one group does not influence the sampling of a path
in another group. The parameters from different groups can, however, have interaction effects
in the model. The different paths should therefore be combined to get a path in the entire
parameter space. How this should be done is not so obvious. A single point in the parameter
space can be obtained by appending a point from all of the groups together. For a path over the
grid each point should only differ from the previous in one dimension. Next to that, we want the
combining of the paths to be randomized. Parameters from different independent groups can
still have interaction effects. To not bias certain effects the combining should be randomized.
If we only look at one group we want the path to be equal to the original path. We assume to
have a vector v that indicates to which group a variable belongs. v; = j means that variable ¢
belongs to group j. We will then first show how the different sampling matrices (section 3.2.2)
can be randomly appended in an example. After that we will summarize this in an algorithm.

5.2.1 Example

Here it will be showed how the different sampling matrices can be appended in the smallest case
possible. This example will consist of four parameters (z1, z2,z3,z4). The first two parameters
will be in the first group and the third and fourth parameter will be in the second group. This
gives the following vector v = [1,1,2,2]. Say we obtained the following two sampling matrices
in applying the copula-based Morris method to the groups separately.

BT o4 BT

By = |BY 0 5|, B:= BP| =10 1 (5.10)
B®) is B 0 32
1 2

It will be illustrated how these two sampling matrices can be randomly appended to form an
overall sampling matrix in the entire parameters space of (x1,x2,x3,x4).

47

1. We randomly permute v to obtain v* = [2,1,1,2].

2. (1
01 1
B1: s BQZ — B:
3. .
vy =2 0 % % 17
1 1
1 0 (o 1
By =) B2: — B =
0 2
3
4.
vy =1 "0 1 1 17
2 3 3
1 1 1
013 1o 0101
Y 2 5 2
B=[0) B[00 — 3=[0 DO
1 2 2
3 3 0 3
5.
vE =1 o 1 1 17
3 3 3
1 1 1
0! 1 0101
B = [003], Bzz — B=10 % 01
2 2 1 2
3] 0 3 5 30 1
6. _0 .
3 3
0 3 0101
B =10 2|, By= s B=10 2 0 1
) 3 Bl 2
‘ 1 2 2
5 5]|0 3.

In the above example first the vector v is randomly permuted to obtain v*. In the other steps
two rows of the small sampling matrices are appended to form one row of the overall sampling

48

matrix. Which rows of the sampling matrices are used for this is determined by v*. The overall
sampling matrix obtained is

(5.11)

wefl

Il
W= W= O O O
oS O O O we

WD = =

WIND WIN WIN) W= Wl

B matrix has all the desired properties of a sampling matrix. Two consecutive rows only differ

in one column and that difference is always equal to % Next to that, in each column there is
exactly one time such a difference. This means that when the rows of this matrix are interpreted

points of a path the matrix represents a path on the grid.

5.2.2 Algorithm

The example above can be generalized to an algorithm. We will have a sampling matrix for
each group. Let v be the vector that indicates to which group a variable belongs. v; = j means
that variable ¢ belongs to group j. We randomly permute the vector and notate the new vector
with v*. Entry ¢ of this vector will indicate from which group the change between the points
1 and 7 + 1 from the path comes. Because v* is a permutation of v the amount of times there
is a change from a group is equal to the number of variables in the group. By saying that a
change comes from a group we mean that the next point of a path is obtained from the previous
point by only changing the value in a dimension corresponding to that specific group. The other
values are kept the same. The change in the group comes from the sampling matrix belonging
to that group, where we move to the next row, which is the next point. We can write that as
an algorithm. An implementation of this algorithm can be found in appendix A

With this algorithm a sampling matrix is obtained that fulfills all demands. It will be a d 4 1

Algorithm 1 Combining sampling matrices of independent groups.

1: Apply the copula-based Morris method to each group to obtain a sampling matrix B;.

2: Permute the vector v to obtain v*.

3: The first point in the path is equal to the first row of each sampling matrix appended to

each other.

4: for i :=1to d do

5. Row i+41 from the sampling matrix is equal to the previous except for the values belonging
to group v;. For these values use the next row of B,,, the sampling matrix belonging to
group ;.

6: end for

by d matrix, where two consecutive rows differ only ¢ in one column. And for every column
the value is changed exactly once. Furthermore if one looks only at the columns belonging to
one group and then deletes the duplicate rows then one retrieves the original sampling matrix
belonging to that group.

5.2.3 Results

There are several positive effects of applying the copula-based Morris method with this imple-
mentation. First of all the copula evaluations are in lower dimensions. The copulas are evaluated
in a dimension equal to the size of the group and not in the dimension of the entire parameter

49

space. Next to that, a lot fewer evaluations of the copula are necessary. Normally to calculate the
probability density of the corners for each of the 2¢ corners 2% copula evaluations are necessary.
Now d can be replaced with the group size. The method has to be several times, but per group
there is an exponential decrease. This leads to a large decrease in total computational time.
Next to that, there are no memory issues. A probability density of all the corners was stored.
For more than 30 dimensions this was not possible anymore. With this implementation only
the probability density of the corners per group needs to be stored. So there are no problems
as long as the groups are not bigger than 30 parameters.

The speed advantage can be tested in a simulation. Earlier we have seen that in about one
hour the model evaluation points in the problem with 8 dimensions could be calculated. By
using the midpoint rule this was already increased to 20 dimensions. The simulations were also
done for different group sizes and both the finite differences and midpoint implementations. In

Type group size ‘ time in seconds ‘ time in minutes
Finite differences 6,6, 7, 6,5 5277.195 1 hour and 28.2 minutes
Finite difference | 50 groups of four parameters 2594.216 43.2 minutes

Midpoint rule 19, 17, 4, 13, 17 3682.162 1 hour and 1.4 minutes
Midpoint rule 250 groups of 4 52.339 0.87 minutes

Figure 5.6: Simulation of the copula-based Morris method using the independent groups imple-
mentation. The usual parameters in this report were used: r = 20,p = 4,6 = %

figure 5.6 the results of the simulations are summarized. One can see what can be achieved
in approximately one hour. The last simulation did not take approximately one hour, but this
already consisted of 1000 variables. There are not many cases in which models have more than
1000 parameters. As expected from the implementation the total time is closely related to the
sum of the time it would cost to apply the method to each group separately. Of course some
overhead is also necessary now, but this is still very small compared to the time evaluation
copula PDF’s and CDF’s. This shows that by using independent groups the computational
intensity of the method does not grow exponentially with the dimension. If the groups are of
the same size than the computational intensity is linear with the dimensions. As long as groups
do not become bigger than about 15 parameters the method can be applied to models with tens
or hundreds of parameters, without having ridiculously long computational times. For a screen-
ing method this is really beneficial as these are most of the time applied to models with that
amount of parameters. Finding the model evaluation points was only a part of the method, but
it was that part that became too computational intensive, because of the additions of copulas.
Of course a lot will computational time will go into model evaluations, however the number of
model evaluations grows linearly with the dimensions so that will not cause problems so fast.

20

Chapter 6

Conclusion

In mathematical modeling sensitivity analysis can be used for the following reasons:
e knowing which parameters to investigate;
e model simplification;
e model understanding;
e finding errors in the model.

To do sensitivity analysis many different methods for calculating or estimating different sen-
sitivity measures can be used. The screening methods are a subset of the sensitivity analysis
methods. Screening methods are used for a fast preliminary analysis of models with tens or
hundreds of parameters. One of the screening methods is the Morris method. It estimates
derivatives based on a fraction factorial design. The model evaluation points can be obtained
by constructing sampling matrices. There is also a more geometric approach. The fractional
factorial design is then represented as a grid and paths on the grid are sampled to obtain the
model evaluation points. By analyzing the distribution of elementary effects the parameters can
be ranked and the following type of effects can be identified:

a) negligible effects
b) (close to) linear effects
c¢) non-linear effects and/or interaction with other parameters

The results of the Morris method were compared to the results of the method where a Monte
Carlo simulation is used to calculate the sample correlation. For the two examples the results
were in line, but the Morris method was more informative. It was possible to identify certain
effects, whereas these effects were missed by the method using sample correlations. In the ap-
plications of the Morris method hardly any differences between D and p*, which suggest there
is no reason to prefer one more than the other.

In some models the input parameters are correlated. In the Morris method the model eval-
uation points are sampled assuming that the input parameters are independent. A copula-based
Morris method was presented and elaborated in this report. The method can handle dependen-
cies between input parameters. In each step of sampling a path, a copula is used to give more
probability to some paths. The results of taking the dependencies into account were different

o1

for the Morris method and the Monte Carlo method. In the Monte Carlo method variables cor-
related with influential variables were automatically also identified as influential. In the Morris
method the effect of taking the dependencies into account was only notable when there was a
significant interaction effect between the parameters. Even then it can be questioned whether
these effects were significant in comparison with the randomness in the method. A general con-
clusion about taking the dependencies into account cannot be made. There are lots of different
models and dependency structures, for which different things might hold. Especially as the
method was not applied to very complex models in this report. However, when one can apply
the method with dependencies one should always do so.

The goal of the research was to improve the performance of the copula-based Morris method,
because calculating the probabilities of the corners is very computer intensive. For non-explicit
copulas these computations are lengthy. The amount of copula evaluations increases expo-
nentially with the number of input parameters. Five methods for approximating the corner
probabilities were compared. The one-cell approximation was very fast, but also not so accu-
rate. The midpoint integration rule had the best accuracy when not much computation time
was available. The Monte Carlo integration method converged more quickly. For speeding up
the algorithm the midpoint rule was the best option. By using the midpoint rule the amount
dimension of the problem that could be handled in about one hour increased from 8 to 20. An
exact performance improvement cannot be stated as this would depend on the parameters of the
Morris method and the dependencies. With approximating the corner probabilities a small error
was created. The effect of this error and whether this has a significant influence on the method
is still open for research. Using Latin Hypercube might also be an idea to use for numerical
integration. This can be investigated in future research.

Next to approximating the probabilities another way of speeding up the algorithm was pro-
posed. In many models with correlated input, the input will only be correlated within some
groups, where the groups would be independent. An implementation utilizing this was pre-
sented. It turned out to be very beneficial. First of all, it overcame the memory issue that
might occur when the probability distribution of a lot of points is to be saved. Next to that, the
computer intensity was decreased to the sum of the computer intensity for the different groups.
So as long the groups do not become bigger the computation intensity increases linearly instead
of exponentially with the dimension. It was shown that if the groups are not so big (less then 10
or 15) all the model evaluation points can be calculated in a reasonable time even when there
tens or hundreds of input parameters. For a screening method, such as the Morris method this
is important as these are the orders of problems to which the method is often applied.

In general when one has problems with the computational intensity of calculating the model
evaluation points in the copula-based Morris method these problems can be overcome. First
of all, one can implement the method by using the independent groups. If the groups are not
so large this should really reduce the computational intensity. If the computational intensity
is still too large one can use the midpoint rule to approximate the corner probabilities. At
the cost of a little accuracy the computer intensity is further decreased. So the method should
always be applicable in a reasonable time when the groups of correlated input do not consist
of more than 20 parameters. The method will now also be applied to the model mentioned in
[Tene et al., 2018] without full correlations using the implementation mentioned in the report.
The faster implementation of the copula-based Morris method also allows for further research
whether there is a significant effect of taking the dependencies into account. The method can
now be applied to more complex models to test whether the dependencies make a difference.

92

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Appendix A

Matlab implementation of indendent
groups

%This is the implementation of the copula—based Morris method using
the

%independent groups. The user should define the groups and the copula
’s on

%these groups. The methods than samples paths as neccessary in the
Morris

%method. For each group this is done using the copula—based Morris
method .

%The copula—based Morris method is implemented using the midpoint
rule

%instead of the finite differences formula.

%For the group with all the independent parameters this is done using
the

%original Morris method. At the end the paths per group are combined
to

%form a set of sampling matrices. These can be found in the variable
paths,

%were path(i, j, k) is the k—th coordinate of the j—th point of path
i.

%% initialization

%method parameters

p = 4; %the number of discretizations levels

r = 20; %the number of EE samples per parameter

k = 1;

step = k/(p—1); %the Morris step, also referred to as delta
rng (15); %set seed for reproducibility

%% define the model parameters here

totalParameter = 1; %set the total number of parameters

parameterPerGroup = zeros(totalParameters) %make a vector with for
each parameter the corresponding group.

% Set this to one if the parameter is independent of all groups. The

93

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

64

65

66

% parameters do not have to be ordered.

lowerBound = [0];

upperBound = [1];

%initizalization of the groups

totalVector = 1l:totalParameter;

for i = 1:nGroups
parameterGroups(i).nParameters = sum(parameterPerGroup = 1);
parameterGroups (i).parameters = totalVector (parameterPerGroup=—i)

;
end

Y%mext for each group define a copula except for the first group
%parameterGroups (i) .copula = Copula(” Gaussian”, Sigma);

%% Creating values for the independent parameters

%Here a sampling matrix for all the independent parameters is
obtained .

nSample = ceil (r/(p—k)); %the amount of LHS(D) samples.

%use permutation to decide on the cell

randomRanks = zeros (parameterGroups(1).nParameters, p—k);
nlndependent = parameterGroups(1l).nParameters;

iPath =0;

for iSample = 1:nSample

for j = 1l:nlIndependent
randomRanks(j, :) = randperm(p—k);
end
for i = 1:p—k
cellA = ((ranks(:, i)—1)./(p—1)); %defines the cell. cellA is
the point in the cell with the smallest indices for all
corner = cellA + (rand(nIndependent, 1) >0.5)xstep; %the
starting corner of
perm = randperm (nIndependent); %permutation of the dimensions

signs = (corner = cellA).x2—1;
for j = i:nlndependent
corner (perm(j)) = corner+signs (perm(j))*step;
paths(iPath, j+1, :) = corner;
end
iPath = iPath+1;
if (iPath>r)
break ;
end
end
%% Creating the paths for each group
%In this section the individual sampling matrices are obtained.

for g = 1:nGroups

%for each group for each sample a sampling matrix is created and
stored

o4

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

107

%in parametersPerGroup(g).paths this is done in the usual way in

the

%copula—based Morris method

nParameters = parameterGroups(g).nParameters; %the amount of
parameters in this group

parameterGroups(g).paths = zeros(r, nParameters+1, nParameters);

%initialize the sampling matrices

%define the grids (these are matrices with in the rows all the

points
%in the grid.
cornerGrid = getPoints ([0, step], nParameters);
cornerGridSmall = cornerGrid./2;

iPath = 1; %index keeps track of the path

%mnext the LHSD are created by sampling (p—k) values from the
copula and

%calculating their ranks.

for iSample = 1:nSample
u = parameterGroups(g).copula.rnd(p—k);
ranks = zeros (nParameters, p—k);
for iParameter = l:nParameters
ranks (iParameter ,:) = tiedrank (u(:,iParameter));
end

for i = 1:p—k
%cellA is the smallest point of the cell , this uniquely
defines
%the cell
cellA = ((ranks(:, 1)-1)./(p—1)) ’;

%calculate corner probabilities;

%all cdf values are calculated once. Some can be reused.
cdfPoints = cellA + cdfGrid;

cdfValues = parameterGroups(g).copula.cdf(cdfPoints);

%assign probabilities to corners

cornerProbabilities = zeros (1, 2"nParameters);
for ¢ = 1:2" nParameters
Y%midpoint

%a = cellA + ones(1, nParameters)s*step/44+getCorner (c,
nParameters)*step /2;

%cornerProbabilities (¢) = parameterGroups(g).copula.
pdf(a);

%finite differences

a = cellA + cornerGridSmall(c,:);

corners = a + cornerGridSmall;
b = a 4+ cornerGridSmall (2" nParameters, :);
s = 0;

95

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

137

138

139

140

141

142

for d = 1:2" nParameters
sign = (—1) " (sum(b "= corners(d,:)));
o = cdfValues(getIndex (corners(d, :), cdfPoints))
s = s+signxo;
end
cornerProbabilities(c) = s;
end

Y%sample a corner as starting point of the path

cornerIndex = randsample (2" nParameters, 1, true,
cornerProbabilities);
corner = cellA + stepxgetCorner(cornerIndex , nParameters)

I

parameterGroups(g) .paths(iPath, 1, :) = corner;

todo = 1l:nParameters; %each dimension should be used once
, this keeps track of that

for j = l:nParameters
possibleCorners = cornerIndex + parameterGroups(g).

signs (iPath, todo).x2." (nParameters—todo);
if isscalar (possibleCorners) %if only one dimension
is left , this dimension should be used.
cornerIndex = possibleCorners;
else
cornerIndex = randsample(possibleCorners, 1, true
, cornerProbabilities(possibleCorners));
end
parameterGroups(g) .paths(iPath, j+1, :) = cellA+stepx
getCorner (cornerIndex , nParameters); %add the
corner to the sampling matrix
q = find (parameterGroups(g).paths(iPath, j, :) "=
parameterGroups(g) . paths(iPath, j+1, :));
todo(todo = q) = []; %remove the dimension from the
todo vector
end
iPath = iPath-+1;
if (iPath > r) %because each time (p—k) cells are sampled
at a time, this might be too much and the algoritm
can be stopped
break;
end

different sampling matrices are now appended to form a full
sampling matrix.
%here the method ouptut is created. These consist mainly of the paths

%matrix. The permutations and sign matrices are used to correctly

o6

143

144

145

146

147

148

149

151

152

153

154

156

157

158

160

161

162

163

164

166

167

168

169

171

172

173

174

175

177

178

179

%calculated the elementary effects afterwards.

paths = zeros(r, totalParameter+1,totalParameter);
permutations = zeros(r, totalParameter);
signs = zeros(r, totalParameter);

%in this for loop the sampling matrices are constructed by appending
the
Y%matrices in the right way.

%change the permuation here.

for i = 1l:r
perm = parameterPerGroup (randperm (totalParameter));
s=0;
for g = 1:nGroups
changelndices = totalVector (perm—g) ;
paths(i, 1l:changelndices(1), parameterPerGroup=—g) = repmat (
parameterGroups(g).paths(i, 1, :), 1, changelndices(1l), 1)
for j = 1l:length(changelndices)—1
paths (i, (changelndices(j)+1):changelndices(j+1),
parameterPerGroup=—g) = repmat (parameterGroups(g).
paths(i, j+1, :), 1, changelndices(j+1)—changelndices(
i), 1)
end
paths (i, (changelndices(end)+1):totalParameter+1,
parameterPerGroup=—g) = repmat (parameterGroups(g).paths(i,
end, :), 1, totalParameter+l—changelndices(end), 1);
end
end

%here the sign and permutation matrices are constructed.
diff = paths(:, 2:totalParameter+1, :)—paths(:, 1l:totalParameter, :);
for i=1:r

for j =1: totalParameter
permutations (i, j) = find(diff(i, :, j));
signs (i, j) = sign(diff(i, permutations(i, j), j)):
end
end
modelEvaluationPoints = zeros(r, totalParameter+1, totalParameter);
for i = 1l:totalParameter
modelEvaluationPoints (:, :, i) = lowerBound(i)+ uppperBound(i)=*
paths (:, :, 1);
end

o7

Bibliography

[Andres and Hajas, 1993] Andres, T. H. and Hajas, W. C. (1993). Using iterated fractional
factorial design to screen parameters in sensitivity analysis of a probabilistic risk assessment
model.

[Bettonvil and Kleijnen, 1997] Bettonvil, B. and Kleijnen, J. P. (1997). Searching for important
factors in simulation models with many factors: Sequential bifurcation. Furopean Journal of
Operational Research, 96(1):180-194.

[Box and Hunter, 1961] Box, G. E. and Hunter, J. S. (1961). The 2 kp fractional factorial
designs. Technometrics, 3(3):311-351.

[Campolongo et al., 2007] Campolongo, F., Cariboni, J., and Saltelli, A. (2007). An effective
screening design for sensitivity analysis of large models. Environmental modelling & software,
22(10):1509-1518.

[Cotter, 1979] Cotter, S. C. (1979). A screening design for factorial experiments with interac-
tions. Biometrika, 66(2):317-320.

[Hammersley and Morton, 1956] Hammersley, J. and Morton, K. (1956). A new monte carlo
technique: antithetic variates. In Mathematical proceedings of the Cambridge philosophical
society, volume 52, pages 449-475. Cambridge University Press.

[looss and Lemaitre, 2015] Iooss, B. and Lemaitre, P. (2015). A review on global sensitivity
analysis methods. In Uncertainty management in simulation-optimization of complex systems,
pages 101-122. Springer.

[Jacques et al., 2006] Jacques, J., Lavergne, C., and Devictor, N. (2006). Sensitivity analysis in
presence of model uncertainty and correlated inputs. Reliability Engineering € System Safety,
91(10-11):1126-1134.

[Li et al., 2011] Li, L., Lu, Z., and Zhou, C. (2011). Importance analysis for models with corre-
lated input variables by the state dependent parameters method. Computers € Mathematics
with Applications, 62(12):4547-4556.

[Mara and Tarantola, 2012] Mara, T. A. and Tarantola, S. (2012). Variance-based sensitivity
indices for models with dependent inputs. Reliability Engineering € System Safety, 107:115—
121.

[McKay et al., 1979] McKay, M. D., Beckman, R. J., and Conover, W. J. (1979). Comparison of
three methods for selecting values of input variables in the analysis of output from a computer
code. Technometrics, 21(2):239-245.

o8

[McNeil et al., 2009] McNeil, A. J., Neslehova, J., et al. (2009). Multivariate archimedean cop-
ulas, d-monotone functions and 1-norm symmetric distributions. The Annals of Statistics,

37(5B):3059-3097.

[Metropolis and Ulam, 1949] Metropolis, N. and Ulam, S. (1949). The monte carlo method.
Journal of the American statistical association, 44(247):335-341.

[Morris, 1991] Morris, M. D. (1991). Factorial sampling plans for preliminary computational
experiments. Technometrics, 33(2):161-174.

[Nelsen, 2006] Nelsen, R. B. (2006). An introduction to copulas. Springer, second edition edition.

ackham and Schmidt, ackham, N. and Schmidt, W. M. . Latin hypercube sam-
[Packh d Schmidt, 2008] Packh N d Schmidt, W. M. (2008). Latin hy b
pling with dependence and applications in finance. Available at SSRN 1269633.

[Portilla et al., 2009] Portilla, E., Tett, P., Gillibrand, P., and Inall, M. (2009). Description and
sensitivity analysis for the lesv model: water quality variables and the balance of organisms
in a fjordic region of restricted exchange. Ecological Modelling, 220(18):2187-2205.

[Robert and Casella, 2013] Robert, C. and Casella, G. (2013). Monte Carlo statistical methods.
Springer Science & Business Media.

[Saltelli and Sobol, 1995] Saltelli, A. and Sobol, I. M. (1995). About the use of rank trans-
formation in sensitivity analysis of model output. Reliability Engineering & System Safety,
50(3):225-239.

[Saltelli et al., 2004] Saltelli, A., Tarantola, S., Campolongo, F., and Ratto, M. (2004). Sensi-
tivity analysis in practice: a guide to assessing scientific models. Chichester, England.

[Sklar, 1959] Sklar, A. (1959). Fonctions dé repartition a n dimension et leurs marges. Université
Paris, 8(3.2):1-3.

[Sobol, 1993] Sobol, I. M. (1993). Sensitivity estimates for nonlinear mathematical models.
Mathematical modelling and computational experiments, 1(4):407-414.

[Tene et al., 2018] Tene, M., Stuparu, D. E., Kurowicka, D., and El Serafy, G. Y. (2018). A
copula-based sensitivity analysis method and its application to a north sea sediment transport
model. Environmental Modelling & Software, 104:1-12.

[van Griensven et al., 2006] van Griensven, A. v., Meixner, T., Grunwald, S., Bishop, T.,
Diluzio, M., and Srinivasan, R. (2006). A global sensitivity analysis tool for the parame-
ters of multi-variable catchment models. Journal of hydrology, 324(1-4):10-23.

[Vano et al., 2006] Vano, J., Wildenberg, J., Anderson, M., Noel, J., and Sprott, J. (2006).
Chaos in low-dimensional lotka—volterra models of competition. Nonlinearity, 19(10):2391.

[Vuik et al., 2007] Vuik, C., Van Beek, P., Vermolen, F., and Van Kan, J. (2007). Numerical
Methods for Ordinary differential equations. VSSD.

[Zhu and Yin, 2009] Zhu, C. and Yin, G. (2009). On competitive lotka—volterra model in random
environments. Journal of Mathematical Analysis and Applications, 357(1):154-170.

99

