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Abstract
In pixel art, texturing is the process of adding de-
tail to an object to make it resemble a real material.
While texturing is crucial in creating high-quality
pixel art, it is an arduous process that is time con-
suming for artists. We present an algorithm that au-
tomates texturing by arranging elements through-
out an input image in a way that implies a feature
of the reproduced object, outlines its tridimensional
shape, and respects the original shading. We ad-
ditionally present heuristics on how to determine
the color of a feature drawn over existing pixel art,
and a method to create vector fields from user brush
strokes. Aside from easing artists’ work, this algo-
rithm is an important step towards the procedural
generation of pixel art. Quality is demonstrated by
comparing results to manually authored textures.

Figure 1: Left: Untextured tree trunk, given as input to our method.
Center: Tree trunk textured manually by an artist. Right: Textured
tree trunk, produced by our method. Left and center images are
drawn by Pedro Medeiros [14].

1 Introduction
Pixel art is a type of digital art created in very limited res-
olution, such that individual pixels are discernible to an ob-
server. Historically it developed as a consequence of the lim-
ited graphical power of early computing systems, but it is still
a style often used by artists today either to evoke its nostalgic
associations, due to its many practical advantages over high-
resolution digital art, or simply because many find it aesthet-
ically pleasing [19].

The constrained scale of pixel art means artists have to take
additional care with the color and placement of each pixel,
and often can only afford a handful of pixels to denote an ob-
ject or object feature. However, even with the low amount of
detail artists are still able to create images that appear as if
they’re made from real materials through what they call tex-
turing – a technique that combines usage of colors, shading,
placement of small details and repeating pixel patterns [16].
While texturing is an important aspect of the pixel art look,
it is an arduous and time consuming process, and part of the
reason the style is difficult to procedurally generate.

Schlitter describes a manual pixel art texturing technique
which consists of arranging repeating elements into a pat-
tern [18]. “Element” is used to mean a very small pixel art
image that represents a feature of the real material, e.g. bark
scales in Figure 1. In this paper, we present an algorithm that
automates this technique for pixel art texturing, while allow-
ing for large amounts of artist control over the final result.

Our approach leverages user annotations to create a vector
field, then places elements throughout the image which are
oriented according to the vector field. Each element’s color
may be taken from the image’s palette according a choice be-
tween two heuristics, avoiding the introduction of new colors.

This tool allows pixel artists to focus on the broader cre-
ative decisions and later detailed improvements, while au-
tomating part of the manual repetitive labor that comes in be-
tween. Combined with other procedures that generate base
shapes for our tool to texture, one may create fully procedu-
ral high quality pixel art, expanding the realm of possibili-
ties in computer game design. To our knowledge, we are the
first to present a procedural texturing technique that works for
pixel art.

2 Related work
Pixel art processing Many algorithms have been devel-
oped to bring pixel art to different mediums, such as vector
images [8, 13], as well as from other mediums to pixel art [4,
6, 10, 20]. However, we have found little work on processing
pixel art while remaining in the same artistic medium. Meth-
ods exist to create pixel art animations from static pixel art
[9], and to extract normal maps from pixel art [15]. Our work
is novel in that it is, to our knowledge, the first in automating
part of the process of making pixel art itself.

Procedural texturing Procedural texture generation is a
problem that has been extensively studied in computer graph-
ics, see Dong et al.’s 2020 work for a recent survey on the
subject [3]. However, the process of texturing in pixel art
is very different to the one in high-resolution images or 3D
models, since it does not involve tiling images or projecting
2D images onto 3D models.

Element arrangement Element arrangement is a method
that is closer to our definition of texturing, as it entails placing
repeating elements close to one another in a way that builds
a pattern, while following user-defined constraints such as
boundaries and directions [5]. Previous work on 2D element
arrangement focuses on vector graphics or high-resolution
images [5], or 3D models [12], while we explore how to adapt
these methods for the constrained resolution of pixel art.

Vector fields from brush strokes Vector fields are a widely
used structure that are usually created through precise math-
ematical definitions. We know how to direct regions of a ten-
sor field according to a user’s brush strokes [2], but that re-
quires an existing tensor field whose regions can be modified.
Diffusion curves present a method to smoothly vary colors
throughout a pixel grid based on some initially colored pixels
[17]. While originally applied to colors, the diffusion curve
method can also be used to vary directions [1], an idea which
we expand upon by gathering the initial directions from user-
drawn brush strokes.

3 Texturing pixel art
Our goal is to synthesize textured pixel art from an input im-
age that depicts an untextured or partly textured object. To
achieve this, we arrange repeating elements throughout the



Figure 2: Overview of the algorithm. Each arrow roughly corresponds to a step, pointing from its inputs to its output.

input image. These elements must imply a feature of the re-
produced object, outline its tridimensional shape, and respect
the original shading.

Three images are required as input. First is the source im-
age that will be textured; second is a binary mask that de-
lineates which region of the image will be textured; third is a
sprite sheet of the element that will be placed, with eight vari-
ations of it oriented 45 degrees apart from one another. We
provide multiple strategies for computing position and col-
ors that are selected depending on the desired output, as no
single strategy works in all scenarios. Additionally, several
parameters can be set to fine tune the results: element mar-
gins (m), density (ρ), HSV displacement (∆HSV ), excluded
colors, and max color distance, all of which are described in
the following subsections.

Our method is broadly comprised of four steps, which are
illustrated in Figure 2. The first three are preprocessing steps
in which we compute attributes for each element: their posi-
tions, colors and orientations. These three steps can be done
in any order, as their outputs are used simultaneously in the
final step, placement. Section 3.1 explains how the position
of each element is computed; Section 3.2 details how to cre-
ate color maps which inform the colors elements take; Sec-
tion 3.3 shows how user annotations are leveraged to create
a vector field that informs the orientation of elements. The
final step, explained in Section 3.4, uses these attributes to
draw elements on the image.

3.1 Position
This step’s goal is computing a list of suitable positions to
place elements at. There should be no overlap between two

different elements (except if negative element margins are
used), and all elements should be contained within the region
defined by the input binary mask.

Assume we have a potentially suitable position that may
be chosen to place an element at. If we choose it, the region
that will be occupied by its corresponding element is marked
as unavailable by removing the equivalent pixels from the bi-
nary mask. The parameter margins m consists of a tuple of
two integers mx and my . We add (or remove, in case of neg-
ative values) my pixels to the top and bottom and mx pixels
to both sides of the region considered as occupied by the el-
ement, which allows elements to be placed further apart or
closer together. Figure 3 shows this process, with an element
being placed at the position indicated by the red dot and using
m = (2,−1), the resulting mask is shown in the rightmost
image.

Figure 3: Process of marking a region as occupied so that a position
is added to the list. White pixels represent available positions and
black unavailable. Considered position is marked by red pixel.

A position is only considered valid if the element that
would be placed at that position fits entirely within the mask,
with one exception: the user may choose to allow elements



Figure 4: Left: Input binary mask. Center: Positions obtained
through the random positions strategy. Right: Positions obtained
through the packed positions strategy.

to be placed only partially within the original bounds. In this
case overlapping elements are still forbidden, but only one of
the element’s pixels has to be inside the original input mask
for it to be placed. This is repeated until all suitable positions
are occupied.

The parameter density ρ is a percentage value that gives
control over how full the texture should appear. After a posi-
tion is validated, it has ρ% chance of actually being added to
the list of suitable positions, while the region it would occupy
is still considered occupied.

To find potential positions, two strategies are available.
This is to accommodate for two possible types of textures:
regular or “packed” textures, and irregular or “random” tex-
tures. In both strategies the first position tested is a random
position within the original mask, and they differ in how they
choose subsequent positions after the first.

Random positions In this strategy, each subsequent posi-
tion is chosen at random. This results in irregular, natural
looking patterns, as exemplified in the center image of Fig-
ure 4. This strategy is suitable for many textures, such as the
bark shown in Figure 1.

Packed positions This strategy keeps a queue of positions
to try and when one position is selected, we add its eight im-
mediate neighboring positions to this queue. If none of the
neighbors were suitable, the queue becomes empty. In this
case, if there are still positions available within the mask, the
next position is chosen at random. This results in completely
regular patterns, as exemplified in the right image of Figure 4.
This strategy is suitable for some textures such as fish scales,
as shown in Figure 2.

3.2 Color
To determine the color of each element, a color map is com-
puted from the input image. When each element is placed,
the color map is sampled at that region in order to determine
the element’s color. Our goal is to choose colors that are both
aesthetically pleasing when placed against the colors in the
same region of the input image, and also do not stand out
visually, since the purpose of texturing is to add detail, not
striking features.

Three different strategies are presented to compute the
color map: HSV shift, color difference, and shared border.
The simplest is HSV shift, which requires additional input,
while the other two are heuristics that try to achieve our goals
while using colors already present in the image.

Figure 5: a. Input image. b. Color map obtained by shifting its
HSV by (0, 0,−30%). c. Color map obtained through the color
difference strategy. d. Color map obtained through the shared border
strategy.

HSV shift This strategy shifts the hue, saturation and value
of each pixel by the user-determined amount ∆HSV . That is,
taking cini to be the color of pixel i in the input image and
couti to be the color of the equivalent pixel in the color map,
couti = cini +∆HSV . Figure 5b shows an example color map
obtained through this strategy, where ∆HSV = (0, 0,−30%).

Color difference In this strategy, first the image’s palette
is extracted, then each color in the image is mapped to the
color in the palette with lowest Euclidean distance to it in
CIELAB color space, except itself. CIELAB was chosen as
it is a perceptually uniform color space, i.e. a color space in
which Euclidean distances correspond directly to perceived
color difference [11]. It is possible that multiple colors in
the input are mapped to the same color. Figure 5c shows an
example color map obtained through color difference.

Shared border At each contiguous color region, we sam-
ple the pixels that border the region, choose the color that is
most frequent in those pixels, and map the entire region to
that color. Certain colors may be excluded as possible col-
oring options, e.g. black may be excluded to remove a black
outline’s influence on the region’s color, and in case an ex-
cluded color were to be selected, the next most frequent color
is selected instead. Figure 5d shows an example color map
obtained through shared border.

Each of these strategies fit different scenarios, and we ad-
ditionally present a procedure to automatically select one of
the strategies based on the input image.

Automatic strategy selection We start by counting the col-
ors in the image, except those that are excluded, and if they
amount to one, the HSV shift strategy is selected. If more
than one color is available, a color map is created with the
shared border strategy. For each color region in this map, the
Euclidean distance in CIELAB color space between it and
the color of its equivalent region in the input image. If all
these distances are smaller than the maximum color distance
parameter, the shared border color map is selected, and oth-
erwise we use the color difference method.



Figure 6: Left: User makes annotations through brush strokes di-
rectly on pixel art. Right: Annotations are converted into vectors for
each annotated pixel (in red), and pixels without annotations have
vectors diffused from others (in black).

3.3 Orientation
Since elements are used to represent features of the real-world
object, the orientation of those features needs to be taken into
account when placing elements. In order to orient each placed
element in the final image, user annotations are used to to
gather a direction for each pixel where an element can be
placed.

As a first step, the system asks the user to draw freehand
curves (i.e. brush strokes) on top of the input image, accord-
ing to the way they wish the elements to be oriented. An
example of these brush strokes is shown on the left image
of Figure 6. Because of the typical low resolution of input
images, it can be difficult to precisely draw on them. To mit-
igate this, during the annotation step we present a version of
the image that is upscaled using nearest neighbor interpola-
tion by an user-determined factor. Each annotated pixel in
the upscaled image gets assigned the vector that points to the
next annotated pixel. We then downscale the image by the
same factor, merging vectors by their average.

Following this procedure many pixels may be left without
an assigned vector, as the user does not need to draw over the
entire image. Let A be the set of pixels that are annotated,
and Vk be the vector assigned to pixel k ∈ A. To generalize
the annotated directions to the unannotated pixels, we make
use of the insight by Bezerra et al. of using diffusion curves
to smoothly vary directions in a grid where some points have
fixed values [1]. The vectors are therefore given by the solu-
tion to a discrete Poisson equation:

∆I = 0,

Ik = Vk, ∀k ∈ A

where I is the image, ∆ is the Laplace operator. Setting
∆I to zero gives us an uniform diffusion. Figure 6 illustrates
how the vector field is built from user annotations.

3.4 Placement
In the final step, all three computed attributes are used to place
elements. For each position an element will be placed at, we
compute the average vector of all pixels covered by the ele-
ment and find which element variation is oriented closest to

Figure 7: Left: Color map at the region element is placed. Center:
Resulting element when using per-pixel coloring. Right: Resulting
element when using region coloring.

that direction. This element is then placed over the input im-
age at that position, and either each of its pixels take the color
of its equivalent pixel on the color map (per-pixel coloring)
or all its pixels take the mode color of the region its placed
in (region coloring), as chosen by the user. Figure 7 shows a
comparison of these two alternatives.

As explained in Section 3.1, if a certain parameter is set,
it is possible that some elements do not fit entirely within the
region mask. To account for this case, pixels that would fall
outside of the mask are not placed, such that some elements
are only placed partially.

4 Results
Our system is implemented in Python, using OpenCV and
NumPy. It runs on a Intel(R) Code(TM) i5-12500H, GeForce
RTX 4060, with 16GB RAM. For all the images we gener-
ate the algorithm runs in less than one second, excluding the
time taken by the user in drawing curves, with the major-
ity of this time being taken up by the Poisson equation de-
scribed in Section 3.3. All input images are either drawn by
us or sourced from publicly available online blogs of individ-
ual pixel artists, and accompanied by attribution in the latter
case.

Figure 8: a) Input image of an untextured fish. b) Input boundary.
c) Fish textured with the same orientation (down) for all elements
and color chosen by HSV shift of (0, 75%, 0). d) Fish textured with
colors chosen by shared border, and same orientation as (c). e) Fish
textured with elements oriented to follow the body’s shape, and same
color as (d).

Figure 8 provides an overview of the different effects our
method achieves. On the top left, it shows the untextured fish
used as an input image. The bottom row shows three results of
our algorithm. On the bottom left is a fish with a scale texture



Figure 9: Results of our method for different texture types. The first three columns are input images, the fourth columns shows the brush
strokes drawn by the user over the source image, and the last column shows the textured image generated by our method.



Figure 10: Comparison between our method and results achieved through manual texturing. Top (b) and bottom (b) images are drawn by
Raymond Schlitter [18], top (a) and bottom (a) are recreations of those. Center (a) and center (b) are drawn by Pedro Medeiros [14].

that is entirely oriented in the same way, making the fish look
flat. Note that the texture is contained within the boundaries
of the binary mask given as input, shown in the top right. The
bottom center image uses the input’s own palette for coloring,
making the textured version appear more harmonious with the
original. Lastly, the bottom right image shows the texture as
oriented by user annotations, which more clearly delineates
the fish’s shape.

We present several images textured by our method in Fig-
ure 9, alongside the input images and annotations required
to generate them. Rows 2 and 4 (fish and pine tree) exem-
plify texturing images of very small resolution (32x32). The
method is capable of supporting sharp orientation transitions,
such as going from one wall of the house to the other in row 6,
as well as smooth orientation transitions between very dis-
parate orientations, such as the fish in row 2 whose scales are
oriented along an entire half circle. Real world objects with
round or cylindrical shapes are reproduced in rows 1 and 4
(owl and pine tree). Both regular and irregular relative po-
sition of elements are supported, as shown respectively in
row 6 (house) and row 3 (dog).

The center column of Figure 10 shows textured pixel art
that was manually crafted. We attempt to recreate these im-
ages using our method, the result of which can be seen in the
right column of this same figure.

5 Discussion
This study set out to build an algorithm that procedurally adds
texture to pixel art in order to make it resemble a real material.
We discuss the results of this algorithm in Section 5.1, the
advantages and disadvantages of the different coloring strate-
gies in Section 5.2, and the algorithm’s and study’s limitations
in Section 5.3.

5.1 Achieved textures

Our algorithm enables the synthesis of many textures types,
including foliage, bark, brick (shown in Figure 10), feathers,
fish scales and fur (shown in Figure 9). Since elements come
from user input, it also boasts enough flexibility to support
several more, according to the user’s creativity.

The position parameters of density and margins give con-
trol over the texture’s appearance. For example, it supports
creating both dense, disordered textures such as the fur on
Figure 9’s dog, and sparse, regular textures such as the brick
on Figure 9’s house. The binary mask additionally gives pre-
cise control over what region of the image should be textured.

By allowing element orientations to vary according to user
annotations, the created textures are able to effectively com-
municate the shape of the object that is represented in the
pixel art. For example, both owl and dog in Figure 9 appear
to have a curved chest, as elements go from downwards-left to
downwards-right orientations, as would happen when facing
a cylindrical object head on. Subtler shape changes are also
shown for example on Figure 9’s bird, whose feathers start
turned to the right and gradually angle upwards, suggesting
a slightly bent wing lifted up. A similar effect is seen on the
center row (tree trunk) of Figure 10, where the bark starts
out angled on the tree’s roots and turns upwards to follow the
trunk’s shape. Some simple sharp orientation transitions are
also supported, such as the bricks in Figure 9’s house that
align with the wall’s sharp turn cause by the isometric per-
spective.

The colors of textures shown make the added features
blend well into original images. They help textures appear
as subtle details that are visually pleasing and do not stand
out. Additionally, the colors are selected from the original
image’s palette, such that the common pixel art limitation of



number of colors used is not violated.
Finally, while our method requires much less effort than

manual texturing, comparing our results to manually textured
images, as in Figure 10, reveals promising similarities.

5.2 Coloring strategies
In Section 3.2, we describe three different strategies for deter-
mining the color of each element. Each of these strategies has
its own advantages and drawbacks, which influence which of
them is most appropriate according to the input image.
HSV shift Because each output color is a transformation of
its respective input color, this strategy enables subtler textures
with colors very similar to the ones where they’re placed.
However, it introduces new colors to the palette, which is gen-
erally undesirable – a core aspect of pixel art is a limited and
fixed number of colors, often carefully selected by artists.
Color difference This strategy tries to create subtle textures
by minimizing the starkness of color changes, but it can use
colors from an unrelated part of the image which results in vi-
sually discordant elements. This case is shown in the center
image of Figure 11, where the most similar color to the mid
brown on the tree’s exterior is the light brown from inside the
tree. This creates discordant elements, as the lighter brown is
not used in the area where the elements are placed. For com-
parison, the right image of Figure 11 shows the same input
image with better coloring, using the shared border method.
Shared border This strategy makes use of the fact that
artists will generally place colors that work well together next
to each other, and frequently selects the color that was used to
shade the area. However, it might present an issue if the area
contains a sharp color transition, such as going from orange
to blue in Figure 12, as it might select the dissimilar color,
creating an element that stands out against the background,
as shown in the center image. Another issue arises from the
common usage of black outlines in pixel art – since these gen-
erally border an entire shape, black is frequently selected by
the strategy, but usually contrasts starkly against where the el-
ement is placed. This issue is mitigated by allowing the user
to exclude black from possible colors.

In all, the shared border strategy is the most reliable. Since
it makes use of the artist’s intent when placing colors next to
one another, it is more likely to select a color that creates visu-
ally pleasing details, even if that color is not the most similar

Figure 11: Fail case of the color difference strategy, where a color
is taken from an unrelated area of the image. Left: Input image.
Center: Textured tree trunk, produced by our method with the color
difference strategy. Right: Textured tree trunk, produced by our
method with the shared border strategy. Left image is drawn by
Pedro Medeiros [14].

Figure 12: Fail case of the shared border strategy, where a stark color
transition leads to discordant elements. Left: Input image. Center:
Textured sphere, produced by our method with the shared border
strategy. Right: Textured tree trunk, produced by our method with
the color difference strategy.

to the region it’s placed at. In the failure case of very distinct
colors being placed next to one another, the color difference
strategy is the best alternative, as it avoids both this issue and
introducing new colors to the palette. The HSV shift strat-
egy should only be selected to achieve effects that go against
the goal of subtle element coloring, or if not enough colors
are available in the palette. These considerations are taken
into account for the described method of automatic selection,
which prefers the shared border strategy given its reliability,
unless it detects a color difference between input and output
that is too stark – then choosing the color difference strategy
– or if the palette contains only one color – then choosing the
HSV shift strategy.

5.3 Limitations
Not all texture types can be synthesized by our method, as
the technique described by Schlitter [18] is not suitable for
materials that do not exhibit repeating features, such as met-
als which are commonly identified in pixel art by continu-
ous reflection streaks [14]. Additionally, the algorithm places
only equal elements throughout an image, such that it cannot
produce textures that require a great variety in the elements
placed.

The center columns of Figure 13 shows attempts at cre-
ating textures for which our method is unsuited. The cloud
shown on the top row requires differently sized elements to
be textured, similar to what’s shown in the top right image.

Figure 13: Textures for which the algorithm fails.



The bottom row’s sword could use reflection streaks to appear
metallic, however our method places streaks without continu-
ity which shatter the illusion of light being reflected.

Finally, this study’s evaluation is limited in that we are un-
able to devise formal metrics of quality, and lack a quality
assessment performed by an independent party. Additionally,
since the algorithm’s intended usage is during the process of
creating pixel art, it requires “incomplete” pixel art as input,
making it difficult to find test data. Consequently, the ma-
jority of input data is created by us, limiting the number of
examples we are able to present.

6 Responsible Research

In the course of this research, we have aimed to uphold the
Netherlands Code of Conduct for Research Integrity in abid-
ing by its five principles of honesty, scrupulousness, trans-
parency, independence and responsibility [7].

We uphold the principle of honesty by presenting our algo-
rithm’s results alongside the input required to achieve them,
with the precise parameters used for generating each figure
detailed in Appendix A. This principle is further taken into
account when reporting all known limitations of the research
in Section 5.3.

Our research methods have been made reproducible by
precisely describing the algorithm in Section 3. In order to
clarify any questions about implementation details, we addi-
tionally make our source code available at https://github.com/
franciscunha/pixel-art-texturing/. All pixel art that exempli-
fies our algorithm throughout the paper is publicly available
online, and either is properly attributed to its authors or was
created by us. Through these actions, we aim to abide by the
principles of scrupulousness and transparency.

We additionally increase the research’s transparency by re-
porting that large language models (LLMs) were used on oc-
casion. These tools were used mainly as an aid in the al-
gorithm’s implementation in the Python programming lan-
guage. In this sense, they served to clarify and help fix spe-
cific programming errors, to find existing implementations of
given features in Python libraries, or to generate code that
is conceptually simple but laborious to write. On two occa-
sions, LLMs were used to clarify the usage of certain termi-
nology in existing literature. LLMs were not used to aid in
the manuscript’s writing, nor in the development of the al-
gorithm itself. We provide a full list of the prompts used in
Appendix B.

Lastly, we uphold the responsibility principle by “acknowl-
edging the fact that a researcher does not operate in isola-
tion” [7, p. 13], and considering the broader societal impli-
cations of our research. As with any tool that automates or
simulates human labor, we recognize the risk of our research
being expanded upon in a way that seeks to make the people
who currently do that labor redundant. We wish to emphasize
that though we enable the procedural generation of pixel art,
our tool requires annotations and parameter tweaking to pro-
duce high-quality results, promoting the close involvement of
artists in its usage.

7 Conclusions and Future Work
This paper describes an algorithm that procedurally adds de-
tail to pixel art in order to make represented objects look more
like they are made from real materials, that is, an algorithm
that partly automates pixel art texturing. Our method works
by placing small user-provided elements that resemble a fea-
ture of the real object throughout a user-determined region of
the given image. We derive the position and color of these el-
ements through simple heuristics, and their orientation from
a vector field built from user annotated brush strokes. Sev-
eral parameters can be tweaked to achieve a desired look. By
using our system, artists can bypass the laborious process of
drawing each element by hand throughout the entire image.

We make two additional contributions, as we derive
(1) heuristics on how to determine colors for features that
are drawn over existing pixel art, and (2) a method to cre-
ate vector fields from user brush strokes. Contribution (1) is
a necessary step in any future work on intradomain pixel art
processing – given that the limited usage of colors is core to
this art form, any introduced element in pixel art should ad-
here to the image’s palette. Meanwhile, contribution (2) im-
proves the usability of any software that makes use of vector
field as inputs, which is significant given their wide applica-
tions. While these two methods are useful first steps, further
research is warranted to develop their robustness.

Future research may investigate how elements can be
drawn in order to resemble given texture types, and propose
how to generate these procedurally. The algorithm can be ex-
tended with different heuristics for element’s colors and po-
sitions. Additionally, improvements can be made to its run-
time, by making optimizations such as parallelizing the com-
putation of color, position and orientation. Finally, one could
integrate our method as part of a larger procedural genera-
tion system, enabling procedural generation of high-quality
pixel art.
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A Parameters used to generate shown images

Key Parameter Reference

ρ Density Section 3.1
m Margins Section 3.1

Partial Allow elements to be placed Section 3.1
partially within bounds

Pos. str. Position strategy Section 4
Col. str. Color strategy Section 3.2
∆HSV HSV displacement Section 3.2

Cex Excluded colors Section 3.2
dmax Maximum color distance Section 3.2

El. col. Per-pixel or region coloring Section 3.4

Additionally, (SB) indicates shared border strategy selected
and (CD) indicates color difference strategy selected.

Name Trunk Fish Owl
Figure 1, 10, 11 2, 6, 8, 9 9

ρ 100% 100% 100%
m (−1,−1) (0, 0) (0, 0)

Partial Yes Yes No
Pos. str. Random Packed Random
Col. str. Auto (SB) Auto (SB) Auto (SB)
∆HSV NA NA NA

Cex (0, 0, 0) (0, 0, 0) None
dmax 60 50 50

El. col. Region Region Per-pixel
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Name Dog Pine tree Bird
Figure 9 9 9

ρ 100% 80% 100%
m (−2,−1) (0, 0) (0,−1)

Partial No No No
Pos. str. Random Random Random
Col. str. Auto (CD) Auto (SB) Auto (SB)
∆HSV NA NA NA

Cex (0, 0, 0) None (0, 0, 0)
dmax 50 50 50

El. col. Per-pixel Per-pixel Region

Name House Foliage Ruins
Figure 9 10 10

ρ 80% 60% 70%
m (−1,−1) (0, 0) (1, 0)

Partial No No Yes
Pos. str. Packed Random Random
Col. str. Auto (SB) Auto (CD) HSV shift
∆HSV NA NA (0, 3%, 17%)

Cex (0, 0, 0) None NA
dmax 50 50 NA

El. col. Region Per-pixel Per-pixel

Name Ball Cloud Sword
Figure 12 13 13

ρ 50% 100% 100%
m (1, 1) (0, 0) (0, 2)

Partial No No Yes
Pos. str. Random Random Packed
Col. str. In figure caption Auto (SB) Auto (SB)
∆HSV NA NA NA

Cex None None None
dmax NA 50 50

El. col. Region Region Region

B List of LLM prompts
• What do brush strokes usually refer to in computer

graphics or image processing?

• Are tensor fields the same as flow fields and vector
fields? If not how do they differ from each other?

• This line of python cv2.bitwise and(map, map,
mask=mask) gives the error

cv2.error: OpenCV(4.11.0) :-1: error:
↪→ (-5:Bad argument) in function
↪→ ’bitwise\_and’

> Overload resolution failed:
> - mask data type = bool is not

↪→ supported
> - Expected Ptr<cv::UMat> for

↪→ argument ’mask’

where mask is a numpy ndarray with shape (H, W, 1)
and map is a opencv image with shape (H, W, 4)

• Help me deal with this OpenCV error

cv2.error: OpenCV(4.11.0) D:\a\opencv
↪→ -python\opencv-python\opencv\

↪→ modules\imgproc\src\drawing.
↪→ cpp:2426: error: (-215:
↪→ Assertion failed) p.
↪→ checkVector(2, CV_32S) > 0 in
↪→ function ’cv::fillPoly ’

• Using Python, OpenCV and numpy, is there some built-
in function to normalize a vector represented by the
datatype cv2.Point?

• What is a python library that would enable me to easily
solve a system of linear equations?

• How can I apply a mask to an image in opencv?

• I need to create a simple GUI for a Python program.
It’s just for prototype development, to make some things
easier for me as a developer, so the GUI can be very
simple and preferably very easy to code. Which frame-
work/library should I use?

• Write code that draws a grid using opencv in Python,
taking as parameters: the cell size in pixels, height and
width of the grid

• Please write some lines of code that create an np.array
of shape (16, 16, 2), where most value pairs in the 16x16
matrix are 0, but some are random normalized vectors

• Given that exlude is an array of colors in BGRA format,
how can I filter out the colors in exclude from the colors
in palette?

def extract_palette(img: cv2.Mat,
↪→ exclude: np.ndarray = []):
palette = np.unique(img.reshape

↪→ (-1, img.shape[-1]), axis
↪→ =0)

not_excluded = ... # code here

no_transparent = not_excluded[
↪→ not_excluded[:, 3] > 0]

return no_transparent

• Write a python function that takes an OpenCV image,
scales it by a given factor, and places a red border around
pixels whose coordinates are given.

• I have two numpy arrays, one with shape (4, ) and an-
other with shape (x, 4). How can I check if the first is
one of the rows of the second?

• given a rect defined by

padded_y0 , padded_y1 = y0 -
↪→ pattern_padding , y1 +
↪→ pattern_padding

padded_x0 , padded_x1 = x0 -
↪→ pattern_padding , x1 +
↪→ pattern_padding

write code that gets the ‘x0‘ and ‘y0‘ of each of its 8
neighbors



• Write python code using tkinter to create a GUI with
these requirements: * Both code and GUI itself are sim-
ple and straightforward, as it is only a prototype * It al-
lows selecting several parameters, which are defined be-
low * It additionally has two buttons, one labeled ”An-
notate” and another labeled ”Texture”. Leave room in
the code for me to call a function when each button
is pressed, but note that these functions will also call
openCV’s cv2.imshow, so make sure the code is pre-
pared to handle this
The parameters are: * density = float between
0 and 1 * placement mode = ”packed” or ”sam-
pling” * allow partly in mask = boolean * bound-
ary mask padding = integer between -10 and 10 * el-
ement padding = tuple of two integers, each between
-5 and 5 * scale = integer between 1 and 32 * ex-
cluded colors = list of colors, represented by an np.array
of a form like ‘np.array([[0, 0, 0, 255], [255, 255, 255,
255]])‘ in BGRA space * color map mode = ”border”,
”hsv” or ”similarity” * element color mode = ”region”
or ”per-pixel” * hsv shift = tuple of three integers, each
between 0 and 255 * max attempts = positive integer *
source file = file path * boundary file = file path or None
* element sheet file = file path
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