Canopy gap fraction estimation from ICESat-2 ATL08 product

Katrin Meschin

1st supervisor: Maarten Pronk2nd supervisor: dr. Hugo LedouxCo-reader: dr. Marieke Eleveld

Motivation

- Forests cover 31% of the global land area;
- Most of terrestrial biodiversity;
- Supply water;
- Mitigate climate change;

- Estimating forest structure in 3D using LiDAR scanning well researched;
- Such data has limited spatial and temporal coverage;

- ICESat-2 is designed to study the cryosphere;
- It also already has ATL08 data product for vegetation;
- Research is ongoing to estimate canopy gap fraction from the ATL08 data;

Background: Canopy gap fraction

Canopy gap fraction =
$$1 - \frac{\sum All_{canopy}}{\sum All}$$

Background: Airborne Laser Scanning vs ATL08

Return recorded whenever the power of the waveform exceeds a fixed threshold.

The time when a single photon is detected recorded.

State of the art

- The ATL08 version 5 data product is available;
- Canopy height data is included;
- There are plans to include canopy gap fraction data in future versions;
- There are two approaches suggested for deriving canopy gap fraction from ATL08 data;
- There has not been a study publishing results on computing canopy gap fraction from ICESat-2 data;

To what extent can canopy gap fraction be estimated from ICESat-2 ATL08 product?

Sub-questions

- What are the optimal environmental conditions for ICESat-2 data acquisition that allow canopy structure estimation from ATL08?
- Out of the two methods used in this thesis for estimating canopy gap fraction from ICESat-2 data, which performs better?
- Does the canopy gap fraction derived from ATL08 reflect differences in different forest types?
- To what extent does the canopy gap fraction derived from ATL08 reflect the changes in forest structure throughout the year?
- To what extent is the ALS data provided by Estonian Land Board suitable for validating canopy gap fraction estimation from ATL08?
- How could the methods for computing canopy gap fraction from ICESat-2 ATL08 data be further improved?
 TUDelft

Study area and data used

- ATL08 version 5 from National Snow and Ice Data
 Center
- Airborne LiDAR data from spring and summer scanning from Estonian Geoportal;
- Hansen Global Forest Change dataset (Hansen et al. 2013
- Raster of forest types by dominant tree species in Estonia (Lang et al. 2018).

Study area

Workflow

Methods for ALS

Methods for ATL08

Canopy gap fraction
$$_{ATL08} = 1 - \frac{\sum R_{topcanopy} + \sum R_{canopy}}{\sum R_{topcanopy} + \sum R_{canopy} + \sum R_{terrain}}$$

Canopy gap fraction
$$_{ATL08} = 1 - \frac{\sum_{z_i}^{z_{max}} R_v}{1 + \frac{\rho_v}{\rho_g} \frac{R_g}{R_v}}$$

Canopy gap fraction =
$$1 - \frac{\sum All_{canopy}}{\sum All}$$

$$\mathcal{SCI} = 1 - \frac{\sum Single_{ground} + 0.5(\sum First_{ground} + \sum Last_{ground})}{\sum Single_{all} + 0.5(\sum First_{all} + \sum Last_{all})}$$

Validation 1: ALS CGF compared to reference data (1/3)

Smaller 12 x 100 meter transects (green) created within the 100 x 100 m study plot

Validation 1: data from spring and summer (2/3)

- Canopy gap fraction was computed from the summer and spring ALS data;
- Agreement between the two datasets for pine and spruce;
- Different results for birch reflecting the change in seasons;
- Noise in birch stand data indicating possible errors in the ALS data.

Validation 1: ALS gap fraction compared to reference data (3/3)

- SCI has better agreement with reference data than ALS canopy gap fraction;
- Best agreement between computed and reference data in pine stand;
- For spruce and birch stands the computed values underestimate;
- Due to lower resolution of ALS used in this thesis, in dense forest CGF may be underestimated;

	Reference ALS CGF	Computed CGF	Computed SCI
Pine stand	0.55	0.53	0.54
Birch stand	0.3	0.18	0.25
Spruce stand	0.35	0.19	0.24

Validation 2: Histograms

- To understand how ground and canopy radiometry performs;
- Clear difference between daytime and nighttime radiometry can be seen in the weak beam;

• Weak beam ground mode always higher than canopy;

″UDelft

Canopy radiometry (photons/pulse) in ATL08 Segment

Strong beam

Weak beam

Validation 3: Canopy height estimation from ALS and ATL08

Day and night included

Only night included

Violin graph

Results

Method I: canopy to total photon ratio

• ATL08 tends to overestimate the canopy gap fraction

TUDelft

• Better fit with the SCI than the canopy gap fraction value

19

Method II: using radiometric profile (1/3)

$$p_{gap}(z) = 1 - \frac{\sum_{z_i}^{z_{max}} R_v}{1 + \frac{\rho_v}{\rho_g} \frac{R_g}{R_v}}$$

Reflectivity

Figure taken from Neuenschwander et al. 2022

Method II: using radiometric profile (2/3)

- Y-intercept shows transects where all labelled photons from the canopy;
- Y-intercept around 1.8;
- X-intercept around 2.3;
- Ground reflectivity is higher than the reflectivity of vegetation.

Method II: using radiometric profile (3/3)

- Overestimation in the results computed from ATL08
- Correction for reflectivity does not have too much effect on the results

Which of the two methods is better?

- Both methods show very similar RMSE and the Mean Absolute Deviation (MAD);
- Noise in both;
- Second method is computationally more expensive;
- The first method of using canopy to total ratio should be preferred out of those two;

	CGF using photon ratio (Eq 3.3)		CGF with reflectivity correction (Eq 3.4)	
	ALS CGF	ALS SCI	ALS CGF	ALS SCI
RMSE	0.58	0.24	0.54	0.23
MAD	0.17	0.17	0.19	0.19

Canopy gap in different **forest types**

- Data only from summer months;
- Only segments where **species variety low**;
- The median CGF lower for spruce and birch than for pine forest;
- However, dominant tree species is not a strong indicator to be used as ground truth for estimating forest density.

Un- Sparse Birch Spruce Pine G-AldeB-AlderAspen Ash Other known 1519 1434 1042 429 318 126 52 1 1 2008

Dominating tree species

ATL08 canopy gap fraction through the year (1/2)

- CGF higher from November to April;
- Low from May to September;
- Trend is more clear in the strong beam;
- Does it reflect changes in vegetation or

changes in reflectivity?

ATL08 canopy gap fraction through the year (2/2)

Spruce (evergreen)

Birch (deciduous)

Key takeaways

- The ALS data used did not meet the resolution suggested by the ATL08 technical document and there were some possible errors in the data;
- Nighttime acquisition is more optimal than daytime for using ATL08 weak beam data;
- The two methods tested in this thesis gave similar results;
- The method using canopy to total photon ratio is considered better;
- The ATL08 data can show different canopy gap fraction in different forest types;
- The ATL08 data can also indicate annual changes in forest structure;

Future work

- Higher quality ALS data should be used to have higher confidence in the reference data;
- Once ATL08 version 6 is available, using version 5 is not recommended due to the errors in the daytime data;
- Correcting for the ground and vegetation reflectivity needs more research;
- The annual trends in vegetation reflected in ATL08 data could be promising for large-scale forest studies.
- Although ALS and TLS might give higher accuracy canopy gap fraction estimation, their spatial and temporal coverage cannot match the one of ICESat-2;

Thank you for your attention

TUDelft